Science.gov

Sample records for nickel oxide electrode

  1. Nickel anode electrode

    DOEpatents

    Singh, Prabhakar; Benedict, Mark

    1987-01-01

    A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

  2. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOEpatents

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  3. Method of producing nickel electrode

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.; Ohira, T.; Kumano, Y.; Nakao, T.

    1982-01-01

    A large capacity nickel electrode is provided in which the charging efficiency and discharge utilization coefficient are improved in comparison to nickel electrodes which are produced by the conventional method. Nickel electrodes retaining nickel active material or nickel active material and cobalt compounds on a porous nickel substrate are immersed in a cobalt sulfate aqueous solution whose pH is adjusted in the range of 3.5 to 6.0, followed by crystallization of the hydroxide or oxide by pyrolysis or immersion in alkali, thereby coating the surface of the nickel active material with cobalt crystals and simultaneously promoting alloying of the nickel-cobalt.

  4. Study of nickel electrode oxidation as a function of 80% depth of discharge cycling

    SciTech Connect

    Pickett, D.F. Jr.; Scoles, D.L.; Johnson, Z.W.; Hayden, J.W.; Pennington, R.D.

    1997-12-31

    Oxidation of nickel sinter used in nickel oxide electrodes in aerospace nickel cadmium cells leads to hydrogen gassing and the potential for cell rupture. The oxidation is directly related to loss of overcharge protection built into the cell during manufacturing. In nickel hydrogen cells, excessive oxidation of the nickel sinter can eventually lead to a burst before leak situation and is a potential source of failure. It is well known that nickel cadmium cells having nylon separators contribute to loss of overcharge via a hydrolysis reaction of the nylon in the potassium hydroxide electrolyte environment in the cell. The hydrolysis reaction produces lower chain organics which are oxidized by the positive electrode and oxygen. Oxidation of the organics diminishes the overcharge protection. With introduction of the Super NiCd{trademark} and the Magnum{trademark} nickel cadmium cells the nylon hydrolysis reaction is eliminated, but any reducing agent in the cell such as nickel or an organic additive can contribute to loss of overcharge protection. The present effort describes chemical analyses made to evaluate the extent of overcharge protection loss in nickel cadmium cells which do not have nylon hydrolysis, and quantifies the amount of hydrogen buildup in nickel hydrogen cells which are subjected to 80% depth of discharge cycling with and without the presence of cadmium in the positive electrode.

  5. Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Fen; Ye, Ke; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-03-01

    Fully metallic nickel nanowire arrays (NWAs) electrode is prepared by electrodepositing nickel within the pores and over-plating on the surface of polycarbonate template (PCT) with subsequent dissolution of the template in dichloromethane. The as-prepared electrode is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Urea electro-oxidation reaction in KOH solution on the nickel NWAs electrode is investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The results show that the nickel NWAs electrode achieves an onset oxidation potential of 0.25 V (vs. Ag/AgCl) and a peak current density of 160 mA cm-2 in 5 mol L-1 KOH and 0.33 mol L-1 urea accompanied with considerable stability.

  6. Electrooxidation of aliphatic alcohols on electrodes consisting of hydrophobicized supports coated with nickel oxides

    SciTech Connect

    Chaenko, N.V.; Kornienko, V.L.; Avrutskaya, I.A.; Fioshin, M.Ya.

    1987-12-01

    Two methods are presented to intensify the electrooxidation of aliphatic alcohols with low water solubility and to simplify end-product separation. One method comprised direct addition of higher nickel oxides to the active material of the electrode to be fabricated; the other involved depositing a layer of higher nickel oxides on a hydrophobicized support consisting of a mixture of a conducting material and the FP-4D hydrophobicizer. Electrolysis was carried out in a diaphragm-free two-compartment cell, one reagent and the other the electrolyte. Results are shown of hexyl alcohol oxidation on various composition supports coated with higher nickel oxides.

  7. Development of lightweight nickel electrodes for zinc/nickel oxide cells

    NASA Astrophysics Data System (ADS)

    Taucher, Waltraud; Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.

    A method for fabricating lightweight nickel electrodes has been developed by electrochemical impregnation of two different nickel fiber substrates. The electrochemical impregnation technique was applied galvanostatically at 35-50 mA/cm 2 in acidic solutions of nickel and cobalt nitrates (pH = 3). The nickel and cobalt contents of impregnated and formed electrodes was analyzed with atomic absorption spectrometry (AAS) and the amount of active nickel hydroxide was calculated. NiOOH electrode cycle-life performance testing was carried out in alkaline electrolyte (4.2-6.9 M KOH, 1 M LiOH) at a ˜ C/5 rate during charge and discharge. Electrodes based on substrate materials of high porosity (90%, FN 090 Nickel Felt, Sorapec) deliver excellent specific capacities of 133-145 mAh/g in moderately alkaline electrolyte (4.2 M KOH) with an active material utilization of 67-95% depending on the quantity of co-precipitated cobalt (1.3-8.3%). NiOOH electrodes using substrates with lower porosity (81%, Fibrex {50}/{50}= fiber/Ni powder, National Standard) obtain very stable specific capacities (400 cycles) of 91-93 mAh/g with a utilization rate of 110% in highly alkaline electrolytes (6.9 M KOH).

  8. Study of nickel hydroxide electrodes. 2: Oxidation products of nickel (2) hydroxides

    NASA Technical Reports Server (NTRS)

    Bode, H.; Demelt, K.; White, J.

    1986-01-01

    Pure phases of some oxidized Ni oxides were prepared galvanimetrically with the Ni(2) hydroxide electrode of an alkaline battery. The crystallographic data of these phases, their chemical behavior, and conditions of transition were studied.

  9. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics.

    PubMed

    Dlubak, Bruno; Martin, Marie-Blandine; Weatherup, Robert S; Yang, Heejun; Deranlot, Cyrile; Blume, Raoul; Schloegl, Robert; Fert, Albert; Anane, Abdelmadjid; Hofmann, Stephan; Seneor, Pierre; Robertson, John

    2012-12-21

    We report on graphene-passivated ferromagnetic electrodes (GPFE) for spin devices. GPFE are shown to act as spin-polarized oxidation-resistant electrodes. The direct coating of nickel with few layer graphene through a readily scalable chemical vapor deposition (CVD) process allows the preservation of an unoxidized nickel surface upon air exposure. Fabrication and measurement of complete reference tunneling spin valve structures demonstrate that the GPFE is maintained as a spin polarizer and also that the presence of the graphene coating leads to a specific sign reversal of the magneto-resistance. Hence, this work highlights a novel oxidation-resistant spin source which further unlocks low cost wet chemistry processes for spintronics devices.

  10. Nickel hydroxide deposited indium tin oxide electrodes as electrocatalysts for direct oxidation of carbohydrates in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Farzana, S.; Berchmans, Sheela

    In this work, the direct electrochemical oxidation of carbohydrates using nickel hydroxide modified indium tin oxide (ITO) electrodes in alkaline medium is demonstrated; suggesting the feasibility of using carbohydrates as a novel fuel in alkaline fuel cells applications. The chosen monosaccharides are namely glucose and fructose; disaccharides such as sucrose and lactose; and sugar acid like ascorbic acid for this study. ITO electrodes are chemically modified using a hexagonal lyotropic liquid crystalline phase template electrodeposition of nickel. Structural morphology, growth, orientation and electrochemical behaviour of Ni deposits are characterized using SEM, XRD, XPS and cyclic voltammetry (CV), respectively. Further electrochemical potential cycling process in alkaline medium is employed to convert these Ni deposits into corresponding nickel hydroxide modified electrodes. These electrodes are used as novel platform to perform the electrocatalytic oxidation of various carbohydrates in alkaline medium. It was found that bare and Ni coated ITO electrodes are inactive towards carbohydrates oxidation. The heterogeneous rate constant values are determined and calculated to be two orders of magnitude higher in the case of template method when compared to non-template technique. The observed effect is attributed to the synergistic effect of higher surface area of these deposits and catalytic ability of Ni(II)/Ni(III) redox couple.

  11. Effect of zinc and iron ions on the electrochemistry of nickel oxide electrode: Slow cyclic voltammetry. Technical report

    SciTech Connect

    Krejci, I.; Vanysek, P.

    1993-04-07

    Porous sintered nickel oxide electrodes were prepared by cathodic electroprecipitation from metal nitrate solutions and characterized by slow (0.1 mV/s) voltammetry in 6 mol/l KOH. Presence of iron or zinc ions resulted in decrease of electrode charging ability and similar changes in voltammograms were observed for both ions. Removal of iron or zinc ions and introduction of lithium ions partially restored the electrode and corresponding voltammogram to original conditions. Presence of cobalt in the electrode material diminished substantially the influence of zinc ions on the electrode properties.... Storage batteries, Power sources, Membrane transport, Ion transport, Nafion.

  12. Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode.

    PubMed

    Erdem, Ceren; Zeybek, Derya Koyuncu; Aydoğdu, Gözde; Zeybek, Bülent; Pekyardımcı, Sule; Kılıç, Esma

    2014-08-01

    In the present work, we designed an amperometric glucose biosensor based on nickel oxide nanoparticles (NiONPs)-modified carbon paste electrode. The biosensor was prepared by incorporation of glucose oxidase and NiONPs into a carbon paste matrix. It showed good analytical performances such as high sensitivity (367 μA mmolL(-1)) and a wide linear response from 1.9×10(-3) mmolL(-1) to 15.0 mmolL(-1) with a limit of detection (0.11 μmolL(-1)). The biosensor was used for the determination of glucose in human serum samples. The results illustrate that NiONPs have enormous potential in the construction of biosensor for determination of glucose.

  13. Recent developments in nickel electrode analysis

    NASA Technical Reports Server (NTRS)

    Whiteley, Richard V.; Daman, M. E.; Kaiser, E. Q.

    1991-01-01

    Three aspects of nickel electrode analysis for Nickel-Hydrogen and Nickel-Cadmium battery cell applications are addressed: (1) the determination of active material; (2) charged state nickel (as NiOOH + CoOOH); and (3) potassium ion content in the electrode. Four deloading procedures are compared for completeness of active material removal, and deloading conditions for efficient active material analyses are established. Two methods for charged state nickel analysis are compared: the current NASA procedure and a new procedure based on the oxidation of sodium oxalate by the charged material. Finally, a method for determining potassium content in an electrode sample by flame photometry is presented along with analytical results illustrating differences in potassium levels from vendor to vendor and the effects of stress testing on potassium content in the electrode. The relevance of these analytical procedures to electrode performance is reviewed.

  14. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    NASA Astrophysics Data System (ADS)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  15. Nickel cobalt oxide nanowire-reduced graphite oxide composite material and its application for high performance supercapacitor electrode material.

    PubMed

    Wang, Xu; Yan, Chaoyi; Sumboja, Afriyanti; Lee, Pooi See

    2014-09-01

    In this paper, we report a facile synthesis method of mesoporous nickel cobalt oxide (NiCo2O4) nanowire-reduced graphite oxide (rGO) composite material by urea induced hydrolysis reaction, followed by sintering at 300 degrees C. P123 was used to stabilize the GO during synthesis, which resulted in a uniform coating of NiCo2O4 nanowire on rGO sheet. The growth mechanism of the composite material is discussed in detail. The NiCo2O4-rGO composite material showed an outstanding electrochemical performance of 873 F g(-1) at 0.5 A g(-1) and 512 F g(-1) at 40 A g(-1). This method provides a promising approach towards low cost and large scale production of supercapacitor electrode material.

  16. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  17. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  18. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    PubMed

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling.

  19. Functional porous carbon/nickel oxide nanocomposites as binder-free electrodes for supercapacitors.

    PubMed

    Madhu, Rajesh; Veeramani, Vediyappan; Chen, Shen-Ming; Veerakumar, Pitchaimani; Liu, Shang-Bin

    2015-05-26

    High-surface-area, guava-leaf-derived, heteroatom-containing activated carbon (GHAC) materials were synthesized by means of a facile chemical activation method with KOH as activating agent and exploited as catalyst supports to disperse nickel oxide (NiO) nanocrystals (average size (2.0±0.1) nm) through a hydrothermal process. The textural and structural properties of these GHAC/NiO nanocomposites were characterized by various physicochemical techniques, namely, field-emission SEM, high-resolution TEM, elemental analysis, X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Raman spectroscopy. The as-synthesized GHAC/NiO nanocomposites were employed as binder-free electrodes, which exhibited high specific capacitance (up to 461 F g(-1) at a current density of 2.3 A g(-1)) and remarkable cycling stability, which may be attributed to the unique properties of GHAC and excellent electrochemical activity of the highly dispersed NiO nanocrystals. PMID:25882793

  20. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M. João; Silva, Teresa M.; Montemor, M. Fátima

    2015-07-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g-1 at 1 A g-1. The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g-1 to 20 A g-1. The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  1. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-06-15

    A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP.

  2. Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Liu, Yong; Liu, Lan; Shan, Jun; Zhang, Jingdong

    2015-06-15

    A high-performance palladium (Pd) and reduced graphene oxide (RGO) composite electrode was prepared on foam-nickel (foam-Ni) via two-step electrodeposition processes. The scanning electron microscopic (SEM) observation showed that the obtained Pd/RGO/foam-Ni composite electrode displayed a uniform and compact morphology. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopic (XPS) analysis confirmed the successful deposition of Pd and RGO on nickel substrate. The cyclic voltammetric (CV) measurements indicated that the presence of RGO greatly enhanced the active surface area of Pd particles deposited on foam-Ni. The as-deposited Pd/RGO/foam-Ni electrode was applied to electrocatalytic hydrodechlorination (ECH) of 4-chlorophenol (4-CP). Various factors influencing the dechlorination of 4-CP such as dechlorination current, initial concentration of 4-CP, Na2SO4 concentration and initial pH were systematically investigated. The thermodynamic analysis showed that the dechlorination reaction of 4-CP at different temperatures followed the first-order kinetics and the activation energy for 4-CP dechlorination on Pd/RGO/foam-Ni electrode was calculated to be 51.96 kJ mol(-1). Under the optimum conditions, the dechlorination efficiency of 4-CP could reach 100% after 60-min ECH treatment. Moreover, the prepared Pd/RGO/foam-Ni composite electrode showed good stability for recycling utilization in ECH of 4-CP. PMID:25731146

  3. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles.

