Science.gov

Sample records for nial-crmo-hf eutectic alloy

  1. Directionally solidified eutectic alloy gamma-beta

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1977-01-01

    A pseudobinary eutectic alloy composition was determined by a previously developed bleed-out technique. The directionally solidified eutectic alloy with a composition of Ni-37.4Fe-10.0Cr-9.6Al (in wt%) had tensile strengths decreasing from 1,090 MPa at room temperature to 54 MPa at 1,100 C. The low density, excellent microstructural stability, and oxidation resistance of the alloy during thermal cycling suggest that it might have applicability as a gas turbine vane alloy while its relatively low high temperature strength precludes its use as a blade alloy. A zirconium addition increased the 750 C strength, and a tungsten addition was ineffective. The gamma=beta eutectic alloys appeared to obey a normal freezing relation.

  2. Directionally solidified iron-base eutectic alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1976-01-01

    Pseudobinary eutectic alloys with nominal compositions of Fe-25Ta-22Ni-10Cr and Fe-15.5Nb-14.5Ni-6.0Cr were directionally solidified at 0.5 centimeter per hour. Their microstructure consisted of the fcc, iron solid-solution, matrix phase reinforced by about 41-volume-percent, hcp, faceted Fe2Ta fibers and 41-volume-percent, hcp, Fe2Nb lamellae for the tantalum- and niobium-containing alloys, respectively. The microstructural stability under thermal cycling and the temperature dependence of tensile properties were investigated. These alloys showed low elevated-temperature strength and were not considered suitable for application in aircraft-gas-turbine blades although they may have applicability as vane materials.

  3. Solidification of eutectic system alloys in space (M-19)

    NASA Technical Reports Server (NTRS)

    Ohno, Atsumi

    1993-01-01

    It is well known that in the liquid state eutectic alloys are theoretically homogeneous under 1 g conditions. However, the homogeneous solidified structure of this alloy is not obtained because thermal convection and non-equilibrium solidification occur. The present investigators have clarified the solidification mechanisms of the eutectic system alloys under 1 g conditions by using the in situ observation method; in particular, the primary crystals of the eutectic system alloys never nucleated in the liquid, but instead did so on the mold wall, and the crystals separated from the mold wall by fluid motion caused by thermal convection. They also found that the equiaxed eutectic grains (eutectic cells) are formed on the primary crystals. In this case, the leading phase of the eutectic must agree with the phase of the primary crystals. In space, no thermal convection occurs so that primary crystals should not move from the mold wall and should not appear inside the solidified structure. Therefore no equiaxed eutectic grains will be formed under microgravity conditions. Past space experiments concerning eutectic alloys were classified into two types of experiments: one with respect to the solidification mechanisms of the eutectic alloys and the other to the unidirectional solidification of this alloy. The former type of experiment has the problem that the solidified structures between microgravity and 1 g conditions show little difference. This is why the flight samples were prepared by the ordinary cast techniques on Earth. Therefore it is impossible to ascertain whether or not the nucleation and growth of primary crystals in the melt occur and if primary crystals influence the formation of the equiaxed eutectic grains. In this experiment, hypo- and hyper-eutectic aluminum copper alloys which are near eutectic point are used. The chemical compositions of the samples are Al-32.4mass%Cu (Hypo-eutectic) and Al-33.5mass%Cu (hyper-eutectic). Long rods for the samples are

  4. Containerless solidification of acoustically levitated Ni-Sn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Geng, D. L.; Xie, W. J.; Wei, B.

    2012-10-01

    Containerless solidification of Ni-18.7at%Sn eutectic alloy has been achieved with a single-axis acoustic levitator. The temperature, motion, and oscillation of the sample were monitored by a high speed camera. The temperature of the sample can be determined from its image brightness, although the sample moves vertically and horizontally during levitation. The experimentally observed frequency of vertical motion is in good agreement with theoretical prediction. The sample undergoes shape oscillation before solidification finishes. The solidification microstructure of this alloy consists of a mixture of anomalous eutectic plus regular lamellar eutectic. This indicates the achievement of rapid solidification under acoustic levitation condition.

  5. An approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    In alloys, solidification takes place along various paths which may be ascertained via phase diagrams; while there would be no single formula applicable to all alloys, an approximate formula for a specific solidification path would be useful in estimating the fraction of the solid formed during recalescence. A formulation is here presented of recalescence in binary eutectic alloys. This formula is applied to Ag-Cu alloys which are of interest in containerless solidification, due to their formation of supersaturated solutions.

  6. The microstructure of MnBi/Bi eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ravishankar, P. S.; Wilcox, W. R.; Larson, D. J.

    1980-01-01

    Directionally solidified eutectic alloys of the system MnBi/Bi have been investigated with reference to the dependence of the fiber spacing on the growth rate and the interfacial temperature gradient. It is found that the fiber spacing varies as the inverse square root of the growth rate and does not depend on the temperature gradient in contrast to the claims that all faceted/non-faceted eutectics should show a temperature gradient influence.

  7. New eutectic alloys and their heats of transformation

    NASA Technical Reports Server (NTRS)

    Farkas, D.; Birchenall, C. E.

    1985-01-01

    Eutectic compositions and congruently melting intermetallic compounds in binary and multicomponent systems among common elements such as Al, Ca, Cu, Mg, P, Si, and Zn may be useful for high temperature heat storage. In this work, heats of fusion of new multicomponent eutectics and intermetallic phases are reported, some of which are competitive with molten salts in heat storage density at high temperatures. The method used to determine unknown eutectic compositions combined results of differential thermal analysis, metallography, and microprobe analysis. The method allows determination of eutectic compositions in no more than three steps. The heats of fusion of the alloys were measured using commercial calorimeters, a differential thermal analyzer, and a differential scanning calorimeter.

  8. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  9. Eutectic alloys. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Moore, P.

    1980-01-01

    These 250 abstracts from the international literature provide summaries of the preparation, treatments, composition and structure, and properties of eutectic alloys. Techniques for directional solidification and treatments including glazing, coating, and fiber reinforcement are discussed. In addition to the mechanical and thermal properties, the superconducting, corrosion, resistance, and thermionic emission and adsorption properties are described.

  10. Near-Eutectic Ternary Mo-Si-B Alloys: Microstructures and Creep Properties

    NASA Astrophysics Data System (ADS)

    Hasemann, G.; Kaplunenko, D.; Bogomol, I.; Krüger, M.

    2016-08-01

    In the present work, the microstructural evolution during the solidification of different near-eutectic Mo-Si-B alloys was investigated. The alloy compositions were chosen from the vicinity of the eutectic region with respect to published liquidus projections. The aim was to identify a eutectic alloy composition in the Mo-rich region of the system, which would be suitable for directional solidification (DS). In a second step, two alloy compositions were prepared via DS and first creep results of these near-eutectic DS alloys are presented and discussed.

  11. Divorced Eutectic Solidification of Mg-Al Alloys

    NASA Astrophysics Data System (ADS)

    Monas, Alexander; Shchyglo, Oleg; Kim, Se-Jong; Yim, Chang Dong; Höche, Daniel; Steinbach, Ingo

    2015-08-01

    We present simulations of the nucleation and equiaxed dendritic growth of the primary hexagonal close-packed -Mg phase followed by the nucleation of the -phase in interdendritic regions. A zoomed-in region of a melt channel under eutectic conditions is investigated and compared with experiments. The presented simulations allow prediction of the final properties of an alloy based on process parameters. The obtained results give insight into the solidification processes governing the microstructure formation of Mg-Al alloys, allowing their targeted design for different applications.

  12. Supercooling effects in faceted eutectic Nb-Si alloys

    NASA Technical Reports Server (NTRS)

    Gokhale, A. B.; Sarkar, G.; Abbaschian, G. J.; Haygarth, J. C.; Wojcik, C.

    1988-01-01

    The effect of melt supercooling on the microstructure of an Nb-58 at. pct Si alloy is investigated experimentally using an electromagnetic levitation apparatus. It is found that, starting with an alloy nominally of eutectic composition, nucleation of Nb5Si3 occurs in the supercooled liquid first. Upon further cooling, the remaining liquid continues to supercool until the second phase, NbSi2 is nucleated, which is commonly accompanied by rapid recalescence. The primary phase exibits a eutectoid-type decomposition. The observations are discussed with reference to the results of quantitative microstructural measurements, compositional and thermal analysis, and preliminary thermodynamic modeling of the phase diagram.

  13. Microstructure and mechanical properties of eutectic nickel alloy coatings

    NASA Astrophysics Data System (ADS)

    Bezborodov, V. P.; Saraev, Yu N.

    2016-04-01

    The paper discusses the peculiarities of a structure and a coating composition after reflow. It was established that the structure of coatings from nickel alloy is a solid solution based on nickel, the eutectic of γ-Ni+Ni3B composition and dispersed reinforcing particles. The content of alloying elements in the initial powder material determines the type of the coating structure and the formation of hypoeutectic or hypereutectic structures. The influence of formation conditions on the structure and physical-mechanical properties of the coatings is considered in this paper.

  14. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  15. Traveling waves, two-phase fingers, and eutectic colonies in thin-sample directional solidification of a ternary eutectic alloy

    PubMed

    Akamatsu; Faivre

    2000-04-01

    We present an experimental investigation of the morphological transition of lamellar eutectic growth fronts called "formation of eutectic colonies" by the method of thin-sample directional solidification of a transparent model alloy, CBr4-C2Cl6. This morphological transition is due to the presence in the melt of traces of chemical components other than those of the base binary alloy (impurities). In this study, we use naphthalene as an impurity. The formation of eutectic colonies has generally been viewed as an impurity-driven Mullins-Sekerka instability of the envelope of the lamellar front. This traditional view neglects the strong interaction existing between the Mullins-Sekerka process and the dynamics of the lamellar pattern. This investigation brings to light several original features of the formation of eutectic colonies, in particular, the emission of long-wavelength traveling waves, and the appearance of dendritelike structures called two-phase fingers, which are connected with this interaction. We study the part played by these phenomena in the transition to eutectic colonies as a function of the impurity concentration. Recent theoretical results on the linear stability of ternary lamellar eutectic fronts [Plapp and Karma, Phys. Rev. E 60, 6865 (1999)] shed light on some aspects of the observed phenomena.

  16. High Magnetic Field-Induced Formation of Banded Microstructures in Lamellar Eutectic Alloys During Directional Solidification

    NASA Astrophysics Data System (ADS)

    Li, Xi; Fautrelle, Yves; Gagnoud, Annie; Ren, Zhongming; Moreau, Rene

    2016-08-01

    The influences of high magnetic field (up to 12 T) on the morphology of Pb-Sn and Al-Al2Cu lamellar eutectics during directional solidification were investigated. The experimental results indicate that, along with a decrease in eutectic spacing, the banded structure forms at lower growth speeds under high magnetic field and the band spacing decreases as the magnetic field increases. Moreover, the application of a magnetic field enriches the Cu solute in the liquid ahead of the liquid/solid interface during directional solidification of an Al-Al2Cu eutectic alloy. The effects of high magnetic field on the eutectic points of non-ferromagnetic alloys and the stress acting on the eutectic lamellae during directional solidification have been studied. Both thermodynamic evaluation and DTA measurements reveal that the high magnetic field has a negligible effect on the eutectic points of non-ferromagnetic alloys. However, the high magnetic field caused an increase of the nucleation temperature and undercooling. The numerical results indicate that a considerable stress is produced on the eutectic lamellae during directional solidification under high magnetic field. The formation of a banded structure in a lamellar eutectic during directional solidification under high magnetic field may be attributed to both the buildup of the solute in the liquid ahead of the liquid/solid interface and the stress acting on the eutectic lamellae.

  17. Transmission laser bonding of low melting eutectic alloys

    NASA Astrophysics Data System (ADS)

    Hoff, C.; Cromwell, K.; Hermsdorf, J.; Akin, M.; Wurz, M. C.; Kaierle, S.; Maier, H. J.; Overmeyer, L.

    2016-03-01

    Transparent polymers with low glass transition temperatures are flexible materials and can serve as an optical waveguide or as substrates for the layer structure in applications such as humidity or temperature sensors. The background of this publication is the development of a laser-based process to bond silicon chips, which serve as emitter or detector in an optical system, on a substrate, without exposing the substrate to thermo-mechanical stress. Using transmission laser bonding of low-melting eutectic alloys, the necessary energy can be coupled into the fusion zone precisely to reduce the process time. In this paper, Si-chips with 52In48Sn and 66In34Bi layers are investigated to bond on rigid substrates. Experimental results are presented, which illustrate the mechanical stability of these compounds.

  18. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    NASA Astrophysics Data System (ADS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  19. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    SciTech Connect

    Shen, Junjun Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-05-12

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl{sub 2} eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  20. Alloy and structural optimization of a directionally solidified lamellar eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1976-01-01

    Mechanical property characterization tests of a directionally solidified Ni-20 percent Cb-2.5 percent Al-6 percent Cr cellular eutectic turbine blade alloy demonstrated excellent long time creep stability and indicated intermediate temperature transverse tensile ductility and shear strength to be somewhat low for turbine blade applications. Alloy and structural optimization significantly improves these off-axis properties with no loss of longitudinal creep strength or stability. The optimized alloy-structure combination is a carbon modified Ni-20.1 percent Cb-2.5 percent Al-6.0 percent Cr-0.06 percent C composition processed under conditions producing plane front solidification and a fully-lamellar microstructure. With current processing technology, this alloy exhibits a creep-rupture advantage of 39 C over the best available nickel base superalloy, directionally solidified MAR M200+ Hf. While improved by about 20 percent, shear strength of the optimized alloy remains well below typical superalloy values.

  1. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-08-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility.

  2. A promising new class of high-temperature alloys: eutectic high-entropy alloys.

    PubMed

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  3. A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys

    PubMed Central

    Lu, Yiping; Dong, Yong; Guo, Sheng; Jiang, Li; Kang, Huijun; Wang, Tongmin; Wen, Bin; Wang, Zhijun; Jie, Jinchuan; Cao, Zhiqiang; Ruan, Haihui; Li, Tingju

    2014-01-01

    High-entropy alloys (HEAs) can have either high strength or high ductility, and a simultaneous achievement of both still constitutes a tough challenge. The inferior castability and compositional segregation of HEAs are also obstacles for their technological applications. To tackle these problems, here we proposed a novel strategy to design HEAs using the eutectic alloy concept, i.e. to achieve a microstructure composed of alternating soft fcc and hard bcc phases. As a manifestation of this concept, an AlCoCrFeNi2.1 (atomic portion) eutectic high-entropy alloy (EHEA) was designed. The as-cast EHEA possessed a fine lamellar fcc/B2 microstructure, and showed an unprecedented combination of high tensile ductility and high fracture strength at room temperature. The excellent mechanical properties could be kept up to 700°C. This new alloy design strategy can be readily adapted to large-scale industrial production of HEAs with simultaneous high fracture strength and high ductility. PMID:25160691

  4. Solidification of the eutectic Ga-Sn alloy

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. D.; Frolova, S. A.; Amerkhanova, Sh. K.

    2016-05-01

    Cyclic thermal analysis is used to study the effect of overheating of the eutectic Ga-8.5 mol % Sn melt on the presolidification supercooling. It is found that, when the liquid eutectic is overheated above the eutectic temperature ( T e = 293.5 K) and is subsequently cooled, the dependence of the presolidification supercooling on the overheating temperature exhibits monotonic ascending behavior. The maximum supercooling after heating of the melt to 339 K is 26 K. The kinetic and thermodynamic parameters of eutectic solidification are calculated using the thermal analysis curves measured during melting.

  5. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  6. Free energy change of off-eutectic binary alloys on solidification

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.; Lin, J.-C.; Perepezko, J. H.

    1991-01-01

    A formula for the free energy difference between the undercooled liquid phase and the stable solid phase is derived for off-eutectic binary alloys in which the equilibrium solid/liquid transition takes place over a certain temperature range. The free energy change is then evaluated numerically for a Bi-25 at. pct Cd alloy modeled as a sub-subregular solution.

  7. Oxygen-iron interaction in liquid lead-bismuth eutectic alloy.

    PubMed

    Aerts, A; Gavrilov, S; Manfredi, G; Marino, A; Rosseel, K; Lim, J

    2016-07-20

    Iron released by steel corrosion was found to be a key impurity in reactions with dissolved oxygen in liquid lead-bismuth eutectic alloys. The iron-oxygen-magnetite equilibrium was characterized, allowing the quantification of phenomena that are important for long-term operation of lead-alloy based installations such as corrosion rate control and management of precipitates. PMID:27383127

  8. Effect of boron on the microstructure of near-eutectic Al-Si alloys

    SciTech Connect

    Wu Yuying . E-mail: wyy532001@163.com; Liu Xiangfa; Bian Xiufang

    2007-02-15

    The effect of boron on the microstructure of a near-eutectic Al-Si alloy (ZL109) was investigated by scanning electron microscopy (SEM) and electron beam microprobe analysis (EPMA). It was found that {alpha}-Al dendrites and eutectic clusters were significantly refined by the addition of boron. Another interesting discovery is that the near-eutectic alloy exhibited hypereutectic structure characteristics when the level of boron added exceeds 0.3%, i.e., primary Si is precipitated in the eutectic microstructure. A new type of nucleation substrate for the primary Si is found, Al {sub x}Ca {sub m}B {sub n}Si. This appears to be the main reason for the precipitation of primary Si.

  9. Heat treating of a lamellar eutectic alloy (gamma/gamma prime + delta). [heat resistant alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the alloy at 1210 C and then aging at 900 C the tensile strength can be increased about 12 percent at temperatures up to 900 C. At 1040 C no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy are reduced by heat treatment. Photographs of the microstructure are shown.

  10. Experimental and Theoretical Investigations of the Solidification of Eutectic Al-Si Alloy

    NASA Technical Reports Server (NTRS)

    Sen, S.; Catalina, A. V.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The eutectic alloys have a wide spectrum of applications due to their good castability and physical and mechanical properties. The interphase spacing resulting during solidification is an important microstructural feature that significantly influences the mechanical behavior of the material. Thus, knowledge of the evolution of the interphase spacing during solidification is necessary in order to properly design the solidification process and optimize the material properties. While the growth of regular eutectics is rather well understood, the irregular eutectics such as Al-Si or Fe-graphite exhibit undercoolings and lamellar spacings much larger than those theoretically predicted. Despite of a considerable amount of experimental and theoretical work a clear understanding of the true mechanism underlying the spacing selection in irregular eutectics is yet to be achieved. A new experimental study of the solidification of the eutectic Al-Si alloy will be reported in this paper. The measured interface undercoolings and lamellar spacing will be compared to those found in the literature in order to get more general information regarding the growth mechanism of irregular eutectics. A modification of the present theory of the eutectic growth is also proposed. The results of the modified mathematical model, accounting for a non-isothermal solid/liquid interface, will be compared to the experimental measurements.

  11. Eutectic Morphology of Al-7Si-0.3Mg Alloys with Scandium Additions

    NASA Astrophysics Data System (ADS)

    Pandee, Phromphong; Gourlay, C. M.; Belyakov, S. A.; Ozaki, Ryota; Yasuda, Hideyuki; Limmaneevichitr, Chaowalit

    2014-09-01

    The mechanisms of Al-Si eutectic refinement due to scandium (Sc) additions have been studied in an Al-7Si-0.3Mg foundry alloy. The evolution of eutectic microstructure is studied by thermal analysis and interrupted solidification, and the distribution of Sc is studied by synchrotron micro-XRF mapping. Sc is shown to cause significant refinement of the eutectic silicon. The results show that Sc additions strongly suppress the nucleation of eutectic silicon due to the formation of ScP instead of AlP. Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction similar to past work with Na, Ca, and Y additions. It is found that Sc segregates to the eutectic aluminum and AlSi2Sc2 phases and not to eutectic silicon, suggesting that impurity-induced twinning does not operate. The results suggest that Sc refinement is mostly caused by the significantly reduced silicon nucleation frequency and the resulting increase in mean interface growth rate.

  12. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  13. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-02

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  14. Effects of Minute Addition of Ni on Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Tiwary, C. S.; Chattopadhyay, K.

    2016-10-01

    The current work explores the effects of a small addition of Ni on the microstructure and mechanical properties of Sn-Zn eutectic solder alloy (Sn-14.9 at.%Zn). In two sets of experiments, Ni is either added to the eutectic alloy or Zn in the eutectic alloy is replaced by an increasing amount of Ni. The study indicates that small additions of Ni in eutectic Sn-Zn solder (˜0.017 at.%) refines the eutectic microstructure together with the appearance of the small amount of primary Zn plates. Increasing the Ni content to 0.142 at.% and beyond, then an intermetallic phase ϒ-Ni5Zn21 with dendritic morphology appears in the microstructure along with dendrites of primary Sn. The scale of eutectic microstructure shows a decreasing trend till 0.902 at.%Ni with eutectic spacing of 1.98 ± 0.32 μm for this alloy. Further addition of Ni coarsens the microstructure. The replacement of Zn with Ni in the eutectic composition follows a similar trend with a lesser refinement of the microstructure. In both the scenarios, the addition of a small amount of Ni increases the eutectic temperatures till a critical concentration is reached beyond which one can observe a decrease in the eutectic point. The trend is similar for the solid solubility of Zn in Sn while the trend is opposite for the measured eutectic composition, which decreases at the initial stages of Ni addition. Through a detailed measurement of mechanical properties, the study establishes significant improvement of the strength of Sn-Zn solder with small additions of Ni in the alloy with a maximum hardness of 26 ± 1 HV and 0.2% proof stress of 72 ± 3 MPa at room temperature for the eutectic alloy with 0.902 at.%Ni.

  15. Effects of Minute Addition of Ni on Microstructure and Mechanical Properties of Sn-Zn Eutectic Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Tiwary, C. S.; Chattopadhyay, K.

    2016-06-01

    The current work explores the effects of a small addition of Ni on the microstructure and mechanical properties of Sn-Zn eutectic solder alloy (Sn-14.9 at.%Zn). In two sets of experiments, Ni is either added to the eutectic alloy or Zn in the eutectic alloy is replaced by an increasing amount of Ni. The study indicates that small additions of Ni in eutectic Sn-Zn solder (˜0.017 at.%) refines the eutectic microstructure together with the appearance of the small amount of primary Zn plates. Increasing the Ni content to 0.142 at.% and beyond, then an intermetallic phase ϒ-Ni5Zn21 with dendritic morphology appears in the microstructure along with dendrites of primary Sn. The scale of eutectic microstructure shows a decreasing trend till 0.902 at.%Ni with eutectic spacing of 1.98 ± 0.32 μm for this alloy. Further addition of Ni coarsens the microstructure. The replacement of Zn with Ni in the eutectic composition follows a similar trend with a lesser refinement of the microstructure. In both the scenarios, the addition of a small amount of Ni increases the eutectic temperatures till a critical concentration is reached beyond which one can observe a decrease in the eutectic point. The trend is similar for the solid solubility of Zn in Sn while the trend is opposite for the measured eutectic composition, which decreases at the initial stages of Ni addition. Through a detailed measurement of mechanical properties, the study establishes significant improvement of the strength of Sn-Zn solder with small additions of Ni in the alloy with a maximum hardness of 26 ± 1 HV and 0.2% proof stress of 72 ± 3 MPa at room temperature for the eutectic alloy with 0.902 at.%Ni.

  16. Preparation, heat treatment, and mechanical properties of the uranium-5 weight percent chromium eutectic alloy

    SciTech Connect

    Townsend, A. B.

    1980-10-01

    The eutectic alloy of uranium-5 wt % chromium (U-5Cr) was prepared from high-purity materials and cast into 1-in.-thick ingots. This material was given several simple heat treatments, the mechanical properties of these heat-treated samples were determined; and the microstructure was examined. Some data on the melting point and transformation temperatures were obtained.

  17. Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys

    NASA Astrophysics Data System (ADS)

    Maltsev, Dmitry S.; Volkovich, Vladimir A.; Yamshchikov, Leonid F.; Chukin, Andrey V.

    2016-09-01

    Thermodynamic properties of gadolinium in Ga-Sn and Ga-Zn eutectic based alloys were studied. Temperature dependences of gadolinium activity in the studied alloys were determined at 573-1073 K employing the EMF method. Solubility of gadolinium in the Ga-Sn and Ga-Zn alloys was measured at 462-1073 K using IMCs sedimentation method. Activity coefficients as well as partial and excess thermodynamic functions of gadolinium in the studied alloys were calculated on the basis of the obtained experimental data.

  18. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  19. Formation mechanism of primary phases and eutectic structures within undercooled Pb-Sb-Sn ternary alloys

    NASA Astrophysics Data System (ADS)

    Wang, Weili; Dai, Fuping; Wei, Bingbo

    2007-08-01

    The solidification characteristics of three types of Pb-Sb-Sn ternary alloys with different primary phases were studied under substantial undercooling conditions. The experimental results show that primary (Pb) and SbSn phases grow in the dendritic mode, whereas primary (Sb) phase exhibits faceted growth in the form of polygonal blocks and long strips. (Pb) solid solution phase displays strong affinity with SbSn intermetallic compound so that they produce various morphologies of pseudobinary eutectics, but it can only grow in the divorced eutectic mode together with (Sb) phase. Although (Sb) solid solution phase and SbSn intermetallic compound may grow cooperatively within ternary eutectic microstructures, they seldom form pseudobinary eutectics independently. The (Pb)+(Sb)+SbSn ternary eutectic structure usually shows lamellar morphology, but appears as anomalous eutectic when its volume fraction becomes small. EDS analyses reveal that all of the three primary (Pb), (Sb) and SbSn phases exhibit conspicuous solute trapping effect during rapid solidification, which results in the remarkable extension of solute solubility.

  20. Evaluation of an advanced directionally solidified gamma/gamma'-alpha Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Henry, M. F.; Jackson, M. R.; Gigliotti, M. F. X.; Nelson, P. B.

    1979-01-01

    An attempt was made to improve on the properties of the candidate jet engine turbine blade material AG-60, a gamma/gamma prime-alpha Mo eutectic composite. Alloy 38 (AG-170) was evaluated in the greatest detail. This alloy, Ni-5.88 A1-29.74 Mo-1.65 V-1.2C Re (weight percent), represents an improvement beyond AG-60, based on mechanical testing of the transverse and/or longitudinal orientations over a range of temperatures in tension, shear, rupture, and rupture after thermal exposure. It is likely that other alloys in the study represent a similar improvement.

  1. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  2. Mechanical behavior of the directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Barkalow, R. H.; Jackson, J. J.; Gell, M.; Leverant, G. R.

    1975-01-01

    The eutectic alloy Ni-20.0%Cb-2.5%Al-6.0%Cr was tested in short-term creep and long-term exposure to service conditions to assess its suitability for high temperature turbine blade applications. Long-time exposure showed the lamellar microstructure of the alloy to be exceptionally stable. Other properties tested were notch sensitivity, isothermal and thermomechanical fatigue strength, shear strength, and transverse ductility. It was shown that this alloy is superior to the best currently available directionally solidified superalloys over the temperature/stress conditions encountered in turbine airfoils.

  3. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  4. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    NASA Technical Reports Server (NTRS)

    Chen, X. F.; Johnson, D. R.; Noebe, R. D.; Oliver, B. F.

    1995-01-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  5. Deformation and fracture of a directionally solidified NiAl-28Cr-6Mo eutectic alloy

    SciTech Connect

    Chen, X.F.; Johnson, D.R.; Noebe, R.D.; Oliver, B.F.

    1995-05-01

    A directionally solidified alloy based on the NiAl-(Cr, Mo) eutectic was examined by transmission and scanning electron microscopy to characterize the microstructure and room temperature deformation and fracture behavior. The microstructure consisted of a lamellar morphology with a group of zone axes (111) growth direction for both the NiAl and (Cr, Mo) phases. The interphase boundary between the eutectic phases was semicoherent and composed of a well-defined dislocation network. In addition, a fine array of coherent NiAl precipitates was dispersed throughout the (Cr, Mo) phase. The eutectic morphology was stable at 1300 K with only coarsening of the NiAl precipitates occurring after heat treatment for 1.8 ks (500 h). Fracture of the aligned eutectic is characterized primarily by a crack bridging/renucleation mechanism and is controlled by the strength of the semicoherent interface between the two phases. However, contributions to the toughness of the eutectic may arise from plastic deformation of the NiAl phase and the geometry associated with the fracture surface.

  6. Microstructural variations induced by gravity level during directional solidification of near-eutectic iron-carbon type alloys

    NASA Technical Reports Server (NTRS)

    Stefanescu, Doru M.; Fiske, Michael R.; Curreri, Peter A.

    1986-01-01

    The effects of gravity on the microstructure of directionally solidified near-eutectic cast irons are studied, using a Bridgman-type automatic directional solidification furnace aboard a NASA KC-135 aircraft which flies parabolic arcs and generates alternating periods of low-g (0.01 to 0.001 g, 30 seconds long) and high-g (1.8 g, 1.5 minutes long). Results show a refinement of the interlamellar spacing of the eutectic during low-g processing of metastable Fe-C eutectic alloys. Low-g processing of stable Fe-C-Si eutectic alloys (lamellar or spheroidal graphic) results in a coarsening of the eutectic grain structure. Secondary dendrite arm spacing of austenite increases in low-g and decreases in high-g. The effectiveness of low-gravity in the removal of buoyancy-driven graphite phase segregation is demonstrated.

  7. Directional solidification processing of eutectic alloys in the Ni Al V system

    NASA Astrophysics Data System (ADS)

    Milenkovic, S.; Coelho, A. A.; Caram, R.

    2000-04-01

    Intermetallic matrix composites (IMCs) offer attractive properties, such as high toughness of the metal coupled with low density, high modulus and high strength of the intermetallics. Among a large number of the intermetallics, a particular interest has been shown in the NiAl intermetallic compound, since it exhibits several advantages over the currently used nickel-based superalloys. Recently, there has been a renewed interest in directional solidification of the eutectic alloys as a concept of reinforcing intermetallics with in situ refractory metals. The present study is related to the study of the eutectic alloys in the ternary NiAl-V system. The eutectic composition and temperature were accurately determined. It was concluded that the solidification behaviour of the Ni-Al-V eutectic is strongly dependent on the growth conditions, namely growth rate and orientation, and that it can be easily modified. Also, it was observed that the orientation of the grain, i.e., the direction of growth is the determining factor in the lamellar/rod transition as well as in the morphology of the degenerated structure.

  8. Theoretical and numerical study of lamellar eutectic three-phase growth in ternary alloys.

    PubMed

    Choudhury, Abhik; Plapp, Mathis; Nestler, Britta

    2011-05-01

    We investigate lamellar three-phase patterns that form during the directional solidification of ternary eutectic alloys in thin samples. A distinctive feature of this system is that many different geometric arrangements of the three phases are possible, contrary to the widely studied two-phase patterns in binary eutectics. Here, we first analyze the case of stable lamellar coupled growth of a symmetric model ternary eutectic alloy, using a Jackson-Hunt-type calculation in thin film geometry, for arbitrary configurations, and derive expressions for the front undercooling as a function of velocity and spacing. Next, we carry out phase-field simulations to test our analytic predictions and to study the instabilities of the simplest periodic lamellar arrays. For large spacings, we observe different oscillatory modes that are similar to those found previously for binary eutectics and that can be classified using the symmetry elements of the steady-state pattern. For small spacings, we observe a new instability that leads to a change in the sequence of the phases. Its onset can be well predicted by our analytic calculations. Finally, some preliminary phase-field simulations of three-dimensional growth structures are also presented.

  9. Solutal convection induced macrosegregation and the dendrite to composite transition in off-eutectic alloys

    NASA Technical Reports Server (NTRS)

    Boettinger, W. J.; Biancaniello, F. S.; Coriell, S. R.

    1981-01-01

    The effect of solute gradient induced convection during vertical solidification on the macrosegregation of Pb-rich Pb-Sn off-eutectic alloys is determined experimentally as a function of composition and growth rate. In many cases macrosegregation is sufficient to prevent the plane front solidification of the alloy. The transition from dendritic to composite structure is found to occur when the composition of the solid is close enough to the eutectic composition to satisfy a stability criterion based on the ratio of the liquid temperature gradient to growth rate. A vertical or horizontal magnetic field of 0.1 T (1 kilogauss) does not reduce macrosegregation, but downward solidification (liquid below solid) virtually eliminates macrosegregation in small (3 mm) diameter samples.

  10. Thermodynamics of reaction of praseodymium with gallium-indium eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Ivanov, V. A.; Yamshchikov, L. F.; Volkovich, V. A.; Osipenko, A. G.; Kormilitsyn, M. V.

    2013-06-01

    Thermodynamic properties of Ga-In eutectic alloys saturated with praseodymium were determined for the first time employing the electromotive force method. The equilibrium potentials of the Pr-In alloys saturated with praseodymium (8.7-12.1 mol.% Pr) and Pr-Ga-In alloys (containing 0.0012-6.71 mol.% Pr) were measured between 573-1073 K. Pr-In alloy containing solid PrIn3 with known thermodynamic properties was used as the reference electrode when measuring the potentials of ternary Pr-In-Ga alloys. Activity, partial and excessive thermodynamic functions of praseodymium in alloys with indium and Ga-In eutectic were calculated. Activity (a), activity coefficients (γ) and solubility (X) of praseodymium in the studied temperature range can be expressed by the following equations: lgaα-Pr(In) = 4.425 - 11965/T ± 0.026. lgаα-Pr(Ga-In) = 5.866 - 14766/T ± 0.190. lgγα-Pr(Ga-In) = 2.351 - 9996/T ± 0.39. lgХPr(Ga-In) = 3.515 - 4770/T ± 0.20.

  11. A Directionally Solidified Iron-chromium-aluminum-tantalum Carbide Eutectic Alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1977-01-01

    A eutectic alloy, Fe-13.6CR-3.7Al+9TaC, was directionally solidified in a high gradient furnace, producing a microstructure of alined TaC fibers in an oxidation resistant alpha-iron matrix. Tensile and stress rupture properties, thermal cycling resistance, and microstructures were evaluated. The alloy displays at 1000 C an ultimate tensile strength of 58 MPa and a 100-hour rupture life at a stress of 21 MPa. Thermal cycling to 1100 C induces faceting in the TaC fibers.

  12. Tensile properties influencing variables in eutectic Al-Si casting alloys

    SciTech Connect

    Hafiz, M.F. . Dept. of Mechanical Engineering); Kobayashi, Toshiro . Dept. of Production Systems Engineering)

    1994-09-15

    Efforts to identify and characterize the physical properties of aluminum castings alloys are envisaged to lead to a new guideline from which the mechanical behavior of these alloys can be accurately predicted. For aluminum-silicon (Al-Si) casting alloys the tensile properties of a specific composition are observed to vary depending on the production parameters. The difference in the tensile properties appears to be mainly due to the microstructural features concomitant with the imposed production parameters. The present study aims to identify, quantitatively, the tensile properties influencing variables in high purity eutectic Al-Si casting alloy produced under a variety of solidification cooling rate with different strontium (Sr) additions, as a modifying agent. The correlation between the fracture characteristics and the microstructures has also been investigated.

  13. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

    NASA Astrophysics Data System (ADS)

    Ludwig, Thomas Hartmut; Li, Jiehua; Schaffer, Paul Louis; Schumacher, Peter; Arnberg, Lars

    2015-01-01

    The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

  14. Phase field simulation of a directional solidification of a ternary eutectic Mo-Si-B Alloy

    NASA Astrophysics Data System (ADS)

    Kazemi, O.; Hasemann, G.; Krüger, M.; Halle, T.

    2016-03-01

    We present a eutectic Phase-Field Model for a Mo-Si-B alloy at ternary eutectic composition (Mo-17.5Si-8B), under a constant thermal gradient. The process parameters like cooling rate and thermal gradient were obtained directly from the experimental procedure of zone melting. The equilibrium interface geometries and interface mobility were calculated using an isotropic model. The phase equilibria and the other thermodynamic parameters are obtained by linearizing the Mo-Si-B ternary phase diagram. We have investigated the effect of process parameters on the lamellar growth pattern and lamella pattern stability with respect to the Jackson-Hunt minimum undercooling spacing theory. In order to examine the generated results by the model, they were validated with experimental observed microstructures and measurements and showed to be in a good agreement with the experimental observations.

  15. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-04-28

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption.

  16. A comparative study of the microstructures observed in statically cast and continuously cast Bi-In-Sn ternary eutectic alloy

    SciTech Connect

    Sengupta, S.; Soda, H.; McLean, A.; Rutter, J.W.

    2000-01-01

    A ternary eutectic alloy with a composition of 57.2 pct Bi, 24.8 pct In, and 18 pct Sn was continuously cast into wire of 2 mm diameter with casting speeds of 14 and 79 mm/min using the Ohno Continuous Casting (OCC) process. The microstructures obtained were compared with those of statically cast specimens. Extensive segregation of massive Bi blocks, Bi complex structures, and tin-rich dendrites was found in specimens that were statically cast. Decomposition of {radical}Sn by a eutectoid reaction was confirmed based on microstructural evidence. Ternary eutectic alloy with a cooling rate of approximately 1 C/min formed a double binary eutectic. The double binary eutectic consisted of regions of BiIn and decomposed {radical}Sn in the form of a dendrite cell structure and regions of Bi and decomposed {radical}Sn in the form of a complex-regular cell. The Bi complex-regular cells, which are a ternary eutectic constituent, existed either along the boundaries of the BiIn-decomposed {radical}Sn dendrite cells or at the front of elongated dendrite cell structures. In the continuously cast wires, primary Sn dendrites coupled with a small Bi phase were uniformly distributed within the Bi-In alloy matrix. Neither massive Bi phase, Bi complex-regular cells, no BiIn eutectic dendrite cells were observed, resulting in a more uniform microstructure in contrast to the heavily segregated structures of the statically cast specimens.

  17. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik S; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP 'patch' dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  18. Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik S.; Liu, Xiangfa; Ramasse, Quentin; Schumacher, Peter

    2016-01-01

    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption. PMID:27120994

  19. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys

    NASA Technical Reports Server (NTRS)

    Fecht, H. J.

    1991-01-01

    During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.

  20. Microstructural changes in eutectic tin-lead alloy due to severe bending

    SciTech Connect

    SHEN,Y.-L.; ABEYTA,M.C.; FANG,HUEI ELIOT

    2000-02-29

    Severe plastic deformation in an eutectic tin-lead alloy is studied by imposing fast bending at room temperature, in an attempt to examine the microstructural response in the absence of thermally activated diffusion processes. A change in microstructure due to this purely mechanically imposed load is observed: the tin-rich matrix phase appears to be extruded out of the narrow region between neighboring layers of the lead-rich phase and alterations in the colony structure occur. A micromechanism is proposed to rationalize the experimental observations.

  1. Frequency-Switchable Metamaterial Absorber Injecting Eutectic Gallium-Indium (EGaIn) Liquid Metal Alloy

    PubMed Central

    Ling, Kenyu; Kim, Hyung Ki; Yoo, Minyeong; Lim, Sungjoon

    2015-01-01

    In this study, we demonstrated a new class of frequency-switchable metamaterial absorber in the X-band. Eutectic gallium-indium (EGaIn), a liquid metal alloy, was injected in a microfluidic channel engraved on polymethyl methacrylate (PMMA) to achieve frequency switching. Numerical simulation and experimental results are presented for two cases: when the microfluidic channels are empty, and when they are filled with liquid metal. To evaluate the performance of the fabricated absorber prototype, it is tested with a rectangular waveguide. The resonant frequency was successfully switched from 10.96 GHz to 10.61 GHz after injecting liquid metal while maintaining absorptivity higher than 98%. PMID:26561815

  2. Nano-eutectic structure formation and soft magnetic properties of bulk ternary Fe-B-M (M = Si, Cu) alloys

    NASA Astrophysics Data System (ADS)

    Huang, Huili; Yang, Changlin; Song, Qijiao; Ye, Ke; Liu, Feng

    2016-07-01

    The bulk Fe-B-M (M = Si, Cu) ternary eutectic alloys with nano-lamellar structure and excellent soft magnetic properties were successfully prepared by undercooling combined with Cu-mold casting. Different effects of Si and Cu elements on the structural refinement and soft magnetic properties were studied. The results show that the lamellar spacing can be decreased to less than 50 nm with addition of Si or Cu of 1 at. % into the Fe-B eutectic alloy. Based on the classical random anisotropy model, a quantitative correlation between the intrinsic coercivity (HC) and the lamellar spacing (λ) was also obtained.

  3. A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems have been proposed for potential use on eutectic alloy components in high-temperature gas turbine engines. In a study to prevent the deterioration of such systems by diffusion, a tungsten sheet 25 microns thick was placed between eutectic alloys and an Ni-Cr-Al layer. Layered test specimens were aged at 1100 C for as long as 500 h. Without the tungsten barrier the delta phase of the eutectic deteriorated by diffusion of niobium into the Ni-Cr-Al. Insertion of the tungsten barrier stopped the diffusion of niobium from the delta phase. Chromium diffusion from the Ni-Cr-Al into the gamma/gamma-prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time, and tungsten diffused into both the Ni-Cr-Al and the eutectic. When the delta platelets were aligned parallel rather than perpendicular to the Ni-Cr-Al layer, diffusion into the eutectic was reduced.

  4. Heat treating of a lamellar eutectic alloy /gamma/gamma prime + delta/

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Dreshfield, R. L.

    1976-01-01

    Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy gamma/gamma prime + delta was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the gamma prime at 1210 C and then aging at 900 C, the tensile strength can be increased about 12 per cent at temperatures up to 900 C. At 1040 C, no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy were reduced by heat treatment.

  5. Corrosion of selected alloys in eutectic lithium-sodium-potassium carbonate at 900C

    SciTech Connect

    Coyle, R.T.; Thomas, T.M.; Schissel, P.

    1986-01-01

    There is an ongoing interest at the US Department of Energy in using molten salts as high temperature sensible heat storage media in advanced solar thermal systems. In this report, the compatibility of selected alloys in eutectic lithium-sodium-potassium carbonate, the salt that will be used in the near-term engineering experiments, has been evaluated at 900C. Several combinations of oxidation potential and acidity in the salt were used in the experiments. It was found that the extent of corrosion was dramatically lower for experiments conducted at high oxygen potential compared to experiments at low oxygen potential. For Inconel 600, Hastelloy N, and nickel the results indicated that corrosion rates substantially below 1 mm/year/side might reasonably be expected and that a reevaluation of alloys the showed poor corrosion resistance under low oxygen potential would be advisable.

  6. Influence of Lanthanum on Solidification, Microstructure, and Mechanical Properties of Eutectic Al-Si Piston Alloy

    NASA Astrophysics Data System (ADS)

    Ahmad, R.; Asmael, M. B. A.

    2016-07-01

    The effects of Lanthanum (La) concentration on the solidification parameters of the α-Al, Al-Si, and Al-Cu phases and on the microstructure, tensile, and hardness properties of eutectic Al-Si-Cu-Mg alloy were systematically investigated. The solidification parameters were examined using computer-aided cooling curve thermal analysis (CA-CCTA). The cooling curve and microstructure analysis showed that La altered the Si structure. The nucleation and growth temperatures of eutectic Si decreased when 0.3 wt.% La was added, and a high depression temperature was obtained with 1.0 wt.% La. High amounts of La considerably modified the Si structure and decreased the area and aspect ratio by 69.9 and 51%, respectively. The thermal analysis result recorded a faster freezing time with the La addition and a 36% alteration in the secondary dendrite arm spacing. Two secondary or ternary La-rich intermetallic phases were formed with needle- and plate-like structures. Furthermore, the mechanical properties were investigated by hardness and tensile tests with different La concentrations. The addition of small amounts of La (0.1 wt.%) significantly improved the ultimate tensile strength and quality index of the Al-Si-Cu-Mg alloy. In addition, the hardness value of Al-11Si-Cu increased by 7-8% with the increasing amount of La added.

  7. Feasibility study of tungsten as a diffusion barrier between nickel-chromium-aluminum and Gamma/Gamma prime - Delta eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems proposed for potential use on eutectic alloy components in high-temperature gas turbine engines were studied with emphasis on deterioration of such systems by diffusion. A 1-mil thick W sheet was placed between eutectic alloys and a NiCrAl layer. Layered test specimens were aged at 1100 C for as long as long as 500 hours. Without the W barrier, the delta phase of the eutectic deteriorated by diffusion of Nb into the NiCrAl. Insertion of the W barrier stopped the diffusion of Nb from delta. Chromium diffusion from the NiCrAl into the gamma/gamma prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time; and W diffused into both the NiCrAl and the eutectic. When the delta platelets were alined parallel to the NiCrAl layer, rather than perpendicular, diffusion into the eutectic was reduced.

  8. High temperature ultrasonic transducers for imaging and measurements in a liquid Pb/Bi eutectic alloy.

    PubMed

    Kazys, Rymantas; Voleisis, Algirdas; Sliteris, Reimondas; Mazeika, Liudas; Van Nieuwenhove, Rudi; Kupschus, Peter; Abderrahim, Hamid Aït

    2005-04-01

    In some nuclear reactors or accelerator-driven systems (ADS) the core is intended to be cooled by means of a heavy liquid metal, for example, lead-bismuth (Pb/Bi) eutectic alloy. For safety and licensing reasons, an imaging method of the interior of ADS, based on application of ultrasonic waves, has thus to be developed. This paper is devoted to description of developed various ultrasonic transducers suitable for long term imaging and measurements in the liquid Pb/Bi alloy. The results of comparative experimental investigations of the developed transducers of different designs in a liquid Pb/Bi alloy up to 450 degrees C are presented. Prototypes with different high temperature piezoelectric materials were investigated: PZT, bismuth titanate (Bi4Ti3O12), lithium niobate (LiNbO3), gallium orthophosphate (GaPO4) and aluminum nitride (A1N). For acoustic coupling with the metal alloy, it was proposed to coat the active surface of the transducers by diamond like carbon (DLC). The radiation robustness was assessed by exposing the transducers to high gamma dose rates in one of the irradiation facilities at SCK x CEN. The experimental results proved that the developed transducers are suitable for long-term operation in harsh conditions.

  9. Microstructures in a ternary eutectic alloy: devising metrics based on neighbourhood relationships

    NASA Astrophysics Data System (ADS)

    Dennstedt, A.; Choudhury, A.; Ratke, L.; Nestler, B.

    2016-03-01

    Ternary eutectics, where three phases form simultaneously from the melt, present an opportunity to study the fundamental science of microstructural pattern formation during the process of solidification. In this paper we investigate these phenomena, both experimentally and by phase-field simulations. The aim is to develop necessary characterisation tools which can be applied to both experimentally determined and simulated microstructures for a quantitative comparison between simulations and experiments. In SEM images of experimental cross sections of directionally solidified Ag-Al-Cu ternary eutectic alloy at least six different types of microstructures are observed. Corresponding 3D phase-field simulations for different solidification conditions and compositions allow us to span and isolate the material parameters which influence the formation of three-phase patterns. Both experimental and simulated microstructures were analysed regarding interface lengths, triple points and number of neighbours. As a result of this integrated experimental and computational effort we conclude that neighbourhood relationships as described herein, turn out to be an appropriate basis to characterise order in patterns.

  10. Development and Evaluation of Directionally-Solidified NiAl/(CR,MO)-Based Eutectic Alloys for Airfoil Applications

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.

    2001-01-01

    The results of recent efforts to develop directionally-solidified alloys based on the Ni-33Al-31Cr-3Mo eutectic composition are discussed. These developmental efforts included studying the effects of macroalloying and growth rates on microstructure formation as well as the elevated temperature compressive and tensile properties of these alloys. These observations revealed that contrary to conventional opinion, the cellular microstructure was stronger and tougher than the planar eutectic microstructure due to a microstructural refinement of the cell size and interlamellar spacing. The high temperature strengths of these alloys are compared with those of commercial superalloys and advanced NiAl single crystals. The implications of this research on airfoil manufacturing and applications are discussed.

  11. Gravitationally induced convection during directional solidification of off-eutectic Mn-Bi alloys

    NASA Technical Reports Server (NTRS)

    Pirich, R. G.

    1982-01-01

    The effects of thermal and solute gradient, gravity induced convection during vertical directional solidification, on longitudinal macrosegregation of Bi and Mn rich off-eutectic starting compositions, has been studied as a function of composition, growth velocity and gravity vector orientation. Since the morphology of these alloys is characterized by an aligned, rodlike permanent magnet composite when grown cooperatively, the magnetic properties were used to measure composition segregation and the transition from dendritic to composite growth. Severe macrosegregation was observed in all cases studied and the degree of convection inferred by modeling the observed composition segregation using a stagnant film approach. Morphological stability was found to follow a constitutional supercooling-type law for both Bi and Mn rich compositions.

  12. Containerless processing and rapid solidification of Nb-Si alloys in the niobium-rich eutectic range

    NASA Technical Reports Server (NTRS)

    Hofmeister, W. H.; Bayuzick, R. J.; Robinson, M. B.; Bertero, G. A.

    1991-01-01

    Containerless processing and rapid solidification techniques were used to process Nb-Si alloys in the Nb-rich eutectic range. Electromagnetically levitated drops were melted and subsequently splat-quenched from different temperatures. A variety of eutectic morphologies was obtained as a function of the degree of superheating or undercooling of the drops prior to splatting. Metallic glass was observed only in drops quenched from above the melting temperature. Microstructures of splats deeply undercooled prior to quenching were very fine and uniform. These results are discussed in terms of classic nucleation theory concepts and the expected heat evolution at different regions of the splat during the rapid quenching process. The locations of the coupled-zone boundaries for the alpha-Nb + Nb3Si eutectic are also suggested.

  13. Thermophysical properties and eutectic growth of electrostatically levitated and substantially undercooled liquid Zr91.2Si8.8 alloy

    NASA Astrophysics Data System (ADS)

    Hu, L.; Li, L. H.; Yang, S. J.; Wei, B.

    2015-02-01

    We present the thermophysical properties and eutectic growth of undercooled liquid Zr91.2Si8.8 alloy at electrostatic levitation state. The obtained maximum undercooling is 371 K, which reaches up to 0.2TE. The density of liquid alloy decreases linearly with increasing temperature. The ratio of specific heat to emissivity is measured and the specific heat is derived accordingly. The solidification microstructure is composed of αZr and Zr3Si phases and displays a transition from lamellar eutectic to anomalous eutectic with the enhancement of undercooling. The growth velocity of lamellar eutectic is measured to be only 1 mm/s, whereas it increased to 90 mm/s for anomalous eutectic.

  14. Simulation of Grain Growth in a Near-Eutectic Solder Alloy

    SciTech Connect

    TIKARE,VEENA; VIANCO,PAUL T.

    1999-12-16

    Microstructural evolution due to aging of solder alloys determines their long-term reliability as electrical, mechanical and thermal interconnects in electronics packages. The ability to accurately determine the reliability of existing electronic components as well as to predict the performance of proposed designs depends upon the development of reliable material models. A kinetic Monte Carlo simulation was used to simulate microstructural evolution in solder-class materials. The grain growth model simulated many of the microstructural features observed experimentally in 63Sn-37Pb, a popular near-eutectic solder alloy. The model was validated by comparing simulation results to new experimental data on coarsening of Sn-Pb solder. The computational and experimental grain growth exponent for two-phase solder was found to be much lower than that for normal, single phase grain growth. The grain size distributions of solders obtained from simulations were narrower than that of normal grain growth. It was found that the phase composition of solder is important in determining grain growth behavior.

  15. Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates

    NASA Astrophysics Data System (ADS)

    Leinenbach, C.; Valenza, F.; Giuranno, D.; Elsener, H. R.; Jin, S.; Novakovic, R.

    2011-07-01

    Au-Ge-based alloys are interesting as novel high-temperature lead-free solders because of their low melting point, good thermal and electrical conductivity, and high corrosion resistance. In the present work, the wetting and soldering behavior of the eutectic Au-28Ge (at.%) alloy on Cu and Ni substrates have been investigated. Good wetting on both substrates with final contact angles of 13° to 14° was observed. In addition, solder joints with bond shear strength of 30 MPa to 35 MPa could be produced under controlled conditions. Cu substrates exhibit pronounced dissolution into the Au-Ge filler metal. On Ni substrates, the NiGe intermetallic compound was formed at the filler/substrate interface, which prevents dissolution of Ni into the solder. Using thin filler metal foils (25 μm), complete consumption of Ge in the reaction at the Ni interface was observed, leading to the formation of an almost pure Au layer in the soldering zone.

  16. Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

    SciTech Connect

    Jung, Choonho

    2006-01-01

    Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10-3 m/sec and with a temperature gradient of 7.5 x 103 K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary growth front, including composition and phase fraction in the vicinity of the primary tip.

  17. Stability of several oxide dispersion strengthened alloys and a directionally solidified gamma/gamma prime-alpha eutectic alloy in a thermal gradient

    NASA Technical Reports Server (NTRS)

    Staniek, G.; Whittenberger, J. D.

