Science.gov

Sample records for nickel isotopes

  1. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  2. Nickel isotopes as a new geochemical tracer

    NASA Astrophysics Data System (ADS)

    Gall, L.; Williams, H. M.; Siebert, C.; Halliday, A.

    2010-12-01

    Research into "non-traditional" stable isotope systems has been of great interest over the past decade. The stable isotope system of nickel (Ni) has not been studied as intensively as other transition metals (e.g. Fe, Cr, Cu, Zn, and Mo), even though it is a ubiquitous element in geological environments and is a bioessential trace metal, e.g. for production of methane by methanogens. We have developed a novel chemical separation procedure to isolate Ni from most geological matrices. Because of its chemical behavior during ion-exchange chromatography complete separation of Ni is very complex. We therefore make use of a Ni double spike that allows us to optimize the chemical separation and correct instrumental mass bias during mass spectrometry analysis. This technique allows high precision Ni isotope measurements resulting in long term external reproducibility of USGS rock standard BHVO-2 of 0.09‰ (2s.d.) on δ60/58Ni with typical measurement errors as low as 0.04‰ (2s.d.). We have measured the isotope composition of Ni in a variety of terrestrial samples demonstrating significant isotope variation. In magmatic rocks Ni isotopes appear to be largely homogeneous, with only small variations (no more than 0.2‰) between different rock types, from ultramafic to felsic. There is no evidence of significant isotopic fractionation during melting and differentiation of the silicate Earth. In contrast we find significant systematic isotope variations (up to 1.5‰) between magmatic rocks and FeMn crusts, shales and sulphides. Our data clearly demonstrate mass-dependent fractionation of Ni isotopes in the marine and terrestrial environment by inorganic processes, in addition to the biological fractionations already reported by others, highlighting the potential of Ni isotopes as a powerful new tracer for Earth Surface processes.

  3. Nickel and chromium isotopes in Allende inclusions

    NASA Technical Reports Server (NTRS)

    Birck, J. L.; Lugmair, G. W.

    1988-01-01

    High-precision nickel and chromium isotopic measurements were carried out on nine Allende inclusions. It is found that Ni-62, Ni-64, excesses are present in at least three of the samples. The results suggest that the most likely mechanism for the anomalies is a neutron-rich statistical equilibrium process. An indication of elevated Ni-60 is found in almost every inclusion measured. This effect is thought to be related to the decay of now extinct Fe-60. An upper limit of 1.6 X 10 to the -6th is calculated for the Fe-60/Fe-56 ratio at the time these Allende inclusions crystallized.

  4. Heavy nickel isotope compositions in rivers and the oceans

    NASA Astrophysics Data System (ADS)

    Cameron, V.; Vance, D.

    2014-03-01

    Nickel is a biologically-active trace metal whose dissolved concentration depth profiles in the ocean show nutrient-like behaviour. If the pronounced removal of nickel from the dissolved phase in the surface ocean, and its return in the deep, is associated with an isotopic fractionation nickel isotopes may be able to yield constraints on the precise biogeochemical processes involved. Here we present the first nickel isotope data for seawater along with data for the dissolved phase of rivers, one of the principal sources of nickel to the oceans. The dissolved phase of rivers exhibits substantial variability in both Ni concentration and δ60Ni: from 2.2 to 35 nmol kg-1 and +0.29 to +1.34‰, respectively. The most striking result from the nickel isotope analyses of rivers is that they are substantially heavier (by up to 1‰ for δ60Ni) than the range for silicate rocks on the continents, a finding that is analogous to that for other transition metal isotope systems. If the data presented here are close to representative of the global riverine flux, they suggest an annual input of Ni to the oceans of 3.6 × 108moles, and a discharge- and concentration-weighted δ60Ni average of +0.80‰. The relationship between Ni isotopes and concentrations shows similarities with those for other transition metal isotope systems, where the main control has been suggested to be isotopic partitioning between the dissolved phase and particulates, either in the weathering environment or during transport. In stark contrast to the rivers, the dataset for seawater is very homogeneous, with 2SD of the entire dataset being only twice the analytical reproducibility. The second main feature is that seawater is distinctly heavier in Ni isotopes than rivers. The average δ60Ni is 1.44 ± 0.15‰ (2SD), and only 2 of the 29 seawater analyses have a Ni isotopic composition that is lighter than the heaviest river. The lack of an isotopic shift associated with the drawdown of nickel concentrations

  5. Heavy nickel isotope compositions in rivers and the oceans

    NASA Astrophysics Data System (ADS)

    Cameron, V.; Vance, D.

    2014-03-01

    Nickel is a biologically-active trace metal whose dissolved concentration depth profiles in the ocean show nutrient-like behaviour. If the pronounced removal of nickel from the dissolved phase in the surface ocean, and its return in the deep, is associated with an isotopic fractionation nickel isotopes may be able to yield constraints on the precise biogeochemical processes involved. Here we present the first nickel isotope data for seawater along with data for the dissolved phase of rivers, one of the principal sources of nickel to the oceans. The dissolved phase of rivers exhibits substantial variability in both Ni concentration and δ60Ni: from 2.2 to 35 nmol kg-1 and +0.29 to +1.34‰, respectively. The most striking result from the nickel isotope analyses of rivers is that they are substantially heavier (by up to 1‰ for δ60Ni) than the range for silicate rocks on the continents, a finding that is analogous to that for other transition metal isotope systems. If the data presented here are close to representative of the global riverine flux, they suggest an annual input of Ni to the oceans of 3.6 × 108moles, and a discharge- and concentration-weighted δ60Ni average of +0.80‰. The relationship between Ni isotopes and concentrations shows similarities with those for other transition metal isotope systems, where the main control has been suggested to be isotopic partitioning between the dissolved phase and particulates, either in the weathering environment or during transport. In stark contrast to the rivers, the dataset for seawater is very homogeneous, with 2SD of the entire dataset being only twice the analytical reproducibility. The second main feature is that seawater is distinctly heavier in Ni isotopes than rivers. The average δ60Ni is 1.44 ± 0.15‰ (2SD), and only 2 of the 29 seawater analyses have a Ni isotopic composition that is lighter than the heaviest river. The lack of an isotopic shift associated with the drawdown of nickel concentrations

  6. A biomarker based on the stable isotopes of nickel

    PubMed Central

    Cameron, Vyllinniskii; Vance, Derek; Archer, Corey; House, Christopher H.

    2009-01-01

    The new stable isotope systems of transition metals are increasingly used to understand and quantify the impact of primitive microbial metabolisms on the modern and ancient Earth. To date, little effort has been expended on nickel (Ni) isotopes but there are good reasons to believe that this system may be more straightforward, and useful in this respect, than some others. Here, we present Ni stable isotope data for abiotic terrestrial samples and pure cultures of methanogens. The dataset for rocks reveals little isotopic variability and provides a lithologic baseline for terrestrial Ni isotope studies. In contrast, methanogens assimilate the light isotopes, yielding residual media with a complementary heavy isotopic enrichment. Methanogenesis may have evolved during or before the Archean, when methane could have been key to Earth's early systems. Our data suggest significant potential in Ni stable isotopes for identifying and quantifying methanogenesis on the early planet. Additionally, Ni stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for methanogens. PMID:19553218

  7. A biomarker based on the stable isotopes of nickel.

    PubMed

    Cameron, Vyllinniskii; Vance, Derek; Archer, Corey; House, Christopher H

    2009-07-01

    The new stable isotope systems of transition metals are increasingly used to understand and quantify the impact of primitive microbial metabolisms on the modern and ancient Earth. To date, little effort has been expended on nickel (Ni) isotopes but there are good reasons to believe that this system may be more straightforward, and useful in this respect, than some others. Here, we present Ni stable isotope data for abiotic terrestrial samples and pure cultures of methanogens. The dataset for rocks reveals little isotopic variability and provides a lithologic baseline for terrestrial Ni isotope studies. In contrast, methanogens assimilate the light isotopes, yielding residual media with a complementary heavy isotopic enrichment. Methanogenesis may have evolved during or before the Archean, when methane could have been key to Earth's early systems. Our data suggest significant potential in Ni stable isotopes for identifying and quantifying methanogenesis on the early planet. Additionally, Ni stable isotope fractionation may well prove to be the fundamental unambiguous trace metal biomarker for methanogens.

  8. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  9. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes. PMID:25222693

  10. Systematic study of (α ,γ ) reactions for stable nickel isotopes

    NASA Astrophysics Data System (ADS)

    Simon, A.; Beard, M.; Spyrou, A.; Quinn, S. J.; Bucher, B.; Couder, M.; DeYoung, P. A.; Dombos, A. C.; Görres, J.; Kontos, A.; Long, A.; Moran, M. T.; Paul, N.; Pereira, J.; Robertson, D.; Smith, K.; Stech, E.; Talwar, R.; Tan, W. P.; Wiescher, M.

    2015-08-01

    A systematic measurement of the (α ,γ ) reaction for all the stable nickel isotopes has been performed using the γ -summing technique. For two of the isotopes, 60Ni and 61Ni, the α -capture cross sections have been experimentally measured for the first time. For 58,62,64Ni, the current measurement is in excellent agreement with earlier results found in the literature, and additionally extends the energy range of the measured cross sections up to 8.7 MeV. The data provided a tool for testing the cross section predictions of Hauser-Feshbach calculations. The experimental results were compared to the cross sections calculated with the talys 1.6 code and commonly used databases non-smoker and bruslib. For each of the investigated isotopes a combination of input parameter for talys was identified that best reproduces the experimental data, and recommended reaction rate has been calculated. Additionally, a set of inputs for Hauser-Feshbach calculations was given that, simultaneously for all the isotopes under consideration, reproduces the experimental data within the experimental uncertainties.

  11. Iron and Nickel Isotopic Compositions of Presolar Silicon Carbide Grains from AGB Stars Measured with CHILI

    NASA Astrophysics Data System (ADS)

    Trappitsch, R.; Stephan, T.; Davis, A. M.; Pellin, M. J.; Savina, M. R.; Gyngard, F.; Bisterzo, S.; Gallino, R.; Dauphas, N.

    2016-08-01

    Simultaneous iron and nickel isotopic studies in presolar SiC mainstream grains measured on CHILI show the expected AGB star anomalies in the neutron-rich isotopes. Neutron-poor isotopes are dominated by GCE and show clear correlations with silicon.

  12. Isotopes of cosmic ray elements from neon to nickel

    NASA Technical Reports Server (NTRS)

    Waddington, C. J.; Freier, P. S.; Fickle, R. K.; Brewster, N. R.

    1981-01-01

    Results obtained from a balloon exposure of a cosmic ray detector flown in 1977 are reported. The charge resolution ranged from 0.19 to 0.21 charge units between neon and nickel and the mass resolution for nuclei stopped in the emulsions ranged from 0.40 to 0.70 amu for A between 20 and 60 amu. This was enough to correctly identify almost all nuclei, but not to uniquely resolve neighboring mass peaks. Both Ne and Mg show evidence for neutron enrichment relative to the solar system abundance. Si and S are consistent with solar abundances, while Ar has no significant source abundances. P, Cl and K have essentially no primary component and the isotopic distribution observed is quite consistent with that expected from propagation. An excess of Ca-44 at the source is shown, indicating high metallicity in the source. The abundance of Fe-58 is nine percent or less, and Ni shows a one-to-one ratio for Ni-58 to 60, implying intermediate metallicity.

  13. Hydrogen isotope transfer in austenitic steels and high-nickel alloy during in-core irradiation

    SciTech Connect

    Polosukhin, B.G.; Sulimov, E.M.; Zyrianov, A.P.; Kalinin, G.M.

    1995-10-01

    The transfer of protium and deuterium in austenitic chromium-nickel steels and in a high-nickel alloy was studied in a specially designed facility. The transfer parameters of protium and deuterium were found to change greatly during in-core irradiation, and the effects of irradiation increased as the temperature decreased. Thus, at temperature T<673K, the relative increase in the permeability of hydrogen isotopes under irradiation can be orders of magnitude higher in these steels. Other radiation effects were also observed, in addition to the changes from the initial values in the effects of protium and deuterium isotopic transfer. 4 refs., 3 figs., 2 tabs.

  14. Iron and nickel isotopic mass fractionation in deep-sea spherules

    NASA Technical Reports Server (NTRS)

    Davis, Andrew M.; Brownlee, Donald E.

    1993-01-01

    Magnetite-wuestite spherules collected from deep-sea sediments are thought to have originally been Fe-Ni metal particles at the top of the atmosphere that were oxidized and melted during entry into the earth's atmosphere. Some likely sources for the metal particles are Fe-Ni interplanetary dust particles (IDP's) and metal or sulfide from stony IDP's that separated after melting. Davis et al. reported that four of these spherules are enriched in the heavy isotopes of iron, with enrichments of 8-23%/amu. We have developed a technique for analysis of both iron and nickel isotopes on the same ion microprobe spot and have applied this technique to a number of deep-sea spherules in order to better understand the processes leading to isotopic mass fractionation. Eight spherules show iron and nickel isotopic mass fractionation, with iron and nickel enriched in the heavy isotopes by 10-19%/amu and 4-32%/amu, respectively. If the mass fractionations are due to Rayleigh fractionation during evaporation, these spherules lost 76-94% of their original mass. We have analyzed the four magnetite-wuestite spherules for which iron isotopic data were reported by Davis et al. as well as four new spherules.

  15. Neutron Induced Cross Sections for Radiochemistry for Isotopes of Nickel, Copper, and Zinc

    SciTech Connect

    Kelley, K; Hoffman, R D; Dietrich, F S; Mustafa, M

    2006-05-30

    We have developed a set of modeled neutron induced cross sections for use in radiochemical diagnostics. Local systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for target isotopes of nickel, copper, and zinc (28 {le} Z {le} 30) for neutron numbers 30 {le} N {le} 40.

  16. Isotopic labelling studies on far-infrared spectra of nickel-histamine complexes

    NASA Astrophysics Data System (ADS)

    Drożdżewski, Piotr; Kordon, Ewa

    2000-11-01

    Nickel-histamine (hm) complexes type [Ni(hm)Cl 2] and [Ni(hm) 3] X2 (Where X=Cl, Br, I, ClO 4) were investigated in the far-infrared region. Metal isotope labelling and deuteration effects were employed for observed band assignments. Metal-ligand vibrations were discussed and correlated with the structures of the complexes.

  17. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  18. The Isotopic Composition of Cosmic-Ray Iron and Nickel

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M.; Binns, W.; Christian, E.; Cummings, A.; George, J.; Hink, P.; Klarmann, J.; Leske, R.; Lijowski, M.; Mewaldt, R.; Stone, E.; Rosenvinge, T. von

    2000-01-01

    Observations from the Cosmic Ray Isotope Spectrometer (CRIS) on ACE have been used to derive contraints on the locations, physical conditions, and time scales for cosmic-ray acceleration and transport.

  19. NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES

    SciTech Connect

    Steele, Robert C. J.; Coath, Christopher D.; Regelous, Marcel; Elliott, Tim; Russell, Sara

    2012-10-10

    We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61}, or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the {sup 58}Ni/{sup 61}Ni internally normalized {sup 60}Ni/{sup 61}Ni, {sup 62}Ni/{sup 61}Ni, and {sup 64}Ni/{sup 61}Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61} relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 {+-} 0.166 which is within the error of that expected for an anomaly solely on {sup 58}Ni. We also determined to high precision ({approx}10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}. These analyses show that 'absolute' ratios of {sup 58}Ni/{sup 61}Ni vary between these two samples whereas those of {sup 62}Ni/{sup 61}Ni and {sup 64}Ni/{sup 61}Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor {sup 58}Ni, and not correlated anomalies in the neutron-rich isotopes, {sup 62}Ni and {sup 64}Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other

  20. Nickel

    SciTech Connect

    Mastromatteo, E.

    1986-10-01

    Nickel was first isolated in impure form in 1751 by Cronstedt from an ore containing niccolite (NiAs). An ore of this type had earlier caused trouble in the smelting of copper and silver in Saxony, yielding an unusually brittle product. This interfering substance was referred to as kupfernick after Old Nick and his mischievous gnomes and Cronstedt applied the name nickel to this new element. The pure metal was first prepared by Richter in 1804 and he described some of the useful properties of nickel. This paper discusses the properties, sources, and toxicity of nickel.

  1. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    NASA Astrophysics Data System (ADS)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found

  2. A search for nickel isotopic anomalies in iron meteorites and chondrites

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.

    2009-03-01

    We report Ni isotopic data, for 58,60-62Ni, on (1) FeNi metal and sulfides in different groups of iron meteorites, (2) sulfides and a whole rock sample of the St. Séverin chondrite, and (3) chondrules from the Chainpur chondrite. We have developed improved, Multiple-Collector, Positive ion Thermal Ionization Mass Spectrometric (MC-PTIMS) techniques, with Ni + ionization efficiency at 1‰, and chemical separation techniques for Ni which reduce mass interferences to the 1 ppm level, so that no mass interference corrections need be applied, except for 64Ni (from 64Zn, at the 0.1‰ level), for which we do not report results. We normalize the data to 62Ni/ 58Ni to correct for mass dependent isotope fractionation. No evidence was found for resolved radiogenic or general Ni isotope anomalies at the resolution levels of 0.2 and 0.5 ɛu (ɛu = 0.01%) for 60Ni/ 58Ni and 61Ni/ 58Ni, respectively. From the 56Fe/ 58Ni ratios and ɛ( 60Ni/ 58Ni) values, we calculate upper limits for the initial value of ( 60Fe/ 56Fe) 0 of (a) <2.7 × 10 -7 for Chainpur chondrules, (b) <10 -8 for the St. Séverin sulfide, and (c) <4 × 10 -9 for sulfides from iron meteorites. We measured some of the same meteorites measured by other workers, who reported isotopic anomalies in Ni, using Multiple-Collector, Inductively-Coupled Mass Spectrometry. Our results do not support the previous reports of Ni isotopic anomalies in sulfide samples from Mundrabilla by Cook et al. [Cook D. L., Clayton R. N., Wadhwa M., Janney P. E., and Davis A. M. (2008). Nickel isotopic anomalies in troilite from iron meteorites. Geophy. Res. Lett. 35, L01203] and in sulfides from Toluca and Odessa by Quitté et al. [Quitté G., Meier M., Latkoczy C., Halliday A. N., and Gunther D., (2006). Nickel isotopes in iron meteorites-nucleosynthetic anomalies in sulfides with no effects in metals and no trace of 60Fe. Earth Planet. Sci. Lett. 242, 16-25]. Hence, we find no need for specialized physical-chemical planetary processes

  3. Stereospecific Nickel-Catalyzed Cross-Coupling Reactions of Benzylic Ethers with Isotopically-Labeled Grignard Reagents

    PubMed Central

    2015-01-01

    In this manuscript we highlight the potential of stereospecific nickel-catalyzed cross-coupling reactions for applications in the pharmaceutical industry. Using an inexpensive and sustainable nickel catalyst, we report a gram-scale Kumada cross-coupling reaction. Reactions are highly stereospecific and proceed with inversion at the benzylic position. We also expand the scope of our reaction to incorporate isotopically labeled substituents. PMID:27458328

  4. Nickel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural significance of nickel (Ni) is becoming increasingly apparent; yet, relative few farmers, growers, specialists or researchers know much about its function in crops, nor symptoms of deficiency or toxicity. The body of knowledge is reviewed regarding Ni’s background, uptake, transloc...

  5. Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple-sulfur, iron, and nickel isotope data

    NASA Astrophysics Data System (ADS)

    Hofmann, Axel; Bekker, Andrey; Dirks, Paul; Gueguen, Bleuenn; Rumble, Doug; Rouxel, Olivier J.

    2014-01-01

    Trojan and Shangani mines are low-grade (<0.8 % Ni), komatiite-hosted nickel sulfide deposits associated with ca. 2.7 Ga volcano-sedimentary sequences of the Zimbabwe craton. At both mines, nickel sulfide mineralization is present in strongly deformed serpentinite bodies that are enveloped by a complex network of highly sheared, silicified, and sulfide-bearing metasedimentary rocks. Strong, polyphase structural-metamorphic-metasomatic overprints in both the Trojan and Shangani deposits make it difficult to ascertain if sulfide mineralization was derived from orthomagmatic or hydrothermal processes, or by a combination of both. Multiple S, Fe, and Ni isotope analyses were applied to test these competing models. Massive ores at Shangani Mine show mass-dependent fractionation of sulfur isotopes consistent with a mantle sulfur source, whereas S-isotope systematics of net-textured ore and disseminated ore in talcose serpentinite indicates mixing of magmatic and sedimentary sulfur sources, potentially via post-magmatic hydrothermal processes. A restricted range of strongly mass-independent Δ33S values in ore samples from Trojan Mine likely reflects high-temperature assimilation of sulfur from supracrustal rocks and later superimposed low-temperature hydrothermal remobilization. Iron isotope values for most Ni-bearing sulfides show a narrow range suggesting that, in contrast to sulfur, nearly all of iron was derived from an igneous source. Negative Ni isotope values also agree with derivation of Ni from ultramafic melt and a significant high-temperature fractionation of Ni isotopes. Fe isotope values of some samples from Shangani Mine are more fractionated than expected to occur in high-temperature magmatic systems, further suggesting that hydrothermal processes were involved in either low-grade ore formation (liberation of Ni from olivine by sulfur-bearing hydrothermal fluids) or remobilization of existing sulfides potentially inducing secondary Ni

  6. Low blank rhenium isotope ratio determinations by V2O5 coated nickel filaments using negative thermal ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; Hebeda, Erhard H.; Heumann, Klaus G.

    1994-02-01

    Thenium isotope ratio determinations are, in principle, possible by negative thermal ionization mass spectrometry (NTI-MS). Relatively high rhenium blanks from the commonly-used filament materials prevent accurate isotope ratio determinations, especially for small rhenium sample amounts which are of importance, for example, in geochronology in connection with the Re/Os dating method. Platinum and nickel filaments were tested by different preparation techniques to reduce the rhenium blank contribution from the filament material. The lowest rhenium blank of less than 1 pg was achieved by coating nickel filaments with V2O5 prior to degassing under high vacuum conditions at 850°C. Obviously, the vanadium--nickel oxide layer formed on the surface of the filament during this process prevents further emission of rhenium ions from the filament material. Using Ba(OH)2 for the enhancement of negative thermal ions, 1 ng of rhenium resulted in ion currents at the detector side of about 10-11 A with an ionization efficiency of up to 20%. The 185Re/187Re isotope ratio of a sample of natural isotopic composition could be determined to be 0.59818 ± 0.00026 with a relative precision of 0.04%. The isotope ratio determination for an 187Re spike was comparable in precision but the relative standard deviation of an 185Re spike was significantly higher, which could be explained by mass fractionations of oxygen in the measured ReO-4 ion. The ReO-4 ion is about 200 to 2500 times more abundant than the only other detectable rhenium ion in NTI-MSReO-3. The ReO-4/ReO-4 ratio decreases with increasing temperature. By the low blank NTI-MS technique described in this work, more precise and accurate determinations of the rhenium isotope ratio and the rhenium concentration by isotope dilution analysis from nanogramme samples are possible.

  7. Neutron, Proton and Alpha Emission Spectra of Nickel Isotopes for Proton Induced Reactions

    NASA Astrophysics Data System (ADS)

    Tel, E.; Kara, A.

    2012-06-01

    The fusion energy is attractive as an energy source because the fusion will not produce CO2 or SO2 and so fusion will not contribute to environmental problems, such as particulate pollution and excessive CO2 in the atmosphere. The fusion reaction does not produce radioactive nuclides and it is not self-sustaining, as is a fission reaction when a critical mass of fissionable material is assembled. Since the fusion reaction is easily and quickly quenched the primary sources of heat to drive such an accident are heat from radioactive decay and heat from chemical reactions. Both the magnitude and time dependence of the generation of heat from radioactive decay can be controlled by proper selection and design of materials. Nickel (Ni) is an important structural material in fusion (and also fission) reactor technologies and many other fields. So, the working out the reaction cross sections of the Ni isotopes is very important for selection of the fusion materials. In this study, 58Ni(p,xn), 58Ni(p,xp), 60Ni(p,xp), 60Ni(p,xα) and 62Ni(p,xp) reactions have been investigated using nuclear reaction models. And also the 58Ni(p,xn) reaction has been calculated through a method of offered by Tel et al. The calculated results are discussed and compared with the experimental data taken from EXFOR database.

  8. Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic

    NASA Astrophysics Data System (ADS)

    Gall, L.; Williams, H. M.; Siebert, C.; Halliday, A. N.; Herrington, R. J.; Hein, J. R.

    2013-08-01

    The global variability in nickel (Ni) isotope compositions in ferromanganese crusts is investigated by analysing surface samples of 24 crusts from various ocean basins by MC-ICPMS, using a double-spike for mass bias correction. Ferromanganese crusts have δ60Ni isotopic compositions that are significantly heavier than any other samples thus far reported (-0.1‰ to 0.3 ‰), with surface scrapings ranging between 0.9 ‰ and 2.5 ‰ (relative to NIST SRM986). There is no well resolved difference between ocean basins, although the data indicate somewhat lighter values in the Atlantic than in the Pacific, nor is there any evidence that the variations are related to biological fractionation, presence of different water masses, or bottom water redox conditions. Preliminary data for laterite samples demonstrate that weathering is accompanied by isotopic fractionation of Ni, which should lead to rivers and seawater being isotopically heavy. This is consistent with the slightly heavier than average isotopic compositions recorded in crusts that are sampled close to continental regions. Furthermore, the isotopic compositions of crusts growing close to a hydrothermal source are clustered around ∼ 1.5 ‰, suggesting that hydrothermal fluids entering the ocean may have a Ni isotopic composition similar to this value. Based on these data, the heavy Ni isotopic compositions of ferromanganese crusts are likely due to input of isotopically heavy Ni to the ocean from continental weathering and possibly also from hydrothermal fluids. A depth profile through one crust, CD29-2, from the north central Pacific Ocean displays large variations in Ni isotope composition (1.1 - 2.3 ‰) through the last 76 Myr. Although there may have been some redistribution of Ni associated with phosphatisation, there is no systematic difference in Ni isotopic composition between deeper, older parts and shallower, younger parts of the crust, which may suggest that oceanic sources and sinks of Ni have

  9. Iron and nickel isotope fractionation by diffusion, with applications to iron meteorites

    NASA Astrophysics Data System (ADS)

    Watson, Heather C.; Richter, Frank; Liu, Ankun; Huss, Gary R.

    2016-10-01

    Mass-dependent, kinetic fractionation of isotopes through processes such as diffusion can result in measurable isotopic signatures. When these signatures are retained in geologic materials, they can be used to help interpret their thermal histories. The mass dependence of the diffusion coefficient of isotopes 1 and 2 can be written as (D1 /D2) =(m2 /m1) β, where D1 and D2 are the diffusion coefficients of m1 and m2 respectively, and β is an empirical coefficient that relates the two ratios. Experiments have been performed to measure β in the Fe-Ni alloy system. Diffusion couple experiments between pure Fe and Ni metals were run in a piston cylinder at 1300-1400 °C and 1 GPa. Concentration and isotopic profiles were measured by electron microprobe and ion microprobe respectively. We find that a single β coefficient of β = 0.32 ± 0.04 can describe the isotopic effect in all experiments. This result is comparable to the isotope effect determined in many other similar alloy systems. The new β coefficient is used in a model of the isotopic profiles to be expected during the Widmanstätten pattern formation in iron meteorites. The results are consistent with previous estimates of the cooling rate of the iron meteorite Toluca. The application of isotopic constraints based on these results in addition to conventional cooling rate models could provide a more robust picture of the thermal history of these early planetary bodies.

  10. Experiments shed new light on nickel-fluorine reactions

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Gunther, W.; Jarry, R. L.

    1967-01-01

    Isotopic tracer experiments and scale-impingement experiments show fluorine to be the migrating species through the nickel fluoride scale formed during the fluorination of nickel. This is in contrast to nickel oxide scales, where nickel is the migrating species.

  11. Iron and Nickel Isotope Measurements on SiC X Grains with CHILI

    NASA Astrophysics Data System (ADS)

    Kodolányi, J.; Stephan, T.; Trappitsch, R.; Hoppe, P.; Pignatari, M.; Davis, A. M.; Pellin, M. J.

    2016-08-01

    New measurements with CHILI on SiC X grains provide more detailed Fe and Ni isotope data than previous NanoSIMS analyses. The new data suggest that Fe-Ni fractionation may occur in supernova ejecta before SiC condensation.

  12. The elemental and isotopic composition of Galactic cosmic-ray nuclei from scandium through nickel

    NASA Technical Reports Server (NTRS)

    Leske, Richard A.

    1993-01-01

    Measurements of the relative elemental and isotopic abundances of iron-group Galactic cosmic rays at energies of about 325 MeV per nucleon have been made. The source abundance ratio of Ni-60/Ni-58 is 1.07 +/- 0.39, which is a factor of 2.8 +/- 1.0 larger than the solar system value. Our measurements imply the presence of Co-59 at the source, which can be reconciled with the predictions of conventional nucleosynthesis models if there exists a time delay of more than about 100,000 yr between nucleosynthesis and acceleration. Most of the Mn-54 produced by spallation during cosmic-ray propagation in the Galaxy is found to have decayed to Fe-54, indicating a confinement time of greater than 2 Myr. The source ratio of Fe-54/Fe-56 corrected for the Mn-54 decay is 0.046+/- 0.020, which is consistent with the solar system value of 0.063.

  13. First-forbidden β-decay rates, energy rates of β-delayed neutrons and probability of β-delayed neutron emissions for neutron-rich nickel isotopes

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Çakmak, Necla; Iftikhar, Zafar

    2016-01-01

    First-forbidden (FF) transitions can play an important role in decreasing the calculated half-lives specially in environments where allowed Gamow-Teller (GT) transitions are unfavored. Of special mention is the case of neutron-rich nuclei where, due to phase-space amplification, FF transitions are much favored. We calculate the allowed GT transitions in various pn-QRPA models for even-even neutron-rich isotopes of nickel. Here we also study the effect of deformation on the calculated GT strengths. The FF transitions for even-even neutron-rich isotopes of nickel are calculated assuming the nuclei to be spherical. Later we take into account deformation of nuclei and calculate GT + unique FF transitions, stellar β-decay rates, energy rate of β-delayed neutrons and probability of β-delayed neutron emissions. The calculated half-lives are in excellent agreement with measured ones and might contribute in speeding-up of the r-matter flow.

  14. Stable nickel isotopes and cosmogenic berellium-b and aluniinum-26 in metallic spheroids from Meteor Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.; Klein, J.; Middleton, R.; Juenemann, D.

    1995-05-01

    The isotopic abundances of Ni in 17 metallic spheroids from Meteor Crater, Arizona, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Sixteen spheroids have normal isotopic abundances. A 17th shows a marginally detectable mass fractionation of 0.40±0.14%/AMU in favor of the heavier isotopes. The general absence of mass fractionation indicates that open system evaporation caused little loss of Ni. Variable activities of the cosmogenic radionuclides 10Be and 26Al were measured by accelerator mass spectrometry in separate suites of spheroids. Activities of 26Al in most samples and of 10Be in metal cores separated from spheroids indicate that they either (1) come from greater depths in the parent meteoroid than do hand specimens, or (2) lost Al and Be during the process of spheroid formation. One individual spheroid has 10Be and 26Al activities comparable to those of bulk specimens. This result suggests that spheroid formation may occasionally include material from the outermost meter or so of the impactor. Relatively high activities of 10Be, ˜3 dpm/kg, in the siliceous shells of Canyon Diablo spheroids very likely have a meteoric origin.

  15. Evidence for passive mineral carbonation from carbon isotope geochemistry of interstitial air in mine wastes from the Dumont Nickel Project (Abitibi, Quebec).

    NASA Astrophysics Data System (ADS)

    Gras, A.; Beaudoin, G.; Molson, J. W. H.; Plante, B.; Lemieux, J. M.; Kandji, E. H. B.

    2014-12-01

    Natural weathering of ultramafic rocks in mine tailings allows the sequestration of atmospheric CO2 through the formation of magnesium carbonates. The Dumont Nickel Project (DNP) is being studied to estimate the CO2 sequestration potential of future mining residues and to evaluate the impact of mineral carbonation on the quality of mine waste drainage water. For this purpose, experimental cells were built and instrumented in 2011. The first was constructed using milling waste and the second with mining waste. Laboratory characterization of residues and field observations will be combined to propose a quantitative model of mineral carbonation and metal leaching. A decrease of CO2 concentration in the mining waste cell, from atmospheric concentrations (~390 ppmv) near the surface of the cell to ~100 ppmv near the bottom, reflects active CO2 consumption by the residues. This cell contains mining waste with a large grain size distribution ranging from blocks (<40cm) to silt-size grains. Magnesium-rich minerals such as lizardite, chrysotile and brucite are the major minerals in the residues. Mineralogical analyses (XRD, SEM and EPMA) reveal precipitation of brugnatellite and hydromagnesite, with a lamellar texture on the surface of serpentine grains. In order to better identify the different processes involved in carbonation, the carbon isotopic composition of the interstitial gases was analysed in-situ with a WS-CRDS instrument. An increase of d13C(air) from -8‰ to ~2 ‰ is correlated with the decrease in CO2 concentration within the cell, and can be explained by dissolution of atmospheric CO2 in interstitial water (Dco2-DIC 11‰) in the DNP mining residues. As gas advection is slow, CO2 supply driven by diffusion is the limiting step in the experimental cell. CO2 dissolution in interstitial water under this limited CO2 supply condition enriches 13C in residual CO2 in interstitial air. Optimized mineral carbonation reactions in DNP mining waste will require an

  16. NICKEL HYDROXIDES

    SciTech Connect

    MCBREEN,J.

    1997-11-01

    Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

  17. Nickel carcinogenesis.

    PubMed

    Kasprzak, Kazimierz S; Sunderman, F William; Salnikow, Konstantin

    2003-12-10

    Human exposure to highly nickel-polluted environments, such as those associated with nickel refining, electroplating, and welding, has the potential to produce a variety of pathologic effects. Among them are skin allergies, lung fibrosis, and cancer of the respiratory tract. The exact mechanisms of nickel-induced carcinogenesis are not known and have been the subject of numerous epidemiologic and experimental investigations. These mechanisms are likely to involve genetic and epigenetic routes. The present review provides evidence for the genotoxic and mutagenic activity of Ni(II) particularly at high doses. Such doses are best delivered into the cells by phagocytosis of sparingly soluble nickel-containing dust particles. Ni(II) genotoxicity may be aggravated through the generation of DNA-damaging reactive oxygen species (ROS) and the inhibition of DNA repair by this metal. Broad spectrum of epigenetic effects of nickel includes alteration in gene expression resulting from DNA hypermethylation and histone hypoacetylation, as well as activation or silencing of certain genes and transcription factors, especially those involved in cellular response to hypoxia. The investigations of the pathogenic effects of nickel greatly benefit from the understanding of the chemical basis of Ni(II) interactions with intracellular targets/ligands and oxidants. Many pathogenic effects of nickel are due to the interference with the metabolism of essential metals such as Fe(II), Mn(II), Ca(II), Zn(II), or Mg(II). Research in this field allows for identification of putative Ni(II) targets relevant to carcinogenesis and prediction of pathogenic effects caused by exposure to nickel. Ultimately, the investigations of nickel carcinogenesis should be aimed at the development of treatments that would inhibit or prevent Ni(II) interactions with critical target molecules and ions, Fe(II) in particular, and thus avert the respiratory tract cancer and other adverse health effects in nickel workers

  18. Nickel metallomics: general themes guiding nickel homeostasis.

    PubMed

    Sydor, Andrew M; Zamble, Deborah B

    2013-01-01

    The nickel metallome describes the distribution and speciation of nickel within the cells of organisms that utilize this element. This distribution is a consequence of nickel homeostasis, which includes import, storage, and export of nickel, incorporation into metalloenzymes, and the modulation of these and associated cellular systems through nickel-regulated transcription. In this chapter, we review the current knowledge of the most common nickel proteins in prokaryotic organisms with a focus on their coordination environments. Several underlying themes emerge upon review of these nickel systems, which illustrate the common principles applied by nature to shape the nickel metallome of the cell.

  19. Occupational toxicology of nickel and nickel compounds.

    PubMed

    Zhao, Jinshun; Shi, Xianglin; Castranova, Vincent; Ding, Min

    2009-01-01

    Nickel and nickel compounds are widely used in industry. The high consumption of nickel products inevitably leads to occupational and environmental pollution. In occupational settings, exposure to nickel and nickel compounds occurs primarily during nickel refining, electroplating, and welding. The most common airborne exposures to nickel in the workplace are to insoluble nickel species, such as metallic nickel, nickel sulfide, and nickel oxides from dusts and fumes. The chemical and physical properties of nickel and nickel compounds strongly influence their bioavailability and toxicity. The lung and the skin are the principal target organs upon occupational exposure. inhalation exposure is a primary route for nickel-induced toxicity in the workplace. The most important adverse health effects due to occupational exposure to nickel and its compounds are skin allergies, lung fibrosis, and lung cancer. The exact mechanisms of nickel-induced carcinogenesis are not clear. This review summarizes the current knowledge on occupational toxicology of nickel and its compounds. The subtopics include: chemical and physical properties, uses, occupational exposures, occupational exposure limits, toxicokinetics, biological monitoring, acute toxicity, chronic toxicity, genotoxicity, reproductive toxicity, carcinogenicity, molecular mechanisms of carcinogenesis, and gaps in knowledge. PMID:19888907

  20. Nickel subsulfide

    Integrated Risk Information System (IRIS)

    Nickel subsulfide ; CASRN 12035 - 72 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  1. Nickel carbonyl

    Integrated Risk Information System (IRIS)

    Nickel carbonyl ; CASRN 13463 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Special features of single-particle proton spectra of nickel, zinc, and germanium isotopes in the vicinity of the proton drip line

    SciTech Connect

    Bespalova, O. V. Ermakova, T. A.; Klimochkina, A. A.; Romanovsky, E. A.; Spasskaya, T. I.

    2015-10-15

    The single-particle proton spectra of the neutron-deficient isotopes {sup 50,52}Ni, {sup 56,58,60,62}Zn, and {sup 60,62,64}Ge were calculated on the basis of the dispersive optical model whose parameters were extrapolated from the region of stable isotopes. The resulting parameter values lead to agreement between the total number of protons in bound states and the charge number Z of the respective nucleus. The results of the calculations are indicative of a weakly magic character of the {sup 58}Zn nucleus, which has a traditional magic number of N = 28 and a nearly magic number of Z = 30, and the {sup 64}Ge nucleus, for which N = Z = 32.

  3. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  4. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  5. Nickel-dependent metalloenzymes.

    PubMed

    Boer, Jodi L; Mulrooney, Scott B; Hausinger, Robert P

    2014-02-15

    This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified.

  6. Nickel-Dependent Metalloenzymes

    PubMed Central

    Boer, Jodi L.; Mulrooney, Scott B.; Hausinger, Robert P.

    2013-01-01

    This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified. PMID:24036122

  7. NICKEL PLATING PROCESS

    DOEpatents

    Hoover, T.B.; Zava, T.E.

    1959-05-12

    A simplified process is presented for plating nickel by the vapor decomposition of nickel carbonyl. In a preferred form of the invention a solid surface is nickel plated by subjecting the surface to contact with a mixture containing by volume approximately 20% nickel carbonyl vapor, 2% hydrogen sulfide and .l% water vapor or 1% oxygen and the remainder carbon dioxide at room temperature until the desired thickness of nickel is obtained. The advantage of this composition over others is that the normally explosive nickel carbonyl is greatly stabilized.

  8. Perfluorodiethoxymethane on nickel and nickel oxide surfaces

    SciTech Connect

    Jacobson, J.

    1994-03-03

    The interaction of perfluorodiethoxymethane with a nickel single crystal, Ni(100); a nickel crystal with chemisorbed oxygen, Ni(100)-c(2x2)O; and a nickel crystal with nickel oxide crystallites, NiO(100) is investigated in an ultra high vacuum environment using thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. Nickel, a component of hard disk drives and stainless steel, is used to represent metal surfaces in these {open_quotes}real{close_quotes} systems. Perfluorodiethoxymethane is used in this study as a model compound of industrial perfluoropolyether lubricants. These lubricants are known for their exceptional stability, except in the presence of metals. Perfluorodiethoxymethane contains the acetal group (-OCF{sub 2}O-), believed to be particularly vulnerable to attack in the presence of Lewis acids. Since the surfaces studied show increasing Lewis acidity at the nickel atom sites, one might expect to see increasing decomposition of perfluorodiethoxymethane due to acidic attack of the acetal group. No decomposition of perfluorodiethoxymethane is observed on the clean Ni(100) surface, while more research is needed to determine whether a small decomposition pathway is observed on the oxygenated surfaces, or whether sample impurities are interfering with results. The strength of the bonding of perfluorodiethoxymethane to the surface is found to increase as the nickel atoms sites become more acidic in moving from Ni(100) to Ni (100)-c(2x2)O to NiO (100).