    PubMed

    Salimi, Abdollah; Noorbakhash, Abdollah; Sharifi, Ensieh; Semnani, Abolfazl

    2008-12-01

    The electrochemical behavior of insulin at glassy carbon (GC) electrode modified with nickel oxide nanoparticles and guanine was investigated. Cyclic voltammetry technique has been used for electrodeposition of nickel oxide nanoparticles (NiOx) and immobilization of guanine on the surface GC electrode. In comparison to glassy carbon electrode modified with nickel oxide nanoparticles and bare GC electrode modified with adsorbed guanine, the guanine/nickel oxide nanoparticles/modified GC electrode exhibited excellent catalytic activity for the oxidation of insulin in physiological pH solutions at reduced overpotential. The modified electrode was applied for insulin detection using cyclic voltammetry or hydrodynamic amperometry techniques. It was found that the calibration curve was linear up to 4muM with a detection limit of 22pM and sensitivity of 100.9pA/pM under the optimized condition for hydrodynamic amperometry using a rotating disk modified electrode. In comparison to other electrochemical insulin sensors, this sensor shows many advantages such as simple preparation method without using any special electron transfer mediator or specific reagent, high sensitivity, excellent catalytic activity at physiological pH values, short response time, long-term stability and remarkable antifouling property toward insulin and its oxidation product. Additionally, it is promising for the monitoring of insulin in chromatographic effluents.

  4. Application of Gold Electrodes for the Study of Nickel Based Homogeneous Catalysts for Hydrogen Oxidation

    SciTech Connect

    Nepomnyashchii, Alexander B.; Liu, Fei; Roberts, John A.; Parkinson, Bruce A.

    2013-08-12

    Gold and glassy carbon working electrode materials are compared as suitable substrates for the hydrogen oxidation reaction with Ni(PCy2Nt-Bu2)2(BF4)2 used as a catalyst. Voltammetric responses showing electrocatalytic hydrogen oxidation mediated by the homogeneous electrocatalyst Ni(PCy2Nt-Bu2)2(BF4)2 are identical at glassy carbon and gold electrodes, which shows that gold electrode can be used for hydrogen oxidation reaction. This work is supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under FWP 56073.

  5. Nickel hydrogen bipolar battery electrode design

    NASA Technical Reports Server (NTRS)

    Puglisi, V. J.; Russell, P.; Verrier, D.; Hall, A.

    1985-01-01

    The preferred approach of the NASA development effort in nickel hydrogen battery design utilizes a bipolar plate stacking arrangement to obtain the required voltage-capacity configuration. In a bipolar stack, component designs must take into account not only the typical design considerations such as voltage, capacity and gas management, but also conductivity to the bipolar (i.e., intercell) plate. The nickel and hydrogen electrode development specifically relevant to bipolar cell operation is discussed. Nickel oxide electrodes, having variable type grids and in thicknesses up to .085 inch are being fabricated and characterized to provide a data base. A selection will be made based upon a system level tradeoff. Negative (hydrpogen) electrodes are being screened to select a high performance electrode which can function as a bipolar electrode. Present nickel hydrogen negative electrodes are not capable of conducting current through their cross-section. An electrode was tested which exhibits low charge and discharge polarization voltages and at the same time is conductive. Test data is presented.

  6. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes.

    PubMed

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-01-01

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)₂/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0-1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0-10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor. PMID:26690438

  7. Disposable Non-Enzymatic Glucose Sensors Using Screen-Printed Nickel/Carbon Composites on Indium Tin Oxide Electrodes

    PubMed Central

    Jeon, Won-Yong; Choi, Young-Bong; Kim, Hyug-Han

    2015-01-01

    Disposable screen-printed nickel/carbon composites on indium tin oxide (ITO) electrodes (DSPNCE) were developed for the detection of glucose without enzymes. The DSPNCE were prepared by screen-printing the ITO substrate with a 50 wt% nickel/carbon composite, followed by curing at 400 °C for 30 min. The redox couple of Ni(OH)2/NiOOH was deposited on the surface of the electrodes via cyclic voltammetry (CV), scanning from 0–1.5 V for 30 cycles in 0.1 M NaOH solution. The DSPNCE were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. The resulting electrical currents, measured by CV and chronoamperometry at 0.65 V vs. Ag/AgCl, showed a good linear response with glucose concentrations from 1.0–10 mM. Also, the prepared electrodes showed no interference from common physiologic interferents such as uric acid (UA) or ascorbic acid (AA). Therefore, this approach allowed the development of a simple, disposable glucose biosensor. PMID:26690438

  8. Non-Sintered Nickel Electrode

    DOEpatents

    Bernard, Patrick; Dennig, Corinne; Cocciantelli, Jean-Michel; Alcorta, Jose; Coco, Isabelle

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  9. The CMG Nickel Electrode

    NASA Technical Reports Server (NTRS)

    Depaul, R. A.; Gutridge, I.

    1981-01-01

    The development and design of the Controlled Microgeometry electrode are described. Advantages of the electrode over others in existance include a higher number of ampere hours per kilogram and the ability to make them over a wide range of thicknesses. The parameters that control the performance of the electrode can be individually controlled over a wide range. Therefore, the electrode may be designed to give the optimum performance for a given duty cycle.

  10. Development of a lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, D. L.; Reid, M. A.

    1984-01-01

    Nickel electrodes made using lightweight plastic plaque are about half the weight of electrodes made from state of the art sintered nickel plaque. This weight reduction would result in a significant improvement in the energy density of batteries using nickel electrodes (nickel hydrogen, nickel cadmium and nickel zinc). These lightweight electrodes are suitably conductive and yield comparable capacities (as high as 0.25 AH/gm (0.048 AH/sq cm)) after formation. These lightweight electrodes also show excellent discharge performance at high rates.

  11. Migration of Co in nickel oxide/hydroxide of a nickel electrode in a Ni/H2 cell

    NASA Technical Reports Server (NTRS)

    Lim, Hong S.; Doty, Robert E.

    1993-01-01

    Cobalt redistribution in nickel active material has been reported. This redistribution was suspected to be related to capacity fading. The objective of this work is to establish a relationship between cobalt redistribution and capacity fading. Microscopic cobalt distribution in nickel active material was studied using three EDX techniques: line scan, point-by-point analysis, and dot maps. Results from this study are presented.

  12. Organic devices based on nickel nanowires transparent electrode

    PubMed Central

    Kim, Jeongmo; da Silva, Wilson Jose; bin Mohd Yusoff, Abd. Rashid; Jang, Jin

    2016-01-01

    Herein, we demonstrate a facile approach to synthesize long nickel nanowires and discuss its suitability to replace our commonly used transparent electrode, indium-tin-oxide (ITO), by a hydrazine hydrate reduction method where nickel ions are reduced to nickel atoms in an alkaline solution. The highly purified nickel nanowires show high transparency within the visible region, although the sheet resistance is slightly larger compared to that of our frequently used transparent electrode, ITO. A comparison study on organic light emitting diodes and organic solar cells, using commercially available ITO, silver nanowires, and nickel nanowires, are also discussed. PMID:26804335

  13. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance, thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder. The second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested, and evaluated at the electrode and cell level.

  14. Advances in lightweight nickel electrode technology

    NASA Technical Reports Server (NTRS)

    Coates, Dwaine; Paul, Gary; Wheeler, James R.; Daugherty, Paul

    1989-01-01

    Studies are currently underway to further the development of lightweight nickel electrode technology. Work is focused primarily on the space nickel-hydrogen system and nickel-iron system but is also applicable to the nickel-cadmium and nickel-zinc systems. The goal is to reduce electrode weight while maintaining or improving performance thereby increasing electrode energy density. Two basic electrode structures are being investigated. The first is the traditional nickel sponge produced from sintered nickel-carbonyl powder and the second is a new material for this application which consists of a non-woven mat of nickel fiber. Electrodes are being manufactured, tested and evaluated at the electrode and cell level.

  15. Electrochemical Imprinted Polycrystalline Nickel-Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of L-Serine.

    PubMed

    Dai, Wei; Li, Hongji; Li, Mingji; Li, Cuiping; Wu, Xiaoguo; Yang, Baohe

    2015-10-21

    This paper presents a novel and versatile method for the fabrication of half nanotubes (HNTs) using a flexible template-based nanofabrication method denoted as electrochemical imprinting. With use of this method, polycrystalline nickel and nickel(II) oxide (Ni-NiO) HNTs were synthesized using pulsed electrodeposition to transfer Ni, deposited by radio frequency magnetron sputtering on a porous polytetrafluoroethylene template, onto a boron-doped diamond (BDD) film. The Ni-NiO HNTs exhibited semicircular profiles along their entire lengths, with outer diameters of 50-120 nm and inner diameters of 20-50 nm. The HNT walls were formed of Ni and NiO nanoparticles. A biosensor for the detection of L-serine was fabricated using a BDD electrode modified with Ni-NiO HNTs, and the device demonstrated satisfactory analytical performance with high sensitivity (0.33 μA μM(-1)) and a low limit of detection (0.1 μM). The biosensor also exhibited very good reproducibility and stability, as well as a high anti-interference ability against amino acids such as L-leucine, L-tryptophan, L-cysteine, L-phenylalanine, L-arginine, and L-lysine.

  16. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1995-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting, This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Two color-imaging techniques were employed to differentiate between the phases within the electrodes. These techniques aided in distinguishing the relative amounts of nickel hyroxide surface loading on each electrode, thereby relating surface loading to bend strength. Bend strength was found to increase with the amount of surface loading.

  17. Lightweight Nickel Electrode Development Program

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1998-01-01

    Because of its relatively high specific energy and excellent cycling capability, the nickel-hydrogen (Ni-H2) cell is used extensively to store energy in aerospace systems. For the past several years, the NASA Lewis Research Center has been developing the Ni-H2 cell to improve its components, design, and operating characteristics. The battery size and weight are crucial parameters in aerospace and spacecraft power systems for applications such as the International Space Station, space satellites, and space telescopes. The nickel electrode has been identified as the heaviest and most critical component of the Ni-H2 cell. Consequently, Lewis began and is leading a program to reduce the electrode's weight by using lightweight plaques.

  18. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  19. The zinc electrode - Its behaviour in the nickel oxide-zinc accumulator

    NASA Astrophysics Data System (ADS)

    Certain aspects of zinc electrode reaction and behavior are investigated in view of their application to batteries. The properties of the zinc electrode in a battery system are discussed, emphasizing porous structure. Shape change is emphasized as the most important factor leading to limited battery cycle life. It is shown that two existing models of shape change based on electroosmosis and current distribution are unable to consistently describe observed phenomena. The first stages of electrocrystallization are studied and the surface reactions between the silver substrate and the deposited zinc layer are investigated. The reaction mechanism of zinc and amalgamated zinc in an alkaline electrolyte is addressed, and the batter system is studied to obtain information on cycling behavior and on the shape change phenomenon. The effect on cycle behavior of diferent amalgamation techniques of the zinc electrode and several additives is addressed. Impedance measurements on zinc electrodes are considered, and battery behavior is correlated with changes in the zinc electrode during cycling.

  20. Lightweight fibrous nickel electrodes for nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1989-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art sintered nickel electrodes. Lightweight fibrous materials or plaques are used as conductive supports for the nickel hydroxide active material. These materials are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle-tested in a low Earth orbit regime at 80 percent depth of discharge.

  1. Bending Properties of Nickel Electrodes for Nickel-Hydrogen Batteries

    NASA Technical Reports Server (NTRS)

    Lerch, Brad A.; Wilson, Richard M.; Keller, Dennis; Corner, Ralph

    1996-01-01

    Recent changes in manufacturing have resulted in nickel-hydrogen batteries that fail prematurely by electrical shorting. This failure is believed to be a result of a blistering problem in the nickel electrodes. In this study, the bending properties of nickel electrodes are investigated in an attempt to correlate the bending properties of the electrode with its propensity to blister. Nickel electrodes from three different batches of material were tested in both the as-received and impregnated forms. The effects of specimen curvature and position within the electrode on the bending strength were studied, and within-electrode and batch-to-batch variations were addressed. Bend strength was found to increase with the amount of surface loading.

  2. DNA/nickel oxide nanoparticles/osmium(III)-complex modified electrode toward selective oxidation of l-cysteine and simultaneous detection of l-cysteine and homocysteine.

    PubMed

    Sharifi, Ensiyeh; Salimi, Abdollah; Shams, Esmaeil

    2012-08-01

    The modification of glassy carbon (GC) electrode with electrodeposited nickel oxide nanoparticles (NiOxNPs) and deoxyribonucleic acid (DNA) is utilized as a new efficient platform for entrapment of osmium (III) complex. Surface morphology and electrochemical properties of the prepared nanocomposite modified electrode (GC/DNA/NiOxNPs/Os(III)-complex) were investigated by FESEM, cyclic voltammetry and electrochemical impedance spectroscopy techniques. Cyclic voltammetric results indicated the excellent electrocatalytic activity of the resulting electrode toward oxidation of l-cysteine (CySH) at reduced overpotential (0.1 V vs. Ag/AgCl). Using chronoamperometry to CySH detection, the sensitivity and detection limit of the biosensor are obtained as 44 μA mM(-1) and 0.07 μM with a concentration range up to 1000 μM. The electrocatalytic activity of the modified electrode not only for oxidation of low molecular-mass biothiols derivatives such as, glutathione, l-cystine, l-methionine and electroactive biological species ( dopamine, uric acid, glucose) is negligible but also for very similar biothiol compound (homocysteine) no recognizable response is observed at the applied potential window. Furthermore, the simultaneous voltammetric determination of l-cysteine and homocysteine compounds without any separation or pretreatment process was reported for the first time in this work. Finally, the applicability of sensor for the analysis of CySH concentration in complex serum samples was successfully demonstrated. Highly selectivity, excellent electrocatalytic activity and stability, remarkable antifouling property toward thiols and their oxidation products, as well as the ability for simultaneous detection of l-cysteine and homocysteine are remarkably advantageous of the proposed DNA based biosensor.

  3. Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type Contact Electrode.

    PubMed

    Corani, Alice; Li, Ming-Hsien; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang; El Nahhas, Amal; Zheng, Kaibo; Yartsev, Arkady; Sundström, Villy; Ponseca, Carlito S

    2016-04-01

    There is a mounting effort to use nickel oxide (NiO) as p-type selective electrode for organometal halide perovskite-based solar cells. Recently, an overall power conversion efficiency using this hole acceptor has reached 18%. However, ultrafast spectroscopic investigations on the mechanism of charge injection as well as recombination dynamics have yet to be studied and understood. Using time-resolved terahertz spectroscopy, we show that hole transfer is complete on the subpicosecond time scale, driven by the favorable band alignment between the valence bands of perovskite and NiO nanoparticles (NiO(np)). Recombination time between holes injected into NiO(np) and mobile electrons in the perovskite material is shown to be hundreds of picoseconds to a few nanoseconds. Because of the low conductivity of NiO(np), holes are pinned at the interface, and it is electrons that determine the recombination rate. This recombination competes with charge collection and therefore must be minimized. Doping NiO to promote higher mobility of holes is desirable in order to prevent back recombination.

  4. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  5. Lightweight nickel electrode for nickel hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Britton, D. L.