    1980-01-01

    Thermal gradient testing of three oxide dispersion strengthened alloys (two Ni-base alloys, MA 754 and MA 6000 E, and the Fe-base MA 956) and the directionally solidified eutectic alloy, gamma/gamma prime-alpha, have been conducted. Experiments were carried out with maximum temperatures up to 1200 C and thermal gradients on the order of 100 C/mm. The oxide dispersion strengthened alloys were difficult to test because the thermal stresses promoted crack nucleation and growth; thus the ability of these alloys to maintain a thermal gradient may be limited. The stability of individual fibers in gamma/gamma prime-alpha was excellent; however, microstructural changes were observed in the vicinity of grain boundaries. Similar structures were also observed in isothermally annealed material; therefore thermal gradients do not affect the microstructure of gamma/gamma prime-alpha in any significant manner.

  18. Stress analysis, thermomechanical fatique evaluation, and root subcomponent testing of gamma/gamma prime-delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.; Jackson, J. J.

    1976-01-01

    Thermomechanical fatigue (TMF) and root subcomponent tensile, creep, and low cycle fatigue (LCF) tests were conducted to determine the capability of a fully lamellar directionally solidified eutectic alloy to sustain the airfoil thermal fatigue and root attachment loads anticipated in advanced, hollow, high work turbine blades. A three dimensional finite element elastic stress analysis was performed on typical advanced hollow eutectic airfoil and root-platform designs to determine appropriate conditions for these tests. Results of TMF tests conducted on longitudinal specimens (stress axis parallel to the solidification direction) containing a simulated leading edge cooling hole pattern indicated the longitudinal TMF properties to be more than adequate for the particular advanced hollow blade analyzed, with the strain range for a 10,000 cycle life being more than 50% above the maximum strain range calculated for the advanced hollow blade.

  19. Stability of metastable phase and soft magnetic properties of bulk Fe-B nano-eutectic alloy prepared by undercooling solidification combined with CU-mold chilling

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Zhang, Jun; Huang, Huili; Song, Qijiao; Liu, Feng

    2015-11-01

    Bulk Fe83B17 nano-eutectic alloys were prepared by undercooling solidification combined with Cu-mold chilling method. Stable phase Fe2B and metastable phase Fe3B were found to coexist in the as-solidified microstructure. The soft magnetic properties were improved significantly by the nano-lamellar eutectic and the metastable phase and, were increased further by annealing at 1173 K for 1.5 h after which the metastable phase was decomposed completely.

  20. Microstructural development and mechanical properties of a near-eutectic directionally solidified Sn–Bi solder alloy

    SciTech Connect

    Silva, Bismarck Luiz; Reinhart, Guillaume; Nguyen-Thi, Henri; Mangelinck-Noël, Nathalie; Garcia, Amauri; Spinelli, José Eduardo

    2015-09-15

    Sn–Bi solders may be applied for electronic applications where low-temperature soldering is required, i.e., sensitive components, step soldering and soldering LEDs. In spite of their potential to cover such applications, the mechanical response of soldered joints of Sn–Bi alloys in some cases does not meet the strength requirements due to inappropriate resulting microstructures. Hence, careful examination and control of as-soldered microstructures become necessary with a view to pre-programming reliable final properties. The present study aims to investigate the effects of solidification thermal parameters (growth rate — V{sub L} and cooling rate — T-dot{sub L}) on the microstructure of the Sn–52 wt.%Bi solder solidified under unsteady-state conditions. Samples were obtained by upward directional solidification (DS), followed by characterization through metallography and scanning electron microscopy (SEM). The microstructures are shown to be formed by Sn-rich dendrites decorated with Bi precipitates surrounded by a complex regular eutectic mixture, with alternated Bi-rich and Sn-rich phases. Experimental correlations of primary (λ{sub 1}), secondary (λ{sub 2}), tertiary (λ{sub 3}) dendritic and eutectic spacings (λ{sub coarse} and λ{sub fine}) with cooling rate and growth rate are established. Two ranges of lamellar eutectic sizes were determined, described by two experimental equations λ = 1.1 V{sub L}{sup −1/2} and λ = 0.67 V{sub L}{sup −1/2}. The onset of tertiary branches within the dendritic array along the Sn–52 wt.%Bi alloy DS casting is shown to occur for cooling rates lower than 1.5 °C/s. - Highlights: • The Sn–52 wt.%Bi solder was shown to have two eutectic sizes. • The fishbone eutectic is preferably located adjacent to the Bi-rich lamellar phases. • The onset of tertiary dendritic branches in Sn–Bi is associated with T-dot{sub L} < 1.5 °C/s. • Higher eutectic fraction and λ{sub 3} provoked a reverse increase in

  1. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    NASA Astrophysics Data System (ADS)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  2. Bonding of Cf/SiC composite to Invar alloy using an active cement, Ag-Cu eutectic and Cu interlayer

    NASA Astrophysics Data System (ADS)

    Lei, Zhao; Xiaohong, Li; Jinbao, Hou; Qiang, Sun; Fuli, Zhang

    2012-10-01

    The interfacial microstructures and mechanical properties of the joints formed by active cement added brazing in vacuum of Cf/SiC composite to Invar alloy, using Ag-Cu eutectic alloy and pure copper foil as braze alloy and interlayer respectively, were investigated. CuTi, Cu4Ti3, Fe2Ti and the reaction layer of TiC and Si were the predominant components at the joint interface. The maximum shear strength of the joint was 77 MPa for brazing at 850 °C for 15 min. The results show that active cement added brazing in vacuum using Ag-Cu eutectic alloy and Cu interlayer can be used successfully for joining Cf/SiC composites to Invar alloy.

  3. A study of early corrosion behaviors of FeCrAl alloys in liquid lead-bismuth eutectic environments

    NASA Astrophysics Data System (ADS)

    Lim, Jun; Nam, Hyo On; Hwang, Il Soon; Kim, Ji Hyun

    2010-12-01

    Lead and lead-bismuth eutectic (LBE) alloy have been increasingly receiving attention as heavy liquid metal coolants (HLMC) for future nuclear energy systems. The compatibility of structural materials and components with lead-bismuth eutectic liquid at high temperature is one of key issues for the commercialization of lead fast reactors. In the present study, the corrosion behaviors of iron-based alumina-forming alloys (Kanthal-AF®, PM2000, MA956) were investigated by exposing to stagnant LBE environments at 500 °C and 550 °C for up to 500 h. After exposures, the thickness and chemistry of the oxide layer on the specimens were analyzed by scanning electron microscopy, scanning transmission electron microscopy and energy dispersive X-ray spectroscopy. As a result, the oxide characteristics and the corrosion resistance were compared. In this study, it was shown that the corrosion resistance of FeCrAl ODS steels (PM2000, MA956) are superior to that of FeCrAl ferritic steel (Kanthal-AF®) in higher temperature LBE.

  4. Solubility and excessive thermodynamic characteristics of Pr and Nd in the Ga-Sn eutectic alloy

    NASA Astrophysics Data System (ADS)

    Melchakov, S. Yu.; Yamshchikov, L. F.; Osipenko, A. G.; Pozdeev, P. A.; Rusakov, M. A.

    2015-08-01

    The praseodymium and neodymium solubilities in the gallium-tin eutectic melt were measured for the first time in a temperature range of 423-1073 K using a high-temperature sampling technique. The data on the activity and solubility are used to calculate the activity coefficients, the excessive thermodynamic characteristics of α-praseodymium and α-neodymium in the Ga-Sn eutectic melts, and the separation factor for the Pr/Nd pair on gallium-tin electrodes in chloride melts.

  5. Assessment of Post-eutectic Reactions in Multicomponent Al-Si Foundry Alloys Containing Cu, Mg, and Fe

    NASA Astrophysics Data System (ADS)

    Javidani, Mousa; Larouche, Daniel; Grant Chen, X.

    2015-07-01

    Post-eutectic reactions occurring in Al-Si hypoeutectic alloys containing different proportions of Cu, Mg, and Fe were thoroughly investigated in the current study. As-cast microstructures were initially studied by optical and electron microscopy to investigate the microconstituents of each alloy. Differential scanning calorimetry (DSC) was then used to examine the phase transformations occurring during the heating and cooling processes. Thermodynamic calculations were carried out to assess the phase formation under equilibrium and in nonequilibrium conditions. The Q-Al5Cu2Mg8Si6 phase was predicted to precipitate from the liquid phase, either at the same temperature or earlier than the θ-Al2Cu phase depending on the Cu content of the alloy. The AlCuFe-intermetallic, which was hardly observed in the as-cast microstructure, significantly increased after the solution heat treatment in the alloys containing high Cu and Fe contents following a solid-state transformation of the β-Al5FeSi phase. After the solution heat treatment, the AlCuFe-intermetallics were mostly identified with the stoichiometry of the Al7Cu2Fe phase. Thermodynamic calculations and microstructure analysis helped in determining the DSC peak corresponding to the melting temperature of the N-Al7Cu2Fe phase. The effect of Cu content on the formation temperature of π-Al8Mg3FeSi6 is also discussed.

  6. Eutectic morphology evolution and Sr-modification in Al-Si based alloys studied by 3D phase-field simulation coupled to Calphad data

    NASA Astrophysics Data System (ADS)

    Eiken, J.; Apel, M.

    2015-06-01

    The mechanical properties of Al-Si cast alloys are mainly controlled by the morphology of the eutectic silicon. Phase-field simulations were carried out to study the evolution of the multidimensional branched eutectic structures in 3D. Coupling to a Calphad database provided thermodynamic data for the multicomponent multiphase Al-Si-Sr-P system. A major challenge was to model the effect of the trace element Sr. Minor amounts of Sr are known to modify the silicon morphology from coarse flakes to fine coral-like fibers. However, the underlying mechanisms are still not fully understood. Two different in literature most discussed mechanisms were modelled: a) an effect of Sr on the growth kinetics of eutectic silicon and b) the formation of Al2Si2Sr on AlP particles, which consumes most potent nucleation sites and forces eutectic silicon to form with lower frequency and higher undercooling. The phase-field simulations only revealed a successful modification of the eutectic morphology when both effects acted in combination. Only in this case a clear depression of the eutectic temperature was observed. The required phase formation sequence L → fcc-(Al) → AlP → Al2Si2Sr → (Si) determines critical values for the Sr and P content.

  7. Nano-eutectic growth in Co-17.8 wt%Gd alloy ribbons and the magnetostrictive properties at different wheel speeds.

    PubMed

    Yao, Wen-Jing; Sun, Wen; Wang, Nan; Han, Seung Zeon; Lee, Je-Hyun

    2014-11-01

    Under near-equilibrium solidification conditions, the Co-17.8 wt%Gd eutectic alloy forms rod-like eutectic microstructure of (αCo) solid solution and Co17Gd2 compound. When the solidification condition is far from the equilibrium, the rapid growth of nano-eutectic in Co-17.8 wt%Gd alloy ribbons is realized by the single-roller techniques. The average granular size (d) of nano-eutectic in the center of ribbons varies with the increase of wheel speed (V), d = 510.36-25.51 V+0.44 V2. XRD results of ribbons at different wheel speeds indicate that, with the rise of wheel speed, the main peak of Co17Gd2 compound becomes more and more notable, whereas the main peak of (αCo) solid solution tends to reduce. Along the length direction, the Co-17.8 wt%Gd alloy ribbons have the negative magnetostrictive strain. The magnetostrictive strain enhances with the increase of wheel speed. At the wheel speed of 40 m/s, the magnetostrictive coefficient of ribbons is measured to be - 733 ppm at the magnetic field of 6 kOe. The influence of the wheel speed and the magnetic field on the maanetostrictive coefficient is discussed.

  8. Electrodeposition of Zn and Cu-Zn alloy from ZnO/CuO precursors in deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Xie, Xueliang; Zou, Xingli; Lu, Xionggang; Lu, Changyuan; Cheng, Hongwei; Xu, Qian; Zhou, Zhongfu

    2016-11-01

    The electrodeposition of Zn and Cu-Zn alloy has been investigated in choline chloride (ChCl)/urea (1:2 molar ratio) based deep eutectic solvent (DES). Cyclic voltammetry study demonstrates that the reduction of Zn(II) to Zn is a diffusion-controlled quasi-reversible, one-step, two electrons transfer process. Chronoamperometric investigation indicates that the electrodeposition of Zn on a Cu electrode typically involves three-dimensional instantaneous nucleation with diffusion-controlled growth process. Micro/nanostructured Zn films can be obtained by controlling the electrodeposition potential and temperature. The electrodeposited Zn crystals preferentially orient parallel to the (101) plane. The Zn films electrodeposited under more positive potentials and low temperatures exhibit improved corrosion resistance in 3 wt% NaCl solution. In addition, Cu-Zn alloy films have also been electrodeposited directly from CuO-ZnO precursors in ChCl/urea-based DES. The XRD analysis indicates that the phase composition of the electrodeposited Cu-Zn alloy depends on the electrodeposition potential.

  9. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Guo, Xingwu; Yang, Haiyan; Dai, JiChun; Zhu, Rongyu; Gong, Jia; Peng, Liming; Ding, Wenjiang

    2014-01-01

    The electrodeposition mechanism, microstructures and corrosion resistances of Ni-Cu alloy coatings on Cu substrate were investigated in a choline chloride-urea (1:2 molar ratio) eutectic-based ionic liquid (1:2 ChCl-urea IL) containing nickel and copper chlorides. Cyclic voltammetry showed that the onset reduction potentials for Cu (˜-0.32 V) and for Ni (˜-0.47 V) were close to each other, indicating that Ni-Cu co-deposition could be easily achieved in the absence of complexing agent which was indispensable in aqueous plating electrolyte. Chronoamperometric investigations revealed that Ni-Cu deposits followed the three-dimensional instantaneous nucleation/growth mechanism, thus producing a solid solution. The compositions, microstructures and corrosion resistances of Ni-Cu alloy coatings were significantly dependent on the deposition current densities. Ni-Cu alloy coatings were α-Ni(Cu) solid solutions, and the coating containing ˜17.6 at.% Cu exhibited the best corrosion resistance because of its dense and crack-free structure.

  10. Physical chemistry of the organic analog of metal metal eutectic and monotectic alloys

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Rai, R. N.

    1998-01-01

    The phase diagram of an organic analog of a metal-metal system involving succinonitrile (SCN) and carbontetrabromide (CTB) shows the formation of a eutectic (0.996 mole fraction of SCN) and a monotectic (0.040 mole fraction of SCN) with a wide range of miscibility gap in the system. The consolute temperature is 111.5°C above the monotectic horizontal. The growth data, determined by measuring the rate of movement of solid-liquid interface in a capillary, at different undercooling (Δ T) suggest that they obey the parabolic law, v= u(Δ T) n, where v is the linear velocity of crystallization and u and n are constants depending on the nature of materials involved. Using enthalpy of fusion of the pure components, the eutectic and the monotectic, entropy of fusion, Jackson's roughness parameter, interfacial energy, size of the critical nucleus and excess thermodynamic functions were calculated. While microstructural investigations of pure components give dendritic microstructures, those of eutectic and monotectic give characteristic lamellar structures.

  11. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    SciTech Connect

    Akiya, T. Sepehri-Amin, H.; Ohkubo, T.; Liu, J.; Hono, K.; Hioki, K.; Hattori, A.

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  12. Fabrication of Sn-3.5Ag Eutectic Alloy Powder by Annealing Sub-Micrometer Sn@Ag Powder Prepared by Citric Acid-Assisted Ag Immersion Plating.

    PubMed

    Chee, Sang-Soo; Choi, Eun Byeol; Lee, Jong-Hyun

    2015-11-01

    A Sn-3.5Ag eutectic alloy powder has been developed by chemically synthesizing sub-micrometer Sn@Ag powder at room temperature. This synthesis was achieved by first obtaining a sub-micrometer Sn powder for the core using a modified variant of the polyol method, and then coating this with a uniformly thin and continuous Ag layer through immersion plating in 5.20 mM citric acid. The citric acid was found to play multiple roles in the Ag coating process, acting as a chelating agent, a reducing agent and a stabilizer to ensure coating uniformity; and as such, the amount used has an immense influence on the coating quality of the Ag shells. It was later verified by transmission electron microscopy and X-ray diffraction analysis that the coated Ag layer transfers to the Sn core via diffusion to form an Ag3Sn phase at room temperature. Differential scanning calorimetry also revealed that the synthesized Sn@Ag powder is nearly transformed into Sn-3.5Ag eutectic alloy powder upon annealing three times at a temperature of up to 250 degrees C, as evidenced by a single melting peak at 220.5 degrees C. It was inferred from this that Sn-3.5Ag eutectic alloy powder can be successfully prepared through the synthesis of core Sn powders by a modified polyol method, immersion plating using citric acid, and annealing, in that order.

  13. Effect of thermal exposure on mechanical properties hypo eutectic aerospace grade aluminium-silicon alloy

    NASA Astrophysics Data System (ADS)

    Nagesh Kumar, R.; Ram Prabhu, T.; Siddaraju, C.

    2016-09-01

    The effect of thermal exposure on the mechanical properties of a C355.0 aerospace grade aluminum-silicon alloy (5% Si - 1.2% Cu - 0.5% Mg) was investigated in the present study. The alloy specimens were subjected to T6 (solution treatment and artificial ageing treatment) temper treatment to enhance the strength properties through precipitation hardening. The T6 temper treatment involved solution heat treatment at 520oC for 6h, followed by water quenching and ageing at 150oC. After the heat treatment, the specimens were exposed to various temperatures (50oC, 100oC, 150oC, 200oC and 250oC) for 5 and 10 h to study the structural applications of this alloy to the various Mach number military aircrafts. After the thermal exposure, specimens were tested for tensile, hardness and impact properties (Charpy). The microstructure of the thermal exposed specimens was examined in the optical microscopes and correlated with the mechanical properties results. In summary, an increase of exposure time has a different effect on the tensile and hardness properties of the alloy. For the exposure time 5h, the tensile and hardness properties increase upto 100oC and later decrease with an increase of temperature. In contrast, the tensile and hardness properties linearly decrease with an increase of temperature. Several factors such as matrix grain growth, diffusion rate, Si particles size and distribution, precipitate stability play a key role on deciding the tensile properties of the alloy. Comparing the relative effects of temperature and time, the temperature effects dominate more in deteriorating tensile properties of the alloy. There are no effects of exposure temperature and/or time on the impact properties of the alloy.

  14. Carrier concentration and mobility in two-phase eutectic A/sup III/B/sup V/-Ge(Si) alloys

    SciTech Connect

    Leonov, V.V.

    1988-06-01

    The authors proposes a technique of determining the carrier concentration and mobility in the separate phases of two-phase alloys in which oriented rod-like inclusions have carrier concentrations similar to the host material. The calculations are then used to determine the carrier concentration and mobility in each alloy phase, and to discuss the doping processes and mechanisms of impurity incorporation in two-phase semiconductors. He studied the Hall constant R in two-phase, oriented eutectic alloys of InSb-Ge, InAs-Ge, GaAs-Ge, and GaAs-Si. He established that R depends on the relative orientations of the current flow, magnetic field, and elongated inclusions. Furthermore, the particular impurity concentration in the alloy also has an effect on R.

  15. Wafer-level integration of NiTi shape memory alloy on silicon using Au-Si eutectic bonding

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Bushra, Sobia; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2013-01-01

    This paper reports on the wafer level integration of NiTi shape memory alloy (SMA) sheets with silicon substrates through Au-Si eutectic bonding. Different bond parameters, such as Au layer thicknesses and substrate surface treatments were evaluated. The amount of gold in the bond interface is the most important parameter to achieve a high bond yield; the amount can be determined by the barrier layers between the Au and Si or by the amount of Au deposition. Deposition of a gold layer of more than 1 μm thickness before bonding gives the most promising results. Through patterning of the SMA sheet and by limiting bonding to small areas, stresses created by the thermal mismatch between Si and NiTi are reduced. With a gold layer of 1 μm thickness and bond areas between 200 × 200 and 800 × 800 μm2 a high bond strength and a yield above 90% is demonstrated.

  16. Study of thermodynamic properties of Np-Al alloys in molten LiCl-KCl eutectic

    NASA Astrophysics Data System (ADS)

    Souček, P.; Malmbeck, R.; Mendes, E.; Nourry, C.; Sedmidubský, D.; Glatz, J.-P.

    2009-10-01

    Pyrochemical methods are investigated worldwide within the framework of Partitioning and Transmutation concepts for spent nuclear fuel reprocessing. Electroseparation techniques in a molten LiCl-KCl are being developed in ITU to recover all actinides from a mixture with fission products. During the process, actinides are selectively electrochemically reduced on a solid aluminium cathode, forming solid actinide-aluminium alloys. This work is focused on the thermodynamic properties of Np-Al alloys in a temperature range of 400-550 °C and on the characterisation of the structure and chemical composition of deposits obtained by electrodeposition of Np on solid Al electrodes in a LiCl-KCl-NpCl 3 melt. Cyclic voltammetry and open circuit chronopotentiometry have been used to examine the electrochemical behaviour of Np on inert W and reactive Al electrodes. Gibbs energies, enthalpy and entropy of formation and standard electrode potentials of Np-Al alloys were evaluated and compared with ab initio calculations. Galvanostatic electrolyses at 450 °C were carried out to recover Np onto Al plates and the solid surface deposits were characterised by XRD and SEM-EDX analyses. Stable and dense deposits consisting of NpAl 3 and NpAl 4 alloys were identified. In addition, the conversion of NpO 2 to NpCl 3 is described, using chlorination of the oxide in a molten salt media by pure chlorine gas.

  17. An investigation to the effect of deformation-heat treatment cycle on the eutectic morphology and mechanical properties of a Thixocast A356 alloy

    SciTech Connect

    Haghshenas, M.; Zarei-Hanzaki, A.; Jahazi, M.

    2009-08-15

    The influences of deformation, heat treatment temperature and holding time on morphology and size distribution of Si containing eutectic phases of Thixocast Al-7Si-0.4 Mg alloy were investigated. The novel thermo-mechanical treatment consisted of initial cold working practice followed by a solution heat treatment at 540 deg. C for durations ranging from 2 min to 120 min followed by water quenching. Optical and scanning electron microscopes were used to study the influence of process parameters on microstructure evolution. Also, final mechanical properties were investigated using hardness test. The results indicate that, under appropriate conditions it is possible to achieve an ultrafine grain microstructure with the eutectic Si fibers fragmented and spheroidized in the entire microstructure. It was also found that, an agglomeration of sphrodized particles occurs and is governed by Ostwald ripening mechanism.

  18. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys.

    PubMed

    Kramer, Rebecca K; Boley, J William; Stone, Howard A; Weaver, James C; Wood, Robert J

    2014-01-21

    Liquid-embedded elastomer electronics have recently attracted much attention as key elements of highly deformable and "soft" electromechanical systems. Many of these fluid-elastomer composites utilize liquid metal alloys because of their high conductivities and inherent compliance. Understanding how these alloys interface with surfaces of various composition and texture is critical to the development of parallel processing technology, which is needed to create more complex and low-cost systems. In this work, we explore the wetting behaviors between droplets of gallium-indium alloys and thin metal films, with an emphasis on tin and indium substrates. We find that metallic droplets reactively wet thin metal foils, but the wettability of the foils may be tuned by the surface texture (produced by sputtering). The effects of both composition and texture of the substrate on wetting dynamics are quantified by measuring contact angle and droplet contact diameter as a function of time. Finally, we apply the Cassie-Baxter model to the sputtered and native substrates to gain insight into the behavior of liquid metals and the role of the oxide formation during interfacial processes.

  19. Effect of microtextured surface topography on the wetting behavior of eutectic gallium-indium alloys.

    PubMed

    Kramer, Rebecca K; Boley, J William; Stone, Howard A; Weaver, James C; Wood, Robert J

    2014-01-21

    Liquid-embedded elastomer electronics have recently attracted much attention as key elements of highly deformable and "soft" electromechanical systems. Many of these fluid-elastomer composites utilize liquid metal alloys because of their high conductivities and inherent compliance. Understanding how these alloys interface with surfaces of various composition and texture is critical to the development of parallel processing technology, which is needed to create more complex and low-cost systems. In this work, we explore the wetting behaviors between droplets of gallium-indium alloys and thin metal films, with an emphasis on tin and indium substrates. We find that metallic droplets reactively wet thin metal foils, but the wettability of the foils may be tuned by the surface texture (produced by sputtering). The effects of both composition and texture of the substrate on wetting dynamics are quantified by measuring contact angle and droplet contact diameter as a function of time. Finally, we apply the Cassie-Baxter model to the sputtered and native substrates to gain insight into the behavior of liquid metals and the role of the oxide formation during interfacial processes. PMID:24358994

  20. Corrosion behavior of EUROFER steel in flowing eutectic Pb?17Li alloy

    NASA Astrophysics Data System (ADS)

    Konys, J.; Krauss, W.; Voss, Z.; Wedemeyer, O.

    2004-08-01

    Reduced-activation-ferritic-martensitic (RAFM) steels are considered for application in fusion technology as structural materials. The alloy EUROFER 97 was developed on the basis of the experience gained with steels of the OPTIFER, MANET and F82H-mod. type. These alloys will be in contact with the liquid breeder Pb-17Li and their corrosion behavior is of significance for their successful application. Corrosion tests of EUROFER 97 in flowing Pb-17Li at 480 °C were performed up to about 12 000 h to evaluate the kinetics of the dissolution attack. The exposed samples were analysed by metallography and scanning electron microscopy (SEM) with EDX. The results show that EUROFER 97 is attacked by flowing liquid Pb-17Li with a flow velocity of about 0.3 m/s similar to the earlier examined steels and that the typical steel elements are dissolved. The observed attack is of uniform type with values of about 90 μm/year. The corrosion rate is a somewhat smaller for EUROFER compared to the other RAFM steels but with equal activation energy.

  1. Shear rupture of a directionally solidified eutectic gamma/gamma prime - alpha (Mo) alloy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1978-01-01

    Directionally solidified Mo alloys are evaluated to determine the shear rupture strength and to possibly improve it by microstructural and heat treatment variations. Bars of the alloy containing nominally 5.7% Al and 33.5% Mo by weight with balance Ni were directionally solidified at rates between 10 and 100 mm per hour in furnaces with thermal gradients at the liquid-solid interface of 250 or 100 C per cm. A limited number of longitudinal shear rupture tests were conducted at 760 C and 207 MPa in the as - solidified and in several heat treated conditions. It is shown that shear rupture failures are partly transgranular and that resistance to failure is prompted by good fiber alignment and a matrix structure consisting mainly of gamma prime. Well aligned as - solidified specimens sustained the shear stress for an average of 81 hours. A simulated coating heat treatment appeared to increase the transformation of gamma to gamma prime and raised the average shear life of aligned specimens to 111 hours. However, heat treatments at 1245 C and especially at 1190 C appeared to be detrimental by causing partial solutioning of the gamma prime, and reducing lives to 47 and 10 hours, respectively.

  2. Evaluation of 2.25Cr-1Mo Alloy for Containment of LiCl/KCl Eutectic during the Pyrometallurgical Processing of Used Nuclear Fuel

    SciTech Connect

    B.R. Westphal; S.X. Li; G.L. Fredrickson; D. Vaden; T.A. Johnson; J.C. Wass

    2011-03-01

    Recovery of uranium from the Mk-IV and Mk-V electrorefiner vessels containing a LiCl/KCl eutectic salt has been on-going for 14 and 12 years, respectively, during the pyrometallurgical processing of used nuclear fuel. Although austenitic stainless steels are typically utilized for LiCl/KCl salt systems, the presence of cadmium in the Mk-IV electrorefiner dictates an alternate material. A 2.25Cr-1Mo alloy (ASME SA-387) was chosen due to the absence of nickel in the alloy which has a considerable solubility in cadmium. Using the transition metal impurities (iron, chromium, nickel, molybdenum, and manganese) in the electrorefined uranium products, an algorithm was developed to derive values for the contribution of the transition metals from the various input sources. Weight loss and corrosion rate data for the Mk-V electrorefiner vessel were then generated based on the transition metal impurities in the uranium products. To date, the corrosion rate of the 2.25Cr-1Mo alloy in LiCl/KCl eutectic is outstanding assuming uniform (i.e. non-localized) conditions.

  3. Structure and creep rupture properties of directionally solidified eutectic gamma/gamma-prime-alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.

    1982-01-01

    A simple ternary gamma/gamma-prime-alpha alloy of nominal composition (wt-%) Ni-32Mo-6Al has been directionally solidified at 17 mm/h and tested in creep rupture at 1073, 1173, and 1273 K. A uniform microstructure consisting of square-shaped Mo fibers in a gamma + gamma-prime matrix was found despite some variation in the molybdenum and aluminum concentrations along the growth direction. Although the steady-state creep rate is well described by the normal stress temperature equation, the stress exponent (12) and the activation energy (580 kJ/mol) are high. The rupture behavior is best characterized by the Larson-Miller parameter where the constant equals 20.

  4. Dissolution and oxidation behaviour of various austenitic steels and Ni rich alloys in lead-bismuth eutectic at 520 °C

    NASA Astrophysics Data System (ADS)

    Roy, Marion; Martinelli, Laure; Ginestar, Kevin; Favergeon, Jérôme; Moulin, Gérard

    2016-01-01

    Ten austenitic steels and Ni rich alloys were tested in static lead-bismuth eutectic (LBE) at 520 °C in order to obtain a selection of austenitic steels having promising corrosion behaviour in LBE. A test of 1850 h was carried out with a dissolved oxygen concentration between 10-9 and 5 10-4 g kg-1. The combination of thermodynamic of the studied system and literature results leads to the determination of an expression of the dissolved oxygen content in LBE as a function of temperature: RT(K)ln[O](wt%) = -57584/T(K) -55.876T(K) + 254546 (R is the gas constant in J mol-1 K-1). This relation can be considered as a threshold of oxygen content above which only oxidation is observed on the AISI 316L and AISI 304L austenitic alloys in static LBE between 400 °C and 600 °C. The oxygen content during the test leads to both dissolution and oxidation of the samples during the first 190 h and leads to pure oxidation for the rest of the test. Results of mixed oxidation and dissolution test showed that only four types of corrosion behaviour were observed: usual austenitic steels and Ni rich alloys behaviour including the reference alloy 17Cr-12Ni-2.5Mo (AISI 316LN), the 20Cr-31Ni alloy one, the Si containing alloy one and the Al containing alloy one. According to the proposed criteria of oxidation and dissolution kinetics, silicon rich alloys and aluminum rich alloy presented a promising corrosion behaviour.

  5. Effect of micro-structural modifier on the morphology of silicon rich secondary phase and strain hardening behavior of eutectic Al-Si alloy

    NASA Astrophysics Data System (ADS)

    Mansoor, M.; Salam, I.; Tauqir, A.

    2016-08-01

    Eutectic Al-Si alloys find their applications in moderate to severe tribological conditions, for example: pistons, casings of high speed pumps and slide sleeves. The higher hardness, so the better tribological properties, are originated by the formation of a silicon rich secondary phase, however, the morphology of the secondary phase drastically influence the toughness of the alloy. Microstructural modifiers are used to control the toughness which modifies the Si rich secondary phase into dispersed spherical structure instead of needle-like network. In the present study, a mixture of chemical fluxes was used to modify the Si phase. The alloy was cast into a sand mold and characterized by scanning electron microscopy, energy dispersive spectroscopy, hardness testing and tensile testing. It was found that the morphology of the Si phase was altered to acicular structure due to the modification process. In comparison, the un-modified alloy contained Si phase in needle-like structure. The effect of modifier was also pronounced on the mechanical properties, where increase of 50% in yield strength, 56% in tensile strength and 200% in elongation occurred. A discernable raise in strain hardening component indicated the improved strain harden ability and formability of the modified alloy.

  6. Volume Fraction Determination in Cast Superalloys and DS Eutectic Alloys by a New Practice for Manual Point Counting

    NASA Technical Reports Server (NTRS)

    Andrews, C. W.

    1976-01-01

    Volume fraction of a constituent or phase was estimated in six specimens of conventional and DS-eutectic superalloys, using ASTM E562-76, a new standard recommended practice for determining volume fraction by systematic manual point count. Volume fractions determined ranged from 0.086 to 0.36, and with one exception, the 95 percent relative confidence limits were approximately 10 percent of the determined volume fractions. Since the confidence-limit goal of 10 percent, which had been arbitrarily chosen previously, was achieved in all but one case, this application of the new practice was considered successful.

  7. Effects of an applied magnetic field on directional solidification of off-eutectic Bi-Mn alloys

    NASA Technical Reports Server (NTRS)

    Decarlo, J. L.; Pirich, R. G.

    1987-01-01

    Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG to determine the effects on thermal and solutal convection. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical and magnetic analyses. For Mn-rich compositions morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic field. Conductivity gradients in the melt are suggested as a possible mechanism for the observed results.

  8. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  9. Patterned eutectic bonding with Al/Ge thin films for MEMS

    NASA Astrophysics Data System (ADS)

    Zavracky, Paul M.; Vu, Bao

    1995-09-01

    In this paper, we report our results using eutectic bonding with the aluminum/germanium alloy to create high quality bonds. The results of a series of experiments conducted to optimize eutectic alloy bonding for MEMS are described. Issues discussed include surface preparation, eutectic composition, bonding apparatus and bonding conditions (temperature and time).

  10. Superplastic-like behavior of rapid-solidification-processed hyper-eutectic Al-Si P/M alloys

    SciTech Connect

    Satoh, T.; Okimoto, K.; Nishida, S.; Matsuki, K.

    1995-09-01

    Superplastic-like behavior of both P/M Al-25Si and Al-15Si alloys prepared from centrifugally atomized powders has been investigated. The maximum elongation of P/M Al-25Si and Al-15Si alloys are 154% and 307%, respectively. Although relatively high m value, larger than m = 0.4, is obtained at an early strain stage in tensile tests of the P/M alloys, the m value reduces to 0.33 or less with increasing strain. The testing temperature showing the maximum elongation of the P/M alloys is just below the each solidus temperature of the Al-Si alloys. The elongations of the P/M alloys extruded indirectly without pre-compaction of the powder by vacuum hot pressing, are larger than those of the alloys through vacuum hot pressing. A filament-like elongated microstructure, which may be caused by grain boundary sliding, is formed on the whole surface of P/M alloy under the optimum condition of the superplastic deformation. The shapes of primary silicon phase and cavity become more spheroidization under the condition of superplastic deformation. The fracture surface is also rounded at the optimum temperature exhibited the maximum elongation.

  11. The Effects of Adding Elements of Zinc and Magnesium on Ag-Cu Eutectic Alloy for Warming Acupuncture

    PubMed Central

    Park, Il Song; Kim, Keun Sik; Lee, Min Ho

    2013-01-01

    The warming acupuncture for hyperthermia therapy is made of STS304. However, its needle point cannot be reached to a desirable temperature due to heat loss caused by low thermal conductivity, and the quantification of stimulation condition and the effective standard establishment of warming acupuncture are required as a heat source. Accordingly, in this study, after Ag-Cu alloys with different composition ratios were casted and then mixed with additives to improve their physical and mechanical properties, the thermal conductivity and biocompatibility of the alloy specimens were evaluated for selecting suitable material. Ag-Cu binary alloys and ternary alloys added 5 wt% Zn or 2 wt% Mg were casted and then cold drawn to manufacture needles for acupuncture, and their physical properties, thermal conductivity, and biocompatibility were evaluated for their potential use in warming acupuncture. The results of this study showed that the physical and mechanical properties of the Ag-Cu alloys were improved by additives and that the thermal conductivity, machinability, and biocompatibility of the Ag-Cu alloys were improved by Mg addition. PMID:24078827

  12. Structure and thermal cycling stability of a hafnium monocarbide reinforced directionally solidified cobalt-base eutectic alloy

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.

    1975-01-01

    A nominal composition of Co-15Cr-2ONi-10.5 Hf-0.7 C (NASA-HAFCO-11) was directionally solidified at 0.8 cm/hr growth rate to produce aligned HfC in a cobalt matrix alloy. The aligned HfC fibers were present as rod and plate types. The diameter of the aligned fibers was about 1 micron, with volume fraction in the range of 11 to 15 percent. The growth direction of the fibers was parallel to the 100. The NASA-HAFCO-11 alloy was subjected to thermal cycling between 425 deg and 1100 C, using a 2.5 minute cycle. No microstructural degradation of the HfC fibers in the alloy was observed after 2500 cycles.

  13. Effect of undercooling on the microstructure of Ni-35 at. pct Mo (eutectic) and Ni-38 at. pct Mo (hypereutectic) alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1987-01-01

    Ni-35 at. pct Mo and Ni-38 at. pct Mo alloy specimens have been solidified from various levels of undercooling in the differential thermal analysis and the electromagnetic levitation units in a pyrex/vycor bed. The evolution of the microstructure in the solified specimens has been examined in terms of the degree of undercooling, the nature of the first phase to nucleate from the melt, and the specimen cooling rate. The melt has been observed to undercool more in the presence of intermetallic NiMo (beta) phase as compared to that in the presence of nickel-rich solid solution (gamma). The 'anomalous eutectic' type of microstructure has been shown to result from the initial formation of the dendritic skeleton of either of the two phases, its segmentation due to convection and ripening, and the subsequent nucleation of the other phase in the interdendritic liquid regions. The recalescence behavior has been examined as a function of undercooling and the nature of the phase nucleating first in the melt.

  14. Behavior of steels in flowing liquid PbBi eutectic alloy at 420-600 °C after 4000-7200 h

    NASA Astrophysics Data System (ADS)

    Müller, G.; Heinzel, A.; Konys, J.; Schumacher, G.; Weisenburger, A.; Zimmermann, F.; Engelko, V.; Rusanov, A.; Markov, V.

    2004-11-01

    This paper presents the results of steel exposure up to 7200 h in flowing LBE at elevated temperatures and is a follow-up paper of that with results of an exposure of up to 2000 h. The examined AISI 316 L, 1.4970 austenitic and MANET 10Cr martensitic steels are suitable as a structural material in LBE (liquid eutectic Pb 45Bi 55) up to 550 °C, if 10 -6 wt% of oxygen is dissolved in the LBE. The martensitic steel develops a thick magnetite and spinel layer while the austenites have thin spinel surface layers at 420 °C and thick oxide scales like the martensitic steel at 550 °C. The oxide scales protect the steels from dissolution attack by LBE during the whole test period of 7200 h. Oxide scales that spall off are replaced by new protective ones. At 600 °C severe attack occurs already after 2000 and 4000 h of exposure. Steels with 8-15 wt% Al alloyed into the surface suffer no corrosion attack at all experimental temperatures and exposure times.

  15. The intermetallic formation and growth kinetics at the interface of near eutectic tin-silver-copper solder alloys and gold/nickel metallization

    NASA Astrophysics Data System (ADS)

    Gao, Mao

    The formation of a one micron thick layer of an intermetallic compound between a solder alloy and a metallic substrate generally constitutes a good solder joint in an electronic device. However, if the compound grows too thick, and/or if multiple intermetallic compounds form, poor solder joint reliability may result. Thus significant interest has been focused on intermetallic compound phase selection and growth kinetics at such solder/metal interfaces. The present study focuses on one such specific problem, the formation and growth of intermetallic compounds at near eutectic Sn-Ag-Cu solder alloy/Ni interfaces. Sn-3.0Ag-0.5Cu solder was reflowed on Au/Ni substrates, resulting in the initial formation and growth of (CuNi)6Sn 5 at Sn-3.0Ag-0.5Cu /Ni interfaces. (NiCu)3Sn4 formed between the (CuNi)6Sn5 and the Ni substrate when the concentration of Cu in the liquid SnAgCu solder decreased to a critical value which depended upon temperature: 0.37, 0.31 and 0.3(wt.%) at reflow temperatures of 260°C, 245°C and 230°C respectively. The growth rate of (CuNi)6Sn5 was found to be consistent with extrapolations of a diffusion limited growth model formulated for lower temperature, solid state diffusion couples. The long range diffusion of Cu did not limit growth rates. The spalling of (CuNiAu)6Sn5 from (NiCu)3 Sn4 surfaces during reflow was also examined. When the Cu concentration in the solder decreased to approximately 0.28wt.%, the (Cu,Ni,Au) 6Sn5 was observed to spall. Compressive stress in (CuNiAu) 6Sn5 and weak adhesion between (CuNiAu)6Sn 5 and (NiCu)3Sn4 was found to cause this effect.

  16. Influence of Growth Rate on Microstructural Length Scales in Directionally Solidified NiAl-Mo Hypo-Eutectic Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfei; Ma, Xuewei; Ren, Huiping; Chen, Lin; Jin, Zili; Li, Zhenliang; Shen, Jun

    2016-01-01

    In this article, the Ni-46.1Al-7.8Mo (at.%) alloy was directionally solidified at different growth rates ranging from 15 μm/s to 1000 μm/s under a constant temperature gradient (334 K/cm). The dependence of microstructural length scales on the growth rate was investigated. The results show that, with the growth rate increasing, the primary dendritic arm spacings (PDAS) and secondary dendritic arm spacings (SDAS) decreased. There exists a large distribution range in PDAS under directional solidification conditions at a constant temperature gradient. The average PDAS and SDAS as a function of growth rate can be given as λ1 = 848.8967 V-0.4509 and λ2 = 64.2196 V-0.4140, respectively. In addition, a comparison of our results with the current theoretical models and previous experimental results has also been made.

  17. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  18. Quantification of Primary Dendritic and Secondary Eutectic Nucleation Undercoolings in Rapidly Solidified Hypo-Eutectic Al-Cu Droplets

    NASA Astrophysics Data System (ADS)

    Bogno, A.-A.; Khatibi, P. Delshad; Henein, H.; Gandin, Ch.-A.

    2016-09-01

    This paper reports on the quantification of primary dendritic and secondary eutectic nucleation undercoolings during rapid solidification of impulse atomized hypo-eutectic Al-Cu droplets. The procedure consists in determining the eutectic fraction of each investigated droplet from the fraction of intermetallic Al2Cu obtained by Rietveld refinement analysis of neutrons scattering data. The corresponding eutectic nucleation undercooling is then deduced from the metastable phase diagram of the alloy. The primary dendritic nucleation undercooling is subsequently determined using semi-empirical coarsening models of secondary dendrite arms. The two nucleation undercoolings are finally used as input variables to run a microsegregation model for binary alloys. The fractions of eutectic computed by the microsegregation model compare very favorably with the experimental results.

  19. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1999-01-01

    The long term goal of this project is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. Prior experimental results on the influence of microgravity on the microstructure of fibrous eutectics have been contradictory. Theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in the melt sufficiently to cause a measurable change in microstructure when the eutectic grows at minimum supercooling. Currently, there are four other hypotheses that might explain the observed changes in microstructure of fibrous eutectics caused by convection: (1) Disturbance of the concentration boundary layer arising from an off-eutectic melt composition and growth at the extremum; (2) Disturbance of the concentration boundary layer of a habit-modifying impurity; (3) Disturbance of the concentration boundary layer arising from an off-eutectic interfacial composition due to non-extremum growth; and (4) A fluctuating freezing rate combined with differences in the kinetics of fiber termination and fiber formation. We favor the last of these hypotheses. Thus, the primary objective of the present grant is to determine experimentally and theoretically the influence of a periodically varying freezing rate on eutectic solidification. A secondary objective is to determine the influence of convection on the microstructure of at least one other eutectic alloy that might be suitable for flight experiments.

  20. Eutectic growth under acoustic levitation conditions.

    PubMed

    Xie, W J; Cao, C D; Lü, Y J; Wei, B

    2002-12-01

    Samples of Pb-Sn eutectic alloy with a high density of 8.5 x 10(3) kg/m(3) are levitated with a single-axis acoustic levitator, and containerlessly melted and then solidified in argon atmosphere. High undercoolings up to 38 K are obtained, which results in a microstructural transition of "lamellas-broken lamellas-dendrites." This transition is further investigated in the light of the coupled zone for eutectic growth and the effects of ultrasound. The breaking of regular eutectic lamellas and suppression of gravity-induced macrosegregation of (Pb) and (Sn) dendrites are explained by the complicated internal flow inside the levitated drop, which is jointly induced by the shape oscillation, bulk vibration and rotation of the levitated drop. The ultrasonic field is also found to drive forced surface vibration, which subsequently excites capillary ripples and catalyzes nucleation on the sample surface. PMID:12513291

  1. Physical chemistry of binary organic eutectic and monotectic alloys; 1,2,4,5-tetrachlorobenzene-β-naphthol and 1,2,4,5-tetramethylbenzene-succinonitrile systems

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Pandey, Pinky; Rai, R. N.

    2000-12-01

    Phase diagrams of 1,2,4,5-tetrachlorobenzene-β-naphthol and 1,2,4,5-tetramethylbenzene-succinonitrile systems which are organic analogues of a nonmetal-nonmetal and a nonmetal-metal system, respectively, show the formation of a simple eutectic (melting point 103.7°C) with 0.71 mole fraction of β-naphthol in the former case and a monotectic (melting point 76.0°C) with 0.07 mole fraction of succinonitrile and a eutectic (melting point 52.5°C) with 0.97 mole fraction of succinonitrile in the latter case. The growth behaviour of the pure components, the eutectics and the monotectic studied by measuring the rate of movement of the solid-liquid interface in a capillary, suggests that the data obey the Hillig-Turnbull equation, v= u(Δ T) n, where v is the growth velocity, Δ T is the undercooling and u and n are constants depending on the nature of the materials involved. From the values of enthalpy of fusion determined by the DSC method using Mettler DSC-4000 system, entropy of fusion, interfacial energy, enthalpy of mixing and excess thermodynamic functions were calculated. The optical microphotographs of pure components and polyphase materials show their characteristic features.

  2. An Undergraduate Experiment Using Differential Scanning Calorimetry: A Study of the Thermal Properties of a Binary Eutectic Alloy of Tin and Lead

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Clark, Daniel; Nirode, William

    2012-01-01

    An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…

  3. Ternary eutectic growth of nanostructured thermoelectric Ag-Pb-Te materials

    SciTech Connect

    Wu, Hsin-jay; Chen, Sinn-wen; Foo, Wei-jian; Jeffrey Snyder, G.

    2012-07-09

    Nanostructured Ag-Pb-Te thermoelectric materials were fabricated by unidirectionally solidifying the ternary Ag-Pb-Te eutectic and near-eutectic alloys using the Bridgeman method. Specially, the Bridgman-grown eutectic alloy exhibited a partially aligned lamellar microstructure, which consisted of Ag{sub 5}Te{sub 3} and Te phases, with additional 200-600 nm size particles of PbTe. The self-assembled interfaces altered the thermal and electronic transport properties in the bulk Ag-Pb-Te eutectic alloy. Presumably due to phonon scattering from the nanoscale microstructure, a low thermal conductivity ({kappa} = 0.3 W/mK) was achieved of the eutectic alloy, leading to a zT peak of 0.41 at 400 K.

  4. Eutectic growth: A closed problem for the solution of the steady-state growth of lamellar eutectics

    NASA Astrophysics Data System (ADS)

    Anestiev, L.; Froyen, L.

    2002-07-01

    The Jackson and Hunt theory was modified in order to get a better understanding of the driving forces of the eutectic's growth kinetics. A solution of the diffusion problem, based on more rigorous boundary conditions, was obtained and kinetic members were added in order to account for the growth kinetics of the specific phases composing the eutectic. It was unambiguously shown that the eutectic's growth problem is a closed problem, e.g., no additional assumptions are needed in order to obtain the eutectic growth velocity as a function of the phase's composition and the lamellae's width. The model proposed in the present article was further used to model the growth kinetics of different alloys, which exhibit eutectic structure and to derive some important kinetic parameters from the existing experimental data.

  5. Stability of eutectic interface during directional solidification

    SciTech Connect

    Han, S.H.

    1996-04-23

    Directional solidification of eutectic alloys shows different types of eutectic morphologies. These include lamellar, rod, oscillating and tilting modes. The growth of these morphologies occurs with a macroscopically planar interface. However, under certain conditions, the planar eutectic front becomes unstable and gives rise to a cellular or a dendritic structure. This instability leads to the cellular/dendritic structure of either a primary phase or a two-phase structure. The objective of this work is to develop a fundamental understanding of the instability of eutectic structure into cellular/dendritic structures of a single phase and of two-phases. Experimental studies have been carried out to examine the transition from a planar to two-phase cellular and dendritic structures in a ceramic system of Alumina-Zirconia (Al{sub 2}O{sub 3}-ZrO{sub 2}) and in a transparent organic system of carbon tetrabromide and hexachloroethane (CBr{sub 4}-C{sub 2}Cl{sub 6}). Several aspects of eutectic interface stability have been examined.

  6. Dynamics of rod eutectic growth patterns in confined geometry

    NASA Astrophysics Data System (ADS)

    Şerefoǧlu, Melis; Bottin-Rousseau, S.; Akamatsu, S.; Faivre, G.

    2012-01-01

    The dynamics of rod-like eutectics are examined using a directional solidification setup, which allows real-time observation of the whole solidification front in specimens of transparent eutectic alloys -here, succinonitrile-(D)camphor. In steady-state, rod eutectic growth patterns consist of triangular arrays, more or less disturbed by topological defects. In the absence of strong convection and of crystallographic anisotropy, the long-time evolution of the pattern is dominated by "imperfections" of the system, such as misalignment of the temperature gradient, and finite-size. In this study, we present experimental results on the finite-size effects on rod eutectics and show that a rod to lamella transition takes place as a result of finite-size effect only, at a given alloy concentration.

  7. Effect of Flow due to Density Change on Eutectic Growth

    NASA Astrophysics Data System (ADS)

    McFadden, G. B.; Coriell, S. R.; Mitchell, W. F.; Murray, B. T.; Andrews, J. B.; Arikawa, J.

    2001-11-01

    The Jackson-Hunt model of eutectic growth is extended to allow for different densities of the phases. The density differences give rise to fluid flow which is calculated from a series solution of the fluid flow equations in the Stokes flow approximation. The solute diffusion equation with flow terms is then solved numerically using an adaptive refinement and multigrid algorithm (PLTMG). The interface undercoolings and volume fractions are calculated as a function of spacing for tin-lead and iron-carbon eutectic alloys and for an aluminum-indium monotectic alloy. The numerical results are compared with various approximations based on the Jackson-Hunt analysis.

  8. Effect of flow due to density change on eutectic growth

    NASA Astrophysics Data System (ADS)

    Coriell, S. R.; McFadden, G. B.; Mitchell, W. F.; Murray, B. T.; Andrews, J. B.; Arikawa, Y.

    2001-04-01

    The Jackson-Hunt model of eutectic growth is extended to allow for different densities of the phases. The density differences give rise to fluid flow which is calculated from a series solution of the fluid flow equations in the Stokes flow approximation. The solute diffusion equation with flow terms is then solved numerically using an adaptive refinement and multigrid algorithm. The interface undercoolings and volume fractions are calculated as a function of spacing for tin-lead and iron-carbon eutectic alloys and for an aluminum-indium monotectic alloy. The numerical results are compared with various approximations based on the Jackson-Hunt analysis.

  9. Physical properties of liquid NaF-LiF-LaF3 and NaF-LiF-NdF3 eutectic alloys

    NASA Astrophysics Data System (ADS)

    Bulavin, L.; Plevachuk, Yu.; Sklyarchuk, V.; Shtablavyy, I.; Faidiuk, N.; Savchuk, R.

    2013-02-01

    Electrical conductivity, thermoelectric power and viscosity measurements were carried out for the ionic liquid mixtures, formed after melting of the NaF-LiF-LaF3 and NaF-LiF-NdF3 eutectics in the wide temperature intervals above the melting points. It was found that temperature coefficient of the thermoelectric power of the both ionic mixtures changes a sign, at 948 ± 5 K in NaF-LiF-LaF3 and at 973 ± 5 K in NaF-LiF-NdF3. It was shown that temperature dependence of viscosity correlates with electrophysical data. The results can be used in choosing a blanket for the liquid salt reactor.

  10. Liquid gallium and the eutectic gallium indium (EGaIn) alloy: Dielectric functions from 1.24 to 3.1 eV by electrochemical reduction of surface oxides

    NASA Astrophysics Data System (ADS)

    Morales, Daniel; Stoute, Nicholas A.; Yu, Zhiyuan; Aspnes, David E.; Dickey, Michael D.

    2016-08-01

    Liquid metals based on gallium are promising materials for soft, stretchable, and shape reconfigurable electromagnetic devices. The behavior of these metals relates directly to the thicknesses of their surface oxide layers, which can be determined nondestructively by ellipsometry if their dielectric functions ɛ are known. This paper reports on the dielectric functions of liquid gallium and the eutectic gallium indium (EGaIn) alloy from 1.24 to 3.1 eV at room temperature, measured by spectroscopic ellipsometry. Overlayer-induced artifacts, a continuing problem in optical measurements of these highly reactive metals, are eliminated by applying an electrochemically reductive potential to the surface of the metal immersed in an electrolyte. This technique enables measurements at ambient conditions while avoiding the complications associated with removing overlayers in a vacuum environment. The dielectric responses of both metals are closely represented by the Drude model. The EGaIn data suggest that in the absence of an oxide the surface is In-enriched, consistent with the previous vacuum-based studies. Possible reasons for discrepancies with previous measurements are discussed.

  11. Study of eutectic formation

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.; Eisa, G. F.; Baskaran, V.; Richardson, D. C.