  9. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  10. Method of producing nickel electrode

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.; Ohira, T.; Kumano, Y.; Nakao, T.

    1982-01-01

    A large capacity nickel electrode is provided in which the charging efficiency and discharge utilization coefficient are improved in comparison to nickel electrodes which are produced by the conventional method. Nickel electrodes retaining nickel active material or nickel active material and cobalt compounds on a porous nickel substrate are immersed in a cobalt sulfate aqueous solution whose pH is adjusted in the range of 3.5 to 6.0, followed by crystallization of the hydroxide or oxide by pyrolysis or immersion in alkali, thereby coating the surface of the nickel active material with cobalt crystals and simultaneously promoting alloying of the nickel-cobalt.

  11. Nickel Curie Point Engine

    ERIC Educational Resources Information Center

    Chiaverina, Chris; Lisensky, George

    2014-01-01

    Ferromagnetic materials such as nickel, iron, or cobalt lose the electron alignment that makes them attracted to a magnet when sufficient thermal energy is added. The temperature at which this change occurs is called the "Curie temperature," or "Curie point." Nickel has a Curie point of 627 K, so a candle flame is a sufficient…

  12. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  13. Low Nickel Diet in Dermatology

    PubMed Central

    Sharma, Ashimav D

    2013-01-01

    Nickel is a ubiquitous trace element and the commonest cause of metal allergy among the people. Nickel allergy is a chronic, recurring problem; females are affected more commonly than males. Nickel allergy may develop at any age. Once developed, it tends to persist life-long. Nickel is present in most of the dietary items and food is considered to be a major source of nickel exposure for the general population. Nickel in the diet of a nickel-sensitive person can provoke dermatitis. Careful selection of food with relatively low nickel concentration can bring a reduction in the total dietary intake of nickel per day. This can influence the outcome of the disease and can benefit the nickel sensitive patient. PMID:23723488

  14. Pulse plating of nickel deposits

    SciTech Connect

    Stimetz, C.J.; Stevenson, M.F.

    1980-02-01

    Pulse plated and conventional nickel deposits have been compared for differences in morphology, mechanical properties, and microstructure. The deposits were obtained from nickel sulfamate, nickel chloride, and Watts nickel plating solutions. No significant differences were found in the direct and pulse current deposits from the sulfamate and chloride solutions; however, significant differences in microstructure, yield strength, and microhardness were observed in deposits from the Watts nickel solution.

  15. Soil, nickel and low nickel food

    NASA Astrophysics Data System (ADS)

    Chami, Ziad Al; Cavoski, Ivana; Mondelli, Donato; Mimiola, Giancarlo; Miano, Teodoro

    2013-04-01

    Nickel is an ubiquitous trace element and occurs in soil, water, air and in the biosphere. Ni is an essential element for several plants, microorganisms and vertebrates. Human requirement for Ni has not been conclusively demonstrated. Nickel is normally present in human tissues at low concentration and, under conditions of high exposure, these levels may increase significantly. Food is the major source of Ni exposure. Nickel is present in many food products, especially vegetables. The amount of Ni present in vegetables is increasing because of environmental contamination and cultural practices. It has been demonstrated that the consumption of a Ni-rich diet can cause an increase of immunological disorders including Systemic Ni Allergy Syndrome (SNAS). The SNAS patients are currently treated with a diet that is closely Ni-free. Therefore, there is a need to produce certified and guaranteed vegetables with a low Ni concentration in the market. The proposed research aims to develop new methods for vegetable production and innovative cultural practices through a suitable choice of agricultural soil, cultivar, amendments and fertilizers as well as good agricultural practices in order to reduce Ni plant uptake and its translocation to the edible plant parts and therefore to produce Ni-free food products for SNAS patients.

  16. Acute nickel carbonyl poisoning.

    PubMed

    Kurta, D L; Dean, B S; Krenzelok, E P

    1993-01-01

    Nickel carbonyl [Ni(CO)4], is formed when metallic nickel combines with carbon monoxide. It is used in the refining process of nickel and as a catalyst in petroleum, plastic, and rubber production. Nickel carbonyl is considered to be one of the most toxic chemicals used industrially and the magnitude of its morbidity and mortality has been compared to that of hydrogen cyanide. A 46-year-old man presented to the emergency department 24 hours after accidental occupational exposure to nickel carbonyl. He admitted to dermal contamination and inhaling the vapor from his clothing after his respiratory protection was removed. On presentation the patient was alert and oriented, complained of shortness of breath, chest tightness, and paresthesias. Examination revealed decreased breath sounds bilaterally and arterial blood gas PO2 of 39% with calculated O2 saturation of 75%. After face mask O2 at 60% his PO2 increased to 85%. The patient required 60% O2 with continuous positive airway pressure of 5 for 4 days. Disulfiram (Antabuse) was administered for the first 2 days until sodium diethyldithiocarbamate (dithiocarb) was obtained. Disulfiram was used because it is metabolized to two molecules of dithiocarb and is hypothetically of value. Dithiocarb was obtained and continued over the next several days. The patient's urine nickel level on the day of admission was 172 micrograms/dL (normal < 5 micrograms/dL) and a serum level of 14.6 micrograms/dL (normal .26-.46 micrograms/dL). The patient's condition gradually improved over the next 10 days. Nickel carbonyl exposure produces mild transient initial symptoms which are followed within 24 hours by more severe life-threatening events.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Acute nickel carbonyl poisoning.

    PubMed

    Kurta, D L; Dean, B S; Krenzelok, E P

    1993-01-01

    Nickel carbonyl [Ni(CO)4], is formed when metallic nickel combines with carbon monoxide. It is used in the refining process of nickel and as a catalyst in petroleum, plastic, and rubber production. Nickel carbonyl is considered to be one of the most toxic chemicals used industrially and the magnitude of its morbidity and mortality has been compared to that of hydrogen cyanide. A 46-year-old man presented to the emergency department 24 hours after accidental occupational exposure to nickel carbonyl. He admitted to dermal contamination and inhaling the vapor from his clothing after his respiratory protection was removed. On presentation the patient was alert and oriented, complained of shortness of breath, chest tightness, and paresthesias. Examination revealed decreased breath sounds bilaterally and arterial blood gas PO2 of 39% with calculated O2 saturation of 75%. After face mask O2 at 60% his PO2 increased to 85%. The patient required 60% O2 with continuous positive airway pressure of 5 for 4 days. Disulfiram (Antabuse) was administered for the first 2 days until sodium diethyldithiocarbamate (dithiocarb) was obtained. Disulfiram was used because it is metabolized to two molecules of dithiocarb and is hypothetically of value. Dithiocarb was obtained and continued over the next several days. The patient's urine nickel level on the day of admission was 172 micrograms/dL (normal < 5 micrograms/dL) and a serum level of 14.6 micrograms/dL (normal .26-.46 micrograms/dL). The patient's condition gradually improved over the next 10 days. Nickel carbonyl exposure produces mild transient initial symptoms which are followed within 24 hours by more severe life-threatening events.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8383493

  18. Nickel ferrule applicators: a source of nickel exposure in children.

    PubMed

    Jacob, Sharon E; Silverberg, Jonathan I; Rizk, Christopher; Silverberg, Nanette

    2015-01-01

    Eye makeup has been investigated for nickel content and found to have no direct association with nickel allergy and cosmetic dermatitis. However, the tools used (e.g., eyelash curlers, hairdressing scissors, hair curlers, and eye shadow and makeup applicators) may be sources. Nickel is ubiquitous and a wide range of sources have been reported, and makeup applicators (ferrules) now join the list.

  19. Determination of nickel-63

    SciTech Connect

    Poletiko, C.

    1988-01-01

    The research of activation products in the environment is often centered on cobalt-60 or other gamma emitters, since pure beta emitters require time consuming separations to be counted. However, some beta emitters must be checked because they have a build up in the environment, leading to potential hazards. Among these nuclides, there is nickel-63 which is a pure, soft beta emitter (67 keV) with a long half-life (100 years). A chemical separation, providing good results, was developed. Such a separation is based upon nickel carrier addition in the sample than DMG complex formation and isolation; after elimination of solvent. DMG complex is destroyed. Chemical yield is determined by flame atomic absorption measurement and nickel-63 counted by liquid scintillation. The described procedure allows the determination of low-level activities in different samples (soils, effluents, etc.). Detection limits are close to 0.1 Bq per sample.

  20. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  1. Exposure to soluble nickel in electrolytic nickel refining.

    PubMed

    Kiilunen, M; Utela, J; Rantanen, T; Norppa, H; Tossavainen, A; Koponen, M; Paakkulainen, H; Aitio, A

    1997-04-01

    Past and present exposure to nickel was studied in an electrolytic nickel refinery, where an increased incidence of nasal cancer had been reported, using nickel analyses in air, blood and urine. Genotoxic effects were studied using analysis of micronuclei from acridine orange-stained smears from the buccal mucosa of the workers. Workers used respirators or masks in tasks where the exposure was expected to be high. Inside the mask, nickel concentrations were 0.9-2.4 micrograms m-3 in such tasks. In those tasks where masks were not used, nickel concentrations in the breathing zone were 1.3-21 micrograms m-3. Air-borne nickel concentrations (stationary sampling) varied between 230 and 800 micrograms m-3 in 1966-1988 with no systematic change; thereafter lower concentrations (170-460 micrograms m-3) have been observed. After-shift urinary concentrations of nickel were 0.1-2 mumol l-1; they showed no correlation with nickel concentrations in the air. Concentrations of nickel in the urine were still elevated after a 2-4 week vacation. The frequency of micronucleated epithelial cells in the buccal mucosa of nickel refinery workers was not significantly elevated by comparison with referents. No relationship was observed between micronucleus frequencies and levels of nickel in air, urine or blood. PMID:9155238

  2. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  3. Nickel refinery dust

    Integrated Risk Information System (IRIS)

    Nickel refinery dust ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  4. Iron induced nickel deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is increasingly apparent that economic loss due to nickel (Ni) deficiency likely occurs in horticultural and agronomic crops. While most soils contain sufficient Ni to meet crop requirements, situations of Ni deficiency can arise due to antagonistic interactions with other metals. This study asse...

  5. Nickel and epigenetic gene silencing.

    PubMed

    Sun, Hong; Shamy, Magdy; Costa, Max

    2013-01-01

    Insoluble nickel compounds are well-established human carcinogens. Occupational exposure to these compounds leads to increased incidence of lung and nasal cancer in nickel refinery workers. Apart from its weak mutagenic activity and hypoxia mimicking effect there is mounting experimental evidence indicating that epigenetic alteration plays an important role in nickel-induced carcinogenesis. Multiple epigenetic mechanisms have been identified to mediate nickel-induced gene silencing. Nickel ion is able to induce heterochromatinization by binding to DNA-histone complexes and initiating chromatin condensation. The enzymes required for establishing or removing epigenetic marks can be targeted by nickel, leading to altered DNA methylation and histone modification landscapes. The current review will focus on the epigenetic changes that contribute to nickel-induced gene silencing. PMID:24705264

  6. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  7. Cigarette smoking and nickel exposure.

    PubMed

    Torjussen, William; Zachariasen, Hans; Andersen, Ivar

    2003-04-01

    The tobacco plant contains nickel and several other toxic metals, most probably absorbed from the soil, fertilizing products or from pesticides. It has been stated that nickel in a burning cigarette might form the volatile, gaseous compound, nickel tetracarbonyl, and thereby be introduced into the respiratory tract. Accordingly, the main objective of the present study was to find out if nickel content in inhaled smoke from ordinary cigarettes and nickel-contaminated cigarettes handmade by nickel process workers might be a supplementary source of nickel exposure to cigarette smoking process workers leading to additional risk of occupational respiratory cancer in these workers. Blood and urine samples from 318 randomly selected employees from Falconbridge Nickel Refinery in Kristiansand, Norway, allocated to 197 smokers and 121 non-smokers, were analysed for nickel content. Nickel quantities in tobacco from various cigarette brands, from nickel-contaminated cigarettes made by process workers or from cigarettes added known amounts of various nickel salts were analysed before being smoked. The cigarettes were smoked in a smoking machine device applying an electrostatic filter. Blood and urine, tobacco, ash and precipitates in the filter from the main stream smoke of the cigarettes were analysed for nickel quantities by atomic absorption spectrometry methods as previously described by the authors. The nickel concentrations in blood plasma and urine were quite similar among smokers and non-smokers, 6.2 and 48.1 microg L(-1) in smokers, and 6.4 and 50.5 microg L(-1) in non-smokers respectively. We recovered 1.1% or even less of nickel in the mainstream smoke after smoking the entire cigarettes without leaving any butt. Most of the tobacco nickel was recovered in the ash. We conclude that the inhaled nickel in the working atmosphere is probably the main source of the nickel exposure to the respiratory tract in these workers. It remains to be determined why cigarette

  8. Cigarette smoking and nickel exposure.

    PubMed

    Torjussen, William; Zachariasen, Hans; Andersen, Ivar

    2003-04-01

    The tobacco plant contains nickel and several other toxic metals, most probably absorbed from the soil, fertilizing products or from pesticides. It has been stated that nickel in a burning cigarette might form the volatile, gaseous compound, nickel tetracarbonyl, and thereby be introduced into the respiratory tract. Accordingly, the main objective of the present study was to find out if nickel content in inhaled smoke from ordinary cigarettes and nickel-contaminated cigarettes handmade by nickel process workers might be a supplementary source of nickel exposure to cigarette smoking process workers leading to additional risk of occupational respiratory cancer in these workers. Blood and urine samples from 318 randomly selected employees from Falconbridge Nickel Refinery in Kristiansand, Norway, allocated to 197 smokers and 121 non-smokers, were analysed for nickel content. Nickel quantities in tobacco from various cigarette brands, from nickel-contaminated cigarettes made by process workers or from cigarettes added known amounts of various nickel salts were analysed before being smoked. The cigarettes were smoked in a smoking machine device applying an electrostatic filter. Blood and urine, tobacco, ash and precipitates in the filter from the main stream smoke of the cigarettes were analysed for nickel quantities by atomic absorption spectrometry methods as previously described by the authors. The nickel concentrations in blood plasma and urine were quite similar among smokers and non-smokers, 6.2 and 48.1 microg L(-1) in smokers, and 6.4 and 50.5 microg L(-1) in non-smokers respectively. We recovered 1.1% or even less of nickel in the mainstream smoke after smoking the entire cigarettes without leaving any butt. Most of the tobacco nickel was recovered in the ash. We conclude that the inhaled nickel in the working atmosphere is probably the main source of the nickel exposure to the respiratory tract in these workers. It remains to be determined why cigarette

  9. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  10. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  11. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  12. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  13. 49 CFR 173.198 - Nickel carbonyl.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Nickel carbonyl. 173.198 Section 173.198... Nickel carbonyl. (a) Nickel carbonyl must be packed in specification steel or nickel cylinders as prescribed for any compressed gas except acetylene. A cylinder used exclusively for nickel carbonyl may...

  14. Raney nickel catalytic device

    DOEpatents

    O'Hare, Stephen A.

    1978-01-01

    A catalytic device for use in a conventional coal gasification process which includes a tubular substrate having secured to its inside surface by expansion a catalytic material. The catalytic device is made by inserting a tubular catalytic element, such as a tubular element of a nickel-aluminum alloy, into a tubular substrate and heat-treating the resulting composite to cause the tubular catalytic element to irreversibly expand against the inside surface of the substrate.

  15. The accumulation of nickel in human lungs

    SciTech Connect

    Edelman, D.A.; Roggli, V.L. )

    1989-05-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predicted nickel concentrations that were in the range of those of persons without known nickel exposure. Nickel is a suspected carcinogen and has been associated with an increased risk of respiratory tract cancer among nickel workers. However, before the nickel content of cigarettes can be implicated in the etiology of lung cancer, further studies are needed to evaluate the independent effects of smoking and exposure to nickel.

  16. Nickel: makes stainless steel strong

    USGS Publications Warehouse

    Boland, Maeve A.

    2012-01-01

    Nickel is a silvery-white metal that is used mainly to make stainless steel and other alloys stronger and better able to withstand extreme temperatures and corrosive environments. Nickel was first identified as a unique element in 1751 by Baron Axel Fredrik Cronstedt, a Swedish mineralogist and chemist. He originally called the element kupfernickel because it was found in rock that looked like copper (kupfer) ore and because miners thought that "bad spirits" (nickel) in the rock were making it difficult for them to extract copper from it. Approximately 80 percent of the primary (not recycled) nickel consumed in the United States in 2011 was used in alloys, such as stainless steel and superalloys. Because nickel increases an alloy's resistance to corrosion and its ability to withstand extreme temperatures, equipment and parts made of nickel-bearing alloys are often used in harsh environments, such as those in chemical plants, petroleum refineries, jet engines, power generation facilities, and offshore installations. Medical equipment, cookware, and cutlery are often made of stainless steel because it is easy to clean and sterilize. All U.S. circulating coins except the penny are made of alloys that contain nickel. Nickel alloys are increasingly being used in making rechargeable batteries for portable computers, power tools, and hybrid and electric vehicles. Nickel is also plated onto such items as bathroom fixtures to reduce corrosion and provide an attractive finish.

  17. 21 CFR 184.1537 - Nickel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Nickel. 184.1537 Section 184.1537 Food and Drugs....1537 Nickel. (a) Elemental nickel (CAS Reg. No. 7440-02-0) is obtained from nickel ore by transforming it to nickel sulfide (Ni3S2). The sulfide is roasted in air to give nickel oxide (NiO). The oxide...

  18. Application of a stable isotope technique to determine the simultaneous uptake of cadmium, copper, nickel, lead, and zinc by the water flea Daphnia magna from water and the green algae Pseudokirchneriella subcapitata.

    PubMed

    Komjarova, Irina; Blust, Ronny

    2009-08-01

    Accumulation and toxicological effects of water and dietary metals in aquatic organisms can potentially be very different. Therefore, it is important to know the relative contribution of these different sources to metal exposure, availability, and accumulation. In the present study, a stable isotope technique was applied to investigate the uptake of Cd, Cu, Ni, Pb, and Zn by the green alga Pseudokirchneriella subcapitata and the water flea Daphnia magna during simultaneous exposure to the five metals at environmentally realistic concentrations from separate water and dietary routes. Green algae take up Cu faster compared to Cd, Ni, Pb, and Zn, and the distribution of metals between the external and internal compartments is dependent on metal and population growth stage. The metal accumulation reached a steady state within 24 to 48 h for all metals. Metal uptake rate constants from water were highest for Cu and lowest for Ni. Metal assimilation efficiencies from the food source varied with metal, ranging from approximately 80% in the case of Cd to near 0% in the case of Ni. Because the data for the different metals were obtained on the same multimetal-exposed organisms, the results are directly comparable among the metals. For all five metals studied, water appeared to be the most important route of uptake by D. magna.

  19. Lightweight nickel electrode for nickel hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Britton, D. L.

    1986-01-01

    The nickel electrode was identified as the heaviest component of the nickel hydrogen (NiH2) battery. The NASA Lewis Research Center is developing nickel electrodes for NiH2 battery devices which will be lighter in weight and have higher energy densities when cycled under a low Earth orbit regime at deep depths of discharge. Lightweight plaques are first exposed to 31 percent potassium hydroxide for 3 months to determine their suitability for use as electrode substrates from a chemical corrosion standpoint. Pore size distribution and porosity of the plaques are then measured. The lightweight plaques examined are nickel foam, nickel felt, nickel plastic and nickel plated graphite. Plaques are then electrochemically impregnated in an aqueous solution. Initial characterization tests of the impregnated plaques are performed at five discharge levels, C/2, 1.0 C, 1.37 C, 2.0C, and 2.74 C rates. Electrodes that passed the initial characterization screening test will be life cycle tested. Lightweight electrodes are approximately 30 to 50 percent lighter in weight than the sintered nickel electrode.

  20. Lightweight nickel electrode for nickel hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1986-01-01

    The nickel electrode was identified as the heaviest component of the nickel hydrogen (NiH2) battery. The NASA Lewis Research Center is developing nickel electrodes for NiH2 battery devices which will be lighter in weight and have higher energy densities when cycled under a low Earth orbit regime at deep depths of discharge. Lightweight plaques are first exposed to 31 percent potassium hydroxide for 3 months to determine their suitability for use as electrode substrates from a chemical corrosion standpoint. Pore size distribution and porosity of the plaques are then measured. The lightweight plaques examined are nickel foam, nickel felt, nickel plastic and nickel plated graphite. Plaques are then electrochemically impregnated in an aqueous solution. Initial characterization tests of the impregnated plaques are performed at five discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C rates. Electrodes that passed the initial characterization screening test will be life cycle tested. Lightweight electrodes are approximately 30 to 50 percent lighter in weight than the sintered nickel electrode.

  1. Phases in lanthanum-nickel-aluminum alloys

    SciTech Connect

    Mosley, W.C.

    1992-01-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  2. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  3. Lightweight fibrous nickel electrodes for nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1989-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art sintered nickel electrodes. Lightweight fibrous materials or plaques are used as conductive supports for the nickel hydroxide active material. These materials are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle-tested in a low Earth orbit regime at 80 percent depth of discharge.

  4. Nickel-hydrogen component development

    NASA Technical Reports Server (NTRS)

    Charleston, J. A.

    1983-01-01

    Light weight energy storage systems for future space missions are investigated. One of the systems being studied is the nickel hydrogen battery. This battery is designed to achieve longer life, improve performance, and higher energy densities for space applications. The nickel hydrogen component development is discussed. Test data from polarization measurements of the hydrogen electrode component is presented.

  5. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  6. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  7. Analytical chemistry of nickel.

    PubMed

    Stoeppler, M

    1984-01-01

    Analytical chemists are faced with nickel contents in environmental and biological materials ranging from the mg/kg down to the ng/kg level. Sampling and sample treatment have to be performed with great care at lower levels, and this also applies to enrichment and separation procedures. The classical determination methods formerly used have been replaced almost entirely by different forms of atomic absorption spectrometry. Electroanalytical methods are also of increasing importance and at present provide the most sensitive approach. Despite the powerful methods available, achieving reliable results is still a challenge for the analyst requiring proper quality control measures.

  8. Electroformed Nickel-Graphite Composite

    NASA Technical Reports Server (NTRS)

    Xiong-Skiba, Pei

    2005-01-01

    Future x-ray astronomy will demand larger optics than Chandra, currently in orbit. Ways must be devised to produce cheaper and lighter x-ray mirrors to save the cost of manufacturing and launching this future telescope. One technique, being developed at Marshall Space Flight Center and elsewhere, is electroformed nickel replication technique, wherein mirror shells are electroformed (using pure nickel or a nickel alloy) onto super-polished and figured aluminum mandrels and are subsequently released by cooling. This technique can produce relatively inexpensive mirrors, but is hampered by the high density of nickel (8.9 g / cm3). An alternative is to develop a composite, with lower mass density and compatible mechanical properties to the nickel cobalt alloy, as the mirror shell material.

  9. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    PubMed

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  10. Characterization and assessment of dermal and inhalable nickel exposures in nickel production and primary user industries.

    PubMed

    Hughson, G W; Galea, K S; Heim, K E

    2010-01-01

    The aim of this study was to measure the levels of nickel in the skin contaminant layer of workers involved in specific processes and tasks within the primary nickel production and primary nickel user industries. Dermal exposure samples were collected using moist wipes to recover surface contamination from defined areas of skin. These were analysed for soluble and insoluble nickel species. Personal samples of inhalable dust were also collected to determine the corresponding inhalable nickel exposures. The air samples were analysed for total inhalable dust and then for soluble, sulfidic, metallic, and oxidic nickel species. The workplace surveys were carried out in five different workplaces, including three nickel refineries, a stainless steel plant, and a powder metallurgy plant, all of which were located in Europe. Nickel refinery workers involved with electrolytic nickel recovery processes had soluble dermal nickel exposure of 0.34 microg cm(-2) [geometric mean (GM)] to the hands and forearms. The GM of soluble dermal nickel exposure for workers involved in packing nickel salts (nickel chloride hexahydrate, nickel sulphate hexahydrate, and nickel hydroxycarbonate) was 0.61 microg cm(-2). Refinery workers involved in packing nickel metal powders and end-user powder operatives in magnet production had the highest dermal exposure (GM = 2.59 microg cm(-2) soluble nickel). The hands, forearms, face, and neck of these workers all received greater dermal nickel exposure compared with the other jobs included in this study. The soluble nickel dermal exposures for stainless steel production workers were at or slightly above the limit of detection (0.02 microg cm(-2) soluble nickel). The highest inhalable nickel concentrations were observed for the workers involved in nickel powder packing (GM = 0.77 mg m(-3)), although the soluble component comprised only 2% of the total nickel content. The highest airborne soluble nickel exposures were associated with refineries using

  11. Nickel-Free Alternatives Raise Awareness.

    PubMed

    Hill, Hannah; Goldenberg, Alina; Sheehan, Michael Patrick; Patel, Amy; Jacob, Sharon E

    2015-01-01

    Allergic contact dermatitis to nickel is a global health problem. Worldwide, nickel continues to be the most prevalent and relevant contact allergen detected in tested populations for the last 30 years. Thus, the need for nickel-free products is palpable. We present a sustainable resource to aid providers and consumers in locating a wide variety of nickel free alternatives.

  12. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  13. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  14. Recent Advances in Nickel Catalysis

    PubMed Central

    Tasker, Sarah Z.; Standley, Eric A.; Jamison, Timothy F.

    2015-01-01

    Preface The field of nickel catalysis has made tremendous advances in the past decade. There are several key properties of nickel that have allowed for a broad range of innovative reaction development, such as facile oxidative addition and ready access to multiple oxidation states. In recent years, these properties have been increasingly understood and leveraged to perform transformations long considered exceptionally challenging. Herein, we discuss some of the most recent and significant developments in homogeneous nickel catalysis with an emphasis on both synthetic outcome and mechanism. PMID:24828188

  15. Nickel sulfide hollow whisker formation

    SciTech Connect

    Holcomb, G.R.; Cramer, S.D.

    1997-02-01

    Hollow, high-aspect-ratio nickel sulfide whiskers were formed during aqueous corrosion experiments at 250 C by the US Department of Energy. The whiskers grew radially from Teflon thread at the waterline in acidic sodium sulfate solutions containing chloride additions. The hollow morphology is consistent with that reported for the mineral millerite found in nature in hematite cavities. The data suggest that iron and chloride impurities are necessary for the observed whisker structure. Hollow nickel sulfide whiskers were observed only in high-temperature corrosion experiments conducted on stainless steels; they were not observed in similar experiments on nickel-base alloys.

  16. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1996-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting. This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study, the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Bend strength was found to increase with the amount of surface loading.

  17. 21 CFR 184.1537 - Nickel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Nickel. 184.1537 Section 184.1537 Food and Drugs... Substances Affirmed as GRAS § 184.1537 Nickel. (a) Elemental nickel (CAS Reg. No. 7440-02-0) is obtained from nickel ore by transforming it to nickel sulfide (Ni3S2). The sulfide is roasted in air to give...

  18. 21 CFR 184.1537 - Nickel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nickel. 184.1537 Section 184.1537 Food and Drugs... Substances Affirmed as GRAS § 184.1537 Nickel. (a) Elemental nickel (CAS Reg. No. 7440-02-0) is obtained from nickel ore by transforming it to nickel sulfide (Ni3S2). The sulfide is roasted in air to give...

  19. 21 CFR 184.1537 - Nickel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Nickel. 184.1537 Section 184.1537 Food and Drugs... Substances Affirmed as GRAS § 184.1537 Nickel. (a) Elemental nickel (CAS Reg. No. 7440-02-0) is obtained from nickel ore by transforming it to nickel sulfide (Ni3S2). The sulfide is roasted in air to give...

  20. 21 CFR 184.1537 - Nickel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Nickel. 184.1537 Section 184.1537 Food and Drugs... Substances Affirmed as GRAS § 184.1537 Nickel. (a) Elemental nickel (CAS Reg. No. 7440-02-0) is obtained from nickel ore by transforming it to nickel sulfide (Ni3S2). The sulfide is roasted in air to give...

  1. Capacity fade in nickel cadmium and nickel hydrogen cells

    NASA Technical Reports Server (NTRS)

    Edgar, Tim; Hayden, Jeff; Pickett, David F.; Abrams-Blakemore, Bruce; Liptak, ED

    1993-01-01

    Research and operational experience with capacity fade in nickel cadmium and nickel hydrogen cells are summarized in outline form. The theoretical causes of capacity fade are reviewed and the role of cell storage, positive electrodes, and cobalt additives are addressed. Three examples of observed capacity fade are discussed: INTELSAT 5, INTELSAT 6, and an Explorer platform. Finally, prevention and recovery methods are addressed and the current status of Eagle Picher/Hughes research is discussed.

  2. Non-Sintered Nickel Electrode

    DOEpatents

    Bernard, Patrick; Dennig, Corinne; Cocciantelli, Jean-Michel; Alcorta, Jose; Coco, Isabelle

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  3. Reproductive toxicology of nickel - review.

    PubMed

    Forgacs, Zsolt; Massányi, Peter; Lukac, Norbert; Somosy, Zoltan

    2012-01-01

    The goal of this minireview is to summarize our current knowledge on the reproductive toxicity of soluble nickel salts. We made an attempt to present the most relevant data obtained from in vivo and in vitro experiments performed on mammals, mammalian primary cell cultures and cell lines. Nickel has been demonstrated to disturb the mammalian reproductive functions at several levels of regulation. The results of previous investigations indicate that the hormonal effects may play an important role in the reproductive toxicology of nickel both at the neuroendocrine and gonadal levels in the hypothalamic-pituitary-gonadal (HPG) axis. At the molecular level, it may be important that nickel may substitute certain other metals in metal dependent enzymes, leading to an altered protein function. It readily crosses the cell membrane via calcium channels and competes with calcium for specific receptors. Nickel can cross-link aminoacids to DNA, lead to formation of reactive oxygen species (ROS), moreover mimic hypoxia. These changes may lead to the activation of some signaling pathways, subsequent transcription factors and eventually to alterations in gene expression and cellular metabolism. These events are likely to be involved in the reproductive toxicity of nickel.

  4. Nickel-Resistant Bacteria from Anthropogenically Nickel-Polluted and Naturally Nickel-Percolated Ecosystems

    PubMed Central

    Stoppel, R.; Schlegel, H. G.

    1995-01-01

    DNA fragments harboring the nickel resistance determinants from bacteria isolated from anthropogenically polluted ecosystems in Europe and Zaire were compared with those harboring the nickel resistance determinants from bacteria isolated from naturally nickel-percolated soils from New Caledonia by DNA-DNA hybridization. The biotinylated DNA probes were derived from the previously described Alcaligenes eutrophus CH34, Alcaligenes xylosoxidans 31A, Alcaligenes denitrificans 4a-2, and Klebsiella oxytoca CCUG 15788 and four new nickel resistance-determining fragments cloned from strains isolated from soils under nickel-hyperaccumulating trees. Nine probes were hybridized with endonuclease-cleaved plasmid and total DNA samples from 56 nickel-resistant strains. Some of the New Caledonian strains were tentatively identified as Acinetobacter, Pseudomonas mendocina, Comamonas, Hafnia alvei, Burkholderia, Arthrobacter aurescens, and Arthrobacter ramosus strains. The DNA of most strains showed homologies to one or several of the following nickel resistance determinants: the cnr and ncc operons of the strains A. eutrophus CH34 and A. xylosoxidans 31A, respectively, the nre operon of strain 31A, and the nickel resistance determinants of K. oxytoca. On the basis of their hybridization reactions the nickel resistance determinants of the strains could be assigned to four groups: (i) cnr/ncc type, (ii) cnr/ncc/nre type, (iii) K. oxytoca type, and (iv) others. The majority of the strains were assigned to the known groups. Among the strains from Belgium and Zaire, exclusively the cnr/ncc and the cnr/ncc/nre types were found. Among the New Caledonian strains all four types were represented. Homologies to the nre operon were found only in combination with the cnr/ncc operon. The homologies to the cnr/ncc operon were the most abundant and were detected alone or together with homologies to the nre operon. Only the DNA of the strains isolated from soil in Scotland and the United States

  5. Nickel hydrogen batteries: An overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1994-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A LeRC innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass,volume, and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a reduction in

  6. Development of a lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, D. L.; Reid, M. A.

    1984-01-01

    Nickel electrodes made using lightweight plastic plaque are about half the weight of electrodes made from state of the art sintered nickel plaque. This weight reduction would result in a significant improvement in the energy density of batteries using nickel electrodes (nickel hydrogen, nickel cadmium and nickel zinc). These lightweight electrodes are suitably conductive and yield comparable capacities (as high as 0.25 AH/gm (0.048 AH/sq cm)) after formation. These lightweight electrodes also show excellent discharge performance at high rates.

  7. Nickel immobilization in ceramic matrix admixed with waste nickel hydroxide.

    PubMed

    Osińska, Malgorzata; Stefanowicz, Tadeusz; Paukszta, Dominik

    2003-01-01

    WAXS examinations performed with nickel hydroxide samples heated to various temperatures showed that freshly settled wet nickel hydroxide sample contains some amount of crystalline beta-Ni(OH)(2) structure and its share increased when sample was dried during 3 weeks at ambient temperature. However, the share significantly decreased when the sample was dried at 110 degrees C and more so at 250 degrees C. Crystalline phase traces of Ni(OH)(2) disappeared after sample burning at 980 degrees C and instead the distinct presence of crystalline NiO was determined. The above samples were examined for solubility in stoichiometric amount of sulphuric acid diluted with water to pH 1.9 and 2.8. Solubility was determined by measuring nickel ion concentration in leachate by the AAS method. The dissolving rate was found to decrease with the rise of temperature to which the nickel hydroxide samples were heated. The solubility of Ni(OH)(2) sample burnt at 980 degrees C was undetectable during 90 h solubility-testing time likely due to its transformation into sparingly soluble crystalline NiO. The latter is considered to be the reason for effective immobilization of waste nickel hydroxide in ceramic prepared by blending with clay and sintering at 980 degrees C. PMID:14583250

  8. Nickel species: analysis and toxic effects.

    PubMed

    Schaumlöffel, Dirk

    2012-01-01

    This review gives an overview on the analysis of inorganic nickel species and their toxic effects. Based on the analytical procedure applied inorganic nickel species are usually classified in soluble, sulfidic, metallic and oxidic nickel fractions. Only few works were attempting a chemical characterization of the different nickel compounds in each fraction. This general classification in four nickel species groups is widely used in toxicological studies dealing with nickel particulate matter in workplace air. Compared to the general population, occupationally exposed people have a higher risk of respiratory tract cancer due to inhalation of nickel at their workplace in the nickel-producing or using industries. High cancer risk is related to less soluble oxidic and especially sulfidic nickel species in refinery dust. In contrast, within the general population the most harmful health effect related to nickel exposure is allergic contact dermatitis due to prolonged skin contact with nickel. Absorption processes of nickel species and molecular mechanisms of nickel toxicity are briefly outlined. PMID:22366237

  9. Mechanisms of nickel toxicity in microorganisms

    PubMed Central

    Macomber, Lee

    2014-01-01

    Summary Nickel has long been known to be an important human toxicant, including having the ability to form carcinomas, but until recently nickel was believed to be an issue only to microorganisms living in nickel-rich serpentine soils or areas contaminated by industrial pollution. This assumption was overturned by the discovery of a nickel defense system (RcnR/RcnA) found in microorganisms that live in a wide range of environmental niches, suggesting that nickel homeostasis is a general biological concern. To date, the mechanisms of nickel toxicity in microorganisms and higher eukaryotes are poorly understood. In this review, we summarize nickel homeostasis processes used by microorganisms and highlight in vivo and in vitro effects of exposure to elevated concentrations of nickel. On the basis of this evidence we propose four mechanisms of nickel toxicity: 1) nickel replaces the essential metal of metalloproteins, 2) nickel binds to catalytic residues of non-metalloenzymes; 3) nickel binds outside the catalytic site of an enzyme to inhibit allosterically, and 4) nickel indirectly causes oxidative stress. PMID:21799955

  10. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  11. Isotopic Paleoclimatology

    NASA Astrophysics Data System (ADS)

    Bowen, R.

    Paleotemperature scales were calculated by H. C. Urey and others in the 1950s to assess past temperatures, and later work using the stable isotopes of oxygen, hydrogen, and carbon employed standards such as Peedee belemnite (PDB) and Standard Mean Ocean Water (SMOW). Subsequently, subjects as diverse as ice volume and paleotemperatures, oceanic ice and sediment cores, Pleistocene/Holocene climatic changes, and isotope chronostratigraphy extending back to the Precambrian were investigated.

  12. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  13. Nickel-responsive transcriptional regulators.

    PubMed

    Musiani, Francesco; Zambelli, Barbara; Bazzani, Micaela; Mazzei, Luca; Ciurli, Stefano

    2015-09-01

    Nickel is an essential micronutrient for a large number of living organisms, but it is also a toxic metal ion when it accumulates beyond the sustainable level as it may result if and when its cellular trafficking is not properly governed. Therefore, the homeostasis and metabolism of nickel is tightly regulated through metal-specific protein networks that respond to the available Ni(II) concentration. These are directed by specific nickel sensors, able to couple Ni(II) binding to a change in their DNA binding affinity and/or specificity, thus translating the cellular level of Ni(II) into a modification of the expression of the proteins devoted to modulating nickel uptake, efflux and cellular utilization. This review describes the Ni(II)-dependent transcriptional regulators discovered so far, focusing on their structural features, metal coordination modes and metal binding thermodynamics. Understanding these properties is essential to comprehend how these sensors correlate nickel availability to metal coordination and functional responses. A broad and comparative study, described here, reveals some general traits that characterize the binding stoichiometry and Ni(II) affinity of these metallo-sensors.

  14. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  15. Thermodynamics of nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Macdonald, Digby D.; Challingsworth, Mark L.

    1993-01-01

    Thermodynamic parameters for Nickel-Cadmium (NiCad) and Nickel-Hydrogen (NiH2) batteries are calculated for temperatures ranging from 273.15K (0 C) to 373.15K (100 C). For both systems, we list equilibrium and thermoneutral voltages for the cells, and in the case of the NiH2 battery, these data are provide for hydrogen fugacities ranging from 0.01 to 100 (atm) to simulate the full discharged and charged states. The quality of the input thermodynamic data are assessed and the effect of assuming different cell reactions is analyzed.

  16. Nickel hydrogen battery cell storage matrix test

    NASA Technical Reports Server (NTRS)

    Wheeler, James R.; Dodson, Gary W.

    1993-01-01

    Test were conducted to evaluate post storage performance of nickel hydrogen cells with various design variables, the most significant being nickel precharge versus hydrogen precharge. Test procedures and results are presented in outline and graphic form.

  17. Platinum-ruthenium-nickel fuel cell electrocatalyst

    DOEpatents

    Gorer, Alexander

    2005-07-26

    A catalyst suitable for use in a fuel cell, especially as an anode catalyst, that contains platinum, ruthenium, and nickel, wherein the nickel is at a concentration that is less than about 10 atomic percent.

  18. Photoacoustic infrared analysis of nickel catalysts precursors

    NASA Astrophysics Data System (ADS)

    Pasieczna, S.; Ryczkowski, J.

    2006-11-01

    Photoacoustic spectroscopy (FT-IR/PAS) has been used for identification of different forms of nickel precursors formed during CIM (classical impregnation method) and DIM (double impregnation method) process and different pH of the solution containing nickel ions.

  19. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  20. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Wheeler, James R.; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder and the second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested and evaluated at the electrode and cell level.

  1. Didymium compound improves nickel-cadmium cell

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Nickel electrodes impregnated with an additive solution of didymium hydrate and nitric acid mixed with nickel nitrate increases ampere-hour capacity of cells and does not affect the voltage characteristics.

  2. Study of fluoride corrosion of nickel alloys

    NASA Technical Reports Server (NTRS)

    Gunther, W. H.; Steindler, M. J.

    1969-01-01

    Report contains the results of an investigation of the corrosion resistance of nickel and nickel alloys exposed to fluorine, uranium hexafluoride, and volatile fission product fluorides at high temperatures. Survey of the unclassified literature on the subject is included.

  3. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness

    PubMed Central

    Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  4. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness.

    PubMed

    Imran Din, Muhammad; Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  5. Diffusive Fractionation of Lithium Isotopes in Olivine

    NASA Astrophysics Data System (ADS)

    Homolova, V.; Richter, F. M.; Watson, E. B.; Chaussidon, M.