    1986-01-01

    The nickel electrode was identified as the heaviest component of the nickel hydrogen (NiH2) battery. The NASA Lewis Research Center is developing nickel electrodes for NiH2 battery devices which will be lighter in weight and have higher energy densities when cycled under a low Earth orbit regime at deep depths of discharge. Lightweight plaques are first exposed to 31 percent potassium hydroxide for 3 months to determine their suitability for use as electrode substrates from a chemical corrosion standpoint. Pore size distribution and porosity of the plaques are then measured. The lightweight plaques examined are nickel foam, nickel felt, nickel plastic and nickel plated graphite. Plaques are then electrochemically impregnated in an aqueous solution. Initial characterization tests of the impregnated plaques are performed at five discharge levels, C/2, 1.0 C, 1.37 C, 2.0C, and 2.74 C rates. Electrodes that passed the initial characterization screening test will be life cycle tested. Lightweight electrodes are approximately 30 to 50 percent lighter in weight than the sintered nickel electrode.

  6. Lightweight nickel electrode for nickel hydrogen cells and batteries

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1986-01-01

    The nickel electrode was identified as the heaviest component of the nickel hydrogen (NiH2) battery. The NASA Lewis Research Center is developing nickel electrodes for NiH2 battery devices which will be lighter in weight and have higher energy densities when cycled under a low Earth orbit regime at deep depths of discharge. Lightweight plaques are first exposed to 31 percent potassium hydroxide for 3 months to determine their suitability for use as electrode substrates from a chemical corrosion standpoint. Pore size distribution and porosity of the plaques are then measured. The lightweight plaques examined are nickel foam, nickel felt, nickel plastic and nickel plated graphite. Plaques are then electrochemically impregnated in an aqueous solution. Initial characterization tests of the impregnated plaques are performed at five discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C rates. Electrodes that passed the initial characterization screening test will be life cycle tested. Lightweight electrodes are approximately 30 to 50 percent lighter in weight than the sintered nickel electrode.

  7. Long Life Nickel Electrodes for Nickel-Hydrogen Cells: Fiber Substrates Nickel Electrodes

    NASA Technical Reports Server (NTRS)

    Rogers, Howard H.

    2000-01-01

    Samples of nickel fiber mat electrodes were investigated over a wide range of fiber diameters, electrode thickness, porosity and active material loading levels. Thickness' were 0.040, 0.060 and 0.080 inches for the plaque: fiber diameters were primarily 2, 4, and 8 micron and porosity was 85, 90, and 95%. Capacities of 3.5 in. diameter electrodes were determined in the flooded condition with both 26 and 31% potassium hydroxide solution. These capacity tests indicated that the highest capacities per unit weight were obtained at the 90% porosity level with a 4 micron diameter fiber plaque. It appeared that the thinner electrodes had somewhat better performance, consistent with sintered electrode history. Limited testing with two-positive-electrode boiler plate cells was also carried out. Considerable difficulty with constructing the cells was encountered with short circuits the major problem. Nevertheless, four cells were tested. The cell with 95% porosity electrodes failed during conditioning cycling due to high voltage during charge. Discharge showed that this cell had lost nearly all of its capacity. The other three cells after 20 conditioning cycles showed capacities consistent with the flooded capacities of the electrodes. Positive electrodes made from fiber substrates may well show a weight advantage of standard sintered electrodes, but need considerably more work to prove this statement. A major problem to be investigated is the lower strength of the substrate compared to standard sintered electrodes. Problems with welding of leads were significant and implications that the electrodes would expand more than sintered electrodes need to be investigated. Loading levels were lower than had been expected based on sintered electrode experiences and the lower loading led to lower capacity values. However, lower loading causes less expansion and contraction during cycling so that stress on the substrate is reduced.

  8. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    PubMed

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit. PMID:27430868

  9. Progress in the development of lightweight nickel electrode

    SciTech Connect

    Britton, D.L.

    1992-06-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  10. Progress in the development of lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1992-01-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  11. Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance.

    PubMed

    Cao, Fei; Guo, Shu; Ma, Huiyan; Shan, Decai; Yang, Shengxue; Gong, Jian

    2011-01-15

    Nickel oxide microfibers (NiO-MFs) were directly immobilized onto the surface of fluorine tin oxide (FTO) electrode by electrospinning and calcination without using any immobilization matrix for nonenzymatic glucose sensor. Morphology and structure of NiO-MFs were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffraction pattern (XRD). The electrochemical and electrocatalytic performances of the NiO-MFs modified electrodes prepared at different calcination temperatures ranging from 300 to 500°C were evaluated by cyclic voltammetry (CV). The CV results have demonstrated that NiO-MFs modified electrode prepared at 300°C displayed distinct increase in electrocatalytic activity toward the oxidation of glucose, which is explored to develop an amperometric nonenzymatic glucose sensor. The NiO-MFs prepared at 300°C based amperometric nonenzymatic glucose sensor has ultrasensitive current (1785.41 μA mM(-1) cm(-2)) response and low detection limit of 3.3×10(-8) M (signal/noise ratio (S/N)=3), which are among the best values reported in literature. Additionally, excellent selectivity and stability have also been obtained.

  12. Electrochemical investigation of the voltammetric determination of hydrochlorothiazide using a nickel hydroxide modified nickel electrode.

    PubMed

    Machini, Wesley B S; David-Parra, Diego N; Teixeira, Marcos F S

    2015-12-01

    The preparation and electrochemical characterization of a nickel hydroxide modified nickel electrode as well as its behavior as electrocatalyst toward the oxidation of hydrochlorothiazide (HCTZ) were investigated. The electrochemical behavior of the modified electrode and the electrooxidation of HCTZ were explored using cyclic voltammetry. The voltammetric response of the modified electrode in the detection of HCTZ is based on the electrochemical oxidation of the Ni(II)/Ni(III) and a chemical redox process. The analytical parameters for the electrooxidation of HCTZ by the nickel hydroxide modified nickel electrode were obtained in NaOH solution, in which the linear voltammetric response was in the concentration range from 1.39×10(-5) to 1.67×10(-4)mol L(-1) with a limit of detection of 7.92×10(-6)mol L(-1) and a sensitivity of 0.138 μA Lmmol(-1). Tafel analysis was used to elucidate the kinetics and mechanism of HCTZ oxidation by the modified electrode.

  13. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    NASA Technical Reports Server (NTRS)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  14. Perfluorodiethoxymethane on nickel and nickel oxide surfaces

    SciTech Connect

    Jacobson, J.

    1994-03-03

    The interaction of perfluorodiethoxymethane with a nickel single crystal, Ni(100); a nickel crystal with chemisorbed oxygen, Ni(100)-c(2x2)O; and a nickel crystal with nickel oxide crystallites, NiO(100) is investigated in an ultra high vacuum environment using thermal desorption spectroscopy and high resolution electron energy loss spectroscopy. Nickel, a component of hard disk drives and stainless steel, is used to represent metal surfaces in these {open_quotes}real{close_quotes} systems. Perfluorodiethoxymethane is used in this study as a model compound of industrial perfluoropolyether lubricants. These lubricants are known for their exceptional stability, except in the presence of metals. Perfluorodiethoxymethane contains the acetal group (-OCF{sub 2}O-), believed to be particularly vulnerable to attack in the presence of Lewis acids. Since the surfaces studied show increasing Lewis acidity at the nickel atom sites, one might expect to see increasing decomposition of perfluorodiethoxymethane due to acidic attack of the acetal group. No decomposition of perfluorodiethoxymethane is observed on the clean Ni(100) surface, while more research is needed to determine whether a small decomposition pathway is observed on the oxygenated surfaces, or whether sample impurities are interfering with results. The strength of the bonding of perfluorodiethoxymethane to the surface is found to increase as the nickel atoms sites become more acidic in moving from Ni(100) to Ni (100)-c(2x2)O to NiO (100).

  15. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low Earth orbit regime at 40 and 80 percent depths-of-discharge.

  16. Method of Making a Nickel Fiber Electrode for a Nickel Based Battery System

    NASA Technical Reports Server (NTRS)

    Britton, Doris L. (Inventor)

    2001-01-01

    The general purpose of the invention is to develop a high specific energy nickel electrode for a nickel based battery system. The invention discloses a method of producing a lightweight nickel electrode which can be cycled to deep depths of discharge (i.e., 40% or greater of electrode capacity). These deep depths of discharge can be accomplished by depositing the required amount of nickel hydroxide active material into a lightweight nickel fiber substrate.

  17. Structural transformation of nickel hydroxide films during anodic oxidation

    SciTech Connect

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  18. High surface area, low weight composite nickel fiber electrodes

    NASA Technical Reports Server (NTRS)

    Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.

    1993-01-01

    The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.

  19. Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence.

    PubMed

    Sun, Wei; Wang, Xiuli; Lu, Yongxi; Gong, Shixing; Qi, Xiaowei; Lei, Bingxin; Sun, Zhenfan; Li, Guangjiu

    2015-04-01

    In this paper a new electrochemical DNA biosensor was prepared by using graphene (GR) and nickel oxide (NiO) nanocomposite modified carbon ionic liquid electrode (CILE) as the substrate electrode. GR and NiO nanoparticles were electrodeposited on the CILE surface step-by-step to get the nanocomposite. Due to the strong affinity of NiO with phosphate groups of ssDNA, oligonucleotide probe with a terminal 5'-phosphate group could be attached on the surface of NiO/GR/CILE, which could further hybridize with the target ssDNA sequence. Methylene blue (MB) was used as the electrochemical indicator for monitoring the hybridization reaction. Under the optimal conditions the reduction peak current of MB was proportional to the concentration of salmonella enteritidis gene sequence in the range from 1.0×10(-13) to 1.0×10(-6)molL(-1) with a detection limit as 3.12×10(-14)molL(-1). This electrochemical DNA sensor exhibited good discrimination ability to one-base and three-base mismatched ssDNA sequences, and the polymerase chain reaction amplification product of salmonella enteritidis gene sequences were further detected with satisfactory results. PMID:25686924

  20. Electrochemical deoxyribonucleic acid biosensor based on electrodeposited graphene and nickel oxide nanoparticle modified electrode for the detection of salmonella enteritidis gene sequence.

    PubMed

    Sun, Wei; Wang, Xiuli; Lu, Yongxi; Gong, Shixing; Qi, Xiaowei; Lei, Bingxin; Sun, Zhenfan; Li, Guangjiu

    2015-04-01

    In this paper a new electrochemical DNA biosensor was prepared by using graphene (GR) and nickel oxide (NiO) nanocomposite modified carbon ionic liquid electrode (CILE) as the substrate electrode. GR and NiO nanoparticles were electrodeposited on the CILE surface step-by-step to get the nanocomposite. Due to the strong affinity of NiO with phosphate groups of ssDNA, oligonucleotide probe with a terminal 5'-phosphate group could be attached on the surface of NiO/GR/CILE, which could further hybridize with the target ssDNA sequence. Methylene blue (MB) was used as the electrochemical indicator for monitoring the hybridization reaction. Under the optimal conditions the reduction peak current of MB was proportional to the concentration of salmonella enteritidis gene sequence in the range from 1.0×10(-13) to 1.0×10(-6)molL(-1) with a detection limit as 3.12×10(-14)molL(-1). This electrochemical DNA sensor exhibited good discrimination ability to one-base and three-base mismatched ssDNA sequences, and the polymerase chain reaction amplification product of salmonella enteritidis gene sequences were further detected with satisfactory results.

  1. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  2. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples.

  3. Nickel/cobalt oxide-decorated 3D graphene nanocomposite electrode for enhanced electrochemical detection of urea.

    PubMed

    Nguyen, Nhi Sa; Das, Gautam; Yoon, Hyon Hee

    2016-03-15

    A NiCo2O4 bimetallic electro-catalyst was synthesized on three-dimensional graphene (3D graphene) for the non-enzymatic detection of urea. The structural and morphological properties of the NiCo2O4/3D graphene nanocomposite were characterized by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The NiCo2O4/3D graphene was deposited on an indium tin oxide (ITO) glass to fabricate a highly sensitive urea sensor. The electrochemical properties of the prepared electrode were studied by cyclic voltammetry. A high sensitivity of 166 μAmM(-)(1)cm(-)(2) was obtained for the NiCo2O4/3D graphene/ITO sensor. The sensor exhibited a linear range of 0.06-0.30 mM (R(2)=0.998) and a fast response time of approximately 1.0 s with a detection limit of 5.0 µM. Additionally, the sensor exhibited high stability with a sensitivity decrease of only 5.5% after four months of storage in ambient conditions. The urea sensor demonstrates feasibility for urea analysis in urine samples. PMID:26433071

  4. Development of Sintered Fiber Nickel Electrodes for Aerospace Batteries

    NASA Technical Reports Server (NTRS)

    Francisco, Jennifer; Chiappetti, Dennis; Brill, Jack

    1997-01-01

    The nickel electrode is the specific energy limiting component in nickel battery systems. A concerted effort is currently underway to improve NiH2 performance while decreasing system cost. Increased performance with electrode specific energy (mAh/g) is the major goal of this effort. However, cost reduction is also an important part of the overall program, achieved by reducing the electrode weight. A lightweight, high energy density, nickel electrode is being, developed based on a highly porous, sintered fiber, nickel substrate. This developing technology has many applications, but is highly, applicable to the military and aerospace industries.

  5. Oxidation of methanol on perovskite-type La 2- xSr xNiO 4 (0 ≤ x ≤ 1) film electrodes modified by dispersed nickel in 1 M KOH

    NASA Astrophysics Data System (ADS)

    Singh, R. N.; Singh, A.; Mishra, D.; Anindita; Chartier, P.

    Finely-dispersed nickel particles are electrodeposited on high surface-area perovskite-type La 2- xSr xNiO 4 (0 ≤ x ≤ 1) electrodes for possible use in a direct methanol fuel cell (DMFC). The study is conducted by cyclic voltammetry, chronoamperometry, impedance spectroscopy and anodic Tafel polarization techniques. The results show that the apparent electrocatalytic activities of the modified oxide electrodes are much higher than those of unmodified electrodes under similar experimental conditions; the observed activity is the greatest with the modified La 1.5Sr 0.5NiO 4 electrode. At 0.550 V (vs. Hg|HgO) in 1 M KOH + 1 M CH 3OH at 25 °C, the latter electrode delivers a current density of over 200 mA cm -2, whereas other electrodes of the series produce relatively low values (65-117 mA cm -2). To our knowledge, such high methanol oxidation current densities have not been reported on any other non-platinum electrode in alkaline solution. Further, the modified electrodes are not poisoned by methanol oxidation intermediates/products.