    1984-01-01

    A theory was developed for the influence of convection on the microstructure of lamellar eutectics. Convection is predicted to produce a coarser microstructure, especially at low freezing rates and large volume fractions of the minority phase. Similary convection is predicted to lower the interfacial undercooling, especially at low freezing rates. Experiments using spin-up/spin-down were performed on the Mn-Bi eutectic. This stirring had a dramatic effect on the microstructure, not only making it coarser but at low freezing rates also changing the morphology of the MnBi. The coarsering persisted to moderately high freezing rates. At the lowest freezing rate, vigorous stirring caused the MnBi to be concentrated at the periphery of the ingot and absent along the center. Progress was made on developing a technique for revealing the three-dimensional microstructure of the MnBi eutectic by time-lapse videotaping while etching.

  12. Semiconductor eutectic solar cell

    NASA Astrophysics Data System (ADS)

    Yue, A. S.; Yu, J. G.

    1986-12-01

    Two-phase semiconducting eutectics are potential device-materials. Of these, the SnSe-SnSe2 eutectic was chosen for studies in detail because it consists of multi-p/n-layers of SnSe and SnSe2 semiconductors. Since plasma frequency has not been detected in its infrared reflectance spectrum up to 40 micrometers of wavelength, it suggests that the SnSe-SnSe2 eutectic is a nondegenerate semiconductor. As-grown SnSe2 single crystals have hexagonal crystallographic structure and show n-type conductivity. Polycrystalline SnSe and SnSe2 films have been successfully prepared in vacuum using a close-space-vapor transport technique.

  13. Rapidly solidified Ag-Cu eutectics: A comparative study using drop-tube and melt fluxing techniques

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Mullis, A. M.; Cochrane, R. F.

    2016-03-01

    A comparative study of rapid solidification of Ag-Cu eutectic alloy processed via melt fluxing and drop-tube techniques is presented. A computational model is used to estimate the cooling rate and undercooling of the free fall droplets as this cannot be determined directly. SEM micrographs show that both materials consist of lamellar and anomalous eutectic structures. However, below the critical undercooling the morphologies of each are different in respect of the distribution and volume of anomalous eutectic. The anomalous eutectic in flux- undercooled samples preferentially forms at cell boundaries around the lamellar eutectic in the cell body. In drop-tube processed samples it tends to distribute randomly inside the droplets and at much smaller volume fractions. That the formation of the anomalous eutectic can, at least in part, be suppressed in the drop-tube is strongly suggestive that the formation of anomalous eutectic occurs via remelting process, which is suppressed by rapid cooling during solidification.

  14. Lamellar coupled growth in the neopentylglycol-(D)camphor eutectic

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Sturz, L.; Hecht, U.; Rex, S.

    2014-01-01

    Lamellar eutectic growth was investigated in the transparent organic alloy neopentylglycol-(D)camphor of eutectic composition (NPG-45.3 wt% DC) using bulk (3D) and thin (2D) samples. Two types of eutectic grains were observed in the polycrystalline samples, either with lamellae well aligned to the direction of solidification or inclined at an angle of 21.5±1.5°. The well aligned grains were used for determining lamellar spacing as function of growth velocity V and temperature gradient G. Based on these data the Jackson-Hunt constant was evaluated to be KJH=1.60±0.15 μm3 s-1. For low growth velocity experiments the contact angles for (DC) and (NPG) lamellae at eutectic triple junctions were also evaluated, being θ(DC)=50.9±4.1° and θ(NPG)=41.8±4.7°, respectively. Using these values, as well as phase diagram data and the Gibbs-Thomson coefficients, the chemical coefficient of diffusion of (D)camphor in the eutectic liquid at eutectic temperature 53 °C was estimated to be DL=97±15 μm2 s-1.

  15. Directional solidification of eutectic composites in space environment

    NASA Technical Reports Server (NTRS)

    Yue, A. S.

    1972-01-01

    The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.

  16. Performance of LiAlloy/Ag(2)CrO(4) Couples in Molten CsBr-LiBr-KBr Eutectic

    SciTech Connect

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

    1999-10-18

    The performance of Li-alloy/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} systems was studied over a temperature range of 250 C to 300 C, for possible use as a power source for geothermal borehole applications. Single cells were discharged at current densities of 15.8 and 32.6 mA/cm{sup 2} using Li-Si and Li-Al anodes. When tested in 5-cell batteries, the Li-Si/CsBr-LiBr-KBr/Ag{sub 2}CrO{sub 4} system exhibited thermal runaway. Thermal analytical tests showed that the Ag{sub 2}CrO{sub 4} cathode reacted exothermically with the electrolyte on activation. Consequently, this system would not be practical for the envisioned geothermal borehole applications.

  17. Coatings for directional eutectics. [for corrosion and oxidation resistance

    NASA Technical Reports Server (NTRS)

    Felten, E. J.; Strangman, T. E.; Ulion, N. E.

    1974-01-01

    Eleven coating systems based on MCrAlY overlay and diffusion aluminide prototypes were evaluated to determine their capability for protecting the gamma/gamma prime-delta directionally solidified eutectic alloy (Ni-20Cb-6Cr-2.5Al) in gas turbine engine applications. Furnace oxidation and hot corrosion, Mach 0.37 burner-rig, tensile ductility, stress-rupture and thermomechanical fatigue tests were used to evaluate the coated gamma/gamma prime-delta alloy. The diffusion aluminide coatings provided adequate oxidation resistance at 1144 K (1600 F) but offered very limited protection in 114 K (1600 F) hot corrosion and 1366 K (2000 F) oxidation tests. A platinum modified NiCrAlY overlay coating exhibited excellent performance in oxidation testing and had no adverse effects upon the eutectic alloy.

  18. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox. William R.; Regel, Liya L.

    1999-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the projects in the present grant is to test hypotheses for the reported influence of microgravity on the microstructure of eutectics. The prior experimental results on the influence of microgravity on the microstructure of eutectics have been contradictory. With lamellar eutectics, microgravity had a negligible effect on the microstructure. Microgravity experiments with fibrous eutectics sometimes showed a finer microstructure and sometimes a coarser microstructure. Most research has been done on the MnBi/Bi rod-like eutectic. Larson and Pirich obtained a two-fold finer microstructure both from microgravity and by use of a magnetic field to quench buoyancy-driven convection. Smith, on the other hand, observed no change in microgravity. Prior theoretical work at Clarkson University showed that buoyancy-driven convection in the vertical Bridgman configuration is not vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to cause a measurable change in microstructure. We assumed that the bulk melt was at the eutectic composition and that freezing occurred at the extremum, i.e. with minimum total undercooling at the freezing interface. There have been four hypotheses attempting to explain the observed changes in microstructure of fibrous eutectics caused by convection: I .A fluctuating freezing rate, combined with unequal kinetics for fiber termination and branching. 2. Off-eutectic composition, either in the bulk melt due to an off-eutectic feed or at the freezing interface because of departure from the extremum condition. 3. Presence of a strong habit modifying impurity whose concentration at the freezing interface would be altered by convection. At the beginning of the present grant, we favored the

  19. Directionally solidified pseudo-binary eutectics of Ni-Cr-/Hf,Zr/

    NASA Technical Reports Server (NTRS)

    Kim, Y. G.; Ashbrook, R. L.

    1975-01-01

    This report is concerned with the experimental determination of pseudo binary eutectic compositions and the directional solidification of the Ni-Cr-Hf,Zr, and Ni-Cr-Zr eutectic alloys. To determine unknown eutectics, chemical analyses were made of material bled from near eutectic ingots during incipient melting. Nominal compositions in weight per cent of Ni-18.6Cr-24.0Hf, Ni-19.6Cr-12.8Zr-2.8Hf, and Ni-19.2Cr-14.8Zr formed aligned pseudo-binary eutectic structures. The melting points were about 1270 C. The reinforcing intermetallic phases were identified as noncubic (Ni,Cr)7Hf2 and (Ni,Cr)7(Hf,Zr)2, and face centered cubic (Ni,Cr)5Zr. The volume fraction of the reinforcing phases were about 0.5.

  20. Studies of Al-Al 3Ni eutectic mixtures as insertion anodes in rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Machill, S.; Rahner, D.

    This contribution will give a short overview of aluminium-nickel eutectic mixture alloys as the anode materials in lithium secondary batteries. These compounds allow to create an alloy matrix of modified grain size with stabilizing properties toward 'mechanical stressing' during charge/discharge processes of lithium. Several electrochemical techniques have been used to investigate the electrochemical behaviour of these lithium-inserting materials.

  1. Magnesium silicide intermetallic alloys

    NASA Astrophysics Data System (ADS)

    Li, Gh.; Gill, H. S.; Varin, R. A.

    1993-11-01

    Methods of induction melting an ultra-low-density magnesium silicide (Mg2Si) intermetallic and its alloys and the resulting microstructure and microhardness were studied. The highest quality ingots of Mg2Si alloys were obtained by triple melting in a graphite crucible coated with boron nitride to eliminate reactivity, under overpressure of high-purity argon (1.3 X 105 Pa), at a temperature close to but not exceeding 1105 °C ± 5 °C to avoid excessive evaporation of Mg. After establishing the proper induction-melting conditions, the Mg-Si binary alloys and several Mg2Si alloys macroalloyed with 1 at. pct of Al, Ni, Co, Cu, Ag, Zn, Mn, Cr, and Fe were induction melted and, after solidification, investigated by optical microscopy and quantitative X-ray energy dispersive spectroscopy (EDS). Both the Mg-rich and Si-rich eutectic in the binary alloys exhibited a small but systematic increase in the Si content as the overall composition of the binary alloy moved closer toward the Mg2Si line compound. The Vickers microhardness (VHN) of the as-solidified Mg-rich and Si-rich eutectics in the Mg-Si binary alloys decreased with increasing Mg (decreasing Si) content in the eutectic. This behavior persisted even after annealing for 75 hours at 0.89 pct of the respective eutectic temperature. The Mg-rich eutectic in the Mg2Si + Al, Ni, Co, Cu, Ag, and Zn alloys contained sections exhibiting a different optical contrast and chemical composition than the rest of the eutectic. Some particles dispersed in the Mg2Si matrix were found in the Mg2Si + Cr, Mn, and Fe alloys. The EDS results are presented and discussed and compared with the VHN data.

  2. Pattern selection dynamics in rod eutectics

    NASA Astrophysics Data System (ADS)

    Serefoglu, Melis

    The cooperative or diffusively coupled growth of multiple phases during solidification is one of the most widely observed and generally important classes of phase transformations in materials. Technologically, low melting temperature and small freezing range contribute to excellent casting fluidity and fine composite structures give rise to favorable properties. Both of these features contribute to the wide application of eutectic alloys in the casting, welding, and soldering of engineered components. Despite the broad-based technological importance, many fundamental questions regarding eutectic solidification remain unanswered, severely limiting our ability to employ computational methods in the prediction of microstructure for the effective design of new materials and processes. At the core of the most persistent questions, lie problems involving multicomponent thermodynamics, solid-liquid and solid-solid interfacial phenomena, morphological stability, chemical and thermal diffusion, and nucleation phenomena. In the current study, pattern selection dynamics in rod eutectics are investigated using systematic directional solidification experiments and phase field simulations. Directional solidification of a succinonitrile-camphor (SCN-DC) transparent alloy in thin slab geometries of various thicknesses reveals two main points. First, a velocity is indentified at which a transition in array basis vectors is observed in specimens with many rows of rods (i.e. bulk). This transition amounts to a 90 degree rotation of the rod array, shifting from alignment of 1st nearest neighbors to alignment of 2nd nearest neighbors along the slide wall. Second, significant array distortion is observed with decreasing slide thickness, delta, which ultimately leads to a single-row (quasi-3D) morphology where delta/lambda is on the order of unity. In our analysis of these observations, we use a geometrical model to describe the rod arrangement as a function of slide thickness, providing

  3. Processing eutectics in space

    NASA Technical Reports Server (NTRS)

    Douglas, F. C.; Galasso, S. F.

    1975-01-01

    The investigations of directional solidification have indicated the necessity of establishing a secure foundation in earth-based laboratory processing in order to properly assess low-gravity processing. Emphasis was placed on evaluating the regularity of microstructure of the rod-like eutectic Al-Al3Ni obtained under different conditions of growth involving the parameters of thermal gradient, solidification rate, and interfacial curvature. In the case of Al-Al3Ni, where the Al3Ni phase appears as facets rods, solidification rate was determined to be a controlling parameter. Zone melting of thin eutectic films showed that for films of the order of 10 to 20 micrometers thick, the extra surface energy appears to act to stabilize a regular microstructure. The results suggest that the role of low-gravity as provided in space-laboratory processing of materials is to be sought in the possibility of generating a higher thermal gradient in the solidifying ingot for a given power input-output arrangement than can be obtained under normal one-g processes.

  4. Aluminum alloy and associated anode and battery

    SciTech Connect

    Tarcy, G.P.

    1990-08-21

    This patent describes an aluminum alloy. It comprises: eutectic amounts of at least two alloying elements selected from the group consisting of bismuth, cadmium, scandium, gallium, indium, lead, mercury, thallium, tin, and zinc with the balance being aluminum and the alloying elements being about 0.01 to 3.0 percent by weight of the alloy.

  5. Composition formulas of binary eutectics

    PubMed Central

    Ma, Y. P.; Dong, D. D.; Dong, C.; Luo, L. J.; Wang, Q.; Qiang, J. B.; Wang, Y. M.

    2015-01-01

    The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glue-atom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula [cluster]gluex. This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., [cluster](glue atom)1 or 3. A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism. PMID:26658618

  6. Growth and microstructure evolution of the Nb{sub 2}Al-Al{sub 3}Nb eutectic in situ composite

    SciTech Connect

    Rios, C.T.; Ferrandini, P.L.; Milenkovic, S.; Caram, R. . E-mail: rcaram@fem.unicamp.br

    2005-03-15

    In situ composite materials obtained by directional growth of eutectic alloys usually show improved properties, that make them potential candidates for high temperature applications. The eutectic alloy found in the Al-Nb system is composed of the two intermetallic phases Al{sub 3}Nb (D0{sub 22}) and Nb{sub 2}Al (D8{sub b}). This paper describes the directional solidification of an Al-Nb eutectic alloy using a Bridgman type facility at growth rates varying from 1.0 to 2.9 cm/h. Longitudinal and transverse sections of grown samples were characterized regarding the solidification microstructure by using optical and scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction. Despite both phases being intermetallic compounds, the eutectic microstructure obtained was very regular. The results obtained were discussed regarding the effect of the growth rate on the microstructure, lamellar-rod transition and variation of phase volume fraction.

  7. Use of Microgravity to Control the Microstructure of Eutectics

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Smith, Reginald W.

    1998-01-01

    This grant began in June of 1996. Its long term goal is to be able to control the microstructure of directionally solidified eutectic alloys, through an improved understanding of the influence of convection. The primary objective of the present projects is to test hypotheses for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-Bi, InSb-NiSb, Al3Ni-Al). A secondary objective is to determine the influence of convection on the microstructure of other eutectic alloys. Two doctoral students and a masters student supported as a teaching assistant were recruited for this research. Techniques were developed for directional solidification of MnBi-Bi eutectics with periodic application of current pulses to produce an oscillatory freezing rate. Image analysis techniques were developed to obtain the variation in MnBi fiber spacing, which was found to be normally distributed. The mean and standard deviation of fiber spacing were obtained for several freezing conditions. Eighteen ampoules were prepared for use in the gradient freeze furnace QUELD developed at Queen's University for use in microgravity. Nine of these ampoules will be solidified soon at Queen's in a ground-based model. We hope to solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation Mount on MIR. Techniques are being developed for directional solidification of the Al-Si eutectic at different freezing rates, with and without application of accelerated crucible rotation to induce convection. For the first time, theoretical methods are being developed to analyze eutectic solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found that an oscillatory freezing rate increases the deviation of the average interfacial composition from the eutectic, and increases the undercooling of the two phases by different amounts. This would be expected to change the volume fraction solidifying and the fiber spacing

  8. The surface tension force of anisotropic interphase boundaries is perpendicular to the solidification front during eutectic growth

    NASA Astrophysics Data System (ADS)

    Bottin-Rousseau, S.; Şerefoǧlu, M.; Akamatsu, S.; Faivre, G.

    2012-01-01

    The irregular growth dynamics of the so-called locked (tilted) lamellar eutectic grains that are observed in directional solidification of nonfaceted/nonfaceted eutectic alloys, is attributable to a strong surface tension anisotropy of the interphase boundaries, which enters into the local-equilibrium (Young-Herring) condition at the trijunctions of the solid-liquid interfaces. Based on real-time observations of locked eutectic growth in thin samples, we propose that the lamellar tilt angle is selected by the system in such a way that the Hoffmann-Calm surface tension force (vec sigma vector) of the interphase boundaries is approximatively perpendicular to the solidification front.

  9. Directional Solidification of Eutectic Ceramics

    NASA Technical Reports Server (NTRS)

    Sayir, Ali

    2001-01-01

    Two major problems associated with structural ceramics are lack of damage tolerance and insufficient strength and creep resistance at very high temperatures of interest for aerospace application. This work demonstrated that the directionally solidified eutectics can have unique poly-phase microstructures and mechanical properties superior to either constituent alone. The constraining effect of unique eutectic microstructures result in higher resistance to slow crack growth and creep. Prospect of achieving superior properties through controlled solidification are presented and this technology can also be beneficial to produce new class of materials.

  10. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  11. The influence of Cu, Mg and Ni on the solidification and microstructure of Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; StJohn, D. H.

    2016-03-01

    The influence of alloying elements (Cu, Mg, and Ni) on eutectic nucleation, eutectic grain morphology and the final microstructure of an Al-10Si commercial purity alloy in unmodified and Sr-modified conditions was investigated. It was found that the nucleation and eutectic grain growth morphologies of both the unmodified and Sr-modified Al-Si eutectic were significantly influenced by the addition of ternary alloying elements to a degree dependent on when the intermetallic phase formed during the solidification of the alloy with respect to the Al-Si eutectic. In cases where an intermetallic phase nucleated prior to the onset of the Al-Si eutectic reaction, the eutectic nucleation frequency was affected by changes to the available nuclei population. In cases where the intermetallic nucleated after the Al-Si eutectic, segregation of the ternary solutes in front of the Al-Si eutectic interface changed the nucleation and macroscopic growth dynamics. The changes in nucleation and growth dynamics of the Al-Si eutectic due to the presence of solute altered the morphology of the eutectic silicon considerably. This study has revealed a number of insights into the mechanisms of nucleation and growth of the Al-Si eutectic.

  12. Thermodynamic properties of lanthanum in gallium-zinc alloys

    NASA Astrophysics Data System (ADS)

    Dedyukhin, A. S.; Shepin, I. E.; Kharina, E. A.; Shchetinskiy, A. V.; Volkovich, V. A.; Yamshchikov, L. F.

    2016-09-01

    Thermodynamic properties of lanthanum were determined in gallium-zinc alloys of the eutectic and over-eutectic compositions. The electromotive force measurements were used to determine thermodynamic activity and sedimentation technique to measure solubility of lanthanum in liquid metal alloys. Temperature dependencies of lanthanum activity, solubility and activity coefficients in alloys with Ga-Zn mixtures containing 3.64, 15 and 50 wt. % zinc were obtained.

  13. Semiconductor eutectics for energy conversion

    NASA Astrophysics Data System (ADS)

    Yue, A. S.

    1983-04-01

    Directionally-oriented two-phase semiconducting eutectics are potential device-materials. A comprehensive search of the literature gives a list of semiconducting eutectic systems. Among these, the SnSe-SnSe2 was chosen for studies in detail. The SnSe-SnSe2 eutectic grown by the Bridgman technique has a multi-P/N-junction lamellar microstructure. Since its plasma frequency has not been detected within the infrared reflectance spectrum up to 40 micrometers of wavelength, it is, therefore, concluded that the SnSe-SnSe2 eutectic is a non-degenerate semiconductor. SnSe single crystals grown from the vapor phase have a hole concentration of 9.72 x 10(17) cm(+3) and a mobility of 154 cm(2)/sec-v at room temperature. This mobility is proportional to T/sup -1/3/ for T 1300 K and T/sup -2.25/ for T 1300 K. The index of reflection for SnSe single crystal has been determined froma wavelength of micrometers to a wavelength of 40 micrometers and was found to be 3.120 at 3 microns and 3.095 at 15 microns. A current-voltage characteristic expressed as I = I0 exp (qv/2.08 KT) was measured on a SnSe diode, which exhibits a negative resistance after the breakdown.

  14. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    PubMed Central

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-01-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals. PMID:26984298

  15. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    NASA Astrophysics Data System (ADS)

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-03-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals.

  16. A quantitative study of factors influencing lamellar eutectic morphology during solidification

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F. S.

    1981-01-01

    The factors that influence the shape of the solid-liquid interface of a lamellar binary eutectic alloy are evaluated. Alloys of carbon tetrabromide and hexachloroethane which serve as a transparent analogue of lamellar metallic eutectics are used. The observed interface shapes are analyzed by computer-aided methods. The solid-liquid interfacial free energies of each of the individual phases comprising the eutectic system are measured as a function of composition using a 'grain boundary groove' technique. The solid-liquid interfacial free energy of the two phases are evaluated directly from the eutectic interface. The phase diagram for the system, the heat of fusion as a function of composition, and the density as a function of composition are measured. The shape of the eutectic interface is controlled mainly by the solid-liquid and solid-solid interfacial free energy relationships at the interface and by the temperature gradient present, rather than by interlamellar diffusion in the liquid at the interface, over the range of growth rates studied.

  17. Eutectic Solder Bonding for Highly Manufacturable Microelectromechanical Systems Probe Card

    NASA Astrophysics Data System (ADS)

    Kim, Bonghwan

    2011-06-01

    We developed eutectic solder bonding for the microelectromechanical systems (MEMS) probe card. We tested various eutectic solder materials, such as Sn, AgSn, and AuSn, and investigated the bonding ability of Sn-based multi-element alloys and their resistance to chemical solutions. The Sn-based alloys were formed by sputtering, electroplating, and the use of solder paste. According to our experimental results, Sn-rich solders, such as Ag3.5Sn, Ag3.5Sn96Cu0.5, and Sn, were severely damaged by silicon wet etchant such as potassium hydroxide (KOH) and tetramethylammonium hydroxide (TMAH). On the other hand Au80Sn20 was resistant to those chemicals. In order to verify the joint bondability of the solders, we used a cantilever probe beam, and bump which were made of nickel and nickel alloy. After flip-chip bonding of the cantilever beam and the bump with Au80Sn20 solder paste, we measured the contact force to verify the mechanical strength. We then re-inspected it with X-rays and found no voids in the joint.

  18. Refinement of Promising Coating Compositions for Directionally Cast Eutectics

    NASA Technical Reports Server (NTRS)

    Strangman, T. E.; Felten, E. J.; Benden, R. S.

    1976-01-01

    The successful application of high creep strength, directionally solidified gamma/gamma prime-delta (Ni-19.7Cb-6Cr-2.5Al) eutectic superalloy turbine blades requires the development of suitable coatings for airfoil, root and internal blade surfaces. In order to improve coatings for the gamma/gamma prime-delta alloy, the current investigation had the goals of (1) refining promising coating compositions for directionally solidified eutectics, (2) evaluating the effects of coating/ substrate interactions on the mechanical properties of the alloy, and (3) evaluating diffusion aluminide coatings for internal surfaces. Burner rig cyclic oxidation, furnace cyclic hot corrosion, ductility, and thermal fatigue tests indicated that NiCrAlY+Pt(63 to 127 micron Ni-18Cr-12Al-0.3Y + 6 micron Pt) and NiCrAlY(63 to 127 micron Ni-18Cr-12Al-0.3Y) coatings are capable of protecting high temperature gas path surfaces of eutectic alloy airfoils. Burner rig (Mach 0.37) testing indicated that the useful coating life of the 127 micron thick coatings exceeded 1000 hours at 1366 K (2000 deg F). Isothermal fatigue and furnance hot corrosion tests indicated that 63 micron NiCrAlY, NiCrAlY + Pt and platinum modified diffusion aluminide (Pt + Al) coating systems are capable of protecting the relatively cooler surfaces of the blade root. Finally, a gas phase coating process was evaluated for diffusion aluminizing internal surfaces and cooling holes of air-cooled gamma/gamma prime-delta turbine blades.

  19. The influences of convection on directional solidification of eutectic Bi/MnBi

    NASA Technical Reports Server (NTRS)

    Larson, David J., Jr.

    1988-01-01

    Eutectic alloys of Bi-Mn were directionally solidified using the Bridgman-Stockbarger technique to determine the influences of gravitationally-driven thermo-solutal convection on the Bi-MnBi rod eutectic. Experiments were conducted that varied the level of convection by varying the growth parameters and growth orientation, by microgravity damping, by applied magnetic field damping, and by imposing forced convection. Peltier interface demarcation and in situ thermocouple measurements were used to monitor interface velocity and thermal gradient and to evaluate interface planarity.

  20. Eutectic superalloys by edge-defined, film-fed growth

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    The feasibility of producing directionally solidified eutectic alloy composites by edge-defined, film-fed growth (EFG) was carried out. The three eutectic alloys which were investigated were gamma + delta, gamma/gamma prime + delta, and a Co-base TaC alloy containing Cr and Ni. Investigations into the compatibility and wettability of these metals with various carbides, borides, nitrides, and oxides disclosed that compounds with the largest (negative) heats of formation were most stable but poorest wetting. Nitrides and carbides had suitable stability and low contact angles but capillary rise was observed only with carbides. Oxides would not give capillary rise but would probably fulfill the other wetting requirements of EFG. Tantalum carbide was selected for most of the experimental portion of the program based on its exhibiting spontaneous capillary rise and satisfactory slow rate of degradation in the liquid metals. Samples of all three alloys were grown by EFG with the major experimental effort restricted to gamma + delta and gamma/gamma prime + delta alloys. In the standard, uncooled EFG apparatus, the thermal gradient was inferred from the growth speed and was 150 to 200 C/cm. This value may be compared to typical gradients of less than 100 C/cm normally achieved in a standard Bridgman-type apparatus. When a stream of helium was directed against the side of the bar during growth, the gradient was found to improve to about 250 C/cm. In comparison, a theoretical gradient of 700 C/cm should be possible under ideal conditions, without the use of chills. Methods for optimizing the gradient in EFG are discussed, and should allow attainment of close to the theoretical for a particular configuration.

  1. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase. PMID:26669887

  2. Evaporation Behavior and Characterization of Eutectic Solvent and Ibuprofen Eutectic Solution.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun; Charoensuksai, Purin

    2016-10-01

    Liquid eutectic system of menthol and camphor has been reported as solvent and co-solvent for some drug delivery systems. However, surprisingly, the phase diagram of menthol-camphor eutectic has not been reported previously. The evaporation behavior, physicochemical, and thermal properties of this liquid eutectic and ibuprofen eutectic solution were characterized in this study. Differential scanning calorimetry (DSC) analysis indicated that a eutectic point of this system was near to 1:1 menthol/camphor and its eutectic temperature was -1°C. The solubility of ibuprofen in this eutectic was 282.11 ± 6.67 mg mL(-1) and increased the drug aqueous solubility fourfold. The shift of wave number from Fourier transform infrared spectroscopy (FTIR) indicated the hydrogen bonding of each compound in eutectic mixture. The weight loss from thermogravimetric analysis of menthol and camphor related to the evaporation and sublimation, respectively. Menthol demonstrated a lower apparent sublimation rate than camphor, and the evaporation rate of eutectic solvent was lower than the sublimation rate of camphor but higher than the evaporation of menthol. The evaporation rate of the ibuprofen eutectic solution was lower than that of the eutectic solvent because ibuprofen did not sublimate. This eutectic solvent prolonged the ibuprofen release with diffusion control. Thus, the beneficial information for thermal behavior and related properties of eutectic solvent comprising menthol-camphor and ibuprofen eutectic solution was attained successfully. The rather low evaporation of eutectic mixture will be beneficial for investigation and tracking the mechanism of transformation from nanoemulsion into nanosuspension in the further study using eutectic as oil phase.

  3. Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth.

    PubMed

    Lu, Haiming; Meng, Xiangkang

    2015-06-08

    Although the vapor-liquid-solid growth of semiconductor nanowire is a non-equilibrium process, the equilibrium phase diagram of binary alloy provides important guidance on the growth conditions, such as the temperature and the equilibrium composition of the alloy. Given the small dimensions of the alloy seeds and the nanowires, the known phase diagram of bulk binary alloy cannot be expected to accurately predict the behavior of the nanowire growth. Here, we developed a unified model to describe the size- and dimensionality-dependent equilibrium phase diagram of Au-Ge binary eutectic nanoalloys based on the size-dependent cohesive energy model. It is found that the liquidus curves reduce and shift leftward with decreasing size and dimensionality. Moreover, the effects of size and dimensionality on the eutectic composition are small and negligible when both components in binary eutectic alloys have the same dimensionality. However, when two components have different dimensionality (e.g. Au nanoparticle-Ge nanowire usually used in the semiconductor nanowires growth), the eutectic composition reduces with decreasing size.

  4. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  5. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  6. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    The feasibility of using metal alloys as thermal energy storage media was investigated. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases were determined. A new method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation. The method and apparatus are discussed and the experimental results are presented for aluminum and two aluminum-eutectic alloys. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide was identified as a promising containment material and surface-coated iron alloys were also evaluated. System considerations that are pertinent if alloy eutectics are used as thermal energy storage media are discussed. Potential applications to solar receivers and industrial furnaces are illustrated schematically.

  7. Relations between the modulus of elasticity of binary alloys and their structure

    NASA Technical Reports Server (NTRS)

    Koster, Werner; Rauscher, Walter

    1951-01-01

    A comprehensive survey of the elastic modulus of binary alloys as a function of the concentration is presented. Alloys that form continuous solid solutions, limited solid solutions, eutectic alloys, and alloys with intermetallic phases are investigated. Systems having the most important structures have been examined to obtain criteria for the relation between lattice structure, type of binding, and elastic behavior.

  8. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  9. Development of deep eutectic solvents applied in extraction and separation.

    PubMed

    Li, Xiaoxia; Row, Kyung Ho

    2016-09-01

    Deep eutectic solvents, as an alternative to ionic liquids, have greener credentials than ionic liquids, and have attracted considerable attention in related chemical research. Deep eutectic solvents have attracted increasing attention in chemistry for the extraction and separation of various target compounds from natural products. This review highlights the preparation of deep eutectic solvents, unique properties of deep eutectic solvents, and synthesis of deep-eutectic-solvent-based materials. On the other hand, application in the extraction and separation of deep eutectic solvents is also included in this report. In this paper, the available data and references in this field are reviewed to summarize the applications and developments of deep eutectic solvents. Based on the development of deep eutectic solvents, an exploitation of new deep eutectic solvents and deep eutectic solvents-based materials is expected to diversify into extraction and separation.

  10. A Comparison between Growth Morphology of "Eutectic" Cells/Dendrites and Single-Phase Cells/Dendrites

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Raj, S. V.; Locci, I. E.

    2003-01-01

    Directionally solidified (DS) intermetallic and ceramic-based eutectic alloys with an in-situ composite microstructure containing finely distributed, long aspect ratio, fiber, or plate reinforcements are being seriously examined for several advanced aero-propulsion applications. In designing these alloys, additional solutes need to be added to the base eutectic composition in order to improve heir high-temperature strength, and provide for adequate toughness and resistance to environmental degradation. Solute addition, however, promotes instability at the planar liquid-solid interface resulting in the formation of two-phase eutectic "colonies." Because morphology of eutectic colonies is very similar to the single-phase cells and dendrites, the stability analysis of Mullins and Sekerka has been extended to describe their formation. Onset of their formation shows a good agreement with this approach; however, unlike the single-phase cells and dendrites, there is limited examination of their growth speed dependence of spacing, morphology, and spatial distribution. The purpose of this study is to compare the growth speed dependence of the morphology, spacing, and spatial distribution of eutectic cells and dendrites with that for the single-phase cells and dendrites.

  11. Wetting behavior of alternative solder alloys

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  12. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  13. Eutectic bonding of contacts to silicon solar cells

    NASA Astrophysics Data System (ADS)

    Giuliano, M. N.

    A process of eutectic wetting and bonding of contact preforms is described which can serve as weld points for interconnection of solar cells. The procedure obviates the need for welding too close to the shallow diffused junction of a solar cell and therefore minimizes mechanical or electrical degradation that is likely when welding directly to the cell metallization. In addition, control of welding parameters is simplified because the weld interconnection is now made to a relatively thick metal preform which is firmly attached to the solar cell. Gold clad kovar was used in this preliminary study. Bond strength was excellent and survived temperature cycling to liquid nitrogen temperature. Electrical performance degradation after alloying was erratic and varied from little or no degradation to severe shunting. The reasons for the loss in fill-factor which is frequently encountered with the present process and choice of materials are not clear at this time. Possible explanations and recommendations for future work are discussed.

  14. Hot tensile properties and deformation response of a gamma/Ni/-gamma prime/Ni3Al/-delta/Ni3Nb/ eutectic composite

    NASA Technical Reports Server (NTRS)

    Bertorello, H. R.; Hertzberg, R. W.; Kraft, R. W.

    1975-01-01

    Three distinct regions of tensile, deformation and fracture behavior were observed in a 2.5 wt. per cent Al gamma/gamma prime-delta eutectic alloy as the testing temperature was varied. The major finding was an extraordinary ductility maximum at about 550 C. It was shown that this phenomenon is caused by the deflection of transverse cracks at the eutectic grain boundaries when yielding occurs. This delamination between eutectics grains caused by fracture of a gamma prime eutectic grain boundary film leads to a distinctly different 'wood-like' fracture surface morphology. Above 690 C to 926 C, yield and tensile strength values decrease while ductility increase slightly. Cooperative twinning of both phases develops giving rise to block-like deformation of the microstructure quite in parallel to the behavior observed previously in the gamma-delta system.

  15. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  16. Growing crystals from eutectic melts

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1976-01-01

    Inverted Bridgman Method yields crystals of higher homogeneity and better structure than those grown by ordinary Bridgman method. Process controls thermotransport by holding molten alloy in known temperature for known period of time. Rapid cooling quenches in state of segregation. Method is applicable to other eutectiferous systems where thermotransport is appreciable.

  17. Microstructure of the Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic and its modification by segregation

    SciTech Connect

    Drevet, B.; Camel, D.; Favier, J.J.

    1996-10-01

    The influence of segregation due to thermal convection on the microstructure of Sn-Cu{sub 6}Sn{sub 5} fibrous eutectic alloys is studied in a Bridgman type configuration. The eutectic microstructure is characterized by means of image analysis, X-ray diffraction and scanning and transmission electron microscopy. In the absence of segregation, the eutectic is regular and its growth controlled by that of the Cu{sub 6}Sn{sub 5} fibers. The effect of interphases on eutectic spacing, through orientation relationships between fibers and matrix, is also evidenced. The influence of segregation can be summed up by the following effects. At first, in agreement with the Jackson and Hunt model, it leads to a variation of the eutectic spacing which results from a variation of the fiber volume fraction. Then, the spacing is much greater than the one obtained in the absence of segregation, due to a different tin growth plane and non-optimized fiber/matrix orientation relationships. Finally, the absence of steady state leads to a large dispersion of the spacing associated with a microstructural disorder.

  18. Copper-silicon-magnesium alloys for latent heat storage

    DOE PAGES

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  19. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  20. Eutectic bonding of a Ti sputter coated, carbon aerogel wafer to a Ni foil

    SciTech Connect

    Jankowski, A.F.; Hayes, J.P.; Kanna, R.L.

    1994-06-01

    The formation of high energy density, storage devices is achievable using composite material systems. Alternate layering of carbon aerogel wafers and Ni foils with rnicroporous separators is a prospective composite for capacitor applications. An inherent problem exists to form a physical bond between Ni and the porous carbon wafer. The bonding process must be limited to temperatures less than 1000{degrees}C, at which point the aerogel begins to degrade. The advantage of a low temperature eutectic in the Ni-Ti alloy system solves this problem. Ti, a carbide former, is readily adherent as a sputter deposited thin film onto the carbon wafer. A vacuum bonding process is then used to join the Ni foil and Ti coating through eutectic phase formation. The parameters required for successfld bonding are described along with a structural characterization of the Ni foil-carbon aerogel wafer interface.

  1. Influence of surface tension effects on solidification of alloys in space and on ground

    NASA Astrophysics Data System (ADS)

    Zhang, X. M.; Zhuang, Y. X.; Zhu, L. H.; Liu, Q. Q.; Yang, H. C.; Tang, Z. M.

    1999-01-01

    Solidification experiments of AlAl3Ni and AlBi alloys were carried out in space on board a Chinese recoverable satellite. An obvious double vortical radiant structure of AlAl3Ni eutectic and a homogeneous microstructure of AlBi monotectic were obtained. Combined fluid physics and metallography, the effect of surface tension gradient driven convection on the formation of radiant eutectic structure and the Marangoni migration of second-phase droplets in the molten alloy were analyzed.

  2. Eutectic composite explosives containing ammonium nitrate

    SciTech Connect

    Stinecipher, M.M.

    1981-01-01

    The eutectic of ammonium nitrate (AN), the ammonium salt of 3,5-dinitro-1,2,4-triazole was prepared and its sensitivity and performance were studied. It was found that this AN formulation was unusual in that it performed ideally at small diameter, which indicated that it was a monomolecular explosive. Sensitivity tests included type 12 impact, Henkin thermal and wedge tests, and performance tests included rate stick/plate dent, cylinder, and aquarium tests. Results were compared with calculations, standard explosives, and another eutectic, ethylendiamine dinitrate (EDD)/AN.

  3. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  4. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  5. Macrosegregation and nucleation in undercooled Pb-Sn alloys

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III

    1989-01-01

    A technique resulting in large undercoolings in bulk samples (23g) of lead-tin alloys was developed. Samples of Pb-12.5 wt percent Sn, Pb-61 wt percent Sn, and Pb-77 wt percent Sn were processed with undercoolings ranging from 4 to 34 K and with cooling rates varying between 0.04 and 4 K/sec. The nucleation behavior of the Pb-Sn system was found to be nonreciprocal. The solid Sn phase effectively nucleated the Pb phase of the eutectic; however, large undercoolings developed in Sn-rich eutectic liquid in the presence of the solid Pb phase. This phenomenon is believed to be mainly the result of differences in interfacial energies between solid Sn-eutectic liquid, and solid Pb-eutectic liquid rather than lattice misfit between Pb and Sn. Large amounts of segregation developed in the highly undercooled eutectic ingots. This macrosegregation was found to increase as undercooling increases. Macrosegregation in these undercooled eutectic alloys was found to be primarily due to a sink/float mechanism and the nucleation behavior of the alloy. Lead-rich dendrites are the primary phase in the undercooled eutectic system. These dendrites grow rapidly into the undercooled bath and soon break apart due to recalescence and Sn enrichment of the liquid. These fragmented Pb dendrites are then free to settle to the bottom portion of the ingot causing the macrosegregation observed in this study. A eutectic Pb-Sn alloy undercooled 20 K and cooled at 4 K/sec had a composition of about Pb-72 wt percent Sn at the top and 55 percent Sn at the bottom.

  6. Macrosegregation and nucleation in undercooled Pb-Sn alloys

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III

    1989-01-01

    A novel technique resulting in large undercoolings in bulk samples (23 g) of lead-tin alloys was developed. Samples of Pb-12.5 wt percent Sn, Pb-61.9 wt.% Sn, and Pb-77 wt.% Sn were processed with undercoolings ranging from 4 to 34 K and with cooling rates varying between 0.04 and 4 K/s. The nucleation behavior of the Pb-Sn system was found to be nonreciprocal. The solid Sn phase effectively nucleated the Pb phase of the eutectic; however, large undercoolings developed in Sn-rich eutectic liquid in the presence of the solid Pb phase. This phenomenon is believed to be mainly the result of differences in interfacial energies between solid Sn-eutectic liquid, and solid Pb-eutectic liquid rather than lattice misfit between Pb and Sn. Large amounts of segregation developed in the highly undercooled eutectic ingots. This macrosegregation was found to increase as undercooling increases. Macrosegregation in these undercooled eutectic alloys was found to be primarily due to a sink/float mechanism and the nucleation behavior of the alloy. Lead-rich dendrites are the primary phase in the undercooled eutectic system. These dendrites grow rapidly into the undercooled bath and soon break apart due to recalescence and Sn enrichment of the liquid. These fragmented Pb dendrites are then free to settle to the bottom portion of the ingot causing the macrosegregation observed in this study. A eutectic Pb-Sn alloy undercooled 20 K and cooled at 4 K/s had a composition of about Pb-72 wt.% Sn at the top and 55% Sn at the bottom.

  7. Preparation of eutectic superalloys by EFG. [Edge-defined Film-fed Growth for directional solidification in airfoil structures

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.; Marr, N. W.

    1975-01-01

    An attempt was made to produce airfoil shaped bars of three different eutectic superalloys by means of the edge-defined, film-fed growth (EFG) method. The alloys used were a gamma + delta Ni-Cb alloy, a gamma/gamma prime + delta Ni-Cb-Al alloy and a Co-TaC alloy containing Ni and Cr. The development of a new die material was essential in the investigation since these alloys are reactive toward known die materials. Tantalum carbide was selected as a die material because it exhibited spontaneous capillary rise and slow rate of degradation in the liquid metals. Eutectic bars up to 1 mm thick and 6 mm wide were grown from TaC dies in order to determine the growth characteristics and the thermal gradient. Large bars of the gamma/gamma prime + delta alloy were grown and tensile tested. A die with a blind central cavity was designed and several hollow, tear-shaped bars were grown.

  8. Iron/Phosphorus Alloys for Continuous Casting

    NASA Technical Reports Server (NTRS)

    Dufresne, E. R.

    1986-01-01

    Continuous casting becomes practicable because of reduced eutectic temperature. Experimental ferrous alloy has melting point about 350 degrees C lower than conventional steels, making possible to cast structural members and eliminating need for hot rolling. Product has normal metal structure and good physical properties. Process used to make rails, beams, slabs, channels, and pipes.

  9. Research into the microstructure and mechanical behavior of eutectic Bi-Sn and In-Sn

    SciTech Connect

    Goldstein, J.L.F.; Mei, Z.; Morris, J.W. Jr. |

    1993-08-01

    This manuscript reports on research into two low-melting, lead-free solder alloys, eutectic Bi-Sn and eutectic In-Sn. The microstructures were found to depend on both cooling rate and substrate, with the greatest variability in the In-Sn alloy. The nature of the intermetallic layer formed at the solder-substrate interface depends on both the solder and the substrate (Cu versus Ni). Also, the microstructure of the Bi-Sn can recrystallize during deformation, which is not the case with In-Sn. Data from creep and constant strain rate tests are given for slowly cooled samples. The creep behavior of In-Sn is constant with temperature, but the creep seems to be controlled by the In-rich phase in In-Sn on Cu and by the Sn-rich phase in In-Sn on Ni. Bi-Sn exhibits different creep behavior at temperatures above 40 {degrees}C than at 20 {degrees}C or lower. Stress-strain curves of Bi-Sn on Cu and In-Sn on Cu are similar, while In-Sn on Ni behaves differently. This is explained in terms of the deformation patterns in the alloys.

  10. Generalized correlation for viscosity of binary eutectics

    SciTech Connect

    Sharma, S.K.; Wanchoo, R.K.; Gupta, R.; Jotshi, C.K.

    1995-12-31

    Heat and mass transfer plays an important role during phase transformation process involving phase change materials. These processes are greatly influenced by thermophysical properties of the material, such as, viscosity, density, thermal conductivity, etc. Viscosity is one of the prime factors which controls the crystal growth rate during crystallization/cooling process of the phase change material. It directs the movement of convection currents arising due to concentration gradient, near the interface of the growing crystal. Eutectics are the compounds having sharp transition temperatures corresponding to specific composition and do not suffer from phase segregation, a major problem in incongruent and semi-congruent melting salt hydrates. The viscometric behavior of the following five binary eutectics in the temperature range of 313--363 K has been studied: Mg(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O-NH{sub 4}NO{sub 3}; MgNO{sub 3}{center_dot}6H{sub 2}O-MgCl{sub 2}{center_dot}6H{sub 2}O; CO(NH{sub 2}){sub 2}-NH{sub 4}NO{sub 3}; CO(NH{sub 2}){sub 2}-NH{sub 4}Br and CH{sub 3}CONH{sub 2}-NaBr. An empirical correlation between reduced viscosity and reduced temperature for molten binary eutectics showing Arrhenius behavior above their melting points has been reported. The correlation predicts the temperature dependence of the eutectic viscosity to within {+-}6. Consistency tests for viscosity data using reduced parameters have been reported. The empirical correlation developed from this study predicts very well, the viscosity of the molten eutectics and salt hydrates to within {+-}6% of the experimental values.

  11. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  12. X-ray nano-diffraction study of Sr intermetallic phase during solidification of Al-Si hypoeutectic alloy

    SciTech Connect

    Manickaraj, Jeyakumar; Gorny, Anton; Shankar, Sumanth; Cai, Zhonghou

    2014-02-17

    The evolution of strontium (Sr) containing intermetallic phase in the eutectic reaction of Sr-modified Al-Si hypoeutectic alloy was studied with high energy synchrotron beam source for nano-diffraction experiments and x-ray fluorescence elemental mapping. Contrary to popular belief, Sr does not seem to interfere with the Twin Plane Re-entrant Edge (TPRE) growth mechanism of eutectic Si, but evolves as the Al{sub 2}Si{sub 2}Sr phase during the eutectic reaction at the boundary between the eutectic Si and Al grains.

  13. Heat storage in alloy transformations

    NASA Technical Reports Server (NTRS)

    Birchenall, C. E.; Gueceri, S. I.; Farkas, D.; Labdon, M. B.; Nagaswami, N.; Pregger, B.

    1981-01-01

    The feasibility of using metal alloys as thermal energy storage media was determined. The following major elements were studied: (1) identification of congruently transforming alloys and thermochemical property measurements; (2) development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients; (3) development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase change materials; and (4) identification of materials that could be used to contain the metal alloys. Several eutectic alloys and ternary intermetallic phases were determined. A method employing X-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase change media.

  14. Long-time dynamics of the directional solidification of rodlike eutectics.

    PubMed

    Perrut, Mikaël; Akamatsu, Silvère; Bottin-Rousseau, Sabine; Faivre, Gabriel

    2009-03-01

    We report long-duration real-time observations of the dynamics of hexagonal (rodlike) directional-solidification patterns in bulk samples of a transparent eutectic alloy. A slight forward curvature of the isotherms induces a slow dilatation of the growth pattern at constant solidification rate and triggers the rod-splitting instability. At long times, the rod-splitting frequency exactly balances the dilatation driven by the curved isotherms. The growth pattern is then disordered and nonstationary but has a sharply selected mean spacing. Well-ordered growth patterns can be grown using time-dependent solidification rates.

  15. Dual-phase Cr-Ta alloys for structural applications

    DOEpatents

    Liu, Chain T.; Brady, Michael P.; Zhu, Jiahong; Tortorelli, Peter F.

    2001-01-01

    Dual phase alloys of chromium containing 2 to 11 atomic percent tantalum with minor amounts of Mo, Cr, Ti, Y, La, Cr, Si and Ge are disclosed. These alloys contain two phases including Laves phase and Cr-rich solid solution in either eutectic structures or dispersed Laves phase particles in the Cr-rich solid solution matrix. The alloys have superior mechanical properties at high temperature and good oxidation resistance when heated to above 1000.degree. C. in air.

  16. Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

    NASA Astrophysics Data System (ADS)

    Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.

    2016-05-01

    Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

  17. Orientational bonding of phases accompanying directed crystallization of the eutectic of the system Si-TiSi2

    NASA Astrophysics Data System (ADS)

    Derevyagina, L. S.; Butkevich, L. M.

    1987-09-01

    The characteristic features of structure formation in cast and direct crystallized alloys of the system Si-TiSi2 were studied. It is shown that the predominant orientation of the bonding of the phases in directionally crystallized eutectics (DE) of the system Si-TiSi2, observed at the stage of steady-state growth, already appears on the surface of nucleation, which apparently indicates that the nucleation of the phases in the alloys of this system is of an epitaxial character.

  18. A New Co-C Eutectic Fixed-Point Cell for Thermocouple Calibration at

    NASA Astrophysics Data System (ADS)

    Failleau, G.; Deuzé, T.; Jouin, D.; Mokdad, S.; Briaudeau, S.; Sadli, M.

    2014-07-01

    The eutectic Co-C is a promising system to serve as a thermometric fixed point beyond the freezing point of copper (). Some national metrology institutes have developed, characterized, and compared their Co-C fixed-point cells based on conventional designs. Indeed, the fixed-point cells constructed are directly inspired by the technologies applied to the fixed points of the ITS-90 to the lower levels of temperature. By studying the eutectic metal-carbon systems, is appears that the high temperatures of implementation give a set of difficulties, such as the strong mechanical stresses on the graphite crucibles, due to the important thermal expansion of the eutectic alloys during their phase transitions. If these devices are suitable with research activities to serve like primary standards, it is not envisaged to propose them for a direct application to the calibration activities for the industry. As regards the limited robustness of the conventional fixed-point cells constructed, an intensive use of these device would not be reasonable, in term of cost for example. In this paper, a new Co-C fixed-point design is introduced. This low cost device has been developed specifically for intensive use in thermocouple calibration activities, with the aim of achieving the lowest level of uncertainties as is practicable. Thus, in this paper, the metrological characterization of this device is also presented, and a direct comparison to a primary Co-C fixed-point cell previously constructed is discussed.

  19. Approximate formula for recalescence in binary eutectic alloys

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Trinh, E. H.

    1993-01-01

    Supercooling of a liquid prior to the nucleation of a solid and the subsequent rapid growth are necessary conditions for producing novel microstructures including metastable phases which are not formed by conventional solidification processes. Since containerless techniques, such as levitation and free fall of a sample, are capable of achieving a significant supercooling level of liquids, they are under consideration as possible techniques for material processing on earth and in space.

  20. An approximate formula for recalescence in binary eutectic alloys

    SciTech Connect

    Ohsaka, K.; Trinh, E.H. . Jet Propulsion Lab.)

    1993-09-01

    Supercooling of a liquid prior to the nucleation of a solid and the subsequent rapid growth are necessary conditions for producing novel microstructures including metastable phases which are not formed by conventional solidification processes. Since containerless techniques, such as levitation and free fall of a sample, are capable of achieving a significant supercooling level of liquids, they are under consideration as possible techniques for material processing on earth and in space. It is known, however, that the supercooling level rapidly diminishes as solidification proceeds because the heat released on the phase transformation is mainly absorbed by the supercooled liquid. This self-heating process termed recalescence is a result of insufficient heat dissipation by radiation or convection in container less solidification. As a consequence, the rapid growth of the solid comes to a halt and the rest of the solidification is controlled by the heat dissipation rate to the surroundings. The extent of the solid formed during recalescence is proportional to the initial supercooling level. It is of interest to estimate the fraction of the solid from the thermodynamic information of the material.

  1. Influence of microstructure on creep strength of MRI 230D Mg alloy

    NASA Astrophysics Data System (ADS)

    Amberger, D.; Eisenlohr, P.; Göken, M.

    2010-07-01

    The low density of magnesium alloys makes them attractive for lightweight constructions. However, creep remains an important limitation of Mg alloys. To gain a more detailed understanding of the correlation between microstructure and creep properties in Mg alloys, creep tests have been performed on MRI 230D samples featuring various microstructures. For this purpose, the MRI 230D Mg alloy has been thixomolded into a plate with four steps of different height, which gives different microstructures in each step due to different cooling rates. With an increase in cooling rate (e.g., a decrease in step height) the interconnectivity of the eutectic phase increases at virtually constant volume fraction. The creep strength is found to decrease with decreasing interconnectivity of the eutectic phase. This implies that a eutectic phase morphology, which is highly interconnected, benefits the creep properties and should therefore be one goal in further developments for creep resistant Mg alloys.

  2. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime - delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1975-01-01

    Tensile and stress rupture properties at 1040 C of a thermally cycled gamma/gamma prime - delta eutectic were essentially equivalent to the as-grown properties. Tensile strength and rupture life at 760 C appeared to decrease slightly by thermal cycling. Thermal cycling resulted in gamma prime coarsening and Widmanstatten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. The eutectic alloy exhibited a high rate of oxidation-erosion weight loss during thermal cycling in the Mach 0.3 burner rig.

  3. Two-stage eutectic metal brushes

    SciTech Connect

    Hsu, John S

    2009-07-14

    A two-stage eutectic metal brush assembly having a slip ring rigidly coupled to a shaft, the slip ring being electrically coupled to first voltage polarity. At least one brush is rigidly coupled to a second ring and slidingly engaged to the slip ring. Eutectic metal at least partially fills an annulus between the second ring and a stationary ring. At least one conductor is rigidly coupled to the stationary ring and electrically coupled to a second voltage polarity. Electrical continuity is maintained between the first voltage polarity and the second voltage polarity. Periodic rotational motion is present between the stationary ring and the second ring. Periodic rotational motion is also present between the brush and the slip ring.