    2014-12-01

    Systematic lithium isotope variations along concentration gradients found in olivine and pyroxene grains from terrestrial, lunar and martian rocks have been attributed to diffusive isotopic fractionation [Beck et al., 2006; Tang et al., 2007]. In some cases, these isotopic excursions are so large that a single grain may display isotopic variability that spans almost the entire range of documented terrestrial values [Jeffcoate et al., 2007]. In this study, we present the results of experiments to examine diffusive isotopic fractionation of lithium in olivine. The experiments comprised crystallographically oriented slabs of San Carlos olivine juxtaposed with either spodumene powder or a lithium rich pyroxene crystal. Experiments were conducted at 1 GPa and 0.1MPa over a temperature range of 1000 to 1125⁰C. Oxygen fugacity in the 0.1MPa experiments was controlled using the wustite-magnetite and nickel-nickel oxide solid buffer assemblages. Lithium concentrations generally decrease smoothly away from the edges of the grains; however, experiments involving diffusion parallel to the a-axis consistently show peculiar wavy or segmented concentration profiles. Lithium diffusivity parallel to the c-axis is on the order of 1E-14m2/s at 1100⁰C. The diffusivity parallel to the c-axis is more than an order of magnitude faster than diffusion parallel to the b-axis and correlates positively with oxygen fugacity. The lithium isotopic composition, δ7Li = 1000‰ * ((δ7Lisample- δ7Ligrain center)/ δ7Ligrain center), shows a decrease away from the edge of the grain to a minimum value (up to 70‰ lighter) and then an abrupt increase back to the initial isotopic composition of the olivine grain. This isotopic profile is similar to those found in natural grains and an experimental study on diffusive fractionation of lithium isotopes in pyroxene [Richter et al., 2014]. Results from the present study are modeled using the approach of Dohmen et al. [2010], which assumes lithium

  6. Improved nickel plating of Inconel X-750

    NASA Technical Reports Server (NTRS)

    Farmer, M. E.; Feeney, J. E.; Kuster, C. A.

    1969-01-01

    Electroplating technique with acid pickling provides a method of applying nickel plating on Inconel X-750 tubing to serve as a wetting agent during brazing. Low-stress nickel-plating bath contains no organic wetting agents that cause the nickel to blister at high temperatures.

  7. Method of Making a Nickel Fiber Electrode for a Nickel Based Battery System

    NASA Technical Reports Server (NTRS)

    Britton, Doris L. (Inventor)

    2001-01-01

    The general purpose of the invention is to develop a high specific energy nickel electrode for a nickel based battery system. The invention discloses a method of producing a lightweight nickel electrode which can be cycled to deep depths of discharge (i.e., 40% or greater of electrode capacity). These deep depths of discharge can be accomplished by depositing the required amount of nickel hydroxide active material into a lightweight nickel fiber substrate.

  8. Nickel cadmium battery expert system

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The applicability of artificial intelligence methodologies for the automation of energy storage management, in this case, nickel cadmium batteries, is demonstrated. With the Hubble Space Telescope Electrical Power System (HST/EPS) testbed as the application domain, an expert system was developed which incorporates the physical characterization of the EPS, in particular, the nickel cadmium batteries, as well as the human's operational knowledge. The expert system returns not only fault diagnostics but also status and advice along with justifications and explanations in the form of decision support.

  9. Molecular Mechanisms of Nickel Allergy

    PubMed Central

    Saito, Masako; Arakaki, Rieko; Yamada, Akiko; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Allergic contact hypersensitivity to metals is a delayed-type allergy. Although various metals are known to produce an allergic reaction, nickel is the most frequent cause of metal allergy. Researchers have attempted to elucidate the mechanisms of metal allergy using animal models and human patients. Here, the immunological and molecular mechanisms of metal allergy are described based on the findings of previous studies, including those that were recently published. In addition, the adsorption and excretion of various metals, in particular nickel, is discussed to further understand the pathogenesis of metal allergy. PMID:26848658

  10. Nickel and cobalt allergy before and after nickel regulation--evaluation of a public health intervention.

    PubMed

    Thyssen, Jacob Pontoppidan

    2011-09-01

    Over the 20th century, the frequent use of nickel in consumer products resulted in an increasing prevalence of nickel allergy. Risk items included suspenders in the 1950s-1960s; buttons, zippers and rivets in the 1970s; and ear-piercing jewellery in the 1980s. When subjects allergic to nickel were exposed to nickel in high concentrations, it often resulted in allergic nickel contact dermatitis and hand eczema. In 1990, the Danish government began to regulate consumer nickel exposure as a response to the increasing nickel allergy problem. In 1994, the EU Nickel Directive was passed, a regulation that was based on the Danish and Swedish nickel regulations. These major public health interventions were expected to change the epidemiology of nickel allergy and dermatitis in Europe. Furthermore, it was debated whether nickel would be replaced by cobalt in inexpensive jewellery and result in higher prevalence of cobalt allergy. An evaluation of the possible effects of the European nickel regulations is of importance to ensure protection of consumers and dermatitis patients. This doctoral thesis aimed to evaluate the effects of regulatory interventions on nickel exposure by investigating the development of nickel allergy and dermatitis before and after nickel regulation. Furthermore, a change in the association between nickel allergy and hand eczema was evaluated. The nickel spot test was validated to determine its value when used for screening purposes. Possible explanations for the persistence of nickel allergy were explored including genetic predisposition and consumer nickel exposure from jewellery and accessories. A cobalt spot test was developed and validated. Finally, it was evaluated whether a cobalt allergy epidemic had replaced the nickel allergy epidemic after nickel regulation in terms of increasing cobalt sensitization and cobalt exposure. The thesis showed that the prevalence of nickel allergy decreased significantly after nickel regulation in young Danish

  11. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  12. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  13. Direct Alloying of Steel with Nickel Concentrate

    NASA Astrophysics Data System (ADS)

    Nokhrina, O. I.; Rozhikhina, I. D.; Proshunin, I. E.

    2016-08-01

    A technology of alloying steel with nickel reduced from nickel concentrate is analysed and developed. Limits of reduction concentration areas are defined. An optimal composition of nickel concentrate pellets and a method of feeding them into the furnace are deduced from experiments. It is proved that when pellets made of nickel concentrate and coke are added into the charge during steel smelting by the technology of alloyed scrap remelting, nickel recovery achieves 92-95%. The technology was tested by smelting DSP-40 steel.

  14. Nickel-hydrogen bipolar battery systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1982-01-01

    Nickel-hydrogen cells are currently being manufactured on a semi-experimental basis. Rechargeable nickel-hydrogen systems are described that more closely resemble a fuel cell system than a traditional nickel-cadmium battery pack. This has been stimulated by the currently emerging requirements related to large manned and unmanned low earth orbit applications. The resultant nickel-hydrogen battery system should have a number of features that would lead to improved reliability, reduced costs as well as superior energy density and cycle lives as compared to battery systems constructed from the current state-of-the-art nickel-hydrogen individual pressure vessel cells.

  15. ELECTRODEPOSITION OF NICKEL ON URANIUM

    DOEpatents

    Gray, A.G.

    1958-08-26

    A method is described for preparing uranium objects prior to nickel electroplating. The process consiats in treating the surface of the uranium with molten ferric chloride hexahydrate, at a slightiy elevated temperature. This treatment etches the metal surface providing a structure suitable for the application of adherent electrodeposits and at the same time plates the surface with a thin protective film of iron.

  16. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  17. Assaying Environmental Nickel Toxicity Using Model Nematodes

    PubMed Central

    Rudel, David; Douglas, Chandler D.; Huffnagle, Ian M.; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegans and P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species. PMID:24116204

  18. Assaying environmental nickel toxicity using model nematodes

    USGS Publications Warehouse

    Rudel, David; Douglas, Chandler; Huffnagle, Ian; Besser, John M.; Ingersoll, Christopher G.

    2013-01-01

    Although nickel exposure results in allergic reactions, respiratory conditions, and cancer in humans and rodents, the ramifications of excess nickel in the environment for animal and human health remain largely undescribed. Nickel and other cationic metals travel through waterways and bind to soils and sediments. To evaluate the potential toxic effects of nickel at environmental contaminant levels (8.9-7,600 µg Ni/g dry weight of sediment and 50-800 µg NiCl2/L of water), we conducted assays using two cosmopolitan nematodes, Caenorhabditis elegans and Pristionchus pacificus. We assayed the effects of both sediment-bound and aqueous nickel upon animal growth, developmental survival, lifespan, and fecundity. Uncontaminated sediments were collected from sites in the Midwestern United States and spiked with a range of nickel concentrations. We found that nickel-spiked sediment substantially impairs both survival from larval to adult stages and adult longevity in a concentration-dependent manner. Further, while aqueous nickel showed no adverse effects on either survivorship or longevity, we observed a significant decrease in fecundity, indicating that aqueous nickel could have a negative impact on nematode physiology. Intriguingly, C. elegansand P. pacificus exhibit similar, but not identical, responses to nickel exposure. Moreover, P. pacificus could be tested successfully in sediments inhospitable to C. elegans. Our results add to a growing body of literature documenting the impact of nickel on animal physiology, and suggest that environmental toxicological studies could gain an advantage by widening their repertoire of nematode species.

  19. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOEpatents

    Windt, N.F.; Williams, J.L.

    In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel contianing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  20. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  1. Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate

    NASA Astrophysics Data System (ADS)

    Choma, Jerzy; Jedynak, Katarzyna; Marszewski, Michal; Jaroniec, Mietek

    2012-02-01

    Mesoporous carbon composites, containing nickel and nickel oxide nanoparticles, were obtained by soft-templating method. Samples were synthesized under acidic conditions using resorcinol and formaldehyde as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock co-polymer Lutrol F127 as a soft template and nickel and nickel oxide nanoparticles, and nickel nitrate as metal precursors. In addition, a one set of samples was obtained by impregnation of mesoporous carbons with a nickel nitrate solution followed by further annealing at 400 °C. Wide angle X-ray powder diffraction along with thermogravimetric analysis proved the presence of nickel nanoparticles in the final composites obtained using nickel and nickel oxide nanoparticles, and Ni(NO3)2 solution. Whereas, the impregnation of carbons with a nickel nitrate solution followed by annealing at 400 °C resulted in needle-like nickel oxide nanoparticles present inside the composites’ pores. Low-temperature (-196 °C) nitrogen physisorption, X-ray powder diffraction, and thermogravimetric analysis confirmed good adsorption and structural properties of the synthesized nickel-carbon composites, in particular, the samples possessed high surface areas (>600 m2/g), large total pore volumes (>0.50 cm3/g), and maxima of pore size distribution functions at circa 7 nm. It was found that the composites were partially graphitized during carbonization process at 850 °C. The samples are stable in an air environment below temperature of 500 °C. All these features make the synthesized nickel-carbon composites attractive materials for adsorption, catalysis, energy storage, and environmental applications.

  2. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low Earth orbit regime at 40 and 80 percent depths-of-discharge.

  3. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  4. Nickel nanofibers synthesized by the electrospinning method

    SciTech Connect

    Ji, Yi; Zhang, Xuebin; Zhu, Yajun; Li, Bin; Wang, Yang; Zhang, Jingcheng; Feng, Yi

    2013-07-15

    Highlights: ► The nickel nanofibers have been obtained by electrospinning method. ► The nickel nanofibers had rough surface which was consisted of mass nanoparticles. ► The average diameter of nickel nanofibers is about 135 nm and high degree of crystallization. ► The Hc, Ms, and Mr were estimated to be 185 Oe, 51.9 and 16.9 emu/g respectively. - Abstract: In this paper, nickel nanofibers were prepared by electrospinning polyvinyl alcohol/nickel nitrate precursor solution followed by high temperature calcination in air and deoxidation in hydrogen atmosphere. The thermal stability of the as-electrospun PVA/Ni(NO{sub 3}){sub 2} composite nanofibers were characterized by TG–DSC. The morphologies and structures of the as-prepared samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electronmicroscope (FE-SEM) and field-emission transmission electron microscopy (FE-TEM). The hysteresis loops (M–H loops) were measured by Physical Property Measurement System (PPMS). The results indicate that: the PVA and the nickel nitrate were almost completely decomposed at 460 °C and the products were pure nickel nanofibers with face-centered cubic (fcc) structure. Furthermore, the as-prepared nickel nanofibers had a continuous structure with rough surface and high degree of crystallization. The average diameter of nickel nanofibers was about 135 nm. The nanofibers showed a stronger coercivity of 185 Oe than value of bulk nickel.

  5. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  6. Gold, nickel and copper mining and processing.

    PubMed

    Lightfoot, Nancy E; Pacey, Michael A; Darling, Shelley

    2010-01-01

    Ore mining occurs in all Canadian provinces and territories except Prince Edward Island. Ores include bauxite, copper, gold, iron, lead and zinc. Workers in metal mining and processing are exposed, not only to the metal of interest, but also to various other substances prevalent in the industry, such as diesel emissions, oil mists, blasting agents, silica, radon, and arsenic. This chapter examines cancer risk related to the mining of gold, nickel and copper. The human carcinogenicity of nickel depends upon the species of nickel, its concentration and the route of exposure. Exposure to nickel or nickel compounds via routes other than inhalation has not been shown to increase cancer risk in humans. As such, cancer sites of concern include the lung, and the nasal sinus. Evidence comes from studies of nickel refinery and leaching, calcining, and sintering workers in the early half of the 20th century. There appears to be little or no detectable risk in most sectors of the nickel industry at current exposure levels. The general population risk from the extremely small concentrations detectable in ambient air are negligible. Nevertheless, animal carcinogenesis studies, studies of nickel carcinogenesis mechanisms, and epidemiological studies with quantitative exposure assessment of various nickel species would enhance our understanding of human health risks associated with nickel. Definitive conclusions linking cancer to exposures in gold and copper mining and processing are not possible at this time. The available results appear to demand additional study of a variety of potential occupational and non-occupational risk factors. PMID:21199602

  7. Processing technology for nickel aluminides

    SciTech Connect

    Sikka, V.K.

    1986-01-01

    Ductile ordered intermetallic alloys of nickel aluminum or nickel aluminum chromium have been developed by optimized additions of boron. These alloys show excellent elevated temperature mechnical properties and corrosion properties. However, in order for the alloys to find use in various applications, they should be fabricable by either the well established or innovative processing technologies. This paper discusses the details of fabrication technology being pursued at ORNL. The processes being investigated include powder consolidation by extrusion, powder consolidation by capping, isothermal forging of powder compacted material, twin-roller casting to thin sheet followed by cold-rolling, direct casting rod from liquid, extrusion of billets made by argon-induction melting and electroslag remelting processes, injection molding of powders, and hot isostatic pressing of powders. Relative merits of each process are discussed. Mechanical properties data on products made by various processes are also presented and compared.

  8. Lightweight Nickel Electrode Development Program

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1998-01-01

    Because of its relatively high specific energy and excellent cycling capability, the nickel-hydrogen (Ni-H2) cell is used extensively to store energy in aerospace systems. For the past several years, the NASA Lewis Research Center has been developing the Ni-H2 cell to improve its components, design, and operating characteristics. The battery size and weight are crucial parameters in aerospace and spacecraft power systems for applications such as the International Space Station, space satellites, and space telescopes. The nickel electrode has been identified as the heaviest and most critical component of the Ni-H2 cell. Consequently, Lewis began and is leading a program to reduce the electrode's weight by using lightweight plaques.

  9. Nickel aluminides and nickel-iron aluminides for use in oxidizing environments

    DOEpatents

    Liu, Chain T.

    1988-03-15

    Nickel aluminides and nickel-iron aluminides treated with hafnium or zirconium, boron and cerium to which have been added chromium to significantly improve high temperature ductility, creep resistance and oxidation properties in oxidizing environments.

  10. Electrodeposition of nickel composite coatings

    NASA Astrophysics Data System (ADS)

    Borkar, Tushar

    Pulse electrodeposition (PC) and pulse reverse electrodeposition (PRC) bring a new era in improving the surface properties of metals. These processes are associated with many advantages, such as reduction in porosity, low level of inclusions, and higher deposition rates compared to direct current (DC) electrodeposition process. There is much more flexibility in varying three basic parameters which are, pulse current density, on time, and off time in pulse electrodeposition resulting in unique composition and microstructure of coating being deposited. In this work, nickel matrix composite coatings were synthesized by co-depositing nano particles (Al2O3, SiC, and ZrO2) from Watts bath. To get detailed insight into effect of processing parameters on the microstructure, mechanical, and tribological properties of the composite coatings, the coatings were also fabricated using DC, PC, and PRC techniques. Also, the effect of bath loading on the level of reinforcement in the coating was investigated for Ni-Al2O 3 composite coatings. Furthermore an attempt was made to produce Ni-CNT coatings by pulse electrodeposition method. Pure nickel coatings were also prepared for comparison. Composite coatings deposited using PC and PRC techniques exhibited significant improvement in microhardness and wear resistance. The presence of nanoparticles in the composite coating seems to prohibit the columnar growth of the nickel grains resulting in random/weak texture and smaller thickness of the composite coatings. Ni-Al2O3 composite coatings show maximum hardness and wear resistance compared to Ni-SiC and Ni-ZrO 2 composite coatings. As Al2O3 content in electroplating bath increases, Microhardness and wear resistance of composite coatings increases but thickness of the coatings decreases due to nanoparticles obstructing grain growth. The Ni-CNT composite coatings exhibited significantly improved microhardness compared to pure nickel coatings.

  11. Nickel cobalt phosphorous low stress electroplating

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Ramsey, Brian D. (Inventor)

    2002-01-01

    An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm.sup.2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70.degree. C.

  12. Nickel oxide battery cathode prepared by ozonation

    SciTech Connect

    Meunier, H.G.

    1986-09-16

    A method is described for producing a nickel oxide cathode for a high energy density battery consisting of the steps of: impregnating a porous conducting plaque with a soluble nickel salt such that a conducing plate having nickel hydroxide disposed therethrough is formed; next, treating the impregnated conducting plate with a strong alkaline solution such that a nickel salt-strong alkaline mixture is formed thereby; next, ozonating the impregnated conducting plate by passing a stream of gaseous ozone through the plate due to a pressure differential across the plate; and applying a liquid reagent over the impregnated conducting plate while ozonating to facilitate the action of the ozone on the nickel salt-strong alkaline mixture thereby directly converting the mixture to a tetravalent nickel oxyhydroxide with the stable gamma structure having a valence approaching four.

  13. Analysis of nickel refinery dusts.

    PubMed

    Draper, M H; Duffus, J H; John, P; Metcalfe, L; Morgan, L; Park, M V; Weitzner, M I

    1994-06-01

    After characterization of bulk samples by inductively coupled plasma emission spectroscopic (ICP-ES) quantitative analysis and X-ray powder diffraction studies, single particle techniques using quantitative image analysis, scanning electron microscopy--energy dispersive analysis by X-ray, and finally laser beam ionization mass spectrometry analysis (LIMA) for surface analysis have been applied to historical nickel refinery dust samples from the nickel refining plant at Clydach in Wales. There were two historical samples of processed material from 1920 and 1929. These samples had a remarkably small particle size range, mean 3 microns and range, 0.75-24 microns. The most significant difference in elemental composition was the presence of 10% arsenic in the 1920 sample compared with 1% in the 1929 sample. The X-ray spectra revealed the presence of NiO in both. However, surprisingly, CuO was identified only in the 1929 sample. Of particular interest was the presence of a component, in the 1920 sample only, identified as the mineral orcelite, a copper-iron-nickel-arsenide-sulphide mineral, predominantly, Ni5-XAs2. Using the LIMA technique, it was found that in both samples, arsenic and arsenic derivative peaks are prominent, indicating the surface availability of arsenic compounds. PMID:8029701

  14. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, Michael L.; Goodwin, Gene M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys.

  15. Nickel aluminide alloys with improved weldability

    DOEpatents

    Santella, M.L.; Goodwin, G.M.

    1995-05-09

    Weldable nickel aluminide alloys which are essentially free, if not entirely free, of weld hot cracking are provided by employing zirconium concentrations in these alloys of greater than 2.6 wt. % or sufficient to provide a substantial presence of Ni--Zr eutectic phase in the weld so as to prevent weld hot cracking. Weld filler metals formed from these so modified nickel aluminide alloys provide for crack-free welds in previously known nickel aluminide alloys. 5 figs.

  16. Respiratory carcinogenicity assessment of soluble nickel compounds.

    PubMed

    Oller, Adriana R

    2002-10-01

    The many chemical forms of nickel differ in physicochemical properties and biological effects. Health assessments for each main category of nickel species are needed. The carcinogenicity assessment of water-soluble nickel compounds has proven particularly difficult. Epidemiologic evidence indicates an association between inhalation exposures to nickel refinery dust containing soluble nickel compounds and increased risk of respiratory cancers. However, the nature of this association is unclear because of limitations of the exposure data, inconsistent results across cohorts, and the presence of mixed exposures to water-insoluble nickel compounds and other confounders that are known or suspected carcinogens. Moreover, well-conducted animal inhalation studies, where exposures were solely to soluble nickel, failed to demonstrate a carcinogenic potential. Similar negative results were seen in animal oral studies. A model exists that relates respiratory carcinogenic potential to the bioavailability of nickel ion at nuclear sites within respiratory target cells. This model helps reconcile human, animal, and mechanistic data for soluble nickel compounds. For inhalation exposures, the predicted lack of bioavailability of nickel ion at target sites suggests that water-soluble nickel compounds, by themselves, will not be complete human carcinogens. However, if inhaled at concentrations high enough to induce chronic lung inflammation, these compounds may enhance carcinogenic risks associated with inhalation exposure to other substances. Overall, the weight of evidence indicates that inhalation exposure to soluble nickel alone will not cause cancer; moreover, if exposures are kept below levels that cause chronic respiratory toxicity, any possible tumor-enhancing effects (particularly in smokers) would be avoided. PMID:12426143

  17. Recent advances in homogeneous nickel catalysis.

    PubMed

    Tasker, Sarah Z; Standley, Eric A; Jamison, Timothy F

    2014-05-15

    Tremendous advances have been made in nickel catalysis over the past decade. Several key properties of nickel, such as facile oxidative addition and ready access to multiple oxidation states, have allowed the development of a broad range of innovative reactions. In recent years, these properties have been increasingly understood and used to perform transformations long considered exceptionally challenging. Here we discuss some of the most recent and significant developments in homogeneous nickel catalysis, with an emphasis on both synthetic outcome and mechanism.

  18. PROCESS OF COATING WITH NICKEL BY THE DECOMPOSITION OF NICKEL CARBONYL

    DOEpatents

    Hoover, T.B.

    1959-04-01

    An improved process is presented for the deposition of nickel coatings by the thermal decomposition of nickel carbonyl vapor. The improvement consists in incorporating a small amount of hydrogen sulfide gas in the nickel carbonyl plating gas. It is postulated that the hydrogen sulfide functions as a catalyst. i

  19. A stable monomeric nickel borohydride.

    PubMed

    Desrochers, Patrick J; LeLievre, Stacey; Johnson, Rosemary J; Lamb, Brian T; Phelps, Andrea L; Cordes, A W; Gu, Weiwei; Cramer, Stephen P

    2003-12-01

    A stable discrete nickel borohydride complex (Tp*NiBH(4) or Tp*NiBD(4)) was prepared using the nitrogen-donor ligand hydrotris(3,5-dimethylpyrazolyl)borate (Tp*-). This complex represents one of the best characterized nickel(II) borohydrides to date. Tp*NiBH(4) and Tp*NiBD(4) are stable toward air, boiling water, and high temperatures (mp > 230 degrees C dec). X-ray crystallographic measurements for Tp*NiBH(4) showed a six-coordinate geometry for the complex, with the nickel(II) center facially coordinated by three bridging hydrogen atoms from borohydride and a tridentate Tp(-) ligand. For Tp*NiBH(4), the empirical formula is C(15)H(26)B(2)N(6)Ni, a = 13.469(9) A, b = 7.740(1) A, c = 18.851(2) A, beta = 107.605(9) degrees, the space group is monoclinic P2(1)/c, and Z = 4. Infrared measurements confirmed the presence of bridging hydrogen atoms; both nu(B[bond]H)(terminal) and nu(B[bond]H)(bridging) are assignable and shifted relative to nu(B-D) of Tp*NiBD(4) by amounts in agreement with theory. Despite their hydrolytic stability, Tp*NiBH(4) and Tp*NiBD(4) readily reduce halocarbon substrates, leading to the complete series of Tp*NiX complexes (X = Cl, Br, I). These reactions showed a pronounced hydrogen/deuterium rate dependence (k(H)/k(D) approximately 3) and sharp isosbestic points in progressive electronic spectra. Nickel K-edge X-ray absorption spectroscopy (XAS) measurements of a hydride-rich nickel center were obtained for Tp*NiBH(4), Tp*NiBD(4), and Tp*NiCl. X-ray absorption near-edge spectroscopy results confirmed the similar six-coordinate geometries for Tp*NiBH(4) and Tp*NiBD(4). These contrasted with XAS results for the crystallographically characterized pseudotetrahedral Tp*NiCl complex. The stability of Tp*Ni-coordinated borohydride is significant given this ion's accelerated decomposition and hydrolysis in the presence of transition metals and simple metal salts. PMID:14632512

  20. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  1. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  2. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  3. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  4. 40 CFR 415.470 - Applicability; description of the nickel salts production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nickel salts production subcategory. 415.470 Section 415.470 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Nickel Salts Production Subcategory § 415.470 Applicability; description of the nickel... nickel salts, including (a) nickel sulfate, nickel chloride, nickel nitrate, and nickel fluoborate,...

  5. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  6. Mineral resource of the month: nickel

    USGS Publications Warehouse

    Kuck, Peter H.

    2006-01-01

    Together with chromium, nickel makes steel more resistant to corrosion. Stainless steel thus accounts for more than 65 percent of primary nickel consumption in the world. One of the more common grades of stainless steel is Type 304, which contains 18 to 20 percent chromium and 10.5 to 12 percent nickel. Owing to their high corrosion resistance, nickel-bearing stainless steels are widely used in the transportation sector, the energy sector, the food preparation and processing industry, the beverage industry, the pharmaceutical industry and the medical community.

  7. Progress in the development of lightweight nickel electrode

    SciTech Connect

    Britton, D.L.

    1992-06-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  8. Progress in the development of lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1992-01-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  9. Phases in lanthanum-nickel-aluminum alloys. Part 2

    SciTech Connect

    Mosley, W.C.

    1992-08-01

    Lanthanum-nickel-aluminum (LANA) alloys will be used to pump, store and separate hydrogen isotopes in the Replacement Tritium Facility (RTF). The aluminum content (y) of the primary LaNi{sub 5}-phase is controlled to produce the desired pressure-temperature behavior for adsorption and desorption of hydrogen. However, secondary phases cause decreased capacity and some may cause undesirable retention of tritium. Twenty-three alloys purchased from Ergenics, Inc. for development of RTF processes have been characterized by scanning electron microscopy (SEM) and by electron microprobe analysis (EMPA) to determine the distributions and compositions of constituent phases. This memorandum reports the results of these characterization studies. Knowledge of the structural characteristics of these alloys is a useful first step in selecting materials for specific process development tests and in interpreting results of those tests. Once this information is coupled with data on hydrogen plateau pressures, retention and capacity, secondary phase limits for RTF alloys can be specified.

  10. Correlation of urinary nickel excretion with observed 'total' and inhalable aerosol exposures of nickel refinery workers.

    PubMed

    Werner, M A; Thomassen, Y; Hetland, S; Norseth, T; Berge, S R; Vincent, J H

    1999-12-01

    An investigation of the relationship between observed nickel aerosol exposures and urinary nickel excretion was undertaken at a Scandinavian nickel refinery. The goal of the study was to assess the impact of nickel aerosol speciation, the use of particle size-selective sampling instrumentation and adjustment of urinary levels for creatinine excretion on the usefulness of urinary nickel excretion as a marker for exposure. Urinary nickel measurements and paired 'total' and inhalable aerosol exposure measurements were collected each day for one week from refinery workers in four process areas. The mean observed urinary nickel concentration was 12 micrograms L-1 (11 micrograms of Ni per g of creatinine). The strongest relationships between urinary excretion and aerosol exposure were found when urinary nickel levels were adjusted for creatinine excretion and when exposure to only soluble forms of nickel aerosol was considered. No significant difference was observed between measures of 'total' and inhalable aerosol in the ability to predict urinary excretion patterns. In the light of these results, it is recommended that consideration be given to the chemical species distribution of nickel aerosol in the use of urinary nickel measurements as a screening tool for cancer risk in occupationally-exposed populations. PMID:11529189

  11. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  12. Graphene-nickel interfaces: a review

    NASA Astrophysics Data System (ADS)

    Dahal, Arjun; Batzill, Matthias

    2014-02-01

    Graphene on nickel is a prototypical example of an interface between graphene and a strongly interacting metal, as well as a special case of a lattice matched system. The chemical interaction between graphene and nickel is due to hybridization of the metal d-electrons with the π-orbitals of graphene. This interaction causes a smaller separation between the nickel surface and graphene (0.21 nm) than the typical van der Waals gap-distance between graphitic layers (0.33 nm). Furthermore, the physical properties of graphene are significantly altered. Main differences are the opening of a band gap in the electronic structure and a shifting of the π-band by ~2 eV below the Fermi-level. Experimental evidence suggests that the ferromagnetic nickel induces a magnetic moment in the carbon. Substrate induced geometric and electronic changes alter the phonon dispersion. As a consequence, monolayer graphene on nickel does not exhibit a Raman spectrum. In addition to reviewing these fundamental physical properties of graphene on Ni(111), we also discuss the formation and thermal stability of graphene and a surface-confined nickel-carbide. The fundamental growth mechanisms of graphene by chemical vapor deposition are also described. Different growth modes depending on the sample temperature have been identified in ultra high vacuum surface science studies. Finally, we give a brief summary for the synthesis of more complex graphene and graphitic structures using nickel as catalyst and point out some potential applications for graphene-nickel interfaces.

  13. Treatment of nickel dermatitis with Trientine.

    PubMed

    Burrows, D; Rogers, S; Beck, M; Kellett, J; McMaster, D; Merrett, D; Eedy, D J

    1986-08-01

    23 nickel-sensitive patients with hand eczema were treated with Trientine 300 mg daily and a placebo in a double-blind, crossover trial. No significant improvement occurred in the hand eczema. A surprising finding was that there was no detectable increase in urinary nickel excretion, in contrast to animal studies.

  14. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1995-01-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99 gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  15. Gold-nickel-titanium brazing alloy

    DOEpatents

    Mizuhara, Howard

    1990-07-03

    A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.

  16. Reactive spraying of nickel-aluminide coatings

    NASA Astrophysics Data System (ADS)

    Deevi, S. C.; Sikka, V. K.; Swindeman, C. J.; Seals, R. D.

    1997-09-01

    Reactive spraying of nickel aluminides was accomplished via reaction synthesis techniques in which nickel and aluminum powders were fed through a direct- current plasma torch onto carbon steel substrates. The as- sprayed coatings obtained by reactive spraying were characterized by x- ray diffraction and microscopic techniques. Reactive spraying of nickel and aluminum resulted in coatings consisting of Ni, Al, Ni 3Al, NiAl3, Ni5Al3, NiAl, and Al2O3, depending on the experimental conditions. Nickel aluminide phases observed in plasma spray depositions were compared with the phases obtained by combustion synthesis techniques, and the formation of phases in reactive spraying was attributed to the exothermic reaction between splats of aluminum and nickel. Primary and secondary reactions leading to the formation of nickel aluminides were also examined. The splat thickness and the reaction layer suppressed the formation of desired equilibrium phases such as Ni3Al and NiAl. As- sprayed coatings were annealed to enhance the diffusional reactions between the product phases and aluminum and nickel. Coatings obtained by reactive spraying of elemental powders were compared with as- sprayed and annealed coatings obtained with a bond coat material in which nickel was deposited onto aluminum particles.

  17. Preventive health program for nickel workers.

    PubMed

    Hogetveit, A C; Barton, R T

    1976-12-01

    The possible hazards of exposure to certain nickel compounds during nickel refining have been recognized for over 40 years. Much progress has been made in worker protection by cleaning up the process and by other protective means, and improved personal hygiene. The problem in the past has been determining those employees who are most exposed. This has been accomplished in this project by regular plasma and urine nickel determinations, demonstrating that nickel process workers absorb nickel which can be measured in plasma and urine. It was found that the highest plasma and urine nickel levels were seen in workers in those departments in which the greatest incidence of respiratory cancer occurs. Whether persistently elevated plasma nickel can be correlated with the eventual development of respiratory tract cancer is the subject for continued years of follow-up. It is not possible to conclude at this time that there is any association between the raised plasma and urine nickel and the incidence of cancer. PMID:993874

  18. Nickel hydrogen cell tests. [recharging

    NASA Technical Reports Server (NTRS)

    Mueller, V. C.

    1981-01-01

    Some parametric tests followed by cycling tests are described for the characterization of the service life of nickel hydrogen cells. Three cells were automatically cycled in simulated low Earth orbit in 35 minute discharge, 55 minute charge, with charging voltage limited, temperature compensated. The cells were mounted in a fixture that conducts heat to an aluminum baseplate. The baseplate in turn, is bounded in a temperature controlled bath to remove the heat from the mounted fixture. One cell was tested with a zircar separator, which failed after 2473 cyles. Two other cells were tested one with a zircar separator; the other with asbestos. More than 400 cycles were achieved.

  19. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. A program has been established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  20. Nickel-hydrogen separator development

    NASA Technical Reports Server (NTRS)

    Gonzalez-Sanabria, O. D.

    1986-01-01

    The separator technology is a critical element in the nickel-hydrogen (Ni-H2) systems. Previous research and development work carried out at NASA Lewis Research Center has determined that separators made from zirconium oxide (ZrO2) and potassium titanate (PKT) fibers will function satisfactorily in Ni-H2 cells without exhibiting the problems associated with the asbestos separators. These separators and their characteristics were previously discussed. A program was established to transfer the separator technology into a commercial production line. A detailed plan of this program will be presented and the preliminary results will be discussed.

  1. Determination of nickel in lung specimens of thirty-nine autopsied nickel workers.

    PubMed

    Andersen, I; Svenes, K B

    1989-01-01

    Lung specimens from 39 nickel refinery workers autopsied during the period from 1978 to 1984 were analyzed for nickel. Fifteen of the workers were employed in the Roasting and Smelting Department, where exposure to nickel was predominantly in the form of nickel-copper oxides, Ni3S2 and metallic dust. The remaining 24 men worked in the Electrolysis Department. Exposure in this group was considered to be mostly to the water-soluble compounds, NiSO4 and NiCl2, but also to a lesser degree to water-insoluble nickel compounds such as nickel-copper oxides and sulphides. The arithmetic mean +/- SD for nickel concentration in lung tissues expressed in micrograms g-1 dry wt for the 39 workers was 150 +/- 280. In the workers employed in the Roasting and Smelting Department, the average nickel concentration was 330 +/- 380; for those who worked in the Electrolysis Department it was 34 +/- 48. Lung tissue from 16 autopsied persons not connected with the refinery had an average nickel concentration of 0.76 +/- 0.39. Statistical analysis based on log-normal distributions of the measured nickel concentrations allowed three major conclusions to be formulated: (1) nickel refinery workers exhibit elevated nickel levels in lung tissues at autopsy; (2) workers of the Electrolysis Department and the Roasting Smelting Department constitute distinct groups with respect to the accumulation of nickel in lung tissue; (3) workers who were diagnosed to have lung cancer had the same lung nickel concentrations at autopsy as those who died of other causes. PMID:2722252

  2. Determination of nickel in lung specimens of thirty-nine autopsied nickel workers.

    PubMed

    Andersen, I; Svenes, K B

    1989-01-01

    Lung specimens from 39 nickel refinery workers autopsied during the period from 1978 to 1984 were analyzed for nickel. Fifteen of the workers were employed in the Roasting and Smelting Department, where exposure to nickel was predominantly in the form of nickel-copper oxides, Ni3S2 and metallic dust. The remaining 24 men worked in the Electrolysis Department. Exposure in this group was considered to be mostly to the water-soluble compounds, NiSO4 and NiCl2, but also to a lesser degree to water-insoluble nickel compounds such as nickel-copper oxides and sulphides. The arithmetic mean +/- SD for nickel concentration in lung tissues expressed in micrograms g-1 dry wt for the 39 workers was 150 +/- 280. In the workers employed in the Roasting and Smelting Department, the average nickel concentration was 330 +/- 380; for those who worked in the Electrolysis Department it was 34 +/- 48. Lung tissue from 16 autopsied persons not connected with the refinery had an average nickel concentration of 0.76 +/- 0.39. Statistical analysis based on log-normal distributions of the measured nickel concentrations allowed three major conclusions to be formulated: (1) nickel refinery workers exhibit elevated nickel levels in lung tissues at autopsy; (2) workers of the Electrolysis Department and the Roasting Smelting Department constitute distinct groups with respect to the accumulation of nickel in lung tissue; (3) workers who were diagnosed to have lung cancer had the same lung nickel concentrations at autopsy as those who died of other causes.

  3. Effects of Nickel on Calcium Phosphate Formation

    NASA Astrophysics Data System (ADS)

    Guerra-López, J.; González, R.; Gómez, A.; Pomés, R.; Punte, G.; Della Védova, C. O.

    2000-05-01

    We have investigated the effect of nickel on calcium phosphate formation from aqueous solutions. The calcium phosphates prepared under different reaction conditions (pH, temperature, and nickel concentration) were characterized by X-ray diffraction, FTIR spectroscopy, and chemical analysis. The apatite compounds were also studied thermogravimetrically. From the combined results of the techniques employed we have determined that nickel favors the formation of brushite and amorphous calcium phosphate. We have found, as well, that the presence of nickel in the solution inhibits calcium hydroxyapatite (CaHAP) and octacalcium phosphate formation. However in the synthesis performed at basic pH and 95°C the apatitic phase (HAP) could be obtained. The present results suggest that the presence of nickel may modify the precipitation of oral calcium phosphate.

  4. Recent developments in nickel electrode analysis

    NASA Technical Reports Server (NTRS)

    Whiteley, Richard V.; Daman, M. E.; Kaiser, E. Q.

    1991-01-01

    Three aspects of nickel electrode analysis for Nickel-Hydrogen and Nickel-Cadmium battery cell applications are addressed: (1) the determination of active material; (2) charged state nickel (as NiOOH + CoOOH); and (3) potassium ion content in the electrode. Four deloading procedures are compared for completeness of active material removal, and deloading conditions for efficient active material analyses are established. Two methods for charged state nickel analysis are compared: the current NASA procedure and a new procedure based on the oxidation of sodium oxalate by the charged material. Finally, a method for determining potassium content in an electrode sample by flame photometry is presented along with analytical results illustrating differences in potassium levels from vendor to vendor and the effects of stress testing on potassium content in the electrode. The relevance of these analytical procedures to electrode performance is reviewed.

  5. Nickel alloys in the oral environment.

    PubMed

    Wataha, John C; Drury, Jeanie L; Chung, Whasun O

    2013-07-01

    The use of nickel casting alloys for long-term restorations in dentistry has long been controversial. A 'tug-of-war' between economic, engineering and biological considerations is central to this controversy; nickel-casting alloys have low costs and favorable physical properties, but are corrosion-prone in the oral environment. Clinicians and researchers have questioned the safety of nickel-containing dental alloys because several nickel compounds are known to cause adverse biological effects in vivo and in vitro in contexts outside of dentistry. The debate revolves around the extent to which corrosion products from oral restorations cause intraoral or systemic biological problems. Current evidence suggests that nickel alloys may be used successfully and safely in dentistry if clinical risks are taken into account. However, these alloys may cause significant clinical problems, primarily allergenic and inflammatory, if the risks are ignored.

  6. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    SciTech Connect

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appm over 7 dpa appears to have little effect on the mechanical properties of the alloys.

  7. Nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1991-01-01

    The Hubble Telescope Battery Testbed at MSFC uses the Nickel Cadmium (NiCd) Battery Expert System (NICBES-2) which supports the evaluation of performance of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort is summarized which was used to modify NICBES-2 to accommodate Nickel Hydrogen (NiH2) battery environment now in MSFC testbed. The NICBES-2 is implemented on a Sun Microsystem and is written in SunOS C and Quintus Prolog. The system now operates in a multitasking environment. NICBES-2 spawns three processes: serial port process (SPP); data handler process (DHP); and the expert system process (ESP) in order to process the telemetry data and provide the status and action advice. NICBES-2 performs orbit data gathering, data evaluation, alarm diagnosis and action advice and status and history display functions. The adaptation of NICBES-2 to work with NiH2 battery environment required modification to all of the three component processes.

  8. Role of nickel in membrane-bound hydrogenase and nickel metabolism in Rhizobium japonicum

    SciTech Connect

    Stults, L.W.