  6. Light Weight Design Nickel-Alkaline Cells Using Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Pickett, David F.; Willis, Bob; Britton, Doris; Saelens, Johan

    2005-01-01

    Using fiber electrode technology, currently produced by Bekaert Corporation (Bekaert), Electro Energy, Inc., (EEI) Mobile Energy Products Group (formerly, Eagle-Picher Technologies, LLC., Power Systems Department) in Colorado Springs, CO has demonstrated that it is feasible to manufacture flight weight nickel-hydrogen cells having about twice the specific energy (80 vs. 40 watt-hr/kg) as state-of-the-art nickel-hydrogen cells that are flown on geosynchronous communications satellites. Although lithium-ion battery technology has made large in-roads to replace the nickel-alkaline technology (nickel-cadmium, nickel-metal hydride), the technology offered here competes with lithium-ion weight and offers alternatives not present in the lithium-ion chemistry such as ability to undergo continuous overcharge, reversal on discharge and sustain rate capability sufficient to start automotive and aircraft engines at subzero temperatures. In development to date seven 50 ampere-hour nickel-hydrogen have been constructed, acceptance tested and briefly tested in a low earth orbit (LEO) cycle regime. The effort was jointly funded by Electro Energy, Inc. and NASA Glenn Research Center, Cleveland, OH. Five of the seven cells have been shipped to NASA GRC for further cycle testing. Two of the cells experienced failure due to internal short circuits during initial cycle testing at EEL Destructive Physical Analysis (DPA) of one of the cells has shown the failure mode to be due to inadequate hydrogen catalyst electrodes that were not capacity balanced with the higher energy density nickel oxide electrodes. In the investigators opinion, rebuild of the cells using proper electrode balance would result in cells that could sustain over 30,000 cycles at moderate depths-of-discharge in a LEO regime or endure over 20 years of geosynchronous orbit (GEO) cycling while realizing a two-fold increase in specific energy for the battery or a 1.1 kg weight savings per 50 ampere-hour cell. Additional

  7. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    NASA Technical Reports Server (NTRS)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  8. Paste Type Nickel Electrode Containing Compound And At Least One Other Element

    DOEpatents

    Bernard, Patrick; Bertrand, Fran.cedilla.oise; Simonneau, Olivier

    1999-11-30

    The present invention provides a paste type nickel electrode for a storage cell having an alkaline electrolyte, the electrode comprising a current collector and a paste containing a nickel-based hydroxide and an oxidized compound of cobalt syncrystallized with at least one other element, wherein said hydroxide forms a first powder and wherein said compound forms a second powder distinct from said first powder, said powders being mixed mechanically within said paste.

  9. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.

    1994-01-01

    The objectives of this investigation have been to define the structures of charged active mass, discharged active mass, and related precursor materials (alpha-phases), with the purpose of better understanding the chemical and electrochemical reactions, including failure mechanisms and cobalt incorporation, so that the nickel electrode may be improved. Although our primary tool has been Raman spectroscopy, the structural conclusions drawn from the Raman data have been supported and augmented by three other analysis methods: infrared spectroscopy, powder X-ray Diffraction (XRD), and x-ray absorption spectroscopy (in particular EXAFS, Extended X-ray Absorption Fine Structure spectroscopy).

  10. High performance nickel electrodes for space power applications

    NASA Technical Reports Server (NTRS)

    Adanuvor, Prosper K.; Pearson, Johnnie A.; Miller, Brian; Tatarchuk, Bruce; Britton, Doris L.

    1995-01-01

    The specific energy density and the performance of nickel electrodes are generally limited by the electrode microstructure and the nature of the active material within the electrode matrix. Progress is being made in our laboratory in a collaborative effort with NASA-LEWIS Research Center to develop lighter weight, mechanically stable and highly efficient nickel electrodes for aerospace applications. Our approach is based on an electrode microstructure fabricated from a mixture of nickel fibers as small as 2 micro m diameter and cellulose fibers. Results will be presented to show the optimum conditions for impregnating this electrode microstructure with nickel hydroxide active material. Performance data in half-cell tests and cycle life data will also be presented. The flexibility of this electrode microstructure and the significant advantages it offers in terms of weight and performance will be demonstrated, in particular its ability to accept charge at high rates and to discharge at high rates.

  11. Process for producing nickel electrode having lightweight substrate

    NASA Technical Reports Server (NTRS)

    Lim, Hong S. (Inventor)

    1996-01-01

    A nickel electrode having a lightweight porous nickel substrate is subjected to a formation cycle involving heavy overcharging and under-discharging in a KOH electrolyte having a concentration of 26% to 31%, resulting in electrodes displaying high active material utilization.

  12. Nongassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The failure of nickel-cadmium storage batteries due to severe gassing during charging is discussed. In order to increase the life of such cells, nongassing positive and negative electrodes are used. The gassing characteristics of nickel electrodes were evaluated as a function of their loading, charge rate, and charge temperature.

  13. Discontinuous and Continuous Processing of Low-Solvent Battery Slurries for Lithium Nickel Cobalt Manganese Oxide Electrodes

    NASA Astrophysics Data System (ADS)

    Dreger, Henning; Bockholt, Henrike; Haselrieder, Wolfgang; Kwade, Arno

    2015-11-01

    Different discontinuously and continuously working dispersing devices were investigated to determine their influence on the structural and electrochemical properties of electrodes made from commercial LiNi1/3Co1/3Mn1/3O2 (NCM) cathode active material. A laboratory-scale dispersing device was compared with a discontinuously working laboratory kneader and a continuously working extruder, both using 50% less solvent than the dissolver process. Rheological, mechanical, structural, conductive, imaging, and electrochemical analyses (C-rate test, long-term cycling) were carried out. The dispersing method and time were found to have a considerable impact on the structure and electrochemical performance. The continuous extrusion process resulted in good performance with more than 20% higher specific capacity at elevated C-rates compared with the discontinuous process. This can be attributed to better deagglomeration of the carbon black in the slurries, also resulting in 60% higher electrode conductivity. On top of these positive results, the changes in the drying step due to the reduced solvent use led to a 50% decrease in the time required for the constant-drying-rate period. The continuously working extrusion process was found to be most suitable for large-scale, cost-efficient, environmentally friendly production of slurries for lithium-ion battery electrodes.

  14. Stepwise charging and calcination atmosphere effects for iron and nickel substituted lithium manganese oxide positive electrode material

    NASA Astrophysics Data System (ADS)

    Tabuchi, Mitsuharu; Kageyama, Hiroyuki; Shibuya, Hideka; Doumae, Kyosuke; Yuge, Ryota; Tamura, Noriyuki

    2016-05-01

    Fe- and Ni-substituted Li2MnO3 (Li1+x(FeyNiyMn1-2y)1-xO2, 0 < x < 1/3, y = 0.1, 0.15, 0.2) was prepared using coprecipitation-calcination. Its electrochemical properties were sensitive to the calcining atmosphere or the charging mode. Calcination in N2 atmosphere or selecting stepwise charging mode respectively engender better electrochemical performance than calcination in an air atmosphere or selecting galvanostatic charging mode. In fact, the sample for which y = 0.15 calcined in N2 atmosphere exhibited higher discharge capacity than that for the sample calcined in air atmosphere when stepwise charging mode was selected. By selecting stepwise charging mode instead of galvanostatic charging mode, the initial discharge capacity was increased and cyclability was improved. Among the samples calcined in N2 atmosphere, samples for which y = 0.1 and 0.15 were found to have attractive composition as positive electrode materials by selecting stepwise charging mode.

  15. High Performance Nickel Electrodes for Space Power Applications

    NASA Technical Reports Server (NTRS)

    Adanuvor, Prosper K.; Pearson, Johnnie A.; Miller, Brian; Tatarchuk, Bruce; Britton, Doris L.

    1996-01-01

    Performance characteristics such as efficiency, specific energy density and power density of nickel electrodes are generally limited by the electrode microstructure and nature of the active material within the electrode matrix. Progress is being made in our laboratory in a collaborative effort with NASA-Lewis Research Center to develop lighter weight, mechanically stable and highly efficient nickel electrodes for aerospace applications. Our approach is based on an electrode microstructure fabricated from a mixture of nickel fibers as small as 2 microns diameter and cellulose fibers. Performance data in flooded cell tests and cycle life data are presented. Performance characteristics are compared to other electrode microstructures such as the Fibrex Fiber mat and the Fibrex Powder substrate. The flexibility of our electrode microstructure and the significant advantages it offers in terms of weight and performance are demonstrated, in particular, its ability to accept charge at high rates and to discharge at high rates.

  16. Raman structural studies of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Cornilsen, B. C.

    1985-01-01

    Raman spectroscopy is sensitive to empirically controlled nickel electrode structural variations, and has unique potential for structural characterization of these materials. How the structure relates to electrochemical properties is examined so that the latter can be more completely understood, controlled, and optimized. Electrodes were impregnated and cycled, and cyclic voltammetry is being used for electrochemical characterization. Structural variation was observed which has escaped detection using other methods. Structural changes are induced by: (1) cobalt doping, (2) the state of change or discharge, (3) the preparation conditions and type of buffer used, and (4) the formation process. Charged active mass has an NiOOH-type structure, agreeing with X-ray diffraction results. Discharged active mass, however, is not isostructural with beta-Ni(OH)2. Chemically prepared alpha phases are not isostructural either. A disordered structural model, containing point defects, is proposed for the cycled materials. This model explains K(+) incorporation. Band assignments were made and spectra interpreted for beta-Ni(OH)2, electrochemical NiOOH and chemically precipitated NiOOH.

  17. A Three-Dimensional reduced Graphene Oxide/Nickel Oxide Composite in a Thin, Porous Carbon Framework to serve as a Supercapacitor Electrode

    NASA Astrophysics Data System (ADS)

    Lee, Gyeonghee; Varanasi, C. V.; Liu, Jie

    2013-03-01

    In recent years, environmental problems and the depletion of fossil fuels have encouraged intense research to discover ways to store energy such as supercapacitors. NiO is considered as a highly promising candidate for electrodes in supercapacitors due to its high theoretical capacitance, superior stability in alkaline electrolytes and low cost. However, the poor conductivity of NiO limited its capacitance to low value. In this work, NiO coated reduced graphene oxide (rGO) network in a conductive carbon matrix was synthesized. A porous carbon paper (CP) was utilized as a conductive framework on which initially Ni(OH)2 was vertically grown via solvothermal reaction. Graphene oxide (GO) hydrogel was formed on the Ni(OH)2 coated carbon paper through the dissolution of Ni(OH)2. Controlling the uniformity of Ni(OH)2 coating on the carbon paper was a key factor to homogeneous loading GO onto the carbon paper. Ni(OH)2 was loaded again on GO hydrogel formed on the carbon paper (CP-GO-Ni(OH)2) as NiO precursor. After annealing, CP-rGO-NiO composite exhibited a high specific capacitance and excellent cycle stability compared to the electrochemical performance of rGO-NiO composite connected to a carbon paper using binder. The structural and electrochemical properties of CP-rGO-NiO composite will be presented.

  18. Development of a Micro-Fiber Nickel Electrode for Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1996-01-01

    The development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (NiH2) program at the NASA Lewis Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen fuel cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active materials. Initial tests include activation and capacity measurements at different discharge levels followed by half-cell cycle testing at 80 percent depth-of-discharge in a low Earth orbit regime. The electrodes that pass the initial tests are life cycle tested in a boiler plate nickel-hydrogen cell before flightweight designs are built and tested.

  19. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    SciTech Connect

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activity 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.

  20. Platinum Nickel Nanowires as Methanol Oxidation Electrocatalysts

    DOE PAGESBeta

    Alia, Shaun M.; Pylypenko, Svitlana; Neyerlin, Kenneth C.; Kocha, Shyam S.; Pivovar, Bryan S.

    2015-08-27

    We investigated platinum(Pt) nickel (Ni) nanowires (PtNiNWs) as methanol oxidation reaction (MOR) catalysts in rotating disk electrode (RDE) half-cells under acidic conditions. Pt-ruthenium (Ru) nanoparticles have long been the state of the art MOR catalyst for direct methanol fuel cells (DMFCs) where Ru provides oxophilic sites, lowering the potential for carbon monoxide oxidation and the MOR onset. Ru, however, is a precious metal that has long term durability concerns. Ni/Ni oxide species offer a potential to replace Ru in MOR electrocatalysis. PtNiNWs were investigated for MOR and oxygen annealing was investigated as a route to improve catalyst performance (mass activitymore » 65% greater) and stability to potential cycling. Our results presented show that PtNiNWs offer significant promise in the area, but also result in Ni ion leaching that is a concern requiring further evaluation in fuel cells.« less

  1. AC impedance study of degradation of porous nickel battery electrodes

    NASA Technical Reports Server (NTRS)

    Lenhart, Stephen J.; Macdonald, D. D.; Pound, B. G.

    1987-01-01

    AC impedance spectra of porous nickel battery electrodes were recorded periodically during charge/discharge cycling in concentrated KOH solution at various temperatures. A transmission line model (TLM) was adopted to represent the impedance of the porous electrodes, and various model parameters were adjusted in a curve fitting routine to reproduce the experimental impedances. Degradation processes were deduced from changes in model parameters with electrode cycling time. In developing the TLM, impedance spectra of planar (nonporous) electrodes were used to represent the pore wall and backing plate interfacial impedances. These data were measured over a range of potentials and temperatures, and an equivalent circuit model was adopted to represent the planar electrode data. Cyclic voltammetry was used to study the characteristics of the oxygen evolution reaction on planar nickel electrodes during charging, since oxygen evolution can affect battery electrode charging efficiency and ultimately electrode cycle life if the overpotential for oxygen evolution is sufficiently low.

  2. Positive Active Material For Alkaline Electrolyte Storage Battert Nickel Electrodes

    DOEpatents

    Bernard, Patrick; Baudry, Michelle

    2000-12-05

    A method of manufacturing a positive active material for nickel electrodes of alkaline storage batteries which consists of particles of hydroxide containing mainly nickel and covered with a layer of a hydroxide phase based on nickel and yttrium is disclosed. The proportion of the hydroxide phase is in the range 0.15% to 3% by weight of yttrium expressed as yttrium hydroxide relative to the total weight of particles.

  3. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  4. Flight Weight Design Nickel-Hydrogen Cells Using Lightweight Nickel Fiber Electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.; Willis, Bob; Pickett, David F.

    2003-01-01

    The goal of this program is to develop a lightweight nickel electrode for advanced aerospace nickel-hydrogen cells and batteries with improved specific energy and specific volume. The lightweight nickel electrode will improve the specific energy of a nickel-hydrogen cell by >50%. These near-term advanced batteries will reduce power system mass and volume, while decreasing the cost, thus increasing mission capabilities and enabling small spacecraft missions. This development also offers a cost savings over the traditional sinter development methods for fabrication. The technology has been transferred to Eagle-Picher, a major aerospace battery manufacturer, who has scaled up the process developed at NASA GRC and fabricated electrodes for incorporation into flight-weight nickel-hydrogen cells.