  4. Molten salt eutectics from atomistic simulations.

    PubMed

    Jayaraman, Saivenkataraman; Thompson, Aidan P; von Lilienfeld, O Anatole

    2011-09-01

    Despite their importance for solar thermal power applications, phase-diagrams of molten salt mixture heat transfer fluids (HTFs) are not readily accessible from first principles. We present a molecular dynamics scheme general enough to identify eutectics of any HTF candidate mixture. The eutectic mixture and temperature are located using the liquid mixture free energy and the pure component solid-liquid free energy differences. The liquid mixture free energy is obtained using thermodynamic integration over particle identity transmutations sampled with molecular dynamics at a single temperature. Drawbacks of conventional phase diagram mapping methodologies are avoided by not considering solid mixtures, thereby evading expensive computations of solid phase free energies. Numerical results for binary and ternary mixtures of alkali nitrates agree well with experimental measurements.

  5. Crystallography of Alumina-YAG-Eutectic

    NASA Technical Reports Server (NTRS)

    Farmer, Serene C.; Sayir, Ali; Dickerson, Robert M.; Matson, Lawrence E.

    2000-01-01

    Multiple descriptions of the alumina-YAG eutectic crystallography appear in the ceramic literature. The orientation between two phases in a eutectic system has direct impact on residual stress, morphology, microstructural stability, and high temperature mechanical properties. A study to demonstrate that the different crystallographic relationships can be correlated with different growth constraints was undertaken. Fibers produced by Laser-Heated Float Zone (LHFZ) and Edge-defined Film-fed Growth (EFG) were examined. A map of the orientation relationship between Al2O3 and Y3Al5O12 and their relationship to the fiber growth axis as a function of pull rate are presented. Regions in which a single orientation predominates are identified.

  6. Solidification processing of intermetallic Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  7. A weldability study of Haynes Alloy No 242

    SciTech Connect

    Maguire, M.C.; Headley, T.J.

    1990-01-01

    The weldability of Haynes {reg sign} Alloy No. 242 {trademark}, a new alloy derived from the Ni-Mo-Cr system, was investigated. Susceptibility to fusion zone hot cracking was determined by Varestraint testing, and hot ductility was characterized by Gleeble testing. Solidification phase transformation data was recorded with differential thermal analysis (DTA). Weld microstructures were characterized with scanning electron microscopy (SEM), analytical electron microscopy (AEM), and electron probe microanalysis (EPMA). The results of this study indicate that this alloy has better hot cracking resistance than high strength nickel base superalloy 718; however, it has lower resistance than other alloys derived from the Ni-Cr-Mo ternary such as the Hastelloy alloys B2, C-4, C-22, C-276, and W. Segregation patterns in weld microstructures agree well with established information concerning this family of alloys. Prediction of solidification products with the Ni-Mo-Cr phase diagram based on a chemical equivalence was unsuccessful due to the higher carbon content of this alloy which favors the formation of M{sub 6}C. Solidification in Alloy 242 terminates with the formation of two eutectic-like constituents: (1) a M{sub 6}C/austenite eutectic, and (2) a second eutectic with austenite and an undetermined phase. This latter phase has a composition similar to the M{sub 6}C phase, but with a different crystal structure (cubic, ao = 6.6 {Angstrom}). 11 refs., 10 figs., 4 tabs.

  8. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    DOE PAGES

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determinemore » operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.« less

  9. Low tritium partial pressure permeation system for mass transport measurement in lead lithium eutectic

    SciTech Connect

    Pawelko, R. J.; Shimada, M.; Katayama, K.; Fukada, S.; Humrickhouse, P. W.; Terai, T.

    2015-11-28

    This paper describes a new experimental system designed to investigate tritium mass transfer properties in materials important to fusion technology. Experimental activities were carried out at the Safety and Tritium Applied Research (STAR) facility located at the Idaho National Laboratory (INL). The tritium permeation measurement system was developed as part of the Japan/US TITAN collaboration to investigate tritium mass transfer properties in liquid lead lithium eutectic (LLE) alloy. The experimental system is configured to measure tritium mass transfer properties at low tritium partial pressures. Initial tritium permeation scoping tests were conducted on a 1 mm thick α-Fe plate to determine operating parameters and to validate the experimental technique. A second series of permeation tests was then conducted with the α-Fe plate covered with an approximately 8.5 mm layer of liquid lead lithium eutectic alloy (α-Fe/LLE). We present preliminary tritium permeation data for α-Fe and α-Fe/LLE at temperatures between 400 and 600°C and at tritium partial pressures between 1.7E-3 and 2.5 Pa in helium. Preliminary results for the α-Fe plate and α-Fe/LLE indicate that the data spans a transition region between the diffusion-limited regime and the surface-limited regime. In conclusion, additional data is required to determine the existence and range of a surface-limited regime.

  10. Electrochemical fabrication of nanoporous copper films in choline chloride-urea deep eutectic solvent.

    PubMed

    Zhang, Q B; Abbott, Andrew P; Yang, C

    2015-06-14

    Nanoporous copper films were fabricated by a facile electrochemical alloying/dealloying process without the need of a template. A deep eutectic solvent made from choline chloride (ChCl) and urea was used with zinc oxide as the metal salt. Cyclic voltammetry was used to characterise the electrochemical reduction of zinc and follow Cu-Zn alloy formation on the copper substrate at elevated temperatures from 353 to 393 K. The alloy formation was confirmed by X-ray diffraction spectra. 3D, open and bicontinuous nanoporous copper films were obtained by in situ electrochemically etching (dealloying) of the zinc component in the Cu-Zn surface alloys at an appropriate potential (-0.4 V vs. Ag). This dealloying process was found to be highly temperature dependent and surface diffusion controlled, which involved the self-assembly of copper atoms at the alloy/electrolyte interface. Additionally, the effects of the deposition parameters, including deposition temperature, current density as well as total charge density on resulting the microstructure were investigated by scanning electron microscopy, and atomic force microscope. PMID:25972227

  11. X-ray imaging and controlled solidification of Al-Cu alloys toward microstructures by design

    DOE PAGES

    Clarke, Amy J.; Tourret, Damien; Imhoff, Seth D.; Gibbs, Paul J.; Fezzaa, Kamel; Cooley, Jason C.; Lee, Wah -Keat; Deriy, Alex; Patterson, Brian M.; Papin, Pallas A.; et al

    2015-01-30

    X-ray imaging, which permits the microscopic visualization of metal alloy solidification dynamics, can be coupled with controlled solidification to create microstructures by design. This x-ray image shows a process-derived composite microstructure being made from a eutectic Al-17.1 at.%Cu alloy by successive solidification and remelting steps.

  12. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J. D.; Cochran, J. K.; Hill, D. N.; Chapman, A. T.; Clark, G. W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  13. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    PubMed Central

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  14. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization.

    PubMed

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-01-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared. PMID:26976527

  15. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8–133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  16. The effect of low Au concentrations on the properties of eutectic Sn/Pb

    SciTech Connect

    Kramer, P.A.

    1992-05-01

    This study was of the effects moderately low Au concentrations ({le} 10 wt%) have on the mechanical properties and microstructure of an eutectic Sn/Pb alloy. Vibration (60--90 Hz swept sine wave for 30 hours) and thermal cycling (0--110C for 1450 cycles) reliability tests were performed on fine pitch leaded chip carriers using eutectic Sn/Pb solder on PCBs (printed circuit boards) with 0, 5, 10, 20, and 50{mu}in nominal Au thicknesses. Testing was also performed on double shear creep specimens consisting of arrays of regular pitch joints. There was a dramatic increase in the number of joints containing voids with increasing Au concentration, an effect more pronounced in the creep joints than in the reliability joints. These voids tended to coalesce and grow during rework simulation of the reliability joints. AuSn{sub 4} intermetallics present in toe of 4.8 wt% (50 {mu}in) Au vibration joints rotated from initial vertical perpendicular to surface of PCB metallization, solidification positions to roughly horizontal (parallel to plating surface) orientations during rework simulation and during aging of the parts. The AuSn{sub 4} intermetallics in the toe of the 4.8 wt% (50{mu}in) Au reflowed joints also rotated after vibration testing. No joint failures were observed in either vibration tested or thermally cycled specimens. Cracks formed in some of the vibration tested specimen joints under the heel of the gull-wing lead at Pb-rich phases. Thermally cycled specimens showed eutectic microstructure and intermetallic coarsening without crack formation. Creep tests showed loss of the superplasticity in eutectic Sn/Pb alloys with even the lowest Au concentration tested of 0.2 wt% Au. Intermetallic rotation was not a factor in crack propagation, but void presence was. Cracks tended to form in joints containing voids before forming in void-free joints. Crack propagation followed Sn/Sn grain boundaries and Sn/Pb phase boundaries from Pb-rich phase to Pb-rich phase.

  17. Effect of magnesium content on the semi solid cast microstructure of hypereutectic aluminum-silicon alloys

    NASA Astrophysics Data System (ADS)

    Hekmat-Ardakan, Alireza

    2009-12-01

    A comprehensive study of microstructural evolution of A390 hypereutectic aluminum-silicon alloy (Al-17%Si-4.5%Cu-0.5%Mg) with addition of Mg contents up to 10% was carried out during semi solid metal processing as well as conventional casting. As a first step, the FACTSAGE thermodynamic databank and software was applied in order to investigate the phase diagram, the solidification behavior as well as the identification of the components that are formed during the solidification of A390 alloy with different Mg contents for equilibrium and non-equilibrium (Schiel) conditions. With higher Mg content between 4.2 - 7.2 %, the Mg2Si intermetallic phase is solidified in the eutectic network according to the ternary reaction together the primary silicon due to the binary reaction of Liq → Si + Mg2Si. However the primary silicon is still the first solidified phase in this critical Mg zone. For Mg contents greater than 7.2%, the Mg2Si solidifies first as a primary phase. In fact, the Mg2Si is solidified during the primary, the binary and the ternary reactions and can be observed in the microstructure as a eutectic phase and a pro-eutectic phase with different morphology. In the next stage, the experimental tests were carried out in order to verify the accuracy of the results obtained by the FACTSAGE software. The microstructures of the A390 and the 6 and 10 wt% Mg alloys were investigated using conventional casting and rheocasting (stir casting) processes with continuous cooling solidification. The results showed that, for both processes, the microstructure of the eutectic network for high Mg alloys, specifically the eutectic Si phase is modified compared to the eutectic Si in the microstructure of A390 alloy. However the alloys with 6% and 10% Mg have a similar eutectic morphology. The eutectic formation temperature was measured by placing the thermocouple into the melt for determination of the cooling curves. DSC (Differential Scanning Calorimeter) test were also carried

  18. Precise Analysis of Microstructural Effects on Mechanical Properties of Cast ADC12 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Yamamoto, Masaki; Ohfuji, Hiroaki; Ochi, Toshihiro

    2015-04-01

    The effects of microstructural characteristics (secondary dendrite arm spacing, SDAS) and Si- and Fe-based eutectic structures on the mechanical properties and failure behavior of an Al-Si-Cu alloy are investigated. Cast Al alloy samples are produced using a special continuous-casting technique with which it is easy to control both the sizes of microstructures and the direction of crystal orientation. Dendrite cells appear to grow in the casting direction. There are linear correlations between SDAS and tensile properties (ultimate tensile strength σ UTS, 0.2 pct proof strength σ 0.2, and fracture strain ɛ f). These linear correlations, however, break down, especially for σ UTS vs SDAS and ɛ f vs SDAS, as the eutectic structures become more than 3 μm in diameter, when the strength and ductility ( σ UTS and ɛ f) decrease significantly. For eutectic structures larger than 3 μm, failure is dominated by the brittle eutectic phases, for which SDAS is no longer strongly correlated with σ UTS and ɛ f. In contrast, a linear correlation is obtained between σ 0.2 and SDAS, even for eutectic structures larger than 3 μm, and the eutectic structure does not have a strong effect on yield behavior. This is because failure in the eutectic phases occurs just before final fracture. In situ failure observation during tensile testing is performed using microstructural and lattice characteristics. From the experimental results obtained, models of failure during tensile loading are proposed.

  19. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    NASA Technical Reports Server (NTRS)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  20. Natural deep eutectic solvents: cytotoxic profile.

    PubMed

    Hayyan, Maan; Mbous, Yves Paul; Looi, Chung Yeng; Wong, Won Fen; Hayyan, Adeeb; Salleh, Zulhaziman; Mohd-Ali, Ozair

    2016-01-01

    The purpose of this study was to investigate the cytotoxic profiles of different ternary natural deep eutectic solvents (NADESs) containing water. For this purpose, five different NADESs were prepared using choline chloride as a salt, alongside five hydrogen bond donors (HBD) namely glucose, fructose, sucrose, glycerol, and malonic acid. Water was added as a tertiary component during the eutectics preparation, except for the malonic acid-based mixture. Coincidentally, the latter was found to be more toxic than any of the water-based NADESs. A trend was observed between the cellular requirements of cancer cells, the viscosity of the NADESs, and their cytotoxicity. This study also highlights the first time application of the conductor-like screening model for real solvent (COSMO-RS) software for the analysis of the cytotoxic mechanism of NADESs. COSMO-RS simulation of the interactions between NADESs and cellular membranes' phospholipids suggested that NADESs strongly interacted with cell surfaces and that their accumulation and aggregation possibly defined their cytotoxicity. This reinforced the idea that careful selection of NADESs components is necessary, as it becomes evident that organic acids as HBD highly contribute to the increasing toxicity of these neoteric mixtures. Nevertheless, NADESs in general seem to possess relatively less acute toxicity profiles than their DESs parents. This opens the door for future large scale utilization of these mixtures. PMID:27386357

  1. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by

  2. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    2000-04-01

    This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3% KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a

  3. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    1998-10-01

    This progress report on the Department of Energy project DE-FG-97FT97263 entitled, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures,'' covers the period April-September 1998. The specific aims of the project for this period were to identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal, evaluate various impregnation or catalyst addition methods to improve catalyst dispersion, and evaluate gasification performance in a bench-scale fixed bed reactor. The project is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (Georgia Tech) with CAU as the prime contractor. Several single salt catalysts and binary and ternary eutectic catalysts were investigated at Clark Atlanta University. Physical mixing and incipient wetness methods were investigated as catalyst addition techniques. Gasification was carried out using TGA at CAU and UTSI and with a fixed-bed reactor at UTSI. The results showed better gasification activity in the presence of the catalysts tested. The eutectic salt studies showed clear agreement between the melting points of the prepared eutectics and reported literature values. The order of catalytic activity observed was ternary > binary > single salt. With the soluble single salt catalysts, the incipient wetness method was found to give better results than physical mixing technique. Also, catalyst preparation conditions such as catalyst loading, drying time and temperature were found to influence the gasification rate. Based on the Clark Atlanta University studies on Task 1, the project team selected the 43.5%Li{sub 2}CO{sub 3}-31.5%Na{sub 2}CO{sub 3}-25%K{sub 2}CO{sub 3} ternary eutectic and the 29%Na{sub 2}CO{sub 3}-71%K{sub 2}CO{sub 3} and 2.3%KNO{sub 3}-97.7%K{sub 2}CO{sub 3} binary eutectic for the fixed bed studies at UTSI. The eutectic salts were found to be highly insoluble in aqueous medium. As a

  4. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified eutectic composite

    NASA Technical Reports Server (NTRS)

    Dunlevey, F. M.; Wallace, J. F.

    1973-01-01

    The effect of thermal cycling on the structure and properties of a cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic composite is reported. It was determined that the stress rupture properties of the alloy were decreased by the thermal cycling. The loss in stress rupture properties varied with the number of cycles with the loss in properties after about 200 cycles being relatively high. The formation of serrations and the resulting changes in the mechanical properties of the material are discussed.

  5. Thermal fatigue evaluation of solder alloys. Final report

    SciTech Connect

    Jarboe, D.M.

    1980-02-01

    An evaluation was made of the relative thermal fatigue resistance of 29 solder alloys. A number of these alloys were found to be less susceptible to thermal fatigue cracking in encapsulated printed wiring board applications than the commonly used tin-lead eutectic (63Sn-37Pb). Three alloys, 95Sn-5Ag, 96.5Sn-3.5Ag, and 95Sn-5Sb offered the greatest resistance to thermal fatigue. The selection of the encapsulation materials was confirmed to be a significant factor in thermal fatigue of solder joints, regardless of the solder alloy used.

  6. Sub 200 °C fluxless indium-tin (In-Sn) eutectic bonding for monolithic 3D-IC

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangwe; Park, Jin-Hong

    2014-10-01

    In this work, a low-temperature eutectic bonding process based on the formation of an indium (In)-tin (Sn) alloy is studied at temperatures below 200 °C. The formation of the In-Sn alloy is investigated through a secondary ion mass spectroscopy (SIMS) depth profiling analysis, and the quality of the bonding region is evaluated by using cross-sectional scanning electron microscope(SEM) and shearing force measurements. At 170 °C, which is above the melting temperature of In (156 °C), a large amount of In-Sn alloy is formed without the assistance of any flux owing to the expanded eutectic composite range and the improved quality of the In-Sn contact, resulting in a higher bonding strength (205 N). The obtained results show the feasibility of using a low-temperature fluxless bonding process for the fabrication of upper-level devices in monolithic three-dimensional integrated circuits (3D-ICs).

  7. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al2Au eutectic

    NASA Astrophysics Data System (ADS)

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-01

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 μm. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity.

  8. Real-time X-ray transmission microscopy for fundamental studies solidification: Al-Al{sub 2}Au eutectic

    SciTech Connect

    Curreri, Peter A.; Kaukler, William F.; Sen, Subhayu

    1998-01-15

    High resolution real-time X-ray Transmission Microscopy, XTM, has been applied to obtain information fundamental to solidification of optically opaque metallic systems. We have previously reported the measurement of the solute profile in the liquid, phase growth, and detailed solid-liquid interfacial morphology of aluminum based alloys with exposure times less than 2 seconds. Recent advances in XTM furnace design have provided an increase in real-time magnification (during solidification) for the XTM from 40X to 160X. The increased magnification has enabled for the first time the XTM imaging of real-time growth of fibers and particles with diameters of 5 {mu}m. We have previously applied this system to study the kinetics of formation and morphological evolution of secondary fibers and particles in Al-Bi monotectic alloys. In this paper we present the preliminary results of the first real-time observations of fiber morphology evolution in optically opaque bulk metal sample of Aluminum-Gold eutectic alloy. These studies show that the XTM can be applied to study the fundamentals of eutectic and monotectic solidification. We are currently attempting to apply this technology in the fundamentals of solidification in microgravity.

  9. Functionalization of graphene using deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Hayyan, Maan; Abo-Hamad, Ali; AlSaadi, Mohammed AbdulHakim; Hashim, Mohd Ali

    2015-08-01

    Deep eutectic solvents (DESs) have received attention in various applications because of their distinctive properties. In this work, DESs were used as functionalizing agents for graphene due to their potential to introduce new functional groups and cause other surface modifications. Eighteen different types of ammonium- and phosphonium-salt-based DESs were prepared and characterized by FTIR. The graphene was characterized by FTIR, STA, Raman spectroscopy, XRD, SEM, and TEM. Additional experiments were performed to study the dispersion behavior of the functionalized graphene in different solvents. The DESs exhibited both reduction and functionalization effects on DES-treated graphene. Dispersion stability was investigated and then characterized by UV-vis spectroscopy and zeta potential. DES-modified graphene can be used in many applications, such as drug delivery, wastewater treatment, catalysts, composite materials, nanofluids, and biosensors. To the best of our knowledge, this is the first investigation on the use of DESs for graphene functionalization.

  10. Non-Covalent Derivatives: Cocrystals and Eutectics.

    PubMed

    Stoler, Emily; Warner, John C

    2015-01-01

    Non-covalent derivatives (NCDs) are formed by incorporating one (or more) coformer molecule(s) into the matrix of a parent molecule via non-covalent forces. These forces can include ionic forces, Van der Waals forces, hydrogen bonding, lipophilic-lipophilic interactions and pi-pi interactions. NCDs, in both cocrystal and eutectic forms, possess properties that are unique to their supramolecular matrix. These properties include critical product performance factors such as solubility, stability and bioavailability. NCDs have been used to tailor materials for a variety of applications and have the potential to be used in an even broader range of materials and processes. NCDs can be prepared using little or no solvent and none of the reagents typical to synthetic modifications. Thus, NCDs represent a powerfully versatile, environmentally-friendly and cost-effective opportunity. PMID:26287141

  11. Copper/nickel eutectic brazing of titanium

    NASA Technical Reports Server (NTRS)

    Kutchera, R. E.

    1971-01-01

    Technique joins titanium or one of its alloys to materials, such as iron, nickel or cobalt base material, or to refractory metals. To ensure formation of a satisfactory bond, the temperature, time, environment and pressure must be controlled.

  12. Wafer-level-scale package of MEMS device by eutectic bonding method

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Ma, Hong; Chen, Mingxiang; Xiong, Tao; Liu, Sheng; Yi, Xinjian

    2003-12-01

    This paper reports the preliminary results for an on-going program in wafer-level MEMS package. In this particular paper, three closed-loop microheaters of 5μm, 7μm and 9μm width were designed. By reactive ion sputtering technique, two classes of samples were presented. The first one was first co-sputtered with nickel / chromium (Ni/Cr) alloy and then sputtered with gold(Au) metal as heating material; the second one was sputtered with Cr, tin (Sn) and Au respectively as heating material. The bonding of the former sample based on the Ni/Cr and Au heating material failed. The eutectic bonding experiment of the later sample based on the Cr, Sn and Au heating material by global heating method was completed in annealing oven at temperature of about 400 for 20 minutes. The SEM testing result showed the eutectic bonding of Au-Sn by global heating was successful. More results will be reported in future.

  13. Wafer-level scale package of MEMS device by eutectic bonding method

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Ma, Hong; Chen, Mingxiang; Xiong, Tao; Liu, Sheng; Yi, Xinjian

    2004-01-01

    This paper reports the preliminary results for an on-going program in wafer-level MEMS package. In this particular paper, three closed-loop microheaters of 5μm, 7μm and 9μm width were designed. By reactive ion sputtering technique, two classes of samples were presented. The first one was first co-sputtered with nickel / chromium (Ni/Cr) alloy and then sputtered with gold(Au) metal as heating material; the second one was sputtered with Cr, tin (Sn) and Au respectively as heating material. The bonding of the former sample based on the Ni/Cr and Au heating material failed. The eutectic bonding experiment of the later sample based on the Cr, Sn and Au heating material by global heating method was completed in annealing oven at temperature of about 400 deg. C. for 20 minutes. The SEM testing result showed the eutectic bonding of Au-Sn by global heating was successful. More results will be reported in future.

  14. Solidification and thermal behaviour of binary organic eutectic and monotectic; succinonitrile pyrene system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Pandey, Pinky

    2003-02-01

    Transparent binary alloy models are important in metallurgical and materials science, as phase transformations can be observed during solidification. This communication concerns the solidification and thermal studies of succinonitrile (SCN)-pyrene (PY) system, which is an organic analogue of a metal-nonmetal-type system. Phase diagram of the SCN-PY system, determined by the thaw-melt method shows the formation of a monotectic and a eutectic at 143.3°C and 55.3°C with 0.025 and 0.744 mole fractions of SCN, respectively. The critical solution temperature of the system lies 48.7°C above the monotectic temperature. The growth velocity ( v) data at different undercoolings obtained from the capillary method, obey the Hillig-Turnbull equation, v= u(Δ T) n. The heats of fusion of the binary as well as single materials were obtained from the DSC (Mettler DSC-4000 system) from which the entropy of fusion, enthalpy of mixing, Jackson's roughness parameter, excess thermodynamic functions, interfacial energy and radius of the critical nucleus were calculated. The optical microphotographs of the eutectic and monotectic show their characteristic features.

  15. Thermodynamics of neptunium in LiCl-KCl eutectic/liquid bismuth systems

    SciTech Connect

    Sakamura, Y.; Shirai, O.; Iwai, T.; Suzuki, Y.

    2000-02-01

    Thermodynamic properties of neptunium in LiCl-KCl eutectic/liquid bismuth systems in the temperature range 400--500 C have been studied using a galvanic cell method for the pyrometallurgical reprocessing of nuclear spent fuels. The standard potential of the Np/Np(III) couple vs. the Ag/AgCl (1 wt% AgCl) reference electrode in LiCl-KCl eutectic was measured and given by the equation E{sub Np/Np(III)}{sup 0} = {minus}2.0667 + 0.0007892 T ({sigma} = 0.0009), where E is in volts, T is in kelvin, and {sigma} is the standard deviation. The potential of neptunium-bismuth alloy, E{sub Np-Bi}, was measured as a function of neptunium concentration, X{sub Np in Bi}. The curves for E{sub Bi-Np} vs. log X{sub Np in Bi} indicated the neptunium solubility in liquid bismuth to be 0.34 {+-} 0.02, 0.61 {+-} 0.08, and 1.06 {+-} 0.09 ({+-}{sigma}) atom % at 400, 450, and 500 C, respectively. The excess partial free energy of neptunium in liquid bismuth was represented by the equation, {Delta}{bar G}{sub Np}{sup xs} (kcal/g atom) = {minus}32.5 ({+-}0.7) + 0.0072 ({+-}0.0010) T. The values of the solubility and excess partial free energy for neptunium were closer to those for plutonium rather than uranium.

  16. Hydrolase-catalyzed biotransformations in deep eutectic solvents.

    PubMed

    Gorke, Johnathan T; Srienc, Friedrich; Kazlauskas, Romas J

    2008-03-14

    Hydrolases show good catalytic activity in deep eutectic solvents, despite the presence of urea, which can denature enzymes, or alcohols, which can interfere with hydrolase-catalyzed reactions. PMID:18309428

  17. The mechanism of eutectic growth in highly anisotropic materials

    PubMed Central

    Shahani, Ashwin J.; Xiao, Xianghui; Voorhees, Peter W.

    2016-01-01

    In the past 50 years, there has been increasing interest—both theoretically and experimentally—in the problem of pattern formation of a moving boundary, such as a solidification front. One example of pattern formation is that of irregular eutectic solidification, in which the solid–liquid interface is non-isothermal and the interphase spacing varies in ways that are poorly understood. Here, we identify the growth mode of irregular eutectics, using reconstructions from four-dimensional (that is, time and space resolved) X-ray microtomography. Our results show that the eutectic growth process can be markedly different from that seen in previously used model systems and theories based on the ex situ analysis of microstructure. In light of our experimental findings, we present a coherent growth model of irregular eutectic solidification. PMID:27671764

  18. Hypereutectic AlSi Alloy: Gathering of 3D Microstructure Data

    NASA Astrophysics Data System (ADS)

    Schaberger-Zimmermann, E.; Mathes, M.; Zimmermann, G.

    2016-08-01

    Hypereutectic and eutectic AlSi-base alloys find frequent application in casting automotive components. The properties of this type of alloy depend significantly on their solidification microstructure, especially the size, shape, and distribution of primary and eutectic silicon. The serial sectioning technique was applied for determining the three-dimensional (3D) microstructure of an Al-18wt.%Si alloy. For clear identification of both the larger primary Si particles grown in the melt and the fine lamellar eutectic Si, a series of two-dimensional equidistant cross sections were metallographically prepared. The microstructure in these cross sections was detected and observed at high resolution using a light microscope. The images were stored in a digital library. The 3D reconstruction of primary Si particles and AlSi eutectic was achieved through the application of various software tools. This provided data about the faceted growth behavior of octahedral Si particles and feathery eutectic Si. The image stack was also imported to hierarchical data format (version 5) (HDF5) open source format, thus, enabling availability of the 3D image data to the wider community. In this way, 3D reconstructions of this kind can contribute to a greater understanding of processing/microstructure property relationships in hypereutectic AlSi alloys.

  19. Hypereutectic AlSi Alloy: Gathering of 3D Microstructure Data

    NASA Astrophysics Data System (ADS)

    Schaberger-Zimmermann, E.; Mathes, M.; Zimmermann, G.

    2016-06-01

    Hypereutectic and eutectic AlSi-base alloys find frequent application in casting automotive components. The properties of this type of alloy depend significantly on their solidification microstructure, especially the size, shape, and distribution of primary and eutectic silicon. The serial sectioning technique was applied for determining the three-dimensional (3D) microstructure of an Al-18wt.%Si alloy. For clear identification of both the larger primary Si particles grown in the melt and the fine lamellar eutectic Si, a series of two-dimensional equidistant cross sections were metallographically prepared. The microstructure in these cross sections was detected and observed at high resolution using a light microscope. The images were stored in a digital library. The 3D reconstruction of primary Si particles and AlSi eutectic was achieved through the application of various software tools. This provided data about the faceted growth behavior of octahedral Si particles and feathery eutectic Si. The image stack was also imported to hierarchical data format (version 5) (HDF5) open source format, thus, enabling availability of the 3D image data to the wider community. In this way, 3D reconstructions of this kind can contribute to a greater understanding of processing/microstructure property relationships in hypereutectic AlSi alloys.

  20. Optical properties of NaCl-NaF eutectics

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1976-01-01

    A new concept is advanced to explain the phenomenon of transmittance versus far-field infrared wavelength of the directionally solidified NaCl-NaF eutectic in terms of the two-dimensional Bragg Scattering and the polarization effect of Rayleigh scattering. This concept can be applied to other eutectic systems as long as the index of refraction of the matrix over a range of wavelength is known. Experimental data are in excellent agreement with the theoretical prediction.

  1. Longitudinal shear behavior of several oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1978-01-01

    Two commercial oxide dispersion strengthened (ODS) alloys, MA-753 and MA-754, and three experimental ODS alloys, MA-757E, MA-755E, and MA-6000E, were tested in shear at 760 C. Comparisons were made with other turbine blade and vane alloys. All of the ODS alloys exhibited less shear strength than directionally solidified Mar-M 200 = Hf or then conventionally cast B-1900. The strongest ODS alloy tested, MA-755E, was comparable in both shear and tensile strength to the lamellar directionally solidified eutectic alloy gamma/gamma prime - delta. Substantial improvements in shear resistance were found for all alloys tested when the geometry of the specimen was changed from one generating a transverse tensile stress in the shear area to one generating a transverse compressive stress. Finally, 760 C shear strength as a fraction of tensile strength was found to increase linearly with the log of the transverse tensile ductility.

  2. Directionally solidified lamellar eutectic superalloys by edge-defined, film-fed growth. [including tensile tests

    NASA Technical Reports Server (NTRS)

    Hurley, G. F.

    1975-01-01

    A program was performed to scale up the edge-defined, film-fed growth (EFG) method for the gamma/gamma prime-beta eutectic alloy of the nominal composition Ni-19.7 Cb - 6 Cr-2.5 Al. Procedures and problem areas are described. Flat bars approximately 12 x 1.7 x 200 mm were grown, mostly at speeds of 38 mm/hr, and tensile tests on these bars at 25 and 1000 C showed lower strength than expected. The feasibility of growing hollow airfoils was also demonstrated by growing bars over 200 mm long with a teardrop shaped cross-section, having a major dimension of 12 mm and a maximum width of 5 mm.

  3. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase.

    PubMed

    Albu, M; Pal, A; Gspan, C; Picu, R C; Hofer, F; Kothleitner, G

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  4. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    NASA Astrophysics Data System (ADS)

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-08-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth.

  5. Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase

    PubMed Central

    Albu, M.; Pal, A.; Gspan, C.; Picu, R. C.; Hofer, F.; Kothleitner, G.

    2016-01-01

    A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively. Density functional theory total energy calculations confirm that twin nucleation at Sr columns is energetically favorable. Hence, twins may nucleate in Si precipitates after solidification, which provides a different perspective to the currently accepted mechanism which suggests twin formation during precipitate growth. PMID:27527789

  6. Eutectic equilibria in the quaternary system Fe-Cr-Mn-C

    NASA Technical Reports Server (NTRS)

    Nowotny, H.; Wayne, S.; Schuster, J. C.

    1982-01-01

    The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.

  7. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    SciTech Connect

    Merizalde, Carlos; Cabrera, Jose-Maria; Prado, Jose-Manuel

    2007-04-07

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  8. Influence of IMC in the Semisolid Behaviour of an Eutectic Sn-Pb/Cu Slurry

    NASA Astrophysics Data System (ADS)

    Merizalde, Carlos; Cabrera, José-María; Prado, José-Manuel

    2007-04-01

    A mixture of a liquid Sn-Pb alloy reinforced with solid Cu particles has been found to show thixotropic and pseudoplastic behaviour. The presence of an intermetallic compound (IMC) between the Cu particles and the molten matrix has some very important consequences in the rheological behaviour of the slurry. The semisolid material is obtained mixing a sufficient amount of Cu particles with a liquid eutectic Sn-Pb alloy by mechanical stirring at a given temperature and time. The intermetallic compound is formed from the reaction of solid Cu and liquid Sn. This reaction results in some displacement in the phase diagram, affecting the liquid alloy composition, moving the liquidus temperature and therefore altering the balance of %wt solid- %wt liquid necessary to obtain the best thixotropic behaviour. In this work a model of the solid fraction of the slurry taking into account the IMC growth rate is presented. This model is also used to predict the processing window under which the material keeps the thixotropic behaviour.

  9. Braze alloy spreading on steel

    NASA Technical Reports Server (NTRS)

    Siewert, T. A.; Heine, R. W.; Lagally, M. G.

    1978-01-01

    Scanning electron microscopy (SEM) and Auger electron microscopy (AEM) were employed to observe elemental surface decomposition resulting from the brazing of a copper-treated steel. Two types of steel were used for the study, stainless steel (treated with a eutectic silver-copper alloy), and low-carbon steel (treated with pure copper). Attention is given to oxygen partial pressure during the processes; a low enough pressure (8 x 10 to the -5th torr) was found to totally inhibit the spreading of the filler material at a fixed heating cycle. With both types of steel, copper treatment enhanced even spreading at a decreased temperature.

  10. Micro- and nano-spheres of low melting point metals and alloys, formed by ultrasonic cavitation.

    PubMed

    Friedman, H; Reich, S; Popovitz-Biro, R; von Huth, P; Halevy, I; Koltypin, Y; Gedanken, A; Porat, Z

    2013-01-01

    Metals and alloys of low melting points (<430 °C) can be melted in hot silicone oil to form two immiscible liquids. Irradiation of the system with ultrasonic energy induces acoustic cavitation in the oil, which disperses the molten metals into microspheres that solidify rapidly upon cooling. This method has been applied to seven pure metals (Ga, In, Sn, Bi, Pb, Zn, Hg) and two eutectic alloys of gold (Au-Ge and Au-Si). The morphology and composition of the resulting microspheres were examined by SEM and EDS. Eutectic Au-Si formed also crystalline Au nanoparticles, which were separated and studied by HRTEM.

  11. Thermodynamics of Ti in Ag-Cu alloys

    NASA Astrophysics Data System (ADS)

    Pak, J. J.; Santella, M. L.; Fruehan, R. J.

    1990-04-01

    The thermodynamic activities of Ti at dilution in a series of Ag-Cu alloys and eutectic Ag-Cu alloys containing In or Sn were measured using a galvanic cell technique employing a ThO2-8 pct Y2O3 electrolyte. The equilibrium oxide phase formed by the reaction of Ti (XTi > 0.004) in the Ag-Cu alloy melts with an A12O3 or ZrO2 crucible was Ti2O (s). The free energy of formation of Ti2O (s) was estimated from available thermodynamic data. Titanium activities were calculated from measured oxygen potentials and the free energy of formation of Ti2O (s). Titanium in the eutectic Ag-Cu melt showed a positive deviation from ideal solution behavior at 1000°C, and its activity coefficient at infinite dilution was about 6.5 relative to pure solid Ti. Indium and Sn did not increase the activity coefficient of Ti in eutectic Ag-Cu melts. Silver increased the Ti activity coefficient in the Ag-Cu-Ti melts significantly. The Ti activity coefficient value in liquid Ag was about 20 times higher than in eutectic Ag-Cu melt at 1000 °C.

  12. Microstructural development and mechanical behavior of eutectic bismuth-tin and eutectic indium-tin in response to high temperature deformation

    SciTech Connect

    Goldstein, J.L.F. |

    1993-11-01

    The mechanical behavior and microstructure of eutectic Bi-Sn and In-Sn solders were studied in parallel in order to better understand high temperature deformation of these alloys. Bi-Sn solder joints were made with Cu substrates, and In-Sn joints were made with either Cu or Ni substrates. The as-cast microstructure of Bi-Sn is complex regular, with the two eutectic phases interconnected in complicated patterns. The as-cast microstructure of In-Sn depends on the substrate. In-Sn on Cu has a non-uniform microstructure caused by diffusion of Cu into the solder during sample preparation, with regions of the Sn-rich {gamma} phase imbedded in a matrix of the In-rich {beta} phase. The microstructure of In-Sn on Ni is uniform and lamellar and the two phases are strongly coupled. The solders deform non-uniformly, with deformation concentrating in a band along the length of the sample for Bi-Sn and In-Sn on Cu, though the deformation is more diffuse in In-Sn than in Bi-Sn. Deformation of In-Sn on Ni spreads throughout the width of the joint. The different deformation patterns affect the shape of the stress-strain curves. Stress-strain curves for Bi-Sn and In-Sn on Cu exhibit sharp decays in the engineering stress after reaching a peak. Most of this stress decay is removed for In-Sn on Ni. The creep behavior of In-Sn also depends on the substrate, with the creep deformation controlled by the soft P phase of the eutectic for In-Sn on Cu and controlled by the harder {gamma} phase for In-Sn on Ni. When In-Sn on Ni samples are aged, the microstructure coarsens and changes to an array of {gamma} phase regions in a matrix of the {beta} phase, and the creep behavior changes to resemble that of In-Sn on Cu. The creep behavior of Bi-Sn changes with temperature. Two independent mechanisms operate at lower temperatures, but there is still some question as to whether one or both of these, or a third mechanism, operates at higher temperatures.

  13. Effect of arsenic content and quenching temperature on solidification microstructure and arsenic distribution in iron-arsenic alloys

    NASA Astrophysics Data System (ADS)

    Xin, Wen-bin; Song, Bo; Huang, Chuan-gen; Song, Ming-ming; Song, Gao-yang

    2015-07-01

    The solidification microstructure, grain boundary segregation of soluble arsenic, and characteristics of arsenic-rich phases were systematically investigated in Fe-As alloys with different arsenic contents and quenching temperatures. The results show that the solidification microstructures of Fe-0.5wt%As alloys consist of irregular ferrite, while the solidification microstructures of Fe-4wt%As and Fe-10wt%As alloys present the typical dendritic morphology, which becomes finer with increasing arsenic content and quenching temperature. In Fe-0.5wt%As alloys quenched from 1600 and 1200°C, the grain boundary segregation of arsenic is detected by transmission electron microscopy. In Fe-4wt%As and Fe-10wt%As alloys quenched from 1600 and 1420°C, a fully divorced eutectic morphology is observed, and the eutectic Fe2As phase distributes discontinuously in the interdendritic regions. In contrast, the eutectic morphology of Fe-10wt%As alloy quenched from 1200°C is fibrous and forms a continuous network structure. Furthermore, the area fraction of the eutectic Fe2As phase in Fe-4wt%As and Fe-10wt%As alloys increases with increasing arsenic content and decreasing quenching temperature.

  14. Are deep eutectic solvents benign or toxic?

    PubMed

    Hayyan, Maan; Hashim, Mohd Ali; Hayyan, Adeeb; Al-Saadi, Mohammed A; AlNashef, Inas M; Mirghani, Mohamed E S; Saheed, Olorunnisola Kola

    2013-02-01

    In continuation of investigation for environmentally benign protocol for new solvents termed deep eutectic solvents (DESs), it is herein reported results concerning the toxicity and cytotoxicity of choline chloride (ChCl) based DESs with four hydrogen bond donors including glycerine, ethylene glycol, triethylene glycol and urea. The toxicity was investigated using two Gram positive bacteria Bacillus subtilis and Staphylococcus aureus, and two Gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The cytotoxicity effect was tested using the Artemia salina leach. It was found that there was no toxic effect for the tested DESs on all of the studied bacteria confirming their benign effects on these bacteria. Nevertheless, it was found that the cytotoxicity of DESs was much higher than their individual components (e.g. glycerine, ChCl) indicating that their toxicological behavior is different. For our best knowledge this is the first time that toxicity and cytotoxicity of DESs were studied. The toxicity and cytotoxicity of DESs varied depending on the structure of components. Careful usage of the terms non-toxicity and biodegradability must be considered. More investigation on this matter is required. PMID:23200570

  15. Ultrasound in lead-bismuth eutectic

    SciTech Connect

    Dierckx, M.; Van Dyck, D.

    2011-07-01

    The Belgian Nuclear Research Centre (SCK.CEN) is in the process of designing MYRRHA, a new multi-purpose irradiation facility to replace the ageing BR2. MYRRHA is a fast spectrum reactor cooled with lead-bismuth eutectic (LBE). As liquid metal is opaque to visual light, ultrasonic measurement techniques are selected to fulfill essential tasks that, according to our assessment, will be demanded by licensing authorities, in particular: fuel assembly identification and localization of a lost fuel assembly. To that end, a considerable research effort at SCK.CEN is devoted to study ultrasonic propagation in LBE. As ultrasonic experiments in LBE are elaborate and expensive to set up, we are particularly interested in to what extent experiments in water can be extrapolated to LBE - one of the main focuses of this article. We describe and present results of a first experiment with this goal which shows that the signal to noise ratio is better in LBE and that we even see small diffuse reflections up to 40 deg. off normal. On the other hand, we do not see internal reflections in stainless steel objects in LBE which we do in water. Therefore, we conclude that experiments in water can be used to validate algorithms for LBE on the condition that they do not rely on internal reflections. We also present solutions to tackle the essential tasks: fuel assembly identification and lost object localization. The requirements for the ultrasonic equipment implementing these solutions are also discussed. (authors)

  16. Diffusion bonding of aluminium alloy, 8090

    SciTech Connect

    Sunwoo, A. )

    1994-08-15

    Ability to diffusion bond aluminum (Al) alloys, in particular superplastic aluminum alloys, will complete the technology-base that is strongly needed to enhance the use of superplastic forming (SPF) technology. Diffusion bonding (DB) is an attractive manufacturing option for applications where the preservation of the base metal microstructure and, in turn, mechanical properties is important in the bond area. As the technology moves from the laboratory to production, the DB process has to be production-feasible and cost-effective. At the Lawrence Livermore National Laboratory, the DB study of SPF Al alloys has been initiated. This paper describes the effect of surface chemistry on the DB properties of the Al alloy, 8090 (2.4Li-1.18Cu-0.57Mg-0.14Zr-Al). The integrity of the diffusion bonds was evaluated for both interlayered and bare surfaces. Two interlayer elements, copper (Cu) and zinc (Zn), were compared. Although the eutectic temperature of Al-Cu is 548 C, a thin Cu layer in contact with 8090 has been shown to lower its eutectic temperature to [approximately]521 C. In 8090, Cu is one of the primary alloying elements but has a limited solubility in Al at the bonding temperature. Zinc, on the other hand, forms a considerably lower eutectic (380 C) with Al and is highly soluble in Al. The diffusivity of Zn in Al is much faster than that of Cu, but Zn forms a more thermodynamically stable oxide. These subtle metallurgical differences will affect the transient liquid phase (TLP) formation at the interface, which will subsequently influence the bond quality.

  17. Effect of thermal cycling in a Mach 0.3 burner rig on properties and structure of directionally solidified gamma/gamma prime-delta eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. R.; Sanders, W. A.

    1976-01-01

    An experimental study was carried out to evaluate the effect of cyclic thermal exposures on the mechanical properties of a gamma/gamma prime-delta eutectic alloy parallel to the growth direction. The alloy had a nominal composition by weight of Ni-20 Nb-6 Cr-2.5 Al and was directionally solidified at 3 cm/hr in a furnace with a thermal gradient of at least 200 C/cm. Bars of the alloy were exposed in a Mach 0.3 burner rig and cycled 300 times between 1100 and 425 C. Oxidation-erosion characteristics of the alloy were determined by weight loss measurements at 300-cycle intervals. After cyclic exposure, stress rupture and tensile tests were performed at both 760 and 1040 C. Microstructural changes from cyclic exposure were determined. Thermal cycling resulted in gamma prime coarsening and Widmanstaetten delta precipitation in the gamma phase. An unidentified precipitate, presumably gamma prime, was observed within the delta phase. These microstructural changes did not affect the mechanical properties of the eutectic. High oxidation-erosion weight loss rate was observed.

  18. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  19. Ternary eutectic dendrites: Pattern formation and scaling properties

    SciTech Connect

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  20. The solidification behavior of 8090 Al-Li alloy

    SciTech Connect

    Liu, Y.L.; Hu, Z.Q.; Zhang, Y.; Shi, C.X. . Inst. of Metal Research)

    1993-10-01

    In this work, the solidification and segregation behaviors of 8090 Al-Li alloy have been investigated with differential thermal analysis (DTA) and the metallographic-electron microprobe method. The results show that 8090 Al-Li alloy has a much more complex solidification path than Al-Li binary alloy due to the addition of many alloying elements and the presence of impure elements. Solidification begins at about 635 C with the reaction of L [yields] [alpha]-Al + L[prime], and this reaction goes on to termination. The alloying element Cu and impure elements Fe and Si have a strong segregation tendency. During solidification, Cu segregates to the interdendrite and finally forms [alpha]-Al + T[sub 2] eutectic. As a result, the solidification temperature range is greatly extended. Iron and Si form the insoluble constituents Al[sub 7]Cu[sub 2]Fe, AlLiSi, etc., although their concentrations in the alloy are quite low. With the increase of Fe content, there is a eutectic reaction of [alpha]-Al/Al[sub 3]Fe at about 595 C. The formation of insoluble constituents is influenced by both concentrations of impure elements in the alloy and the cooling rate.

  1. The solidification behavior of 8090 Al-Li alloy

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Hu, Z. Q.; Zhang, Y.; Shi, C. X.

    1993-10-01

    In this work, the solidification and segregation behaviors of 8090 Al-Li alloy have been investigated with differential thermal analysis (DTA) and the metallographic-electron microprobe method. The results show that 8090 Al-Li alloy has a much more complex solidification path than Al-Li binary alloy due to the addition of many alloying elements and the presence of impure elements. Solidification begins at about 635 °C with the reaction of L → α-Al + L', and this reaction goes on to termination. The alloying element Cu and impure elements Fe and Si have a strong segregation tendency. During solidification, Cu segregates to the interdendrite and finally forms α-Al + T2 eutectic. As a result, the solidification temperature range is greatly extended. Iron and Si form the insoluble constituents Al7Cu2Fe, AlLiSi, etc., although their concentrations in the alloy are quite low. With the increase of Fe content, there is a eutectic reaction of α-Al/Al3Fe at about 595 °C. The formation of insoluble constituents is influenced by both concentrations of impure elements in the alloy and the cooling rate.

  2. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Tortorelli, P.F.; Horton, J.A.; Easton, D.S.; Schneibel, J.H.; Heatherly, L.; Carmichael, C.A.; Howell, M.; Wright, J.L.

    1995-07-01

    Two-phase Cr-Cr{sub 2}Nb alloys (designated as CN alloys) were prepared by arc melting, followed by directional solidification, HIPping, or hot extrusion at 1450 to 1500C. The microstructure of CN alloys containing 6 to 12 at.% Nb depended strongly on alloying additions, heat treatment, and material processing. Tensile properties were sensitive to defects. Hot extrusion at 1480C was most effective in reducing as-cast defects and refining the cast Cr-Cr{sub 2}Nb eutectic structure and thus improving ductility. Beneficial alloying elements that modified the eutectic microstructure, improved oxidation resistance, or increased high-temperature strength were identified. One particular composition had a room-temperature fracture strength of 548 MPa and an ultimate tensile strength of 388 MPa, and 23% elongation at 1200C. Another CN alloy showed a fracture toughness of 7.6 MPa{radical}m at room temperature and 24.4 MPa{radical}m at 1100C. Silicide coatings applied by a pack cementation process substantially improved the oxidation resistance of the Cr-Cr{sub 2}Nb alloys at 950 and 1100C.

  3. Lead-bismuth eutectic technology for Hyperion reactor

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Kapernick, R. J.; McClure, P. R.; Trapp, T. J.

    2013-10-01

    A small lead-bismuth eutectic-cooled reactor concept (referred to as the Hyperion reactor concept) is being studied at Los Alamos National Laboratory and Hyperion Power Generation. In this report, a critical assessment of the lead-bismuth eutectic technology for Hyperion reactor is presented based on currently available knowledge. Included are: material compatibility, oxygen control, thermal hydraulics, polonium control. The key advances in the technology and their applications to Hyperion reactor design are analyzed. Also, the near future studies in main areas of the technology are recommended for meeting the design requirements.

  4. Structure Property Relationships in Imidazole-based Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Terheggen, Logan; Cosby, Tyler; Sangoro, Joshua

    2015-03-01

    Deep eutectic mixtures of levulinic acid with a systematic series of imidazoles are measured by broadband dielectric spectroscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy to investigate the impact of steric interactions on charge transport and structural dynamics. An enhancement of dc conductivity is found in each of the imidazoles upon the addition of levulinic acid. However, the extent of increase is dependent upon the alkyl substitution on the imidazole ring. These results highlight the importance of molecular structure on hydrogen bonding and charge transport in deep eutectic mixtures.

  5. Eutectic Salt Catalyzed Environmentally Benign and Highly Efficient Biginelli Reaction

    PubMed Central

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  6. Prebiotic phosphate ester syntheses in a deep eutectic solvent.

    PubMed

    Gull, Maheen; Zhou, Manshui; Fernández, Facundo M; Pasek, Matthew A

    2014-02-01

    We report a route to synthesize a wide range of organophosphates of biological significance in a deep eutectic solvent (2:1 urea and choline chloride), utilizing various orthophosphate sources. Heating an organic alcohol in the solvent along with a soluble phosphorus source yields phosphorus esters of choline as well as that of the added organic in yields between 15 to 99 %. In addition, phosphite analogs of biological phosphates and peptides were also formed by the simple mixing of reagents and heating at 60-70 °C in the deep eutectic solvent. The presented dehydration reactions are relevant to prebiotic and green chemistry in alternative solvents. PMID:24368625

  7. Eutectic salt catalyzed environmentally benign and highly efficient Biginelli reaction.

    PubMed

    Azizi, Najmadin; Dezfuli, Sahar; Hahsemi, Mohmmad Mahmoodi

    2012-01-01

    A simple deep eutectic solvent based on tin (II) chloride was used as a dual catalyst and environmentally benign reaction medium for an efficient synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives, from aromatic and aliphatic aldehydes, 1,3-dicarbonyl compounds, and urea in good-to-excellent yields and short reaction time. This simple ammonium deep eutectic solvent, easily synthesized from choline chloride and tin chloride, is relatively inexpensive and recyclable, making it applicable for industrial applications. PMID:22649326

  8. Microstructural evolution of eutectic gold-tin solder joints

    NASA Astrophysics Data System (ADS)

    Song, Ho Geon

    Current trends toward miniaturization and the use of lead (Pb)-free solders in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability. The study particularly concentrated on the effects that the joint size and the type of substrate metallization have on both the bulk and interface microstructures of the joints. The systems studied were eutectic Au-Sn on Cu and Cu/electroless Ni/Au and for each system, two sets of sample geometries were used. Eutectic Au-Sn solder joints on Cu have microstructures that are very coarse on the scale of the joint, where the microstructure is strongly affected by the amount of Cu dissolution during reflow process. During aging, steady diffusion of Cu leads to the growth of Cu-rich interfacial intermetallic layers, significant consumption of substrate Cu, and formation of Kirkendall pores along the interface. Thermal cycling of the joints caused decomposition of the thick zeta(Cu)-phase into a fine-grained multiphase microstructure. The microstructures of eutectic Au-Sn solder joints on Cu/electroless Ni/Au are also very coarse due to the dissolution of Au used as a protective layer during soldering. Electroless Ni is shown to effectively act as a diffusion barrier for Cu. The electroless Ni near the interface evolves into a complicated structure due to the interfacial reaction. The solubility characteristics and diffusional behavior of substrate metals into eutectic Au-Sn solder determines the detailed microstructure and microstructural evolution of the ultrafine eutectic Au-Sn joints. Two important things to be noted from the results are as follows: First, the overall microstructures of these joints are very coarse with respect to the size of joint, and hence the properties of the

  9. Selecting Resolving Agents with Respect to Their Eutectic Compositions.

    PubMed

    Szeleczky, Zsolt; Semsey, Sándor; Bagi, Péter; Pálovics, Emese; Faigl, Ferenc; Fogassy, Elemér

    2016-03-01

    In order to develop a resolution procedure for a given racemic compound, the first and the most important step is finding the most suitable resolving agent. We studied 18 individual resolutions that were carried out with resolving agents having high eutectic composition. We found that very high enantiomeric excess values were obtained in all cases. We assume that the eutectic composition of a given resolving agent is one of the most important properties that should always be considered during the search for the most efficient resolving agent. PMID:26797938

  10. Grain boundary wetting phase transitions in peritectic copper—cobalt alloys

    NASA Astrophysics Data System (ADS)

    Kogtenkova, O. A.; Straumal, A. B.; Afonikova, N. S.; Mazilkin, A. A.; Kolesnikova, K. I.; Straumal, B. B.