    1986-01-01

    The membrane-bound hydrogenase of Rhizobium japonicum requires nickel for activity. Radioactive /sup 63/Ni co-migrates with hydrogenase activity in native gel systems and co-elutes with purified hydrogenase form an affinity matrix column. A simplified scheme for the purification of hydrogenase has been developed and constitutes the first report of the aerobic purification of this enzyme from R. japonicum. The aerobic purification utilizes the general affinity matrix. Reactive Red 120-agarose and results in higher specific activity and yield of enzyme than previously reported. The stability of aerobically purified hydrogenase to oxygen is substantially greater than that reported for anaerobically isolated enzyme. Reduction of the aerobically purified enzyme in the presence of oxygen, however, results in the rapid loss of activity. R. japonicum cells accumulate nickel during heterotrophic growth and as non-growing cells. The hydrogenase constitutive mutant SR470 accumulates substantially greater amounts of nickel under both conditions. Kinetic studies indicate that the nickel uptake system in the hydrogenase constitutive mutant SR470 is upregulated relative to SRwt cells. The uptake system is specific for nickel, although a 10-fold excess (relative to nickel) of copper or zinc inhibits nickel uptake. The nickel uptake system appears to require energy. Under nickel-free conditions hydrogenase protein is not synthesized as determined by cross-reactivity with antibodies directed against hydrogenase, indicating that nickel regulates the formation of the enzyme as well as being a constituent of the active protein.

  9. Toxicity of nickel. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-05-01

    The bibliography contains citations concerning the toxicity and environmental pollution of nickel and nickel compounds. Studies of uptake and toxic effects on marine animals and organisms are presented. Topics include nickel carcinogenesis, nickel-related cancers, contamination of drinking water and agricultural products, and occupational exposure. (Contains a minimum of 121 citations and includes a subject term index and title list.)

  10. Nickel oral hyposensitization in patients with systemic nickel allergy syndrome

    PubMed Central

    Di Gioacchino, Mario; Ricciardi, Luisa; De Pità, Ornella; Minelli, Mauro; Patella, Vincenzo; Voltolini, Susanna; Di Rienzo, Valerio; Braga, Marina; Ballone, Enzo; Mangifesta, Rocco; Schiavino, Domenico

    2014-01-01

    Abstract Background: This is the first randomized, double-blind, placebo-controlled trial (EUDRACT No. 2009-013923-43) evaluating nickel oral hyposensitizing treatment (NiOHT) in patients with “systemic nickel allergy syndrome” (SNAS), characterized by Ni-allergic contact dermatitis and systemic reactions after eating Ni-rich food. Methods: Adults with positive Ni-patch test, who reported symptoms suggesting SNAS, which improved after Ni-poor diet, and were positive to Ni-oral challenge were eligible. Patients were randomly assigned to three treatments (1.5 μg, 0.3 μg, or 30 ng Ni/week) or placebo for a year, with progressive reintroduction of Ni-rich foods form the 5th month. Out of 141 patients randomized, 113 completed the trial. Endpoints were efficacy and tolerability of treatment. Results: During Ni-rich food re-introduction, the 1.5 μg Ni/week group had a mean VAS score significantly higher than placebo (p = 0.044), with significant improvement of gastrointestinal symptoms (p = 0.016;) and significantly fewer rescue medications. Cutaneous manifestations also improved but without reaching statistical significance. After the treatment, oral challenge with higher Ni doses than at baseline were needed to cause symptoms to flare-up in significantly more patients given 1.5 μg Ni/week than placebo (p = 0.05). Patients reported no side-effects. Conclusions: NiOHT is effective in SNAS, in particular on gastrointestinal manifestations, with trend toward improvement of cutaneous symptoms. PMID:24256166

  11. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  12. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  13. Nickel Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review

    USGS Publications Warehouse

    Eisler, R.

    1998-01-01

    This account is a selective review and synthesis of the technical literature on nickel and nickel salts in the environment and their effects on terrestrial plants and invertebrates, aquatic plants and animals, avian and mammalian wildlife, and other natural resources, The subtopics include nickel sources and uses; physical, chemical, and metabolic properties of nickel; nickel concentrations in field collections of abiotic materials and living organisms; nickel deficiency effects; lethal and sublethal effects, including effects on survival, growth, reproduction, metabolism, mutagenicity, teratogenicity, and carcinogenicity; currently proposed nickel criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  14. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    SciTech Connect

    Kim, Dong Soo; Lee, Hee Chul

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni{sup 3+} ions is found to increase with the O{sub 2} ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni{sup 3+} ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  15. Distribution of nickel hydroxide in sintered nickel plaques measured by radiotracer method during electroimpregnation

    SciTech Connect

    Ng, P.K.; Schneider, E.W.

    1986-01-01

    Sintered nickel positive electrodes were prepared by electroimpregnating nickel hydroxide inside a porous nickel plaque in a nickel nitrate solution. The distribution of nickel hydroxide inside the plaque was measured using a radio-tracer method with /sup 63/Ni as the radioactivity source. Autoradiography and ..beta.. counting were used to follow qualitative and quantitative distributions, respectively, of the pore filling process. Relatively uniform distribution was observed at low current density, and the precipitation of Ni(OH)/sub 2/ extends to the center of the plaque. At high current density, most of the Ni(OH)/sub 2/ aggregated in the region just underneath the plaque surface, causing a somewhat nonuniform distribution. Nickel hydroxide also precipitates heavily on the surface of the plaque at high current density, reducing the penetration of electrolyte to the inside of the plaque.

  16. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity.

    PubMed

    Magaye, Ruth; Zhao, Jinshun

    2012-11-01

    Recently, nanoparticles have been the focus of many research and innovation. Metallic nickel and nickel-based nanoparticles are among those being exploited. Nickel fine particles are known to be genotoxic and carcinogenic. It has been discovered that many properties of nano sized elements and materials are not present in their bulk states. The nano size of these particles renders them the ability to be easily transported into biological systems, thus raising the question of their effects on the susceptible system. Therefore scientific research on the effects of nickel nanoparticles is important. This mini-review intends to summarize the current knowledge on the genotoxicity and carcinogenicity potential of metallic nickel and nickel-based nanoparticles implicated in in vitro and in vivo mammalian studies. PMID:23000472

  17. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  18. Transient Influx of nickel in root mitochondria modulates organic acid and reactive oxygen species production in nickel hyperaccumulator Alyssum murale.

    PubMed

    Agrawal, Bhavana; Czymmek, Kirk J; Sparks, Donald L; Bais, Harsh P

    2013-03-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation.

  19. Transient Influx of Nickel in Root Mitochondria Modulates Organic Acid and Reactive Oxygen Species Production in Nickel Hyperaccumulator Alyssum murale*

    PubMed Central

    Agrawal, Bhavana; Czymmek, Kirk J.; Sparks, Donald L.; Bais, Harsh P.

    2013-01-01

    Mitochondria are important targets of metal toxicity and are also vital for maintaining metal homeostasis. Here, we examined the potential role of mitochondria in homeostasis of nickel in the roots of nickel hyperaccumulator plant Alyssum murale. We evaluated the biochemical basis of nickel tolerance by comparing the role of mitochondria in closely related nickel hyperaccumulator A. murale and non-accumulator Alyssum montanum. Evidence is presented for the rapid and transient influx of nickel in root mitochondria of nickel hyperaccumulator A. murale. In an early response to nickel treatment, substantial nickel influx was observed in mitochondria prior to sequestration in vacuoles in the roots of hyperaccumulator A. murale compared with non-accumulator A. montanum. In addition, the mitochondrial Krebs cycle was modulated to increase synthesis of malic acid and citric acid involvement in nickel hyperaccumulation. Furthermore, malic acid, which is reported to form a complex with nickel in hyperaccumulators, was also found to reduce the reactive oxygen species generation induced by nickel. We propose that the interaction of nickel with mitochondria is imperative in the early steps of nickel uptake in nickel hyperaccumulator plants. Initial uptake of nickel in roots results in biochemical responses in the root mitochondria indicating its vital role in homeostasis of nickel ions in hyperaccumulation. PMID:23322782

  20. Nickel porphyrins for memory optical applications

    DOEpatents

    Shelnutt, John A.; Jia, Songling; Medforth, Craig; Holten, Dewey; Nelson, Nora Y.; Smith, Kevin M.

    2000-01-01

    The present invention relates to a nickel-porphyrin derivative in a matrix, the nickel-porphyrin derivative comprising at least two conformational isomers, a lower-energy-state conformer and a higher-energy-state conformer, such that when the higher-energy-state conformer is generated from the lower-energy-state conformer following absorption of a photon of suitable energy, the time to return to the lower-energy-state conformer is greater than 40 nanoseconds at approximately room temperature. The nickel-porphyrin derivative is useful in optical memory applications.

  1. From carbon nanobells to nickel nanotubes

    NASA Astrophysics Data System (ADS)

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-01

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  2. [Nickel in the environment and morbid symptoms].

    PubMed

    Karaś, Zbigniew; Bładek, Jan

    2004-01-01

    In the paper, results of researches on the influence of nickel on allergies and their symptoms are presented. Using "flake" test with nickel sulfate(VI) it was shown that 12.5% of women's population is allergic to this metal. Dermal changes, catarrh and conjunctiva changes were recorded in these women; they periodically suffer from headache, stomach ache and shortness of breath. A hypothesis was made that the intensification of morbid symptoms is caused by an increase in the exposure to the metal owing to variable in time environmental pollution. A need for monitoring of nickel content in air, water, soil and food was proved.

  3. Nickel and titanium nanoboride composite coating

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevsky, G. V.; Rudneva, V. V.; Kozyrev, N. A.; Orshanskaya, E. G.

    2015-09-01

    Electrodeposition conditions, structural-physical and mechanical properties (microhardness, cohesion with a base, wear resistance, corrosion currents) of electroplated composite coatings on the base of nickel with nano and micro-powders of titanium boride are investigated. It has been found out that electro-crystallization of nickel with boride nanoparticles is the cause of coating formation with structural fragments of small sizes, low porosity and improved physical and mechanical properties. Titanium nano-boride is a component of composite coating, as well as an effective modifier of nickel matrix. Nano-boride of the electrolyte improves efficiency of the latter due to increased permissible upper limit of the cathodic current density.

  4. Crystallization of nickel nanoclusters by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Chamati, H.; Gaminchev, K.

    2012-12-01

    We investigated the melting properties of bulk nickel and the crystallization of nickel nanocrystals via molecular dynamics using a potential in the framework of the second moment approximation of tight-binding theory. The melting behavior was simulated with the hysteresis approach by subsequently heating and cooling gradually the system over a wide range of temperatures. The crystallization of nickel nanoclusters consisting of 55, 147 and 309 atoms was achieved after repeatedly annealing and quenching the corresponding quasicrystals several times to avoid being trapped in a local energy minimum. The time over which the global minimum was reached was found to increase with the cluster size.

  5. From carbon nanobells to nickel nanotubes

    SciTech Connect

    Ma, S.; Srikanth, V. V. S. S.; Maik, D.; Zhang, G. Y.; Staedler, T.; Jiang, X.

    2009-01-05

    A generic strategy is proposed to prepare one dimensional (1D) metallic nanotubes by using 1D carbon nanostructures as the initial templates. Following the strategy, nickel (Ni) nanotubes are prepared by using carbon nanobells (CNBs) as the initial templates. CNBs are first prepared by microwave plasma enhanced chemical vapor deposition technique. Carbon/nickel core/shell structures are then prepared by electroplating the CNBs in a nickel-Watts electrolytic cell. In the final step, the carbon core is selectively removed by employing hydrogen plasma etching to obtain Ni nanotubes. The mechanism leading to Ni nanotubes is briefly discussed.

  6. Small scale bipolar nickel-hydrogen testing

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1988-01-01

    Bipolar nickel-hydrogen batteries, ranging in capacity from 6 to 40 A-hr, have been tested at the NASA Lewis Research Center over the past six years. Small scale tests of 1 A-hr nickel-hydrogen stacks have been initiated as a means of screening design and component variations for bipolar nickel-hydrogen cells and batteries. Four small-scale batteries have been built and tested. Characterization and limited cycle testing were performed to establish the validity of test results in the scaled down hardware. The results show characterization test results to be valid. LEO test results in the small scale hardware have limited value.

  7. Metal stable isotopes in weathering and hydrology: Chapter 10

    USGS Publications Warehouse

    Bullen, Thomas D.; Holland, Heinrich; Turekian, K.

    2014-01-01

    This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.

  8. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  9. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  10. Corrosion of stainless steel, nickel-titanium, coated nickel-titanium, and titanium orthodontic wires.

    PubMed

    Kim, H; Johnson, J W

    1999-02-01

    Orthodontic wires containing nickel have been implicated in allergic reactions. The potential for orthodontic wires to cause allergic reactions is related to the pattern and mode of corrosion with subsequent release of metal ions, such as nickel, into the oral cavity. The purpose of this study was to determine if there is a significant difference in the corrosive potential of stainless steel, nickel titanium, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium orthodontic wires. At least two specimens of each wire were subjected to potentiostatic anodic dissolution in 0.9% NaCl solution with neutral pH at room temperature. Using a Wenking MP 95 potentiostat and an electrochemical corrosion cell, the breakdown potential of each wire was determined. Photographs were taken of the wire speci mens using a scanning electron microscope, and surface changes were qualitatively evaluated. The breakdown potentials of stainless steel, two nickel titanium wires, nitride-coated nickel titanium, epoxy-coated nickel titanium, and titanium were 400 mV, 300 mV, 750 mV, 300 mV, 1800 mV, and >2000 mV, respectively. SEM photographs revealed that some nickel titanium and stainless steel wires were susceptible to pitting and localized corrosion. The results indicate that corrosion occurred readily in stainless steel. Variability in breakdown potential of nickel titanium alloy wires differed across vendors' wires. The nitride coating did not affect the corrosion of the alloy, but epoxy coating decreased corrosion. Titanium wires and epoxy-coated nickel titanium wires exhibited the least corrosive potential. For patients allergic to nickel, the use of titanium or epoxy-coated wires during orthodontic treatment is recommended.

  11. Long life, rechargeable nickel-zinc battery

    NASA Technical Reports Server (NTRS)

    Luksha, E.

    1974-01-01

    A production version of the inorganic separator was evaluated for improving the life of the nickel-zinc system. Nickel-zinc cells (7-10 Ah capacities) of different electrode separator configurations were constructed and tested. The nickel-zinc cells using the inorganic separator encasing the zinc electrode, the nickel electrode, or both electrodes had shorter lives than cells using Visking and cellophane separation. Cells with the inorganic separation all fell below 70% of their theoretical capacity within 30 cycles, but the cells constructed with organic separation required 80 cycles. Failure of the cells using the ceramic separator was irreversible capacity degradation due to zinc loss through cracks developed in the inorganic separator. Zinc loss through the separator was minimized with the use of combinations of the inorganic separator with Visking and cellophane. Cells using the combined separation operated 130 duty cycles before degrading to 70% of their theoretical capacity.

  12. Copper/nickel eutectic brazing of titanium

    NASA Technical Reports Server (NTRS)

    Kutchera, R. E.

    1971-01-01

    Technique joins titanium or one of its alloys to materials, such as iron, nickel or cobalt base material, or to refractory metals. To ensure formation of a satisfactory bond, the temperature, time, environment and pressure must be controlled.

  13. Wetlife Study of Nickel Hydrogen Cells

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A study was undertaken to determine the residual Nickel Precharge, and to understand the Performance and Cycle Life of Aged Nickel Hydrogen cells that were in cold storage up to thirteen (13) years. Comsat Technical Services, Aerospace Corporation, and NSWC/Crane test data to date indicate a nominal electrical performance with a small second plateau and the presence of Nickel Precharge in the cells: Cell Teardown, Plate (active Nickel Precharge determination), and Electrolyte Analyses are in progress. Preliminary Thermal Imaging data indicates that older the cell greater the heat generation, but cell over charge (capacity) could dominate heat generation. U.S. Govt. cells has completed 1150 nominal 60% LEO cycles. The completion date for this study is January 31, 2008.

  14. Nickel recognition by bacterial importer proteins.

    PubMed

    Chivers, Peter T

    2015-04-01

    Nickel supports the growth of microbes from a variety of very different growth environments that affect nickel speciation. The mechanisms of nickel uptake and the molecular bases for the selectivity of this process are emerging. The recent surge of Ni-importer protein structures provides an understanding of Ni-recognition in the initial binding step of the import process. This review compares the structural basis for Ni-recognition in the complexes (ABC and ECF-type) that dominate primary (ATP-dependent) transport, with a focus on how the structures suggest mechanisms for Ni selectivity. The structures raise key questions about the mechanisms of nickel-transfer reactions involved in import. There is also a discussion of key experimental approaches necessary to help establish the physiological importance of these structures.

  15. Nickel solution prepared for precision electroforming

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Lightweight, precision optical reflectors are made by electroforming nickel onto masters. Steps for the plating bath preparation, process control testing, and bath composition adjustments are prescribed to avoid internal stresses and maintain dimensional accuracy of the electrodeposited metal.

  16. The NTS-2 nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Betz, F.

    1977-01-01

    Features of the first operational nickel hydrogen battery are described as well as experiences encountered during its testing and installation. Battery performance since launching of the NTS-2 satellite is discussed.

  17. Preliminary reduction of oxidized nickel ores

    NASA Astrophysics Data System (ADS)

    Pakhomov, R. A.; Starykh, R. V.

    2014-11-01

    The laws of gas reduction of oxidized nickel ores (ONOs) are studied. The theoretical prerequisites of the selective reduction of ONO nickel, which are based on the difference between the oxygen partial pressures over the NiO-Ni and FeO-Fe systems, are discussed. The effect of the oxygen partial pressure during reducing roasting of ONOs of ferruginous and magnesia types on the reduction parameters and the quality of the ferronickel formed upon subsequent melting of cinders is experimentally investigated. The optimum conditions of preliminary gas reduction of ONOs are determined. Melting of the cinder of reducing roasting leads to the formation of nickel-rich ferronickel (20-50 wt % Ni for various types of ores) upon the extraction of nickel into ferronickel of >95%, which substantially exceeds the parameters of the existing commercial processes.

  18. Nickel metal hydride LEO cycle testing

    NASA Technical Reports Server (NTRS)

    Lowery, Eric

    1995-01-01

    The George C. Marshall Space Flight Center is working to characterize aerospace AB5 Nickel Metal Hydride (NiMH) cells. The cells are being evaluated in terms of storage, low earth orbit (LEO) cycling, and response to parametric testing (high rate charge and discharge, charge retention, pulse current ability, etc.). Cells manufactured by Eagle Picher are the subjects of the evaluation. There is speculation that NiMH cells may become direct replacements for current Nickel Cadmium cells in the near future.

  19. Development of nickel hydrogen battery expert system

    NASA Technical Reports Server (NTRS)

    Shiva, Sajjan G.

    1990-01-01

    The Hubble Telescope Battery Testbed employs the nickel-cadmium battery expert system (NICBES-2) which supports the evaluation of performances of Hubble Telescope spacecraft batteries and provides alarm diagnosis and action advice. NICBES-2 also provides a reasoning system along with a battery domain knowledge base to achieve this battery health management function. An effort to modify NICBES-2 to accommodate nickel-hydrogen battery environment in testbed is described.

  20. Hormonal Perturbations in Occupationally Exposed Nickel Workers

    PubMed Central

    Beshir, Safia; Ibrahim, Khadiga Salah; Shaheen, Weam; Shahy, Eman M.

    2016-01-01

    BACKGROUND: Nickel exposure is recognized as an endocrine disruptor because of its adverse effects on reproduction. AIM: This study was designed to investigate the possible testiculo-hormonal perturbations on workers occupationally exposed to nickel and to assess its effects on human male sexual function. METHODS: Cross-sectional comparative study, comprising 105 electroplating male non-smoker, non-alcoholic workers exposed to soluble nickel and 60 controls was done. Serum luteinizing hormone, follicle stimulating hormone, testosterone levels and urinary nickel concentrations were determined for the studied groups. RESULTS: Serum luteinizing hormone, follicle stimulating hormone, urinary nickel and the simultaneous incidence of more than one sexual disorder were significantly higher in the exposed workers compared to controls. The occurrence of various types of sexual disorders (decreased libido, impotence and premature ejaculation) in the exposed workers was 9.5, 5.1 and 4.4 folds respectively than the controls. CONCLUSIONS: Exposure to nickel produces possible testiculo-hormonal perturbations in those exposed workers. PMID:27335607

  1. Relation of Nickel Concentrations in Tree Rings to Groundwater Contamination

    NASA Astrophysics Data System (ADS)

    Yanosky, Thomas M.; Vroblesky, Don A.

    1992-08-01

    Increment cores were collected from trees growing at two sites where groundwater is contaminated by nickel. Proton-induced X ray emission spectroscopy was used to determine the nickel concentrations in selected individual rings and in parts of individual rings. Ring nickel concentrations were interpreted on the basis of recent concentrations of nickel in aquifers, historical information about site use activities, and model simulations of groundwater flow. Nickel concentrations in rings increased during years of site use but not in trees outside the contaminated aquifers. Consequently, it was concluded that trees may preserve in their rings an annual record of nickel contamination in groundwater. Tulip trees and oaks contained higher concentrations of nickel than did sassafras, sweet gum, or black cherry. No evidence was found that nickel accumulates consistently within parts of individual rings or that nickel is translocated across ring boundaries.

  2. Market Available Virgin Nickel Analysis Data Summary Interpretation Report

    SciTech Connect

    Hampson, Steve; Volpe, John

    2004-10-01

    Collection, analysis, and assessment of market available nickel samples for their radionuclide content is being conducted to support efforts of the Purchase Area Community Reuse Organization (PACRO) to identify and implement a decontamination method that will allow for the sale and recycling of contaminated Paducah Gaseous Diffusion Plant (PGDP) nickel-metal stockpiles. The objectives of the Nickel Project address the lack of radionuclide data in market available nickel metal. The lack of radionuclide data for commercial-recycled nickel metal or commercial-virgin nickel metal has been detrimental to assessments of the potential impacts of the free-release of recycled PGDP nickel on public health. The nickel project, to date, has only evaluated "virgin" nickel metal which is derived form non-recycled sources.

  3. The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung.

    PubMed

    Goodman, Julie E; Prueitt, Robyn L; Thakali, Sagar; Oller, Adriana R

    2011-02-01

    The inhalation of nickel-containing dust has been associated with an increased risk of respiratory cancer in workplaces that process and refine sulfidic nickel mattes, where workers are exposed to mixtures of sulfidic, oxidic, water-soluble, and metallic forms of nickel. Because there is great complexity in the physical and chemical properties of nickel species, it is of interest which specific nickel forms are associated with carcinogenic risk. A bioavailability model for tumor induction by nickel has been proposed, based on the results of animal inhalation bioassays conducted on four nickel-containing substances. The nickel ion bioavailability model holds that a nickel-containing substance must release nickel ions that become bioavailable at the nucleus of epithelial respiratory cells for the substance to be carcinogenic, and that the carcinogenic potency of the substance is proportional to the degree to which the nickel ions are bioavailable at that site. This hypothesis updates the nickel ion theory, which holds that exposure to any nickel-containing substance leads to an increased cancer risk. The bioavailability of nickel ions from nickel-containing substances depends on their respiratory toxicity, clearance, intracellular uptake, and both extracellular and intracellular dissolution. Although some data gaps were identified, a weight-of-evidence evaluation indicates that the nickel ion bioavailability model may explain the existing animal and in vitro data better than the nickel ion theory. Epidemiological data are not sufficiently robust for determining which model is most appropriate, but are consistent with the nickel ion bioavailability model. Information on nickel bioavailability should be incorporated into future risk assessments. PMID:21158697

  4. Influence of dimensionality on deep tunneling rates: A study based on the hydrogen-nickel system

    SciTech Connect

    Baer, R.; Zeiri, Y.; Kosloff, R.

    1996-08-01

    The tunneling of subsurface hydrogen into a surface site of a nickel crystal is used to investigate deep tunneling phenomena. A method to calculate tunneling lifetimes based on an energy and time filter is developed, enabling converged lifetimes differing by 14 orders of magnitude. It is found that the reduced dimensional approximation always overestimates the tunneling rate. The vibrational adiabatic correction improves dramatically the one-dimensional calculation but nevertheless overestimates the cases of deep tunneling. The isotope effect is studied, pointing to experimental implications. {copyright} {ital 1996 The American Physical Society.}

  5. Human nickel exposure in an area polluted by nickel refining: the Sør-Varanger study.

    PubMed

    Smith-Sivertsen, T; Lund, E; Thomassen, Y; Norseth, T

    1997-01-01

    Sør-Varanger municipality in northern Norway is located close to two Russian nickel refineries that cause nickel and sulfur dioxide pollution. To investigate individual nickel exposure and possible health effects from the pollution, the authors invited all adults who were 18-69 y of age to a health survey in 1994. Urine samples were collected from 3671 participants (participation rate = 59.4%), and nickel concentrations were determined for 902 of them. Mean and median nickel concentrations were 0.9 microg/l and 0.6 microg/l, respectively. Individuals who lived in the rural areas closest to the refineries had lower nickel concentrations than individuals who lived in the more urban areas. Independent risk factors for nickel concentrations in urine were (a) being an urban dweller and (b) living close to areas with high-density traffic. The authors concluded that nickel exposure attributable to air pollution from Russian refineries was of minor importance for people who lived in Sør-Varanger. PMID:9541367

  6. A review of nickel hydrogen battery technology

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Odonnell, Patricia M.

    1995-01-01

    This paper on nickel hydrogen batteries is an overview of the various nickel hydrogen battery design options, technical accomplishments, validation test results and trends. There is more than one nickel hydrogen battery design, each having its advantage for specific applications. The major battery designs are individual pressure vessel (IPV), common pressure vessel (CPV), bipolar and low pressure metal hydride. State-of-the-art (SOA) nickel hydrogen batteries are replacing nickel cadmium batteries in almost all geosynchronous orbit (GEO) applications requiring power above 1 kW. However, for the more severe low earth orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000 to 10,000 cycles at 60 percent DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep depths of discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low cost satellites. Hence, the challenge is to reduce battery mass, volume and cost. A key is to develop a light weight nickel electrode and alternate battery designs. A common pressure vessel (CPV) nickel hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume and manufacturing costs. A 10 Ah CPV battery has successfully provided power on the relatively short lived Clementine Spacecraft. A bipolar nickel hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 percent DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high pulse power capability. A low pressure aerospace nickel metal hydride battery cell has been developed and is on the market. It is a prismatic design which has the advantage of a significant reduction in volume and a

  7. Nickel-Hydrogen Batteries - An Overview

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; ODonnell, Patricia M.

    1996-01-01

    This article on nickel-hydrogen batteries is an overview of the various nickel-hydrogen battery design options, technical accomplishments, validation test results, and trends. There is more than one nickel-hydrogen battery design, each having its advantage for specific applications. The major battery designs are Individual Pressure Vessel (IPV), Common Pressure Vessel (CPV), bipolar, and low-pressure metal hydride. State-of-the-art nickel-hydrogen batteries are replacing nickel-cadmium batteries in almost all geosynchronous Earth orbit applications requiring power above 1 kW. However, for the more severe Low-Earth Orbit (LEO) applications (greater than 30,000 cycles), the current cycle life of 4000-10,000 cycles at 60 - 80 % DOD should be improved. A NASA Lewis Research Center innovative advanced design IPV nickel-hydrogen cell led to a breakthrough in cycle life enabling LEO applications at deep Depths of Discharge (DOD). A trend for some future satellites is to increase the power level to greater than 6 kW. Another trend is to decrease the power to less than 1 kW for small low-cost satellites. Hence, the challenge is to reduce battery mass, volume, and cost. A key is to develop a lightweight nickel electrode and alternate battery designs. A CPV nickel-hydrogen battery is emerging as a viable alternative to the IPV design. It has the advantage of reduced mass, volume, and manufacturing costs. A 10-A-h CPV battery has successfully provided power on the relatively short-lived Clementine spacecraft. A bipolar nickel -hydrogen battery design has been demonstrated (15,000 LEO cycles, 40 % DOD). The advantage is also a significant reduction in volume, a modest reduction in mass, and like most bipolar designs, features a high-pulse power capability. A low-pressure aerospace nickel-metal-hydride battery cell has been developed and is on the market. It is a prismatic design that has the advantage of a significant reduction in volume and a reduction in manufacturing cost.

  8. Urinary and fecal elimination of nickel in relation to air-borne nickel in a battery factory.

    PubMed

    Hassler, E; Lind, B; Nilsson, B; Piscator, M

    1983-01-01

    Nickel in urine and in air from the breathing zone of 18 male workers in a battery factory was determined weekly during 11 consecutive weeks. The study started immediately following three weeks of Christmas vacation. The nickel levels in air varied but did not increase with time. The average urinary excretion of nickel showed an increase during the first weeks, after which a steady state seemed to have been reached. There was a considerable individual variation in both exposure levels and urine nickel levels. However, a correlation between the averages of nickel in air and urine could be demonstrated on a group basis. In a second study, during one week, measurements of nickel in air and feces were made on 15 of the workers. A significant correlation was found between nickel in air and fecal nickel. Smoking habits did not seem to influence neither urinary nor fecal nickel concentrations.

  9. Bioassay of environmental nickel dusts in a particle feeding ciliate

    SciTech Connect

    Smith-Sonneborn, J.; Leibovitz, B.; Donathan, R.; Fisher, G.L.

    1986-01-01

    The ciliated protozoan Paramecium was used to quantitate cytotoxic and genotoxic effects of nickel particles. The biological response of these eukaryotic cells to pure nickel powder and iron-nickel powder was assayed and compared to the effect of the inorganic carcinogen nickel subsulfide. Cytotoxicity was determined by the percent survival of treated cells. Genotoxicity was indicated by significant increases in the fraction of nonviable offspring (presumed index of lethal mutations) found after self-fertilization (autogamy) in parents from the nickel-treated versus neutral control groups. The cells were exposed to the dusts and the biological effects determined. Only the nickel subsulfide consistently showed a significant increase in offspring lethality.

  10. Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Willis, Bob; Pickett, David F.

    2003-01-01

    The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.

  11. Nickel and nickel oxide nanocrystals selectively grafting on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prabhu, Yendrapati Taraka; Rao, Kalagadda Venkateswara; Kumari, Bandla Siva; Sai, Vemula Sesha; Pavani, Tambur

    2015-01-01

    Nickel and nickel oxide nanocrystals in their pure phase are carefully embellished by a facial method on oxygen-functionalized multi-walled carbon nanotubes (O-MWCNTs) using nickel nitrate (NN) was effectively accomplished for the first time by calcining them in hydrogen, nitrogen and air, respectively, at suitable temperatures. Nickel and nickel oxide nanocrystals impregnated O-MWCNTs were examined for its structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. The nanocrystals on the O-MWCNTs were determined of 15-20 nm size. Decorated nanocrystals on CNT's have potential applications in semiconductor industries.

  12. Nickel Base Superalloy Turbine Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P. (Inventor); Gauda, John (Inventor); Telesman, Ignacy (Inventor); Kantzos, Pete T. (Inventor)

    2005-01-01

    A low solvus, high refractory alloy having unusually versatile processing mechanical property capabilities for advanced disks and rotors in gas turbine engines. The nickel base superalloy has a composition consisting essentially of, in weight percent, 3.0-4.0 N, 0.02-0.04 B, 0.02-0.05 C, 12.0-14.0 Cr, 19.0-22.0 Co, 2.0-3.5 Mo, greater than 1.0 to 2.1 Nb, 1.3 to 2.1 Ta,3.04.OTi,4.1 to 5.0 W, 0.03-0.06 Zr, and balance essentially Ni and incidental impurities. The superalloy combines ease of processing with high temperature capabilities to be suitable for use in various turbine engine disk, impeller, and shaft applications. The Co and Cr levels of the superalloy can provide low solvus temperature for high processing versatility. The W, Mo, Ta, and Nb refractory element levels of the superalloy can provide sustained strength, creep, and dwell crack growth resistance at high temperatures.

  13. The Archean Nickel Famine Revisited.

    PubMed

    Konhauser, Kurt O; Robbins, Leslie J; Pecoits, Ernesto; Peacock, Caroline; Kappler, Andreas; Lalonde, Stefan V

    2015-10-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen.

  14. The Archean Nickel Famine Revisited.

    PubMed

    Konhauser, Kurt O; Robbins, Leslie J; Pecoits, Ernesto; Peacock, Caroline; Kappler, Andreas; Lalonde, Stefan V

    2015-10-01

    Iron formations (IF) preserve a history of Precambrian oceanic elemental abundance that can be exploited to examine nutrient limitations on early biological productivity. However, in order for IF to be employed as paleomarine proxies, lumped-process distribution coefficients for the element of interest must be experimentally determined or assumed. This necessitates consideration of bulk ocean chemistry and which authigenic ferric iron minerals controlled the sorption reactions. It also requires an assessment of metal mobilization reactions that might have occurred in the water column during particle descent and during post-depositional burial. Here, we summarize recent developments pertaining to the interpretation and fidelity of the IF record in reconstructions of oceanic trace element evolution. Using an updated compilation, we reexamine and validate temporal trends previously reported for the nickel content in IF (see Konhauser et al., 2009 ). Finally, we reevaluate the consequences of methanogen Ni starvation in the context of evolving views of the Archean ocean-climate system and how the Ni famine may have ultimately facilitated the rise in atmospheric oxygen. PMID:26426143

  15. Electrochemical isotope effect and lithium isotope separation.

    PubMed

    Black, Jay R; Umeda, Grant; Dunn, Bruce; McDonough, William F; Kavner, Abby

    2009-07-29

    A large electrochemical isotopic effect is observed upon the electrodeposition of lithium from solutions of propylene carbonate producing isotopically light metal deposits. The magnitude of fractionation is controlled by the applied overpotential and is largest close to equilibrium. Calculated partition function ratios for tetrahedrally coordinated lithium complexes and metallic lithium predict an equilibrium fractionation close to that measured experimentally.

  16. METHOD OF ISOTOPE CONCENTRATION

    DOEpatents

    Spevack, J.S.

    1957-04-01

    An isotope concentration process is described which consists of exchanging, at two or more different temperature stages, two isotopes of an element between substances that are physically separate from each other and each of which is capable of containing either of the isotopes, and withdrawing from a point between at least two of the temperatare stages one of the substances containing an increased concentration of the desired isotope.

  17. Isotope reference materials

    USGS Publications Warehouse

    Coplen, Tyler B.

    2010-01-01

    Measurement of the same isotopically homogeneous sample by any laboratory worldwide should yield the same isotopic composition within analytical uncertainty. International distribution of light element isotopic reference materials by the International Atomic Energy Agency and the U.S. National Institute of Standards and Technology enable laboratories to achieve this goal.

  18. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  19. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  20. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  1. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  2. Cosmic ray isotopes

    NASA Technical Reports Server (NTRS)

    Stone, E. C.

    1973-01-01

    The isotopic composition of cosmic rays is studied in order to develop the relationship between cosmic rays and stellar processes. Cross section and model calculations are reported on isotopes of H, He, Be, Al and Fe. Satellite instrument measuring techniques separate only the isotopes of the lighter elements.

  3. Lactose intolerance in systemic nickel allergy syndrome.

    PubMed

    Cazzato, I A; Vadrucci, E; Cammarota, G; Minelli, M; Gasbarrini, A

    2011-01-01

    Some patients affected by nickel-contact allergy present digestive symptoms in addition to systemic cutaneous manifestations, falling under the condition known as systemic nickel allergy syndrome (SNAS). A nickel-related pro-inflammatory status has been documented at intestinal mucosal level. The aim of the present study is to evaluate the prevalence of lactose intolerance in patients affected by SNAS compared to a healthy population. Consecutive patients affected by SNAS referring to our departments were enrolled. The control population consisted of healthy subjects without gastrointestinal symptoms. All subjects enrolled underwent lactose breath test under standard conditions. One hundred and seventy-eight SNAS patients and 60 healthy controls were enrolled. Positivity of lactose breath test occurred in 74.7% of the SNAS group compared to 6.6% of the control group. Lactose intolerance is highly prevalent in our series of patients affected by SNAS. Based on our preliminary results, we can hypothesize that in SNAS patients, the nickel-induced pro-inflammatory status could temporarily impair the brush border enzymatic functions, resulting in hypolactasia. Further trials evaluating the effect of a nickel-low diet regimen on lactase activity, histological features and immunological pattern are needed.

  4. Air sampling of nickel in a refinery.

    PubMed

    Harmse, Johannes L; Engelbrecht, Jacobus C

    2007-08-01

    Air monitoring was conducted in a nickel base metal refinery to determine compliance with occupational exposure limits. The hypothesis stated that levels of airborne dust may pose a risk to worker health if compared to the relevant exposure limits. Exposure limits for nickel species are set for the inhalable nickel dust fraction. Personal air samples, representative of three selected areas were collected in the workers' breathing zones, using the Institute of Occupational Medicine (IOM) samplers. Real-time personal samples were collected randomly over a two-month period in three nickel production areas. Filter papers were treated gravimetrically and were analysed for soluble and insoluble nickel through inductive coupled plasma-mass spectrometry (ICP-MS). Measured concentrations were expressed as time weighted average exposure concentrations. Results were compared to South African occupational exposure limits (OELs) and to the threshold limit values (TLVs) set by the American Conference of Governmental Industrial Hygienists (ACGIH) to determine compliance. Statistical compliance was also determined using the National Institute for Occupational Safety and Health procedure as prescribed by South Africa's Hazardous Chemical Substances Regulations in 1995. In two of the areas it was found that exposure concentrations complied with the OELs. Some exposures exceeded the OEL values and most exposures exceeded the TLV values in the other area concerned. A comprehensive health risk assessment needs to be conducted to determine the cause of non-compliance. PMID:17613095

  5. Nickel-base alloys combat corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  6. Nickel aluminides: Breaking into the marketplace

    SciTech Connect

    Krause, C.

    1995-12-31

    Nurtured by ORNL researchers for almost 15 years, nickel aluminides may have found their niche. ORNL`s modified nickel aluminides are receiving considerable attention by the heat-treating industry in the United States and may have arrived just in the nick of time to make some companies more competitive. Nickel aluminides are intermetallic materials that have long been considered potentially useful because, thanks to their ordered crystal structure, they are very strong and hard and melt only at very high temperatures. But they had a serious weakness: they were too brittle to be shaped into reliable components. Then, in 1982, ORNL researchers led by Chain T. Liu in the Metals and Ceramics Division found the secret recipe for producing a ductile nickel aluminide alloy: add trace amounts of a few alloying elements in the right proportion. It was like turning peanut brittle into taffy. Their most important discovery was that the addition of a small amount of boron (200 parts per million) to a nickel aluminide alloy (Ni{sub 3}Al) makes the alloy highly ductile at room temperature. To address the safety concerns of the alloy preparation industry, Vinod Sikka and Joseph Vought developed a new process in collaboration with Seetharama Deevi, who was on a 1-year sabbatical at ORNL from the Research Center at Philip Morris in Richmond, Virginia. The development is called the Exo-Melt process.

  7. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  8. Plating Repair Of Nickel-Alloy Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steve K.; Chagnon, Kevin M.

    1989-01-01

    Procedure for localized electrodeposition of nickel enables repair of small damaged nickel-based pressure vessels. Electrodeposition restores weakened areas of vessel wall to at least their former strength.

  9. Preliminary evaluation of electrowinning for nickel scrap processing

    SciTech Connect

    Brown, G.M.; Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Wilson, D.F.

    1996-12-01

    Purification of the 70,000 to 245,000 tons of diffusion plant nickel scrap permit its use in a variety of DOE and, with establishment of de minimus standards, foreign and domestic industrial applications. Nickel recycle would also substantially decrease DOE legacy wastes. This report presents data on electrolytes and separations which could be used in electrolytic purification of radiologically contaminated nickel scrap from first generation diffusion plants. Potentiometric scans and plating tests indicate that both industrial electrolytes, buffered nickel sulfate-sodium chloride and nickel chloride, provide good current densities. Electrolytes which contain ammonium thiocyanate or ammonium chloride also perform well. Nickel does not plate appreciably from nitrate solutions because the nitrate was preferentially reduced to nitrite. Solvent extractions of cobalt, a common contaminant in commercial nickel, and pertechnate, a radiological contaminant expected in DOE nickel scrap, are also successful.

  10. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  11. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  12. Nickel acts as an adjuvant during cobalt sensitization.

    PubMed

    Bonefeld, Charlotte Menné; Nielsen, Morten Milek; Vennegaard, Marie T; Johansen, Jeanne Duus; Geisler, Carsten; Thyssen, Jacob P

    2015-03-01

    Metal allergy is the most frequent form of contact allergy with nickel and cobalt being the main culprits. Typically, exposure comes from metal-alloys where nickel and cobalt co-exist. Importantly, very little is known about how co-exposure to nickel and cobalt affects the immune system. We investigated these effects by using a recently developed mouse model. Mice were epicutaneously sensitized with i) nickel alone, ii) nickel in the presence of cobalt, iii) cobalt alone, or iv) cobalt in the presence of nickel, and then followed by challenge with either nickel or cobalt alone. We found that sensitization with nickel alone induced more local inflammation than cobalt alone as measured by increased ear-swelling. Furthermore, the presence of nickel during sensitization to cobalt led to a stronger challenge response to cobalt as seen by increased ear-swelling and increased B and T cell responses in the draining lymph nodes compared to mice sensitized with cobalt alone. In contrast, the presence of cobalt during nickel sensitization only induced an increased CD8(+) T cell proliferation during challenge to nickel. Thus, the presence of nickel during cobalt sensitization potentiated the challenge response against cobalt more than the presence of cobalt during sensitization to nickel affected the challenge response against nickel. Taken together, our study demonstrates that sensitization with a mixture of nickel and cobalt leads to an increased immune response to both nickel and cobalt, especially to cobalt, and furthermore that the adjuvant effect appears to correlate with the inflammatory properties of the allergen.