  5. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  6. Electrochemical impregnation of nickel hydroxide in porous electrodes

    NASA Technical Reports Server (NTRS)

    Ho, Kuo-Chuan; Jorne, Jacob

    1987-01-01

    The electrochemical impregnation of nickel hydroxide in porous electrode was investigated both experimentally and theoretically. The loading level and plaque expansion were the most important parameters to be considered. The effects of applied current density, stirring, ratio of solution to electrode volume and pH were identified. A novel flow through electrochemical impregnation is proposed in which the electrolyte is forced through the porous nickel plaque. The thickening of the plaque can be reduced while maintaining high loading capacity. A mathematical model is presented which describes the transport of the nitrate, nickel and hydroxyl ions and the consecutive heterogeneous electrochemical reduction of nitrate and the homogeneous precipitation reaction of nickel hydroxide. The distributions of precipitation rate and active material within the porous electrode are obtained. A semiempirical model is also proposed which takes into account the plugging of the pores.

  7. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  8. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J.; Spengler, Charles J.

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  9. Electrophoretic self-assembly of expanded mesocarbon microbeads with attached nickel nanoparticles as a high-rate electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Sung; Fu, Yan-Hao

    2014-03-01

    Expanded mesocarbon microbeads (EMCMBs) with graphene oxide (GO) sheets were prepared by expanding graphitized mesocarbon microbeads (MCMBs) using a simple solution-based oxidative process. EMCMB-supported nickel nanoparticles with an average size of 4.6 nm were fabricated by an electrophoretic deposition (EPD) method in the presence of nickel nitrate additive. Nickel ions were self-assembled on the fluffy GO sheets resulting in a more positively charged EMCMB particle for facilitating EPD and dispersion. After heat treatment at 300 °C, GO could be converted to graphene which could provide a conductive network for facilitating the transport of electrons. Well-dispersed nickel nanoparticles on graphene sheets could act as a redox center to allow storage of extra charge and a nanospacer to prevent the graphene sheets from restacking. The specific capacitance of EMCMB-supported nickel electrode could reach 491 F g-1, which is much higher than that of EMCMB electrode (43 F g-1) and bare nickel electrode (146 F g-1) at a discharge current of 5 A g-1. More importantly, the EMCMB-supported nickel electrode is capable of delivering a high specific capacitance of 440 F g-1 at a discharge current of 50 A g-1, and could pave the way towards high-rate supercapacitors.Expanded mesocarbon microbeads (EMCMBs) with graphene oxide (GO) sheets were prepared by expanding graphitized mesocarbon microbeads (MCMBs) using a simple solution-based oxidative process. EMCMB-supported nickel nanoparticles with an average size of 4.6 nm were fabricated by an electrophoretic deposition (EPD) method in the presence of nickel nitrate additive. Nickel ions were self-assembled on the fluffy GO sheets resulting in a more positively charged EMCMB particle for facilitating EPD and dispersion. After heat treatment at 300 °C, GO could be converted to graphene which could provide a conductive network for facilitating the transport of electrons. Well-dispersed nickel nanoparticles on graphene sheets

  10. Positive electrodes of nickel-cadmium batteries

    NASA Technical Reports Server (NTRS)

    Wabner, D. W.; Kandler, L.; Krienke, W.

    1985-01-01

    Ni hydroxide sintered electrodes which are filled electrochemically are superior to chemically treated electrodes. In the electrochemical process, the hydroxide grows on the Ni grains and possesses a well-defined porous structure. Diffusion and conducting mechanisms are therefore facilitated.

  11. Performance of suspension-impregnated sintered nickel composite electrodes

    SciTech Connect

    Ferrando, W.A.

    1985-10-01

    Direct impregnation for the development of a porous, sintered, nickel-plated graphite fiber plaque by fine particulate Ni(OH)2 is examined. The suspension impregnation method is described, noting that the entire process can be carried out in a very short time. The use of a cobalt additive to improve utilization and the life cycle of nickel electrodes is mentioned. It is found that the suspension method of active material impregnation has potential to produce high energy density, electrically durable, light weight nickel composite electrodes. It is also found that excellent life cycle durability results are obtained with the suspension-impregnated composite electrode. Finally, the electrochemical process, an alternative method of active material Ni(OH)2 impregnation, is mentioned.

  12. Electroanalysis of tetracycline using nickel-implanted boron-doped diamond thin film electrode applied to flow injection system.

    PubMed

    Treetepvijit, Surudee; Chuanuwatanakul, Suchada; Einaga, Yasuaki; Sato, Rika; Chailapakult, Orawon

    2005-05-01

    The electrochemical analysis of tetracycline was investigated using nickel-implanted boron-doped diamond thin film electrode by cyclic voltammetry and amperometry with a flow injection system. Cyclic voltammetry was used to study the electrochemical oxidation of tetracycline. Comparison experiments were carried out using as-deposited boron-doped diamond thin film electrode (BDD). Nickel-implanted boron-doped diamond thin film electrode (Ni-DIA) provided well-resolved oxidation irreversible cyclic voltammograms. The current signals were higher than those obtained using the as-deposited BDD electrode. Results using nickel-implanted boron-doped diamond thin film electrode in flow injection system coupled with amperometric detection are presented. The optimum potential for tetracycline was 1.55 V versus Ag/AgCl. The linear range of 1.0 to 100 microM and the detection limit of 10 nM were obtained. In addition, the application for drug formulation was also investigated.

  13. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

    2007-01-02

    A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

  14. CHROMIUM ELECTROANALYSIS AT SCREEN PRINTED ELECTRODE MODIFIED BY THIN FILMS OF NICKEL

    EPA Science Inventory

    A rapid and potentially cost-effective electrochemical method is reported for analysis of chromium (VI) and Chromium(III) using a nickel modified screen printed carbon ink electrode. Electrochemical characteristics of nickel modified electrode as well voltammetric behavior f...

  15. Progress in the Development of Lightweight Nickel Electrode for Nickel-Hydrogen Cell

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1999-01-01

    Development of a high specific energy battery is one of the objectives of the lightweight nickel-hydrogen (Ni-H2) program at the NASA Glenn Research Center. The approach has been to improve the nickel electrode by continuing combined in-house and contract efforts to develop a lighter weight electrode for the nickel-hydrogen cell. Small fiber diameter nickel plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products and have an advantage of increased surface area available for the deposition of active material. Initial tests include activation and capacity measurements at five different discharge levels, C/2, 1.0 C, 1.37 C, 2.0 C, and 2.74 C. The electrodes are life cycle tested using a half-cell configuration at 40 and 80% depths-of-discharge (DOD) in a low-Earth-orbit regime. The electrodes that pass the initial tests are life cycle-tested in a boiler plate nickel-hydrogen cell before flight weight design are built and tested.

  16. Characterization of cobalt-dipped nickel electrodes with fibrex substrates

    NASA Technical Reports Server (NTRS)

    Youngman, Carolyn A.; Reid, Margaret A.

    1995-01-01

    Nickel electrodes using fibrous substrates have poorer initial utilization of the active material than those using conventional nickel sinter substrates. Previous investigators had shown that utilization can be dramatically improved by dipping these electrodes in a cobalt solution immediately after the electrochemical impregnation, before formation and cycling is carried out. The present study looked at the gas evolution behavior of dipped and undipped electrodes, impedance curves, and the charge-discharge curves to try to understand the reasons for the improvement in utilization. Impedance measurements under open circuit conditions indicate that some of the improvement is due to a reduction in the ohmic resistance of the surface layer of the particles, in agreement with earlier work. The charge-discharge curves suggest that there may also be an additional increase in the ohmic resistance of the surface layer of the undipped electrode during charging.

  17. Mathematical models for electrochemical impregnation of nickel electrodes

    NASA Technical Reports Server (NTRS)

    Ho, Chien-Hsien; Nagarajan, Gowri S.; Murthy, Mahesh; VanZee, J. W.

    1996-01-01

    Single step and two-step tetramer precipitation models for electrochemical impregnation of nickel electrodes are presented. The objectives for developing the impregnation model are: to predict the impregnation conditions for uniform loading, to develop quality control tools for electrode manufacturing, and to use it as basis for predicting the performance of batteries with non-uniform loadings. This paper, with the help of graphs and charts, discusses the development and application of the impregnation model.

  18. Non-gassing nickel-cadmium battery electrodes and cells

    NASA Technical Reports Server (NTRS)

    Luksha, E.; Gordy, D. J.

    1972-01-01

    The concept of a negative limited nongassing nickel-cadmium battery was demonstrated by constructing and testing practical size experimental cells of approximately 25 Ah capacity. These batteries operated in a gas-free manner and had measured energy densities of 10-11 Wh/lb. Thirty cells were constructed for extensive testing. Some small cells were tested for over 200 cycles at 100% depth. For example, a small cell with an electrodeposited cadmium active mass on a silver screen still had 55% of its theoretical capacity (initial efficiency was 85%). There was no evidence of deterioration of gassing properties with cycling of the nickel electrodes. The charge temperature was observed to be the most critical variable governing nickel electrode gassing. This variable was shown to be age dependent. Four types of cadmium electrodes were tested: an electrodeposited cadmium active mass on a cadmium or silver substrate, a porous sintered silver substrate based electrode, and a Teflon bonded pressed cadmium electrode. The electrodeposited cadmium mass on a silver screen was found to be the best all-around electrode from a performance point of view and from the point of view of manufacturing them in a size required for a 25 Ah size battery.

  19. Synthese, etude structurale et electrochimique des materiaux d'electrode positive d'oxydes mixtes lithium cobalt nickel oxide (0 /= 1) pour les batteries rechargeables au lithium

    NASA Astrophysics Data System (ADS)

    Grincourt, Yves

    Depuis une dizaine d'annees, on observe un interet grandissant pour les batteries rechargeables au lithium de tension superieure a 4 volts. La commercialisation de ces batteries pour l'electronique grand marche tend de plus en plus a supplanter celle des accumulateurs Ni-Cd et Ni-MH, de tension nominate 1,2 V. Ces batteries au lithium font appel a des materiaux d'electrode positive (cathode a la decharge) du type oxydes mixtes de metaux de transition LiMnO 2, LiMn2O4, LiNiO2 ou LiCoO2. Si le compose LiCoO2 est relativement aise a synthetiser, il n'en demeure pas moins que le cobalt reste un metal plus couteux compare au nickel et au manganese. La synthese de LiNiO2, quart a elle, demeure un probleme du point de vue stoechiometrique. Un defaut de lithium (5 a 10% molaire) conduira a des proprietes electrochimiques mediocres de la batterie. Dans cette etude nous nous proposons donc de preparer par voie humide et par voie seche les materiaux d'electrode positive de la famille LiCoyNi1-yO2 aver (0 ≤ y ≤ 1) et d'etudier en detail l'influence du pourcentage de nickel et de cobalt sur les proprietes electrochimiques des oxydes mixtes Li-Ni-Co. Une des caracteristiques est la morphologie plus fine des poudres de materiaux, observes par microscopie electronique a balayage (MEB). Un traitement thermique a plus basse temperature (750°C) que pour LiCoO2 (850°C) ainsi qu'un leger exces de lithium dans la preparation, ont permis d'aboutir a un materiau de stoechiometrie quasi parfaite. Neanmoins, le role de pilfer joue par 2 a 4% de moles de Ni2+ presents sur les sites lithium, permet de conserver intacte la structure hexagonale de la maille entre deux cycles consecutifs. Afin de mieux comprendre l'influence du vieillissement dune demi-pile Li/LiMeO2 (Me = Ni, Co) a temperature ambiante, des etudes electrochimiques et d'impedance spectroscopique ont ete menees en parallele. Le vieillissement de la cellule s'accompagne seulement dune chute de son potentiel due a son auto

  20. Nickel oxide battery cathode prepared by ozonation

    SciTech Connect

    Meunier, H.G.

    1986-09-16

    A method is described for producing a nickel oxide cathode for a high energy density battery consisting of the steps of: impregnating a porous conducting plaque with a soluble nickel salt such that a conducing plate having nickel hydroxide disposed therethrough is formed; next, treating the impregnated conducting plate with a strong alkaline solution such that a nickel salt-strong alkaline mixture is formed thereby; next, ozonating the impregnated conducting plate by passing a stream of gaseous ozone through the plate due to a pressure differential across the plate; and applying a liquid reagent over the impregnated conducting plate while ozonating to facilitate the action of the ozone on the nickel salt-strong alkaline mixture thereby directly converting the mixture to a tetravalent nickel oxyhydroxide with the stable gamma structure having a valence approaching four.

  1. Controlled electroplating and electromigration in nickel electrodes for nanogap formation.

    PubMed

    Valladares, Luis De Los Santos; Felix, Lizbet Leon; Dominguez, Angel Bustamante; Mitrelias, Thanos; Sfigakis, Francois; Khondaker, Saiful I; Barnes, Crispin H W; Majima, Yutaka

    2010-11-01

    We report the fabrication of nickel nanospaced electrodes by electroplating and electromigration for nanoelectronic devices. Using a conventional electrochemical cell, nanogaps can be obtained by controlling the plating time alone and after a careful optimization of electrodeposition parameters such as electrolyte bath, applied potential, cleaning, etc. During the process, the gap width decreases exponentially with time until the electrode gaps are completely bridged. Once the bridge is formed, the ex situ electromigration technique can reopen the nanogap. When the gap is ∼ 1 nm, tunneling current-voltage characterization shows asymmetry which can be corrected by an external magnetic field. This suggests that charge transfer in the nickel electrodes depends on the orientation of magnetic moments.

  2. Performance characterization of sintered iron electrodes in nickel/iron alkaline batteries

    NASA Astrophysics Data System (ADS)

    Periasamy, P.; Ramesh Babu, B.; Venkatakrishna Iyer, S.

    A nickel/iron storage battery with a porous, sintered, iron negative electrode and a nickel positive electrode is a high power system by virtue of its low internal resistance. A dry-powder sintering procedure is used to fabricate negative and positive electrodes. Negative iron electrodes are activated with various salt solutions such as CdSO 4, BaCl 2, HgCl 2 and sulfur. Positive electrodes are impregnated with nickel hydroxide by a chemical method. Tests are performed in 10 Ah capacity nickel/iron cells and two types of activated iron electrodes are used. The present work deals with electrode fabrication, charge/discharge studies, self-discharge, temperature performance and cycle life. Finally, the best iron electrodes are coupled with nickel electrodes to obtain a 1.37 V, 75 Ah nickel/iron cell. The performance of this cell is discussed.

  3. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness

    PubMed Central

    Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  4. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness.

    PubMed

    Imran Din, Muhammad; Rani, Aneela

    2016-01-01

    Green protocols for the synthesis of nanoparticles have been attracting a lot of attention because they are eco-friendly, rapid, and cost-effective. Nickel and nickel oxide nanoparticles have been synthesized by green routes and characterized for impact of green chemistry on the properties and biological effects of nanoparticles in the last five years. Green synthesis, properties, and applications of nickel and nickel oxide nanoparticles have been reported in the literature. This review summarizes the synthesis of nickel and nickel oxide nanoparticles using different biological systems. This review also provides comparative overview of influence of chemical synthesis and green synthesis on structural properties of nickel and nickel oxide nanoparticles and their biological behavior. It concludes that green methods for synthesis of nickel and nickel oxide nanoparticles are better than chemical synthetic methods. PMID:27413375

  5. Screenable all-metal solar cell electrodes of nickel and copper

    NASA Technical Reports Server (NTRS)

    Ross, B.; Bickler, D. B.