    2016-04-01

    The transition from incomplete to complete grain boundary wetting in copper alloys with 2.2 and 4.9 wt % Co has been studied. These alloys with peritectic phase diagrams differ from previously studied systems with eutectic transformation by the fact that the melt layer separating grains from each other is not enriched, but is depleted by the second component (cobalt in this case). The fraction of completely wetted grain boundaries increases with temperature, as in eutectic systems, from zero at a temperature of 1098°C to ~80% at 1096°C. For symmetric twin boundaries, the temperature dependence of the contact angle with melt drops is constructed. As in the eutectic systems, the contact angle decreases with increasing temperature (although not to zero due to the extremely low energy of symmetric twin boundaries).

  11. Temperature-induced Self-pinning and Nano-layering of AuSi Eutectic Droplets

    NASA Astrophysics Data System (ADS)

    Ferralis, Nicola; Maboudian, Roya; Carraro, Carlo

    2008-03-01

    A process for self-pinning of AuSi eutectic alloy droplets to a Si substrate, induced by a controlled temperature annealing in ultra-high vacuum, is presented. Surface pinning of AuSi 3D droplets to the Si substrate is found to be a consequence of the readjustment in the chemical composition of the droplets upon annealing, as required to maintain thermodynamic equilibrium at the solid-liquid interface. Structural and morphological changes leading to the pinning of the droplets to the substrate are analyzed using atomic force microscopy, scanning and transmission electron microscopy. Raman spectroscopy measurements performed on the droplets reveal phase separation upon cooling of the droplets, leading to the formation of amorphous Si-rich channels within the core, and the formation of crystalline Si nanoshells on the outside. The mechanism leading to the pinning and surface layering provide new insight into the role of alloying during growth of silicon nanowires and may be relevant to the engineering of nano-scale Si cavities. We shall also present measurements of the diffusion of Au drops on Si(111) obtained by low-energy electron microscopy.

  12. Heat storage in alloy transformations. Final report

    SciTech Connect

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  13. Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure

    NASA Astrophysics Data System (ADS)

    Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector

    2015-06-01

    Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up

  14. Catalytic Gasification of Coal using Eutectic Salt Mixtures

    SciTech Connect

    Atul Sheth; Pradeep Agrawal; Yaw D. Yeboah

    1998-12-04

    The objectives of this study are to: identify appropriate eutectic salt mixture catalysts for coal gasification; assess agglomeration tendency of catalyzed coal; evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts; and conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process. A review of the collected literature was carried out. The catalysts which have been used for gasification can be roughly classified under the following five groups: alkali metal salts; alkaline earth metal oxides and salts; mineral substances or ash in coal; transition metals and their oxides and salts; and eutectic salt mixtures. Studies involving the use of gasification catalysts have been conducted. However, most of the studies focused on the application of individual catalysts. Only two publications have reported the study of gasification of coal char in CO2 and steam catalyzed by eutectic salt mixture catalysts. By using the eutectic mixtures of salts that show good activity as individual compounds, the gasification temperature can be reduced possibly with still better activity and gasification rates due to improved dispersion of the molten catalyst on the coal particles. For similar metal/carbon atomic ratios, eutectic catalysts were found to be consistently more active than their respective single salts. But the exact roles that the eutectic salt mixtures play in these are not well understood and details of the mechanisms remain unclear. The effects of the surface property of coals and the application methods of eutectic salt mixture catalysts with coal chars on the reactivity of gasification will be studied. Based on our preliminary evaluation of the literature, a ternary

  15. Preparation of a bulk Fe83B17 soft magnetic alloy by undercooling and copper-mold casting methods

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Sheng, Gang; Chen, Guiyun; Liu, Feng

    2013-11-01

    Bulk Fe83B17 eutectic alloy rods with diameters up to 3 mm were prepared by undercooling solidification combined with Cu-mold casting. The results showed that the rapid solidification led to an increase in the nucleation rate, an inhibition of the grain growth and a competition between a stable Fe2B phase and a metastable Fe3B phase. Then, pure nano-lamellar eutectic microstructures and the metastable Fe3B phase were successfully obtained in as-solidified alloys, which resulted in improved soft magnetic properties.

  16. Microstructure analysis of Al-Si-Cu alloys prepared by gradient solidification technique

    NASA Astrophysics Data System (ADS)

    Borkar, Hemant; Seifeddine, Salem; Jarfors, Anders E. W.

    2015-03-01

    Al-Si-Cu alloys were cast with the unique gradient solidification technique to produce alloys with two cooling rates corresponding to secondary dendrite arm spacing (SDAS) of 9 and 27 μm covering the microstructural fineness of common die cast components. The microstructure was studied with optical microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscattered diffraction (EBSD). The alloy with higher cooling rate, lower SDAS, has a more homogeneous microstructure with well distributed network of eutectic and intermetallic phases. The results indicate the presence of Al-Fe-Si phases, Al-Cu phases and eutectic Si particles but their type, distribution and amount varies in the two alloys with different SDAS. EBSD analysis was also performed to study the crystallographic orientation relationships in the microstructure. One of the major highlights of this study is the understanding of the eutectic formation mechanism achieved by studying the orientation relationships of the aluminum in the eutectic to the surrounding primary aluminum dendrites.

  17. Corrosion Testing of Ni Alloy HVOF Coatings in High Temperature Environments for Biomass Applications

    NASA Astrophysics Data System (ADS)

    Paul, S.; Harvey, M. D. F.

    2013-03-01

    This paper reports the corrosion behavior of Ni alloy coatings deposited by high velocity oxyfuel spraying, and representative boiler substrate alloys in simulated high temperature biomass combustion conditions. Four commercially available oxidation resistant Ni alloy coating materials were selected: NiCrBSiFe, alloy 718, alloy 625, and alloy C-276. These were sprayed onto P91 substrates using a JP5000 spray system. The corrosion performance of the coatings varied when tested at ~525, 625, and 725 °C in K2SO4-KCl mixture and gaseous HCl-H2O-O2 containing environments. Alloy 625, NiCrBSiFe, and alloy 718 coatings performed better than alloy C-276 coating at 725 °C, which had very little corrosion resistance resulting in degradation similar to uncoated P91. Alloy 625 coatings provided good protection from corrosion at 725 °C, with the performance being comparable to wrought alloy 625, with significantly less attack of the substrate than uncoated P91. Alloy 625 performs best of these coating materials, with an overall ranking at 725 °C as follows: alloy 625 > NiCrBSiFe > alloy 718 ≫ alloy C-276. Although alloy C-276 coatings performed poorly in the corrosion test environment at 725 °C, at lower temperatures (i.e., below the eutectic temperature of the salt mixture) it outperformed the other coating types studied.

  18. Eutectic bonds on wafer scale by thin film multilayers

    NASA Astrophysics Data System (ADS)

    Christensen, Carsten; Bouwstra, Siebe

    1996-09-01

    The use of gold based thin film multilayer systems for forming eutectic bonds on wafer scale is investigated and preliminary results will be presented. On polished 4 inch wafers different multilayer systems are developed using thin film techniques and bonded afterwards under reactive atmospheres and different bonding temperatures and forces. Pull tests are performed to extract the bonding strengths.

  19. Microstructural evolution of eutectic Au-Sn solder joints

    SciTech Connect

    Song, Ho Geon

    2002-05-31

    Current trends toward miniaturization and the use of lead(Pb)-free solder in electronic packaging present new problems in the reliability of solder joints. This study was performed in order to understand the microstructure and microstructural evolution of small volumes of nominally eutectic Au-Sn solder joints (80Au-20Sn by weight), which gives insight into properties and reliability.

  20. Improving agar electrospinnability with choline-based deep eutectic solvents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One percent agar (% wt) was dissolved in the deep eutectic solvent (DES), (2-hydroxyethyl) trimethylammonium chloride/urea at a 1:2 molar ratio, and successfully electrospun into nanofibers. An existing electrospinning set-up, operated at 50 deg C, was adapted for use with an ethanol bath to collect...

  1. Adsorption of silicon on Au(110): An ordered two dimensional surface alloy

    SciTech Connect

    Enriquez, Hanna; Mayne, Andrew; Dujardin, Gerald; Kara, Abdelkader; Vizzini, Sebastien; Roth, Silvan; Greber, Thomas; Lalmi, Boubekeur; Belkhou, Rachid; Seitsonen, Ari P; Aufray, Bernard; Oughaddou, Hamid

    2012-07-09

    We report on experimental evidence for the formation of a two dimensional Si/Au(110) surface alloy. In this study, we have used a combination of scanning tunneling microscopy, low energy electron diffraction, Auger electron spectroscopy, and ab initio calculations based on density functional theory. A highly ordered and stable Si-Au surface alloy is observed subsequent to growth of a sub-monolayer of silicon on an Au(110) substrate kept above the eutectic temperature.

  2. The transient phase eutectic process for ceramic-metal bonding

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas Richard

    A new method of ceramic-metal bonding using a transient gas-metal eutectic liquid is proposed, confirmed, and investigated using nickel/copper-oxygen/alumina as a model system. A low temperature gas-metal eutectic melt may be made transient (by solidification) through interaction with a more refractory metal component providing a ceramic-metal bond with good wetting, high strength, a broad process window (relative to conventional gas-metal eutectic bonds), high thermal stability, and controlled thermoelastic stress; transport of a more active species to the ceramic interface may further improve adherence. A eutectic between the low-melting component (copper) and a gas (oxygen) forms at the interface between the refractory metal (nickel) and ceramic (alumina). This interfacial liquid wets the surfaces and promotes bonding. Because the entire copper interlayer is melted, the processing window is wider than conventional gas-metal eutectic in terms of temperature, atmosphere, and time. The liquid (Cu-O) dissolves the active, refractory component (Ni) providing transport to the interface where a refractory bond phase (NiAl2O4) forms. Interactions at temperature consume the liquid phase causing isothermal solidification. Diffusional homogenization further increases the solidus temperature of the joint. Multilayer bond structures were produced using both foils and plating. Oxygen additions were investigated using pre-oxidation of each metal and/or oxidation in-situ. The best bonds resulted from foils combining nickel pre-oxidation with a eutectic atmosphere. The oxide layer slows the oxidation kinetics of the nickel which allows eutectic liquid to form providing wetting, reaction, and adherence to the ceramic. The interfacial bond structure consists of a uniform, thin (sub-micron) reaction layer of nickel-aluminate (NiAl2 O4) spinel. Adhesion is comparable to current technologies and can exceed the ceramic strength. Typical peel failure occurs at the metal

  3. The UC2-x - Carbon eutectic: A laser heating study

    NASA Astrophysics Data System (ADS)

    Manara, D.; Boboridis, K.; Morel, S.; De Bruycker, F.

    2015-11-01

    The UC2-x - carbon eutectic has been studied by laser heating and fast multi-wavelength pyrometry under inert atmosphere. The study has been carried out on three compositions, two of which close to the phase boundary of the UC2-x - C miscibility gap (with C/U atomic ratios 2 and 2.1), and one, more crucial, with a large excess of carbon (C/U = 2.82). The first two compositions were synthesised by arc-melting. This synthesis method could not be applied to the last composition, which was therefore completed directly by laser irradiation. The U - C - O composition of the samples was checked by using a combustion method in an ELTRA® analyser. The eutectic temperature, established to be 2737 K ± 20 K, was used as a radiance reference together with the cubic - tetragonal (α → β) solid state transition, fixed at 2050 K ± 20 K. The normal spectral emissivity of the carbon-richer compounds increases up to 0.7, whereas the value 0.53 was established for pure hypostoichiometric uranium dicarbide at the limit of the eutectic region. This increase is analysed in the light of the demixing of excess carbon, and used for the determination of the liquidus temperature (3220 K ± 50 K for UC2.82). Due to fast solid state diffusion, also fostered by the cubic - tetragonal transition, no obvious signs of a lamellar eutectic structure could be observed after quenching to room temperature. The eutectic surface C/UC2-x composition could be qualitatively, but consistently, followed during the cooling process with the help of the recorded radiance spectra. Whereas the external liquid surface is almost entirely constituted by uranium dicarbide, it gets rapidly enriched in demixed carbon upon freezing. Demixed carbon seems to quickly migrate towards the inner bulk during further cooling. At the α → β transition, uranium dicarbide covers again the almost entire external surface.

  4. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, J.J.; Thomas, G.; Huetten, A.R.

    1999-03-16

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.

  5. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, J.J.; Thomas, G.; Huetten, A.R.

    1998-10-20

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.

  6. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.

    1998-01-01

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.

  7. Giant magnetoresistive heterogeneous alloys and method of making same

    DOEpatents

    Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.

    1999-01-01

    The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.

  8. Solidification behavior and structure of Al-Cu alloy welds

    SciTech Connect

    Brooks, J.A.; Li, M.; Yang, N.C.Y.

    1997-09-01

    The microsegregation behavior of electron beam (EB) and gas tungsten arc (GTA) welds of Al-Cu alloys covering a range from 0.19 to 7.74 wt% Cu were characterized for dendrite core concentrations and fraction eutectic solidification. Although a single weld speed of 12.7 mm/sec was used, some differences were observed in the segregation behavior of the two weld types. The microsegregation behavior was also modeled using a finite differences technique considering dendrite tip and eutectic undercooling and solid state diffusion. Fairly good agreement was observed between measured and calculated segregation behavior although differences between the two weld types could not be completely accounted for. The concept of dendrite tip undercooling was used to explain the formation of a single through thickness centerline grain in the higher alloy content GTA welds.

  9. Effect of reaction time and P content on mechanical strength of the interface formed between eutectic Sn-Ag solder and Au/electroless Ni(P)/Cu bond pad

    NASA Astrophysics Data System (ADS)

    Alam, M. O.; Chan, Y. C.; Tu, K. N.

    2003-09-01

    In this work, shear strengths of the solder joints for Sn-Ag eutectic alloy with the Au/electroless Ni(P)/Cu bond pad were measured for three different electroless Ni(P) layers. Sn-Ag eutectic solder alloy was kept in molten condition (240 °C) on the Au/electroless Ni(P)/Cu bond pad for different time periods ranging from 0.5 min to 180 min to render the ultimate interfacial reaction and the consecutive shear strength. After the shear test, fracture surfaces were investigated by scanning electron microscopy equipped with energy dispersed x ray. Cross-sectional studies of the interfaces were also conducted to correlate with the fracture surfaces. It was found that formation of crystalline phosphorous-rich Ni layer at the solder interface of Au/electroless Ni(P)/Cu bond pad with Sn-Ag eutectic alloy deteriorates the mechanical strength of the joints significantly. It was also noticed that such weak P-rich Ni layer appears quickly for high-P content electroless Ni(P) layer. However, when this P-rich Ni layer disappears from a prolonged reaction, the shear strength increases again.

  10. Cr{sub 2}Nb-based alloy development

    SciTech Connect

    Liu, C.T.; Horton, J.A.; Carmichael, C.A.

    1996-05-01

    This paper summarizes recent progress in developing Cr{sub 2}Nb/Cr(Nb) alloys for structural use in advanced fossil energy conversion systems. Alloy additions were added to control the microstructure and mechanical properties. Two beneficial elements have been identified among all alloying additions added to the alloys. One element is effective in refining the coarse eutectic structure and thus substantially improves the compressive strength and ductility of the alloys. The other element enhances oxidation resistance without sacrificing the ductility. The tensile properties are sensitive to cast defects, which can not be effectively reduced by HIPping at 1450-1580{degrees}C and/or directionally solidifying via a floating zone remelting method.

  11. Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system

    NASA Astrophysics Data System (ADS)

    Novoselova, A.; Smolenski, V.; Volkovich, V. A.; Ivanov, A. B.; Osipenko, A.; Griffiths, T. R.

    2015-11-01

    The electrochemical behaviour of lanthanum and uranium was studied in fused 3LiCl-2KCl eutectic and Ga-Al eutectic liquid metal alloy between 723 and 823 K. Electrode potentials were recorded vs. Cl-/Cl2 reference electrode and the temperature dependencies of the apparent standard potentials of La-(Ga-Al) and U-(Ga-Al) alloys were determined. Lanthanum and uranium activity coefficients and U/La couple separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of La-(Ga-Al) and U-(Ga-Al) alloys were estimated.

  12. Surface engineering of aluminum alloys for automotive engine applications

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Dahotre, Narendra B.; Dahotre, Narendra B.

    2004-01-01

    The modification and refinement of surface and subsurface microstructure in Al-Si-based cast alloys via laser-induced rapid solidification can create a natural topography suitable for engine applications. The differential wear of the soft aluminum phase, hard silicon, and CuAl in the cell, along with the divorced eutectic nanostructure in the intercellular region, is expected to produce and replenish microfluidic channels and pits for efficient oil retention, spreading, and lubrication.

  13. A new technique for direct traceability of contact thermometry Co-C eutectic cells to the ITS-90

    SciTech Connect

    Failleau, G.; Deuzé, T.; Bourson, F.; Briaudeau, S.; Sadli, M.

    2013-09-11

    The eutectic Co-C melting point is a promising system to serve as a thermometric fixed-point in the temperature range above 1084.62 °C (copper freezing point). During the last decade, LNE-Cnam has developed and characterized some fixed-point devices, based on eutectic Co-C alloy, for applications to contact and radiation thermometry. Above 962 °C, the ITS-90 is realized by radiation thermometry by the extrapolation from a Ag, Au or Cu fixed point using the Planck law for radiation. So the only way for assigning a temperature in the scale to a Co-C cell (∼1324 °C) is by radiation thermometry. An indirect method is commonly used to assign a temperature to a high-temperature fixed point (HTFP) cell designed for contact thermometry is to fill a pyrometric cell with the same mixture as the contact thermometry cell. In this case, the temperature assigned to the pyrometric cell is attributed to the contact cell. This paper describes a direct method allowing the determination of the melting temperature realized by a 'contact thermometry' Co-C cell by comparison to a 'radiation thermometry' Co-C cell whose melting temperature was assigned in accordance to the scale by extrapolation from the Cu point. In addition, the same Co-C cell is studied with a standard Pt/Pd thermocouple.

  14. A new technique for direct traceability of contact thermometry Co-C eutectic cells to the ITS-90

    NASA Astrophysics Data System (ADS)

    Failleau, G.; Deuzé, T.; Bourson, F.; Briaudeau, S.; Sadli, M.

    2013-09-01

    The eutectic Co-C melting point is a promising system to serve as a thermometric fixed-point in the temperature range above 1084.62 °C (copper freezing point). During the last decade, LNE-Cnam has developed and characterized some fixed-point devices, based on eutectic Co-C alloy, for applications to contact and radiation thermometry. Above 962 °C, the ITS-90 is realized by radiation thermometry by the extrapolation from a Ag, Au or Cu fixed point using the Planck law for radiation. So the only way for assigning a temperature in the scale to a Co-C cell (˜1324 °C) is by radiation thermometry. An indirect method is commonly used to assign a temperature to a high-temperature fixed point (HTFP) cell designed for contact thermometry is to fill a pyrometric cell with the same mixture as the contact thermometry cell. In this case, the temperature assigned to the pyrometric cell is attributed to the contact cell. This paper describes a direct method allowing the determination of the melting temperature realized by a "contact thermometry" Co-C cell by comparison to a "radiation thermometry" Co-C cell whose melting temperature was assigned in accordance to the scale by extrapolation from the Cu point. In addition, the same Co-C cell is studied with a standard Pt/Pd thermocouple.

  15. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    PubMed

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  16. Deep eutectic solvents: sustainable media for nanoscale and functional materials.

    PubMed

    Wagle, Durgesh V; Zhao, Hua; Baker, Gary A

    2014-08-19

    Deep eutectic solvents (DESs) represent an alternative class of ionic fluids closely resembling room-temperature ionic liquids (RTILs), although, strictly speaking, they are distinguished by the fact that they also contain an organic molecular component (typically, a hydrogen bond donor like a urea, amide, acid, or polyol), frequently as the predominant constituent. Practically speaking, DESs are attractive alternatives to RTILs, sharing most of their remarkable qualities (e.g., tolerance to humidity, negligible vapor pressure, thermostability, wide electrochemical potential windows, tunability) while overcoming several limitations associated with their RTIL cousins. Particularly, DESs are typically, less expensive, more synthetically accessible (typically, from bulk commodity chemicals using solvent/waste-free processes), nontoxic, and biodegradable. In this Account, we provide an overview of DESs as designer solvents to create well-defined nanomaterials including shape-controlled nanoparticles, electrodeposited films, metal-organic frameworks, colloidal assemblies, hierarchically porous carbons, and DNA/RNA architectures. These breakthroughs illustrate how DESs can fulfill multiple roles in directing chemistry at the nanoscale: acting as supramolecular template, metal/carbon source, sacrificial agent (e.g., ammonia release from urea), and/or redox agent, all in the absence of formal stabilizing ligand (here, solvent and stabilizer are one and the same). The ability to tailor the physicochemical properties of DESs is central to controlling their interfacial behavior. The preorganized "supramolecular" nature of DESs provides a soft template to guide the formation of bimodal porous carbon networks or the evolution of electrodeposits. A number of essential parameters (viscosity, polarity, surface tension, hydrogen bonding), plus coordination with solutes/surfaces, all play significant roles in modulating species reactivity and mass transport properties governing the

  17. Effect of Antimony and Cerium on the Formation of Chunky Graphite during Solidification of Heavy-Section Castings of Near-Eutectic Spheroidal Graphite Irons

    NASA Astrophysics Data System (ADS)

    Larrañaga, P.; Asenjo, I.; Sertucha, J.; Suarez, R.; Ferrer, I.; Lacaze, J.

    2009-03-01

    Thermal analysis is applied to the study of the formation of chunky graphite (CHG) in heavy-section castings of spheroidal graphite cast irons. To that aim, near-eutectic melts prepared in one single cast house were poured into molds containing up to four large cubic blocks 30 cm in size. Four melts have been prepared and cast that had a cerium content varying in relation with the spheroidizing alloy used. Postinoculation or addition of antimony was achieved by fixing appropriate amounts of materials in the gating system of each block. Cooling curves recorded in the center of the blocks show that solidification proceeds in three steps: a short primary deposition of graphite followed by an initial and then a bulk eutectic reaction. Formation of CHG could be unambiguously associated with increased recalescence during the bulk eutectic reaction. While antimony strongly decreases the amount of CHG, it appears that the ratio of the contents in antimony and cerium should be higher than 0.8 in order to avoid this graphite degeneracy.

  18. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  19. An alloy solidification experiment conducted on Shenzhou spacecraft

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Luo, X.-H.; Li, Y.-Y.

    To gain a better understanding of how gravity-driven phenomena affect the solidification and crystal growth of metallic materials, directional solidification experiments have been performed on an Al-Al 3Ni eutectic alloy and an Al-Bi monotectic alloy on board the unmanned Chinese Shenzhou III spacecraft during its flight. For sake of comparison, identical experiments were also performed in the laboratory on earth. The results of investigations applying metallographic, SEM, EPMA and image analysis techniques are reported. Some interesting differences between the samples solidified in space and their counterparts solidified on the ground are described.

  20. Studies on copper alloys containing chromium on the copper side phase diagram

    NASA Technical Reports Server (NTRS)

    Doi, T.

    1984-01-01

    Specimens were prepared from vacuum melted alloys of high purity vacuum melted copper and electrolytic chromium. The liquidus and eutectic point were determined by thermal analysis. The eutectic temperature is 1974.8 F and its composition is 1.28 wt% of chromium. The determination of solid solubility of chromium in copper was made by microscopic observation and electrical resistivity measurement. The solubility of chromium in solid copper is 0.6 wt% at 1050 F, 0.4 wt% at 1000 F, 0.25 wt% at 950 F, 0.17 wt% at 900 F, and 0.30 wt% at 840 F.

  1. Constitution of pseudobinary hypoeutectic beta-NiAl + alpha-V alloys

    NASA Technical Reports Server (NTRS)

    Cotton, J. D.; Kaufman, M. J.; Noebe, R. D.

    1991-01-01

    The formation of pseudobinary eutectics between NiAl (beta) and V (alpha) at high temperatures was investigated as a possible way of improving the ductility and toughness of the alloy. It is found that a pseudobinary eutectic, characterized by a large beta+alpha field, is formed in the Ni-Al-V ternary system below about 1370 C. The high-temperature solubility of V in beta is about 14 percent, decreasing markedly with decreasing temperature and increasing Al content above 50 at. pct Al. The pseudobinary hypoeutectic exibits crack resistance under indentation loading.

  2. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  3. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  4. Eutectic-Free Superalloy Made By Directional Solidification

    NASA Technical Reports Server (NTRS)

    Schmidt, Deborah Dianne

    1995-01-01

    By suitable control of thermal conditions in directional-solidification process, supperalloy structural and machine components (e.g., turbine blades) cast with microstructures enhancing resistance to fatigue. Specific version of process and thermal conditions chosen to reduce micro-segregation during solidification and to minimize or eliminate script carbide and eutectic-phase inclusions, which are brittle inclusions found to decrease resistance to fatigue.

  5. Evaluation of ultrasonic signals from diffusion and eutectic bond interfaces

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    1980-12-01

    A research program is in progress at Rocky Flats to determine correlations between ultrasonic signal content and diffusion or eutectic bond joint condition, and to develop a computer-controlled scanning, data acquisition and analysis system which utilizes these correlations and waveform analysis techniques. The initial efforts to determine effective ultrasonic waveform parameters to characterize the strength of bond interfaces is complete. A development version of a computer-controlled, automated scanning and data acquisition system is in operation.

  6. Eutectic Syntheses of Graphitic Carbon with High Pyrazinic Nitrogen Content.

    PubMed

    Fechler, Nina; Zussblatt, Niels P; Rothe, Regina; Schlögl, Robert; Willinger, Marc-Georg; Chmelka, Bradley F; Antonietti, Markus

    2016-02-10

    Mixtures of phenols/ketones and urea show eutectic behavior upon gentle heating. These mixtures possess liquid-crystalline-like phases that can be processed. The architecture of phenol/ketone acts as structure-donating motif, while urea serves as melting-point reduction agent. Condensation at elevated temperatures results in nitrogen-containing carbons with remarkably high nitrogen content of mainly pyrazinic nature. PMID:26178584

  7. Effect of strontium modification on near-threshold fatigue crack growth in an Al-Si-Cu die cast alloy

    SciTech Connect

    Schaefer, M.; Fournelle, R.A.

    1996-05-01

    The effects of strontium modification on microstructure and fatigue properties in a die cast commercial aluminum-silicon alloy are demonstrated. Strontium additions of 0.010 and 0.018 wt pct drastically change the morphology of the eutectic silicon. The influence of these microstructural changes on fatigue properties is evaluated through fatigue crack growth testing. Examination of the fracture surfaces and the crack path establish distinct fatigue fracture modes for the modified and unmodified eutectic structures. Changes in fracture mode and crack path are correlated to the microstructure changes. A higher energy fracture mode and increased crack path tortuosity explain the observed improvement in fatigue properties for the modified alloys. Strontium modified alloys exhibit a 10 to 20 pct higher fatigue crack growth threshold compared to an unmodified alloy for testing at a load ratio of 0.5. No difference was observed for testing at a load ratio of 0.1.

  8. [Study on transdermal absorption of borneol-salicylic acid eutectic mixture].

    PubMed

    Cui, D X; Sugibayashi, K; Morimoto, Y; Li, F L

    1989-01-01

    Borneol is an organic drug having property to form eutectic mixture with salicylic acid. We compared the transdermal absorption rate of borneol alone with that of borneol-salicylic acid eutectic mixture in hairless rats. The results showed that the borneol-salicylic acid eutectic mixture can evidently increase the absorption rate of borneol and provided a method for manufacturing borneol preparation which can easily be absorbed transdermally.

  9. Ge-Au eutectic bonding of Ge {100} single crystals

    NASA Astrophysics Data System (ADS)

    Knowlton, W. B.; Itoh, K. M.; Beeman, J. W.; Emes, J. H.; Loretto, D.; Haller, E. E.

    1993-11-01

    We present preliminary results on the eutectic bonding between two {100} Ge single crystal surfaces using thin films of Au ranging from 900Å/surface to 300Å/surface and Pd (10% the thickness of Au). Following bonding, plan view optical microscopy (OM) of the cleaved interface of samples with Au thicknesses ≤ 500Å/surface show a eutectic morphology more conducive to phonon transmission through the bond interface. High resolution transmission electron microscopy (HRTEM) cross sectional interface studies of a 300Å/surface Au sample show <100> epitaxial growth of Ge. In sections of the bond, lattice continuity of the Ge is apparent through the interface. TEM studies also reveal <110> heteroepitaxial growth of Au with a Au-Ge lattice mismatch of less than 2%. Eutectic bonds with 200Å/surface Au have been attained with characterization pending. An optical polishing technique for Ge has been optimized to insure intimate contact between the Ge surfaces prior to bonding. Interferometry analysis of the optically polished Ge surface shows that surface height fluctuations lie within ±150Å across an interval of 1mm. Characterization of phonon transmission through the interface is discussed with respect to low temperature detection of ballistic phonons.

  10. Local anesthetic cream prepared from lidocaine-tetracaine eutectic mixture.

    PubMed

    Ohzeki, Keiichi; Kitahara, Masaki; Suzuki, Noriko; Taguchi, Kyoji; Yamazaki, Yuki; Akiyama, Shinji; Takahashi, Kentaro; Kanzaki, Yasushi

    2008-04-01

    Local anesthetic creams for the clinical treatment of conditions such as postherpetic neuralgia were prepared as an in-house formulation from the eutectic mixture of lidocaine-tetracaine (LT cream) using two eutectic mixtures of local anesthetic (EMLA) type bases. The LT formulation was compared with a lidocaine-prilocaine (LP cream) eutectic mixture formulated using the same base as EMLA. The chemical stability of lidocaine was examined in advance and was found to be stable for more than 3 months either in LT cream or in LP cream. The release rate of lidocaine from the formulated creams was examined using a cellulose ester membrane. The release rate of lidocaine from LT cream was similar to that from LP cream. The release rate of tetracaine was slightly slower than that of lidocaine in LT cream reflecting the larger molecular size of tetracaine. The penetration rate was examined in vitro using a Yucatan micropig skin. The penetration rate of lidocaine was similar between LT and LP creams. Infiltration anesthesia action examined in guinea pigs indicated that the difference between the two creams was statistically insignificant. The present study suggests the equivalence of the LT and LP creams as a local anesthetic and the potential of LT cream for clinical use either in the easy formulation or in the low-cost formulation.

  11. Eutectic melting of LiBH4-KBH4.

    PubMed

    Ley, Morten B; Roedern, Elsa; Jensen, Torben R

    2014-11-28

    Eutectic melting in mixtures of alkali and alkali earth metal borohydrides can pave the way for new applications as fast ionic conductors, and facilitate hydrogen release by low temperature chemical reactions and convenient nanoconfinement. Here, we determine the eutectic composition for the lithium potassium borohydride system, 0.725LiBH4-0.275KBH4, with the lowest melting point, Tmelt ∼105 °C, of all known alkali and alkali earth metal borohydride mixtures. Mechanochemistry and manual mixing of LiBH4-KBH4 mixtures facilitate the formation of LiK(BH4)2. However, the melting or heat treatments used in this work do not produce LiK(BH4)2. The bimetallic borohydride dissociates into the monometallic borohydrides at ∼95 °C and partial melting occurs at ∼105 °C. Analysis of the unit cell volumes of LiBH4, KBH4 and LiK(BH4)2 in the temperature range 25 to 90 °C indicates that the formation of the bimetallic borohydride is facilitated by a more dense packing as compared to the reactants. Thus, LiK(BH4)2 is considered metastable and the formation is pressure induced. A phase diagram for the LiBH4-KBH4 system is established, which illustrates the low eutectic melting point and the stability range for the bimetallic borohydride, LiK(BH4)2.

  12. Microstructure and Properties of Secondary Al-12%Si Alloy Rapidly Quenched from the Melt

    NASA Astrophysics Data System (ADS)

    Chaus, Alexander S.; Marukovich, Evgeny I.; Sahul, Martin

    2016-10-01

    In this study, the effect of rapid quenching from the melt is investigated on the solidification microstructure and tensile properties of a secondary Al-12%Si alloy, which was cast in ingots measuring 45 mm in diameter and 200 mm in height. Compared with conventional casting into metallic molds, significant refinement of all the microstructural constituents was observed under the effect of rapid quenching, including primary α-Al, primary silicon, the eutectic and iron-rich intermetallics. The coarse plate-like to fine fibrous transition of eutectic silicon, and the change of coarse plate and needle-shaped iron-rich intermetallic phase particles to a well-dispersed morphology accompanied the microstructure refinement. Both the microstructure refinement and the favorable morphological changes of the phases resulted in the enhanced of tensile properties and more ductile fracture behavior of the alloy. T2 heat treatment additionally increases elongation of the rapidly quenched alloy.

  13. Acoustic and NMR investigations of melting and crystallization of indium-gallium alloys in pores of synthetic opal matrices

    NASA Astrophysics Data System (ADS)

    Pirozerskii, A. L.; Charnaya, E. V.; Lee, M. K.; Chang, L. J.; Nedbai, A. I.; Kumzerov, Yu. A.; Fokin, A. V.; Samoilovich, M. I.; Lebedeva, E. L.; Bugaev, A. S.

    2016-05-01

    The paper presents the results of studying the crystallization and melting processes of Ga-In eutectic alloys, which are embedded in opal matrices, using acoustic and NMR methods. The indium concentrations in the alloys were 4, 6, 9, and 15 at %. Measurements were performed upon cooling from room temperature to complete crystallization of the alloys and subsequent heating. It is revealed how the size effects and alloy composition influence the formation of phases with α- and β-Ga structures and on changes in the melting-temperature ranges. A difference was observed between the results obtained using acoustic and NMR methods, which was attributed to different temperature measurement conditions.

  14. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1979-01-01

    An element comprising sapphire, ruby or blue sapphire can be bonded to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  15. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  16. The thermophysical and transport properties of eutectic NaK near room temperature

    SciTech Connect

    O'Donnell, W.J.; Papanikolaou, P.G.; Reed, C.B.

    1989-02-01

    The purpose of this report is to compile recommended room temperature thermophysical properties of NaK/sub 78/. The report was prepared to provide a single unified collection of property values for the eutectic sodium-potassium alloy. These properties include density, kinematic and absolute viscosities, thermal conductivity, specific heat, electrical resistivity, electrical conductivity, Prandtl number, and thermal diffusivity. Each section of the report contains a completely referenced property that focuses in the 0--80/degree/C temperature range. All available data for each property have been taken from original publications. The individual sections are organized following a specific outline, considering: discussion of experimental methods, discussion of sources and error, discussion of each reference, tabular presentation of all available data, graphical presentation of the data, recommendations, tabular presentation of recommended values, an equation to calculate recommended values, and a graphical presentation of the recommended curve (0--80/degree/C) generated from the above equation. Also included are experimental methods, whether the references included equations to fit the data, and whether or not these references were primary sources. 26 refs., 12 figs., 14 tabs.

  17. Thermodynamic assessment of solubility and activity of iron, chromium, and nickel in lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Gossé, Stéphane

    2014-06-01

    Lead-Bismuth Eutectic (LBE) is a heavy liquid alloy used as a coolant for the Lead-Cooled Fast Reactors and spallation target for Accelerator Driven Systems. LBE is also considered in sodium fast reactor designs as coolant in secondary circuit to avoid any occurrence of the reaction between sodium and water in steam generators. Even if this coolant presents many advantages due to its thermophysical properties, corrosion towards structural materials remains one of the major issues of LBE. Because corrosion in LBE is partly driven by dissolution processes, the solubility and chemical activity of the main elements of the alloy are the key parameters to model the related corrosion processes. Using the Calphad method and the Thermo-Calc software, a thermodynamic database was developed to assess the interaction between Cr-Ni-Fe alloys and LBE. The current thermodynamic data on the Cr-Fe-Ni + Bi-Pb quinary system was reviewed and the Bi-Cr and Cr-Pb binary phase diagrams were assessed. Fe, Cr and Ni solubilities (in at. fraction, T in K) at LBE composition were calculated: Fe solubility at LBE composition: log10 (SFe)=0.5719-4398.6T (399-1173 K) Cr solubility at LBE composition: log10 (SCr)=-0.2757-3056.1T (399-1173 K) Ni solubility at LBE composition: log10 (SNi)=2.8717-2932.9T (528-742 K) log10 (SNi)=0.2871-1006.3T (742-1173 K) Then, the thermodynamic assessment performed in this study was used to predict more accurately the Fe, Cr and Ni activities and solubilities in the case of four austenitic model alloys also studied in the framework of corrosion tests [1]. The calculated activities and solubilities provide thermodynamic data to better understand dissolution or precipitation phenomena observed during LBE corrosion processes.

  18. Electrodeposition, Morphology, Composition, and Corrosion Performance of Zn-Mn Coatings from a Deep Eutectic Solvent

    NASA Astrophysics Data System (ADS)

    Fashu, S.; Gu, C. D.; Zhang, J. L.; Zheng, H.; Wang, X. L.; Tu, J. P.

    2015-01-01

    Different Zn-Mn coatings were successfully electrodeposited on copper substrates from deep eutectic solvent-based electrolytes containing boric acid as an additive. The main objective of this work was to optimize the Zn/Mn ratios and morphologies of the as-electrodeposited Zn-Mn films in order to obtain better corrosion protection performance coatings. The electrodeposition behaviors of Zn-Mn alloys as studied by cyclic voltammetry showed that with increase in electrolyte Mn(II) concentration, Zn(II) ion reduction occurs at higher overpotentials while Mn reduction occurs at lower overpotentials, and this in turn enhances Mn incorporation into the deposit. Characterization results showed that the electrodeposition potential and electrolyte Mn(II) concentration significantly affects the Mn content, crystal structure, surface morphology, and corrosion performance of the deposits. With increase in electrodeposition potential and electrolyte Mn(II) concentration, the alloy Mn increased and the grain morphology was refined. The crystal structure of Zn-Mn deposits consists of Zn and hexagonal close packed ɛ-phase Zn-Mn at low electrodeposition potentials and low electrolyte Mn(II) content. However, at high electrodeposition potentials and electrolyte Mn(II) contents, the crystal structure was only composed of hexagonal close packed ɛ-phase Zn-Mn. Corrosion measurements show that all the Zn-Mn samples have a passivating behavior and exhibits higher corrosion resistances when compared to those from aqueous solutions. Thus, optimum electrodeposition potential and electrolyte Mn(II) concentration were determined producing compact Zn-Mn films with the best corrosion resistance.

  19. Roles of Alloy Composition and Grain Refinement on Hot Tearing Susceptibility of 7××× Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bai, Q. L.; Li, Y.; Li, H. X.; Du, Q.; Zhang, J. S.; Zhuang, L. Z.

    2016-08-01

    During the production of high-strength 7××× aluminum alloys, hot tearing has set up serious obstacles for attaining a sound billet/slab. In this research, some typical 7××× alloys were studied using constrained rod casting together with the measurement of thermal contraction and load development in the freezing range, aiming at investigating their hot tearing susceptibility. The results showed that the hot tearing susceptibility of an alloy depends not only on the thermal contraction in freezing range, which can decide the accumulated thermal strain during solidification, but also on the amount of nonequilibrium eutectics, which can effectively accommodate the thermally induced deformation. Our investigations reveal that Zn content has very profound effect on hot tearing susceptibility. The Zn/Mg ratio of the alloys also plays a remarkable role though it is not as pronounced as Zn content. The effect of Zn/Mg ratio is mainly associated with the amount of nonequilibrium eutectics. Grain refinement will considerably reduce the hot tearing susceptibility. However, excessive addition of grain refiner may promote hot tearing susceptibility of semi-solid alloy due to deteriorated permeability which is very likely to be caused by the heavy grain refinement and the formation of more intermetallic phases.

  20. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Unknown

    1999-04-01

    The project, ''Catalytic Gasification of Coal Using Eutectic Salt Mixtures'', is being conducted jointly by Clark Atlanta University (CAU), the University of Tennessee Space Institute (UTSI) and the Georgia Institute of Technology (GT). The aims of the project are to: identify appropriate eutectic salt mixture catalysts for the gasification of Illinois No.6 coal; evaluate various impregnation or catalyst addition methods to improve catalyst dispersion; evaluate effects of major process variables (e.g., temperature, system pressure, etc.) on coal gasification; evaluate the recovery, regeneration and recycle of the spent catalysts in a bench-scale fixed bed reactor; and conduct thorough analysis and modeling of the gasification process to provide a better understanding of the fundamental mechanisms and kinetics of the process. The eutectic catalysts increased gasification rate significantly. The methods of catalyst preparation and addition had significant effect on the catalytic activity and coal gasification. The incipient wetness method gave more uniform catalyst distribution than that of physical mixing for the soluble catalysts resulting in higher gasification rates for the incipient wetness samples. The catalytic activity increased by varying degrees with catalyst loading. The above results are especially important since the eutectic catalysts (with low melting points) yield significant gasification rates even at low temperatures. Among the ternary eutectic catalysts studied, the system 39% Li{sub 2}CO{sub 3}-38.5% Na{sub 2}CO{sub 3}-22.5% Rb{sub 2}CO{sub 3} showed the best activity and will be used for further bench scale fixed-bed gasification reactor in the next period. Based on the Clark Atlanta University studies in the previous reporting period, the project team selected the 43.5% Li{sub 2}CO{sub 3}-31.5% Na{sub 2}CO{sub 3}-25% K{sub 2}CO{sub 3} ternary eutectic and the 29% Na{sub 2}CO{sub 3}-71% K{sub 2}CO{sub 3} binary eutectic for the fixed-bed studies

  1. Solidification microstructure formation in HK40 and HH40 alloys

    NASA Astrophysics Data System (ADS)

    Ding, Xian-fei; Liu, Dong-fang; Guo, Pei-liang; Zheng, Yun-rong; Feng, Qiang

    2016-04-01

    The microstructure formation processes in HK40 and HH40 alloys were investigated through JmatPro calculations and quenching performed during directional solidification. The phase transition routes of HK40 and HH40 alloys were determined as L → L + γ → L + γ + M7C3 → γ + M7C3 → γ + M7C3 + M23C6→ γ + M23C6 and L → L + δ → L + δ + γ→ L + δ + γ + M23C6 δ + γ + M23C6, respectively. The solidification mode was determined to be the austenitic mode (A mode) in HK40 alloy and the ferritic-austenitic solidification mode (FA mode) in HH40 alloy. In HK40 alloy, eutectic carbides directly precipitate in a liquid and coarsen during cooling. The primary γ dendrites grow at the 60° angle to each other. On the other hand, in HH40 alloy, residual δ forms because of the incomplete transformation from δ to γ. Cr23C6 carbide is produced in solid delta ferrite δ but not directly in liquid HH40 alloy. Because of carbide formation in the solid phase and no rapid growth of the dendrite in a non-preferential direction, HH40 alloy is more resistant to cast defect formation than HK40 alloy.

  2. Effect of Electromagnetic Field on Microstructure and Properties of Bulk AlCrFeNiMo0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Dong, Yong; Jiang, Li; Tang, Zhongyi; Lu, Yiping; Li, Tingju

    2015-11-01

    The bulk AlCrFeNiMo0.2 high-entropy alloy was successfully prepared by vacuum medium frequency induction melting. The effects of electromagnetic field on microstructure and properties were investigated. The alloy possessed a mixed structure of B2 and BCC, and the phase types were not changed by the electromagnetic field treatment. The microstructure exhibited typical lamellar eutectic cell and rod eutectic cell structures. These eutectic cell structures were constituted by the AlNi-type intermetallic compound and the FeCr-type solid solution. With the increase of electromagnetic field intensity, the hardness increases, while the compressive fracture strength and fracture strain of the alloy first increases and then decreases. The alloy with 15 mT electromagnetic field has the largest fracture strength 2282.3 MPa, yield strength 1160.5 MPa, and fracture strain 0.29. The alloy shows typical ferromagnetic behavior, and the homogenized lamellar eutectic cell microstructure significantly decreased the specific saturation magnetizations.

  3. Evolution of Secondary Phases Formed upon Solidification of a Ni-Based Alloy

    NASA Astrophysics Data System (ADS)

    Zuo, Qiang; Liu, Feng; Wang, Lei; Chen, Changfeng

    2013-07-01

    The solidification of UNS N08028 alloy subjected to different cooling rates was studied, where primary austenite dendrites occur predominantly and different amounts of sigma phase form in the interdendritic regions. The solidification path and elemental segregation upon solidification were simulated using the CALPHAD method, where THERMO-CALC software packages and two classical segregation models were employed to predict the real process. It is thus revealed that the interdendritic sigma phase is formed via eutectic reaction at the last stage of solidification. On this basis, an analytical model was developed to predict the evolution of nonequilibrium eutectic phase, while the isolated morphology of sigma phase can be described using divorced eutectic theory. Size, fraction, and morphology of the sigma phase were quantitatively studied by a series of experiments; the results are in good agreement with the model prediction.

  4. Solidification of NaCl-NaF eutectic in space

    NASA Technical Reports Server (NTRS)

    Yue, A. S.; Yu, J. G.

    1974-01-01

    Continuous and discontinuous NaF fibers, embedded in a NaCl matrix, have been produced in space and on earth, respectively. The production of continuous fibers in a eutectic mixture was attributed to the absence of convection current in the liquid during solidification in space. Image transmission and optical transmittance measurements of transverse sections of the space-grown and earth-grown ingots were made with a light microscope and a spectrometer. It was found that better optical properties were obtained from samples grown in space. This was attributed to a better alignment of NaF fibers along the ingot axis.

  5. Creep in Directionally Solidified NiAl-Mo Eutectics

    SciTech Connect

    Dudova, Marie; Kucharova, Kveta; Bartak, Tomas; Bei, Hongbin; George, Easo P; Somsen, Ch.; Dlouhy, A.

    2011-01-01

    A directionally solidified NiAl-Mo eutectic and an NiAl intermetallic, having respective nominal compositions Ni-45.5Al-9Mo and Ni-45.2Al (at.%), were loaded in compression at 1073 and 1173 K. Formidable strengthening by regularly distributed Mo fibres (average diameter 600 nm, volume fraction 14%) was observed. The fibres can support compression stresses transferred from the plastically deforming matrix up to a critical stress of the order of 2.5 GPa, at which point they yield. Microstructural evidence is provided for the dislocation-mediated stress transfer from the NiAl to the Mo phase.

  6. Composition gradients in electrolyzed LiCl-KCl eutectic melts

    NASA Astrophysics Data System (ADS)

    Vallet, C. E.; Heatherly, D. E.; Braunstein, J.

    1983-12-01

    Analysis of transport in a mixed electrolyte has previously predicted significant composition gradients in the LiCl-KCl electrolyte of high temperature LiS/ batteries. Composition gradients in quenched electrolyzed LiCl-KCl eutectic contained in yttria felt are measured with high distance resolution by scanning electron microscopy with energy dispersive X-ray spectroscopy. The reported results include composition profiles of LiCl-KCl coontained in porous Y2O3 and electrolyzed in three cells, two with solid Li-Al electrodes and one with a porous Li-Al anode.

  7. Charge Transport and Structural Dynamics in Deep Eutectic Mixtures

    NASA Astrophysics Data System (ADS)

    Cosby, Tyler; Holt, Adam; Terheggen, Logan; Griffin, Philip; Benson, Roberto; Sangoro, Joshua

    2015-03-01

    Charge transport and structural dynamics in a series of imidazole and carboxylic acid-based deep eutectic mixtures are investigated by broadband dielectric spectroscopy, dynamic light scattering, 1H nuclear magnetic resonance spectroscopy, calorimetry, and Fourier transform infrared spectroscopy. It is found that the extended hydrogen-bonded networks characteristic of imidazoles are broken down upon addition of carboxylic acids, resulting in an increase in dc conductivity of the mixtures. These results are discussed within the framework of recent theories of hydrogen bonding and proton transport.

  8. 3D Synchrotron Imaging of a Directionally Solidified Ternary Eutectic

    NASA Astrophysics Data System (ADS)

    Dennstedt, Anne; Helfen, Lukas; Steinmetz, Philipp; Nestler, Britta; Ratke, Lorenz

    2016-03-01

    For the first time, the microstructure of directionally solidified ternary eutectics is visualized in three dimensions, using a high-resolution technique of X-ray tomography at the ESRF. The microstructure characterization is conducted with a photon energy, allowing to clearly discriminate the three phases Ag2Al, Al2Cu, and α-Aluminum solid solution. The reconstructed images illustrate the three-dimensional arrangement of the phases. The Ag2Al lamellae perform splitting and merging as well as nucleation and disappearing events during directional solidification.

  9. Deep eutectic solvents in countercurrent and centrifugal partition chromatography.

    PubMed

    Roehrer, Simon; Bezold, Franziska; García, Eva Marra; Minceva, Mirjana

    2016-02-19

    Deep eutectic solvents (DESs) were evaluated as solvents in centrifugal partition chromatography, a liquid-liquid chromatography separation technology. To this end, the partition coefficients of ten natural compounds of different hydrophobicity were determined in non-aqueous biphasic systems containing DES. The influence of the composition of DESs and the presence of water in the biphasic system on the partition coefficient were also examined. In addition, several process relevant physical properties of the biphasic system, such as the density and viscosity of the phases, were measured. A mixture of three to four hydrophobic compounds was successfully separated in a centrifugal partition extractor using a heptane/ethanol/DES biphasic system.

  10. Pattern Formation and Growth Kinetics in Eutectic Systems

    SciTech Connect

    Teng, Jing

    2007-01-01

    Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to

  11. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    SciTech Connect

    Yvon, P.

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  12. Localized removal of the Au-Si eutectic bonding layer for the selective release of microstructures

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2009-10-01

    This paper presents and investigates a novel technique for the footprint and thickness-independent selective release of Au-Si eutectically bonded microstructures through the localized removal of their eutectic bond interface. The technique is based on the electrochemical removal of the gold in the eutectic layer and the selectivity is provided by patterning the eutectic layer and by proper electrical connection or isolation of the areas to be etched or removed, respectively. The gold removal results in a porous silicon layer, acting similar to standard etch holes in a subsequent sacrificial release etching. The paper presents the principle and the design requirements of the technique. First test devices were fabricated and the method successfully demonstrated. Furthermore, the paper investigates the release mechanism and the effects of different gold layouts on both the eutectic bonding and the release procedure.

  13. Investigation of Fixed Points Exceeding 2500 °C Using Metal Carbide-Carbon Eutectics

    NASA Astrophysics Data System (ADS)

    Sasajima, N.; Yamada, Y.; Sakuma, F.

    2003-09-01

    The melting and freezing plateaus of four metal carbide-carbon (MC-C) eutectics, B4C-C, δ(Mo carbide)-C, TiC-C and ZrC-C eutectics were investigated by radiation thermometry for the first time. The observed melting temperatures were 2386 °C, 2583 °C, 2761 °C and 2883 °C, respectively. The plateau shapes of δ(Mo carbide)-C, TiC-C and ZrC-C eutectics are relatively flat compared to the quite rounded plateau shape of the B4C-C eutectic. The results indicate that MC-C eutectics can establish a new series of high-temperature fixed points above 2500 °C.

  14. An alloy solidification experiment conducted on shenzhou spacecraft

    NASA Astrophysics Data System (ADS)

    Luo, X.-H.; Huang, Q.

    To gain a better understanding of how gravity-driven phenomena affect the solidification and crystal growth of metallic materials, directional solidification of Al-Al3Ni eutectic alloy and Al-Bi monotectic alloy were performed in the Multi-functional Crystal Growing Furnace on board the unmanned Chinese Shenzhou III spacecraft and on the ground respectively. The specimens were investigated applying metallographic, SEM, XRD and image analysis techniques. The results show that, for the Al-Al3Ni eutectic alloy, 1) microgravity condition is beneficial to eliminate solidification defects; 2) the Al3Ni rods precipitated in the space sample are shorter in length, larger in diameter and inhomogenous in inter-rod spacing distribution, compared with those in the ground sample, which are more homogenous and parallel with each other to the growth direction; 3) the mean spacing between Al3Ni rods obtained under microgravity is larger than that in normal gravity, which attributes to many large inter-rod spacing distributions existing in space sample rather than in ground sample; 4) preferred crystal directions in the sample solidified in space were found different to that on the ground. While, in the Al-Bi monotectic alloys, different sizes and distributions of Bi particles were obtained in space and on the earth, respectively. Some special Bi particle distribution patterns were also found in the space sample. It could be concluded that gravity condition had a strong influence on the solidification behavior of materials.

  15. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles

    SciTech Connect

    Yu, Seungho; Kaviany, Massoud

    2014-02-14

    Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightly overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided.

  16. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles.

    PubMed

    Yu, Seungho; Kaviany, Massoud

    2014-02-14

    Using ab initio molecular dynamics, the atomic structure and transport properties of eutectic Ga-In and Ga-In-Sn are investigated. The Kubo-Greenwood (K-G) and the Ziman-Faber (Z-F) formulations and the Wiedemann-Franz (W-F) law are used for the electrical and electronic thermal conductivity. The species diffusivity and the viscosity are also predicted using the mean square displacement and the Stokes-Einstein (S-E) relation. Alloying Ga causes more disordered structure, i.e., broadening the atomic distance near the In and Sn atoms, which reduces the transport properties and the melting temperature. The K-G treatment shows excellent agreement with the experimental results while Z-F treatment formula slightly overestimates the electrical conductivity. The predicted thermal conductivity also shows good agreement with the experiments. The species diffusivity and the viscosity are slightly reduced by the alloying of Ga with In and Sn atoms. Good agreements are found with available experimental results and new predicted transport-property results are provided. PMID:24527911

  17. Solidification and solid-state transformation mechanisms in Si alloyed high-chromium white cast irons

    NASA Astrophysics Data System (ADS)

    Laird, George; Powell, Graham L. F.