  13. Toxicity of nickel. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the adverse effects, carcinogenicity, environmental pollution, and other hazards of nickel and nickel compounds. The citations include the management of wastes in marine, freshwater and terrestrial environments, the effects of nickel on aquatic animals, contamination of potable water and agricultural products, and occupational exposure to nickel. (Contains a minimum of 184 citations and includes a subject term index and title list.)

  14. Essential elucidation for preparation of supported nickel phosphide upon nickel phosphate precursor

    SciTech Connect

    Liu, Xuguang; Xu, Lei; Zhang, Baoquan

    2014-04-01

    Preparation of supported nickel phosphide (Ni{sub 2}P) depends on nickel phosphate precursor, generally related to its chemical composition and supports. Study of this dependence is essential and meaningful for the preparation of supported Ni{sub 2}P with excellent catalytic activity. The chemical nature of nickel phosphate precursor is revealed by Raman and UV–vis spectra. It is found that initial P/Ni mole ratio ≥0.8 prohibits the Ni-O-Ni bridge bonding (i.e., nickel oxide). This chemical bonding will not result in Ni{sub 2}P structure, verified by XRD characterization results. The alumina (namely, γ-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, or α-Al{sub 2}O{sub 3}) with distinct physiochemical properties also results in diverse chemical nature of nickel phosphate, and then different nickel phosphides. The influence of alumina support on producing Ni{sub 2}P was explained by the theory of surface energy heterogeneity, calculated by the NLDFT method based on N{sub 2}-sorption isotherm. The uniform surface energy of α-Al{sub 2}O{sub 3} results only in the nickel phosphosate precursor and thus the Ni{sub 2}P phase. - Graphical abstract: Surface energy heterogeneity in alumina (namely α-Al{sub 2}O{sub 3}, θ-Al{sub 2}O{sub 3}, and γ-Al{sub 2}O{sub 3}) supported multi-oxidic precursors with different reducibilities and thus diverse nickel phosphides (i.e., Ni{sub 3}P, Ni{sub 12}P{sub 5}, Ni{sub 2}P). - Highlights: • Preparing pure Ni{sub 2}P. • Elucidating nickel phosphate precursor. • Associating with surface energy.

  15. Bismuth nickel passivation effective in FCCU

    SciTech Connect

    Heite, R.S. ); English, A.R. ); Smith, G.A. )

    1990-06-04

    Bismuth-based nickel passivation has been effective in Mapco Petroleum Inc.'s fluid catalytic cracking unit (FCCU) at its Memphis, Tenn., refinery for the past 2 years. Mapco switched to the bismuth passivator in 1988 after using antimony as a passivator since the early 1980s. Metals (nickel and vanadium) passivators help reduce the catalyst activity suppression that occurs from contamination of the catalyst with feed-born metals. With the switch to bismuth, a hazardous material has been eliminated. Antimony is on the U.S. Environmental protection Agency's lit of hazardous chemicals. The bismuth also reduced the deleterious effects of high nickel content in the feed to the FCCU, at a bismuth quantity equal to, or slightly greater than, the amount of antimony previously used. Trouble-free operation of the unit was maintained at a reduced passivation cost.

  16. A dual anode nickel-hydrogen cell

    NASA Astrophysics Data System (ADS)

    Gahn, Randall F.; Ryan, Timothy P.

    1992-02-01

    A dual anode cell with decreased polarization effects provides improved performance characteristics, such as voltage characteristics and depth-of-discharge characteristics. A hydrogen electrode is placed on both sides of a nickel electrode. An electrolyte saturated separator is placed between each hydrogen electrode and the nickel electrode. The electrolyte saturated separator can be a layered-type separator consisting of one layer of zirconia knit cloth next to the hydrogen electrode and a layer of radiation-grafted polyethylene film next to the nickel electrode. These layers of the electrochemical cell are cut in a pineapple-slice configuration. Both hydrogen electrodes are connected in parallel to form a single electrical node. The electrochemical cell is placed in a vessel pressurized with hydrogen and saturated with a potassium hydroxide electrolyte. A gas screen is placed on the outer surface of each of the hydrogen electrodes.

  17. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  18. Risk assessment for nickel contact allergy.

    PubMed

    Boonchai, Waranya; Chaiwanon, Onjuta; Kasemsarn, Pranee

    2014-12-01

    Nickel is one of the most common allergens causing allergic contact dermatitis worldwide. The aim of the study was to evaluate the contributing factors to nickel contact allergy (NiCA) in Asians who have a unique culture and lifestyle. We randomly selected 324 previously patch-tested patients, 162 nickel patch test (PT)-positive patients and 162 nickel PT-negative patients. The patients were telephone interviewed for their lifestyle information. Most of the nickel PT-positive patients (93.2%) were female with a mean age of 38.9 ± 13.3 years compared with the other group of nickel PT-negative patients who had a smaller proportion of females (76.5%) with an older mean age of 44.1 ± 14.9 years (P = 0.001). Multivariate analysis was able to establish that the significant risk factors for NiCA were female sex (odds ratio [OR], 6.38; 95% confidence interval [CI], 2.15-18.94), young age (OR, 0.98; 95% CI, 0.96-1.00), occupation with long periods of exposure to metal (OR, 3.08; 95% CI, 1.18-8.02), seafood (OR, 1.96; 95% CI, 1.17-3.27) and canned food consumption (OR, 3.12; 95% CI, 1.17-8.33) (P < 0.05). The adjusted factors found to associate with NiCA were female sex, young age, occupation with long periods of exposure to metal, seafood and canned food consumption.

  19. Prototype nickel component demonstration. Final report

    SciTech Connect

    Boss, D.E.

    1994-11-14

    We have been developing a process to produce high-purity nickel structures from nickel carbonyl using chemical vapor deposition (CVD). The prototype demonstration effort had been separated into a number of independent tasks to allow Los Alamos National Laboratory (LANL) the greatest flexibility in tailoring the project to their needs. LANL selected three of the proposed tasks to be performed--Task 1- system modification and demonstration, Task 2-stainless steel mandrel trials, and Task 4-manufacturing study. Task 1 focused on converting the CVD system from a hot-wall to a cold-wall configuration and demonstrating the improved efficiency of the reactor type by depositing a 0.01-inch-thick nickel coating on a cylindrical substrate. Since stainless steel substrates were preferred because of their low {alpha}-emitter levels, Task 2 evaluated mandrel configurations which would allow removal of the nickel tube from the substrate. The manufacturing study was performed to develop strategies and system designs for manufacturing large quantities of the components needed for the Sudbury Nuetrino Observatory (SNO) program. Each of these tasks was successfully completed. During these efforts, BIRL successfully produced short lengths of 2-inch-diameter tubing and 6-inch-wide foil with levels of {alpha}-radiation emitting contaminants lower than either conventional nickel alloys or electroplated materials. We have produced both the tubing and foil using hot-substrate, cold-wall reactors and clearly demonstrated the advantages of higher precursor efficiency and deposition rate associated with this configuration. We also demonstrated a novel mandrel design which allowed easy removal of the nickel tubing and should dramatically simplify the production of 1.5-meter-long tubes in the production phase of the program.

  20. Genotoxicity of samples of nickel refinery dust.

    PubMed

    Clemens, Farrah; Landolph, Joseph R

    2003-05-01

    At the International Nickel Company (INCO) nickel refinery in Clydach, Wales, U.K., which has operated since 1901, 365 respiratory cancers, including 85 nasal cancers and 280 lung cancers, have occurred in workers since the 1920s. From 1901 to 1923, incidences of these cancers were high. In 1923, the refining process was changed, eliminating a nickel arsenide, Ni5As2, called orcelite, from the refinery. Incidences of respiratory cancers decreased substantially from 1925 to 1930. Refinery dust samples were obtained in 1920 and in 1929; both of these samples contain primarily nickel oxide (NiO), but the 1920 sample also contains orcelite. The orcelite content of the 1920 sample is approximately 10%, while that of the 1929 sample is approximately 1%. We hypothesized that orcelite in the 1920 sample was partially responsible for inducing nasal and lung cancers in the refinery workers, and we tested this hypothesis. The 1920 and 1929 samples and orcelite were phagocytosed by cultured C3H/10T1/2 Cl 8 (10T1/2) mouse embryo cells to similar extents and were similarly cytotoxic to 10T1/2 cells. The 1920 sample and orcelite induced dose-dependent morphological transformation of 10T1/2 cells; the 1929 sample did not. The cell transforming ability of the 1920 sample, and therefore its probable carcinogenicity, correlates with induction of respiratory cancers in refinery workers exposed to orcelite-containing nickel refinery dust before 1923. Inability of the 1929 sample to induce morphological transformation correlates with decreased human respiratory tumor incidence at this plant after 1923. This data supports our hypothesis that orcelite in the 1920 refinery sample contributed to its carcinogenicity to nickel refinery workers. PMID:12657748

  1. 40 CFR 721.10460 - Azo nickel complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Azo nickel complex (generic). 721... Substances § 721.10460 Azo nickel complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as azo nickel complex (PMN...

  2. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  3. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  4. Electrospinning of nickel oxide nanofibers: Process parameters and morphology control

    SciTech Connect

    Khalil, Abdullah Hashaikeh, Raed

    2014-09-15

    In the present work, nickel oxide nanofibers with varying morphology (diameter and roughness) were fabricated via electrospinning technique using a precursor composed of nickel acetate and polyvinyl alcohol. It was found that the diameter and surface roughness of individual nickel oxide nanofibers are strongly dependent upon nickel acetate concentration in the precursor. With increasing nickel acetate concentration, the diameter of nanofibers increased and the roughness decreased. An optimum concentration of nickel acetate in the precursor resulted in the formation of smooth and continuous nickel oxide nanofibers whose diameter can be further controlled via electrospinning voltage. Beyond an optimum concentration of nickel acetate, the resulting nanofibers were found to be ‘flattened’ and ‘wavy’ with occasional cracking across their length. Transmission electron microscopy analysis revealed that the obtained nanofibers are polycrystalline in nature. These nickel oxide nanofibers with varying morphology have potential applications in various engineering domains. - Highlights: • Nickel oxide nanofibers were synthesized via electrospinning. • Fiber diameter and roughness depend on nickel acetate concentration used. • With increasing nickel acetate concentration the roughness of nanofibers decreased. • XRD and TEM revealed a polycrystalline structure of the nanofibers.

  5. 40 CFR 721.10388 - Bisphospite nickel cyanoalkyl complex (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Bisphospite nickel cyanoalkyl complex... Specific Chemical Substances § 721.10388 Bisphospite nickel cyanoalkyl complex (generic). (a) Chemical... as bisphospite nickel cyanoalkyl complex (PMN P-10-364) is subject to reporting under this...

  6. 40 CFR 721.10460 - Azo nickel complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Azo nickel complex (generic). 721... Substances § 721.10460 Azo nickel complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as azo nickel complex (PMN...

  7. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  8. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  9. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  10. 40 CFR 721.10388 - Bisphospite nickel cyanoalkyl complex (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Bisphospite nickel cyanoalkyl complex... Specific Chemical Substances § 721.10388 Bisphospite nickel cyanoalkyl complex (generic). (a) Chemical... as bisphospite nickel cyanoalkyl complex (PMN P-10-364) is subject to reporting under this...

  11. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. Link to an amendment published at 79 FR 34637, June 18, 2014... nickel acrylate complex (PMN P-85-1034) is subject to reporting under this section for the...

  12. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  13. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  14. 40 CFR 721.10388 - Bisphospite nickel cyanoalkyl complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bisphospite nickel cyanoalkyl complex... Specific Chemical Substances § 721.10388 Bisphospite nickel cyanoalkyl complex (generic). (a) Chemical... as bisphospite nickel cyanoalkyl complex (PMN P-10-364) is subject to reporting under this...

  15. Anatase supported nickel nanoparticles for catalytic hydrogenation of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Dhokale, R. K.; Yadav, H. M.; Achary, S. N.; Delekar, S. D.

    2014-06-01

    Nickel nanoparticles supported on titania were prepared by a combined sol-gel and chemical reduction procedure. XRD reveals face centred cubic structure of nickel nanoparticles; while tetragonal anatase type structure for the supporting titania phase. The structural and morphological properties showed well dispersion of nickel nanoparticles on the supported titania lattice. From TEM images, the average crystallite size of nickel nanoparticles was found to be ˜20 nm. HRTEM images identified lattice fringes with spacing around 0.203 nm, which matches with ‘d’ value for the (1 1 1) plane of cubic nickel. The saturation magnetization, remanent magnetization, and coercivity values of supported nickel/bare nickel nanoparticles were higher than that of bulk nickel. This enhanced magnetization property was helpful for its separation from the reaction mixture by magnetic field. The influence of titania support on the performance of nickel catalysts for the hydrogenation of 4-nitrophenol was investigated. The catalytic performance was higher for supported nickel nanoparticles as compared to that of bare nickel nanoparticles. Supported nickel catalyst was found to be superior, cost effective, magnetically separable and recyclable in hydrogenation reactions.

  16. Program Diagnoses Nickel/Cadmium Batteries

    NASA Technical Reports Server (NTRS)

    Johnson, Yvette B.; Bykat, Alex

    1993-01-01

    Nickel Cadmium Battery Expert System-2 (NICBES2) computer program is prototype expert-system program for diagnosis and management of health of nickel/cadmium batteries. Intended to support evaluation of performance of batteries in Hubble Space Telescope spacecraft and to alert personnel to possible malfunctions. Oversees status of batteries by evaluating data gathered in orbit packets, and when so merits, raises alarm and provides diagnosis of faults as well as advice on actions to be taken to remedy condition giving rise to alarm. Provides history of statuses of batteries pertaining to health of batteries, and graphical display to help operator assimilate information generated. Written in C language.

  17. Nickel-hydrogen capacity loss on storage

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1989-01-01

    A controlled experiment evaluating the capacity loss experienced by nickel electrodes stored under various conditions of temperature, hydrogen pressure, and electrolyte concentration was conducted using nickel electrodes from four different manufacturers. It was found that capacity loss varied with respect to hydrogen pressure, and storage temperature as well as with respect to electrode manufacturing processes. Impedance characteristics were monitored and found to be indicative of electrode manufacturing processes and capacity loss. Cell testing to evaluate state-of-charge effects on capacity loss were inconclusive as no loss was sustained by the cells tested in this experiment.

  18. Nickel oxide, ceramic insulated, high temperature coating

    SciTech Connect

    Aprigliano, L.F.

    1987-01-27

    This patent describes a corrosion, oxidation, and heat resistant layered coating for a substrate material in a high temperature, corrosive environment, consisting of: a base layer selected from the group consisting of Aluminide and MCrAlY, wherein M is a metal selected from the group consisting of nickel, cobalt, and a combination thereof; a ceramic layer, impermeable to the metallic elements of the substrate material and the MCrAlY layer, and bonded to the substrate material by the MCrAlY layer; and, a nickel oxide layer, applied to the ceramic layer.

  19. Lightweight porous plastic plaque. [nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Reid, M.

    1978-01-01

    The porosity and platability of various materials were investigated to determine a suitable substrate for nickel-plated electrodes. Immersion, ultrasonics, and flow-through plating techniques were tried using nonproprietary formulations, and proprietary phosphide and boride baths. Modifications to the selected material include variations in formulation and treatment, carbon loading to increase conductivity, and the incorporation of a grid. Problems to be solved relate to determining conductivities and porosities as a function of amount of nickel plated on the plastics; loading; charge and discharge curves of electrodes at different current densities; cell performance; and long-term degradation of electrodes.

  20. A Review of Nickel Pyrometallurgical Operations

    NASA Astrophysics Data System (ADS)

    Diaz, C. M.; Landolt, C. A.; Vahed, A.; Warner, A. E. M.; Taylor, J. C.

    1988-09-01

    While the vast majority of the world's nickel is produced using pyrometallurgical techniques, the equipment and processes employed in such production encompass a variety of technologies. Even though certain patterns are followed by many companies, the nature of the raw materials dictates how process parameters will vary from smelter to smelter. In addition, much remains unknown about nickel smelting. Further work is clearly required in such areas as the thermochemistry of sulfide, oxide and metal systems, correlation of industrial data with theoretical information and techniques to improve equipment design.

  1. Nickel electroplating for nanostructure mold fabrication.

    PubMed

    Lin, Xiaohui; Dou, Xinyuan; Wang, Xiaolong; Chen, Ray T

    2011-08-01

    We demonstrated a practical process of fabricating nickel molds for nanoimprinting. Dual-side polished glass is chosen as the substrate on which nickel nanostructures are successfully electroplated. Photonic crystal structures with 242 nm diameters and other nanoscale pillars down to 9 nm diameters are achieved over a large area. The electroplating parameters are investigated and optimized. This process extends the feasibility of electroplating process to nanoscale and shows great potential in nanoimprint mold fabrication with its low cost, straightforward process and controllable pattern structures.

  2. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  3. Evaluation of the electrochemical behavior of ductile nickel aluminide and nickel in a pH 7.9 solution

    SciTech Connect

    Gram, D.M.; Bertocci, U.; Ricker, R.E.

    1991-08-01

    The electrochemical behavior of ductile doped nickel aluminide has been examined in neutral solutions. Features observed in a certain potential range were characterized, and the potentiodynamic sweep parameters affecting them identified. Nickel aluminide behaves essentially as pure nickel; however, small differences were observed.

  4. Histological changes, rhinoscopical findings and nickel concentration in plasma and urine in retired nickel workers.

    PubMed

    Boysen, M; Solberg, L A; Torjussen, W; Poppe, S; Høgetveit, A C

    1984-01-01

    Histological examination of nasal biopsy specimens, rhinoscopical evaluation and nickel analysis in plasma and urine were performed on 59 retired nickel workers. The histological characteristics were graded according to a numerical classification table. Workers with short employment and short retirement time had a significantly lower mean histological scores than those with long employment and long retirement. Thirteen persons (22%) showed epithelial dysplasia, possibly representing precancerous lesions. Also included in the material were four cases of nasal carcinoma. Presence of hyperplastic/polypoid nasal mucosa was inversely related to the duration of retirement, possibly reflecting gradual regression of the mucosal swelling after termination of the irritation. The nickel concentration in plasma and urine was significantly higher among former roasting/smelting workers than in former electrolysis and non-process workers. This is probably a consequence of the slow release of heavy soluble nickel compounds that have accumulated in the organism at the former place of work. PMID:6689819

  5. Histological changes, rhinoscopical findings and nickel concentration in plasma and urine in retired nickel workers.

    PubMed

    Boysen, M; Solberg, L A; Torjussen, W; Poppe, S; Høgetveit, A C

    1984-01-01

    Histological examination of nasal biopsy specimens, rhinoscopical evaluation and nickel analysis in plasma and urine were performed on 59 retired nickel workers. The histological characteristics were graded according to a numerical classification table. Workers with short employment and short retirement time had a significantly lower mean histological scores than those with long employment and long retirement. Thirteen persons (22%) showed epithelial dysplasia, possibly representing precancerous lesions. Also included in the material were four cases of nasal carcinoma. Presence of hyperplastic/polypoid nasal mucosa was inversely related to the duration of retirement, possibly reflecting gradual regression of the mucosal swelling after termination of the irritation. The nickel concentration in plasma and urine was significantly higher among former roasting/smelting workers than in former electrolysis and non-process workers. This is probably a consequence of the slow release of heavy soluble nickel compounds that have accumulated in the organism at the former place of work.

  6. Study of high performance alloy electroforming. [nickel manganese and nickel cobalt manganese alloys

    NASA Technical Reports Server (NTRS)

    Malone, G. A.

    1984-01-01

    Nickel-manganese alloy electrodeposits from an electrolyte containing more manganese ion than previously used is being evaluated at two bath operating temperatures with a great variety of pulse plating conditions. Saccharine was added as a stress reducing agent for the electroforming of several of the samples with highest manganese content. All specimens for mechanical property testing have been produced but are not through the various heat treatments as yet. One of the heat treatment will be at 343 C (650 F), the temperature at which the MCC outer electroformed nickel shell is stress relieved. A number of retainer specimens from prior work have been tested for hardness before and after heat treatment. There appears to be a fairly good correlation between hardness and mechanical properties. Comparison of representative mechanical properties with hardnesses are made for nickel-manganese electrodeposits and nickel-cobalt-manganese deposits.

  7. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  8. Sequential desorption energy of hydrogen from nickel clusters

    SciTech Connect

    Deepika,; Kumar, Rakesh; R, Kamal Raj.; Kumar, T. J. Dhilip

    2015-06-24

    We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage and regeneration of Hydrogen as a clean energy carrier.

  9. Organic devices based on nickel nanowires transparent electrode

    PubMed Central

    Kim, Jeongmo; da Silva, Wilson Jose; bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed. PMID:26804335

  10. Nickel-related cancers of the respiratory tract

    SciTech Connect

    Barton, R.T.; Hogetveit, A.C.

    1980-06-15

    Nickel-related cancers of the respiratory tract have been recognized for nearly 50 years and represent a unique opportunity for prevention among refinery workers. Studies of exposed employees have been conducted in which evaluations were made of the histopathologic changes in the respiratory mucosa and the body burden of nickel was measured by regular plasma nickel determinations. The sites of tumor predilection are related to airflow patterns of the nose and tracheobronchial tree. The metaplastic changes in these areas are accompanied by increased tissue concentrations of nickel. Close monitoring of nickel workers has led to a lower incidence of respiratory cancers and earlier diagnosis.

  11. First principles nickel-cadmium and nickel hydrogen spacecraft battery models

    NASA Technical Reports Server (NTRS)

    Timmerman, P.; Ratnakumar, B. V.; Distefano, S.

    1996-01-01

    The principles of Nickel-Cadmium and Nickel-Hydrogen spacecraft battery models are discussed. The Ni-Cd battery model includes two phase positive electrode and its predictions are very close to actual data. But the Ni-H2 battery model predictions (without the two phase positive electrode) are unacceptable even though the model is operational. Both models run on UNIX and Macintosh computers.

  12. A quantitative link between recycling and osmium isotopes.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Brügmann, Gerhard; Batanova, Valentina G; Kuzmin, Dmitry V

    2008-07-25

    Recycled subducted ocean crust has been traced by elevated 187Os/188Os in some studies and by high nickel and low manganese contents in others. Here, we show that these tracers are linked for Quaternary lavas of Iceland, strengthening the recycling model. An estimate of the osmium isotopic composition of both the recycled crust and the mantle peridotite implies that Icelandic Quaternary lavas are derived in part from an ancient crustal component with model ages between 1.1 _ 109 and 1.8 _ 109 years and from a peridotitic end-member close to present-day oceanic mantle. PMID:18653885

  13. A quantitative link between recycling and osmium isotopes.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Brügmann, Gerhard; Batanova, Valentina G; Kuzmin, Dmitry V

    2008-07-25

    Recycled subducted ocean crust has been traced by elevated 187Os/188Os in some studies and by high nickel and low manganese contents in others. Here, we show that these tracers are linked for Quaternary lavas of Iceland, strengthening the recycling model. An estimate of the osmium isotopic composition of both the recycled crust and the mantle peridotite implies that Icelandic Quaternary lavas are derived in part from an ancient crustal component with model ages between 1.1 _ 109 and 1.8 _ 109 years and from a peridotitic end-member close to present-day oceanic mantle.

  14. Suppression of pecan scab by nickel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The economic cost of scab, caused by Fusicladium effusum, can substantially limit the profitability of pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivation in humid environments. Field and greenhouse experiments assessed the influence of nickel (Ni) on scab severity on fruit and foliage of Ni...

  15. Nickel-chromium-silicon brazing filler metal

    DOEpatents

    Martini, Angelo J.; Gourley, Bruce R.

    1976-01-01

    A brazing filler metal containing, by weight percent, 23-35% chromium, 9-12% silicon, a maximum of 0.15% carbon, and the remainder nickel. The maximum amount of elements other than those noted above is 1.00%.

  16. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, Chain T.

    1992-01-01

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition.

  17. Iron-induced nickel deficiency in pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economic loss due to nickel (Ni) deficiency can occur in horticultural and agronomic crops. This study assesses impact of excessive iron (Fe) on expression of Ni deficiency in pecan [Carya illinoinensis (Wangenh.) K. Koch]. Field and greenhouse experiments found Ni deficiency to be inducible by ei...

  18. Castable nickel aluminide alloys for structural applications

    DOEpatents

    Liu, C.T.

    1992-04-28

    The specification discloses nickel aluminide alloys which include as a component from about 0.5 to about 4 at. % of one or more of the elements selected from the group consisting of molybdenum or niobium to substantially improve the mechanical properties of the alloys in the cast condition. 4 figs.

  19. Ir Spectroscopy and Nickel (II) Hexammines

    ERIC Educational Resources Information Center

    Reedijk, J.; And Others

    1975-01-01

    Describes an experiment, for the general chemistry laboratory, intended to introduce the student to infrared spectroscopy. After being introduced to the theory of molecular vibrations on an elementary level, each student receives a list of 5-7 nickel (II) ammines to be prepared, analyzed and characterized by infrared spectoscopy. (MLH)

  20. Cost reductions in nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Beauchamp, Richard L.; Sindorf, Jack F.

    1987-01-01

    Significant progress was made toward the development of a commercially marketable hydrogen nickel oxide battery. The costs projected for this battery are remarkably low when one considers where the learning curve is for commercialization of this system. Further developmental efforts on this project are warranted as the H2/NiO battery is already cost competitive with other battery systems.

  1. Growth of hollow nickel fluoride whiskers

    SciTech Connect

    Petrov, S. V.; Orekhov, Yu. F.; Fedorov, P. P.

    2009-07-15

    Hollow nickel fluoride whiskers have been obtained by condensation from the vapor phase onto a platinum substrate in a flow of hydrogen fluoride. Crystals up to 5 mm in length have a square cross section with a 300 {+-} 30-{mu}m side. The wall thickness is 85 {+-} 20 {mu}m.

  2. Zirconium modified nickel-copper alloy

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D. (Inventor)

    1977-01-01

    An improved material for use in a catalytic reactor which reduces nitrogen oxide from internal combustion engines is in the form of a zirconium-modified, precipitation-strengthened nickel-copper alloy. This material has a nominal composition of Ni-30 Cu-0.2 Zr and is characterized by improved high temperature mechanical properties.

  3. Large Scale Evaluation fo Nickel Aluminide Rolls

    SciTech Connect

    2005-09-01

    This completed project was a joint effort between Oak Ridge National Laboratory and Bethlehem Steel (now Mittal Steel) to demonstrate the effectiveness of using nickel aluminide intermetallic alloy rolls as part of an updated, energy-efficient, commercial annealing furnace system.

  4. Nickel hydrogen bipolar battery electrode design

    NASA Technical Reports Server (NTRS)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  5. Development of lightweight nickel electrodes for zinc/nickel oxide cells

    NASA Astrophysics Data System (ADS)

    Taucher, Waltraud; Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    A method for fabricating lightweight nickel electrodes has been developed by electrochemical impregnation of two different nickel fiber substrates. The electrochemical impregnation technique was applied galvanostatically at 35-50 mA/cm 2 in acidic solutions of nickel and cobalt nitrates (pH = 3). The nickel and cobalt contents of impregnated and formed electrodes was analyzed with atomic absorption spectrometry (AAS) and the amount of active nickel hydroxide was calculated. NiOOH electrode cycle-life performance testing was carried out in alkaline electrolyte (4.2-6.9 M KOH, 1 M LiOH) at a ˜ C/5 rate during charge and discharge. Electrodes based on substrate materials of high porosity (90%, FN 090 Nickel Felt, Sorapec) deliver excellent specific capacities of 133-145 mAh/g in moderately alkaline electrolyte (4.2 M KOH) with an active material utilization of 67-95% depending on the quantity of co-precipitated cobalt (1.3-8.3%). NiOOH electrodes using substrates with lower porosity (81%, Fibrex {50}/{50}= fiber/Ni powder, National Standard) obtain very stable specific capacities (400 cycles) of 91-93 mAh/g with a utilization rate of 110% in highly alkaline electrolytes (6.9 M KOH).

  6. Cancer risk among workers at a copper/nickel smelter and nickel refinery in Finland.

    PubMed

    Karjalainen, S; Kerttula, R; Pukkala, E

    1992-01-01

    A total of 1,388 workers employed for at least 3 months at a copper/nickel smelter and nickel refinery were followed up for cancer from 1953 to 1987 through the Finnish Cancer Registry. There were 1,339 male and 49 female workers, making a total of 27,130 and 706 person-years, respectively. All of the women worked in the refinery, which opened in 1960, the same year the smelting of nickel began. A total of 67 cancers were diagnosed among the men, the standardized incidence ratio for all cancers being 1.0. No cancer was found among the women (1.8 expected). The risk of cancer among men was analysed according to primary site, exposure to nickel, type of work, years since first exposure and age at diagnosis. In the subcohort of nickel refinery workers, one case of sinonasal cancer was observed, against 0.02 expected, but otherwise no significantly increased risks of cancer were found. In addition to the small size of the cohort, the non-positive finding concerning lung cancer might be related to the relatively low arsenic exposure and, perhaps, to the late commencement of nickel production. PMID:1587630

  7. Progress in the Development of Lightweight Nickel Electrode for Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1999-01-01

    Development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (Ni-H2) program at the NASA Glenn Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at five different discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C. The electrodes are life cycle tested using a half-cell configuration at 40 and 80% depths-of-discharge (DOD) in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flight weight design are built and tested.

  8. Cancer risk among workers at a copper/nickel smelter and nickel refinery in Finland.

    PubMed

    Karjalainen, S; Kerttula, R; Pukkala, E

    1992-01-01

    A total of 1,388 workers employed for at least 3 months at a copper/nickel smelter and nickel refinery were followed up for cancer from 1953 to 1987 through the Finnish Cancer Registry. There were 1,339 male and 49 female workers, making a total of 27,130 and 706 person-years, respectively. All of the women worked in the refinery, which opened in 1960, the same year the smelting of nickel began. A total of 67 cancers were diagnosed among the men, the standardized incidence ratio for all cancers being 1.0. No cancer was found among the women (1.8 expected). The risk of cancer among men was analysed according to primary site, exposure to nickel, type of work, years since first exposure and age at diagnosis. In the subcohort of nickel refinery workers, one case of sinonasal cancer was observed, against 0.02 expected, but otherwise no significantly increased risks of cancer were found. In addition to the small size of the cohort, the non-positive finding concerning lung cancer might be related to the relatively low arsenic exposure and, perhaps, to the late commencement of nickel production.

  9. A pharmacokinetic model of the intracellular dosimetry of inhaled nickel.

    PubMed

    Hack, C Eric; Covington, Tammie R; Lawrence, Greg; Shipp, Annette M; Gentry, Robinan; Yager, Janice; Clewell, Harvey J

    2007-03-01

    The potential associations between exposure to nickel compounds and cancer have been evaluated in both animal and epidemiological studies of occupationally exposed workers. The results of the epidemiological studies suggest that not all nickel compounds are equally carcinogenic, an observation supported by the animal bioassay results. Given the complexity and the differences in the modes of uptake of different forms of nickel by cells and the subsequent delivery of nickel to the nucleus, it would be expected that some forms of nickel would be more potent than others. A physiologically based pharmacokinetic (PBPK) model would be useful in estimating the cellular exposure to nickel resulting from inhalation of the different forms of nickel. To this end, a preliminary model of a tracheobronchial epithelial cell was developed to describe the differences in the extracellular and intracellular kinetics of the different classes of nickel compounds. Data available in the published literature were used to define the initial model parameters. The resulting cellular dosimetry model was able to describe kinetic data on three forms of nickel (soluble chloride and insoluble sulfide and subsulfide). This preliminary model development effort has identified critical data gaps that could be filled by additional research. The ultimate goal will be to integrate a refined cellular dosimetry model with published lung deposition/clearance and systemic distribution/clearance models for nickel. The use of such an integrated PBPK model would allow for more biologically based risk estimates for the inhalation of the different nickel compounds, as well as mixtures of these compounds.

  10. The role of oxidative stress in nickel and chromate genotoxicity.

    PubMed

    Costa, Max; Salnikow, Konstantin; Sutherland, Jessica E; Broday, Limor; Peng, Wu; Zhang, Qunwei; Kluz, Thomas

    2002-01-01

    Some general principles regarding oxidative stress and molecular responses to toxic metals are presented in this manuscript. The remainder of the manuscript, however, will focus on the role of oxidative stress in particulate nickel-induced genetic damage and mutations. The phagocytosis of particulate nickel compounds and the dissolution of the particles inside the cell and the resulting oxidative stress produced in the nucleus is a key component of the nickel carcinogenic mechanism. The crosslinking of amino acids to DNA by nickel that does not involve direct participation of nickel in a ternary complex but nickel-induced oxidative stress will be discussed as well. The selective ability of particulate nickel compounds to silence the expression of genes located near heterochromatin and the effect of vitamin E on the genotoxicity and mutations induced by particulate and soluble nickel compounds will also be discussed. Particulate nickel compounds have been shown to produce more oxidative stress than water-soluble nickel compounds. In addition to nickel, the role of oxidative stress in chromate-induced genotoxicity will also be discussed with particular attention directed to the effects of vitamin E on mutations and chromosomal aberrations inducedby chromate.

  11. Hybrid isotope separation scheme

    DOEpatents

    Maya, Jakob

    1991-01-01

    A method of yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus.

  12. Hybrid isotope separation scheme

    DOEpatents

    Maya, J.

    1991-06-18

    A method is described for yielding selectively a desired enrichment in a specific isotope including the steps of inputting into a spinning chamber a gas from which a scavenger, radiating the gas with a wave length or frequency characteristic of the absorption of a particular isotope of the atomic or molecular gas, thereby inducing a photochemical reaction between the scavenger, and collecting the specific isotope-containing chemical by using a recombination surface or by a scooping apparatus. 2 figures.

  13. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  14. Characterisation of workers' exposure in a Russian nickel refinery.

    PubMed

    Thomassen, Y; Nieboer, E; Ellingsen, D; Hetland, S; Norseth, T; Odland, J Ø; Romanova, N; Chernova, S; Tchachtchine, V P

    1999-02-01

    In support of a feasibility study of reproductive and developmental health among females employed in the Monchegorsk (Russia) nickel refinery, personal exposure and biological monitoring assessments were conducted. The inhalable aerosol fraction was measured and characterised by chemical speciation and particle-size distribution measurements. Unexpected findings were that: (i), pyrometallurgical working environments had significant levels of water-soluble nickel; (ii), significant exposure to cobalt occurred for the nickel workers; (iii), particles of size corresponding to the thoracic and respirable fractions appeared to be virtually absent in most of the areas surveyed. The water-soluble fraction is judged to be primarily responsible for the observed urinary nickel and cobalt concentrations. It is concluded relative to current international occupational-exposure limits for nickel in air, and because of the high nickel concentrations observed in urine, that the Monchegorsk nickel workers are heavily exposed. The implication of this finding for follow-up epidemiological work is alluded to. PMID:11529072

  15. PRINCIPAL ISOTOPE SELECTION REPORT

    SciTech Connect

    K. D. Wright

    1998-08-28

    Utilizing nuclear fuel to produce power in commercial reactors results in the production of hundreds of fission product and transuranic isotopes in the spent nuclear fuel (SNF). When the SNF is disposed of in a repository, the criticality analyses could consider all of the isotopes, some principal isotopes affecting criticality, or none of the isotopes, other than the initial loading. The selected set of principal isotopes will be the ones used in criticality analyses of the SNF to evaluate the reactivity of the fuel/waste package composition and configuration. This technical document discusses the process used to select the principal isotopes and the possible affect that these isotopes could have on criticality in the SNF. The objective of this technical document is to discuss the process used to select the principal isotopes for disposal criticality evaluations with commercial SNF. The principal isotopes will be used as supporting information in the ''Disposal Criticality Analysis Methodology Topical Report'' which will be presented to the United States Nuclear Regulatory Commission (NRC) when approved by the United States Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM).

  16. In vitro dermal penetration of nickel nanoparticles.

    PubMed

    Crosera, Matteo; Adami, Gianpiero; Mauro, Marcella; Bovenzi, Massimo; Baracchini, Elena; Larese Filon, Francesca

    2016-02-01

    Nickel nanoparticles (NiNPs) represent a new type of occupational exposure because, due to the small size/high surface, they can release more Ni ions compared to bulk material. It has been reported a case of a worker who developed sensitization while handling nickel nanopowder without precautions. Therefore there is the need to assess whether the skin absorption of NiNPs is higher compared to bulk nickel. Two independent in vitro experiments were performed using Franz diffusion cells. Eight cells for each experiment were fitted using intact and needle-abraded human skin. The donor phase was a suspension of NiNPs with mean size of 77.7 ± 24.1 nm in synthetic sweat. Ni permeated both types of skin, reaching higher levels up to two orders of magnitude in the damaged skin compared to intact skin (5.2 ± 2.0 vs 0.032 ± 0.010 μg cm(-2), p = 0.006) at 24 h. Total Ni amount into the skin was 29.2 ± 11.2 μg cm(-2) in damaged skin and 9.67 ± 2.70 μg cm(-2) in intact skin (mean and SD, p = 0.006). Skin abrasions lead to doubling the Ni amount in the epidermis and to an increase of ten times in the dermis. This study demonstrated that NiNPs applied on skin surface cause an increase of nickel content into the skin and a significant permeation flux through the skin, higher when a damaged skin protocol was used. Preventive measures are needed when NiNPs are produced and used due to their higher potential to enter in our body compared to bulk nickel.

  17. A biokinetic model for nickel released from cardiovascular devices.

    PubMed

    Saylor, David M; Adidharma, Lingga; Fisher, Jeffrey W; Brown, Ronald P

    2016-10-01

    Many alloys used in cardiovascular device applications contain high levels of nickel, which if released in sufficient quantities, can lead to adverse health effects. While nickel release from these devices is typically characterized through the use of in-vitro immersion tests, it is unclear if the rate at which nickel is released from a device during in-vitro testing is representative of the release rate following implantation in the body. To address this uncertainty, we have developed a novel biokinetic model that combines a traditional toxicokinetic compartment model with a physics-based model to estimate nickel release from an implanted device. This model links the rate of in-vitro nickel release from a cardiovascular device to serum nickel concentrations, an easily measured endpoint, to estimate the rate and extent of in-vivo nickel release from an implanted device. The model was initially parameterized using data in the literature on in-vitro nickel release from a nickel-containing alloy (nitinol) and baseline serum nickel levels in humans. The results of this first step were then used to validate specific components of the model. The remaining unknown quantities were fit using serum values reported in patients following implantation with nitinol atrial occluder devices. The model is not only consistent with levels of nickel in serum and urine of patients following treatment with the atrial occluders, but also the optimized parameters in the model were all physiologically plausible. The congruity of the model with available data suggests that it can provide a framework to interpret nickel biomonitoring data and use data from in-vitro nickel immersion tests to estimate in-vivo nickel release from implanted cardiovascular devices.

  18. A biokinetic model for nickel released from cardiovascular devices.

    PubMed

    Saylor, David M; Adidharma, Lingga; Fisher, Jeffrey W; Brown, Ronald P

    2016-10-01

    Many alloys used in cardiovascular device applications contain high levels of nickel, which if released in sufficient quantities, can lead to adverse health effects. While nickel release from these devices is typically characterized through the use of in-vitro immersion tests, it is unclear if the rate at which nickel is released from a device during in-vitro testing is representative of the release rate following implantation in the body. To address this uncertainty, we have developed a novel biokinetic model that combines a traditional toxicokinetic compartment model with a physics-based model to estimate nickel release from an implanted device. This model links the rate of in-vitro nickel release from a cardiovascular device to serum nickel concentrations, an easily measured endpoint, to estimate the rate and extent of in-vivo nickel release from an implanted device. The model was initially parameterized using data in the literature on in-vitro nickel release from a nickel-containing alloy (nitinol) and baseline serum nickel levels in humans. The results of this first step were then used to validate specific components of the model. The remaining unknown quantities were fit using serum values reported in patients following implantation with nitinol atrial occluder devices. The model is not only consistent with levels of nickel in serum and urine of patients following treatment with the atrial occluders, but also the optimized parameters in the model were all physiologically plausible. The congruity of the model with available data suggests that it can provide a framework to interpret nickel biomonitoring data and use data from in-vitro nickel immersion tests to estimate in-vivo nickel release from implanted cardiovascular devices. PMID:27208438

  19. Stable Ni isotopes and Be-10 and Al-26 in metallic spheroids from Meteor Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Xue, S.; Herzog, G. F.; Hall, G. S.; Klein, J.; Middleton, R.; Juenemann, D.