    1981-01-01

    Screenable thick film solar cell electrodes are made using the all-metal electrode system, which eliminates the commonly used glass frit and substitutes an oxide scavenger such as silver fluoride. The low temperature firing copper metal systems give good results on solar cells obtaining cell efficiencies of 13% AM1, and adhering sintered structures are demonstrated with nickel systems. The potential effect of copper upon cell performance at elevated temperatures over long periods of time is determined, and it is found that the formation of a copper-silicon eutectic at 550 C produces needle-like structures with broad bases on the silicon, extending into and occasionally through the metallization layer.

  6. Modeling of Nickel Hydroxide Electrode Containing Multiple Phases

    NASA Technical Reports Server (NTRS)

    Timmerman, P.; Ratnakumar, B. V.; Di Stefano, S.

    1996-01-01

    Mathematical models of alkaline rechargeable nickel cell systems (e.g., Ni-Cd, Ni-H(sub 2) and Ni-MH) have so far been developed based on the assumption that the active material at Ni electrode exists primarily in a single phase as Beta-NiOOH -- Beta-Ni(OH)(sub 2), despite enough experimental evidence for the second phase, i.e., Gamma-NiOOH -- Alpha-Ni(OH)(sub 2), especially under conditions of extended coverage. Here, we have incorporated the additional couple of Gamma-NiOOH -- Alpha-Ni(OH)(sub 2) into the modeling of the Ni electrode.

  7. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    SciTech Connect

    Nelson, George J.; Harris, William M.; Izzo, John R. Jr.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu Yijin; Pianetta, Piero

    2011-04-25

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  8. Three-dimensional mapping of nickel oxidation states using full field x-ray absorption near edge structure nanotomography

    NASA Astrophysics Data System (ADS)

    Nelson, George J.; Harris, William M.; Izzo, John R.; Grew, Kyle N.; Chiu, Wilson K. S.; Chu, Yong S.; Yi, Jaemock; Andrews, Joy C.; Liu, Yijin; Pianetta, Piero

    2011-04-01

    The reduction-oxidation cycling of the nickel-based oxides in composite solid oxide fuel cells and battery electrodes is directly related to cell performance. A greater understanding of nickel redox mechanisms at the microstructural level can be achieved in part using transmission x-ray microscopy (TXM) to explore material oxidation states. X-ray nanotomography combined with x-ray absorption near edge structure (XANES) spectroscopy has been applied to study samples containing distinct regions of nickel and nickel oxide (NiO) compositions. Digitally processed images obtained using TXM demonstrate the three-dimensional chemical mapping and microstructural distribution capabilities of full-field XANES nanotomography.

  9. Nickel aluminides and nickel-iron aluminides for use in oxidizing environments

    DOEpatents

    Liu, Chain T.

    1988-03-15

    Nickel aluminides and nickel-iron aluminides treated with hafnium or zirconium, boron and cerium to which have been added chromium to significantly improve high temperature ductility, creep resistance and oxidation properties in oxidizing environments.

  10. Investigation of hydrogen evolution activity for the nickel, nickel-molybdenum nickel-graphite composite and nickel-reduced graphene oxide composite coatings

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang

    2016-03-01

    The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.

  11. A study of the electrochemistry of nickel hydroxide electrodes with various additives

    NASA Astrophysics Data System (ADS)

    Zhu, Wen-Hua; Ke, Jia-Jun; Yu, Hong-Mei; Zhang, Deng-Jun

    Nickel composite electrodes (NCE) with various additives are prepared by a chemical impregnation method from nitrate solutions on sintered porous plaques. The electrochemical properties, such as utilization of active material, swelling and the discharge potential of the nickel oxide electrode (NOE) are determined mainly through the composition of the active material and the characteristics of nickel plaques. Most additives (Mg, Ca, Sr, Ba, Zn, Cd, Co, Li and Al hydroxide) exert effects on the discharge potential and swelling of the NOE. Chemical co-precipitation with the addition of calcium, zinc, magnesium and barium hydroxide increases the discharge potential by more than 20 mV, but that with zinc hydroxide results in an obvious decrease of active-material utilization and that with calcium and magnesium hydroxide produces a larger increase of electrode thickness. The effects of anion additives are also examined. Less than 1% mol of NiS in the active material increases the discharge potential. Cadmium, cobalt and zinc hydroxide are excellent additives for preventing swelling of the NCE. Slow voltammetry (0.2 mV s -1) in 6 M KOH is applied to characterize the oxygen-evolving potential of the NCE. The difference between the oxygen-evolution potential and the potential of the oxidation peak for the NCE with additives of calcium, lithium, barium and aluminium hydroxide is at least + 60 mV.

  12. Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction.

    PubMed

    Periyasamy, Sivakumar; Subramanian, Palaniappan; Levi, Elena; Aurbach, Doron; Gedanken, Aharon; Schechter, Alex

    2016-05-18

    Spinel nickel manganese oxides, widely used materials in the lithium ion battery high voltage cathode, were studied in urea oxidation catalysis. NiMn2O4, Ni1.5Mn1.5O4, and MnNi2O4 were synthesized by a simple template-free hydrothermal route followed by a thermal treatment in air at 800 °C. Rietveld analysis performed on nonstoichiometric nickel manganese oxide-Ni1.5Mn1.5O4 revealed the presence of three mixed phases: two spinel phases with different lattice parameters and NiO unlike the other two spinels NiMn2O4 and MnNi2O4. The electroactivity of nickel manganese oxide materials toward the oxidation of urea in alkaline solution is evaluated using cyclic voltammetric measurements. Ni1.5Mn1.5O4 exhibits excellent redox characteristics and lower charge transfer resistances in comparison with other compositions of nickel manganese oxides and nickel oxide prepared under similar conditions.The Ni1.5Mn1.5O4modified electrode oxidizes urea at 0.29 V versus Ag/AgCl with a corresponding current density of 6.9 mA cm(-2). At a low catalyst loading of 50 μg cm(-2), the urea oxidation current density of Ni1.5Mn1.5O4 in alkaline solution is 7 times higher than that of nickel oxide and 4 times higher than that of NiMn2O4 and MnNi2O4, respectively. PMID:27123873

  13. Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction.

    PubMed

    Periyasamy, Sivakumar; Subramanian, Palaniappan; Levi, Elena; Aurbach, Doron; Gedanken, Aharon; Schechter, Alex

    2016-05-18

    Spinel nickel manganese oxides, widely used materials in the lithium ion battery high voltage cathode, were studied in urea oxidation catalysis. NiMn2O4, Ni1.5Mn1.5O4, and MnNi2O4 were synthesized by a simple template-free hydrothermal route followed by a thermal treatment in air at 800 °C. Rietveld analysis performed on nonstoichiometric nickel manganese oxide-Ni1.5Mn1.5O4 revealed the presence of three mixed phases: two spinel phases with different lattice parameters and NiO unlike the other two spinels NiMn2O4 and MnNi2O4. The electroactivity of nickel manganese oxide materials toward the oxidation of urea in alkaline solution is evaluated using cyclic voltammetric measurements. Ni1.5Mn1.5O4 exhibits excellent redox characteristics and lower charge transfer resistances in comparison with other compositions of nickel manganese oxides and nickel oxide prepared under similar conditions.The Ni1.5Mn1.5O4modified electrode oxidizes urea at 0.29 V versus Ag/AgCl with a corresponding current density of 6.9 mA cm(-2). At a low catalyst loading of 50 μg cm(-2), the urea oxidation current density of Ni1.5Mn1.5O4 in alkaline solution is 7 times higher than that of nickel oxide and 4 times higher than that of NiMn2O4 and MnNi2O4, respectively.

  14. Preliminary reduction of oxidized nickel ores

    NASA Astrophysics Data System (ADS)

    Pakhomov, R. A.; Starykh, R. V.

    2014-11-01

    The laws of gas reduction of oxidized nickel ores (ONOs) are studied. The theoretical prerequisites of the selective reduction of ONO nickel, which are based on the difference between the oxygen partial pressures over the NiO-Ni and FeO-Fe systems, are discussed. The effect of the oxygen partial pressure during reducing roasting of ONOs of ferruginous and magnesia types on the reduction parameters and the quality of the ferronickel formed upon subsequent melting of cinders is experimentally investigated. The optimum conditions of preliminary gas reduction of ONOs are determined. Melting of the cinder of reducing roasting leads to the formation of nickel-rich ferronickel (20-50 wt % Ni for various types of ores) upon the extraction of nickel into ferronickel of >95%, which substantially exceeds the parameters of the existing commercial processes.

  15. Nickel oxide, ceramic insulated, high temperature coating

    SciTech Connect

    Aprigliano, L.F.

    1987-01-27

    This patent describes a corrosion, oxidation, and heat resistant layered coating for a substrate material in a high temperature, corrosive environment, consisting of: a base layer selected from the group consisting of Aluminide and MCrAlY, wherein M is a metal selected from the group consisting of nickel, cobalt, and a combination thereof; a ceramic layer, impermeable to the metallic elements of the substrate material and the MCrAlY layer, and bonded to the substrate material by the MCrAlY layer; and, a nickel oxide layer, applied to the ceramic layer.

  16. Three-dimensional nickel foam/graphene/NiCo2O4 as high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Hoa; Shim, Jae-Jin

    2015-01-01

    A facile and efficient two-step method for the decoration of graphene sheets and nickel cobalt oxide (NiCo2O4) nanoparticles on conducting nickel foam was developed. First, graphene and a bimetallic (Ni, Co) hydroxide precursor were deposited on a Ni foam support by electrodeposition followed by a thermal transformation of the bimetallic hydroxide to NiCo2O4. The graphene layer with a thickness of a few nanometers was decorated with NiCo2O4 nanoparticles, ranging in size from 3 to 5 nm. The nickel foam electrode supported graphene and NiCo2O4 exhibited rapid electron and ion transport, large electroactive surface area, and excellent structural stability. The specific capacitance of the obtained electrode was as high as 1950 F g-1 at a high current density of 7.5 A g-1, suggesting its promising applications as an efficient electrode for electrochemical capacitors.

  17. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  18. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  19. 40 CFR 721.10201 - Cobalt lithium manganese nickel oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt lithium manganese nickel oxide... Specific Chemical Substances § 721.10201 Cobalt lithium manganese nickel oxide. (a) Chemical substance and... nickel oxide (PMN P-04-269; CAS No. 182442-95-1) is subject to reporting under this section for...

  20. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  1. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  2. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    SciTech Connect

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N.

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  3. Hydrometallurgical treatment of nickel-metal hydride battery electrodes

    SciTech Connect

    Lyman, J.W.; Palmer, G.R.

    1995-12-31

    Nickel-metal hydride (Ni-MH) battery electrodes have been developed as a substitute for cadmium-containing negative electrodes. Use of NI-MH electrodes offers enhanced electrochemical properties in many instances as well as reduced environmental toxicity. Rechargeable batteries using NI-MH electrodes are also strong candidates for electric vehicles. During the production and secondary reclamation of these battery types, recycling procedures will be needed to prevent environmental impact caused by these wastes as well as to recover the value inherent in the scrap. The US Bureau of Mines (USBM) is investigating hydrometallurgical technology that separates and recovers purified metallic components from Ni-MH battery scrap of two types, AB{sub 2} and AB{sub 5}. An investigation of acid dissolution and metal recovery techniques has determined several processing alternatives that may be used to promote the successful recycling of much of the battery fabrication scrap and eventual secondary scrap. The metals recovered are Ni, Co, and rare earth metals. Although recovery techniques have been identified in principal, their applicability to mixed battery waste stream and economic attractiveness remain to be demonstrated.

  4. Progress in the development of lightweight nickel electrode for aerospace applications

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1992-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) cells and batteries. These electrodes are lighter in weight and have higher specific energy than the heavy sintered state of the art nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber, felt, and nickel plated plastic) are fabricated into nickel electrodes by electrochemically impregnating them with active material. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C, and 2.74C. The electrodes that pass the initial tests are life cycle tested at 40 and 80 percent depths of discharge (DOD). Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. Over 7,000 cycles of life cycle testing have been accumulated at 40 percent DOD, using the lightweight fiber electrode in a boiler plate Ni-H2 cell with stable voltage.

  5. Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate

    NASA Astrophysics Data System (ADS)

    Choma, Jerzy; Jedynak, Katarzyna; Marszewski, Michal; Jaroniec, Mietek

    2012-02-01

    Mesoporous carbon composites, containing nickel and nickel oxide nanoparticles, were obtained by soft-templating method. Samples were synthesized under acidic conditions using resorcinol and formaldehyde as carbon precursors, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock co-polymer Lutrol F127 as a soft template and nickel and nickel oxide nanoparticles, and nickel nitrate as metal precursors. In addition, a one set of samples was obtained by impregnation of mesoporous carbons with a nickel nitrate solution followed by further annealing at 400 °C. Wide angle X-ray powder diffraction along with thermogravimetric analysis proved the presence of nickel nanoparticles in the final composites obtained using nickel and nickel oxide nanoparticles, and Ni(NO3)2 solution. Whereas, the impregnation of carbons with a nickel nitrate solution followed by annealing at 400 °C resulted in needle-like nickel oxide nanoparticles present inside the composites’ pores. Low-temperature (-196 °C) nitrogen physisorption, X-ray powder diffraction, and thermogravimetric analysis confirmed good adsorption and structural properties of the synthesized nickel-carbon composites, in particular, the samples possessed high surface areas (>600 m2/g), large total pore volumes (>0.50 cm3/g), and maxima of pore size distribution functions at circa 7 nm. It was found that the composites were partially graphitized during carbonization process at 850 °C. The samples are stable in an air environment below temperature of 500 °C. All these features make the synthesized nickel-carbon composites attractive materials for adsorption, catalysis, energy storage, and environmental applications.

  6. Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents.

    PubMed

    Hernández-Tapia, J R; Vazquez-Arenas, J; González, I

    2013-11-15

    This study is devoted to analyze the metallic electrochemical recovery of nickel from synthetic solutions simulating plating rinsing discharges, in order to meet the water recycling policies implemented in these industries. These effluents present dilute Ni(II) concentrations (100 and 200 ppm) in chloride and sulfate media without supporting electrolyte (397-4202 μS cm(-1)), which stems poor current distribution, limited mass transfer, ohmic drops and enhancement of parasitic reactions. An electrochemical reactor with rotating cylinder electrode (RCE) and a pH controller were utilized to overcome these problems. The pH control around 4 was crucial to yield high purity nickel, and thus prevent the precipitation of hydroxides and oxides. Macroelectrolysis experiments were systematically conducted to analyze the impacts of the applied current density in the recovery efficiency and energy consumption, particularly for very diluted effluents (100 and 200 ppm Ni(II)), which present major recovery problems. Promising nickel recoveries in the order of 90% were found in the former baths using a current density of -3.08 mA cm(-2), and with overall profits of 9.64 and 14.69 USD kg(-1), respectively. These estimations were based on the international market price for nickel ($18 USD kg(-1)).