    1993-04-01

    Chromium white cast irons are widely used in environments where severe abrasion resistance is a dominant requirement. To improve the wear resistance of these commercially important irons, the United States Bureau of Mines and CSIRO Australia are studying their solidification and solid-state transformation kinetics. A ternary Fe-Cr-C iron with 17.8 wt pct (pct) Cr and 3.0 pct C was compared with commercially available irons of similar Cr and C contents with Si contents between 1.6 and 2.2 pct. The irons were solidified and cooled at rates of 0.03 and 0.17 K · s-1 to 873 K. Differential thermal analysis (DTA) showed that Si depresses the eutectic reaction temperature and suggests that is has no effect upon the volume of eutectic carbides formed during solidification. Microprobe analysis revealed that austenite dendrites within the Si alloyed irons cooled at 0.03 and 0.17 K·s-1 had C and Cr contents that were lower than those of dendrites within the ternary alloy cooled at the same cooling rate and a Si alloyed iron that was water quenched from the eutectic temperature. These lower values were shown by image analysis to be the result of both solid-state growth (coarsening) of the eutectic carbides and some secondary carbide formation. Hardness measurements in the as-cast condition and after soaking in liquid nitrogen suggest an increase in the martensite start temperature as the Si content was increased. It is concluded that Si’s effect on increasing the size and volume fraction of eutectic carbides and increasing the matrix hardness should lead to improved wear resistance over regular high-chromium white cast irons.

  18. Analysis of weld solidification cracking in cast nickel aluminide alloys

    SciTech Connect

    Santella, M.L.; Feng, Z.

    1995-09-01

    A study of the response of several nickel aluminide alloys to SigmaJig testing was done to examine their weld solidification cracking behavior and the effect of Zr concentration. The alloys were based on the Ni-8Al-7.7Cr-1.5Mo-0.003B wt% composition and contained Zr concentrations of 3, 4.5, and 6 wt%. Vacuum induction melted ingots with a diameter of 2.7 in and weight about 18 lb were made of each alloy, and were used to make 2 x 2 x 0.030 in specimens for the Sigmajig test. The gas tungsten arc welds were made at travel speeds of 10, 20, and 30 ipm with heat inputs of 2--2.5 kJ/in. When an arc was established before traveling onto the test specimen centerline cracking was always observed. This problem was overcome by initiating the arc directly on the specimens. Using this approach, the 3 wt% Zr alloy withstood an applied stress of 24 ksi without cracking at a welding speed of 10 ipm. This alloy cracked at 4 ksi applied at 20 ipm, and with no applied load at 30 ipm. Only limited testing was done on the remaining alloys, but the results indicate that resistance to solidification cracking increases with Zr concentration. Zirconium has limited solid solubility and segregates strongly to interdendritic regions during solidification where it forms a Ni solid solution-Ni{sub 5}Zr eutectic. The volume fraction of the eutectic increases with Zr concentration. The solidification cracking behavior of these alloys is consistent with phenomenological theory, and is discussed in this context. The results from SigmaJig testing are analyzed using finite element modeling of the development of mechanical strains during solidification of welds. Experimental data from the test substantially agree with recent analysis results.

  19. Microstructural evolution during transient liquid phase bonding of Inconel 738LC using AMS 4777 filler alloy

    SciTech Connect

    Jalilvand, V.; Omidvar, H.; Shakeri, H.R.; Rahimipour, M.R.

    2013-01-15

    IN-738LC nickel-based superalloy was joined by transient liquid phase diffusion bonding using AMS 4777 filler alloy. The bonding process was carried out at 1050 Degree-Sign C under vacuum atmosphere for various hold times. Microstructures of the joints were studied by optical and scanning electron microscopy. Continuous centerline eutectic phases, characterized as nickel-rich boride, chromium-rich boride and nickel-rich silicide were observed at the bonds with incomplete isothermal solidification. In addition to the centerline eutectic products, precipitation of boron-rich particles was observed in the diffusion affected zone. The results showed that, as the bonding time was increased to 75 min, the width of the eutectic zone was completely removed and the joint was isothermally solidified. Homogenization of isothermally solidified joints at 1120 Degree-Sign C for 300 min resulted in the elimination of intermetallic phases formed at the diffusion affected zone and the formation of significant {gamma} Prime precipitates in the joint region. - Highlights: Black-Right-Pointing-Pointer TLP bonding of IN-738LC superalloy was performed using AMS 4777 filler alloy. Black-Right-Pointing-Pointer Insufficient diffusion time resulted in the formation of eutectic product. Black-Right-Pointing-Pointer Precipitation of B-rich particles was observed within the DAZ. Black-Right-Pointing-Pointer The extent of isothermal solidification increased with increasing holding time. Black-Right-Pointing-Pointer Homogenizing of joints resulted in the dissolution of DAZ intermetallics.

  20. New insights into eutectic cream skin penetration enhancement.

    PubMed

    Fiala, Sarah; Roman, Marie; Inacio, Ricardo; Mashal, Sumaia; Brown, Marc B; Jones, Stuart A

    2016-02-29

    The manner in which the eutectic cream EMLA enhances the percutaneous penetration of lidocaine and prilocaine into human skin is still not fully understood. The purpose of this study was to investigate if the modification of drug aggregation played a role in the way EMLA facilitates delivery. Light scattering analysis of lidocaine alone in water gave a critical aggregation concentration (CAC) of 572 μM and a mean aggregate size of 58.8 nm. The analysis of prilocaine in identical conditions gave a CAC of 1177 μM and a mean aggregate size of 105.7 ± 24.8 nm. When the two drugs were mixed at their eutectic 1:1 ratio in water the CAC reduced to 165.8 μM and the aggregate size was 43.82 nm. This lidocaine-prilocaine interaction in water was further modified upon addition of polyoxyethylene hydrogenated castor oil, the surfactant in the EMLA aqueous phase, to produce aggregates of <20 nm. The physical characterisation data suggested that it was the EMLA cream's surfactant that modified the drug molecular interactions in the aqueous continuous phase and caused a 6 fold higher drug penetration through human epidermal tissue compared to the oil formulations tested in this study. PMID:26732522

  1. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples.

  2. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    DOE PAGES

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are moremore » spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).« less

  3. Differential Microscopic Mobility of Components within a Deep Eutectic Solvent

    SciTech Connect

    Wagle, Durgesh V.; Baker, Gary A.; Mamontov, Eugene

    2015-07-13

    From macroscopic measurements of deep eutectic solvents such as glyceline (1:2 molar ratio of choline chloride to glycerol), the long-range translational diffusion of the larger cation (choline) is known to be slower compared to that of the smaller hydrogen bond donor (glycerol). However, when the diffusion dynamics are analyzed on the subnanometer length scale, we discover that the displacements associated with the localized diffusive motions are actually larger for choline. This counterintuitive diffusive behavior can be understood as follows. The localized diffusive motions confined in the transient cage of neighbor particles, which precede the cage-breaking long-range diffusion jumps, are more spatially constrained for glycerol than for choline because of the stronger hydrogen bonds the former makes with chloride anions. The implications of differential localized mobility of the constituents should be especially important for applications where deep eutectic solvents are confined on the nanometer length scale and their long-range translational diffusion is strongly inhibited (e.g., within microporous media).

  4. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character

    PubMed Central

    Rice, James W.; Fu, Jinxia; Suuberg, Eric M.

    2010-01-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x1 = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x1 < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x1 of 0.03 and 0.14. Additionally, mixtures at x1 = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x2 = 0.01 in the crystal structure. PMID:21116474

  5. Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character.

    PubMed

    Rice, James W; Fu, Jinxia; Suuberg, Eric M

    2010-09-01

    To better characterize the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the anthracene (1) + pyrene (2) system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at 404 K at x(1) = 0.22. A model based on eutectic formation can be used to predict the enthalpy of fusion associated with the mixture. For mixtures that contain x(1) < 0.90, the enthalpy of fusion is near that of pure pyrene. This and X-ray diffraction results indicate that mixtures of anthracene and pyrene have pyrene-like crystal structures and energetics until the composition nears that of pure anthracene. Solid-vapor equilibrium studies show that mixtures of anthracene and pyrene form solid azeotropes at x(1) of 0.03 and 0.14. Additionally, mixtures at x(1) = 0.99 sublime at the vapor pressure of pure anthracene, suggesting that anthracene behavior is not significantly influenced by x(2) = 0.01 in the crystal structure.

  6. Enhanced electrochemical detection of quercetin by Natural Deep Eutectic Solvents.

    PubMed

    Gomez, Federico José Vicente; Espino, Magdalena; de Los Angeles Fernandez, María; Raba, Julio; Silva, María Fernanda

    2016-09-14

    New trends in analytical chemistry encourage the development of smart techniques and methods aligned with Green Chemistry. In this sense, Natural Deep Eutectic Solvents represents an excellent opportunity as a new generation of green solvents. In this work a new application for them has been proposed and demonstrated. These solvents were synthesized by combinations of inexpensive and natural components like, Glucose, Fructose, Citric acid and Lactic acid. The different natural solvents were easily prepared and added to buffer solution in different concentrations, allowing the enhancement of electrochemical detection of an important representative antioxidant like quercetin (QR) with improved signal up to 380%. QR is a ubiquitous flavonoid widespread in plants and food of plant origin. The proposed method using phosphate buffer with a eutectic mixture of Citric acid, Glucose and water in combination with carbon screen printed electrodes exhibited a good analytical performance. Detection and quantification limits were of 7.97 and 26.3 nM respectively; and repeatability with %RSDs of 1.41 and 7.49 for peak potential and intensity respectively. In addition, it has proved to be faster, greener and cheaper than other sensors and chromatographic methods available with the additional advantage of being completely portable. Furthermore, the obtained results demonstrated that the proposed method is able for the determination of QR in complex food samples. PMID:27566343

  7. A study of the influence of mischmetal additions to Al-7Si-0.3Mg (LM 25/356) alloy

    SciTech Connect

    Ravi, M.; Pillai, U.T.S.; Damodaran, A.D.; Dwarakadasa, E.S.

    1996-05-01

    This article deals with the effect of 0.25-1.5 wt pct mischmetal (MM) addition on the mechanical properties, microstructure, electrical conductivity, and fracture behavior of cast Al-7Si-0.3Mg (LM 25/356) alloy. Modification of eutectic silicon by MM is compared with strontium modification in terms of microstructure, mechanical properties, and fading behavior. Loss of magnesium encountered on holding the molten alloy and its resultant effect on mechanical properties of alloys modified with MM and Sr are compared with those in the unmodified alloy.

  8. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa.

  9. Ultrasonic semi-solid coating soldering 6061 aluminum alloys with Sn-Pb-Zn alloys.

    PubMed

    Yu, Xin-ye; Xing, Wen-qing; Ding, Min

    2016-07-01

    In this paper, 6061 aluminum alloys were soldered without a flux by the ultrasonic semi-solid coating soldering at a low temperature. According to the analyses, it could be obtained that the following results. The effect of ultrasound on the coating which promoted processes of metallurgical reaction between the components of the solder and 6061 aluminum alloys due to the thermal effect. Al2Zn3 was obtained near the interface. When the solder was in semi-solid state, the connection was completed. Ultimately, the interlayer mainly composed of three kinds of microstructure zones: α-Pb solid solution phases, β-Sn phases and Sn-Pb eutectic phases. The strength of the joints was improved significantly with the minimum shear strength approaching 101MPa. PMID:26964943

  10. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1963-02-26

    A brazing alloy which, in the molten state, is characterized by excellent wettability and flowability, said alloy being capable of forming a corrosion resistant brazed joint wherein at least one component of said joint is graphite and the other component is a corrosion resistant refractory metal, said alloy consisting essentially of 20 to 50 per cent by weight of gold, 20 to 50 per cent by weight of nickel, and 15 to 45 per cent by weight of molybdenum. (AEC)

  11. VANADIUM ALLOYS

    DOEpatents

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  12. Tunable catalytic alloying eliminates stacking faults in compound semiconductor nanowires.

    PubMed

    Heo, Hoseok; Kang, Kibum; Lee, Donghun; Jin, Li-Hua; Back, Hyeon-Jun; Hwang, Inchan; Kim, Miseong; Lee, Hyun-Seung; Lee, Byeong-Joo; Yi, Gyu-Chul; Cho, Yong-Hoon; Jo, Moon-Ho

    2012-02-01

    Planar defects in compound (III-V and II-VI) semiconductor nanowires (NWs), such as twin and stacking faults, are universally formed during the catalytic NW growth, and they detrimentally act as static disorders against coherent electron transport and light emissions. Here we report a simple synthetic route for planar-defect free II-VI NWs by tunable alloying, i.e. Cd(1-x)Zn(x)Te NWs (0 ≤ x ≤ 1). It is discovered that the eutectic alloying of Cd and Zn in Au catalysts immediately alleviates interfacial instability during the catalytic growth by the surface energy minimization and forms homogeneous zinc blende crystals as opposed to unwanted zinc blende/wurtzite mixtures. As a direct consequence of the tunable alloying, we demonstrated that intrinsic energy band gap modulation in Cd(1-x)Zn(x)Te NWs can exploit the tunable spectral and temporal responses in light detection and emission in the full visible range.

  13. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    The evaluation of cesium diode electrode materials called for braze fillers with very low vapor pressures and a wide range of melting points. Binary alloys of low vapor pressure refractory metals were chosen to fill this need. These alloys of Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, and W have reported melting point minima or eutectics from 1,510 K to above 3,000 K. Preliminary data are compiled on the use of several of these braze alloys. Melting points and surface wetting on a Ta base are given. Results of brazing Ir, LaB6, Nb, Re, W, and Zr-22 wt % ZrO2 materials into Ta and Nb-1% Zr bases are presented. Current braze usage is summarized.

  14. Low vapor pressure braze alloys for thermionic energy converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1976-01-01

    Preliminary results in the use of some low-vapor-pressure braze alloys are reported; these are binary alloys of refractory metals (Th, Zr, Hf, Ru, Nb, Ir, Mo, Ta, Os, Re, W) with vapor pressures below 0.1 nanotorr at 1500 K or 10 microtorr at 2000 K. The melting point minima or eutectics of the alloys range from 1510 K to above 3000 K. Melting points and surface wetting on a Ta base are given. Results are presented on brazing of Ir, LaB6, Nb, Re, W, and ZrO2 (with 22 wt % Zr) into a Ta base or a Nb-1% Zr base. The results are applicable in electrode screening programs for thermionic cesium diodes.

  15. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  16. Characterization and property evaluation of U-15 wt%Pu alloy for fast reactor

    NASA Astrophysics Data System (ADS)

    Kaity, Santu; Banerjee, Joydipta; Ravi, K.; Keswani, R.; Kutty, T. R. G.; Kumar, Arun; Prasad, G. J.

    2013-02-01

    The characterization and high temperature behaviour of U-15 wt%Pu alloy has been investigated in this study for the first time. U-15 wt%Pu alloy sample for this study was prepared by following melting and casting route. Microstructural characterization of the alloy was carried out by XRD and optical microscopy. The thermophysical properties like phase transition temperatures, coefficient of thermal expansion and hot hardness of the above alloy were determined. Eutectic temperature between T91 and U-15 wt%Pu was established. Apart from that, the fuel-cladding chemical compatibility of U-15 wt%Pu alloy with T91 grade steel was studied by diffusion couple experiment.

  17. Materials review for improved automotive gas turbine engine. [superalloys, refractory alloys, and ceramics

    NASA Technical Reports Server (NTRS)

    Belleau, C.; Ehlers, W. L.; Hagen, F. A.

    1978-01-01

    The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of engines operating with turbine inlet temperatures as high as 1370 C is examined. The convential superalloys, directionally solidified eutectics, oxide dispersion strenghened alloys, and tungsten fiber reinforced superalloys are reviewed and compared on the basis of maximum turbine blade temperature capability. Improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are also reviewed. Molbdenum alloys are found to be the most suitable for mass produced turbine wheels. Various forms and fabrication processes for silicon nitride, silicon carbide, and SIALON's are investigated for use in highstress and medium stress high temperature environments.

  18. Probabilistic simulation of hydrogen gas porosity formation in A356 base hypoeutectic alloy castings

    NASA Astrophysics Data System (ADS)

    Asada, Jo

    Microporosity in cast aluminum alloy can be classified as gas porosity and/or shrinkage porosity. In prior research, two dimensional simulation programs employing a probabilistic modeling approach and cellular automaton method were developed to predict microporosity in cast aluminum alloys. In this research the 2D models were statistically compared with experimental data. Additionally, we investigated size and morphology distribution of grains and porosity in A356 alloy castings under variable hydrogen content and alloy treatment condition, i.e. eutectic phase modification and grain refinement. In order to improve the accuracy of the prediction method, new simulation models including a two and half dimensional analysis and a two phase evolution model were developed in the present body of work. The new models were statistically compared with experimental results changing silicon and hydrogen content and alloy treatment conditions. The new simulation technique exhibits improved agreement with experimental data tracking the morphology of gas porosities and the grain size distribution.

  19. Alloy 10 Al -- A new sulfidation and carburization resistant alloy for fuel combustion and conversion

    SciTech Connect

    Kloewer, J.; Sauthoff, G.; Letzig, D.

    1996-08-01

    A new nickel-base high-temperature alloy, alloy 10 Al, which contains 30% iron, 10% aluminum and 8% chromium, has been developed. Alloy 10 Al has a lamellar eutectic two-phase microstructure with one phase being the intermetallic phase NiAl and the second phase being Ni(Fe,Cr) solid solution. The high-temperature corrosion behavior of the new alloy has been determined in both air and hot process gases containing methane, sulfur dioxide and hydrogen sulfide, respectively. It was found that the corrosion resistance against carburization, sulfidation and oxidation was excellent due to the formation of a dense protective alumina scale. The adherence of the alumina scale was increased by an addition of 0.1% hafnium. The concentration of chromium was found to have a remarkable impact on oxidation and high temperature corrosion resistance. Alloys without chromium showed an increased corrosion rate in both air and sulfur-containing gas atmospheres due to the initial formation of nickel oxides. In sulfidizing gases at least 4% chromium are required to stabilize the formation of alumina and to prevent the formation of nickel/sulfur compounds.

  20. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    DOE PAGES

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by meansmore » of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.« less

  1. Microstructure and Mechanical Properties of Laves Phase-strengthened Fe-Cr-Zr Alloys

    SciTech Connect

    Tan, Lizhen; Yang, Ying

    2014-12-05

    Laves phase-reinforced alloys have shown some preliminary promising performance at room temperatures. This paper aims at evaluating mechanical properties of Laves phase-strengthened alloys at elevated temperatures. Three Fe-Cr-Zr alloys were designed to favor the formation of eutectic microstructures containing Laves and body-centered cubic phases with the aid of thermodynamic calculations. Microstructural characterization was carried out on the alloys in as-processed and aged states using optical microscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. The effect of thermal aging and alloy composition on microstructure has been discussed based on microstructural characterization results. Mechanical properties have been evaluated by means of Vickers microhardness measurements, tensile testing at temperatures up to 973.15 K (700.15 °C), and creep testing at 873.15 K (600.15 °C) and 260 MPa. Alloys close to the eutectic composition show significantly superior strength and creep resistance compared to P92. Finally, however, their low tensile ductility may limit their applications at relatively low temperatures.

  2. Alkaline extraction of polonium from liquid lead bismuth eutectic

    NASA Astrophysics Data System (ADS)

    Heinitz, S.; Neuhausen, J.; Schumann, D.

    2011-07-01

    The production of highly radiotoxic polonium isotopes poses serious safety concerns for the development of future nuclear systems cooled by lead bismuth eutectic (LBE). In this paper it is shown that polonium can be extracted efficiently from LBE using a mixture of alkaline metal hydroxides (NaOH + KOH) in a temperature range between 180 and 350 °C. The extraction ratio was analyzed for different temperatures, gas blankets and phase ratios. A strong dependence of the extraction performance on the redox properties of the cover gas was found. While hydrogen facilitates the removal of polonium, oxygen has a negative influence on the extraction. These findings open new possibilities to back up the safety of future LBE based nuclear facilities.

  3. Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions.

    PubMed

    Silva, Nuno H C S; Pinto, Ricardo J B; Freire, Carmen S R; Marrucho, Isabel M

    2016-11-01

    Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology. PMID:27478961

  4. Glass transition and mixing thermodynamics of a binary eutectic system.

    PubMed

    Tu, Wenkang; Chen, Zeming; Gao, Yanqin; Li, Zijing; Zhang, Yaqi; Liu, Riping; Tian, Yongjun; Wang, Li-Min

    2014-02-28

    A quantitative evaluation of the contribution of mixing thermodynamics to glass transition is performed for a binary eutectic benzil and m-nitroaniline system. The microcalorimetric measurements of the enthalpy of mixing give small and positive values, typically ~200 J mol(-1) for the equimolar mixture. The composition dependence of the glass transition temperature, T(g), is found to show a large and negative deviation from the ideal mixing rule. The Gordon-Taylor and Couchman-Karasz models are subsequently applied to interpret the T(g) behavior, however, only a small fraction of the deviation is explained. The analyses of the experimental results manifest quantitatively the importance of the mixing thermodynamics in the glass transition in miscible systems.

  5. Deep eutectic solvent pretreatment and subsequent saccharification of corncob.

    PubMed

    Procentese, Alessandra; Johnson, Erin; Orr, Valerie; Garruto Campanile, Anna; Wood, Jeffery A; Marzocchella, Antonio; Rehmann, Lars

    2015-09-01

    Ionic liquid (ILs) pretreatment of lignocellulosic biomass has attracted broad scientific interest, despite high costs, possible toxicity and energy intensive recycling. An alternative group of ionic solvents with similar physicochemical properties are deep eutectic solvents (DESs). Corncob residues were pretreated with three different DES systems: choline chloride and glycerol, choline chloride and imidazole, choline chloride and urea. The pretreated biomass was characterised in terms of lignin content, sugars concentration, enzymatic digestibility and crystallinity index. A reduction of lignin and hemicellulose content resulted in increased crystallinity of the pretreated biomass while the crystallinity of the cellulose fraction could be reduced, depending on DES system and operating conditions. The subsequent enzymatic saccharification was enhanced in terms of rate and extent. A total of 41 g fermentable sugars (27 g glucose and 14 g xylose) could be recovered from 100g corncob, representing 76% (86% and 63%) of the initially available carbohydrates. PMID:26005926

  6. The electrodeposition of silver composites using deep eutectic solvents.

    PubMed

    Abbott, Andrew P; El Ttaib, Khalid; Frisch, Gero; Ryder, Karl S; Weston, David

    2012-02-21

    Silver is an important metal for electronic connectors, however, it is extremely soft and wear can be a significant issue. This paper describes how improved wear resistant silver coatings can be obtained from the electrolytic deposition of silver from a solution of AgCl in an ethylene glycol/choline chloride based Deep Eutectic Solvent. An up to 10-fold decrease in the wear volume is observed by the incorporation of SiC or Al(2)O(3) particles. The work also addresses the fundamental aspect of speciation of silver chloride in solution using EXAFS to probe solution structure. The size but not the nature of the composite particles is seen to change the morphology and grain size of the silver deposit. Grain sizes are shown to be consistent with previous nucleation studies. The addition of LiF is found to significantly affect the deposit morphology and improve wear resistance. PMID:22249451

  7. Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions.

    PubMed

    Silva, Nuno H C S; Pinto, Ricardo J B; Freire, Carmen S R; Marrucho, Isabel M

    2016-11-01

    Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology.

  8. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents.

    PubMed

    Zhang, Cheng-Wu; Xia, Shu-Qian; Ma, Pei-Sheng

    2016-11-01

    In this work, three kinds of deep eutectic solvents (DESs) were facilely prepared and used in the pretreatment of corncob, including monocarboxylic acid/choline chloride, dicarboxylic acid/choline chloride and polyalcohol/choline chloride. The enhanced delignification and subsequent enzymatic hydrolysis efficiency were found to be related to the acid amount, acid strength and the nature of hydrogen bond acceptors. The XRD, SEM and FT-IR results consistently indicated that the structures of corncob were disrupted by the removal of lignin and hemicellulose in the pretreatment process. In addition, the optimal pretreatment temperature and time were 90°C and 24h, respectively. This study explored the roles of various DESs combinations, pretreatment temperature and time to better utilize the DESs in the pretreatment of lignocellulosic biomass. PMID:27468171

  9. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    SciTech Connect

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  10. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    DOE PAGES

    Cao, G. H.; Jian, G. Y.; Liu, N.; Zhang, W. H.; Russell, A. M.; Gerthsen, D.

    2015-08-19

    Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3 phases caused by the Nb addition. Furthermore, the crystallographic orientation relationship of Ti5Si3 with α-Ti is (more » $$1\\bar{1}00$$ [$$\\overline{11}$$26]Ti5Si3∥($$01\\bar{1}1$$)[5$$\\overline{143}$$] α–Τi.« less

  11. Microstructure and mechanical properties of an ultrafine Ti–Si–Nb alloy

    SciTech Connect

    Cao, G. H.; Jian, G. Y.; Liu, N.; Zhang, W. H.; Russell, A. M.; Gerthsen, D.

    2015-08-19

    Nb-modified ultrafine Ti–Si eutectic alloy was made by cold crucible levitation melting, tested in compression at room temperature, and characterized by electron microscopy. Compression tests of (Ti86.5Si13.5)97Nb3 specimens measured an ultimate compressive strength of 1180 MPa and a compressive plastic strain of 12%, both of which are higher than in eutectic Ti86.5Si13.5 alloy. Electron microscopy showed that the Ti–Si–Nb alloy had a bimodal microstructure with micrometer-scale primary α-Ti dendrites distributed in an ultrafine eutectic (α-Ti + Ti5Si3) matrix. The enhanced ductility is attributed to the morphology of the phase constituents and to the larger lattice mismatches between α-Ti and Ti5Si3 phases caused by the Nb addition. Furthermore, the crystallographic orientation relationship of Ti5Si3 with α-Ti is ($1\\bar{1}00$ [$\\overline{11}$26]Ti5Si3∥($01\\bar{1}1$)[5$\\overline{143}$] α–Τi.

  12. URANIUM ALLOYS

    DOEpatents

    Seybolt, A.U.

    1958-04-15

    Uranium alloys containing from 0.1 to 10% by weight, but preferably at least 5%, of either zirconium, niobium, or molybdenum exhibit highly desirable nuclear and structural properties which may be improved by heating the alloy to about 900 d C for an extended period of time and then rapidly quenching it.

  13. ZIRCONIUM ALLOY

    DOEpatents

    Wilhelm, H.A.; Ames, D.P.

    1959-02-01

    A binary zirconiuin--antimony alloy is presented which is corrosion resistant and hard containing from 0.07% to 1.6% by weight of Sb. The alloys have good corrosion resistance and are useful in building equipment for the chemical industry.

  14. Nonswelling alloy

    DOEpatents

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  15. Microstructural formation in a hypereutectic Mg-Si alloy

    SciTech Connect

    Pan Yichuan . E-mail: riverpan@mail.sdu.edu.cn; Liu Xiangfa; Yang Hua

    2005-09-15

    In the present work, the microstructure of an ingot metallurgy hypereutectic Mg-8 wt.% Si alloy was studied using electron probe microanalysis (EPMA) and the solidification process was discussed. The components of the alloy are Mg{sub 2}Si and Mg. The solidified microstructure of the alloy contains three constituents: Mg{sub 2}Si primary dendrites that are surrounded by Mg sub-primary particles and the Mg-Mg{sub 2}Si eutectic. The primary Mg{sub 2}Si dendrites have a secondary dendrite arm spacing d {sub 2} of approximately 17 {mu}m or show polygonal morphologies with a mean size of 30 {mu}m. An Mg phase appearing as halos surround the Mg{sub 2}Si constituents. The Mg-Mg{sub 2}Si eutectic has a regular morphology of rod-like Mg{sub 2}Si distributed in a continuous matrix of Mg having an interphase spacing r of approximately 0.8 {mu}m.

  16. Rapid growth and formation mechanism of ultrafine structural oxide eutectic ceramics by laser direct forming

    NASA Astrophysics Data System (ADS)

    Su, H. J.; Zhang, J.; Liu, L.; Eckert, J.; Fu, H. Z.

    2011-11-01

    Melt growth of oxide eutectic is an important and fast-growing research topic in the fields of both applied physics and materials science. Rapid one-step fabrication of melt-grown oxide ceramics with large size is developed using laser direct forming. The near 100% density of Al2O3/YAG eutectic ceramic in situ composite free of pore and cracks is rapidly melted/solidified directly from Al2O3-Y2O3 powder without any preforming or sintering. Uniform three-dimensional network of ultrafine nanostructured eutectic microstructure is obtained. The direct experimental evidence of faceted-nonfaceted eutectic transition at high growth rate is presented and the physical model of the microstructural formation based on atom cluster elementary process is proposed. This technology provides a rapid freeform fabrication of high-performance complex shaped ceramics for various applications.

  17. Microstructure formation in partially melted zone during gas tungsten arc welding of AZ91 Mg cast alloy

    SciTech Connect

    Zhu Tianping Chen, Zhan W.; Gao Wei

    2008-11-15

    During gas tungsten arc (GTA) welding of AZ91 Mg cast alloy, constitutional liquid forms locally in the original interdendritic regions in the partially melted zone (PMZ). The PMZ re-solidification behaviour has not been well understood. In this study, the gradual change of the re-solidification microstructure within PMZ from base metal side to weld metal side was characterised. High cooling rate experiments using Gleeble thermal simulator were also conducted to understand the morphological change of the {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} phase interface formed during re-solidification after partial melting. It was found that the original partially divorced eutectic structure has become a more regular eutectic phase in most of the PMZ, although close to the fusion boundary the re-solidified eutectic is again a divorced one. Proceeding the eutectic re-solidification, if the degree of partial melting is sufficiently high, {alpha}-Mg re-solidified with a cellular growth, resulting in a serrated interface between {alpha}-Mg and {alpha}-Mg/{beta}-Mg{sub 17}Al{sub 12} in the weld sample and between {alpha}-Mg and {beta}-Mg{sub 17}Al{sub 12} (fully divorced eutectic) in Gleeble samples. The morphological changes affected by the peak temperature and cooling rate are also explained.

  18. Template-Directed Directionally Solidified 3D Mesostructured AgCl-KCl Eutectic Photonic Crystals.

    PubMed

    Kim, Jinwoo; Aagesen, Larry K; Choi, Jun Hee; Choi, Jaewon; Kim, Ha Seong; Liu, Jinyun; Cho, Chae-Ryong; Kang, Jin Gu; Ramazani, Ali; Thornton, Katsuyo; Braun, Paul V

    2015-08-19

    3D mesostructured AgCl-KCl photonic crystals emerge from colloidal templating of eutectic solidification. Solvent removal of the KCl phase results in a mesostructured AgCl inverse opal. The 3D-template-induced confinement leads to the emergence of a complex microstructure. The 3D mesostructured eutectic photonic crystals have a large stop band ranging from the near-infrared to the visible tuned by the processing.

  19. Investigation of a eutectic mixture of sodium acetate trihydrate and urea as latent heat storage

    SciTech Connect

    Jing-Hua Li; Gui-En Zhang; Jin-Yun Wang )

    1991-01-01

    In this paper, the pseudobinary system CH{sub 3}COONa {times} 3H{sub 2}O{bond}CO(NH{sub 2}){sub 2} is studied by means of differential scanning calorimetry (DSC). Its eutectic mixture is found to melt congruently at 30C, its heat of fusion is 200.5 J/g, considering the temperature of phase change and its heat storage capacity. This eutectic mixture is an excellent material for latent heat storage of solar energy.

  20. Nanostructured Hypoeutectic Fe-B Alloy Prepared by a Self-propagating High Temperature Synthesis Combining a Rapid Cooling Technique

    PubMed Central

    2009-01-01

    We have successfully synthesized bulk nanostructured Fe94.3B5.7 alloy using the one-step approach of a self-propagating high temperature synthesis (SHS) combining a rapid cooling technique. This method is convenient, low in cost, and capable of being scaled up for processing the bulk nanostructured materials. The solidification microstructure is composed of a relatively coarse, uniformly distributed dendriteto a nanostructured eutectic matrix with α-Fe(B) and t-Fe2B phases. The fine eutectic structure is disorganized, and the precipitation Fe2B is found in the α-Fe(B) phase of the eutectic. The dendrite phase has the t-Fe2B structure rather than α-Fe(B) in the Fe94.3B5.7 alloy, because the growth velocity of t-Fe2B is faster than that of the α-Fe with the deeply super-cooling degree. The coercivity (Hc) and saturation magnetization (Ms) values of the Fe94.3B5.7 alloy are 11 A/m and 1.74T, respectively. Moreover, the Fe94.3B5.7 alloy yields at 1430 MPa and fractures at 1710 MPa with a large ductility of 19.8% at compressive test. PMID:20596402

  1. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  2. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating applications

    SciTech Connect

    Jotshi, C.K.; Hsieh, C.K.; Goswami, D.Y.; Klausner, J.F.; Srinivasan, N.

    1998-02-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 form a eutectic that melts at 53 C and solidifies at 48 C. The thermophysical properties of this eutectic were measured in detail and the eutectic was found to have properties desirable for energy storage for solar space heating applications. The eutectic was encapsulated in 0.0254-m diameter high-density polyethylene (HDPE) balls and packed into a cylindrical bed in a scale model for testing its heat transfer characteristics when exposed to an air flow. Test results indicate that the thermal extraction efficiency of the model was 89% with an uncertainty of {+-} 8.0%. The packed bed had a Stanton number value in close agreement with that predicted with an empirical equation for sensible heat extraction from the eutectic in the solid phase. This Stanton number was increased by about 74% for sensible heat extraction from the eutectic in the liquid phase, a phenomenon not previously reported in the literature.

  3. A fundamental investigation into the effects of eutectic formation on transmembrane transport.

    PubMed

    Fiala, Sarah; Jones, Stuart A; Brown, Marc B

    2010-06-30

    Eutectic systems enhance the permeation of therapeutic agents across biological barriers, but the mechanism by which this occurs has not previously been elucidated. Using human skin it has proven difficult to isolate the fundamental effects of eutectic formation on molecule diffusion and partition from those that arise as a consequence of the simultaneous application of two agents. The aim of this work was to employ a model hydrophobic membrane to understand the fundamental permeation characteristics of two agents when applied as a eutectic mixture. Lidocaine and prilocaine were selected as model agents and infinite-dose permeation studies were carried out using pre-calibrated Franz diffusion cells with two thicknesses of silicone membrane. Membrane solubility was determined by HCl solution extraction and the membrane diffusion coefficients were calculated from the permeation lag-times. The maximum permeation enhancement was achieved using a eutectic mixture at a 0.7:0.3 prilocaine/lidocaine ratio. A higher solubility of both agents in silicone membrane, enhanced diffusivity of prilocaine and superior release of both drugs, all contributed to produce enhanced permeation from the eutectic mixtures. Deconvolution of the transmembrane transport process suggests that the eutectic enhancement phenomena is a consequence of more favorable permeation characteristics of the two molecules in the absence of a formulation vehicle which competes in the transport process.

  4. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  5. Evaluation and modeling of the eutectic composition of various drug-polyethylene glycol solid dispersions.

    PubMed

    Baird, Jared A; Taylor, Lynne S

    2011-06-01

    The purpose of this study was to gain a better understanding of which factors contribute to the eutectic composition of drug-polyethylene glycol (PEG) blends and to compare experimental values with predictions from the semi-empirical model developed by Lacoulonche et al. Eutectic compositions of various drug-PEG 3350 solid dispersions were predicted, assuming athermal mixing, and compared to experimentally determined eutectic points. The presence or absence of specific interactions between the drug and PEG 3350 were investigated using Fourier transform infrared (FT-IR) spectroscopy. The eutectic composition for haloperidol-PEG and loratadine-PEG solid dispersions was accurately predicted using the model, while predictions for aceclofenac-PEG and chlorpropamide-PEG were very different from those experimentally observed. Deviations in the model prediction from ideal behavior for the systems evaluated were confirmed to be due to the presence of specific interactions between the drug and polymer, as demonstrated by IR spectroscopy. Detailed analysis showed that the eutectic composition prediction from the model is interdependent on the crystal lattice energy of the drug compound (evaluated from the melting temperature and the heat of fusion) as well as the nature of the drug-polymer interactions. In conclusion, for compounds with melting points less than 200°C, the model is ideally suited for predicting the eutectic composition of systems where there is an absence of drug-polymer interactions. PMID:20141502

  6. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires.

    PubMed

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-04-06

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19' martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19' martensitic transformation, and (V) plastic deformation of the specimen.

  7. Microstructural analysis of biodegradable Mg-0.9Ca-1.2Zr alloy

    NASA Astrophysics Data System (ADS)

    Istrate, B.; Munteanu, C.; Geanta, V.; Baltatu, S.; Focsaneanu, S.; Earar, K.

    2016-08-01

    Magnesium alloys have applications in aerospace and medical applications as biodegradable orthopedic implants. Alloying with biocompatible elements, such as calcium or zirconium contribute to refining the the microstructure and improves corrosion resistance with the formation of an eutectic compound - Mg2Ca at boundary alpha-Mg grains. The purpose of this paper is to present the microstructure throw optical and scanning electron methods and phase and constituents identification with X-ray analysis. The results showed the presence of alpha-Mg grains with formation of a mechanical compound - Mg2Ca and appearance of alpha- Zr phase relatively uniformly distributed in nests.

  8. Microstructures of niobium-germanium alloys processed in inert gas in the 100 meter drop tube

    NASA Technical Reports Server (NTRS)

    Bayuzick, R. J.; Robinson, M. B.; Hofmeister, W. H.; Evans, N. D.

    1986-01-01

    The 100 meter drop tube at NASA's Marshall Space Flight Center has been used for a series of experiments with niobium-germanium alloys. These experiments were conducted with electromagnetic levitation melting in a 200 torr helium environment. Liquid alloys experienced large degrees of undercooling prior to solidification in the drop tube. Several interesting metastable structures were observed. However, the recalescence event prevented extended solid solubility of germanium in the A-15 beta phase. Liquids of eutectic composition were found to undercool in the presence of solid alpha and solid Nb5Ge3.

  9. Certain aspects of the melting, casting and welding of Ni{sub 3}Al alloys

    SciTech Connect

    Santella, M.L.; Sikka, V.K.

    1994-06-01

    Two alloys under development for castings are IC221M, (nominal composition Ni-8Al-7.7Cr-1.4Mo-1.7Zr wt %), and IC396M (nominal composition Ni-8Al-7.7Cr-3Mo-0.85Zr wt %). These alloys can be melted and cast using the techniques normally used for Ni-based materials. Oxidation of the liquid alloys can be controlled by vacuum processing or inert gas cover during processing. The liquid alloys can react with silica and zircon sands during casting, but this can be controlled through the use of appropriate mold washes like carbon-based materials. Welding studies showed that these alloys are susceptible to solidification cracking in weld fusion zones; the cracks are generally associated with occurrence of Ni-Ni{sub 5}Zr eutectic in interdendritic regions of the weld. Amount of eutectic in the weld microstructures increases with Zr concentration in weld filler metal. Weld filler metal Zr concentrations of 3 wt % and higher prevented solidification cracking of weld deposits on the base casting alloys; This is consistent with accepted phenomonological theory of this process. A weld filler metal with a composition of Ni-8Al-7.7Cr-1.5Mo-3.0Zr wt % was prepared and used to gas tungsten arc weld together 15-mm-thick plates of the IC221M alloy. This weldment was free of cracks. Weldment tensile specimens were machined from the plate and tested at 21, 800, and 900 C. Weldment yield strength at elevated temperatures was higher than room temperature and nearly comparable with that of the base IC221M alloy. Evaluation of the cast Ni{sub 3}Al alloys for furnace furniture, turbocharger rotors, and manufacturing tooling is also briefly discussed.

  10. Preparation of eutectic substrate mixtures for enzymatic conversion of ATC to L-cysteine at high concentration levels.

    PubMed

    Youn, Sung Hun; Park, Hae Woong; Choe, Deokyeong; Shin, Chul Soo

    2014-06-01

    High concentration eutectic substrate solutions for the enzymatic production of L-cysteine were prepared. Eutectic melting of binary mixtures consisting of D,L-2-amino-Δ(2)-thiazoline-4-carboxylic acid (ATC) as a substrate and malonic acid occurred at 39 °C with an ATC mole fraction of 0.5. Formation of eutectic mixtures was confirmed using SEM, SEM-EDS, and XPS surface analyses. Sorbitol, MnSO4, and NaOH were used as supplements for the enzymatic reactions. Strategies for sequential addition of five compounds, including a binary ATC mixture and supplements, during preparation of eutectic substrate solutions were established. Eutectic substrate solutions were stable for 24 h. After 6 h of enzymatic reactions, a 550 mM L-cysteine yield was obtained from a 670 mM eutectic ATC solution.

  11. PLUTONIUM ALLOYS

    DOEpatents

    Chynoweth, W.

    1959-06-16

    The preparation of low-melting-point plutonium alloys is described. In a MgO crucible Pu is placed on top of the lighter alloying metal (Fe, Co, or Ni) and the temperature raised to 1000 or 1200 deg C. Upon cooling, the alloy slug is broke out of the crucible. With 14 at. % Ni the m.p. is 465 deg C; with 9.5 at. % Fe the m.p. is 410 deg C; and with 12.0 at. % Co the m.p. is 405 deg C. (T.R.H.) l6262 l6263 ((((((((Abstract unscannable))))))))

  12. Processing, Microstructure, and Properties of Multiphase Mo Silicide Alloys

    SciTech Connect

    Heatherly, L.; Liu, C.T.; Schneibel, J.H.

    1998-11-30

    Multiphase Mo silicide alloys containing T2 (Mo{sub 5}SiB{sub 2}), Mo{sub 3}Si and Mo phases where prepared by both melting and casting (M and C) and powder metallurgical (PM) processes. Glassy phases are observed in PM materials but not in M and C materials. Microstructural studies indicate that the primary phase is Mo-rich solid solution in alloys containing {le}(9.4Si+13.8B, at. %) and T2 in alloys with {ge}(9.8Si+14.6B). An eutectic composition is estimated to be close to Mo-9.6Si-14.2B. The mechanical properties of multiphase silicide alloys were determined by hardness, tensile and bending tests at room temperature. The multiphase alloy MSB-18 (Mo-9.4Si-13.8B) possesses a flexure strength distinctly higher than that of MoSi{sub 2} and other Mo{sub 5}Si{sub 3} silicide alloys containing no Mo particles. Also, MSB-18 is tougher than MoSi{sub 2} by a factor of 4.

  13. Liquation Cracking in Arc and Friction-Stir Welding of Mg-Zn Alloys

    NASA Astrophysics Data System (ADS)

    Wagner, Dustin C.; Chai, Xiao; Tang, Xin; Kou, Sindo

    2015-01-01

    As compared to Al alloys, which are known to be susceptible to liquation ( i.e., liquid formation) and liquation-induced cracking, most Mg alloys have a lower eutectic temperature and thus are likely to be even more susceptible. The present study was conducted to study liquation and liquation cracking in Mg alloys during arc welding and friction-stir welding (FSW). Binary Mg-Zn alloys were selected as a model material in view of their very low eutectic temperature of 613 K (340 °C). Mg-Zn alloys with 2, 4, and 6 wt pct of Zn were cast and welded in the as-cast condition by both gas-tungsten arc welding (GTAW) and FSW. A simple test for liquation cracking was developed, which avoided interference by solidification cracking in the nearby fusion zone. Liquation and liquation cracking in GTAW were found to be in the decreasing order of Mg-6Zn, Mg-4Zn, and Mg-2Zn. Liquation cracking occurred in FSW of Mg-6Zn but not Mg-4Zn or Mg-2Zn. Instead of a continuous ribbon-like flash connected to the weld edge, small chips, and powder covered the weld surface of Mg-6Zn. The results from GTAW and FSW were discussed in light of the binary Mg-Zn phase diagram and the curves of temperature vs fraction solid during solidification.

  14. Properties of plutonium and its alloys for use as fast reactor fuels

    NASA Astrophysics Data System (ADS)

    Hecker, Siegfried S.; Stan, Marius

    2008-12-01

    Early interest in metallic plutonium fuels for fast reactors led to much research on plutonium alloy systems including binary solid solutions with the addition of aluminum, gallium, or zirconium and low melting eutectic alloys with iron and nickel or cobalt. There was also interest in ternaries of these elements with plutonium and cerium. The solid solution and eutectic alloys have most unusual properties, including negative thermal expansion in some solid-solution alloys and the highest viscosity known for liquid metals in the Pu-Fe system. Although metallic fuels have many potential advantages over ceramic fuels, the early attempts were unsuccessful because these fuels suffered from high swelling rates during burn up and high smearing densities. The liquid metal fuels experienced excessive corrosion. Subsequent work on higher melting U-Pu-Zr metallic fuels was much more promising. In light of the recent rebirth of interest in fast reactors, we review some of the key properties of the early fuels and discuss the challenges presented by the ternary alloys.

  15. Final Report for Department of Energy Grant No. DE-FG02-02ER45997, "Alloy Design of Nanoscale Precipitation Strengthened Alloys: Design of a Heat Treatable Aluminum Alloy Useful to 400C"

    SciTech Connect

    Morris E. Fine; Gautam Ghosh; Dieter Isheim; Semyon Vaynman; Keith Knipling; Jefferson Z. Liu

    2006-05-06

    A creep resistant high temperature Al base alloy made by conventional processing procedures is the subject of this research. The Ni-based superalloys have volume fractions of cubic L1{sub 2} phase precipitates near 50%. This is not attainable with Al base alloys and the approach pursued in this research was to add L1{sub 2} structured precipitates to the Al-Ni eutectic alloy, 2.7 at. % Ni-97.3 at. % Al. The eutectic reaction gives platelets of Al{sub 3}Ni (DO{sub 11} structure) in an almost pure Al matrix. The Al{sub 3}Ni platelets give reinforcement strengthening while the L1{sub 2} precipitates strengthen the Al alloy matrix. Based on prior research and the extensive research reported here modified cubic L1{sub 2} Al{sub 3}Zr is a candidate. While cubic Al{sub 3}Zr is metastable, the stable phase is tetragonal, only cubic precipitates were observed after 1600 hrs at 425 C and they hardly coarsened at all with time at this temperature. Also addition of Ti retards the cubic to tetragonal transformation; however, a thermodynamically stable precipitate is desired. A very thorough ab initio computational investigation was done on the stability of L1{sub 2} phases of composition, (Al,X){sub 3}(Zr,Ti) and the possible occurrence of tie lines between a stable L1{sub 2} phase and the Al alloy terminal solid solution. Precipitation of cubic (Al{sub (1-x)}Zn{sub x}){sub 3}Zr in Al was predicted by these computations and subsequently observed by experiment (TEM). To test the combined reinforcement-precipitation concept to obtain a creep resistant Al alloy, Zr and Ti were added to the Al-Ni eutectic alloy. Cubic L1{sub 2} precipitates did form. The first and only Al-Ni-Zr-Ti alloy tested for creep gave a steady state creep rate at 375 C of 8 x 10{sup -9} under 20MPa stress. The goal is to optimize this alloy and add Zn to achieve a thermodynamically stable precipitate.

  16. Production of aluminum-silicon alloy and ferrosilicon and commercial purity aluminum by the direct reduction process. Third interim technical report, Phase C for the period 1980 July 1-1980 September 30

    SciTech Connect

    Bruno, M.J.

    1980-10-01

    Pilot reactor VSR-3 operation in the third quarter was directed to tapping molten alloy product. Modifications to the hearth region included a tapping furnace to maintain taphole temperature, a graphite ring filter to separate carbides from matal and an alumina liner to eliminate carbiding from reaction of alloy with the graphite hearth walls. Tapping was not successful, however, due to high alloy viscosity from a large concentration of carbides. Three runs were made on the pilot crystallizer to determine the effects of alloy composition, cooling rate, tamping rate, remelt temperature and rate on eutectic Al-Si yield.

  17. The effect of porosity and gamma-gamma-prime eutectic content on the fatigue behavior of hydrogen charged PWA 1480

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Dreshfield, R. L.; Gabb, T. P.

    1991-01-01

    The study addresses the effect of systematically varying gamma-gamma-prime eutectic content and porosity level on the fatigue life of a hydrogen-charged single crystal PWA 1480 superalloy. Four microstructural variants are produced, and differences in gamma-gamma-prime eutectic morphology among the four processing variants are analyzed. Single valued tensile test data indicate that the tensile and yield strength of the PWA 1480 are degraded by hydrogen charging, with the exception of the material given a eutectic solution treatment. It is shown that the reduction of the fatigue life can be minimized by a duplex thermomechanical treatment consisting of a eutectic solution followed by hot isostatic pressing.

  18. Solidification Behavior in Newly Designed Ni-Rich Ni-Ti-Based Alloys

    NASA Astrophysics Data System (ADS)

    Samal, Sumanta; Biswas, Krishanu; Phanikumar, Gandham

    2016-10-01

    The present investigation reports phase and microstructure evolution during solidification of novel Ni-rich Ni-Ti-based alloys, Ni60Ti40, Ni50Cu10Ti40, Ni48Cu10Co2Ti40, and Ni48Cu10Co2Ti38Ta2 during suction casting. The design philosophy of the multicomponent alloys involves judicious selection of alloying elements such as Cu, Co, and Ta in the near Ni60Ti40 eutectic alloy by replacing both Ni and Ti so that phase mixture in the microstructure remains the same from the binary to quinary alloy. The basic objective is to study the effect of addition of Cu, Co, and Ta on the phase evolution and transformation in the Ni-rich Ni-Ti-based alloys. The detailed electron microscopic studies on these suction cast alloys reveal the presence of ultrafine eutectic lamellae between NiTi and Ni3Ti phases along with dendritic NiTi and Ti2Ni phases. It has also been observed that in the binary (Ni60Ti40) alloy, the ordered NiTi (B2) phase transforms to trigonal (R) phase followed by NiTi martensitic phase (M-phase), i.e., B2 → R-phase → M-phase during solid-state cooling. However, the addition of alloying elements such as Cu, Co to the binary (Ni60Ti40) alloy suppresses the martensitic transformation of the ordered NiTi (B2) dendrite. Thus, in the ternary and quaternary alloys, the ordered NiTi (B2) phase is transformed to only trigonal (R) phase, i.e., B2 → R-phase. The secondary precipitate of Ti2Ni has been observed in all of the studied alloys. Interestingly, Ni48Cu10Co2Ti38Ta2 quinary alloy shows the disordered nature of NiTi dendrites. The experimentally observed solidification path is in good agreement with Gulliver-Scheil simulated path for binary alloy, whereas simulated solidification path deviates from the experimental results in case of ternary, quaternary, and quinary alloys.

  19. BRAZING ALLOYS

    DOEpatents

    Donnelly, R.G.; Gilliland, R.G.; Slaughter, G.M.

    1962-02-20

    A brazing alloy is described which, in the molten state, is characterized by excellent wettability and flowability and is capable of forming a corrosion-resistant brazed joint. At least one component of said joint is graphite and the other component is a corrosion-resistant refractory metal. The brazing alloy consists essentially of 40 to 90 wt % of gold, 5 to 35 wt% of nickel, and 1 to 45 wt% of tantalum. (AEC)

  20. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  1. Dissimilar joint characteristics of SiC and WC-Co alloy by laser brazing

    NASA Astrophysics Data System (ADS)

    Nagatsuka, K.; Sechi, Y.; Nakata, K.

    2012-08-01

    SiC and WC-Co alloys were joined by laser brazing with an active braze metal. The braze metal based on eutectic Ag-Cu alloy with additional Ti as an active element ranging from 0 to 2.8 mass% was sandwiched by the SiC block and WC-Co alloy plate. The brazing was carried out by selective laser beam irradiation on the WC-Co alloy plate. The content of Ti in the braze metal was required to exceed 0.6 mass% in order to form a brazed joint with a measurable shear strength. The shear strength increased with increasing Ti content up to 2.3 mass%Ti and decreased with a higher content.

  2. Thermodynamic properties of uranium in liquid gallium, indium and their alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Osipenko, A. G.

    2015-09-01

    Activity, activity coefficients and solubility of uranium was determined in gallium, indium and gallium-indium alloys containing 21.8 (eutectic), 40 and 70 wt.% In. Activity was measured at 573-1073 K employing the electromotive force method, and solubility between room temperature (or the alloy melting point) and 1073 K employing direct physical measurements. Activity coefficients were obtained from the difference of experimentally determined temperature dependencies of uranium activity and solubility. Intermetallic compounds formed in the respective alloys were characterized using X-ray diffraction. Partial and excess thermodynamic functions of uranium in the studied alloys were calculated. Liquidus lines in U-Ga and U-In phase diagrams from the side rich in gallium or indium are proposed.