    1993-03-01

    The Canyon Diablo spheroids, which are found around Meteor Crater, Arizona, are nickel-enriched objects with diameters from less than 0.1 to several mm. Previous studies have suggested that the enrichment of nickel resulted either from shock-melting of S-rich areas followed by solidification of the liquids under strongly non-equilibrium conditions at rapid cooling rates during flight outward from the crater or from the selective oxidation of iron. Isotopic studies are an effective tool for constraining the degree of open-system evaporation experienced by a system. The purpose of this study was to see whether Ni isotopes had been fractionated by volatilization during spheroid formation. In addition, the cosmogenic nuclides Be-10 and Al-26 were measured to try to estimate the depths in the parent meteorite from which the spheroids came.

  20. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  1. Primary Water SCC Understanding and Characterization Through Fundamental Testing in the Vicinity of the Nickel/Nickel Oxide Phase Transition

    SciTech Connect

    D.S. Morton; S.A. Attanasio; G.A. Young

    2001-05-08

    This paper quantifies the nickel alloy stress corrosion crack growth rate (SCCGR) dissolved hydrogen level functionality. SCCGR has been observed to exhibit a maximum in proximity to the nickel/nickel oxide phase transition. The dissolved hydrogen level SCCGR dependency has been quantified in a phenomenological model in terms of the stability of nickel oxide not the dissolved hydrogen level. The observed SCCGR dependency has been extended to lower temperatures through the developed model and Contact Electrical Resistance (CER) measurements of the nickel/nickel oxide phase transition. Understanding obtained from this hydrogen level SCC functionality and complementary SCC subprocesses test results is discussed. Specifically, the possible SCC fundamental subprocesses of corrosion kinetics, hydrogen permeation and pickup have also been measured for nickel alloys. Secondary Ion Mass Spectroscopy (SIMS) analysis has been performed on SCCGR specimens tested in heavy water (D{sub 2}O).

  2. Stable isotopes and metal contamination in caged marine mussel Mytilus galloprovincialis.

    PubMed

    Deudero, S; Box, A; Tejada, S; Tintoré, J

    2009-07-01

    Metal concentrations and isotopic composition were measured in different tissues of the mussel Mytilus galloprovincialis in waters of the Balearic Islands (Western Mediterranean) in order to assess pollution levels. The isotopic composition was correlated with lead, cadmium, selenium and nickel obtained from the digestive gland and foot of the mussels. Significant negative correlations were found between cadmium, selenium and zinc and the mussel foot, mainly for (13)C. Significant correlations were also found between lead and cadmium and the digestive gland. Pearson correlations indicated that the (13)C isotopic signal in foot is a good proxy for the concentration of metals such as lead, cadmium, selenium and zinc. Similarly, (15)N isotopic signatures in the digestive gland reflected the lead and cadmium concentration. PMID:19303611

  3. Stable isotopes and metal contamination in caged marine mussel Mytilus galloprovincialis.

    PubMed

    Deudero, S; Box, A; Tejada, S; Tintoré, J

    2009-07-01

    Metal concentrations and isotopic composition were measured in different tissues of the mussel Mytilus galloprovincialis in waters of the Balearic Islands (Western Mediterranean) in order to assess pollution levels. The isotopic composition was correlated with lead, cadmium, selenium and nickel obtained from the digestive gland and foot of the mussels. Significant negative correlations were found between cadmium, selenium and zinc and the mussel foot, mainly for (13)C. Significant correlations were also found between lead and cadmium and the digestive gland. Pearson correlations indicated that the (13)C isotopic signal in foot is a good proxy for the concentration of metals such as lead, cadmium, selenium and zinc. Similarly, (15)N isotopic signatures in the digestive gland reflected the lead and cadmium concentration.

  4. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  5. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  6. Production of stable isotopes utilizing the plasma separation process

    NASA Astrophysics Data System (ADS)

    Bigelow, T. S.; Tarallo, F. J.; Stevenson, N. R.

    2005-12-01

    A plasma separation process (PSP) is being operated at Theragenics Corporation's®, Oak Ridge, TN, facility for the enrichment of stable isotopes. The PSP utilizes ion cyclotron mass discrimination to separate isotopes on a relatively large scale. With a few exceptions, nearly any metallic element could be processed with PSP. Output isotope enrichment factor depends on natural abundance and mass separation and can be fairly high in some cases. The Theragenics™ PSP facility is believed to be the only such process currently in operation. This system was developed and formerly operated under the US Department of Energy Advanced Isotope Separation program. Theragenics™ also has a laboratory at the PSP site capable of harvesting the isotopes from the process and a mass spectrometer system for analyzing enrichment and product purity. Since becoming operational in 2002, Theragenics™ has utilized the PSP to separate isotopes of several elements including: dysprosium, erbium, gadolinium, molybdenum and nickel. Currently, Theragenics™ is using the PSP for the separation of 102Pd, which is used as precursor for the production of 103Pd. The 103Pd radioisotope is the active ingredient in TheraSeed®, which is used in the treatment of early stage prostate cancer and being investigated for other medical applications. New industrial, medical and research applications are being investigated for isotopes that can be enriched on the PSP. Pre-enrichment of accelerator or reactor targets offers improved radioisotope production. Theragenics operates 14 cyclotrons for proton activation and has access to HFIR at ORNL for neutron activation of radioisotopes.

  7. Heavy hydrogen isotopes penetration through austenitic and martensitic steels

    NASA Astrophysics Data System (ADS)

    Dolinski, Yu.; Lyasota, I.; Shestakov, A.; Repritsev, Yu.; Zouev, Yu.

    2000-12-01

    Experimental results are presented of deuterium and tritium permeability through samples of nickel, austenitic steel (16Cr-15Ni-3Mo-Ti), and martensitic steel DIN 1.4914 (MANET) exposed to a gaseous phase. Experiments were carried out at the RFNC-VNHTF installation, which has the capability of measuring the permeability of hydrogen isotopes by mass spectrometry over a temperature range of 293-1000 K, hydrogen isotope pressure ranges of 50-1000 Pa. Sample disks (30 and 40 mm diam.) can be assembled in the test chamber by electron-beam welding or mounted (30-mm diam. disks) on gaskets. Diffusion and permeability dependencies on temperature and pressure are determined and corresponding activation energies are presented.

  8. Detecting isotopic ratio outliers

    SciTech Connect

    Bayne, C.K.; Smith, D.H.

    1985-01-01

    An alternative method is proposed for improving isotopic ratio estimates. This method mathematically models pulse-count data and uses iterative reweighted Poisson regression to estimate model parameters to calculate the isotopic ratios. This computer-oriented approach provides theoretically better methods than conventional techniques to establish error limits and to identify outliers. 6 refs., 3 figs., 3 tabs.

  9. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  10. Nickel recycling in the United States in 2004

    USGS Publications Warehouse

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of nickel from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap) and used products (old scrap) in 2004. This materials flow study includes a description of nickel supply and demand for the United States to illustrate the extent of nickel recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the old scrap recycling efficiency for nickel was estimated to be 56.2 percent. In 2004, nickel scrap consumption in the United States was as follows: new scrap containing 13,000 metric tons (t) of nickel (produced during the manufacture of products), 12 percent; and old scrap containing 95,000 t of nickel (articles discarded after serving a useful purpose), 88 percent. The recycling rate for nickel in 2004 was 40.9 percent, and the percentage of nickel in products attributed to nickel recovered from nickel-containing scrap was 51.6 percent. Furthermore, U.S. nickel scrap theoretically generated in 2004 had the following distribution: scrap to landfills, 24 percent; recovered and used scrap, 50 percent; and unaccounted for scrap, 26 percent. Of the 50 percent of old scrap generated in the United States that was recovered and then used in 2004, about one-third was exported and two-thirds was consumed in the domestic production of nickel-containing products.

  11. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  12. Laser isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Boyer, Keith; Greiner, Norman R.

    1988-01-01

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  13. Photochemical isotope separation

    DOEpatents

    Robinson, C. Paul; Jensen, Reed J.; Cotter, Theodore P.; Greiner, Norman R.; Boyer, Keith

    1987-01-01

    A process for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium.

  14. Photochemical isotope separation

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Cotter, T.P.; Greiner, N.R.; Boyer, K.

    1987-04-28

    A process is described for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium and plutonium. 8 figs.

  15. Laser isotope separation

    DOEpatents

    Robinson, C.P.; Reed, J.J.; Cotter, T.P.; Boyer, K.; Greiner, N.R.

    1975-11-26

    A process and apparatus for separating isotopes by selective excitation of isotopic species of a volatile compound by tuned laser light is described. A highly cooled gas of the volatile compound is produced in which the isotopic shift is sharpened and defined. Before substantial condensation occurs, the cooled gas is irradiated with laser light precisely tuned to a desired wavelength to selectively excite a particular isotopic species in the cooled gas. The laser light may impart sufficient energy to the excited species to cause it to undergo photolysis, photochemical reaction or even to photoionize. Alternatively, a two-photon irradiation may be applied to the cooled gas to induce photolysis, photochemical reaction or photoionization. The process is particularly applicable to the separation of isotopes of uranium.

  16. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  17. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  18. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  19. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  20. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  1. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  2. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  3. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  4. 40 CFR 421.240 - Applicability: Description of the secondary nickel subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... secondary nickel subcategory. 421.240 Section 421.240 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Nickel Subcategory § 421.240 Applicability: Description of the secondary nickel... nickel by secondary nickel facilities processing slag, spent acids, or scrap metal raw materials....

  5. 40 CFR 421.230 - Applicability: Description of the primary nickel and cobalt subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary nickel and cobalt subcategory. 421.230 Section 421.230 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Nickel and Cobalt Subcategory § 421.230 Applicability: Description of the primary nickel... production of nickel or cobalt by primary nickel and cobalt facilities processing ore concentrate...

  6. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  7. Promiscuous nickel import in human pathogens: structure, thermodynamics, and evolution of extracytoplasmic nickel-binding proteins.

    PubMed

    Lebrette, Hugo; Brochier-Armanet, Céline; Zambelli, Barbara; de Reuse, Hilde; Borezée-Durant, Elise; Ciurli, Stefano; Cavazza, Christine

    2014-10-01

    In human pathogenic bacteria, nickel is required for the activation of two enzymes, urease and [NiFe]-hydrogenase, necessary for host infection. Acquisition of Ni(II) is mediated by either permeases or ABC-importers, the latter including a subclass that involves an extracytoplasmic nickel-binding protein, Ni-BP. This study reports on the structure of three Ni-BPs from a diversity of human pathogens and on the existence of three new nickel-binding motifs. These are different from that previously described for Escherichia coli Ni-BP NikA, known to bind nickel via a nickelophore, and indicate a variegated ligand selectivity for Ni-BPs. The structures are consistent with ligand affinities measured in solution by calorimetry and challenge the hypothesis of a general requirement of nickelophores for nickel uptake by canonical ABC importers. Phylogenetic analyses showed that Ni-BPs have different evolutionary origins and emerged independently from peptide-binding proteins, possibly explaining the promiscuous behavior of this class of Ni(II) carriers.

  8. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction

    PubMed Central

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum–nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum–nickel catalyst, and this composite catalyst composed of crystalline platinum–nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  9. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  10. Lightweight, direct-radiating nickel hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Metcalfe, J. R.

    1986-01-01

    Two battery module configurations were developed which, in addition to integrating cylindrical nickel hydrogen (NiH2) cells into batteries, provide advances in the means of mounting, monitoring and thermal control of these cells. The main difference between the two modules is the physical arrangement of the cells: vertical versus horizontal. Direct thermal radiation to deep space is accomplished by substituting the battery structure for an exterior spacecraft panel. Unlike most conventional nickel-cadmium (NiCd) and NiH2 batteries, the cells are not tightly packed together; therefore ancillary heat conducting media to outside radiating areas, and spacecraft deck reinforcements for high mass concentration are not necessary. Testing included electrical characterization and a comprehensive regime of environmental exposures. The designs are flexible with respect to quantity and type of cells, orbit altitude and period, power demand profile, and the extent of cell parameter monitoring. This paper compares the characteristics of the two battery modules and summarizes their performance.

  11. High weldability nickel-base superalloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    This is a nickel-base superalloy with excellent weldability and high strength. Its composition consists essentially of, by weight percent, 10-20 iron, 57-63 nickel, 7-18 chromium, 4-6 molybdenum, 1-2 niobium, 0.2-0.8 silicon, 0.01-0.05 zirconium, 1.0-2.5 titanium, 1.0-2.5 aluminum, 0.02-0.06 carbon, and 0.002-0.015 boron. The weldability and strength of this alloy give it a variety of applications. The long-time structural stability of this alloy together with its low swelling under nuclear radiation conditions, make it especially suitable for use as a duct material and controlling element cladding for sodium-cooled nuclear reactors.

  12. Electrocomposite of Alumina in Nickel Matrix

    NASA Technical Reports Server (NTRS)

    Xiong-Skiba, Pei; Hulguin, Ryan; Engelhaupt, Darell; Ramsey, Brian

    2004-01-01

    Nickel/aluminum oxide composite was electroformed in a sulfamate bath with 50 g/L of 0.05-micron aluminum oxide powder. Different plating methods including direct current plating, periodic pulse plating, and periodic reverse pulse plating were used. With conventional direct current plating, the maximum particle inclusion in the nickel matrix remains about 2% (wt). However, much higher percentile particle inclusions were achieved when a specific pulse reversal plating technique was applied. The particle incorporation approaches theoretical maximum when the deposit thickness per cycle approaches the particle diameter size at lower duty cycle. The highest particle incorporation achieved is 23% (by weight). Conceptual models interpreting the dramatic differences in the results of these plating methods were also proposed.

  13. International Strategic Minerals Inventory summary report; nickel

    USGS Publications Warehouse

    DeYoung, Jr., John H.; Sutphin, D.M.; Werner, A.B.T.; Foose, M.P.

    1985-01-01

    Major world resources of nickel, a strategic mineral commodity, are described in this summary report of information in the International Strategic Minerals Inventory {ISMI}. ISMI is a cooperative data-collection effort of earth-science and mineral-resource agencies in Australia, Canada, the Federal Republic of Germany, the Republic of South Africa, and the United States of America. This report, designed to be of benefit to policy analysts, contains two parts. Part I presents an overview of the resources and potential supply of nickel on the basis of inventory information. Part II contains tables of some of the geologic information and mineral-resource and production data that were collected by ISMI participants.

  14. Polarized Neutron Reflectometry of Nickel Corrosion Inhibitors.

    PubMed

    Wood, Mary H; Welbourn, Rebecca J L; Zarbakhsh, Ali; Gutfreund, Philipp; Clarke, Stuart M

    2015-06-30

    Polarized neutron reflectometry has been used to investigate the detailed adsorption behavior and corrosion inhibition mechanism of two surfactants on a nickel surface under acidic conditions. Both the corrosion of the nickel surface and the structure of the adsorbed surfactant layer could be monitored in situ by the use of different solvent contrasts. Layer thicknesses and roughnesses were evaluated over a range of pH values, showing distinctly the superior corrosion inhibition of one negatively charged surfactant (sodium dodecyl sulfate) compared to a positively charged example (dodecyl trimethylammonium bromide) due to its stronger binding interaction with the surface. It was found that adequate corrosion inhibition occurs at significantly less than full surface coverage.

  15. Metal dusting of nickel-containing alloys

    SciTech Connect

    Baker, B.A.; Smith, G.D.

    1998-12-31

    Metal dusting is a catastrophic form of carburization which leads to pitting and grooves as the affected metal disintegrates into a mixture of powdery carbon, metallic particles, and possibly oxides and carbides. This high temperature carburization mode is not yet well understood and while relatively infrequent, can be economically disastrous when it does occur in large and complex chemical and petrochemical process streams. References in the literature show that all classes of heat resistant alloys are prone to metal dusting, given the necessary and specific environmental conditions. These same references describe the environments that plague nickel-containing alloys and are used as the basis for postulation on the probable corrosion mechanisms responsible for metal dusting. Using alloy 800 and other nickel-containing alloys and metal dusting atmospheres, an effort is made to examine the steps in the metal dusting process and the temperature ranges over which metal dusting occurs.

  16. Nickel-Catalyzed Coupling Reactions of Alkenes

    PubMed Central

    Ng, Sze-Sze; Ho, Chun-Yu; Schleicher, Kristin D.; Jamison, Timothy F.

    2011-01-01

    Several reactions of simple, unactivated alkenes with electrophiles under nickel(0) catalysis are discussed. The coupling of olefins with aldehydes and silyl triflates provides allylic or homoallylic alcohol derivatives, depending on the supporting ligands and, to a lesser extent, the substrates employed. Reaction of alkenes with isocyanates yields N-alkyl acrylamides. In these methods, alkenes act as the functional equivalents of alkenyl- and allylmetal reagents. PMID:21814295

  17. Nickel in high-alumina basalts

    USGS Publications Warehouse

    Hedge, C.E.

    1971-01-01

    New analyses of high-alumina basalts reveal an average nickel content higher than previously indicated. Ni in high-alumina basalts correlates with magnesium in the same way as it does in other basalt types. There is therefore no reason, based on Ni contents, to hypothesize a special origin for high-alumina basalts and it is permissible (based on Ni contents) to form andesites by fractional crystallization from high-alumina basalts. ?? 1971.

  18. Role of cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R.; Barefoot, J.; Tien, J.; Sanchez, J.

    1982-01-01

    The effect of cobalt or substituting for cobalt on the mechanical properties of nickel-based superalloys is discussed. Waspaloy, UDIMET 700, and NIMONIC 115, which are representative of Ni-Cr-Co-Al-Ti-Mo superalloys having different gamma prime contents which are strengthened by a heavily alloyed matrix, coherent gamma prime precipitates, and carbides at the grain boundaries. Microstructure and in situ and extracted phase STEM micro-analysis were used to evaluate the three alloys.

  19. Inhibition of nickel precipitation by gluconate. 2: Kinetic modeling

    SciTech Connect

    Hu, H.L.; Nikolaidis, N.P.; Grasso, D.

    1998-08-01

    Gluconate has been shown to inhibit nickel precipitation. This can result in adverse system performance when treating nickel plating wastewater. A kinetic model based on the formation of major species was developed to simulate nickel precipitation in the absence and presence of gluconate. The model was calibrated and verified against batch kinetic experimental results. The model simulated the studied nickel-gluconate systems well. However, no universal mechanisms could be adopted to explain all of the phenomena observed in the kinetic study, indicating different controlling mechanisms in each system. The results of this study can be used to evaluate optimum conditions for nickel precipitation and to aid in the design of treatment processes enhancing the optimization of nickel recovery from metal finishing wastewaters.

  20. Electrohydrodynamic atomization (EHDA) assisted wet chemical synthesis of nickel nanoparticles

    SciTech Connect

    Barzegar Vishlaghi, M.; Farzalipour Tabriz, M.; Mohammad Moradi, O.

    2012-07-15

    Highlights: ► Electrohydrodynamic atomization (EHDA) assisted chemical synthesis of nickel nanoparticles is reported. ► Substituting water with non-aqueous media prevents the formation of nickel hydroxide. ► Size of particles decreased from 10 to 20 nm down to 2–4 nm by using multi-jet mode. ► Synthesized nanoparticles have diffraction patterns similar to amorphous materials. -- Abstract: In this study nickel nanoparticles were prepared via chemical reduction of nickel acetate using sodium borohydride using electrohydrodynamic atomization (EHDA) technique. This technique was used to spray a finely dispersed aerosol of nickel precursor solution into the reductive bath. Obtained particles were characterized by means of X-ray diffraction (XRD), UV–Visible spectroscopy, and transmission electron microscopy (TEM). Results confirmed the formation of nickel nanoparticles and showed that applying EHDA technique to chemical reduction method results in producing smaller particles with narrower size distribution in comparison with conventional reductive precipitation method.

  1. Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    NASA Technical Reports Server (NTRS)

    Mccoy, D. A.; Lackner, J. L.

    1986-01-01

    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.

  2. Cancer hazards caused by nickel and chromium exposure.

    PubMed

    Norseth, T

    1980-01-01

    An increased risk of cancer associated with nickel refining and with chromate production has been known for some decades. The occupational exposure pattern of both nickel and chromium is very complex. Even though nickel carbonyl is an experimental carcinogen, there are no data supporting its carcinogenicity in humans. Nickel subsulfide may be the most potent carcinogen among the different nickel compounds. A correlation between lung cancer and exposure to chromates has been shown in several studies. As yet, there are no epidemiologic data indicating carcinogenicity of chromium(III) salts. Hexavalent chromium, however, has been suggested as the causative carcinogen among platers and ferrochromium workers. There is an urgent need for careful dose registration before a quantitative cancer risk analysis can be performed for the nickel and chromium industry. PMID:7463513

  3. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata.

    PubMed

    Sagner, S; Kneer, R; Wanner, G; Cosson, J P; Deus-Neumann, B; Zenk, M H

    1998-02-01

    The nickel content in different parts of the hyperaccumulating tree Sebertia acuminata was analysed by atomic absorption spectroscopy. Nickel was found to be mainly located in laticifers. The total nickel content of a single mature tree was estimated to be 37 kg. By gel filtration and NMR spectroscopy, citric acid was unequivocally identified as counter ion for about 40% of this metal present. Nitrate was assumed to be a further partner for a complete ionic balance. Phytochelatins were not found to be involved in nickel detoxification in Sebertia. The localization of nickel complexes inside the laticifers was demonstrated by light microscopy as well as by scanning electron microscopy in combination with an EDX system for the analysis of elements. A repellent effect of the plant sap was observed on the fruit fly Drosophila melanogaster indicating that in hyperaccumulating plants nickel functions as an agent to prevent predation. PMID:9433812

  4. Gyroid nickel nanostructures from diblock copolymer supramolecules.

    PubMed

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S D; Vukovic, Zorica; de Hosson, Jeff Th M; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  5. Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

    PubMed Central

    Vukovic, Ivana; Punzhin, Sergey; Voet, Vincent S. D.; Vukovic, Zorica; de Hosson, Jeff Th. M.; ten Brinke, Gerrit; Loos, Katja

    2014-01-01

    Nanoporous metal foams possess a unique combination of properties - they are catalytically active, thermally and electrically conductive, and furthermore, have high porosity, high surface-to-volume and strength-to-weight ratio. Unfortunately, common approaches for preparation of metallic nanostructures render materials with highly disordered architecture, which might have an adverse effect on their mechanical properties. Block copolymers have the ability to self-assemble into ordered nanostructures and can be applied as templates for the preparation of well-ordered metal nanofoams. Here we describe the application of a block copolymer-based supramolecular complex - polystyrene-block-poly(4-vinylpyridine)(pentadecylphenol) PS-b-P4VP(PDP) - as a precursor for well-ordered nickel nanofoam. The supramolecular complexes exhibit a phase behavior similar to conventional block copolymers and can self-assemble into the bicontinuous gyroid morphology with two PS networks placed in a P4VP(PDP) matrix. PDP can be dissolved in ethanol leading to the formation of a porous structure that can be backfilled with metal. Using electroless plating technique, nickel can be inserted into the template's channels. Finally, the remaining polymer can be removed via pyrolysis from the polymer/inorganic nanohybrid resulting in nanoporous nickel foam with inverse gyroid morphology. PMID:24797367

  6. Cancer incidence at a hydrometallurgical nickel refinery.

    PubMed

    Egedahl, R; Rice, E

    1984-01-01

    Sherritt Gordon Mines Limited established hydrometallurgical nickel refining operations at Fort Saskatchewan, Alberta, in 1954. Records of workers with a minimum of one year's employment with Sherritt Gordon Mines were obtained and identification information as well as details of work history were collected and placed on computer. Cancer cases were identified by matching the study records with the computer listings of the Alberta Cancer Registry. Cancer deaths were verified utilizing record-linkage with death registrations of the Alberta Vital Statistics Division. The files of the Alberta Health Care Insurance Commission were used to ascertain the vital status of past employees of Sherritt Gordon Mines Limited. Among the 993 employees in the nickel refining and maintenance groups at Sherritt Gordon Mines, 30 cases of cancer were identified occurring at 13 diagnostic sites. No neoplasms of the nasal cavities or paranasal sinuses were found in the study population. Two cases of lung cancer were detected among maintenance workers. A single case of renal-cell cancer was diagnosed in the nickel-exposure category as well as in the maintenance group. None of the observed-to-expected cancer incidence ratios at the various diagnostic sites were statistically significant at the p less than 0.05 level. PMID:6535579

  7. Meteoritic Sulfur Isotopic Analysis

    NASA Technical Reports Server (NTRS)

    Thiemens, Mark H.

    1996-01-01

    Funds were requested to continue our program in meteoritic sulfur isotopic analysis. We have recently detected a potential nucleosynthetic sulfur isotopic anomaly. We will search for potential carriers. The documentation of bulk systematics and the possible relation to nebular chemistry and oxygen isotopes will be explored. Analytical techniques for delta(sup 33), delta(sup 34)S, delta(sup 36)S isotopic analysis were improved. Analysis of sub milligram samples is now possible. A possible relation between sulfur isotopes and oxygen was detected, with similar group systematics noted, particularly in the case of aubrites, ureilites and entstatite chondrites. A possible nucleosynthetic excess S-33 has been noted in bulk ureilites and an oldhamite separate from Norton County. High energy proton (approximately 1 GeV) bombardments of iron foils were done to experimentally determine S-33, S-36 spallogenic yields for quantitation of isotopic measurements in iron meteorites. Techniques for measurement of mineral separates were perfected and an analysis program initiated. The systematic behavior of bulk sulfur isotopes will continue to be explored.

  8. Analysis for nickel (3 and 4) in positive plates from nickel-cadmium cells

    NASA Technical Reports Server (NTRS)

    Lewis, Harlan L.

    1994-01-01

    The NASA-Goddard procedure for destructive physical analysis (DPA) of nickel-cadmium cells contains a method for analysis of residual charged nickel as NiOOH in the positive plates at complete cell discharge, also known as nickel precharge. In the method, the Ni(III) is treated with an excess of an Fe(II) reducing agent and then back titrated with permanganate. The Ni(III) content is the difference between Fe(II) equivalents and permanganate equivalents. Problems have arisen in analysis at NAVSURFWARCENDIV, Crane because for many types of cells, particularly AA-size and some 'space-qualified' cells, zero or negative Ni(III) contents are recorded for which the manufacturer claims 3-5 percent precharge. Our approach to this problem was to reexamine the procedure for the source of error, and correct it or develop an alternative method.

  9. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  10. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, Douglas C.; Sealock, John L.

    1998-01-01

    A method of hydrogenation using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions.

  11. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  12. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  13. Toxicity, uptake, and mutagenicity of particulate and soluble nickel compounds.

    PubMed Central

    Fletcher, G G; Rossetto, F E; Turnbull, J D; Nieboer, E

    1994-01-01

    Toxicity testing in AS52 cells (24-hr exposures) gave LC50 values of 2 to 130 micrograms Ni/ml for particulate nickel compounds and 45 to 60 micrograms Ni/ml for water-soluble salts (NiCl2, NiSO4, Ni(CH3COO)2). The Ni(OH)2, NiCO3, and sulfides (Ni3S2, Ni7S6, "amorphous NiS") exhibited similar toxicities (LC50's of 2 to 8 micrograms Ni/ml), while three nickel oxides were more variable and less toxic (LC50's of 18 to 130 micrograms Ni/ml). Most compounds displayed nuclear to cytoplasmic nickel ratios of approximately 1:1.5 to 1:5 (except approximately 1:20 for nickel salts). At the LC50's, a 75-fold range in exposure levels occurred compared to a 10-fold range in cytoplasmic and nuclear nickel concentrations, [Ni]. Cellular nickel distribution indicated three groupings: inert compounds (green NiO, lithium nickel oxide, relatively low nuclear and cytosolic [Ni]); water-soluble salts (very low nuclear [Ni]; high cytosolic [Ni]), and slightly soluble compounds (relatively high cytosolic and nuclear [Ni]). Nickel compounds are considered to be only weak or equivocal mutagens. In this study, a low but significant increase in mutation rate at the gpt locus was shown. Although the results would not be sufficient to deem nickel compounds mutagenic by traditional criteria, characterization by PCR analysis indicated that the spontaneous and nickel-induced mutants exhibited different and compound-specific mutational spectra (thus confirming nickel compound involvement). The results reported illustrate some of the methodologic problems involved in testing "weak" mutagens and indicate that alternative approaches may be necessary in classifying the mutagenicity of nickel and other compounds. PMID:7843140

  14. JOM world nonferrous smelter survey, part III: Nickel: Laterite

    NASA Astrophysics Data System (ADS)

    Warner, A. E. M.; Díaz, C. M.; Dalvi, A. D.; Mackey, P. J.; Tarasov, A. V.

    2006-04-01

    In June 2004 JOM published the first installment in an ambitious TMS program: the World Nonferrous Smelters Survey. The program is intended to develop a database of all known nonferrous smelters. This paper, the third installment in the project, presents a survey for nickel smelters processing lateritic or other types of oxidic nickel ores. Data for nickel sulfide smelting is scheduled to be published by JOM in the second half of 2006.

  15. ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Kudravetz, M.K.; Greene, H.B.

    1958-09-16

    This patent relates to control systems for a calutron and, in particular, describes an electro-mechanical system for interrupting the collection of charged particles when the ratio between the two isotopes being receivcd deviates from a predetermined value. One embodiment of the invention includes means responsive to the ratio between two isotopes being received for opening a normally closed shutter over the receiver entrance when the isotope ratio is the desired value. In another form of the invention the collection operation is interrupted by changing the beam accelerating voltage to deflect the ion beam away from the receiver.

  16. Carbon isotope techniques

    SciTech Connect

    Coleman, D.C. ); Fry, B. )

    1991-01-01

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The {sup 11}C, {sup 12}C, {sup 13}C, and {sup 14}C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations.

  17. Nickel clusters embedded in carbon nanotubes as high performance magnets

    NASA Astrophysics Data System (ADS)

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-10-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization.

  18. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  19. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies.

  20. Nickel-Based Superalloy Resists Embrittlement by Hydrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Chen, PoShou

    2008-01-01

    A nickel-based superalloy that resists embrittlement by hydrogen more strongly than does nickel alloy 718 has been developed. Nickel alloy 718 is the most widely used superalloy. It has excellent strength and resistance to corrosion as well as acceptably high ductility, and is recognized as the best alloy for many high-temperature applications. However, nickel alloy 718 is susceptible to embrittlement by hydrogen and to delayed failure and reduced tensile properties in gaseous hydrogen. The greater resistance of the present nickel-based superalloy to adverse effects of hydrogen makes this alloy a superior alternative to nickel alloy 718 for applications that involve production, transfer, and storage of hydrogen, thereby potentially contributing to the commercial viability of hydrogen as a clean-burning fuel. The table shows the composition of the present improved nickel-based superalloy in comparison with that of nickel alloy 718. This composition was chosen to obtain high resistance to embrittlement by hydrogen while maintaining high strength and exceptional resistance to oxidation and corrosion. The most novel property of this alloy is that it resists embrittlement by hydrogen while retaining tensile strength greater than 175 kpsi (greater than 1.2 GPa). This alloy exhibits a tensile elongation of more than 20 percent in hydrogen at a pressure of 5 kpsi (approximately equal to 34 MPa) without loss of ductility. This amount of elongation corresponds to 50 percent more ductility than that exhibited by nickel alloy 718 under the same test conditions.

  1. Response of nickel surface to pulsed fusion plasma radiations

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Patel, N. N.; Alex, P.; Gupta, Satish C.

    2014-04-01

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  2. 5. Historic American Buildings Survey Richard Nickel, Photographer 1965 MAIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Historic American Buildings Survey Richard Nickel, Photographer 1965 MAIN HALL (FIRST FLOOR) LOOKING EAST INTO LIVINGROOM - Isidore Heller House, 5132 South Woodlawn Avenue, Chicago, Cook County, IL

  3. 4. Historic American Buildings Survey Richard Nickel, Photographer 1965 DETAILPLASTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey Richard Nickel, Photographer 1965 DETAIL-PLASTER FRIEZE SOUTHEAST CORNER, THIRD FLOOR - Isidore Heller House, 5132 South Woodlawn Avenue, Chicago, Cook County, IL

  4. Temperature effect on nickel release in ammonium citrate.

    PubMed

    Oller, Adriana R; Cappellini, Danielle; Henderson, Rayetta G; Bates, Hudson K

    2009-09-01

    Leaching in ammonium citrate has been extensively used to assess the fraction of water-soluble nickel compounds present in nickel producing and using workplace aerosols. Leaching in ammonium citrate according to the first step of the Zatka protocol was found to overestimate the water-soluble nickel fraction by more than ten-fold compared to synthetic lung fluid (37 degrees C), when nickel carbonate and subsulfide were present. These results suggest that exposure matrices based on this method should be reexamined. Leaching studies of refinery particles are needed to further clarify this important issue. PMID:19724840

  5. Locating and estimating air emissions from sources of nickel

    SciTech Connect

    Not Available

    1984-03-01

    To assist groups interested in inventorying air emissions of various potentially toxic substances, EPA is preparing a series of documents such as this to compile available information on sources and emissions of these substances. This document deals specifically with nickel. Its intended audience includes Federal, State and local air pollution personnel and others interested in locating potential emitters of nickel and in making gross estimates of air emissions therefrom. This document presents information on (1) the types of sources that may emit nickel, (2) process variations and release points that may be expected within these sources, and (3) available emissions information indicating the potential for nickel release into the air from each operation.

  6. Ab initio coordination chemistry for nickel chelation motifs.

    PubMed

    Sudan, R Jesu Jaya; Kumari, J Lesitha Jeeva; Sudandiradoss, C

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  7. Development of Sintered Fiber Nickel Electrodes for Aerospace Batteries

    NASA Technical Reports Server (NTRS)

    Francisco, Jennifer; Chiappetti, Dennis; Brill, Jack

    1997-01-01

    The nickel electrode is the specific energy limiting component in nickel battery systems. A concerted effort is currently underway to improve NiH2 performance while decreasing system cost. Increased performance with electrode specific energy (mAh/g) is the major goal of this effort. However, cost reduction is also an important part of the overall program, achieved by reducing the electrode weight. A lightweight, high energy density, nickel electrode is being, developed based on a highly porous, sintered fiber, nickel substrate. This developing technology has many applications, but is highly, applicable to the military and aerospace industries.

  8. Nickel powders recycled from invar scrap by magnesiothermic reduction.

    PubMed

    Lee, Jin-Seok; Lee, Dong-Won; Lee, Hak-Sung; Yun, Jung-Yeul; Wang, Jei-Pil

    2014-12-01

    A study on the recovery of nickel from Fe-Ni alloy scrap was conducted using molten magnesium by dissolving only Ni component and then removing Mg using vacuum distillation method. The recovering faction of nickel higher than 99% was achieved at temperatures above 1,073 K and 99.5% of purity level of nickel was successfully obtained under vacuum degree of 10(-5) torr at temperatures above 1,273 K. The purity, phase, and recovery rate of nickel were examined by scanning electron microscopy, elemental analyser, and X-ray diffraction.

  9. Nickel clusters embedded in carbon nanotubes as high performance magnets

    PubMed Central

    Shiozawa, Hidetsugu; Briones-Leon, Antonio; Domanov, Oleg; Zechner, Georg; Sato, Yuta; Suenaga, Kazu; Saito, Takeshi; Eisterer, Michael; Weschke, Eugen; Lang, Wolfgang; Peterlik, Herwig; Pichler, Thomas

    2015-01-01

    Ensembles of fcc nickel nanowires have been synthesized with defined mean sizes in the interior of single-wall carbon nanotubes. The method allows the intrinsic nature of single-domain magnets to emerge with large coercivity as their size becomes as small as the exchange length of nickel. By means of X-ray magnetic circular dichroism we probe electronic interactions at nickel-carbon interfaces where nickel exhibit no hysteresis and size-dependent spin magnetic moment. A manifestation of the interacting two subsystems on a bulk scale is traced in the nanotube’s magnetoresistance as explained within the framework of weak localization. PMID:26459370

  10. Ab Initio Coordination Chemistry for Nickel Chelation Motifs

    PubMed Central

    Jesu Jaya Sudan, R.; Lesitha Jeeva Kumari, J.; Sudandiradoss, C.

    2015-01-01

    Chelation therapy is one of the most appreciated methods in the treatment of metal induced disease predisposition. Coordination chemistry provides a way to understand metal association in biological structures. In this work we have implemented coordination chemistry to study nickel coordination due to its high impact in industrial usage and thereby health consequences. This paper reports the analysis of nickel coordination from a large dataset of nickel bound structures and sequences. Coordination patterns predicted from the structures are reported in terms of donors, chelate length, coordination number, chelate geometry, structural fold and architecture. The analysis revealed histidine as the most favored residue in nickel coordination. The most common chelates identified were histidine based namely HHH, HDH, HEH and HH spaced at specific intervals. Though a maximum coordination number of 8 was observed, the presence of a single protein donor was noted to be mandatory in nickel coordination. The coordination pattern did not reveal any specific fold, nevertheless we report preferable residue spacing for specific structural architecture. In contrast, the analysis of nickel binding proteins from bacterial and archeal species revealed no common coordination patterns. Nickel binding sequence motifs were noted to be organism specific and protein class specific. As a result we identified about 13 signatures derived from 13 classes of nickel binding proteins. The specifications on nickel coordination presented in this paper will prove beneficial for developing better chelation strategies. PMID:25985439

  11. Anthropogenic nickel cycle: insights into use, trade, and recycling.

    PubMed

    Reck, Barbara K; Müller, Daniel B; Rostkowski, Katherine; Graedel, T E

    2008-05-01

    The anthropogenic nickel cycle for the year 2000 was analyzed using a material flow analysis at multiple levels: 52 countries, territories, or country groups, eight regions, and the planet. Special attention was given to the trade in nickel-containing products at different stages of the cycle. A new circular diagram highlights process connections, the role and potential of recycling, and the relevance of trade at different life stages. The following results were achieved. (1) The nickel cycle is dominated by six countries or territories: USA, China and Hong Kong, Japan, Germany, Taiwan, and South Korea; only China also mines some of its nickel used. (2) Nickel is mostly used in alloyed form in stainless steels (68%). (3) More scrap is used for the production of stainless steels (42%) than for other first uses (11%). (4) Industrial machinery is the largest end use category for nickel (25%), followed by buildings and infrastructure (21%) and transportation (20%). (5) 57% of discarded nickel is recycled within the nickel and stainless steel industries, and 14% is lost to other metal markets where nickel is an unwanted constituent of carbon steel and copper alloy scrap. PMID:18522124

  12. Toxicity of nickel-spiked freshwater sediments to benthic invertebrates-Spiking methodology, species sensitivity, and nickel bioavailability

    USGS Publications Warehouse

    Besser, John M.; Brumbaugh, William G.; Kemble, Nile E.; Ivey, Chris D.; Kunz, James L.; Ingersoll, Christopher G.; Rudel, David

    2011-01-01

    This report summarizes data from studies of the toxicity and bioavailability of nickel in nickel-spiked freshwater sediments. The goal of these studies was to generate toxicity and chemistry data to support development of broadly applicable sediment quality guidelines for nickel. The studies were conducted as three tasks, which are presented here as three chapters: Task 1, Development of methods for preparation and toxicity testing of nickel-spiked freshwater sediments; Task 2, Sensitivity of benthic invertebrates to toxicity of nickel-spiked freshwater sediments; and Task 3, Effect of sediment characteristics on nickel bioavailability. Appendices with additional methodological details and raw chemistry and toxicity data for the three tasks are available online at http://pubs.usgs.gov/sir/2011/5225/downloads/.

  13. Electrolyte Management Considerations in Modern Nickel Hydrogen and Nickel Cadmium Cell and Battery Designs

    NASA Technical Reports Server (NTRS)

    Thaller, Lawrence H.; Zimmerman, Albert H.

    1996-01-01

    This paper reviews three general areas where the potassium ion content can impact the performance and life of nickel hydrogen and nickel cadmium cells. Sample calculations of the concentration or volume changes that can take place within operating cells are presented. With the aid of an accurate model of an operating cell or battery, the impact of changes of potassium ion content within a potential cell design can be estimated. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the components used in the cell or battery design.

  14. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  15. Thermal and mechanical treatments for nickel and some nickel-base alloys: Effects on mechanical properties

    NASA Technical Reports Server (NTRS)

    Hall, A. M.; Beuhring, V. F.

    1972-01-01

    This report deals with heat treating and working nickel and nickel-base alloys, and with the effects of these operations on the mechanical properties of the materials. The subjects covered are annealing, solution treating, stress relieving, stress equalizing, age hardening, hot working, cold working, combinations of working and heat treating (often referred to as thermomechanical treating), and properties of the materials at various temperatures. The equipment and procedures used in working the materials are discussed, along with the common problems that may be encountered and the precautions and corrective measures that are available.