  7. Electrochemical reactor with rotating cylinder electrode for optimum electrochemical recovery of nickel from plating rinsing effluents.

    PubMed

    Hernández-Tapia, J R; Vazquez-Arenas, J; González, I

    2013-11-15

    This study is devoted to analyze the metallic electrochemical recovery of nickel from synthetic solutions simulating plating rinsing discharges, in order to meet the water recycling policies implemented in these industries. These effluents present dilute Ni(II) concentrations (100 and 200 ppm) in chloride and sulfate media without supporting electrolyte (397-4202 μS cm(-1)), which stems poor current distribution, limited mass transfer, ohmic drops and enhancement of parasitic reactions. An electrochemical reactor with rotating cylinder electrode (RCE) and a pH controller were utilized to overcome these problems. The pH control around 4 was crucial to yield high purity nickel, and thus prevent the precipitation of hydroxides and oxides. Macroelectrolysis experiments were systematically conducted to analyze the impacts of the applied current density in the recovery efficiency and energy consumption, particularly for very diluted effluents (100 and 200 ppm Ni(II)), which present major recovery problems. Promising nickel recoveries in the order of 90% were found in the former baths using a current density of -3.08 mA cm(-2), and with overall profits of 9.64 and 14.69 USD kg(-1), respectively. These estimations were based on the international market price for nickel ($18 USD kg(-1)). PMID:24121642

  8. Electrospinning of nickel oxide nanofibers: Process parameters and morphology control

    SciTech Connect

    Khalil, Abdullah Hashaikeh, Raed

    2014-09-15

    In the present work, nickel oxide nanofibers with varying morphology (diameter and roughness) were fabricated via electrospinning technique using a precursor composed of nickel acetate and polyvinyl alcohol. It was found that the diameter and surface roughness of individual nickel oxide nanofibers are strongly dependent upon nickel acetate concentration in the precursor. With increasing nickel acetate concentration, the diameter of nanofibers increased and the roughness decreased. An optimum concentration of nickel acetate in the precursor resulted in the formation of smooth and continuous nickel oxide nanofibers whose diameter can be further controlled via electrospinning voltage. Beyond an optimum concentration of nickel acetate, the resulting nanofibers were found to be ‘flattened’ and ‘wavy’ with occasional cracking across their length. Transmission electron microscopy analysis revealed that the obtained nanofibers are polycrystalline in nature. These nickel oxide nanofibers with varying morphology have potential applications in various engineering domains. - Highlights: • Nickel oxide nanofibers were synthesized via electrospinning. • Fiber diameter and roughness depend on nickel acetate concentration used. • With increasing nickel acetate concentration the roughness of nanofibers decreased. • XRD and TEM revealed a polycrystalline structure of the nanofibers.

  9. The role of oxidative stress in nickel and chromate genotoxicity.

    PubMed

    Costa, Max; Salnikow, Konstantin; Sutherland, Jessica E; Broday, Limor; Peng, Wu; Zhang, Qunwei; Kluz, Thomas

    2002-01-01

    Some general principles regarding oxidative stress and molecular responses to toxic metals are presented in this manuscript. The remainder of the manuscript, however, will focus on the role of oxidative stress in particulate nickel-induced genetic damage and mutations. The phagocytosis of particulate nickel compounds and the dissolution of the particles inside the cell and the resulting oxidative stress produced in the nucleus is a key component of the nickel carcinogenic mechanism. The crosslinking of amino acids to DNA by nickel that does not involve direct participation of nickel in a ternary complex but nickel-induced oxidative stress will be discussed as well. The selective ability of particulate nickel compounds to silence the expression of genes located near heterochromatin and the effect of vitamin E on the genotoxicity and mutations induced by particulate and soluble nickel compounds will also be discussed. Particulate nickel compounds have been shown to produce more oxidative stress than water-soluble nickel compounds. In addition to nickel, the role of oxidative stress in chromate-induced genotoxicity will also be discussed with particular attention directed to the effects of vitamin E on mutations and chromosomal aberrations inducedby chromate.

  10. Control of edge effects of oxidant electrode

    DOEpatents

    Carr, Peter; Chi, Chen H.

    1981-09-08

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  11. An electrochemical acetylcholine sensor based on lichen-like nickel oxide nanostructure.

    PubMed

    Sattarahmady, N; Heli, H; Vais, R Dehdari

    2013-10-15

    Lichen-like nickel oxide nanostructure was synthesized by a simple method and characterized. The nanostructure was then applied to modify a carbon paste electrode and for the fabrication of a sensor, and the electrocatalytic oxidation of acetylcholine (ACh) on the modified electrode was investigated. The electrocatalytic efficiency of the nickel oxide nanostructure was compared with nickel micro- and nanoparticles, and the lichen-like nickel oxide nanostructure showed the highest efficiency. The mechanism and kinetics of the electrooxidation process were investigated by cyclic voltammetry, steady-state polarization curve and chronoamperometry. The catalytic rate constant and the charge transfer coefficient of ACh electrooxidation by the active nickel species, and the diffusion coefficient of ACh were reported. A sensitive and time-saving hydrodynamic amperometry method was developed for the determination of ACh. ACh was determined with a sensitivity of 392.4 mA M⁻¹ cm⁻² and a limit of detection of 26.7 μM. The sensor had the advantages of simple fabrication method without using any enzyme or reagent and immobilization step, high electrocatalytic activity, very high sensitivity, long-term stability, and antifouling surface property toward ACh and its oxidation product.

  12. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  13. Pulse electrodeposited nickel-indium tin oxide nanocomposite as an electrocatalyst for non-enzymatic glucose sensing.

    PubMed

    Sivasakthi, P; Ramesh Bapu, G N K; Chandrasekaran, Maruthai

    2016-01-01

    Nickel and nickel-ITO nanocomposite on mild steel substrate were prepared by pulse electrodeposition method from nickel sulphamate electrolyte and were examined as electrocatalysts for non-enzymatic glucose sensing. The surface morphology, chemical composition, preferred orientation and oxidation states of the nickel metal ion in the deposits were characterized by SEM, EDAX, XRD and XPS. Electrochemical sensing of glucose was studied by cyclic voltammetry and amperometry. The modified Ni-ITO nanocomposite electrode showed higher electrocatalytic activity for the oxidation of glucose in alkaline medium and exhibited a linear range from 0.02 to 3.00 mM with a limit of detection 3.74 μM at a signal-to-noise ratio of 3. The higher selectivity, longer stability and better reproducibility of this electrode compared to nickel in the sensing of glucose are pointers for exploitation in practical clinical applications.

  14. Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film

    SciTech Connect

    Kim, Dong Soo; Lee, Hee Chul

    2012-08-01

    Nickel vacancy behavior in electrical conductance is systematically investigated using various analysis methods on nickel oxide films deposited at different oxygen partial pressures. The results of Rutherford backscattering, x-ray diffraction, and Auger electron spectroscopy analyses demonstrate that the sputtered nickel oxide films are nickel-deficient. Through the deconvolution of Ni2p and O1s spectra in the x-ray photoelectron spectroscopy data, the number of Ni{sup 3+} ions is found to increase with the O{sub 2} ratio during the deposition. According to the vacancy model, nickel vacancies created from the non-stoichiometry are concluded to produce Ni{sup 3+} ions which lead to an increment of the conductivity of the nickel oxide films due to the increase of the hole concentration.

  15. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  16. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  17. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  18. Effect of impregnation method on cycle life of the nickel electrode

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1986-01-01

    The nickel electrode has been identified as the life limiting component for individual pressure vessel (IPV) nickel-hydrogen cells when cycled under a low earth orbit (LEO) cycle regime at deep depths of discharge. As a part of an overall program to develop a long life nickel electrode for nickel-hydrogen cells, the effect of two different methods of electrochemical impregnation on the cycle life of the nickel electrode was investigated. One method was the Pickett (aqueous/ethanolic) process. The other was the modified Bell (aqueous) process. The plaques for both impregnation methods were made by sintering dry carbonyl nickel powder in a reducing atmosphere. The plaques contain a nickel screen substrate. Electrodes made from both processes were cycle tested in Air Force design IPV nickel-hydrogen cells. The only factor different for this test was the method of plaque impregnation; all other factors were the same. The cells were cycled to failure under a 90 min LEO cycle regime at a deep depth of discharge (80 percent DOD). Failure for this test was defined to occur when the cell voltage degraded to 1.0 V prior to the completion of the 35 min discharge.

  19. Structural comparison of nickel electrodes and precursor phases

    NASA Technical Reports Server (NTRS)

    Cornilsen, Bahne C.; Shan, Xiaoyin; Loyselle, Patricia

    1989-01-01

    A summary of previous Raman spectroscopic results and a discussion of important structural differences in the various phases of active mass and active mass precurors are presented. Raman spectra provide unique signatures for these phases, and allow one to distinguish each phase, even when the compound is amorphous to X-rays (i.e., does not scatter X-rays because of a lack of order and/or small particle size). The structural changes incurred during formation, charge and discharge, cobalt addition, and aging will be discussed and related to electrode properties. Important structural differences include NiO2 layer stacking, nonstoichiometry (especially cation-deficit nonstoichiometry), disorder, dopant content, and water content. The results indicate that optimal nickel active mass is non-close packed and nonstoichiometric. The formation process transforms precursor phases into this structure. Therefore, the precursor disorder, or lack thereof, influences this final active mass structure and the rate of formation. Aging processes induce structural change which is believed to be detrimental. The role of cobalt addition can be appreciated in terms of structures favored or stabilized by the dopant. In recent work, the in situ Raman technique to characterize the critical structural parameters was developed. An in situ method relates structure, electrochemistry, and preparation. In situ Raman spectra of cells during charge and discharge, either during cyclic voltammetry or under constant current conditions were collected. With the structure-preparation knowledge and the in situ Raman tool, it will be possible to define the structure-property-preparation relations in more detail. This instrumentation has application to a variety of electrode systems.

  20. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  1. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities.

    PubMed

    Lu, Xunyu; Zhao, Chuan

    2015-03-17

    Large-scale industrial application of electrolytic splitting of water has called for the development of oxygen evolution electrodes that are inexpensive, robust and can deliver large current density (>500 mA cm(-2)) at low applied potentials. Here we show that an efficient oxygen electrode can be developed by electrodepositing amorphous mesoporous nickel-iron composite nanosheets directly onto macroporous nickel foam substrates. The as-prepared oxygen electrode exhibits high catalytic activity towards water oxidation in alkaline solutions, which only requires an overpotential of 200 mV to initiate the reaction, and is capable of delivering current densities of 500 and 1,000 mA cm(-2) at overpotentials of 240 and 270 mV, respectively. The electrode also shows prolonged stability against bulk water electrolysis at large current. Collectively, the as-prepared three-dimensional structured electrode is the most efficient oxygen evolution electrode in alkaline electrolytes reported to the best of our knowledge, and can potentially be applied for industrial scale water electrolysis.

  2. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose

    NASA Astrophysics Data System (ADS)

    Meng, Shangjun; Wu, Meiyan; Wang, Qian; Dai, Ziyang; Si, Weili; Huang, Wei; Dong, Xiaochen

    2016-08-01

    Ultra-sensitive and highly selective detection of glucose is essential for the clinical diagnosis of diabetes. In this paper, an ultra-sensitive glucose sensor was successfully fabricated based on cobalt oxide (Co3O4) nanosheets directly grown on nickel foam through a simple hydrothermal method. Characterizations indicated that the Co3O4 nanosheets are completely and uniformly wrapped onto the surface of nickel foam to form a three-dimensional heterostructure. The resulting self-standing electrochemical electrode presents a high performance for the non-enzymatic detection of glucose, including short response time (<10 s), ultra-sensitivity (12.97 mA mM‑1 cm‑2), excellent selectivity and low detection limit (0.058 μM, S/N = 3). These results indicate that Co3O4 nanosheets wrapped onto nickel foam are a low-cost, practical, and high performance electrochemical electrode for bio sensing.

  3. Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose

    NASA Astrophysics Data System (ADS)

    Meng, Shangjun; Wu, Meiyan; Wang, Qian; Dai, Ziyang; Si, Weili; Huang, Wei; Dong, Xiaochen

    2016-08-01

    Ultra-sensitive and highly selective detection of glucose is essential for the clinical diagnosis of diabetes. In this paper, an ultra-sensitive glucose sensor was successfully fabricated based on cobalt oxide (Co3O4) nanosheets directly grown on nickel foam through a simple hydrothermal method. Characterizations indicated that the Co3O4 nanosheets are completely and uniformly wrapped onto the surface of nickel foam to form a three-dimensional heterostructure. The resulting self-standing electrochemical electrode presents a high performance for the non-enzymatic detection of glucose, including short response time (<10 s), ultra-sensitivity (12.97 mA mM-1 cm-2), excellent selectivity and low detection limit (0.058 μM, S/N = 3). These results indicate that Co3O4 nanosheets wrapped onto nickel foam are a low-cost, practical, and high performance electrochemical electrode for bio sensing.

  4. Long life nickel electrodes for a nickel-hydrogen cell. III - Results of an accelerated test and failure analyses

    NASA Astrophysics Data System (ADS)

    Lim, H. S.; Verzwyvelt, S. A.

    Nineteen different designs of nickel electrodes were tested in Ni/H2 boiler plate cells in an accelerated low earth orbit cycle regime to the end of their life. The failure analyses of these cells showed that the major performance changes due to the cycling was a severe reduction of their high rate discharge capability rather than an absolute capacity reduction. Many physical changes of the nickel electrodes were observed after the cycling test. These changes include dimensional expansion, sinter rupture, loose black powdering of the active material, morphology changes, active material migration, increase of pore volume, change of pore distribution, and increase of surface area. All of these were caused by active material expansion with cycling. Among these changes, the morphology change which involves migration of active material away from the current collecting nickel sinter appears to be that most responsible for the reduction of the rate capability.

  5. Long life nickel electrodes for a nickel-hydrogen cell. III - Results of an accelerated test and failure analyses

    NASA Technical Reports Server (NTRS)

    Lim, H. S.; Verzwyvelt, S. A.

    1984-01-01

    Nineteen different designs of nickel electrodes were tested in Ni/H2 boiler plate cells in an accelerated low earth orbit cycle regime to the end of their life. The failure analyses of these cells showed that the major performance changes due to the cycling was a severe reduction of their high rate discharge capability rather than an absolute capacity reduction. Many physical changes of the nickel electrodes were observed after the cycling test. These changes include dimensional expansion, sinter rupture, loose black powdering of the active material, morphology changes, active material migration, increase of pore volume, change of pore distribution, and increase of surface area. All of these were caused by active material expansion with cycling. Among these changes, the morphology change which involves migration of active material away from the current collecting nickel sinter appears to be that most responsible for the reduction of the rate capability.