  3. Elasticity, anelasticity, and microplasticity of directionally crystallized aluminum-germanium alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.; Fedorov, V. Yu.

    2014-07-01

    The structure, Young's modulus defect, and internal friction in aluminum-germanium alloys have been studied under conditions of longitudinal elastic vibrations with a strain amplitude in the range of 10-6-3 × 10-4 at frequencies about 100 kHz. The ribbon-shaped samples of the alloys with the germanium content from 35 to 64 wt % have been produced by drawing from the melt by the Stepanov method at a rate of 0.1 mm/s. It has been shown that the dependences of the Young's modulus defect, logarithmic decrement, and vibration stress amplitude on the germanium content in the alloy at a constant strain amplitude have an extremum at 53 wt % Ge. This composition corresponds to the eutectic composition. The dependences of the Young's modulus defect, the decrement, and vibration stress amplitude at a constant microstrain amplitude have been explained by the vibrational displacements of dislocations, which depend on the alloy structure.

  4. Protease activation in glycerol-based deep eutectic solvents

    PubMed Central

    Zhao, Hua; Baker, Gary A.; Holmes, Shaletha

    2011-01-01

    Deep eutectic solvents (DESs) consisting of mixtures of a choline salt (chloride or acetate form) and glycerol are prepared as easily accessible, biodegradable, and inexpensive alternatives to conventional aprotic cation-anion paired ionic liquids. These DES systems display excellent fluidity coupled with thermal stability to nearly 200 °C. In this work, the transesterification activities of cross-linked proteases (subtilisin and α-chymotrypsin), immobilized on chitosan, were individually examined in these novel DESs. In the 1:2 molar ratio mixture of choline chloride/glycerol containing 3% (v/v) water, cross-linked subtilisin exhibited an excellent activity (2.9 μmo l min−1 g−1) in conjunction with a selectivity of 98% in the transesterification reaction of N-acetyl-L-phenylalanine ethyl ester with 1-propanol. These highly encouraging results advocate more extensive exploration of DESs in protease-mediated biotransformations of additional polar substrates and use of DESs in biocatalysis more generally. PMID:21909232

  5. Properties of Polyvinylpyrrolidone in a Deep Eutectic Solvent.

    PubMed

    Sapir, Liel; Stanley, Christopher B; Harries, Daniel

    2016-05-19

    Deep eutectic solvents (DES) are mixtures of two or more components with high melting temperatures, which form a liquid at room temperature. These DES hold great promise as green solvents for chemical processes, as they are inexpensive and environmentally friendly. Specifically, they present a unique solvating environment to polymers that is different from water. Here, we use small angle neutron scattering to study the polymer properties of the common, water-soluble, polyvinylpyrrolidone (PVP) in the prominent DES formed by a 1:2 molar mixture of choline chloride and urea. We find that the polymer adopts a slightly different structure in DES than in water, so that at higher concentrations the polymer favors a more expanded conformation compared to the same concentration in water. Yet, the osmotic pressure of PVP solutions in DES is very similar to that in water, indicating that both solvents are of comparable quality and that the DES components interact favorably with PVP. The osmotic pressure measurements within this novel class of promising solvents should be of value toward future technological applications as well as for osmotic stress experiments in nonaqueous environments. PMID:26963367

  6. Assessing the toxicity and biodegradability of deep eutectic solvents.

    PubMed

    Wen, Qing; Chen, Jing-Xin; Tang, Yu-Lin; Wang, Juan; Yang, Zhen

    2015-08-01

    Deep eutectic solvents (DESs) have emerged as a new type of promising ionic solvents with a broad range of potential applications. Although their ecotoxicological profile is still poorly known, DESs are generally regarded as "green" because they are composed of ammonium salts and H-bond donors (HBDs) which are considered to be eco-friendly. In this work, cholinium-based DESs comprised of choline chloride (ChCl) and choline acetate (ChAc) as the salt and urea (U), acetamide (A), glycerol (G) and ethylene glycol (EG) as the HBD were evaluated for their toxic effects on different living organisms such as Escherichia coli (a bacterium), Allium sativum (garlic, a plant) and hydra (an invertebrate), and their biodegradabilities were assessed by means of closed bottle tests. These DESs possessed an anti-bacterial property and exhibited inhibitory effects on the test organisms adopted, depending on the composition and concentration of the DES. The mechanism for the impact of DESs and their components on different living organisms can be associated to their interactions with the cellular membranes. Not all DESs can be considered readily biodegradable. By extending the limited knowledge about the toxicity and biodegradation of this particular solvent family, this investigation on DESs provides insight into our structure-based understanding of their ecotoxicological behavior. PMID:25800513

  7. Improving agar electrospinnability with choline-based deep eutectic solvents.

    PubMed

    Sousa, Ana M M; Souza, Hiléia K S; Uknalis, Joseph; Liu, Shih-Chuan; Gonçalves, Maria P; Liu, LinShu

    2015-09-01

    Very recently our group has produced novel agar-based fibers by an electrospinning technique using water as solvent and polyvinyl alcohol (PVA) as co-blending polymer. Here, we tested the deep eutectic solvent (DES), (2-hydroxyethyl)trimethylammonium chloride/urea prepared at 1:2 molar ratio, as an alternative solvent medium for agar electrospinning. The electrospun materials were collected with an ethanol bath adapted to a previous electrospinning set-up. One weight percent agar-in-DES showed improved viscoelasticity and hence, spinnability, when compared to 1 wt% agar-in-water and pure agar nanofibers were successfully electrospun if working above the temperature of sol-gel transition (∼80 °C). By changing the solvent medium we decreased the PVA concentration (5 wt% starting solution) and successfully produced composite fibers with high agar contents (50/50 agar/PVA). Best composite fibers were formed with the 50/50 and 30/70 agar/PVA solutions. These fibers were mechanically resistant, showed tailorable surface roughness and diverse size distributions, with most of the diameters falling in the sub-micron range. Both nano and micro forms of agar fibers (used separately or combined) may have potential for the design of new and highly functional agar-based materials. PMID:26116384

  8. Use of eutectic mixture of local anesthetics in children.

    PubMed

    Dutta, S

    1999-01-01

    The Eutectic Mixture of Local Anesthetics (EMLA) is a topical application, which has proved to be a useful medication for providing pain relief among children. It is an emulsion containing a 1:1 mixture of lidocaine and prilocaine. The high concentration of the uncharged anesthetic base in the microdroplets of the emulsion ensure effective skin penetration. In the pediatric population EMLA has been shown to be efficacious when it is used prior to venipuncture, cannulation, lumbar puncture, laser treatment of port wine stains, curettage of molluscum contagiosum or vaccination. For several of these indications, the efficacy has been documented by double blind controlled trials, that have used objective and quasi-objective scales for assessing pain relief. The dose of EMLA is between 0.5 to 1 gram, and the cream should be applied half to one hour prior to the procedure. Local side effects are very mild, and the only systemic side effect of importance is the risk of methemoglobinemia in young infants. The literature has conflicting reports about the safety of EMLA in neonates.

  9. Eutectic Phases in Ice Facilitate Nonenzymatic Nucleic Acid Synthesis

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia; Monnard, Pierre-Alain; Deamer, David W.

    2001-09-01

    Polymeric compounds similar to oligonucleotides are relevant to the origin of life and particularly to the concept of an RNA world. Although short oligomers of RNA can be synthesized nonenzymatically under laboratory conditions by second-order reactions in concentrated solutions, there is no consensus on how these polymers could have been synthesized de novo on the early Earth from dilute solutions of monomers. To address this question in the context of an RNA world, we have explored ice eutectic phases as a reaction medium. When an aqueous solution freezes, the solutes become concentrated in the spaces between the ice crystals. The increased concentration offsets the effect of the lower temperature and accelerates the reaction. Here we show that in the presence of metal ions in dilute solutions, frozen samples of phosphoimidazolide-activated uridine react within days at -18°C to form oligouridylates up to 11 bases long. Product yields typically exceed 90%, and ~30% of the oligomers include one or more 3‧-5‧ linkages. These conditions facilitate not only the notoriously difficult oligouridylate synthesis, but also the oligomerization of activated cytidylate, adenylate, and guanylate. To our knowledge, this represents the first report to indicate that ice matrices on the early Earth may have accelerated certain prebiotic polymerization reactions.

  10. Microanalysis of an oxidized cobalt oxide: Zirconia eutectic

    SciTech Connect

    Bentley, J.; McKernan, S.; Carter, C.B.; Revcolevschi, A.

    1993-12-31

    The compositions of CoO, Co{sub 3}O{sub 4}, and Ca-stabilized cubic ZrO{sub 2} in an oxidized directionally solidified CoO-ZrO{sub 2} eutectic were determined by PEELS and EDS. An oxygen gradient exists across the Co{sub 3}O{sub 4} with highest levels near the ZrO{sub 2} interface. Oxygen ELNES for CoO and Co{sub 3}O{sub 4} are quite different; published oxygen ELNES have been incorrectly attributed to CoO. Normalized Co-L{sub 23} white line intensity (WLI) ratios for CoO and Co{sub 3}O{sub 4} are similar (0.53 {plus_minus} 0.02) but L{sub 3}/L{sub 2} WLI ratios are 3.88 and 2.58, respectively. ELCE data suggest Co{sub 3}O{sub 4} has the inverse spinel structure.

  11. Effect of Mg2Sn Intermetallic on the Grain Refinement in As-cast AM Series Alloy

    NASA Astrophysics Data System (ADS)

    She, J.; Pan, F. S.; Hu, H. H.; Tang, A. T.; Yu, Z. W.; Song, K.

    2015-08-01

    In the present work, in order to investigate the grain refinement mechanism of AM containing Sn alloys, the as-cast AM60, AM90 alloys, and the alloys with addition of 1 wt.% Sn were fabricated by traditional casting, respectively. During the solidification of AM + Sn alloys, the morphology of divorced eutectic Mg17Al12 was refined by Mg2Sn intermetallic that served as the heterogeneous nucleation cores. The modified Mg17Al12 effectively restricted the grain growth and resulted in a grain refinement. As a result, the yield strength of as-cast AM alloys was significantly enhanced by addition of Sn, while the ductility also improved. Moreover, the edge-to-edge model was employed to predict the orientation relationship between Mg17Al12 and Mg2Sn.

  12. Development and Processing of Nickel Aluminide-Carbide Alloys

    NASA Technical Reports Server (NTRS)

    Newport, Timothy Scott

    1996-01-01

    With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system

  13. The experimental study of the polonium-210 release from Li17-Pb83 eutectic

    SciTech Connect

    Schipakin, O.; Borisov, N.; Churkin, S.

    1994-12-31

    The polonium contamination hazard arise as a result of accidental Po-210 release from breeding blanket material - melted Li17Pb83 eutectic - in the environment. The experimental study of Po-210 release rates from eutectic were carry out in atmosphere of noble gases and air with different humidity in 1992-1993. In these experiments used method of carrier-gas flowing above melted eutectic surface. The main findings presented by RDIPE and Karpov Institute are: (1) The polonium-210 release rate strongly increase with eutectic temperature from 150 to 450{degrees}C. (2) The Po-210 release rate in the noble carrier-gas is in proportion with polonium concentration in eutectic in studied range from 10{sup {minus}7} to 10{sup {minus}4} Ci/g. (3) The Po-210 release rate in air remarkably effected by the surface oxide film also. (4) In these experiments for the first time were studied differently gaseous and aerosol polonium-210 fractions release rates. The experimental results and corresponding estimates showed needs the technological and accidental cleaning systems equipped by complex filters of gaseous and aerosols polonium-210 forms.

  14. An aluminum-germanium eutectic structure for silicon wafer bonding technology

    NASA Astrophysics Data System (ADS)

    Perez-Quintana, I.; Ottaviani, G.; Tonini, R.; Felisari, L.; Garavaglia, M.; Oggioni, L.; Morin, D.

    2005-08-01

    An aluminum-germanium eutectic bonding technology has been used to uniformly bond two silicon wafers for MEMS packaging at temperatures as low as 450 °C, well below the aluminum-silicon eutectic temperature (577 °C). A device silicon wafer has been put in contact with a cap wafer where an aluminum film covered by a germanium film has been thermally evaporated. The annealing has been performed in a vacuum furnace under uniaxial pressure variable from 1.8 up to 30 kbar. The samples have been analyzed with various analytical techniques. 4He+ MeV Rutherford Backscattering Spectrometry (RBS) has been used to measure the thicknesses of the deposited films and to follow the aluminum-germanium intermixing, Scanning Acoustic Microscope (SAM) to control the uniformity of the bonding, Scanning Electron Microscope (SEM) associated with electron induced X-ray fluorescence to analyze composition, morphology and elements distribution in the film between the two bonded wafers. The temperatures for the annealing were selected above and below the Ge-Al the eutectic temperature. At temperatures below the eutectic no-bonding has been obtained for any applied pressure. Above the eutectic bonding occurs. The formation of a liquid film is mandatory to obtain a reproducible and robust bonding. The pressure is necessary to improve the contacts between the two wafers; its role in the metallurgy of the bonding needs to be explored.

  15. Thermal storage in ammonium alum/ammonium nitrate eutectic for solar space heating

    SciTech Connect

    Goswami, D.Y.; Jotshi, C.K.; Klausner, J.F.; Hsieh, C.K.; Srinivasan, N.

    1995-10-01

    Ammonium alum and ammonium nitrate in the weight ratio of 1:1 forms a eutectic that melts at 53 C and crystallizes at 48 C. The latent heat of fusion of this eutectic was found to be 215 kJ/kg. Its enthalpy as measured by drop calorimetry was found to be 287 kJ/kg in the temperature range of 24--65 C, which is 1.67 times greater than water (172.2 kJ/kg) and 8.75 times greater than rock (32.8 kJ/kg). Upon several heating/cooling cycles, phase separation was observed. However, by adding 5% attapulgite clay to this eutectic mixture, phase separation was prevented. This eutectic was encapsulated in 0.0254m diameter HDPE hollow balls and subjected to about 1,100 heating/cooling cycles in the temperature range between 25 and 65 C. At the end of these cycles, the decrease in enthalpy was found to be 5%. A scale model of the heat storage unit was fabricated to investigate the heat transfer characteristics of this eutectic encapsulated in HDPE balls. The thermal extraction efficiency of the system was measured with the recirculation of hot air during charging and was found to be in the range of 85--98%.

  16. Re-evaluation of the eutectic region of the LiBr-KBr-LiF system

    SciTech Connect

    Redey, L.; Guidotti, R.A.

    1996-05-01

    The separator pellet in a thermal battery consists of electrolyte immobilized by a binder (typically, MgO powder). The melting point of the electrolyte determines the effective operating window for its use in a thermal battery. The development of a two-hour thermal battery required the use of a molten salt that had a lower melting point and larger liquidus range than the LiCl-KCl eutectic which melts at 352 C. Several candidate eutectic electrolyte systems were evaluated for their suitability for this application. One was the LiCl-LiBr-KBr eutectic used at Argonne National Laboratories for high-temperature rechargeable batteries for electric-vehicle applications. Using a custom-designed high-temperature conductivity cell, the authors were able to readily determine the liquidus region for the various compositions studied around the original eutectic for the LiBr-KBr-LiF system. The actual eutectic composition was found to be 60.0 m/o LiBr-37.5 m/o KBr-2.5 m/o LiF with a melting point of 324 {+-} 0.5 C.

  17. PU/SS EUTECTIC ASSESSMENT IN 9975 PACKAGINGS IN A STORAGE FACILITY DURING EXTENDED FIRE

    SciTech Connect

    Gupta, N.

    2012-03-26

    In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410 C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410 C. This paper discusses the thermal models and the results for the extended fire conditions (1500 F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.

  18. Phase behavior of elastin-like synthetic recombinamers in deep eutectic solvents.

    PubMed

    Nardecchia, Stefania; Gutiérrez, María C; Ferrer, M Luisa; Alonso, Matilde; López, Isabel M; Rodríguez-Cabello, J Carlos; del Monte, Francisco

    2012-07-01

    Deep eutectic solvents promoted the stabilization of the collapsed state of elastin-like recombinamers - and the subsequent formation of aggregates - upon the loss of the structural water molecules involved in hydrophobic hydration. Cryo-etch scanning electron microscopy allowed the observation of these aggregates in neat deep eutectic solvents. The suppression of the lower critical solution temperature transition, observed by differential scanning calorimetry and dynamic light scattering, confirmed the presence of the elastin-like recombinamers in their collapsed state. Actually, the transition from the collapsed to the expanded state was suppressed even after moderate aqueous dilution - for water contents ranging from nil to ca. 45 wt % - and it was only recovered upon further addition of water - above 50 wt %. These features revealed the preferred stabilization of the collapsed state in not only neat deep eutectic solvents but also partially hydrated deep eutectic solvents. We consider that the capability to trigger the lower critical solution temperature transition by partial hydration of deep eutectic solvent may open interesting perspectives for nano(bio)technological applications of elastin-like recombinamers. PMID:22632070

  19. Construction and Characterization of Mini-ruthenium-Carbon Eutectic Cells for Industrial Use

    NASA Astrophysics Data System (ADS)

    Diril, A.; Bourson, F.; Parga, C.; Sadli, M.

    2015-12-01

    High-temperature eutectic fixed points have proved to be convenient tools for temperature scale dissemination and thermometer calibrations/checks at temperatures above 1100°C. In order to investigate the feasibility of metal-carbon eutectic cells in industrial applications as a means for assessing the traceability of non-contact thermometers, a batch of cells was constructed at LNE-Cnam, NPL, and TUBITAK UME. Compared to the usual dimensions of high-temperature fixed point cells (45 mm in length × 24 mm in diameter), a new cell design was created to fit with industrial applications. TUBITAK UME constructed and characterized five ruthenium-carbon (Ru-C) eutectic cells of dimensions 24 mm in length × 24 mm in diameter. One of these cells has been selected and characterized at CEA premises. Ru-C eutectic cells have been evaluated in terms of short-term repeatability, reproducibility, furnace effect, sharp temperature ramps, and the effect of cell location. Measurements at TÜBİTAK UME have been performed with a transfer standard pyrometer calibrated at the copper point and a BB3500pg high-temperature blackbody furnace was used for construction and measurement. For the measurements at CEA, a Land Standard—HIMERT S1 radiation thermometer and a VITI induction furnace were used. In this article results of the measurements at TÜBİTAK UME and CEA will be presented. The possible use of these mini-eutectic cells as industrial temperature standards will be discussed.

  20. Experimental and Numerical Modeling of Segregation in Metallic Alloys

    NASA Astrophysics Data System (ADS)

    Mosbah, S.; Bellet, M.; Gandin, Ch.-A.

    2010-03-01

    Electromagnetic levitation (EML) has been used as an experimental technique for investigating the effect of the nucleation and cooling rate on segregation and structure formation in metallic alloys. The technique has been applied to aluminum-copper alloys. For all samples, the primary phase nucleation has been triggered by the contact of the levitated droplet with an alumina plate at a given undercooling. Based on the recorded temperature curves, the heat extraction rate and the nucleation undercooling for the primary dendritic and the secondary eutectic structures have been determined. Metallurgical characterizations have consisted of composition measurements using a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectrometry and the analysis of SEM images. The distribution maps drawn for the composition, the volume fraction of the eutectic structure, and the dendrite arm spacing (DAS) reveal strong correlations. Analysis of the measurements with the help of a cellular-automaton (CA)-finite-element (FE) model is also proposed. The model involves a new coupling scheme between the CA and FE methods and a segregation model accounting for diffusion in the solid and liquid phases. Extensive validation of the model has been carried out on a typical equiaxed grain configuration, i.e., considering the free growth of a mushy zone in an undercooled melt. It demonstrates its capability of dealing with mass exchange inside and outside the envelope of a growing primary dendritic structure. The model has been applied to predict the temperature curve, the segregation, and the eutectic volume fraction obtained upon single-grain nucleation and growth from the south pole of a spherical domain with and without triggering of the nucleation of the primary solid phase, thus simulating the solidification of a levitated droplet. Predictions permit a direct interpretation of the measurements.

  1. Molten metal processing of advanced cast aluminum alloys

    NASA Astrophysics Data System (ADS)

    Shivkumar, S.; Wang, L.; Apelian, D.

    1991-01-01

    Premium quality aluminum alloy castings are used extensively in various applications requiring a high strength-to-weight ratio, such as aerospace, automotive and other structural components. The mechanical properties in these structure-sensitive alloys are determined primarily by the secondary dendrite arm spacing and the morphology of interdendritic phases. In addition, the amount of porosity in the casting and the inclusion concentration have a strong influence on fracture, fatigue and impact properties. During the production of the casting, various molten metal processing techniques can be implemented to control these microstructural parameters. These melt treatments include grain refinement with Ti-B, eutectic modification with strontium or sodium, degassing with purge gases and filtration of inclusions. The efficiency of these treatments determines the quality of the cast component.

  2. The effects of microstructural control on the mechanical behavior of Cr{sub 2}Nb-based alloys

    SciTech Connect

    Cook, J.A.; Liaw, P.K.; Liu, C.T.

    1995-08-01

    Microstructural evaluations and mechanical testing of Laves-phase alloys based on Cr{sub 2}Nb were examined in order to optimize microstructural and mechanical properties by thermomechanical treatment at temperatures up to 1600{degrees}C. At ambient temperatures, single-phase Cr{sub 2}Nb alloys are very hard and brittle due to the complicated crystal structure (C-15). The following results were revealed through examination of the Cr-Cr{sub 2}Nb two-phase region: (a) with increasing amounts of the soft chromium-rich phase, the compression strength and hardness decrease; (b) the annealing treatments studied thus far provided the best break-up of the coarse/brittle Laves-containing eutectic phase in the 94 at.% Cr - 6 at.% Nb (CN-7) alloy; (c) two different anneals, 1 hour at 1600{degrees}C + 4 hours at 1200{degrees}C and 4 hours at 1550{degrees}C + 2 days at 1200{degrees}C, lead to a substantial improvement in the room temperature strength and compressive ductility over previous annealing treatments. Hot Isostatic Pressing has led to only a marginal reduction in casting defects and refinement of the eutectic structure. A combination of hot forging and annealing has been initially promising in refining the brittle eutectic structure.

  3. Identification of salt-alloy combinations for thermal energy storage applications in advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Misra, A. K.

    1987-01-01

    Thermodynamic calculations based on the available data for flouride salt systems reveal that a number of congruently melting compositions and eutectics exist which have the potential to meet the lightweight, high energy storage requirements imposed for advanced solar dynamic systems operating between about 1000 and 1400 K. Compatibility studies to determine suitable containment alloys to be used with NaF-22CaF2-13MgF2, NaF-32CaF2, and NaF-23MgF2 have been conducted at the eutectic temperature + 25 K for each system. For these three NaF-based eutectics, none of the common, commercially available high temperature alloys appear to offer adequate corrosion resistance for a long lifetime; however mild steel, pure nickel and Nb-1Zr could prove useful. These latter materials suggest the possibility that a strong, corrosion resistant, nonrefractory, elevated temperature alloy based on the Ni-Ni3Nb system could be developed.

  4. Study on Pressurized Solidification Behavior and Microstructure Characteristics of Squeeze Casting Magnesium Alloy AZ91D

    NASA Astrophysics Data System (ADS)

    Han, Zhiqiang; Pan, Haowei; Li, Yanda; Luo, Alan A.; Sachdev, Anil K.

    2015-02-01

    Squeeze casting technology for magnesium alloys has a great application potential in automobile manufacturing and has received increasing attention from both academic and industrial communities. In this study, the pressurized solidification behavior of magnesium alloy AZ91D in squeeze casting process was investigated using computer-aided cooling curve analysis (CA-CCA). It was found that the applied pressure increased both the start and end temperatures of primary α-Mg formation but had little effect on the sizes of temperature ranges. Moreover, the applied pressure increased the start temperature and decreased the end temperature of eutectic reaction during the solidification, resulting in a larger temperature range of eutectic reaction compared with solidification under atmospheric pressure. The grains were remarkably refined, and the eutectic fraction increased with increasing applied pressure. The dendritic microstructure with a larger secondary dendrite arm spacing (SDAS) was observed under a higher applied pressure at the central part of the experimental casting. By correlating the CA-CCA and SDAS data, it was found that SDAS and the cooling rate at the maximum α-Mg growth could be fit into the power law equation in classic solidification theories.

  5. Effect of Cr on Microstructure and Properties of a Series of AlTiCr x FeCoNiCu High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, Anmin; Ma, Ding; Zheng, Qifeng

    2014-04-01

    A series of AlTiCr x FeCoNiCu ( x: molar ratio, x = 0.5, 1.0, 1.5, 2.0, 2.5) high-entropy alloys (HEAs) were prepared by vacuum arc furnace. These alloys consist of α-phase, β-phase, and γ-phase. These phases are solid solutions. The structure of α-phase and γ-phase is face-centered cubic structure and that of β-phase is body-centered cubic (BCC) structure. There are four typical cast organizations in these alloys such as petal organization (α-phase), chrysanthemum organization (α-phase + β-phase), dendrite (β-phase), and inter-dendrite (γ-phase). The solidification mode of these alloys is affected by Chromium. If γ-phase is not considered, AlTiCr0.5FeCoNiCu and AlTiCrFeCoNiCu belong to hypoeutectic alloys; AlTiCr1.5FeCoNiCu, AlTiCr2.0FeCoNiCu, and AlTiCr2.5FeCoNiCu belong to hypereutectic alloys. The cast organizations of these alloys consist of pro-eutectic phase and eutectic structure (α + β). Compact eutectic structure and a certain amount of fine β-phase with uniform distribution are useful to improve the microhardness of the HEAs. More γ-phase and the microstructure with similar volume ratio values of α-phase and β-phase improve the compressive strength and toughness of these alloys. The compressive fracture of the series of AlTiCr x FeCoNiCu HEAs shows brittle characteristics, suggesting that these HEAs are brittle materials.

  6. The use of a directional solidification technique to investigate the interrelationship of thermal parameters, microstructure and microhardness of Bi–Ag solder alloys

    SciTech Connect

    Spinelli, José Eduardo; Silva, Bismarck Luiz; Cheung, Noé; Garcia, Amauri

    2014-10-15

    Bi–Ag alloys have been stressed as possible alternatives to replace Pb-based solder alloys. Although acceptable melting temperatures and suitable mechanical properties may characterize such alloys, as referenced in literature, there is a lack of comprehension regarding their microstructures (morphologies and sizes of the phases) considering a composition range from 1.5 to 4.0 wt.%Ag. In order to better comprehend such aspects and their correlations with solidification thermal parameters (growth rate, v and cooling rate, T-dot), directional solidification experiments were carried out under transient heat flow conditions. The effects of Ag content on both cooling rate and growth rate during solidification are examined. Microstructure parameters such as eutectic/dendritic spacing, interphase spacing and diameter of the Ag-rich phase were determined by optical microscopy and scanning electron microscopy. The competition between eutectic cells and dendrites in the range from 1.5 to 4.0 wt.%Ag is explained by the coupled zone concept. Microhardness was determined for different microstructures and alloy Ag contents with a view to permitting correlations with microstructure parameters to be established. Hardness is shown to be directly affected by both solute macrosegregation and morphologies of the phases forming the Bi–Ag alloys, with higher hardness being associated with the cellular morphology of the Bi-2.5 and 4.0 wt.%Ag alloys. - Highlights: • Asymmetric zone of coupled growth for Bi–Ag is demonstrated. • Faceted Bi-rich dendrites have been characterized for Bi–1.5 wt.%Ag alloy. • Eutectic cells were shown for the Bi-2.5 and 4.0 wt.%Ag solder alloys. • Interphase spacing relations with G × v are able to represent the experimental scatters. • Hall-Petch type equations are proposed relating microstructural spacings to hardness.

  7. Emulsification Of Eutectic Salt Mixtures In Fluid Vehicles

    NASA Astrophysics Data System (ADS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Hawkins, T. W.

    1988-05-01

    High-internal-phase-volume emulsions of 75 volt 3/18/79 potassium iodide/sodium iodide/ urea model eutectic salt mixture in 83.5/16.5 Sartomer R-45HT hydroxy-terminated polybutadi-ene/Nujol mineral oil binder mixture were prepared at 60°C using water-in-oil emulsifiers and cured with isophorone diisocyanate or Desmodur N-100. The Nujol mineral oil enhanced the emulsification with a negligible reduction in the tensile properties of the cured elastomer. The average emulsion droplet sizes were ca. 200 nm initially, but increased slowly during curing to 500-1000 nm. The coalescence of the emulsion droplets followed the second-order dependence predicted by the von Smoluchowski diffusion-controlled flocculation; the rate constants were 1.05x10-18 and 9.58x10-18 cc/droplet-sec for dirnethyldioctadecylammonium bromide and Span 85 sorbitan trioleate, respectively. The isophorone diisocyanate reacted with emulsifiers containing primary hydroxyl or amine groups, to give unstable emulsions or no emulsions at all. Dimethyldioctadecylammonium bromide with no primary hydroxyl or amine groups, however, did not react with isocyanates and gave stable emulsions. The reaction of the R-45HT hydroxy-terminated polybutadiene with isophorone diisocyanate followed the expec-ted second-order kinetics with a rate constant of 3.42x10-4 liters/mole-sec at 60°C. The tensile properties of the cured elastomers and emulsions generally increased with increasing NCO/OH ratio up to 1.6/1.0. With increasing volume fraction of dispersed phase, the maximum stress (tensile strength) decreased, the maximum strain (percent elongation) increased, and the initial modulus (tensile modulus) decreased, in contrast to the behavior of conventional filled polymer systems; however, the maximum stresses were in accord with theoretical values for a filled polymer in which the filler particles bear no load, the initial moduli were in accord with the predictions of an isostrain model, and the maximum strain increased

  8. Directional solidification of the alumina-zirconia ceramic eutectic system

    SciTech Connect

    Boldt, C.

    1994-07-27

    It is possible to produce alumina-zirconia ceramic samples through existing solidification techniques. The resulting microstructures typically consist of rods of zirconia in an alumina matrix, although a lamellar structure has been noted in some cases. In nearly all cases, colony growth was present which may possibly result from grain size, repeated nucleation events, and lamellar oscillations. In the same vein, it appears that the amount of impurities within the system might be the underlying cause for the colony growth. Colony growth was diminished through impurity control as the higher purity samples exhibited colony free behavior. In addition to colony formations, faceted alumina dendrites or nonfaceted zirconia dendrites may result in the ceramic if the sample is solidified out of the coupled zone. In all cases, for larger-sized Bridgman samples, a lower limit in the eutectic spacing was noted. The solidification model which includes the kinetic effect has been developed, although the effect appears to be negligible under present experimental conditions. A spacing limit might also occur due to the result of heat flow problems. Heat flow out of the ceramic is difficult to control, often causing radial and not axial growth. This behavior is exaggerated in the presence of impurities. Thus, higher purity powders should always be used. Higher purity samples, in addition to yielding a more microstructurally uniform ceramic, also showed increased directionality. In the future, the kinetic model needs to be examined in more detail, and further research needs to be accomplished in the area of molten ceramics. Once better system constants are in place, the kinetic model will give a better indication of the behavior in the alumina-zirconia system.

  9. Deep eutectic solvents as novel extraction media for protein partitioning.

    PubMed

    Zeng, Qun; Wang, Yuzhi; Huang, Yanhua; Ding, Xueqin; Chen, Jing; Xu, Kaijia

    2014-05-21

    Four kinds of green deep eutectic solvent (DES) were synthesized, including choline chloride (ChCl)-urea, tetramethylammonium chloride (TMACl)-urea, tetrapropylammonium bromide (TPMBr)-urea and ChCl-methylurea. An aqueous two-phase system (ATPS) based ChCl-urea DES was studied for the first time for the extraction of bovine serum albumin (BSA). Single factor experiments proved that the extraction efficiency of BSA was influenced by the mass of the DES, concentration of K2HPO4 solution, separation time and extraction temperature. The optimum conditions were determined through an orthogonal experiment with the four factors described above. The results showed that under the optimum conditions, the average extraction efficiency could reach up to 99.94%, 99.72%, 100.05% and 100.05% (each measured three times). The relative standard deviations (RSD) of extraction efficiencies in precision, repeatability and stability experiments were 0.5533% (n = 5), 0.8306% (n = 5) and 0.9829% (n = 5), respectively. UV-vis and FT-IR spectra confirmed that there were no chemical interactions between BSA and the DES in the extraction process, and the CD spectra proved that the conformation of BSA did not change after extraction. The conductivity, DLS and TEM were combined to investigate the microstructure of the top phase and the possible mechanism for the extraction. The results showed that hydrophobic interactions, hydrogen bonding interactions and the salting-out effect played important roles in the transfer process, and the aggregation and surrounding phenomenon were the main driving forces for the separation. All of these results proved that ionic liquid (IL)-based ATPSs could potentially be substituted with DES-based ATPSs to offer new possibilities in the extraction of proteins. PMID:24699681

  10. Substrate-enhanced supercooling in AuSi eutectic droplets.

    PubMed

    Schülli, T U; Daudin, R; Renaud, G; Vaysset, A; Geaymond, O; Pasturel, A

    2010-04-22

    The phenomenon of supercooling in metals-that is, the preservation of a disordered, fluid phase in a metastable state well below the melting point-has led to speculation that local atomic structure configurations of dense, symmetric, but non-periodic packing act as the main barrier for crystal nucleation. For liquids in contact with solids, crystalline surfaces induce layering of the adjacent atoms in the liquid and may prevent or lower supercooling. This seed effect is supposed to depend on the local lateral order adopted in the last atomic layers of the liquid in contact with the crystal. Although it has been suggested that there might be a direct coupling between surface-induced lateral order and supercooling, no experimental observation of such lateral ordering at interfaces is available. Here we report supercooling in gold-silicon (AuSi) eutectic droplets, enhanced by a Au-induced (6 x 6) reconstruction of the Si(111) substrate. In situ X-ray scattering and ab initio molecular dynamics reveal that pentagonal atomic arrangements of Au atoms at this interface favour a lateral-ordering stabilization process of the liquid phase. This interface-enhanced stabilization of the liquid state shows the importance of the solid-liquid interaction for the structure of the adjacent liquid layers. Such processes are important for present and future technologies, as fluidity and crystallization play a key part in soldering and casting, as well as in processing and controlling chemical reactions for microfluidic devices or during the vapour-liquid-solid growth of semiconductor nanowires.

  11. Orientational Jumps in (Acetamide + Electrolyte) Deep Eutectics: Anion Dependence.

    PubMed

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2015-08-27

    All-atom molecular dynamics simulations have been carried out to investigate orientation jumps of acetamide molecules in three different ionic deep eutectics made of acetamide (CH3CONH2) and lithium salts of bromide (Br(–)), nitrate (NO3(–)) and perchlorate (ClO4(–)) at approximately 80:20 mole ratio and 303 K. Orientational jumps have been dissected into acetamide–acetamide and acetamide–ion catagories. Simulated jump characteristics register a considerable dependence on the anion identity. For example, large angle jumps are relatively less frequent in the presence of NO3(–) than in the presence of the other two anions. Distribution of jump angles for rotation of acetamide molecules hydrogen bonded (H-bonded) to anions has been found to be bimodal in the presence of Br(–) and is qualitatively different from the other two cases. Estimated energy barrier for orientation jumps of these acetamide molecules (H-bonded to anions) differ by a factor of ∼2 between NO3(–) and ClO4(–), the barrier height for the latter being lower and ∼0.5kBT. Relative radial and angular displacements during jumps describe the sequence ClO(4)– > NO3(–) > Br(–) and follow a reverse viscosity trend. Jump barrier for acetamide–acetamide pairs reflects weak dependence on anion identity and remains closer to the magnitude (∼0.7kBT) found for orientation jumps in molten acetamide. Jump time distributions exhibit a power law dependence of the type, P(tjump) ∝ A(tjump/τ)(−β), with both β and τ showing substantial anion dependence. The latter suggests the presence of dynamic heterogeneity in these systems and supports earlier conclusions from time-resolved fluorescence measurements. PMID:26131593

  12. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials. PMID:27124392

  13. Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-11-22

    Mixtures of solid chemicals may become liquid under certain conditions. These liquids are characterized by the formation of strong ionic (ionic liquids) or hydrogen bonds (deep eutectic solvents). Due to their extremely low vapor pressure, they are now widely used in polymer chemistry and synthetic organic chemistry, yet little attention has been paid to their use as extraction solvents of natural products. This review summarizes the preparation of ionic liquids and deep eutectic solvents with natural product components and recent progress in their applications to the extraction and analysis of natural products as well as the recovery of extracted compounds from their extracts. Additionally, various factors affecting extraction features of ionic liquids and deep eutectic solvents, as well as potential useful technologies including microwave and ultrasound to increase the extraction efficiency, are discussed.

  14. Studies on physicochemical properties of the eutectic and monotectic in the urea—p. chloronitrobenzene system

    NASA Astrophysics Data System (ADS)

    Rai, U. S.; Rai, R. N.

    1996-12-01

    The phase diagram of an organic analog of a nonmetal—nonmetal-type system involving urea and p. chloronitrobenzene shows the formation of a eutectic (0.982 mole fraction of p. chloronitrobenzene) and a monotectic (0.020 mole fraction of p. chloronitrobenzene) with a liquid miscibility gap in the system. The linear velocity of crystallization ( v) data determined at different undercoolings ( ΔT) by measuring the rate of advance of an interface in a capillary obey the Hillig—Turnbull equation, v = u( ΔT) n, where u and n are constants depending on the solidification behaviour of the materials involved. From the enthalpy of fusion of the pure components, the eutectic and the monotectic, enthalpy of mixing, excess thermodynamic functions, entropy of fusion and interfacial energy were calculated. Optical microphotographs of the eutectic and monotectic give their characteristic features.

  15. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  16. Computer simulation, thermodynamic and microstructural studies of benzamide benzoic acid eutectic system

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Das, S. S.; Singh, N. P.; Agrawal, Tanvi

    2008-05-01

    Phase diagram of benzamide-benzoic acid system has been studied by the thaw-melt method. Linear velocities of crystallization of the components and the eutectic mixture were determined at different undercoolings. Values of the heat of fusion were obtained from DSC studies. Excess Gibbs free energy, excess enthalpy and excess entropy of mixing were calculated. In order to know the nature of interaction between the two components, FT-IR spectral analyses were done. In addition to these studies, computer simulation has been done to obtain an idea about the interaction energy and the optimized geometry of the eutectic mixture. Microstructural studies showed the formation of an irregular structure in the eutectic mixture, which changed with aging and on addition of impurities.

  17. Effect of Ag-content on structure, corrosion behaviour and mechanical properties of Sn-9Zn lead-free solder alloy

    NASA Astrophysics Data System (ADS)

    Said Gouda, El; Abdel Aziz, H.; El Gendy, Y.; Saad Allah, F.; Hammam, M.

    2010-12-01

    The effect of (0.5-3.5) wt.% Ag additions on microstructure, melting, corrosion and mechanical properties of Sn-9Zn eutectic lead-free solder alloy has been studied and analyzed. The study included X-ray diffraction and scanning electron microscopy (SEM) to identify the microstructure of these alloys. The results showed that, continuous additions of Ag caused formation of Ag-Zn and Ag-Sn compounds which led to decrease the precipitations of Zn in Sn-matrix. These compounds led to increase the melting point of the alloys, which confirmed by the formation of small endothermic peaks in the higher temperature range followed the main peak of the DTA curves. Also, the DTA measurements confirmed that the alloy of composition Sn-9Zn-3.5Ag is the ternary eutectic alloy. Vicker's micro-hardness number of Sn-9Zn alloy increases with small additions of 0.5 and 1 wt.% Ag. Furthermore, it decreases to lower values with further increase of Ag content. Also, micro-creep behaviour, creep rate and corrosion behaviour of the Sn-9Zn-Ag alloys have been measured at room temperature.

  18. Mechanical Strength and Failure Characteristics of Cast Mg-9 pctAl-1 pctZn Alloys Produced by a Heated-Mold Continuous Casting Process: Tensile Properties

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Ohfuji, Hiroaki

    2014-11-01

    The mechanical properties and failure characteristics of a cast Mg alloy (AZ91: Mg-Al8.9-Zn0.6-Mn0.2) produced by a heated-mold continuous casting process (HMC) are investigated. In a modification of the original HMC process, the cooling of the liquid alloy by direct water spray is carried out in an atmosphere of high-purity argon gas. The HMC-AZ91 alloy exhibits excellent mechanical properties (high strength and high ductility) that are about twice as high as those for the same alloy produced by conventional gravity casting. The increased material strength and ductility of the HMC sample are attributed to nanoscale and microscale microstructural characteristics. The fine grains and tiny spherical eutectic structures ( e.g., Mg17Al12 and Al6Mn) distributed randomly in the matrix of the HMC alloy result in resistance to dislocation movement, leading to high tensile strength. Basal slip on (0001) planes in the relatively organized crystal orientation of the HMC alloy, as well as grain boundary sliding through tiny spherical eutectic structures, results in high ductility. Details of the failure mechanism under static loading in the HMC alloy are also discussed using failure models.

  19. In situ synchrotron tomographic investigation of the solidification of an AlMg4.7Si8 alloy

    PubMed Central

    Tolnai, D.; Townsend, P.; Requena, G.; Salvo, L.; Lendvai, J.; Degischer, H.P.

    2012-01-01

    The solidification sequence of an AlMg4.7Si8 alloy is imaged in situ by synchrotron microtomography. Tomograms with (1.4 μm)3/voxel have been recorded every minute while cooling the melt from 600 °C at a cooling rate of 5 K min−1 to 540 °C in the solid state. The solidification process starts with the three-dimensional evolution of the α-Al dendritic structure at 590 °C. The growth of the α-Al dendrites is described by curvature parameters that represent the coarsening quantitatively, and ends in droplet-like shapes of the secondary dendrite arms at 577 °C. There, the eutectic valley of α-Al/Mg2Si is reached, forming initially octahedral Mg2Si particles preferentially at the bases of the secondary dendrite arms. The eutectic grows with seaweed-like Mg2Si structures, with increasing connectivity. During this solidification stage Fe-aluminides form and expand as thin objects within the interdendritic liquid. Finally, the remaining liquid freezes as ternary α-Al/Mg2Si/Si eutectic at 558 °C, increasing further the connectivity of the intermetallic phases. The frozen alloy consists of four phases exhibiting morphologies characteristic of their mode of solidification: α-Al dendrites, eutectic α-Al/Mg2Si “Chinese script” with Fe-aluminides, and interpenetrating α-Al/Mg2Si/Si ternary eutectic. PMID:23470958

  20. HRTEM and TEM studies of amorphous structures in ZrNiTiCu base alloys obtained by rapid solidification or ball milling.

    PubMed

    Dutkiewicz, J; Lityńska, L; Maziarz, W; Kocisko, R; Molnarová, M; Kovácová, A

    2009-01-01

    Amorphous structure of Ti(25)Zr(17)Ni(29)Cu(29) composition was studied. Alloys were prepared either by rapid solidification using melt spinning or by high-energy ball milling. The composition of multi-component eutectic in slowly cooled samples of ZrNiTiCu alloy was determined using EDS measurements in scanning microscope of slowly cooled cast samples. The alloys of eutectic composition were melt-spun or ball-milled. Transmission electron microscopy (TEM) studies of melt-spun ribbons from alloys near eutectic composition did not show presence of nanocrystals within the amorphous structure. TEM studies of ball-milled powders showed presence of nanocrystallites of size 2-5 nm. The electron diffraction pattern showed intense diffused ring due to the presence of the amorphous phase and a weak spot due to crystalline phases which were difficult to identify. The high temperature high-pressure compaction in vacuum of amorphous ball-milled powders resulted in a similar structure like in the powders showing nanocrystals embedded in the amorphous matrix. The crystallites were imaged using HREM. Interplanar distances were measured in pictures obtained by inverse fast Fourier transform (IFFT) of atomic planes to obtain better contrast. Analysis of the IFFT from high-resolution micrographs allowed to identify Cu(10)Zr(7) phase. Point analysis and elemental mapping performed using nondispersive X-ray energy spectroscopy showed uniform elements distribution indicating that chemical segregation to nanocrystals is within measurement error. PMID:18614372

  1. Thermal Parameters and Microstructural Development in Directionally Solidified Zn-Rich Zn-Mg Alloys

    NASA Astrophysics Data System (ADS)

    Vida, Talita A.; Freitas, Emmanuelle S.; Brito, Crystopher; Cheung, Noé; Arenas, Maria A.; Conde, Ana; De Damborenea, Juan; Garcia, Amauri

    2016-06-01

    Transient directional solidification experiments have been carried out with Zn-Mg hypoeutectic alloys under an extensive range of cooling rates with a view to analyzing the evolution of microstructure. It is shown that the microstructure is formed by a Zn-rich matrix of different morphologies and competitive eutectic mixtures (Zn-Zn11Mg2 and Zn-Zn2Mg). For 0.3 wt-pct Mg and 0.5 wt-pct Mg alloys, the Zn-rich matrix is shown to be characterized by high-cooling rates plate-like cells (cooling rates >9.5 and 24 K/s, respectively), followed by a granular-dendritic morphological transition for lower cooling rates. In contrast, a directionally solidified Zn1.2 wt-pct Mg alloy casting is shown to have the Zn-rich matrix formed only by dendritic equiaxed grains. Experimental growth laws are proposed relating the plate-like cellular interphase, the secondary dendritic arm spacing, and the eutectic interphase spacings to solidification thermal parameters, i.e., cooling rate and growth rate. The experimental law for the growth of secondary dendritic spacings under unsteady-state solidifications is also shown to encompass results of hypoeutectic Zn-Mg alloys subjected to steady-state Bridgman growth.

  2. Modeling of microstructure evolution of magnesium alloy during the high pressure die casting process

    NASA Astrophysics Data System (ADS)

    Wu, Mengwu; Xiong, Shoumei

    2012-07-01

    Two important microstructure characteristics of high pressure die cast magnesium alloy are the externally solidified crystals (ESCs) and the fully divorced eutectic which form at the filling stage of the shot sleeve and at the last stage of solidification in the die cavity, respectively. Both of them have a significant influence on the mechanical properties and performance of magnesium alloy die castings. In the present paper, a numerical model based on the cellular automaton (CA) method was developed to simulate the microstructure evolution of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. Modeling of dendritic growth of magnesium alloy with six-fold symmetry was achieved by defining a special neighbourhood configuration and calculating of the growth kinetics from complete solution of the transport equations. Special attention was paid to establish a nucleation model considering both of the nucleation of externally solidified crystals in the shot sleeve and the massive nucleation in the die cavity. Meanwhile, simulation of the formation of fully divorced eutectic was also taken into account in the present CA model. Validation was performed and the capability of the present model was addressed by comparing the simulated results with those obtained by experiments.

  3. Rapid solidification mechanism of highly undercooled ternary Cu40Sn45Sb15 alloy

    NASA Astrophysics Data System (ADS)

    Zhai, W.; Wang, B. J.; Lu, X. Y.; Wei, B.

    2015-10-01

    The rapid solidification of ternary Cu40Sn45Sb15 peri-eutectic type alloy was realized by glass fluxing and drop tube methods, and the corresponding maximum undercoolings are 185 K (0.22 T L) and 321 K (0.39 T L), respectively. The phase constitution of Cu40Sn45Sb15 alloy in these two rapid solidification experiments deviates from the two equilibrium phases (Sn + Cu6Sn5). In glass fluxing method, the structural morphology of Cu40Sn45Sb15 alloy is mainly characterized by a three-layer lamellar structure, which is comprised by an inner layer of long strips of primary ɛ(Cu3Sn) phase, an intermediate layer of η(Cu6Sn5) phase and an outer layer of β(SnSb) phase. As undercooling rises, this lamellar structure is remarkably refined. When small alloy droplets are containerlessly solidified during free fall in drop tube, the primary ɛ(Cu3Sn) phase grows by non-faceted mode into dendrites as droplet diameter decreases. Especially, solidification path alters in the smallest droplet with 50 μm diameter, in which η(Cu6Sn5) and Sn3Sb2 phases form directly from the metastable liquid phase by suppressing the primary ɛ phase formation and the following peri-eutectic transformation.

  4. Inelasticity and precipitation of germanium from a solid solution in Al-Ge binary alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.

    2015-08-01

    The influence of precipitation of germanium atoms in a solid solution on the dependence of the inelasticity characteristics on the germanium content in aluminum-germanium alloys prepared by directional crystallization has been studied. It has been shown that the Young's modulus defect, the amplitude-dependent decrement, and the microplastic flow stress at a specified cyclic strain amplitude have extreme values at the eutectic germanium content in the alloy. The eutectic composition of the alloy undergoes a ductilebrittle transition. It has been found that there is a correlation between the dependences of the Young's modulus defect, amplitude-dependent decrement, microplastic flow stress, and specific entropy of the exothermal process of germanium precipitation on the germanium content in the hypoeutectic alloy. The concentration dependences of the inelasticity characteristics and their changes after annealing have been explained by the change in the resistance to the motion of intragrain dislocations due to different structures of the Guinier-Preston zones formed during the precipitation of germanium atoms.

  5. Numerical study of the effect of the shape of the phase diagram on the eutectic freezing temperature

    SciTech Connect

    Ode, M.; Shimono, M.; Sasajima, N.; Yamada, Y.; Bloembergen, P.

    2013-09-11

    To evaluate the reliability of metal-carbon eutectic systems as fixed points for the next generation of high-temperature standards the effect of thermodynamic properties related to the shape of eutectic phase diagram on the freezing temperature is investigated within the context of the numerical multi-phase-field model. The partition coefficient and liquidus slopes of the two solids involved in the eutectic reaction are varied deliberately and independently. The difference between the eutectic temperature and the freezing temperature is determined in dependence of the solid/liquid (s/l) interface shape and concentration. Where appropriate reference is made to the Jackson-Hunt analytical theory. It is shown that there are mainly two typical conditions to decrease the undercooling: 1) a small liquidus slope and 2) the associated difference between the eutectic composition and the liquid composition during solidification.

  6. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  7. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique

    PubMed Central

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (Tg) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and −31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully. PMID:27366064

  8. Structural and phonon transmission study of Ge-Au-Ge eutectically bonded interfaces

    SciTech Connect

    Knowlton, W.B. |

    1995-07-01

    This thesis presents a structural analysis and phonon transparency investigation of the Ge-Au-Ge eutectic bond interface. Interface development was intended to maximize the interfacial ballistic phonon transparency to enhance the detection of the dark matter candidate WIMPs. The process which was developed provides an interface which produces minimal stress, low amounts of impurities, and insures Ge lattice continuity through the interface. For initial Au thicknesses of greater than 1,000 {angstrom} Au per substrate side, eutectic epitaxial growth resulted in a Au dendritic structure with 95% cross sectional and 90% planar Au interfacial area coverages. In sections in which Ge bridged the interface, lattice continuity across the interface was apparent. Epitaxial solidification of the eutectic interface with initial Au thicknesses < 500 A per substrate side produced Au agglomerations thereby reducing the Au planar interfacial area coverage to as little as 30%. The mechanism for Au coalescence was attributed to lateral diffusion of Ge and Au in the liquid phase during solidification. Phonon transmission studies were performed on eutectic interfaces with initial Au thicknesses of 1,000 {angstrom}, 500 {angstrom}, and 300 {angstrom} per substrate side. Phonon imaging of eutectically bonded samples with initial Au thicknesses of 300 {angstrom}/side revealed reproducible interfacial percent phonon transmissions from 60% to 70%. Line scan phonon imaging verified the results. Phonon propagation TOF spectra distinctly showed the predominant phonon propagation mode was ballistic. This was substantiated by phonon focusing effects apparent in the phonon imaging data. The degree of interface transparency to phonons and resulting phonon propagation modes correlate with the structure of the interface following eutectic solidification. Structural studies of samples with initial Au thickness of 1,000 {angstrom}/side appear to correspond with the phonon transmission study.

  9. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique.

    PubMed

    Phaechamud, Thawatchai; Tuntarawongsa, Sarun

    2016-01-01

    Eutectic solvent can solubilize high amount of some therapeutic compounds. Volatile eutectic solvent is interesting to be used as solvent in the preparation of nanosuspension with emulsion solvent evaporation technique. The mechanism of transformation from the eutectic emulsion to nanosuspension was investigated in this study. The 30% w/w ibuprofen eutectic solution was used as the internal phase, and the external phase is composed of Tween 80 as emulsifier. Ibuprofen nanosuspension was prepared by eutectic emulsion solvent evaporating method followed with ultrasonication. During evaporation process, the ibuprofen concentration in emulsion droplets was increased leading to a drug supersaturation but did not immediately recrystallize because of low glass transition temperature (T g) of ibuprofen. The contact angle of the internal phase on ibuprofen was apparently lower than that of the external phase at all times of evaporation, indicating that the ibuprofen crystals were preferentially wetted by the internal phase than the external phase. From calculated dewetting value ibuprofen crystallization occurred in the droplet. Crystallization of the drug was initiated with external mechanical force, and the particle size of the drug was larger due to Ostwald ripening. Cavitation force from ultrasonication minimized the ibuprofen crystals to the nanoscale. Particle size and zeta potential of formulated ibuprofen nanosuspension were 330.87±51.49 nm and -31.1±1.6 mV, respectively, and exhibited a fast dissolution. Therefore, the combination of eutectic emulsion solvent evaporation method with ultrasonication was favorable for fabricating an ibuprofen nanosuspension, and the transformation mechanism was attained successfully.