  16. The measurement of the stacking fault energy in copper, nickel and copper-nickel alloys

    NASA Technical Reports Server (NTRS)

    Leighly, H. P., Jr.

    1982-01-01

    The relationship of hydrogen solubility and the hydrogen embrittlement of high strength, high performance face centered cubic alloys to the stacking fault energy of the alloys was investigated. The stacking fault energy is inversely related to the distance between the two partial dislocations which are formed by the dissociation of a perfect dislocation. The two partial dislocations define a stacking fault in the crystal which offers a region for hydrogen segregation. The distance between the partial dislocations is measured by weak beam, dark field transmission electron microscopy. The stacking fault energy is calculated. Pure copper, pure nickel and copper-nickel single crystals are used to determine the stacking fault energy.

  17. Nickel allergy: tolerance to metallic surface-plated samples in nickel-sensitive humans and guinea pigs.

    PubMed

    Cavelier, C; Foussereau, J; Gille, P; Zissu, D

    1988-11-01

    The purpose of this work is to evaluate in nickel-sensitive patients and guinea pigs the tolerance to nickel samples, surface-plated with one or several metals of varying structures and thicknesses. All the metal samples elicited allergic reactions in the guinea pig. In humans, absolute tolerance was not observed for any sample. In humans, the interposing of a layer of bright copper between nickel and surface chrome greatly increased the tolerance.

  18. High-temperature Hydrogen Permeation in Nickel Alloys

    SciTech Connect

    P. Calderoni; M. Ebner; R. Pawelko

    2010-10-01

    In gas cooled Very High Temperature Reactor concepts, tritium is produced as a tertiary fission product and by activation of graphite core contaminants, such as lithium; of the helium isotope, He-3, that is naturally present in the He gas coolant; and the boron in the B4C burnable poison. Because of its high mobility at the reactor outlet temperatures, tritium poses a risk of permeating through the walls of the intermediate heat exchanger (IHX) or steam generator (SG) systems, potentially contaminating the environment and in particular the hydrogen product when the reactor heat is utilized in connection with a hydrogen generation plant. An experiment to measure tritium permeation in structural materials at temperatures up to 1000 C has been constructed at the Idaho National Laboratory Safety and Tritium Applied Research (STAR) facility within the Next Generation Nuclear Plant program. The design is based on two counter flowing helium loops to represent heat exchanger conditions and was optimized to allow control of the materials surface condition and the investigation of the effects of thermal fatigue. In the ongoing campaign three nickel alloys are being considered because of their high-temperature creep properties, alloy 617, 800H and 230. This paper introduces the general issues related to tritium in the on-going assessment of gas cooled VHTR systems fission product transport and outlines the planned research activities in this area; outlines the features and capabilities of the experimental facility being operated at INL; presents and discusses the initial results of hydrogen permeability measurements in two of the selected alloys and compares them with the available database from previous studies.

  19. Plasma isotope separation methods

    SciTech Connect

    Grossman, M.W. ); Shepp, T.A. )

    1991-12-01

    Isotope separation has many important industrial, medical, and research applications. Large-scale processes have typically utilized complex cascade systems; for example, the gas centrifuge. Alternatively, high single-stage enrichment processes (as in the case of the calutron) are very energy intensive. Plasma-based methods being developed for the past 15 to 20 years have attempted to overcome these two drawbacks. In this review, six major types of isotope separation methods which involve plasma phenomena are discussed. These methods are: plasma centrifuge, AVLIS (atomic vapor laser isotope separation), ion wave, ICR (ion-cyclotron resonance), calutron, and gas discharge. The emphasis of this paper is to describe the plasma phenomena in these major categories. An attempt was made to include enough references so that more detailed study or evaluation of a particular method could readily be pursued. A brief discussion of isotope separation using mass balance concepts is also carried out.

  20. Stable isotopes in mineralogy

    USGS Publications Warehouse

    O'Neil, J.R.

    1977-01-01

    Stable isotope fractionations between minerals are functions of the fundamental vibrational frequencies of the minerals and therefore bear on several topics of mineralogical interest. Isotopic compositions of the elements H, C, O, Si, and S can now be determined routinely in almost any mineral. A summary has been made of both published and new results of laboratory investigations, analyses of natural materials, and theoretical considerations which bear on the importance of temperature, pressure, chemical composition and crystal structure to the isotopic properties of minerals. It is shown that stable isotope studies can sometimes provide evidence for elucidating details of crystal structure and can be a powerful tool for use in tracing the reaction paths of mineralogical reactions. ?? 1977 Springer-Verlag.

  1. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  2. Perchlorate isotope forensics.

    PubMed

    Böhlke, John Karl; Sturchio, Neil C; Gu, Baohua; Horita, Juske; Brown, Gilbert M; Jackson, W Andrew; Batista, Jacimaria; Hatzinger, Paul B

    2005-12-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses (37Cl/35Cl and 18O/17O/16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. PMID:16316196

  3. Rare Isotope Accelerators

    NASA Astrophysics Data System (ADS)

    Savard, Guy

    2002-04-01

    The next frontier for low-energy nuclear physics involves experimentation with accelerated beams of short-lived radioactive isotopes. A new facility, the Rare Isotope Accelerator (RIA), is proposed to produce large amount of these rare isotopes and post-accelerate them to energies relevant for studies in nuclear physics, astrophysics and the study of fundamental interactions at low energy. The basic science motivation for this facility will be introduced. The general facility layout, from the 400 kW heavy-ion superconducting linac used for production of the required isotopes to the novel production and extraction schemes and the highly efficient post-accelerator, will be presented. Special emphasis will be put on a number of technical breakthroughs and recent R&D results that enable this new facility.

  4. Perchlorate isotope forensics

    USGS Publications Warehouse

    Böhlke, J.K.; Sturchio, N.C.; Gu, B.; Horita, J.; Brown, G.M.; Jackson, W.A.; Batista, J.; Hatzinger, P.B.

    2005-01-01

    Perchlorate has been detected recently in a variety of soils, waters, plants, and food products at levels that may be detrimental to human health. These discoveries have generated considerable interest in perchlorate source identification. In this study, comprehensive stable isotope analyses ( 37Cl/35Cl and 18O/17O/ 16O) of perchlorate from known synthetic and natural sources reveal systematic differences in isotopic characteristics that are related to the formation mechanisms. In addition, isotopic analyses of perchlorate extracted from groundwater and surface water demonstrate the feasibility of identifying perchlorate sources in contaminated environments on the basis of this technique. Both natural and synthetic sources of perchlorate have been identified in water samples from some perchlorate occurrences in the United States by the isotopic method. ?? 2005 American Chemical Society.

  5. Results of a technical analysis of the Hubble Space Telescope nickel-cadmium and nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1991-01-01

    The Hubble Space Telescope (HST) Program Office requested the expertise of the NASA Aerospace Flight Battery Systems Steering Committee (NAFBSSC) in the conduct of an independent assessment of the HST's battery system to assist in their decision of whether to fly nickel-cadmium or nickel-hydrogen batteries on the telescope. In response, a subcommittee to the NAFBSSC was organized with membership comprised of experts with background in the nickel-cadmium/nickel-hydrogen secondary battery/power systems areas. The work and recommendations of that subcommittee are presented.

  6. Methods of isotopic geochronology

    NASA Astrophysics Data System (ADS)

    Gorokhov, I. M.; Levchenkov, O. A.

    Papers are presented on such topics as the age of the chemical elements; the age of meteorites, the moon, and the earth; isotopic ages of the most ancient terrestrial formations; and the Archean evolution of Enderby Land in the Antarctic as evidenced by isotopic dating. Consideration is also given to a uranium-lead geochronology technique for investigating Precambrian ore deposits, a Pb-Pb technique of zircon dating, and the potentials and limitations of Sm-Nd geochronology.

  7. The isotopic distribution conundrum.

    PubMed

    Valkenborg, Dirk; Mertens, Inge; Lemière, Filip; Witters, Erwin; Burzykowski, Tomasz

    2012-01-01

    Although access to high-resolution mass spectrometry (MS), especially in the field of biomolecular MS, is becoming readily available due to recent advances in MS technology, the accompanied information on isotopic distribution in high-resolution spectra is not used at its full potential, mainly because of lack of knowledge and/or awareness. In this review, we give an insight into the practical problems related to calculating the isotopic distribution for large biomolecules, and present an overview of methods for the calculation of the isotopic distribution. We discuss the key events that triggered the development of various algorithms and explain the rationale of how and why the various isotopic-distribution calculations were performed. The review is focused around the developmental stages as briefly outlined below, starting with the first observation of an isotopic distribution. The observations of Beynon in the field of organic MS that chlorine appeared in a mass spectrum as two variants with odds 3:1 lie at the basis of the first wave of algorithms for the calculation of the isotopic distribution, based on the atomic composition of a molecule. From here on, we explain why more complex biomolecules such as peptides exhibit a highly complex isotope pattern when assayed by MS, and we discuss how combinatorial difficulties complicate the calculation of the isotopic distribution on computers. For this purpose, we highlight three methods, which were introduced in the 1980s. These are the stepwise procedure introduced by Kubinyi, the polynomial expansion from Brownawell and Fillippo, and the multinomial expansion from Yergey. The next development was instigated by Rockwood, who suggested to decompose the isotopic distribution in terms of their nucleon count instead of the exact mass. In this respect, we could claim that the term "aggregated" isotopic distribution is more appropriate. Due to the simplification of the isotopic distribution to its aggregated counterpart

  8. National Low-Level Waste Management Program Radionuclide Report Series. Volume 10, Nickel-63

    SciTech Connect

    Carboneau, M.L.; Adams, J.P.

    1995-02-01

    This report outlines the basic radiological, chemical, and physical characteristics of nickel-63 ({sup 63}Ni) and examines how these characteristics affect the behavior of {sup 63}Ni in various environmental media, such as soils, groundwater, plants, animals, the atmosphere, and the human body. Discussions also include methods of {sup 63}Ni production, waste types, and waste forms that contain {sup 63}Ni. The primary source of {sup 63}Ni in the environment has been low-level radioactive waste material generated as a result of neutron activation of stable {sup 62}Ni that is present in the structural components of nuclear reactor vessels. {sup 63}Ni enters the environment from the dismantling activities associated with nuclear reactor decommissioning. However, small amounts of {sup 63}Ni have been detected in the environment following the testing of thermonuclear weapons in the South Pacific. Concentrations as high as 2.7 Bq{sup a} per gram of sample (or equivalently 0.0022 parts per billion) were observed on Bikini Atoll (May 1954). {sup 63}Ni was not created as a fission product species (e.g., from {sup 235}U or {sup 239}Pu fissions), but instead was produced as a result of neutron capture in {sup 63}Ni, a common nickel isotope present in the stainless steel components of nuclear weapons (e.g., stainless-304 contains {approximately}9% total Ni or {approximately}0.3% {sup 63}Ni).

  9. Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode.

    PubMed

    Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S

    2015-12-01

    The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode.

  10. High rate, large area laser-assisted chemical vapor deposition of nickel from nickel carbonyl

    NASA Astrophysics Data System (ADS)

    Paserin, Vlad

    High-power diode lasers (HPDL) are being increasingly used in industrial applications. Deposition of nickel from nickel carbonyl (Ni(CO)4 ) precursor by laser-induced chemical vapor deposition (CVD) was studied with emphasis on achieving high deposition rates. An HPDL system was used to provide a novel energy source facilitating a simple and compact design of the energy delivery system. Nickel deposits on complex, 3-dimensional polyurethane foam substrates were prepared and characterized. The resulting "nickel foam" represents a novel material of high porosity (>95% by volume) finding uses, among others, in the production of rechargeable battery and fuel cell electrodes and as a specialty high-temperature filtration medium. Deposition rates up to ˜19 mum/min were achieved by optimizing the gas precursor flow pattern and energy delivery to the substrate surface using a 480W diode laser. Factors affecting the transition from purely heterogeneous decomposition to a combined hetero- and homogeneous decomposition of nickel carbonyl were studied. High quality, uniform 3-D deposits produced at a rate more than ten times higher than in commercial processes were obtained by careful balance of mass transport (gas flow) and energy delivery (laser power). Cross-flow of the gases through the porous substrate was found to be essential in facilitating mass transport and for obtaining uniform deposits at high rates. When controlling the process in a transient regime (near the onset of homogenous decomposition), unique morphology features formed as part of the deposits, including textured surface with pyramid-shape crystallites, spherical and non-spherical particles and filaments. Operating the laser in a pulsed mode produced smooth, nano-crystalline deposits with sub-100 nm grains. The effect of H2S, a commonly used additive in nickel carbonyl CVD, was studied using both polyurethane and nickel foam substrates. H2S was shown to improve the substrate coverage and deposit

  11. Oxygen Isotopes in Meteorites

    NASA Astrophysics Data System (ADS)

    Clayton, R. N.

    2003-12-01

    Oxygen isotope abundance variations in meteorites are very useful in elucidating chemical and physical processes that occurred during the formation of the solar system (Clayton, 1993). On Earth, the mean abundances of the three stable isotopes are 16O: 99.76%, 17O: 0.039%, and 18O: 0.202%. It is conventional to express variations in abundances of the isotopes in terms of isotopic ratios, relative to an arbitrary standard, called SMOW (for standard mean ocean water), as follows:The isotopic composition of any sample can then be represented by one point on a "three-isotope plot," a graph of δ17O versus δ18O. It will be seen that such plots are invaluable in interpreting meteoritic data. Figure 1 shows schematically the effect of various processes on an initial composition at the center of the diagram. Almost all terrestrial materials lie along a "fractionation" trend; most meteoritic materials lie near a line of "16O addition" (or subtraction). (4K)Figure 1. Schematic representation of various isotopic processes shown on an oxygen three-isotope plot. Almost all terrestrial materials plot along a line of "fractionation"; most primitive meteoritic materials plot near a line of "16O addition." The three isotopes of oxygen are produced by nucleosynthesis in stars, but by different nuclear processes in different stellar environments. The principal isotope, 16O, is a primary isotope (capable of being produced from hydrogen and helium alone), formed in massive stars (>10 solar masses), and ejected by supernova explosions. The two rare isotopes are secondary nuclei (produced in stars from nuclei formed in an earlier generation of stars), with 17O coming primarily from low- and intermediate-mass stars (<8 solar masses), and 18O coming primarily from high-mass stars (Prantzos et al., 1996). These differences in type of stellar source result in large observable variations in stellar isotopic abundances as functions of age, size, metallicity, and galactic location ( Prantzos

  12. Development of nickel-iron aluminides

    SciTech Connect

    Liu, C.T.; Cathcart, J.V.; Goodwin, G.M.; Horton, J.A.; Lee, E.H.; Campbell, J.

    1987-09-01

    The objective of this program is to design and characterize new, improved high-temperature materials based on boron-doped Ni/sub 3/Al + Fe for structural use in advanced coal conversion systems. Chromium is a key alloying element that improves resistance to oxidation, corrosion, and environmental embrittlement in nickel-iron aluminides by promoting the rapid formation of protective oxide scales. Alloying with 3 to 7 at.% Cr dramatically reduces dynamic embrittlement in oxidizing environments at 400 to 800/sup 0/C. Chromium and iron additions increase the stability of the ordered body-centered cubic phase that is brittle at room temperature and weak at elevated temperatures. The formation of the B2 phase in the aluminides leads to lowering the tensile ductility at lower temperatures and the strength at higher temperatures. This study of alloying effects has led to the development of an aluminide with the composition: Ni-18.5 +- 0.5% Al-10.5 +- 0.5% Fe-7 +- 0.5% Cr-0.2% Zr-0.7% Mo-0.1% B( at.%). Corrosion studies have demonstrated that chromium additions of 7 at.% or greater were very effective in minimizing the sulfur attack on nickel-iron aluminides. Sulfidation protection can also be afforded by oxide films produced in air; however, the oxidation temperature should be 1000 to 1050/sup 0/C, and the alloys must contain 3 at.% or greater chromium. The nickel-iron aluminides developed were weldable using both the electron beam and gas tungsten arc processes. 19 refs., 24 figs., 9 tabs.

  13. Real time monitoring of electroless nickel plating

    NASA Astrophysics Data System (ADS)

    Rains, Aaron E.; Kline, Ronald A.

    2013-01-01

    This work deals with the design and manufacturing of the heat and chemical resistant transducer case required for on-line immersion testing, experimental design, data acquisition and signal processing. Results are presented for several depositions with an accuracy of two ten-thousandths of an inch in coating thickness obtained. Monitoring the deposition rate of Electroless Nickel (EN) plating in-situ will provide measurement of the accurate dimensions of the component being plated, in real time. EN is used as for corrosion and wear protection for automotive an - Electroless Nickel (EN) plating is commonly used for corrosion and wear protection for automotive and aerospace components. It plates evenly and symmetrically, theoretically allowing the part to be plated to its final dimension. Currently the standard approach to monitoring the thickness of the deposited nickel is to remove the component from the plating bath and physically measure the part. This can lead to plating problems such as pitting, non-adhesion of the deposit and contamination of the plating solution. The goal of this research effort is to demonstrate that plating thickness can be rapidly and accurately measured using ultrasonic testing. Here a special housing is designed to allow immersion of the ultrasonic transducers directly into the plating bath. An FFT based signal processing algorithm was developed to resolve closely spaced echoes for precise thickness determination. The technique in this research effort was found to be capable of measuring plating thicknesses to within 0.0002 inches. It is expected that this approach will lead to cost savings in many EN plating operations.

  14. Modified NASA standard nickel-cadmium cell designs

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    1992-01-01

    The experimental design, parameters, and testing of a modified NASA standard nickel-cadmium cell are discussed. Modifications regarding positive plate loading levels and nickel attack levels, loading levels for the negative plates, interelectrode spacing, and the positive electrode impregnation process are addressed.

  15. Biocompatibility of Textile Titanium Nickel Implants with Fibroblast Culture.

    PubMed

    Kokorev, O V; Khodorenko, V N; Anikeev, S G; Gunther, V E

    2015-05-01

    The parameters of biocompatibility of titanium nickel implants of different design with fibroblast culture are studied. Colonization of textile and mesh implants with fibroblasts and tissue development depend on the size of mesh cells and thread diameter. Titanium nickel implants of different constructions do not inhibit the growth of fibroblast culture. PMID:26028231

  16. Fabrication and testing of large size nickel-zinc cells

    NASA Technical Reports Server (NTRS)

    Klein, M.

    1977-01-01

    The design and construction of nickel zinc cells, containing sintered nickel electrodes and asbestos coated inorganic separator materials, were outlined. Negative electrodes were prepared by a dry pressing process while various inter-separators were utilized on the positive electrodes, consisting of non-woven nylon, non-woven polypropylene, and asbestos.

  17. Biocompatibility of Textile Titanium Nickel Implants with Fibroblast Culture.

    PubMed

    Kokorev, O V; Khodorenko, V N; Anikeev, S G; Gunther, V E

    2015-05-01

    The parameters of biocompatibility of titanium nickel implants of different design with fibroblast culture are studied. Colonization of textile and mesh implants with fibroblasts and tissue development depend on the size of mesh cells and thread diameter. Titanium nickel implants of different constructions do not inhibit the growth of fibroblast culture.

  18. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    NASA Astrophysics Data System (ADS)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  19. Process for producing nickel electrode having lightweight substrate

    NASA Technical Reports Server (NTRS)

    Lim, Hong S. (Inventor)

    1996-01-01

    A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.

  20. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  1. Nongassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The failure of nickel-cadmium storage batteries due to severe gassing during charging is discussed. In order to increase the life of such cells, nongassing positive and negative electrodes are used. The gassing characteristics of nickel electrodes were evaluated as a function of their loading, charge rate, and charge temperature.

  2. Monomeric and dimeric disulfide complexes of nickel(II).

    PubMed

    Iluc, Vlad M; Laskowski, Carl A; Brozek, Carl K; Harrold, Nicole D; Hillhouse, Gregory L

    2010-08-01

    Elemental sulfur reacts with a bulky bis(phosphine)nickel(0) complex to give a monomeric nickel(II) eta(2)-disulfido complex, oxidation of which results in the elimination of sulfur with dimerization to give an eta(2),eta(2)-disulfidodinickel(II) derivative in which the S-S bond can be reductively cleaved in a redox-reversible fashion. PMID:20586478

  3. Nickel-cadmium battery recycling evolution in Europe

    NASA Astrophysics Data System (ADS)

    David, J.

    After a brief introduction on the structure of SNAM (Société Nouvelle d'Affinage des Métaux), the role of the nickel-cadmium batteries in the consumer electronic market is illustrated. Finally, the procedures and the cost for collecting and recycling nickel-cadmium battery waste are discussed.

  4. Initial development of nickel and nickel-iron aluminides for structural uses

    SciTech Connect

    Liu, C.T.; Jemian, W.; Inouye, H.; Cathcart, J.V.; David, S.A.; Horton, J.A.; Santella, M.L.

    1984-08-01

    Initial development of ductile nickel and nickel-iron aluminides has concentrated on boron-doped Ni/sub 3/Al alloyed with iron and other elements. The aluminide can dissolve no more than 15 at. % Fe, beyond which formation of both transformed B2 phase (..beta..') and disordered fcc phase (..gamma..) is observed. Nickel-iron aluminides were tensile tested as a function of temperature. Iron additions strengthen Ni/sub 3/Al effectively at temperatures to 850/sup 0/C. The yield stress of the nickel-iron aluminides increases with test temperature and reaches a maximum around 650/sup 0/C. The high-temperature strength of the aluminides can be further improved by alloying with less than 2 at. % Hf. Hafnium-modified aluminides are stronger than commercial superalloys, including some cast superalloys. Hot corrosion behavior of nickel-iron aluminides was determined in quartz capsules and in a circulating loop system containing a supply of CaSO/sub 4/ at temperatures to 871/sup 0/C (1600/sup 0/F). The combined results from these tests showed the dependence of sulfidation on oxygen partial pressure and verified that the sulfidation attack of aluminides in capsule tests was caused by oxygen depletion in a closed system with a limited supply of oxygen. The aluminides exhibited superior oxidation resistance in air at temperatures to 1100/sup 0/C. The ductile aluminides are prone to hot cracking during welding. However, they can be electron beam welded successfully under closely controlled conditions. Boron content and welding speed affect the weldability of the aluminides.

  5. Screen test for cadmium and nickel plates

    NASA Technical Reports Server (NTRS)

    Phan, Angie H.; Zimmerman, Albert H.

    1994-01-01

    A new procedure is described which was recently developed to quantify loading uniformity of nickel and cadmium plates and to screen finished electrodes prior to cell assembly. The technique utilizes the initial solubility rates of the active material in a standard chemical deloading solution at fixed conditions. The method can provide a reproducible indication of plate loading uniformity in situations where high surface loading limits the free flow of deloading solution into the internal porosity of the sinter plate. A preliminary study indicates that 'good' cell performance is associated with higher deloading rates.

  6. Characterization of Carbon Nanotube Reinforced Nickel

    NASA Technical Reports Server (NTRS)

    Gill, Hansel; Hudson, Steve; Bhat, Biliyar; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Carbon nanotubes are cylindrical molecules composed of carbon atoms in a regular hexagonal arrangement. If nanotubes can be uniformly dispersed in a supporting matrix to form structural materials, the resulting structures could be significantly lighter and stronger than current aerospace materials. Work is currently being done to develop an electrolyte-based self-assembly process that produces a Carbon Nanotube/Nickel composite material with high specific strength. This process is expected to produce a lightweight metal matrix composite material, which maintains it's thermal and electrical conductivities, and is potentially suitable for applications such as advanced structures, space based optics, and cryogenic tanks.

  7. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    Adler, E.; Perez, F.

    1984-01-01

    Three nickel hydrogen battery designs, individual pressure vessel (IPV), common pressure vessel (CPV), and a bipolar battery module were studied. Weight, system complexity and cost were compared for a satellite operating in a 6 hour, 5600 nautical mile orbit. The required energy storage is 52 kWh. A 25% improvement in specific energy is observed by employing a bipolar battery versus a battery comprised of hundreds of IPV's. Further weight benefits are realized by the development of light weight technologies in the bipolar design.

  8. Laser Cutting of Thin Nickel Bellows

    NASA Technical Reports Server (NTRS)

    Butler, C. L.

    1986-01-01

    Laser cutting technique produces narrow, precise, fast, and repeatable cuts in thin nickel-allow bellows material. Laser cutting operation uses intense focused beam to melt material and assisting gas to force melted material through part thickness, creating void. When part rotated or moved longitudinally, melting and material removal continuous and creates narrow, fast, precise, and repeatable cut. Technique used to produce cuts of specified depths less than material thickness. Avoids distortion, dents, and nicks produced in delicate materials during lathe trimming operations, which require high cutting-tool pressure and holding-fixture forces.

  9. Pulsed electrodeposition of iron-nickel alloys

    SciTech Connect

    Grimmett, D.L.; Schwartz, M.; Nobe, K. )

    1990-11-01

    This paper reports on the effects of dc, pulse, and pulse reverse current waveforms on deposition of Fe-Ni alloys studied in unagitated solutions and with a rotating cylindrical electrode. A nickel sulfamate/ferrous chloride electrolyte system at pH 2 less than 2 A/dm{sup 2}. Pulse reverse plating led to a decrease in anomalous deposition at low current densities. Rotating cylindrical electrodes indicated significant mass transfer effects at high current densities. During pulse reverse plating an increase in anodic pulse magnitude decreased anomalous deposition; pulse frequency had its greatest effect in reducing anomalous deposition between 100 and 300 Hz.

  10. Development of nickel-metal hydride cell

    NASA Technical Reports Server (NTRS)

    Kuwajima, Saburo; Kamimori, Nolimits; Nakatani, Kensuke; Yano, Yoshiaki

    1993-01-01

    National Space Development Agency of Japan (NASDA) has conducted the research and development (R&D) of battery cells for space use. A new R&D program about a Nickel-Metal Hydride (Ni-MH) cell for space use from this year, based on good results in evaluations of commercial Ni-MH cells in Tsukuba Space Center (TKSC), was started. The results of those commercial Ni-MH cell's evaluations and recent status about the development of Ni-MH cells for space use are described.

  11. Size-dependent thermopower of nickel nanoparticles

    SciTech Connect

    Singh, Jaiveer; Kaurav, N.; Okram, Gunadhor S.

    2014-04-24

    Nickel nanoparticles (Ni-NPs) were prepared by thermal decomposition method using Trioctylphosphine (TOP) and Oleylamine (OA). The average particle size (D) estimated from X-ray diffraction (XRD) using Scherrer equation, to be 1-10nm, systematically decreases with increasing concentration of TOP at constant OA concentration. The observed thermopower strongly depends on particle size particularly at low temperatures reaching a very high value of ∼ 10{sup 5} μV/K (at 20 K), and is attributed to the enhanced grain-boundary scattering combined with quantum confinement.

  12. New separators for nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.

    1976-01-01

    Flexible separators consisting of a substrate coated with a mixture of a polymer and organic and inorganic additives were cycle tested in nickel-zinc cells. By substituting a rubber-based resin for polyphenylene oxide in the standard inorganic-organic separator, major improvements in both cell life and flexibility were made. Substituting newsprint for asbestos as the substrate shows promise for use on the zinc electrode and reduces separator cost. The importance of ample electrolyte in the cells was noted. Cycle lives and the characteristics of these flexible, low-cost separators were compared with those of a standard microporous polypropylene separator.

  13. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.

    1994-01-01

    The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).

  14. An all-nickel magnetostatic MEMS scanner

    NASA Astrophysics Data System (ADS)

    Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2012-12-01

    The design, fabrication and detailed characterization of a fully electroplated, magnetostatic low-cost MEMS scanning mirror are presented. By electroplating bright nickel on a sacrificial substrate, robust soft-magnetic micromirrors may be fabricated. The technology is simpler and cheaper than the standard process using bulk silicon micromachining of silicon-on-insulator wafers for fabricating magnetostatic scanners. The presented Ni mirrors exhibit deflection angles of ±7° at resonance for small external magnetic fields of 0.23 mT. Such magnetic fields are easily generated by miniaturized solenoids, making integration, for instance, into endoscopic systems possible.

  15. Thioetherification via Photoredox/Nickel Dual Catalysis.

    PubMed

    Jouffroy, Matthieu; Kelly, Christopher B; Molander, Gary A

    2016-02-19

    Hypervalent alkylsilicates represent new and readily accessible precursors for the generation of alkyl radicals under photoredox conditions. Alkyl radicals generated from such silicates serve as effective hydrogen atom abstractors from thiols, furnishing thiyl radicals. The reactive sulfur species generated in this manner can be funneled into a nickel-mediated cross-coupling cycle employing aromatic bromides to furnish thioethers. The serendipitous discovery of this reaction and its utilization for the thioetherification of various aryl and heteroaryl bromides with a diverse array of thiols is described. The S-H selective H atom abstraction event enables a wide range of functional groups, including those bearing protic moieties, to be tolerated. PMID:26852821

  16. Soroako nickel project: a healthy development

    SciTech Connect

    Robinson, K.

    1985-01-01

    The establishment of a nickel mine has greatly affected the lives of the inhabitants of a formerly remote rural community in Indonesia. The article examines some of the health consequences of the project for the local people. In particular, it discusses problems of water and sanitation in the mining town, the nutritional consequences of changing social relations with capitalist development, and problems in the delivery of health care. The conflicts generated by these issues indicate some of the shortcomings of a national development strategy which relies heavily on private foreign investment.

  17. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  18. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, E.T.

    1997-03-11

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorus acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution. 1 fig.

  19. Method for regeneration of electroless nickel plating solution

    DOEpatents

    Eisenmann, Erhard T.

    1997-01-01

    An electroless nickel(EN)/hypophosphite plating bath is provided employing acetic acid/acetate as a buffer and which is, as a result, capable of perpetual regeneration while avoiding the production of hazardous waste. A regeneration process is provided to process the spent EN plating bath solution. A concentrated starter and replenishment solution is provided for ease of operation of the plating bath. The regeneration process employs a chelating ion exchange system to remove nickel cations from spent EN plating solution. Phosphites are then removed from the solution by precipitation. The nickel cations are removed from the ion exchange system by elution with hypophosphorous acid and the nickel concentration of the eluate adjusted by addition of nickel salt. The treated solution and adjusted eluate are combined, stabilizer added, and the volume of resulting solution reduced by evaporation to form the bath starter and replenishing solution.

  20. Occupational handling of nickel nanoparticles: a case report.

    PubMed

    Journeay, W Shane; Goldman, Rose H

    2014-09-01

    A 26-year-old female chemist formulated polymers and coatings usually using silver ink particles. When she later began working with nickel nanoparticle powder weighed out and handled on a lab bench with no protective measures, she developed throat irritation, nasal congestion, "post nasal drip," facial flushing, and new skin reactions to her earrings and belt buckle which were temporally related to working with the nanoparticles. Subsequently she was found to have a positive reaction to nickel on the T.R.U.E. patch test, and a normal range FEV1 that increased by 16% post bronchodilator. It was difficult returning her to work even in other parts of the building due to recurrence of symptoms. This incident triggered the company to make plans for better control measures for working with nickel nanoparticles. In conclusion, a worker developed nickel sensitization when working with nanoparticle nickel powder in a setting without any special respiratory protection or control measures.

  1. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities.

  2. Spectroscopically Characterized Synthetic Mononuclear Nickel-Oxygen Species.

    PubMed

    Corona, Teresa; Company, Anna

    2016-09-12

    Iron, copper, and manganese are the predominant metals found in oxygenases that perform efficient and selective hydrocarbon oxidations and for this reason, a large number of the corresponding metal-oxygen species has been described. However, in recent years nickel has been found in the active site of enzymes involved in oxidation processes, in which nickel-dioxygen species are proposed to play a key role. Owing to this biological relevance and to the existence of different catalytic protocols that involve the use of nickel catalysts in oxidation reactions, there is a growing interest in the detection and characterization of nickel-oxygen species relevant to these processes. In this Minireview the spectroscopically/structurally characterized synthetic superoxo, peroxo, and oxonickel species that have been reported to date are described. From these studies it becomes clear that nickel is a very promising metal in the field of oxidation chemistry with still unexplored possibilities. PMID:27484613

  3. Process for recovering evolved hydrogen enriched with at least one heavy hydrogen isotope

    DOEpatents

    Tanaka, John; Reilly, Jr., James J.

    1978-01-01

    This invention relates to a separation means and method for enriching a hydrogen atmosphere with at least one heavy hydrogen isotope by using a solid titaniun alloy hydride. To this end, the titanium alloy hydride containing at least one metal selected from the group consisting of vanadium, chromium, manganese, molybdenum, iron, cobalt and nickel is contacted with a circulating gaseous flow of hydrogen containing at least one heavy hydrogen isotope at a temperature in the range of -20.degree. to +40.degree. C and at a pressure above the dissociation pressure of the hydrided alloy selectively to concentrate at least one of the isotopes of hydrogen in the hydrided metal alloy. The contacting is continued until equilibrium is reached, and then the gaseous flow is isolated while the temperature and pressure of the enriched hydride remain undisturbed selectively to isolate the hydride. Thereafter, the enriched hydrogen is selectively recovered in accordance with the separation factor (S.F.) of the alloy hydride employed.

  4. Phytoremediation of soil polluted by nickel using agricultural crops.

    PubMed

    Giordani, Cesare; Cecchi, Stefano; Zanchi, Camillo

    2005-11-01

    Soil pollution due to heavy metals is widespread; on the world scale, it involves about 235 million hectares. The objectives of this research were to establish the uptake efficiency of nickel by some agricultural crops. In addition, we wanted to establish also in which part of plants the metal is stored for an eventual use of biomass or for recycling the metal. The experiments included seven herbaceous crops such as: barley (Hordeum vulgaris), cabbage (Brassica juncea), spinach (Spinacea oleracea), sorghum (Sorgum vulgare), bean (Phaseolus vulgaris), tomato (Solanum lycopersicum), and ricinus (Ricinus communis). We used three levels of treatment (150, 300, and 600 ppm) and one control. At the end of the biological cycle of the crops, the different parts of plants, i.e., roots, stems, leaves, fruits, or seeds, were separately collected, oven dried, weighed, milled, and separately analysed. The leaves and stems of spinach showed a very good nickel storage capacity. The ricinus too proved to be a very good nickel storer. The ability of spinach and ricinus to store nickel was observed also in the leaves of cabbage, even if with a lower storage capacity. The bean, barley, and tomato, in decreasing order of uptake and storage capacity, showed a high concentration of nickel in leaves and stems, whereas the sorghum evidenced a lesser capacity to uptake and store nickel in leaves and stems. The bean was the most efficient in storing nickel in fruits or grains. Tomato, sorghum, and barley have shown a storage capacity notably less than bean. The bean appeared to be the most efficient in accumulating nickel in the roots, followed in decreasing order by sorghum, ricinus, and tomato. With regard to the removal of nickel, spinach was the most efficient as it contains the highest level of this metal per gram of dry matter. The ricinus, cabbage, bean, sorghum, barley, and tomato evidenced a progressively decreasing efficiency in the removal of nickel.

  5. Phytoremediation of soil polluted by nickel using agricultural crops.

    PubMed

    Giordani, Cesare; Cecchi, Stefano; Zanchi, Camillo

    2005-11-01

    Soil pollution due to heavy metals is widespread; on the world scale, it involves about 235 million hectares. The objectives of this research were to establish the uptake efficiency of nickel by some agricultural crops. In addition, we wanted to establish also in which part of plants the metal is stored for an eventual use of biomass or for recycling the metal. The experiments included seven herbaceous crops such as: barley (Hordeum vulgaris), cabbage (Brassica juncea), spinach (Spinacea oleracea), sorghum (Sorgum vulgare), bean (Phaseolus vulgaris), tomato (Solanum lycopersicum), and ricinus (Ricinus communis). We used three levels of treatment (150, 300, and 600 ppm) and one control. At the end of the biological cycle of the crops, the different parts of plants, i.e., roots, stems, leaves, fruits, or seeds, were separately collected, oven dried, weighed, milled, and separately analysed. The leaves and stems of spinach showed a very good nickel storage capacity. The ricinus too proved to be a very good nickel storer. The ability of spinach and ricinus to store nickel was observed also in the leaves of cabbage, even if with a lower storage capacity. The bean, barley, and tomato, in decreasing order of uptake and storage capacity, showed a high concentration of nickel in leaves and stems, whereas the sorghum evidenced a lesser capacity to uptake and store nickel in leaves and stems. The bean was the most efficient in storing nickel in fruits or grains. Tomato, sorghum, and barley have shown a storage capacity notably less than bean. The bean appeared to be the most efficient in accumulating nickel in the roots, followed in decreasing order by sorghum, ricinus, and tomato. With regard to the removal of nickel, spinach was the most efficient as it contains the highest level of this metal per gram of dry matter. The ricinus, cabbage, bean, sorghum, barley, and tomato evidenced a progressively decreasing efficiency in the removal of nickel. PMID:16215654

  6. Transportation of medical isotopes

    SciTech Connect

    Nielsen, D.L.

    1997-11-19

    A Draft Technical Information Document (HNF-1855) is being prepared to evaluate proposed interim tritium and medical isotope production at the Fast Flux Test Facility (FFTF). This assessment examines the potential health and safety impacts of transportation operations associated with the production of medical isotopes. Incident-free and accidental impacts are assessed using bounding source terms for the shipment of nonradiological target materials to the Hanford Site, the shipment of irradiated targets from the FFTF to the 325 Building, and the shipment of medical isotope products from the 325 Building to medical distributors. The health and safety consequences to workers and the public from the incident-free transportation of targets and isotope products would be within acceptable levels. For transportation accidents, risks to works and the public also would be within acceptable levels. This assessment is based on best information available at this time. As the medical isotope program matures, this analysis will be revised, if necessary, to support development of a final revision to the Technical Information Document.

  7. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  8. Migration of Co in nickel oxide/hydroxide of a nickel electrode in a Ni/H2 cell

    NASA Technical Reports Server (NTRS)

    Lim, Hong S.; Doty, Robert E.

    1993-01-01

    Cobalt redistribution in nickel active material has been reported. This redistribution was suspected to be related to capacity fading. The objective of this work is to establish a relationship between cobalt redistribution and capacity fading. Microscopic cobalt distribution in nickel active material was studied using three EDX techniques: line scan, point-by-point analysis, and dot maps. Results from this study are presented.

  9. Isotopic Composition of Cosmic Rays:. Results from the Cosmic Ray Isotope Spectrometer on the Ace Spacecraft

    NASA Astrophysics Data System (ADS)

    Israel, M. H.

    Over the past seven years the Cosmic Ray Isotope Spectrometer (CRIS) on the ACE spacecraft has returned data with an unprecedented combination of excellent mass resolution and high statistics, describing the isotopic composition of elements from lithium through nickel in the energy interval ~ 50 to 500 MeV/nucleon. These data have demonstrated: * The time between nucleosynthesis and acceleration of the cosmic-ray nuclei is at least 105 years. The supernova in which nucleosynthesis takes place is thus not the same supernova that accelerates a heavy nucleus to cosmic-ray energy. * The mean confinement time of cosmic rays in the Galaxy is 15 Myr. * The isotopic composition of the cosmic-ray source is remarkably similar to that of solar system. The deviations that are observed, particularly at 22Ne and 58Fe, are consistent with a model in which the cosmic-ray source is OB associations in which the interstellar medium has solar-system composition enriched by roughly 20% admixture of ejecta from Wolf-Rayet stars and supernovae. * Cosmic-ray secondaries that decay only by electron capture provide direct evidence for energy loss of cosmic rays as they penetrate the solar system. This invited overview paper at ECRS 19 was largely the same as an invited paper presented a month earlier at the 8th Nuclei in the Cosmos Conference in Vancouver. The proceedings of that conference will be published shortly by Elsevier as a special edition of Nuclear Physics A. For further summary of results from CRIS, the reader is referred to URL <> and links on that page to CRIS and to Science News.

  10. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  11. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. PMID:25908819

  12. Macroinvertebrate responses to nickel in multisystem exposures.

    PubMed

    Custer, Kevin W; Kochersberger, Jon P; Anderson, Padrick D; Fetters, Kyle J; Hummel, Steven; Burton, G Allen

    2016-01-01

    Metals introduced to sediments undergo a variety of complexation and partitioning changes that affect metal bioavailability. Using simultaneously extracted metal (SEM)/acid volatile sulfide (AVS) and organic carbon (f(OC)) models, the authors examined nickel (Ni) toxicity and bioavailability in 2 field studies (using streamside mesocosm and in situ colonization) and 1 laboratory study. The streamside mesocosm experiments indicated that benthic communities (Ephemeroptera, abundance, and taxa richness) responded negatively to increasing SEM(Ni) /AVS and (SEM(Ni) -AVS)/f(OC) models. In the in situ colonization study, taxa richness, abundance, and Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa decreased with increasing SEM(Ni) and SEM(Ni)/AVS values. Nickel-spiked sediments were tested in the laboratory with indigenous field-collected mayflies (Anthopotamus verticis, Isonychia spp., and Stenonema spp) and a beetle (Psephenus herricki), and with laboratory-cultured Hyalella azteca and Chironomus dilutus. The amphipod H. azteca was the most sensitive organism tested, and the mayflies Anthopotamus verticis and Stenonema spp. were the most sensitive indigenous organisms to Ni-spiked sediments. These studies help discern which factors are important in determining Ni toxicity and bioavailability at the individual, population, and community levels.

  13. Advanced nickel-hydrogen cell configuration study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Long-term trends in the evolution of space power technology point toward increased payload power demand which in turn translates into both higher battery system charge storage capability and higher operating voltages. State of the art nickel-hydrogen cells of the 50 to 60 Wh size, packaged in individual pressure vessels, are capable of meeting the required cycle life for a wide range of anticipated operating conditions; however, they provided several drawbacks to battery system integrated efforts. Because of size, high voltage/high power systems require integrating hundreds of cells into the operating system. Packaging related weight and volume inefficiencies degrade the energy density and specific energy of individual cells currently at 30 Wh/cudm and 40 Wh/kg respectively. In addition, the increased parts count and associated handling significantly affect the overall battery related costs. Spacecraft battery systems designers within industry and Government realize that to reduce weight, volume, and cost requires increases in the capacity of nickel-hydrogen cells.

  14. Nickel-iron battery system safety

    NASA Technical Reports Server (NTRS)

    Saltat, R. C.

    1984-01-01

    The generated flow rates of gaseous hydrogen and gaseous oxygen from an electrical vehicle nickel-iron battery system were determined and used to evaluate the flame quenching capabilities of several candidate devices to prevent flame propagation within batteries having central watering/venting systems. The battery generated hydrogen and oxygen gases were measured for a complete charge and discharge cycle. The data correlates well with accepted theory during strong overcharge conditions indicating that the measurements are valid for other portions of the cycle. Tests confirm that the gas mixture in the cells is always flammable regardless of the battery status. The literature indicated that a conventional flame arrestor would not be effective over the broad spectrum of gassing conditions presented by a nickel-iron battery. Four different types of protective devices were evaluated. A foam-metal arrestor design was successful in quenching gaseous hydrogen and gaseous oxygen flames, however; the application of this flame arrestor to individual cell or module protection in a battery is problematic. A possible rearrangement of the watering/venting system to accept the partial protection of simple one-way valves is presented which, in combination with the successful foam-metal arrestor as main vent protection, could result in a significant improvement in battery protection.

  15. Advanced nickel-hydrogen spacecraft battery development

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-01-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  16. Macroinvertebrate responses to nickel in multisystem exposures.

    PubMed

    Custer, Kevin W; Kochersberger, Jon P; Anderson, Padrick D; Fetters, Kyle J; Hummel, Steven; Burton, G Allen

    2016-01-01

    Metals introduced to sediments undergo a variety of complexation and partitioning changes that affect metal bioavailability. Using simultaneously extracted metal (SEM)/acid volatile sulfide (AVS) and organic carbon (f(OC)) models, the authors examined nickel (Ni) toxicity and bioavailability in 2 field studies (using streamside mesocosm and in situ colonization) and 1 laboratory study. The streamside mesocosm experiments indicated that benthic communities (Ephemeroptera, abundance, and taxa richness) responded negatively to increasing SEM(Ni) /AVS and (SEM(Ni) -AVS)/f(OC) models. In the in situ colonization study, taxa richness, abundance, and Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa decreased with increasing SEM(Ni) and SEM(Ni)/AVS values. Nickel-spiked sediments were tested in the laboratory with indigenous field-collected mayflies (Anthopotamus verticis, Isonychia spp., and Stenonema spp) and a beetle (Psephenus herricki), and with laboratory-cultured Hyalella azteca and Chironomus dilutus. The amphipod H. azteca was the most sensitive organism tested, and the mayflies Anthopotamus verticis and Stenonema spp. were the most sensitive indigenous organisms to Ni-spiked sediments. These studies help discern which factors are important in determining Ni toxicity and bioavailability at the individual, population, and community levels. PMID:26178528

  17. Advanced nickel-hydrogen spacecraft battery development

    NASA Astrophysics Data System (ADS)

    Coates, Dwaine K.; Fox, Chris L.; Standlee, D. J.; Grindstaff, B. K.

    1994-02-01

    Eagle-Picher currently has several advanced nickel-hydrogen (NiH2) cell component and battery designs under development including common pressure vessel (CPV), single pressure vessel (SPV), and dependent pressure vessel (DPV) designs. A CPV NiH2 battery, utilizing low-cost 64 mm (2.5 in.) cell diameter technology, has been designed and built for multiple smallsat programs, including the TUBSAT B spacecraft which is currently scheduled (24 Nov. 93) for launch aboard a Russian Proton rocket. An advanced 90 mm (3.5 in.) NiH2 cell design is currently being manufactured for the Space Station Freedom program. Prototype 254 mm (10 in.) diameter SPV batteries are currently under construction and initial boilerplate testing has shown excellent results. NiH2 cycle life testing is being continued at Eagle-Picher and IPV cells have currently completed more than 89,000 accelerated LEO cycles at 15% DOD, 49,000 real-time LEO cycles at 30 percent DOD, 37,800 cycles under a real-time LEO profile, 30 eclipse seasons in accelerated GEO, and 6 eclipse seasons in real-time GEO testing at 75 percent DOD maximum. Nickel-metal hydride battery development is continuing for both aerospace and electric vehicle applications. Eagle-Picher has also developed an extensive range of battery evaluation, test, and analysis (BETA) measurement and control equipment and software, based on Hewlett-Packard computerized data acquisition/control hardware.

  18. Nickel cadmium cell age sensitivity study

    SciTech Connect

    Thierfelder, H.E.; Rampel, G.; Schmerbach, J.

    1984-08-01

    The objective of this study was to investigate the effects of aging on aerospace nickel cadmium cells, and to make a recommendation on the age limitation for cells in flight batteries at time of spacecraft launch. The swelling of the positive plates, and the decrease in overcharge protection, are concluded to be the life limiting characteristics. Based on the criteria of minimum overcharge protection for maximum reliability, it was concluded that the cell age since time of activation, should be no more than three and one-half years at time of launch, to have confidence in completing a 7-1/2 year mission. This study was made using fourteen aerospace nickel cadmium cells, GE/BBD Part No. 42B015AB19. The fourteen cells were made up of two cells from each of seven lots of cells that were manufactured by GE/BBD between 1975 and 1982. The cells had been in cold storage in the shorted condition since approximately three months after activation. The fourteen cells were reconditioned, subjected to the acceptance test identically as at time of manufacture, and then opened for flooded electrode tests and chemical analyses. The electrical acceptance test data showed no correlation with the age of the cells.

  19. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  20. Isotope separation apparatus

    DOEpatents

    Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.

    1980-01-01

    Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.

  1. Establishing normal values for nickel in human lung disease.

    PubMed

    Andersen, I; Svenes, K

    1999-12-01

    People working in the nickel refining industry are known to have a higher concentration of nickel in lung tissue than the general population. To be able to evaluate a potential nickel exposure from other sources, e.g., welding, it is important to have sufficient data on what is normal for a local population. Several local factors such as the content of nickel in air and soil can have a significant impact on this so-called normal value. As almost all surgical equipment contains nickel, the sampling process can in itself be a source of contamination. The scope of this work was to investigate if there was any measurable contamination from the sampling instruments routinely used in hospitals, and if the presence of a nickel refinery had any effect on the nickel content in the lungs of the general population. Autopsy lung tissue samples were collected in situ from 50 people who had lived in the county of Vest Agder in Norway. Two samples were collected from each person; one with a regular scalpel (Swann-Norton) and forceps, and one with a titanium knife and plastic forceps. None of the persons had any known connection to the nickel refinery. The samples were collected at random and no special attention was given to age, sex and place of residence. The autopsies were performed according to Norwegian law and in understanding with the next of kin. The arithmetic mean value +/- s of nickel was 0.64 +/- 0.56 microgram g-1 and 0.29 +/- 0.20 microgram g-1 dry weight, respectively, for samples collected with a regular scalpel and a titanium knife (P < 0.0001). For people who lived 8 km and closer to the refinery by the time of death, the nickel content was 0.41 +/- 0.19 microgram g-1 and for those who had lived between 8 and 70 km away from the refinery it was 0.18 +/- 0.13 microgram g-1 (P < 0.015). No statistical difference was established between results for males and females. Previous investigations have shown that the nickel content in lung tissue varies in the so

  2. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect

    Chen, Xiao; Zhang, Bingsen; Li, Chuang; Shao, Zhengfeng; Su, Dangsheng; Williams, Christopher T.; Liang, Changhai

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  3. Chlorine Isotope Variation in Eucrites

    NASA Astrophysics Data System (ADS)

    Barrett, T. J.; Barnes, J. J.; Anand, M.; Franchi, I. A.; Greenwood, R. C.; Charlier, B. L. A.; Grady, M. M.

    2016-08-01

    We present Cl isotopic compositions for several eucrites with a wide range of petrological and geochemical histories. Our results include some of the heaviest chlorine isotopic compositions recorded so far in the solar system.

  4. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  5. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions of this subpart G are applicable to discharges from (a) mines that produce nickel ore and (b)...

  6. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions of this subpart G are applicable to discharges from (a) mines that produce nickel ore and (b)...

  7. 40 CFR 440.70 - Applicability; description of the nickel ore subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... nickel ore subcategory. 440.70 Section 440.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Nickel Ore Subcategory § 440.70 Applicability; description of the nickel ore subcategory. The provisions of this subpart G are applicable to discharges from (a) mines that produce nickel ore and (b)...

  8. The consequences of helium production on microstructural development in isotopically tailored ferritic alloys

    SciTech Connect

    Gelles, D.S.

    1996-10-01

    A series of alloys have been made adding various isotopes of nickel in order to vary the production of helium during irradiation by a two step nuclear reaction in a mixed spectrum reactor. The alloys use a base composition of Fe-12Cr with an addition of 1.5% nickel, either in the form of {sup 60}Ni which produces no helium, {sup 59}Ni which produces helium at a rate of about 10 appm He/dpa, or natural nickel ({sup Nat}Ni) which provides an intermediate level of helium due to delayed development of {sup 59}Ni. Specimens were irradiated in the HFIR at Oak Ridge, TN to {approx}7 dpa at 300 and 400{degrees}C. Microstructural examinations indicated that nickel additions promote precipitation in all alloys, but the effect appears to be much stronger at 400{degrees}C than at 300{degrees}C. There is sufficient dose by 7 dpa (and with 2 appm He) to initiate void swelling in ferritic/martensitic alloys. Little difference was found between response from {sup 59}Ni and {sup Nat}Ni. Also, helium bubble development for high helium generation conditions appeared to be very different at 300 and 400{degrees}C. At 300{degrees}C, it appeared that high densities of bubbles formed whereas at 400{degrees}C, bubbles could not be identified, possibly because of the complexity of the microstructure, but more likely because helium accumulated at precipitate interfaces.

  9. Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe

    NASA Astrophysics Data System (ADS)

    Quesnel, Benoît; Boulvais, Philippe; Gautier, Pierre; Cathelineau, Michel; John, Cédric M.; Dierick, Malorie; Agrinier, Pierre; Drouillet, Maxime

    2016-06-01

    The stable isotope compositions of veins provide information on the conditions of fluid-rock interaction and on the origin of fluids and temperatures. In New Caledonia, magnesite and silica veins occur throughout the Peridotite Nappe. In this work, we present stable isotope and clumped isotope data in order to constrain the conditions of fluid circulation and the relationship between fluid circulation and nickel ore-forming laterization focusing on the Koniambo Massif. For magnesite veins occurring at the base of the nappe, the high δ18O values between 27.8‰ and 29.5‰ attest to a low temperature formation. Clumped isotope analyses on magnesite give temperatures between 26 °C and 42 °C that are consistent with amorphous silica-magnesite oxygen isotope equilibrium. The meteoric origin of the fluid is indicated by calculated δ18Owater values between -3.4‰ to +1.5‰. Amorphous silica associated with magnesite or occurring in the coarse saprolite level displays a narrow range of δ18O values between 29.7‰ and 35.3‰. For quartz veins occurring at the top of the bedrock and at the saprolite level, commonly in association with Ni-talc-like minerals, the δ18O values are lower, between 21.8‰ and 29.0‰ and suggest low-temperature hydrothermal conditions (∼40-95 °C). Thermal equilibration of the fluid along the geothermic gradient before upward flow through the nappe and/or influence of exothermic reactions of serpentinization could be the source(s) of heat needed to form quartz veins under such conditions.

  10. The isotopic composition of iron-group cosmic rays

    NASA Technical Reports Server (NTRS)

    Leske, Richard A.; Milliken, Barrett; Wiedenbeck, Mark E.

    1992-01-01

    Measurements are reported of the relative abundances of Mn, Fe, Co, and Ni isotopes in Galactic cosmic rays with energies of about 325 MeV per nucleon. The observed limit (Mn-54)/(Mn-53) of less than 0.25 is significantly less than the value of about 0.8-0.9 expected if Mn-54 were stable, indicating that most of the Mn-54 produced during cosmic-ray propagation in the Galaxy has undergone radioactive decay. Relative source abundances of iron and nickel isotopes, and in particular the ratio (Fe-54)/(Fe-56) = 0.046 +/- 0.020, are generally consistent with solar system values. One exception is the source ratio (Ni-60)/(Ni-58) for which an enhancement by a factor of 2.8 +/- 1.0 over the solar value is found. The isotope (Co-59) is found to make up a sizable fraction of the observed Co, indicating a time delay more than about 100,000 yr between nucleosynthesis and acceleration if this nuclide is synthesized as (Cu-59) or (Ni-59).

  11. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  12. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOEpatents

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  13. Serum nickel concentrations in hemodialysis patients with environmental exposure

    SciTech Connect

    Hopfer, S.M.; Fay, W.P.; Sunderman, F.W. Jr.

    1989-05-01

    Nickel was analyzed by electrothermal atomic absorption spectrophotometry in serum specimens from 22 healthy hospital workers and 30 patients with end-stage renal disease treated by extracorporeal hemodialysis, who resided in Sudbury, Ontario, Canada, a city with extensive nickel mines and smelters. Samples of tap water from Sudbury contained 109 +/- 46 micrograms Ni per L (P less than 0.01 vs 0.4 +/- 0.2 micrograms Ni per L in corresponding water samples from Hartford, Connecticut). Serum nickel concentrations averaged 0.6 +/- 0.3 micrograms Ni per L in Sudbury hospital workers (P less than 0.05 vs 0.2 +/- 0.2 micrograms Ni per L in corresponding serums from 43 healthy hospital workers in Hartford). In serums collected post-treatment from Sudbury hemodialysis patients, nickel concentrations averaged 8.5 +/- 2.8 micrograms Ni per L, (i.e., 14-times the corresponding mean in Sudbury hospital workers, P less than 0.01), but were not significantly higher than the nickel concentrations in serums from 42 Hartford hemodialysis patients (7.2 +/- 2.2 micrograms Ni per L). This study confirms the presence of hypernickelemia in hemodialysis patients, but does not suggest that hemodialysis patients have significantly increased risk of nickel toxicity in Sudbury, compared to Hartford, despite the high nickel concentrations in Sudbury tap water. This favorable outcome attests to the efficient deionization of water used to prepare hemodialysis solutions in Sudbury.

  14. [Nickel - role in human organism and toxic effects].

    PubMed

    Zdrojewicz, Zygmunt; Popowicz, Ewa; Winiarski, Jacek

    2016-08-01

    The aim of this study is to familiarize the Role of nickel in the Environment and in living organisms. This metal is widely used in many fields such as electrical engineering, medicine, Jewellery or Automotive Industry. Furthermore, it's an important part of our food. As the central atom of bacterial enzymes it participates in degradation of urea.. Nickel is also an micronutritient essential for proper functioning of the human body, as it increases hormonal activity and is involved in lipid metabolism. This metal makes it's way to the human body through respiratory tract, digestive system and skin. Large doses of nickel or prolonged contact with it could cause a variety of side effects. Harmfull effects of Nickel are genotoxicity haematotoxicity, teratogenicity, immunotoxicity and carcinogenicity. The population of people allergic to nickel is growing, it occcurs much more often to the women and it can appear in many way. Hypersensitivity to nickel can also be occupational. Due to the increasing prevalence of allergies to nickel. European regulations have been introduced to reduce the content of this metal in products of everyday usage. In countries which have fulfilled the above-mentioned law, the plunge of hypersensitivities has been observed. PMID:27591452

  15. [Nickel - role in human organism and toxic effects].

    PubMed

    Zdrojewicz, Zygmunt; Popowicz, Ewa; Winiarski, Jacek

    2016-07-01

    The aim of this study is to familiarize the Role of nickel in the Environment and in living organisms. This metal is widely used in many fields such as electrical engineering, medicine, Jewellery or Automotive Industry. Furthermore, it's an important part of our food. As the central atom of bacterial enzymes it participates in degradation of urea.. Nickel is also an micronutritient essential for proper functioning of the human body, as it increases hormonal activity and is involved in lipid metabolism. This metal makes it's way to the human body through respiratory tract, digestive system and skin. Large doses of nickel or prolonged contact with it could cause a variety of side effects. Harmfull effects of Nickel are genotoxicity haematotoxicity, teratogenicity, immunotoxicity and carcinogenicity. The population of people allergic to nickel is growing, it occcurs much more often to the women and it can appear in many way. Hypersensitivity to nickel can also be occupational. Due to the increasing prevalence of allergies to nickel. European regulations have been introduced to reduce the content of this metal in products of everyday usage. In countries which have fulfilled the above-mentioned law, the plunge of hypersensitivities has been observed. PMID:27590657

  16. How much radioactive nickel does ASASSN-15lh require?

    NASA Astrophysics Data System (ADS)

    Kozyreva, Alexandra; Hirschi, Raphael; Blinnikov, Sergey; den Hartogh, Jacqueline

    2016-06-01

    The discovery of the most luminous supernova ASASSN-15lh triggered a shock-wave in the supernova community. The three possible mechanisms proposed for the majority of other superluminous supernovae do not produce a realistic physical model for this particular supernova. In this study, we show the limiting luminosity available from a nickel-powered pair-instability supernova. We computed a few exotic nickel-powered explosions with a total mass of nickel up to 1500 solar masses. We used the hydrostatic configurations prepared with the GENEVA and MESA codes, and the STELLA radiative-transfer code for following the explosion of these models. We show that 1500 solar masses of radioactive nickel is needed to power a luminosity of 2 × 10 45 erg s - 1. The resulting light curve is very broad and incompatible with the shorter ASASSN-15lh time-scale. This rules out a nickel-powered origin of ASASSN-15lh. In addition, we derive a simple peak luminosity-nickel mass relation from our data, which may serve to estimate of nickel mass from observed peak luminosities.

  17. Degradation of explosives-related compounds using nickel catalysts.

    PubMed

    Fuller, Mark E; Schaefer, Charles E; Lowey, Jean M

    2007-03-01

    We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.

  18. Electrodeposition of Low Stress Nickel Phosphorous Alloys for Precision Component Fabrication

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell; Ramsey, Brian; Speegle, Chet; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Nickel alloys are favored for electroforming precision components. Nickel phosphorous and nickel cobalt phosphorous are studied in this work. A completely new and innovative electrolytic process eliminates the fumes present in electroless processes and is suitable for electroforming nickel phosphorous and nickel cobalt phosphorous alloys to any desirable thickness, using soluble anodes, without stripping of tanks. Solutions show excellent performance for extended throughput. Properties include, cleaner low temperature operation (40 - 45 C), high Faradaic efficiency, low stress, Rockwell C 52 - 54 hardness and as much as 2000 N per square millimeter tensile strength. Performance is compared to nickel and nickel cobalt electroforming.

  19. Electrolyte management considerations in modern nickel hydrogen and nickel cadmium cell and battery designs

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.; Zimmerman, A. H.

    1995-01-01

    In the early 1980's the NASA Lewis group addressed the topic of designing nickel hydrogen cells for LEO applications. As published in 1984, the design addressed the topics of gas management, liquid management, plate expansion, and the recombination of oxygen during overcharge. This design effort followed principles set forth in an earlier Lewis paper that addressed the topic of pore size engineering. At about that same time, the beneficial effect on cycle life of lower electrolyte concentrations was verified by Hughes Aircraft as part of a Lewis funded study. A succession of life cycle tests of these concepts have been carried out that essentially verified all of this earlier work. During these past two decades, some of the mysteries involved in the active material of the nickel electrode have been resolved by careful research efforts carried out at several laboratories. At The Aerospace Corporation, Dr. Zimmerman has been developing a sophisticated model of an operating nickel hydrogen cell which will be used to model certain mechanisms that have contributed to premature failures in nickel hydrogen and nickel cadmium cells. During the course of trying to understand and model abnormal nickel hydrogen cell behaviors, we have noted that not enough attention has been paid to the potassium ion content in these cells, and more recently batteries. Several of these phenomenon have been well known in the area of alkaline fuel cells, but only recently have they been examined as they might impact alkaline cell designs. This paper will review three general areas where the potassium ion content can impact the performance and life of nickel hydrogen and nickel cadmium devices, Once these phenomenon are understood conceptually, the impact of potassium content on a potential cell design can be evaluated with the aid of an accurate model of an operating cell or battery. All three of these areas are directly related to the volume tolerance and pore size engineering aspects of the

  20. Kinetics of gas phase reduction of nickel chloride in preparation for nickel nanoparticles

    SciTech Connect

    Suh, Yong Jae; Jang, Hee Dong . E-mail: hdjang@kigam.re.kr; Chang, Han Kwon; Hwang, Dae Won; Kim, Heon Chang

    2005-12-08

    We investigated the chemical kinetics of NiCl{sub 2} reduction to apply to the synthesis of nickel nanoparticles in a tubular furnace reactor. The conversion of NiCl{sub 2} increased monotonically with reaction temperature up to 99% at 950 deg. C, and in turn, the rate constant of the reaction increased from 78 to 286 with an increase in the temperature from 800 to 950 deg. C. The reaction rate was estimated to be the first order with respect to chloride concentration, and the rate constant obeyed the Arrhenius law, of which the activation energy and pre-exponential factor were 103.79 kJ/mol and 7.34 x 10{sup 6} min{sup -1}, respectively. Taking advantage of the kinetics, we synthesized crystalline nickel nanoparticles with average primary particle size ranging from 31 to 106 nm by systematically controlling the reactor temperature and chloride concentration.

  1. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOEpatents

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  2. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  3. Inhalation carcinogenicity study with nickel metal powder in Wistar rats.

    PubMed

    Oller, Adriana R; Kirkpatrick, Daniel T; Radovsky, Ann; Bates, Hudson K

    2008-12-01

    Epidemiological studies of nickel refinery workers have demonstrated an association between increased respiratory cancer risk and exposure to certain nickel compounds (later confirmed in animal studies). However, the lack of an association found in epidemiological analyses for nickel metal remained unconfirmed for lack of robust animal inhalation studies. In the present study, Wistar rats were exposed by whole-body inhalation to 0, 0.1, 0.4, and 1.0 mg Ni/m(3) nickel metal powder (MMAD=1.8 microm, GSD=2.4 microm) for 6 h/day, 5 days/week for up to 24 months. A subsequent six-month period without exposures preceded the final euthanasia. High mortality among rats exposed to 1.0 mg Ni/m(3) nickel metal resulted in the earlier termination of exposures in this group. The exposure level of 0.4 mg Ni/m(3) was established as the MTD for the study. Lung alterations associated with nickel metal exposure included alveolar proteinosis, alveolar histiocytosis, chronic inflammation, and bronchiolar-alveolar hyperplasia. No increased incidence of neoplasm of the respiratory tract was observed. Adrenal gland pheochromocytomas (benign and malignant) in males and combined cortical adenomas/carcinomas in females were induced in a dose-dependent manner by the nickel metal exposure. The incidence of pheochromocytomas was statistically increased in the 0.4 mg Ni/m(3) male group. Pheochromocytomas appear to be secondary to the lung toxicity associated with the exposure rather than being related to a direct nickel effect on the adrenal glands. The incidence of cortical tumors among 0.4 mg Ni/m(3) females, although statistically higher compared to the concurrent controls, falls within the historical control range; therefore, in the present study, this tumor is of uncertain relationship to nickel metal exposure. The lack of respiratory tumors in the present animal study is consistent with the findings of the epidemiological studies. PMID:18822311

  4. Isotope Specific Remediation Media and Systems - 13614

    SciTech Connect

    Denton, Mark S.; Mertz, Joshua L.; Morita, Keisuke

    2013-07-01

    Company (TEPCO). The tests have proven quite successful, even in high salt conditions, and, with loading and dose calculations being completed, will be proposed to add to the existing cesium system. There is no doubt, as high gamma isotopes are removed, other recalcitrant isotopes such as this will require innovative removal media, systems and techniques. Also coming out of this international effort are other ISM media and systems that can be applied more broadly to both Commercial Nuclear Power Plants (NPPs) as well as in Department of Energy (DOE) applications. This cesium and strontium specific media has further been successfully tested in 2012 at a Magnox station in the UK. The resulting proposed mitigation systems for pond and vault cleanup look quite promising. An extremely unusual ISM for carbon 14 (C-14), nickel (Ni-63) and cesium (Cs-137) has been developed for Diablo Canyon NPP for dose reduction testing in their fuel pool. These media will be deployed in Submersible Media Filter (SMF) and Submersible Columns (SC) systems adapted to standard Tri-Nuclear{sup R} housings common in the U.S. and UK. External Vessel Systems (mini-Fukushima) have also been developed as a second mitigation system for D and D and outages. Finally, technetium (Tc- 99) specific media developed for the Waste Treatment Plant (WTP) recycle or condensate (secondary) waste streams (WM 2011) are being further perfected and tested for At-Tank Tc-99 removal, as well as At Tank Cs media. In addition to the on-going media development, systems for deploying such media have developed over the last year and are in laboratory- and full-scale testing. These systems include the fore mentioned Submersible Media Filters (SMF), Submersible Columns (SC) and external pilot- and full-scale, lead-lag, canister systems. This paper will include the media development and testing, as well as that of the deployment systems themselves. (authors)

  5. Study of Nickel Ion Release in Simulated Body Fluid from C+-IMPLANTED Nickel Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Shafique, Muhammad Ahsan; Murtaza, G.; Saadat, Shahzad; Zaheer, Zeeshan; Shahnawaz, Muhammad; Uddin, Muhammad K. H.; Ahmad, Riaz

    2016-05-01

    Nickel ion release from NiTi shape memory alloy is an issue for biomedical applications. This study was planned to study the effect of C+ implantation on nickel ion release and affinity of calcium phosphate precipitation on NiTi alloy. Four annealed samples are chosen for the present study; three samples with oxidation layer and the fourth without oxidation layer. X-ray diffraction (XRD) spectra reveal amorphization with ion implantation. Proton-induced X-ray emission (PIXE) result shows insignificant increase in Ni release in simulated body fluid (SBF) and calcium phosphate precipitation up to 8×1013ions/cm2. Then Nickel contents show a sharp increase for greater ion doses. Corrosion potential decreases by increasing the dose but all the samples passivate after the same interval of time and at the same level of VSCE in ringer lactate solution. Hardness of samples initially increases at greater rate (up to 8×1013ions/cm2) and then increases with lesser rate. It is found that 8×1013ions/cm2 (≈1014) is a safer limit of implantation on NiTi alloy, this limit gives us lesser ion release, better hardness and reasonable hydroxyapatite incubation affinity.

  6. Structural, dielectric and magnetic properties of nickel substituted cobalt ferrite nanoparticles: Effect of nickel concentration

    SciTech Connect

    Velhal, Ninad B.; Patil, Narayan D.; Puri, Vijaya R.; Shelke, Abhijeet R.; Deshpande, Nishad G.

    2015-09-15

    Nickel substituted cobalt ferrite nanoparticles with composition Co{sub 1−x}Ni{sub x}Fe{sub 2}O{sub 4} (0.0 ≤ x ≤ 1.0) was synthesized using simple, low temperature auto combustion method. The X-ray diffraction patterns reveal the formation of cubic phase spinel structure. The crystallite size varies from 30-44 nm with the nickel content. Porous and agglomerated morphology of the bulk sample was displayed in the scanning electron microscopy. Micro Raman spectroscopy reveals continuous shift of E{sub g} and E{sub g}(2) stokes line up to 0.8 Ni substitution. The dispersion behavior of the dielectric constant with frequency and the semicircle nature of the impedance spectra show the cobalt nickel ferrite to have high resistance. The ferromagnetic nature is observed in all the samples, however, the maximum saturation magnetization was achieved by the 0.4 Ni substituted cobalt ferrite, which is up to the 92.87 emu/gm at 30K.

  7. Mortality of nickel workers: experience of men working with metallic nickel.

    PubMed Central

    Cox, J E; Doll, R; Scott, W A; Smith, S

    1981-01-01

    The mortality of men employed in a plant manufacturing nickel alloys from metallic nickel and other metals has been examined. The plant has operated since May 1953, and 1925 men were identified who had been employed in the operating areas at the plant, other than as members of the staff, for a total of five or more years, excluding breaks. Analysis of samples of air obtained from personal samplers showed that since 1975 most of the men are likely to have been exposed to average concentrations of nickel of between 0.5 and 0.9 mg Ni/m3. All but 22 (1.1%) of the men were successfully traced to 1 April 1978 or until they died or emigrated. One hundred and seventeen had died. The numbers of deaths observed from cancers of respiratory and other sites, other respiratory disease, ischaemic heart disease, and other causes of death were compared with the numbers expected from national and local mortality rates. No evidence of the existence of any occupational hazard was obtained. The number of deaths from lung cancer (15) in men employed for five years or more is small. At 98% of the number expected at local rates it is statistically compatible with risks of between 0.5 and 2.2 times "normal." PMID:7272235

  8. Shape Coexistence in Neutron-Rich Nickel Isotopes around N = 40

    NASA Astrophysics Data System (ADS)

    Prokop, C. J.; e14039 Collaboration; e14057 Collaboration

    2015-10-01

    Shape coexistence is a fascinating phenomenon in atomic nuclei characterized by multiple states with different intrinsic shapes coexisting at similar excitation energies. In even-even nuclei, a hallmark of shape coexistence is low-energy 0+ states. In 68Ni, the Monte-Carlo Shell Model (MCSM) employing the A3DA interaction, utilizing the fpg9/2d5 / 2 model space for protons and neutrons, predicts triple shape coexistence with three 0+ states below 3 MeV. Transitioning to 70Ni, the energy of the prolate-deformed 0+ state is predicted to drop precipitously from 2511 to 1525 keV. This is due to strengthening of the attractive νg9 / 2 - πf5 / 2 and repulsive νg9 / 2 - πf7 / 2 monopole interactions of the tensor force altering the effective single-particle energies of the πf7 / 2 and πf5 / 2 single-particle states, thereby reducing the spherical Z = 28 shell gap. Recent beta-decay spectroscopy experiments at the National Superconducting Cyclotron Laboratory (NSCL) have discovered a new excited 0+ state at 1567 keV in 70Ni. This result supports MCSM predictions extending the picture of shape coexistence to 70Ni and demonstrates the importance of the tensor force for describing the nuclear structure of neutron-rich nuclei. Results of the latest NSCL experiments will be presented. Supported by NSF Contract No. PHY-1102511, by the DOE NNSA Award Nos. DE-NA0000979 and DE-FG52-08NA28552, the U.S DOE SC NP Contract No. DE-AC-06CH11357 and Grant Nos. DE-FG02-94ER40834 and DE-FG02-96ER40983, and U.S. ARL Coop. Agreement W911NF-12-2-0019.

  9. Forensic Stable Isotope Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Cerling, Thure E.; Barnette, Janet E.; Bowen, Gabriel J.; Chesson, Lesley A.; Ehleringer, James R.; Remien, Christopher H.; Shea, Patrick; Tipple, Brett J.; West, Jason B.

    2016-06-01

    Stable isotopes are being used for forensic science studies, with applications to both natural and manufactured products. In this review we discuss how scientific evidence can be used in the legal context and where the scientific progress of hypothesis revisions can be in tension with the legal expectations of widely used methods for measurements. Although this review is written in the context of US law, many of the considerations of scientific reproducibility and acceptance of relevant scientific data span other legal systems that might apply different legal principles and therefore reach different conclusions. Stable isotopes are used in legal situations for comparing samples for authenticity or evidentiary considerations, in understanding trade patterns of illegal materials, and in understanding the origins of unknown decedents. Isotope evidence is particularly useful when considered in the broad framework of physiochemical processes and in recognizing regional to global patterns found in many materials, including foods and food products, drugs, and humans. Stable isotopes considered in the larger spatial context add an important dimension to forensic science.

  10. Sulfur isotopic data

    SciTech Connect

    Rye, R.O.

    1987-01-01

    Preliminary sulfur isotope data have been determined for samples of the Vermillion Creek coal bed and associated rocks in the Vermillion Creek basin and for samples of evaporites collected from Jurassic and Triassic formations that crop out in the nearby Uinta Mountains. The data are inconclusive, but it is likely that the sulfur in the coal was derived from the evaporites.

  11. Nickel-Catalyzed Aromatic C-H Functionalization.

    PubMed

    Yamaguchi, Junichiro; Muto, Kei; Itami, Kenichiro

    2016-08-01

    Catalytic C-H functionalization using transition metals has received significant interest from organic chemists because it provides a new strategy to construct carbon-carbon bonds and carbon-heteroatom bonds in highly functionalized, complex molecules without pre-functionalization. Recently, inexpensive catalysts based on transition metals such as copper, iron, cobalt, and nickel have seen more use in the laboratory. This review describes recent progress in nickel-catalyzed aromatic C-H functionalization reactions classified by reaction types and reaction partners. Furthermore, some reaction mechanisms are described and cutting-edge syntheses of natural products and pharmaceuticals using nickel-catalyzed aromatic C-H functionalization are presented. PMID:27573407

  12. Nickel-Catalyzed C-H Chalcogenation of Anilines.

    PubMed

    Müller, Thomas; Ackermann, Lutz

    2016-09-26

    The C-H thiolation of aniline derivatives was accomplished with a versatile nickel(II) catalyst under ligand-free conditions. The robust nature of the nickel catalysis system was reflected by the C-H thiolation with a good functional group tolerance and an ample scope, employing anilines possessing removable directing groups. The widely applicable nickel catalyst also allowed for aniline C-H selenylations, while mechanistic studies provided strong support that the rate-determining step is the C-H activation. PMID:27501081

  13. Nickel/ruthenium catalyst and method for aqueous phase reactions

    DOEpatents

    Elliott, D.C.; Sealock, J.L.

    1998-09-29

    A method of hydrogenation is described using a catalyst in the form of a plurality of porous particles wherein each particle is a support having nickel metal catalytic phase or reduced nickel deposited thereon in a first dispersed phase and an additional ruthenium metal deposited onto the support in a second dispersed phase. The additional ruthenium metal is effective in retarding or reducing agglomeration or sintering of the nickel metal catalytic phase thereby increasing the life time of the catalyst during hydrogenation reactions. 2 figs.

  14. REPORT FOR COMMERCIAL GRADE NICKEL CHARACTERIZATION AND BENCHMARKING

    SciTech Connect

    2012-12-20

    Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, has completed the collection, sample analysis, and review of analytical results to benchmark the concentrations of gross alpha-emitting radionuclides, gross beta-emitting radionuclides, and technetium-99 in commercial grade nickel. This report presents methods, change management, observations, and statistical analysis of materials procured from sellers representing nine countries on four continents. The data suggest there is a low probability of detecting alpha- and beta-emitting radionuclides in commercial nickel. Technetium-99 was not detected in any samples, thus suggesting it is not present in commercial nickel.

  15. High-temperature ductility of electro-deposited nickel

    NASA Technical Reports Server (NTRS)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  16. Health problems associated with nickel refining and use.

    PubMed

    Morgan, L G; Usher, V

    1994-04-01

    After a brief mention of history and world use the authors review the major hazards to health associated with nickel and its compounds. These include pulmonary and sino-nasal cancer from exposure to the dusts involved in certain, now obsolete, processes, dermatitis and nickel carbonyl poisoning. Brief mention is also made of other less well established or hypothetical health risks mentioned in the nickel context including asthma, pulmonary fibrosis and acute poisoning. In conclusion the authors mention some current work being undertaken in the occupational health field and give sources of further information. PMID:8210083

  17. Development of a unit risk factor for nickel and inorganic nickel compounds based on an updated carcinogenic toxicity assessment.

    PubMed

    Haney, Joseph T; McCant, Darrell D; Sielken, Robert L; Valdez-Flores, Ciriaco; Grant, Roberta L

    2012-02-01

    The TCEQ has developed a URF for nickel based on excess lung cancer in two epidemiological studies of nickel refinery workers with nickel species exposure profiles most similar to emissions expected in Texas (i.e., low in sulfidic nickel). One of the studies (Enterline and Marsh, 1982) was used in the 1986 USEPA assessment, while the other (Grimsrud et al., 2003) is an update to an earlier study (Magnus et al., 1982) used by USEPA. The linear multiplicative relative risk model with Poisson regression modeling was used to obtain maximum likelihood estimates and asymptotic variances for cancer potency factors (β) using cumulative nickel exposure levels versus observed and expected lung cancer mortality (Enterline and Marsh, 1982) or lung cancer incidence cases (Grimsrud et al., 2003). Life-table analyses were then used to develop URFs from these two studies, which were combined using weighting factors relevant to confidence to derive the final URF for nickel of 1.7E-04 per μg/m³. The de minimis air concentration corresponding to a 1 in 100,000 extra lung cancer risk level is 0.059 μg/m³. The TCEQ will use this conservative value to protect the general public in Texas against the potential carcinogenic effects from chronic exposure to nickel. PMID:22019551

  18. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Kumar, Ajeet; Saxena, Amit; De, Arnab; Shankar, Ravi; Mozumdar, Subho

    2013-06-01

    Industrial demands have generated a growing need to synthesize pure metal and metal-oxide nanoparticles of a desired size. We report a novel and convenient method for the synthesis of spherical, size tunable, well dispersed, stable nickel and nickel oxide nanoparticles by reduction of nickel nitrate at room temperature in a TX-100/n-hexanol/cyclohexane/water system by a reverse microemulsion route. We determined that reduction with alkaline sodium borohydrate in nitrogen atmosphere leads to the formation of nickel nanoparticles, while the use of hydrazine hydrate in aerobic conditions leads to the formation of nickel oxide nanoparticles. The influence of several reaction parameters on the size of nickel and nickel oxide nanoparticles were evaluated in detail. It was found that the size can be easily controlled either by changing the molar ratio of water to surfactant or by simply altering the concentration of the reducing agent. The morphology and structure of the nanoparticles were characterized by quasi-elastic light scattering (QELS), transmission electron microscopy (TEM), x-ray diffraction (XRD), electron diffraction analysis (EDA) and energy dispersive x-ray (EDX) spectroscopy. The results show that synthesized nanoparticles are of high purity and have an average size distribution of 5-100 nm. The nanoparticles prepared by our simple methodology have been successfully used for catalyzing various chemical reactions.

  19. Statistically determined nickel cadmium performance relationships

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1987-01-01

    A statistical analysis was performed on sealed nickel cadmium cell manufacturing data and cell matching data. The cells subjected to the analysis were 30 Ah sealed Ni/Cd cells, made by General Electric. A total of 213 data parameters was investigated, including such information as plate thickness, amount of electrolyte added, weight of active material, positive and negative capacity, and charge-discharge behavior. Statistical analyses were made to determine possible correlations between test events. The data show many departures from normal distribution. Product consistency from one lot to another is an important attribute for aerospace applications. It is clear from these examples that there are some significant differences between lots. Statistical analyses are seen to be an excellent way to spot those differences. Also, it is now proven beyond doubt that battery testing is one of the leading causes of statistics.

  20. Structural and optical properties of nanostructured nickel

    NASA Astrophysics Data System (ADS)

    Singh, J.; Pandey, J.; Gupta, R.; Kaurav, N.; Tripathi, J.

    2016-05-01

    Metal nanoparticles are attractive because of their special structure and better optical properties. Nickel nanoparticles (Ni-Np) have been synthesized successfully by thermal decomposition method in the presence of trioctyl phosphine (TOP) and oleylamine (OAm). The samples were characterized by X-ray diffraction (XRD), Zetapotential measurement and Fourier transforms infrared (FTIR) spectroscopy. The size of Ni nanoparticles can be readily tuned from 13.86 nm. As-synthesized Ni nanoparticles have hexagonal closed pack (hcp) cubic structure as characterized by power X-ray diffraction (XRD) prepared at 280°C. The possible formation mechanism has also been phenomenological proposed for as synthesized Ni-Np. The value of Zeta potential was found 12.25 mV.