  10. Top-view approach for in-situ observation of growth morphology in bulk transparent organic alloys

    NASA Astrophysics Data System (ADS)

    Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2012-08-01

    A new experimental method for in-situ observation of microstructure formation in top view during unidirectional solidification of bulk, transparent, organic alloys is presented. This method allows observing growth patterns over an extended interface area with high resolution and minimal optical aberrations. With (D)camphor-neopentylglycol-succinonitrile (DC-NPG-SCN) alloys a series of unidirectional solidification experiments were performed in order to validate the set-up. By means of multi-focus exposition eutectic cells were observed over a depth of several millimeters, followed by 3D reconstruction of their shape. The method also allows capturing the integral interface dynamics and measuring its relative undercooling.

  11. The influence of isothermal annealing on the molybdenum fibers of a directed solid gamma/gamma prime - alpha alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Wirth, G.; Owen, R.

    1980-01-01

    The mechanical characteristics of the directed solid eutectic Ni-Al-Mo (gamma/gamma prime)-alpha alloy at high temperatures make it useful in the blades of gas turbines. Structural changes are observed for the alloy under isothermal annealing, particularly the formation of molybdenum plates at the grain boundary and an increase of the gamma phase in relation to the gamma prime phase. Molybdenum lamellas appear at the grain boundary above 1100 C which can have a negative influence on the mechanical properties. The change in the structure near the grain boundary with the increase in temperature is illustrated through a sequence of pictures.

  12. Microstructural study of the nickel-base alloy WAZ-20 using qualitative and quantitative electron optical techniques

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1973-01-01

    The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.

  13. Microstructure characterization and micro- and nanoscale mechanical behaviour of magnesium-aluminum and magnesium-aluminum-calcium alloys

    NASA Astrophysics Data System (ADS)

    Han, Lihong

    The application in the automotive industry of the as-cast AM50 alloy (Mg-5.0 wt.%%Al-0.3 wt.%Mn) has been limited by its low creep resistance at elevated temperatures. Permanent mold cast (PM) Mg-Al-Ca alloys with calcium additions (0 ˜ 2.0 wt.%) were investigated in this study due to their potential for improving the high temperature creep strength. The microstructures of the die cast (DC) or PM AM50 alloys consisted of an intergranular beta-Mg17Al12 phase surrounded by a region of Al-rich eutectic alpha-Mg phase, sometimes with attached Al8Mn5 particles. In this study, significant grain refinement was observed in the PM Mg-Al-Ca alloys with Ca addition to the AM50 alloy. The grain refining effect was confirmed by quantitative image analysis through measurement of the secondary dendrite arm spacing (SDAS). The intergranular phases in Mg-Al-Ca alloys with 0.5 or 1.0 wt.% Ca were beta-Mg17Al 12 and (Al, Mg)2Ca phases. As the Ca addition was increased to 1.5 wt.% Ca, the (beta-Mg17Al12 phase was completely replaced by a (Al, Mg)2Ca phase. Differential scanning calorimetry (DSC) results showed that the (Al, Mg)2Ca phase was thermally more stable than the beta-Mg 17Al12 phase, which contributed to the better creep strength of the Mg-Al-Ca alloys. The change in heating/cooling rates played an important role in the redistribution of alloying elements and the dissolution or precipitation of the eutectic phases in the as-cast Mg alloys during DSC runs. The micro- and nano-scale hardness and composite modulus of the PM Mg-Al-Ca alloys increased with increasing Ca content, and the indentation size effect (ISE) was also observed in the as-cast Mg-Al and Mg-Al-Ca alloys. PM AC52 alloy (Mg-5.0wt.%Al-2.0wt.%Ca) was a much more creep resistant alloy than other Mg-Al-Ca alloys with lower Ca contents because of the higher solute content in the primary alpha-Mg in the as-cast state and also because of the presence of nano precipitates within the primary alpha-Mg. The size and

  14. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes.

    PubMed

    Pena-Pereira, Francisco; Namieśnik, Jacek

    2014-07-01

    In recent years, ionic liquids and deep eutectic mixtures have demonstrated great potential in extraction processes relevant to several scientific and technological activities. This review focuses on the applicability of these sustainable solvents in a variety of extraction techniques, including but not limited to liquid- and solid-phase (micro) extraction, microwave-assisted extraction, ultrasound-assisted extraction and pressurized liquid extraction. Selected applications of ionic liquids and deep eutectic mixtures on analytical method development, removal of environmental pollutants, selective isolation, and recovery of target compounds, purification of fuels, and azeotrope breaking are described and discussed.

  15. On the peritectoid Ti{sub 3}Si formation in Ti-Si alloys

    SciTech Connect

    Ramos, Alfeu Saraiva . E-mail: alfeu@univap.br; Nunes, Carlos Angelo; Coelho, Gilberto Carvalho

    2006-03-15

    Ti-13.5Si and Ti-25Si (at.%) alloys have been arc-melted from high-purity raw materials, using a water-cooled copper hearth, a non-consumable tungsten electrode, and under an Ar atmosphere gettered by titanium. The cast ingots were then heat-treated for 90 h at 1000 and 1100 deg. C in an inert atmosphere, and both the as-cast and the heat-treated alloys were characterized using scanning electron microscopy and an energy dispersive microanalysis system. The as-cast Ti-13.5Si alloy presented a eutectic microstructure composed of the Ti{sub SS} and Ti{sub 5}Si{sub 3} phases, while the microstructure of the as-cast Ti-25Si alloy showed the presence of large primary precipitates of Ti{sub 5}Si{sub 3} in a eutectic matrix of Ti{sub SS} and Ti{sub 5}Si{sub 3}. Subsequent heat treatment at 1100 deg. C produced no significant microstructural modifications in the Ti-25Si alloy, and it is suggested that the presence of the large primary precipitates of Ti{sub 5}Si{sub 3} contributed to a reduction in the kinetics of Ti{sub 3}Si formation. In the Ti-13.5Si alloys, the formation of Ti{sub 3}Si was not observed after heat treatment at 1000 deg. C, but a large amount of Ti{sub 3}Si was found after heat treatment at 1100 deg. C, confirming its existence in Ti-Si alloys containing low interstitial contents.

  16. Heat Treatment of AZ91D Mg-Al-Zn Alloy: Microstructural Evolution and Dynamic Response

    NASA Astrophysics Data System (ADS)

    Luong, Dung D.; Shunmugasamy, Vasanth Chakravarthy; Cox, James; Gupta, Nikhil; Rohatgi, Pradeep K.

    2013-11-01

    Magnesium alloys are attracting great interest from the automotive industry because of the potential for weight reduction. An AZ91D cast alloy was studied in the current work to understand the effect of heat treatment on the microstructure and dynamic compressive properties. The selected heat treatments include solution treatment (T4) and solution treatment followed by aging (T6). The as-cast alloy microstructure consists of intermetallic β-phase (Mg17Al12) precipitates surrounded by α + β lamellar eutectic in α-Mg solid solution. The AZ91D-T4 specimens showed small β-phase precipitates along the grain boundaries and regions of eutectic mixture. The T6 heat treatment causes the β-phase platelets in the α + β eutectic to grow and develop into β-precipitates. The difference in the phase morphology reflects into the mechanical properties. The Vickers hardness of the T6 heat-treated specimens was 3.6% higher than the as-cast alloy. The compressive yield strengths of T4 and T6 treated specimens were 1.3% and 43.1% higher than those of as-cast specimens. The high strain rate compression testing resulted in increase in the strength with strain rate for the T4 and T6 specimens. A maximum increase of 42% was observed in T6 specimen tested at a strain rate of 4,000/s in comparison to the quasi-static compression. Under high strain rate compression testing, the T6 heat-treated specimens showed failure of the β-precipitates resulting in increased energy absorption in comparison to the quasi-static compression.

  17. How polar are choline chloride-based deep eutectic solvents?

    PubMed

    Pandey, Ashish; Rai, Rewa; Pal, Mahi; Pandey, Siddharth

    2014-01-28

    Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in

  18. How polar are choline chloride-based deep eutectic solvents?

    PubMed

    Pandey, Ashish; Rai, Rewa; Pal, Mahi; Pandey, Siddharth

    2014-01-28

    Developing and characterizing green solvents with low toxicity and cost is one of the most important issues in chemistry. Deep Eutectic Solvents (DESs), in this regard, have shown tremendous promise. Compared to popular organic solvents, DESs possess negligible VOCs and are non-flammable. Compared to ionic liquids, which share many characteristics but are ionic compounds and not ionic mixtures, DESs are cheaper to make, much less toxic and mostly biodegradable. An estimate of the polarity associated with DESs is essential if they are to be used as green alternatives to common organic solvents in industries and academia. As no one physical parameter can satisfactorily represent solute-solvent interactions within a medium, polarity of DESs is assessed through solvatochromic optical spectroscopic responses of several UV-vis absorbance and molecular fluorescence probes. Information on the local microenvironment (i.e., the cybotactic region) that surrounds several solvatochromic probes [betaine dye, pyrene, pyrene-1-carboxaldehyde, 1-anilino-8-naphthalene sulfonate (ANS), p-toluidinyl-6-naphthalene sulfonate (TNS), 6-propionyl-2-(dimethylaminonaphthalene) (PRODAN), coumarin-153, and Nile Red] for four common and popular DESs formed from choline chloride combined with 1,2-ethanediol, glycerol, urea, and malonic acid, respectively, in 1 : 2 molar ratios termed ethaline, glyceline, reline, and maline is obtained and used to assess the effective polarity afforded by each of these DESs. The four DESs as indicated by these probe responses are found to be fairly dipolar in nature. Absorbance probe betaine dye and fluorescence probes ANS, TNS, PRODAN, coumarin-153, and Nile Red, whose solvatochromic responses are based on photoinduced charge-transfer, imply ethaline and glyceline, DESs formed using alcohol-based H-bond donors, to be relatively more dipolar in nature as compared to reline and maline. The pyrene polarity scale, which is based on polarity-induced changes in

  19. Experimental and calculated phases in two as-cast and annealed Mg-Zn-Y alloys

    SciTech Connect

    Farzadfar, S.A.; Sanjari, M.; Jung, I.-H.; Essadiqi, E.; Yue, S.

    2012-01-15

    The CALPHAD (Calculation of Phase Diagram) method was used to select ternary alloys from Mg-Zn-Y system, aimed at determining the role of precipitates in the microstructure and texture evolution of Mg during and after deformation. The selected alloys are Mg-6Zn-1.2Y and Mg-5Zn-2Y. The constituent phases in the as-cast Mg-6Zn-1.2Y alloy are {alpha}-Mg solid solution phase and I (Mg{sub 3}YZn{sub 6}) intermetallic phase. The as-cast Mg-5Zn-2Y alloy is composed of {alpha}-Mg, I and W (Mg{sub 3}Y{sub 2}Zn{sub 3}) phases. The intermetallics in the two alloys form by eutectic reaction, which in Mg-5Zn-2Y alloy results in initially W-phase formation and ultimately I-phase formation during solidification. After heat treatment, the Mg-6Zn-1.2Y and Mg-5Zn-2Y alloys contain nearly the same amount of ternary intermetallics (I and W phases, respectively) in equilibrium with {alpha}-Mg solid solution phase. The main solute in {alpha}-Mg phase is Zn with the same amount in the two alloys. The type and quantity of the phases obtained experimentally disagree with the results obtained from the thermodynamic database. One important discrepancy is that, in Mg-6Zn-1.2Y alloy, the I phase is not stable at the temperature of 430 Degree-Sign C, and that the W phase is the stable phase at this temperature. The differences in the experimental and calculated data indicate that the Mg-Zn-Y system requires to be reassessed with more experimental data. - Highlights: Black-Right-Pointing-Pointer Mg-6Zn-1.2Y and Mg-5Zn-2Y alloys were selected by FactSage Trade-Mark-Sign Thermodynamic software. Black-Right-Pointing-Pointer The I and W intermetallics in the two alloys form by eutectic reaction. Black-Right-Pointing-Pointer The alloys contain similar amounts of different intermetallics in equilibrium with {alpha}-Mg. Black-Right-Pointing-Pointer In Mg-6Zn-1.2Y, the I phase is not stable at the temperature of 430 Degree-Sign C. Black-Right-Pointing-Pointer The hardness of W phase is determined to be

  20. Simulating the Effect of Space Vehicle Environments on Directional Solidification of a Binary Alloy

    NASA Technical Reports Server (NTRS)

    Westra, D. G.; Heinrich, J. C.; Poirier, D. R.

    2003-01-01

    Space microgravity missions are designed to provide a microgravity environment for scientific experiments, but these missions cannot provide a perfect environment, due to vibrations caused by crew activity, on-board experiments, support systems (pumps, fans, etc.), periodic orbital maneuvers, and water dumps. Therefore, it is necessary to predict the impact of these vibrations on space experiments, prior to performing them. Simulations were conducted to study the effect of the vibrations on the directional solidification of a dendritic alloy. Finite element ca!cu!attie?ls were dme with a simd2titcr based on a continuum model of dendritic solidification, using the Fractional Step Method (FSM). The FSM splits the solution of the momentum equation into two steps: the viscous intermediate step, which does not enforce continuity; and the inviscid projection step, which calculates the pressure and enforces continuity. The FSM provides significant computational benefits for predicting flows in a directionally solidified alloy, compared to other methods presently employed, because of the efficiency gains in the uncoupled solution of velocity and pressure. finite differences, arises when the interdendritic liquid reaches the eutectic temperature and concentration. When a node reaches eutectic temperature, it is assumed that the solidification of the eutectic liquid continues at constant temperature until all the eutectic is solidified. With this approach, solidification is not achieved continuously across an element; rather, the element is not considered solidified until the eutectic isotherm overtakes the top nodes. For microgravity simulations, where the convection is driven by shrinkage, it introduces large variations in the fluid velocity. When the eutectic isotherm reaches a node, all the eutectic must be solidified in a short period, causing an abrupt increase in velocity. To overcome this difficulty, we employed a scheme to numerically predict a more accurate value

  1. Diffusion Bonding Behavior and Characterization of Joints Made Between 316L Stainless Steel Alloy and AZ31 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Elthalabawy, Waled Mohamed

    The 316L austenitic stainless steel and AZ31 magnesium alloy have physical and mechanical properties which makes these alloys suitable in a number of high technology based industries such as the aerospace and automotive sectors. However, for these alloys to be used in engineering applications, components must be fabricated and joined successfully. The differences in the physical and metallurgical properties between these two alloys prevents the use of conventional fusion welding processes commonly employed in aerospace and transport industry. Therefore, alternative techniques need to be developed and diffusion bonding technology is a process that has considerable potential to join these two dissimilar alloys. In this research work both solid-state and transient liquid phase (TLP) bonding processes were applied. The solid-state bonding of 316L steel to AZ31 magnesium alloy was possible at a bonding temperature of 550°C for 120 minutes using a pressure of 1.3 MPa. The interface characterization of the joint showed a thin intermetallic zone rich in Fe-Al was responsible for providing a metallurgical bond. However, low joint shear strengths were recorded and this was attributed to the poor surface to surface contact. The macro-deformation of the AZ31 alloy prevented the use of higher bonding pressures and longer bonding times. In order to overcome these problems, the TLP bonding process was implemented using pure Cu and Ni foils as interlayers which produced a eutectic phase at the bonding temperature. This research identified the bonding mechanism through microstructural and differential scanning calorimetry investigations. The microstructural characterization of the TLP joints identified intermetallics which became concentrated along the 316L steel/AZ31 bond interface due to the "pushing effect" of the solid/liquid interface during isothermal solidification stage of bonding. The size and concentration of the intermetallics had a noticeable effect on the final joint

  2. Analysis and control of microstructure in binary alloys

    NASA Astrophysics Data System (ADS)

    Lee, Kyuyong

    When metallic alloys solidify, various microstructures form inside the alloys. Most solidified alloys have a polycrystalline structure, which is an assembly of crystalline grains with boundaries between any two grains. Each grain is a single crystal with a unique crystalline orientation. Many physical properties of polycrystalline alloys are determined by the arrangement of these grains and grain boundaries. During solidification of a single crystal, microstructures with even smaller microscopic lengthscales form, such as dendritic and eutectic structures. The physical properties of single crystal alloys are largely influenced by the lengthscales of these structures. Therefore, the understanding and control of microstructure formation in solidification is important in order to achieve desired properties. Microstructures form while the system is not in equilibrium. What microstructures form is not based on minimization of free energy of the system, but depends on the dynamics of the solidification process, which is the focus of our study. We used an alloy model system, succinonitrile-coumarin152 (SCN-C152), to experimentally investigate dynamic selection and control of grain boundary structures and dendritic structures in binary alloys. We found that in a temperature gradient the grain boundaries drift toward the high temperature region in addition to the migration due to grain coarsening. We show how we can control grain boundary orientations by generating local temperature gradient through UV or laser heatings. We show that perturbations also permit accurate control of the microstructure within a single crystal during the directional solidification process. Dendritic patterns can be controlled either by guiding the initial formation of the pattern or by triggering subcritical transitions between stable microstructures. We also investigated the role of surface tension anisotropy on the stability of cellular/dendritic arrays using three crystals of different growth

  3. Evaluation of directionally solidified eutectic superalloys for turbine blade applications

    NASA Technical Reports Server (NTRS)

    Henry, M. E.; Jackson, M. R.; Walter, J. L.

    1978-01-01

    Alloys from the following systems were selected for property evaluation: (1) gamma/gamma-Mo (Ni-base, rods of Mo); (2) gamma-beta (Ni-base, lamellae or rods of (Ni, Fe/Co Al); and (3) gamma-gamma (Ni-base rods of Ni3Al gamma). The three alloys were subjected to longitudinal and transverse tensile and rupture tests from 750 C to 1100 C, longitudinal shear strength was measured at several temperatures, resistance to thermal cycling to 1150 C was determined, cyclic oxidation resistance was evaluated at 750 C and 1100 C, and each system was directionally solidified in an alumina shell mold turbine shape to evaluate mold/metal reactivity. The gamma/gamma Mo system has good rupture resistance, transverse properties and processability, and is a high potential system for turbine blades. The gamma-beta system has good physical properties and oxidation resistance, and is a potential system for turbine vanes. The gamma-gamma system has good high temperature rupture resistance and requires further exploratory research.

  4. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng

    2014-10-11

    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction.

  5. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    PubMed

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used. PMID:15776808

  6. Solidification and microstructures of binary ice-I/hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Kirby, S.H.; Rieck, K.D.; Stern, L.A.

    2007-01-01

    The microstructures of two-phase binary aggregates of ice-I + salt-hydrate, prepared by eutectic solidification, have been characterized by cryogenic scanning electron microscopy (CSEM). The specific binary systems studied were H2O-Na2SO4, H2O-MgSO4, H2O-NaCl, and H2O-H2SO4; these were selected based on their potential application to the study of tectonics on the Jovian moon Europa. Homogeneous liquid solutions of eutectic compositions were undercooled modestly (??T - 1-5 ??C); similarly cooled crystalline seeds of the same composition were added to circumvent the thermodynamic barrier to nucleation and to control eutectic growth under (approximately) isothermal conditions. CSEM revealed classic eutectic solidification microstructures with the hydrate phase forming continuous lamellae, discontinuous lamellae, or forming the matrix around rods of ice-I, depending on the volume fractions of the phases and their entropy of dissolving and forming a homogeneous aqueous solution. We quantify aspects of the solidification behavior and microstructures for each system and, with these data articulate anticipated effects of the microstructure on the mechanical responses of the materials.

  7. Use of Eutectic Fixed Points to Characterize a Spectrometer for Earth Observations

    NASA Astrophysics Data System (ADS)

    Salim, Saber G. R.; Fox, Nigel P.; Woolliams, Emma R.; Winkler, Rainer; Pegrum, Heather M.; Sun, Tong; Grattan, Ken T. V.

    2007-12-01

    A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight, and uses a photodiode array. It has good stray light rejection and wide spectral coverage, allowing simultaneous measurements from 400 to 900 nm. The spectrometer is traceable to NPL’s primary standard cryogenic radiometer via a high-temperature metal-carbon eutectic fixed-point blackbody. Once the fixed-point temperature has been determined (using filter radiometry), the eutectic provides a high emissivity and high stability source of known spectral radiance over the emitted spectral range. All wavelength channels of the spectrometer can be calibrated simultaneously using the eutectic transition without the need for additional instrumentation. The spectrometer itself has been characterized for stray light performance and wavelength accuracy. Its long-term and transportation stability has been proven in an experiment that determined the “World’s Bluest Sky”—a process that involved 56 flights, covering 100,000 km in 72 days. This vicarious calibration methodology using a eutectic standard is presented alongside the preliminary results of an evaluation study of the spectrometer characteristics.

  8. Deep eutectic solvents as novel extraction media for phenolic compounds from model oil.

    PubMed

    Gu, Tongnian; Zhang, Mingliang; Tan, Ting; Chen, Jia; Li, Zhan; Zhang, Qinghua; Qiu, Hongdeng

    2014-10-11

    Deep eutectic solvents (DES) as a new kind of green solvent were used for the first time to excellently extract phenolic compounds from model oil. It was also proved that DES could be used to extract other polar compounds from non-polar or weakly-polar solvents by liquid-phase microextraction. PMID:25144155

  9. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, Doru M.

    2003-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid liquid interface used in their treatment. Based on the predictions of this modified theory, the traditional definitions of regular and irregular eutectics are revised. For regular eutectics, the new model identifies a range of spacing within the limits defined by the minimum undercooling of the a and beta phases. For the irregular Al-Si eutectic system, two different spacing selection mechanisms were identified: (1) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda (sub t); (2) the average spacing (lambda (sub av) greater than lambda (sub t) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model, a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed. The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  10. A New Analytical Approach to Predict Spacing Selection in Lamellar and Rod Eutectic Systems

    NASA Technical Reports Server (NTRS)

    Catalina, Adrian V.; Sen, Subhayu; Stefanescu, D. M.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The Jackson and Hunt (JH) theory has been modified to relax the assumption of isothermal solid/liquid interface(SLI) used in their treatment. Based on the predictions of this modified theory the traditional definitions of regular and irregular eutectics are revised. For regular eutectics the new model identifies a range of spacing within the limits defined by the minimum undercooling of the alpha and beta phase. For the irregular Al-Si eutectic system two different spacing selection mechanisms were identified: a) for a particular growth rate, a nearly isothermal interface can be achieved at a unique minimum spacing lambda(sub I); b) the average spacing (lambda(sub av) greater than lambda(sub I)) is essentially dictated by the undercooling of the faceted phase. Based on the modified theoretical model a semiempirical expression has been developed to account for the influence of the temperature gradient, which is dominant in the irregular Al-Si system. The behavior of the Fe-Fe3C eutectic is also discussed The theoretical calculations have been found to be in good agreement with the published experimental measurements.

  11. Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion.

    PubMed

    Crawford, D E; Wright, L A; James, S L; Abbott, A P

    2016-03-18

    Mechanochemical synthesis has been applied to the rapid synthesis of Deep Eutectic Solvents (DESs), including Reline 200 (choline chloride : urea, 1 : 2), in a continuous flow methodology by Twin Screw Extrusion (TSE). This gave products in higher purity and with Space Time Yields (STYs), four orders of magnitude greater than for batch methods. PMID:26911554

  12. Characterization of thermal behavior of deep eutectic solvents and their potential as drug solubilization vehicles.

    PubMed

    Morrison, Henry G; Sun, Changquan C; Neervannan, Sesha

    2009-08-13

    Deep eutectic solvent (DES) is a new class of solvents typically formed by mixing choline chloride with hydrogen bond donors such as amines, acids, and alcohols. Most DES's are non-reactive with water, biodegradable, and have acceptable toxicity profiles. Urea-choline chloride and malonic acid-choline chloride eutectic systems were characterized using differential scanning calorimetry (DSC) and thermal microscopy. A potential new 2:1 urea-choline chloride cocrystal with a melting point of 25 degrees C was characterized at the eutectic composition. The formation of this cocrystal suggests that DES should not be universally explained by simple eutectic melting, and may be useful in guiding the search for new DES systems. The lack of nucleation of the malonic acid-choline chloride system prohibited the construction of a phase diagram for this system using DSC. We also investigated possible uses of DES in solubilizing poorly soluble compounds for enhanced bioavailability in early drug development such as toxicology studies. For five poorly soluble model compounds, solubility in DES is 5 to 22,000 folds more than that in water. Thus, DES can be a promising vehicle for increasing exposure of poorly soluble compounds in preclinical studies. PMID:19477257

  13. A novel group of quaternary ammonium salts as ionic liquids and deep eutectic solvents

    NASA Astrophysics Data System (ADS)

    Sparrow, Christopher R.

    2011-12-01

    A growing number of non-toxic and biodegradable deep eutectic solvents (DES) have been discovered in recent years. This group encompasses the solidified crystalline material 3-(2-aminopyrimidin-1-yl)propanoate (3-2AP), a primary ammonium cation that is a construct of a typical DES. Synthesis of 3-(2-aminopyrimidin-1-yl)propanoate by quarternerization of the amine in the aromatic ring creates a novel deep eutectic solvent. An additional alteration to the DES construct is observed with the formation of a zwitterion between the positively charged quartenary amine group and the negatively charged carboxylate counter ion. The molecular arrangement, or construct, of a deep eutectic solvent will determine both its structure and application in industry. This report describes the synthesis and characterization of an 80:20 urea/3-2AP eutectic mixture with a melting point of 50°C, nearly 120°C lower than the melting temperature of 3-2AP (172.5°C). A cytotoxicity profile for 3-2AP exposed to A549 bronchoaveolar carcinoma cells revealed an LD50 of 337.65 mug/ml.

  14. The binary eutectic of NSAIDS and two-phase liquid system for enhanced membrane permeation.

    PubMed

    Yuan, Xudong; Capomacchia, A C

    2005-01-01

    The eutectic properties of binary mixtures of some nonsteroidal anti-inflammatory drugs (NSAIDs) with ibuprofen were studied using differential scanning calorimetry (DSC) and phase equilibrium diagrams. The melting points of selected NSAIDs were significantly depressed due to binary eutectic formation with ibuprofen. Ketoprofen and ibuprofen were selected to study the effect of eutectic formation on membrane permeation using Franz diffusion cells and snake skin as the model membrane. The presence of aqueous isopropyl alcohol (IPA) was necessary to completely transform the solid drugs into an oily state at ambient temperature. As much as the 99.6% of ibuprofen and the 88.8% of ketoprofen added were found in the oily phase of the two-phase liquid system formed when aqueous IPA was added to the eutectic mixture. Due to the high drug concentration in the oily phase, and maximum thermodynamic activity, the two-phase liquid system showed enhanced membrane permeation rates of ibuprofen (37.5 microg/cm2/hr) and ketoprofen (33.4 microg/cm2/hr) compared to other reference preparations used.

  15. A novel LiCl-BaCl2:Eu2+ eutectic scintillator for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Wu, Yuntao; Lukosi, Eric D.; Zhuravleva, Mariya; Lindsey, Adam C.; Melcher, Charles L.

    2015-10-01

    A natLiCl-BaCl2:Eu2+ eutectic scintillator was synthesized by the vertical Bridgman method aiming at the application of thermal neutron detection. The molar ratio of LiCl and BaCl2 was 75.1/24.9, which corresponds to the eutectic composition in the LiCl-BaCl2 system. The grown eutectic showed a periodic microstructure of BaCl2:Eu2+ and LiCl phases with 2-3 μm thickness. The α-particle induced radioluminescence spectrum of the scintillator showed an intense emission peak at 406 nm due to the Eu2+ 5d1→4f emission from the BaCl2:Eu2+ phase and an additional weak emission peak at 526 nm. The scintillation decay time was 412 ns. LiCl-BaCl2:Eu2+ eutectic samples exhibited non-correlated neutron detection efficiency and light yield as a function of crystal length, suggesting material non-uniformities within the boule. The relative light yield was equal to or greater than that of Nucsafe lithium glass. Gamma-ray exposures indicate that gamma/neutron threshold discrimination for higher energy gamma-rays will be limited.

  16. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-08-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  17. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading

    NASA Astrophysics Data System (ADS)

    Berent, Katarzyna; Pstruś, Janusz; Gancarz, Tomasz

    2016-04-01

    The problems associated with the corrosion of aluminum connections, the low mechanical properties of Al/Cu connections, and the introduction of EU directives have forced the potential of new materials to be investigated. Alloys based on eutectic Zn-Al are proposed, because they have a higher melting temperature (381 °C), good corrosion resistance, and high mechanical strength. The Zn-Al-Si cast alloys were characterized using differential scanning calorimetry (DSC) measurements, which were performed to determine the melting temperatures of the alloys. Thermal linear expansion and electrical resistivity measurements were performed at temperature ranges of -50 to 250 °C and 25 to 300 °C, respectively. The addition of Si to eutectic Zn-Al alloys not only limits the growth of phases at the interface of liquid solder and Cu substrate but also raises the mechanical properties of the solder. Spreading test on Cu substrate using eutectic Zn-Al alloys with 0.5, 1.0, 3.0, and 5.0 wt.% of Si was studied using the sessile drop method in the presence of QJ201 flux. Spreading tests were performed with contact times of 1, 8, 15, 30, and 60 min, and at temperatures of 475, 500, 525, and 550 °C. After cleaning the flux residue from solidified samples, the spreadability of Zn-Al-Si on Cu was determined. Selected, solidified solder/substrate couples were cross-sectioned, and the interfacial microstructures were studied using scanning electron microscopy and energy dispersive x-ray spectroscopy. The growth of the intermetallic phase layer was studied at the solder/substrate interface, and the activation energy of growth of Cu5Zn8, CuZn4, and CuZn phases were determined.

  18. Slip transfer and dislocation nucleation processes in multiphase ordered Ni-Fe-Al alloys

    SciTech Connect

    Misra, A.; Bibala

    1999-04-01

    Directionally solidified (DS) alloys with the nominal composition Ni-30 at. pct Fe-20 at. pct Al having eutectic microstructures were used to study slip transfer across interphase boundaries and dislocation nucleation at the interfacial steps. The slip transfer from the ductile second phase, {gamma}(fcc) containing ordered {gamma}{prime}(L1{sub 2}) precipitates, to the ordered {beta}(B2) phase and the generation of dislocations at the interface steps were interpreted using the mechanisms proposed for similar processes involving grain boundaries in polycrystalline single-phase materials. The criteria for predicting the slip systems activated as a result of slip transfer across grain boundaries were found to be applicable for interphase boundaries in the multiphase ordered Ni-Fe-Al alloys. The potential of tailoring the microstructures and interfaces to promote slip transfer and thereby enhance the intrinsic ductility of dislocation-density-limited intermetallic alloys is discussed.

  19. Alloy softening in binary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of Hf, Ta, W, Re, Os, Ir, and Pt on the hardness of Mo. Special emphasis was placed on alloy softening in these binary Mo alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to Mo, while those elements having an equal number or fewer s+d electrons than Mo failed to produce alloy softening. Alloy softening and hardening can be correlated with the difference in number of s+d electrons of the solute element and Mo.

  20. Cellular/Dendritic Transition and Microstructure Evolution during Transient Directional Solidification of Pb-Sb Alloys

    NASA Astrophysics Data System (ADS)

    Rosa, Daniel M.; Spinelli, José E.; Ferreira, Ivaldo L.; Garcia, Amauri

    2008-09-01

    Recent studies of lead-antimony alloys, used for the production of positive electrodes of lead-acid batteries, have assessed the influences of both the microstructural morphology and of solute redistribution on the surface corrosion resistance in sulfuric acid solution, and have shown that cellular structures and dendritic structures have different responses on the corrosion rate of such alloys. The present article focuses on the search of adequate solidification conditions (alloy composition, cooling rate, and solidification velocity), which determine the occurrence of a microstructural transition from the cellular to the dendritic regime during the transient unidirectional solidification of hypoeutectic Pb-Sb alloys and on the microstructural evolution after such transition. The experimental data refers to the solidification of four hypoeutectic Pb-Sb alloys (2.2, 2.5, 3, and 6.6 wt pct Sb) and of the eutectic composition. The experimental results include transient metal/mold heat-transfer coefficients, liquidus isotherm velocity, cooling rate, and cellular and dendritic spacings. It was found that the cooling rate dependence on cellular and primary dendritic spacings is characterized by an experimental law of the form λ 1 = A{\\cdot}ifmmodeexpandafterdotelseexpandafter\\.fi{T}^{{{kern 1pt} {-0.55}}}, which seems to be independent of composition where A = 60 represents the alloys undergoing a cellular growth and A = 115 can describe the dendritic growth. The sudden change on such multiplier has occurred for the Pb 2.2 wt pct Sb alloy, i.e., for the cellular/dendritic transition.

  1. The fabrication of all-silicon micro gas chromatography columns using gold diffusion eutectic bonding

    NASA Astrophysics Data System (ADS)

    Radadia, A. D.; Salehi-Khojin, A.; Masel, R. I.; Shannon, M. A.

    2010-01-01

    Temperature programming of gas chromatography (GC) separation columns accelerates the elution rate of chemical species through the column, increasing the speed of analysis, and hence making it a favorable technique to speedup separations in microfabricated GCs (micro-GC). Temperature-programmed separations would be preferred in an all-silicon micro-column compared to a silicon-Pyrex® micro-column given that the thermal conductivity and diffusivity of silicon is 2 orders of magnitude higher than Pyrex®. This paper demonstrates how to fabricate all-silicon micro-columns that can withstand the temperature cycling required for temperature-programmed separations. The columns were sealed using a novel bonding process where they were first bonded using a gold eutectic bond, then annealed at 1100 °C to allow gold diffusion into silicon and form what we call a gold diffusion eutectic bond. The gold diffusion eutectic-bonded micro-columns when examined using scanning electron microscopy (SEM), scanning acoustic microscopy (SAM) and blade insertion techniques showed bonding strength comparable to the previously reported anodic-bonded columns. Gas chromatography-based methane injections were also used as a novel way to investigate proper sealing between channels. A unique methane elution peak at various carrier gas inlet pressures demonstrated the suitability of gold diffusion eutectic-bonded channels as micro-GC columns. The application of gold diffusion eutectic-bonded all-silicon micro-columns to temperature-programmed separations (120 °C min-1) was demonstrated with the near-baseline separation of n-C6 to n-C12 alkanes in 35 s.

  2. Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates

    USGS Publications Warehouse

    McCarthy, C.; Cooper, R.F.; Goldsby, D.L.; Durham, W.B.; Kirby, S.H.

    2011-01-01

    Using uniaxial compression creep experiments, we characterized the transient and steady state deformation behaviors of eutectic aggregates of system ice I and MgSO4 11H2O (MS11; meridianiite), which has significance because of its likely presence on moons of the outer solar system. Synthetic samples of eutectic liquid bulk composition, which produce eutectic colonies containing 0.35-0.50 volume fraction MS11, were tested as functions of colony size and lamellar spacing, temperature (230-250 K), and confining pressure (0.1 and 50 MPa) to strains ???0.2. Up to a differential stress of 6 MPa, the ice I-MS11 aggregates display an order of magnitude higher effective viscosity and higher stress sensitivity than do aggregates of pure polycrystalline ice at the same conditions. The creep data and associated microstructural observations demonstrate, however, that the aggregates are additionally more brittle than pure ice, approaching rate-independent plasticity that includes rupture of the hydrate phase at 6-8 MPa, depending on the scale of the microstructure. Microstructures of deformed samples reveal forms of semibrittle flow in which the hydrate phase fractures while the ice phase deforms plastically. Semibrittle flow in the icy shell of a planetary body would truncate the lithospheric strength envelope and thereby decrease the depth to the brittle-ductile transition by 55% and reduce the failure limit for compressional surface features from 10 to ???6 MPa. A constitutive equation that includes eutectic colony boundary sliding and intracolony flow is used to describe the steady state rheology of the eutectic aggregates. Copyright ?? 2011 by the American Geophysical Union.

  3. Natural deep eutectic solvents as new potential media for green technology.

    PubMed

    Dai, Yuntao; van Spronsen, Jaap; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-03-01

    Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry.

  4. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  5. Solidification and weldability of thermo-span{trademark} alloy

    SciTech Connect

    Robino, C.V.; Michael, J.R.

    1994-12-31

    Thermo-Span is a low coefficient of thermal expansion precipitation hardenable superalloy with high tensile and rupture strengths. The alloy is based on the Fe-Co-Ni system and utilizes chromium additions for improved environmental resistance. The solidification behavior and fusion zone hot cracking tendency of this alloy has been evaluated using differential thermal analysis, Varestraint testing, and through comparison with Inconel 718 and Incoloy 909. Solidification microstructures were characterized by optical and electron microscopy, and the solidification phases identified. Differential thermal analysis (DTA) at heating and cooling rates of 20{degrees}C/min indicated that melting of the wrought allow initiates at temperatures near 1280{degrees}C and continues to approximately 1441{degrees}C. During cooling, the alloy solidifies with two solidification events. These events are the formation of primary austenite and the formation of a terminal eutectic-like constituent at approximately 1220{degrees}C. The implications of the electron microscopy results, in terms of the hot cracking behavior, will be discussed. In summary, the weldability of Thermo-Span was found to be similar to Inconel 718 and Incoloy 909 and therefore, the alloy is likely to be amenable to similar weld processing. This was work performed at Sandia National Laboratories supported by the U.S. Department of Energy under Contract Number DE-AC04-76DP00789.

  6. The effect of ultrasonic vibration on the solidification of light alloys

    NASA Astrophysics Data System (ADS)

    Jian, Xiaogang

    2005-11-01

    This exposition presents a novel thermodynamical and microstructural modification to light alloys, such as aluminum alloys and magnesium alloys, by ultrasonic vibrations. An experimental apparatus which supplied a powerful 1500 Watts at 20 kHz of ultrasonic power was designed and built. Thermodynamic simulations were carried out using the Scheil model to determine the temperature versus solid fraction curve of the alloys. Thermal analysis shows that, with ultrasonic vibration, the steady growth temperature and the minimum supercooling temperature have been elevated; the recalescence time decreased significantly, which indicates a much slower growth rate of primary fcc aluminum grains. Upon ultrasonic vibration, in A356 alloy, fine globular primary aluminum grains were obtained at an unprecedented level of 20 to 40 mum; superfine globular grains less than 20 mum in size were obtained in the area near the ultrasonic radiator; the morphology of eutectic silicon in the alloy was modified from a coarse acicular plate-like form to a finely dispersed rosette-like form, with significantly reduced length, width, and aspect ratio; fine globular grains were also obtained in other aluminum alloys, including A354, 319, 6063, 6061, 2618 alloys; 670°C is the optimum casting temperature for grain refinement of 2618 alloy; not only did magnesium AM60B alloy experience a reduction in size of primary alpha-Mg grains from 760 mum to about 25˜48 mum in diameter, which is much better than other traditional grain refinement methods, but also the volume fraction of eutectic phases was reduced significantly. The mechanisms for ultrasonic influence on solidification have been studied. It was concluded that acoustically induced heterogeneous nucleation, rather than dendrite fragmentation, played a dominant role in the formation of a globular microstructure; high acoustic amplitude/intensity favors the formation of small, spherical primary aluminum grains; the casting temperature of 630

  7. Effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO 2 laser-MIG hybrid welding

    NASA Astrophysics Data System (ADS)

    Yan, Jun; Zeng, Xiaoyan; Gao, Ming; Lai, Jian; Lin, Tianxiao

    2009-05-01

    This paper represented the effect of welding wires on microstructure and mechanical properties of 2A12 aluminum alloy in CO 2 laser-metal inter gas (MIG) hybrid welding. Plates of 2A12 aluminum alloy were welded by ER4043 and ER2319 welding wires, respectively. Full penetration joints without any defects were produced. The X-ray diffraction was used to analyze the phase composition, while the scanning electron microscopy (SEM) was conducted to study the microstructure, segregation behaviors of major alloying elements and the eutectics formed at dendrite boundaries in the joints. The results showed that silicon and copper were concentrated at the dendrite boundaries and α-Al + Si + Al 2Cu + Mg 2Si eutectic was formed if the ER4043 welding wire was used. However, only copper was concentrated at the dendrite boundaries and α-Al + θ eutectic was formed by ER2319 welding wire. Finally, the tensile tests were performed and the fracture surfaces were analyzed. The results showed that the joint efficiency by ER2319 and ER4043 welding wires reached up to 78% and 69%, respectively. Coarse dimples and voids had been observed in the fractographs. The joints showed a transgranular type failure.

  8. Effect of Withdrawal Rate and Gd on the Microstructures of Directionally Solidified NiAl-Cr(Mo) Hypereutectic Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shen, Jun; Zhang, Yun-Peng; Guo, Lan-Lan

    2016-03-01

    The microstructures of Ni-31Al-32Cr-6Mo- xGd hypereutectic alloy were investigated at the withdrawal rates of 10 μm/s, 30 μm/s, and 90 μm/s. For the Gd-free hypereutectic alloy, the Cr(Mo) primary dendrites appear at the beginning of solidification when the withdrawal rate is 10 μm/s. As the solidification proceeds, the Cr(Mo) primary dendrite is eliminated, and the fully eutectic structure can be obtained in the steady-state zone. With increasing the withdrawal rate, the Cr(Mo) primary dendrites decrease gradually, and vanish at 90 μm/s. In addition, at a moderate withdrawal rate (30 μm/s), an optimum addition of Gd content (0.1 wt.%) results in the refinement of the microstructure, including the refinement of the eutectic cells and the intercellular region. Meanwhile, the new white phase ((Al x Gd1- x )2O3) appears in the boundary of the eutectic cells when the Gd content is not less than 0.1 wt.%.

  9. Microstructure evolution and lubricant wear performance of laser alloyed layers on automobile engine chains

    NASA Astrophysics Data System (ADS)

    Sun, G. F.; Zhou, R.; Zhang, Y. K.; Yuan, G. D.; Wang, K.; Ren, X. D.; Wen, D. P.

    2014-10-01

    Wear resistant layers on nodular cast iron chains with C-B-W-Cr powders were fabricated by laser surface alloying (LSA). Microstructure, phases and lattice parameters, were investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. Micro-, nano-hardness and elastic modulus were measured with a Vickers microhardness tester and a nano-indendation tester. Lubricant sliding wear performance was performed on a ball-on-disk apparatus in ambient air using the straight line reciprocating wear form. Results indicate that microstructure of the alloyed layers changes from hyper-eutectic to hypo-eutectic, varing with laser specific energy. Nano-grain size and micro-hardness decrease while martensite lattice parameters increase with laser specific energy. Existence of graphite in the substrate increases the carbon content in the retained austenite to 1.59 wt%. Nano-hardness and elastic modulus of the alloyed layers are close. Friction and wear properties of the layers are improved by LSA compared with the substrate. Wear mechanism of them is illustrated.

  10. Controlling microstructure and mechanical properties of the new microelectronic interconnect alloys

    NASA Astrophysics Data System (ADS)

    Mutuku, Francis M.

    An in-depth understanding of the physics of solidification could lead to the optimization of the properties of micro-electronic interconnects. Sn is the base material in the billions of interconnects in devices such as smart phones. These interconnects are formed by melting and solidifying a solder alloy (e.g. SnAgCu) in situ. But Sn has a low symmetry structure, Sn nucleation from the solder melt is complex and the morphology of the Sn and Sn alloys precipitates that form during solidification can vary tremendously (along with resultant mechanical properties). The effect of processing parameters on the solidification behavior, microstructure, and properties must be carefully addressed. Strong evidence adduced in this study shows that under many conditions, when cooling near eutectic SnAgCu from the melt, Ag3Sn nucleates before beta-Sn. The difficulty in the nucleation of beta-Sn provides a window of time between the nucleation of Ag3Sn precipitates and of beta-Sn solidification within which the Ag3Sn precipitate morphology can be manipulated. Thus distinct variations in precipitate number density, and inter-particle spacing were observed for different thermal histories, e.g. for different cooling rates. The average number density of Ag3Sn particles and the area of the pseudo-eutectic phase were observed to increase with increase in the Ag concentration, and with increase in the cooling rate. The shear strength and shear fatigue life increased with increase in the area fraction of the pseudo-eutectic phase. Upon aging of SnAgCu solder joints at an elevated temperature, the Ag3Sn particles coarsened, and became less effective in impeding dislocation motion. Consequently, the shear strength and shear fatigue performance degraded. On the other hand, alloys with constituents that formed solid solutions in Sn, such as small concentrations of Bi or Sb registered less degradation in both shear strength and shear fatigue life upon aging.

  11. Microstructures of ancient and modern cast silver–copper alloys

    SciTech Connect

    Northover, S.M.; Northover, J.P.

    2014-04-01

    The microstructures of modern cast Sterling silver and of cast silver objects about 2500 years old have been compared using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), energy dispersive X-ray microanalysis (EDX) and electron backscatter diffraction (EBSD). Microstructures of both ancient and modern alloys were typified by silver-rich dendrites with a few pools of eutectic and occasional cuprite particles with an oxidised rim on the outer surface. EBSD showed the dendrites to have a complex internal structure, often involving extensive twinning. There was copious intragranular precipitation within the dendrites, in the form of very fine copper-rich rods which TEM, X-ray diffraction (XRD), SEM and STEM suggest to be of a metastable face-centred-cubic (FCC) phase with a cube–cube orientation relationship to the silver-rich matrix but a higher silver content than the copper-rich β in the eutectic. Samples from ancient objects displayed a wider range of microstructures including a fine scale interpenetration of the adjoining grains not seen in the modern material. Although this study found no unambiguous evidence that this resulted from microstructural change produced over archaeological time, the copper supersaturation remaining after intragranular precipitation suggests that such changes, previously proposed for wrought and annealed material, may indeed occur in ancient silver castings. - Highlights: • Similar twinned structures and oxidised surfaces seen in ancient and modern cast silver • General precipitation of fine Cu-rich rods apparently formed by discontinuous precipitation is characteristic of as-cast silver. • The fine rods are cube-cube related to the matrix in contrast with the eutectic. • The silver-rich phase remains supersaturated with copper. • Possibly age-related grain boundary features seen in ancient cast silver.

  12. Automated detection and characterization of microstructural features: application to eutectic particles in single crystal Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Groeber, M. A.; Fahringer, R.; Simmons, J. P.; Rosenberger, A. H.; Woodward, C.

    2010-03-01

    Serial sectioning methods continue to produce an abundant amount of image data for quantifying the three-dimensional nature of material microstructures. Here, we discuss a methodology to automate detecting and characterizing eutectic particles taken from serial images of a production turbine blade made of a heat-treated single crystal Ni-based superalloy (PWA 1484). This method includes two important steps for unassisted eutectic particle characterization: automatically identifying a seed point within each particle and segmenting the particle using a region growing algorithm with an automated stop point. Once detected, the segmented eutectic particles are used to calculate microstructural statistics for characterizing and reconstructing statistically representative synthetic microstructures for single crystal Ni-based superalloys. The significance of this work is its ability to automate characterization for analysing the 3D nature of eutectic particles.

  13. Viscoelastic behavior over a wide range of time and frequency in tin alloys: SnCd and SnSb

    SciTech Connect

    Quackenbush, J.; Brodt, M.; Lakes, R.S.

    1996-08-01

    All materials exhibit some viscoelastic response, which can manifest itself as creep, relaxation, or, if the load is sinusoidal in time, a phase angle {delta} between stress and strain. Recently, a study of pure elements with low melting points, Cd, In, Pb, and Sn disclosed that cadmium exhibited a substantial loss tangent of 0.03 to 0.04 over much of the audio range of frequencies, combined with a moderate stiffness G = 20.7 GPa. Lead, by contrast, exhibited tan {delta} of 0.005 to 0.016 in the audio range. Indium exhibited a high loss tangent exceeding 0.1 at very low frequency. A eutectic alloy of indium and tin was found to exhibit substantial damping exceeding 0.1 below 0.1 Hz, and this alloy was used to make a composite exhibiting high stiffness and high damping. It is the purpose of this communication to present viscoelastic properties of two additional low melting point alloys, SnCd and SnSb. Both InSn and SnSb are used as solders. Although the melting point of Sb is 630.74 C, T{sub H} > 0.55 at ambient temperature for the alloy of SnSb (95 wt% Sn/5 wt% Sb) which melts near 240 C. Eutectic SnCd melts at 177 C so T{sub H} {approx} 0.65 at room temperature.

  14. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    PubMed Central

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  15. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy

    NASA Astrophysics Data System (ADS)

    Dang, B.; Zhang, X.; Chen, Y. Z.; Chen, C. X.; Wang, H. T.; Liu, F.

    2016-08-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy.

  16. Breaking through the strength-ductility trade-off dilemma in an Al-Si-based casting alloy.

    PubMed

    Dang, B; Zhang, X; Chen, Y Z; Chen, C X; Wang, H T; Liu, F

    2016-01-01

    Al-Si-based casting alloys have a great potential in various industrial applications. Common strengthening strategies on these alloys are accompanied inevitably by sacrifice of ductility, known as strength-ductility trade-off dilemma. Here, we report a simple route by combining rapid solidification (RS) with a post-solidification heat treatment (PHT), i.e. a RS + PHT route, to break through this dilemma using a commercial Al-Si-based casting alloy (A356 alloy) as an example. It is shown that yield strength and elongation to failure of the RS + PHT processed alloy are elevated simultaneously by increasing the cooling rate upon RS, which are not influenced by subsequent T6 heat treatment. Breaking through the dilemma is attributed to the hierarchical microstructure formed by the RS + PHT route, i.e. highly dispersed nanoscale Si particles in Al dendrites and nanoscale Al particles decorated in eutectic Si. Simplicity of the RS + PHT route makes it being suitable for industrial scaling production. The strategy of engineering microstructures offers a general pathway in tailoring mechanical properties of other Al-Si-based alloys. Moreover, the remarkably enhanced ductility of A356 alloy not only permits strengthening further the material by work hardening but also enables possibly conventional solid-state forming of the material, thus extending the applications of such an alloy. PMID:27502444

  17. Structure, mechanical properties, corrosion behavior and cytotoxicity of biodegradable Mg-X (X=Sn, Ga, In) alloys.

    PubMed

    Kubásek, J; Vojtěch, D; Lipov, J; Ruml, T

    2013-05-01

    As-cast Mg-Sn, Mg-Ga and Mg-In alloys containing 1-7 wt.% of alloying elements were studied in this work. Structural and chemical analysis of the alloys was performed by using light and scanning electron microscopy, energy dispersive spectrometry, x-ray diffraction, x-ray photoelectron spectroscopy and glow discharge spectrometry. Mechanical properties were determined by Vickers hardness measurements and tensile testing. Corrosion behavior in a simulated physiological solution (9 g/l NaCl) was studied by immersion tests and potentiodynamic measurements. The cytotoxicity effect of the alloys on human osteosarcoma cells (U-2 OS) was determined by an indirect contact assay. Structural investigation revealed the dendritic morphology of the as-cast alloys with the presence of secondary eutectic phases in the Mg-Sn and Mg-Ga alloys. All the alloying elements showed hardening and strengthening effects on magnesium. This effect was the most pronounced in the case of Ga. All the alloying elements at low concentrations of approximately 1 wt.% were also shown to positively affect the corrosion resistance of Mg. But at higher concentrations of Ga and Sn the corrosion resistance worsened due to galvanic effects of secondary phases. Cytotoxicity tests indicated that Ga had the lowest toxicity, followed by Sn. The most severe toxicity was observed in the case of In.

  18. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  19. Some properties of low-vapor-pressure braze alloys for thermionic converters

    NASA Technical Reports Server (NTRS)

    Bair, V. L.

    1978-01-01

    Property measurements were made for arc-melted, rod-shaped specimens. Density and dc electrical resistivity at 296 K were measured for various binary eutectic alloys. Thermal conductivity was inferred from the electrical conductivity using the Wiedemann, Franz, Lorenz relation. Linear thermal expansion from 293 K to two-thirds melting point, under a helium atmosphere, was measured for Zr, 21.7-wt percent Ru; Zr, 13-wt percent W; Zr, 22.3-wt percent Nb; Nb, 66.9-wt percent Ru; and Zr, 25.7-wt percent Ta.

  20. Mechanical Properties and Fracture Behaviors of the As-Extruded Mg-5Al-3Ca Alloys Containing Yttrium at Elevated Temperature.

    PubMed

    Son, Hyeon-Taek; Kim, Yong-Ho; Kim, Taek-Soo; Lee, Seong-Hee

    2016-02-01

    Effects of yttrium (Y) addition on mechanical properties and fracture behaviors of the as-extruded Mg-Al-Ca based alloys at elevated temperature were investigated by a tensile test. After hot extrusion, the average grain size was refined by Y addition and eutectic phases were broken down into fine particles. Y addition to Mg-5Al-3Ca based alloy resulted in the improvement of strength and ductility at elevated temperature due to fine grain and suppression of grain growth by formation of thermally stable Al2Y intermetallic compound.