  6. Template-based synthesis of nickel oxide

    NASA Astrophysics Data System (ADS)

    Mironova-Ulmane, N.; Kuzmin, A.; Sildos, I.

    2015-03-01

    Nanocrystalline NiO has been produced using a facile template-based synthesis from nickel nitrate solutions using cellulose as a template. Thus obtained oxides were studied by scanning electron microscopy, x-ray diffraction, Raman scattering spectroscopy, photoluminescence spectroscopy and confocal spectromicroscopy. The filamentary/coral morphology of the samples has been evidenced and is built up of agglomerated nanocrystallites with a size in the range of about 26-36 nm. The presence of two-magnon contribution in Raman scattering spectra suggests the existence of antiferromagnetic ordering at room temperature. Finally, the observed near-infrared photoluminescence band at 850 nm has been tentatively attributed to the defect-perturbed Ni2+ states at the surface.

  7. Nickel and nickel oxide nanocrystals selectively grafting on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prabhu, Yendrapati Taraka; Rao, Kalagadda Venkateswara; Kumari, Bandla Siva; Sai, Vemula Sesha; Pavani, Tambur

    2015-01-01

    Nickel and nickel oxide nanocrystals in their pure phase are carefully embellished by a facial method on oxygen-functionalized multi-walled carbon nanotubes (O-MWCNTs) using nickel nitrate (NN) was effectively accomplished for the first time by calcining them in hydrogen, nitrogen and air, respectively, at suitable temperatures. Nickel and nickel oxide nanocrystals impregnated O-MWCNTs were examined for its structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. The nanocrystals on the O-MWCNTs were determined of 15-20 nm size. Decorated nanocrystals on CNT's have potential applications in semiconductor industries.

  8. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  9. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Xiong, L.; He, C.

    2014-09-01

    Lithium ion batteries with lithium nickel cobalt manganese oxide (NCM) cathode were characterized by extensive cycling (>2000 cycles), discharge rate test, hybrid pulse power characterization test (HPPC), and electrochemical impedance spectroscopy (EIS). The crystal structure, morphology and particle size of cathode materials were characterized by X-ray diffraction and scanning electron microscopy (SEM). It was demonstrated that the rate performance and cycle life of battery are closely related to the cathode material composition and electrode design. With proper selection of cathode composition and electrode design, the lithium ion battery cell achieved close to 3500 cycles with 85% capacity retention at 1C current.

  10. Effect of the bimetal ratio on the growth of nickel cobalt sulfide on the Ni foam for the battery-like electrode.

    PubMed

    Yu, Cheng-Fong; Lin, Lu-Yin

    2016-11-15

    The nickel cobalt sulfide is one of the most attractive electroactive materials for battery-like electrodes with multiple oxidation states for Faradaic reactions. Novel structures of the nickel cobalt sulfide with large surface areas and high conductivities have been proposed to improve the performance of the battery-like electrodes. The hydrothermal reaction is the most common used method for synthesizing nickel cobalt sulfide nanostructures due to the simple and cost-effective features, but the precursor concentration on the morphology and the resulting electrochemical performance is barely discussed. In this study, various Ni to Co ratios are used in the hydrothermal reaction to make nickel cobalt sulfides on the nickel foam, and the Ni to Co ratio is found to play great roles on the morphology and the electrocapacitive performance for the pertinent battery-like electrodes. The sheet-like structures are successfully obtained with large surface area for charge accumulation, and the optimized sample presents the largest nanosheets among all with several wrinkles on the surface. A high specific capacity of 258.2mAh/g measured at the current density of 5A/g and a high-rate charge/discharge capacity are also attended for the optimized battery-like electrodes. The excellent cycling stability of 94.5% retention after 2000 cycles repeated charge/discharge process is also obtained for this system.

  11. Surfactant-assisted ultrasonic spray pyrolysis of nickel oxide and lithium-doped nickel oxide thin films, toward electrochromic applications

    NASA Astrophysics Data System (ADS)

    Denayer, Jessica; Bister, Geoffroy; Simonis, Priscilla; Colson, Pierre; Maho, Anthony; Aubry, Philippe; Vertruyen, Bénédicte; Henrist, Catherine; Lardot, Véronique; Cambier, Francis; Cloots, Rudi

    2014-12-01

    Lithium-doped nickel oxide and undoped nickel oxide thin films have been deposited on FTO/glass substrates by a surfactant-assisted ultrasonic spray pyrolysis. The addition of polyethylene glycol in the sprayed solution has led to improved uniformity and reduced light scattering compared to films made without surfactant. Furthermore, the presence of lithium ions in NiO films has resulted in improved electrochromic performances (coloration contrast and efficiency), but with a slight decrease of the electrochromic switching kinetics.

  12. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yaddanapudi, Haritha Sree; Tian, Kun; Teng, Shiang; Tiwari, Ashutosh

    2016-09-01

    We are reporting a facile way to prepare nickel/carbon nanocomposites from wood as a novel electrode material for supercapacitors. The surface morphology and the structure of the as-prepared electrodes were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that after high-temperature carbonization process, the wood is converted into graphitic carbon with nickel nanoparticles uniformly distributed within the three dimensional structure of the wood. Electrochemical characterization such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements were conducted. These results showed that the introduction of nickel into the carbonized wood improves the specific capacitance and the cyclic stability of the nanocomposite electrode over that of the pure carbonized wood electrode. The composite electrode displayed an enhanced capacitive performance of 3616 F/g at 8 A/g, and showed an excellent capacitance retention after 6000 charge-discharge cycles. These results endow the nickel nanoparticles impregnated carbonized wood with a great potential for future application in supercapacitors.

  13. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes

    PubMed Central

    Yaddanapudi, Haritha Sree; Tian, Kun; Teng, Shiang; Tiwari, Ashutosh

    2016-01-01

    We are reporting a facile way to prepare nickel/carbon nanocomposites from wood as a novel electrode material for supercapacitors. The surface morphology and the structure of the as-prepared electrodes were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that after high-temperature carbonization process, the wood is converted into graphitic carbon with nickel nanoparticles uniformly distributed within the three dimensional structure of the wood. Electrochemical characterization such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements were conducted. These results showed that the introduction of nickel into the carbonized wood improves the specific capacitance and the cyclic stability of the nanocomposite electrode over that of the pure carbonized wood electrode. The composite electrode displayed an enhanced capacitive performance of 3616 F/g at 8 A/g, and showed an excellent capacitance retention after 6000 charge-discharge cycles. These results endow the nickel nanoparticles impregnated carbonized wood with a great potential for future application in supercapacitors. PMID:27651005

  14. Facile preparation of nickel/carbonized wood nanocomposite for environmentally friendly supercapacitor electrodes.

    PubMed

    Yaddanapudi, Haritha Sree; Tian, Kun; Teng, Shiang; Tiwari, Ashutosh

    2016-01-01

    We are reporting a facile way to prepare nickel/carbon nanocomposites from wood as a novel electrode material for supercapacitors. The surface morphology and the structure of the as-prepared electrodes were studied by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The results indicate that after high-temperature carbonization process, the wood is converted into graphitic carbon with nickel nanoparticles uniformly distributed within the three dimensional structure of the wood. Electrochemical characterization such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge measurements were conducted. These results showed that the introduction of nickel into the carbonized wood improves the specific capacitance and the cyclic stability of the nanocomposite electrode over that of the pure carbonized wood electrode. The composite electrode displayed an enhanced capacitive performance of 3616 F/g at 8 A/g, and showed an excellent capacitance retention after 6000 charge-discharge cycles. These results endow the nickel nanoparticles impregnated carbonized wood with a great potential for future application in supercapacitors. PMID:27651005

  15. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  16. Synthesis of bacteria promoted reduced graphene oxide-nickel sulfide networks for advanced supercapacitors.

    PubMed

    Zhang, Haiming; Yu, Xinzhi; Guo, Di; Qu, Baihua; Zhang, Ming; Li, Qiuhong; Wang, Taihong

    2013-08-14

    Supercapacitors with potential high power are useful and have attracted much attention recently. Graphene-based composites have been demonstrated to be promising electrode materials for supercapacitors with enhanced properties. To improve the performance of graphene-based composites further and realize their synthesis with large scale, we report a green approach to synthesize bacteria-reduced graphene oxide-nickel sulfide (BGNS) networks. By using Bacillus subtilis as spacers, we deposited reduced graphene oxide/Ni3S2 nanoparticle composites with submillimeter pores directly onto substrate by a binder-free electrostatic spray approach to form BGNS networks. Their electrochemical capacitor performance was evaluated. Compared with stacked reduced graphene oxide-nickel sulfide (GNS) prepared without the aid of bacteria, BGNS with unique nm-μm structure exhibited a higher specific capacitance of about 1424 F g(-1) at a current density of 0.75 A g(-1). About 67.5% of the capacitance was retained as the current density increased from 0.75 to 15 A g(-1). At a current density of 75 A g(-1), a specific capacitance of 406 F g(-1) could still remain. The results indicate that the reduced graphene oxide-nickel sulfide network promoted by bacteria is a promising electrode material for supercapacitors. PMID:23751359

  17. One-step electrodeposition of graphene loaded nickel oxides nanoparticles for acetaminophen detection.

    PubMed

    Liu, Gui-Ting; Chen, Hui-Fen; Lin, Guo-Ming; Ye, Ping-ping; Wang, Xiao-Ping; Jiao, Ying-Zhi; Guo, Xiao-Yu; Wen, Ying; Yang, Hai-Feng

    2014-06-15

    An electrochemical sensor of acetaminophen (AP) based on electrochemically reduced graphene (ERG) loaded nickel oxides (Ni2O3-NiO) nanoparticles coated onto glassy carbon electrode (ERG/Ni2O3-NiO/GCE) was prepared by a one-step electrodeposition process. The as-prepared electrode was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The electrocatalytic properties of ERG/Ni2O3-NiO modified glassy carbon electrode toward the oxidation of acetaminophen were analyzed via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The electrodes of Ni2O3-NiO/GCE, ERG/GCE, and Ni2O3-NiO deposited ERG/GCE were fabricated for the comparison and the catalytic mechanism understanding. The studies showed that the one-step prepared ERG/Ni2O3-NiO/GCE displayed the highest electro-catalytic activity, attributing to the synergetic effect derived from the unique composite structure and physical properties of nickel oxides nanoparticles and graphene. The low detection limit of 0.02 μM (S/N=3) with the wide linear detection range from 0.04 μM to 100 μM (R=0.998) was obtained. The resulting sensor was successfully used to detect acetaminophen in commercial pharmaceutical tablets and urine samples.

  18. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes

    NASA Technical Reports Server (NTRS)

    Comtat, M.; Lafage, B.; Leonardi, J.

    1986-01-01

    Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.

  19. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  20. Electroreduction of nitrate ions in concentrated sodium hydroxide solutions at lead, zinc, nickel, and phthalocyanine-modified electrodes

    SciTech Connect

    Li, H. |; Chambers, J.Q.; Hobbs, D.T.

    1987-12-31

    The electrochemical reduction of nitrate in strongly alkaline solution has been studied using nickel, lead, zinc, and iron cathodes. Intermediate formation of nitrate ion and ammonia product was observed for all electrode materials. Coating a nickel sponge electrode with phthalocyanine renders it less active toward nitrate reduction, while iron electrodes appear to be activated. Electrolysis between a lead cathode and a nickel anode is an efficient means of removing nitrate from strongly alkaline solutions. Electrode pretreatment and solution conditions were chosen to correspond to those that might be encountered in practical applications, for example, the cleanup of radioactive waste solutions.

  1. Loading and utilization of active material in nickel composite electrodes: optimization

    SciTech Connect

    Lee, W.W.; Ferrando, W.A.; Sutula, R.A.

    1984-12-01

    As an attempt to reduce nickel battery weight, the nickel composite electrode, has been under development. Investigations were undertaken to determine the optimum conditions for loading and utilizing nickel hydroxide active material in nickel composite electrodes. The main emphasis was placed on the improvement of both loading efficiency by electrochemical impregnation and utilization efficiency of the Ni(OH)2 active material. The efficiencies were examined as functions of such electrochemical conditions as current density, nickel concentration, pH, temperature of the impregnating bath, the continuity of current flow and manner of adding Co(OH)S additive. Also studied was the loading efficiency of chemical impregnation (polarization method) and the suspension method which enables a direct loading of externally prepared active material into the composite body. The most important factor for a quick utilization of the active material was found to be the additive distribution. A model of the additive distribution in the active material is proposed to account for different patterns of utilization exhibited by the electrodes.

  2. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample. PMID:22165025

  3. Sensitive and simple flow injection analysis of formaldehyde using an activated barrel plating nickel electrode.

    PubMed

    Chen, Pei-Yen; Yangi, Hsueh-Hui; Zen, Jyh-Myng; Shih, Ying

    2011-01-01

    A flow injection analysis coupled with electrochemical detection at an activated barrel plating nickel electrode (Ni-BPE) was developed as a sensitive, simple, and low-cost formaldehyde sensor. The mechanism of Ni-BPE toward the electrocatalytic oxidation of formaldehyde in alkaline medium at ambient temperature was proposed to be based on the electrocatalytic oxidation of formaldehyde by Ni(III)O(OH) species. Under the optimized conditions (flow rate = 1.2 mL/min; detection potential = +0.5 V versus Ag/AgCl), a good linearity in the window of 0.037 to 10 microg/mL formaldehyde was observed, and the LOD of 0.23 microg/L was calculated. The RSDs of intraday (n = 10) and interday (n = 6) replicate measurements of 0.185-5 microg/mL formaldehyde ranged from 1.45 to 3.60%, indicating good reproducibility of the proposed method. The proposed method was successfully applied to the determination of formaldehyde in commercial nail polish samples and a drinking water sample.

  4. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  5. Nickel oxide, ceramic-insulated, high-temperature coating

    SciTech Connect

    Aprigiano, L.F.

    1985-11-26

    A three layer composite coating for gas-turbine-engine materials and other materials exposed to high temperatures, thermal cycling, and corrosive environments. The base layer is aluminide or an MCrAlY composite, whre M is a metal selected from the group consisting of nickel or cobalt, alone or in combination. The middle layer is a ceramic composite. The outer layer is composed of nickel oxide.

  6. Nickel (II) incorporated AlPO-5 modified carbon paste electrode for determination of thioridazine in human serum.

    PubMed

    Amiri, Mandana; Sohrabnezhad, Shabnam; Rahimi, Azad

    2014-04-01

    In this approach, synthesis of nickel (II) incorporated aluminophosphate (NiAlPO-5) was performed by using hydrothermal method. The diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques were applied in order to characterize synthesized compounds. The NiAlPO-5 was used as a modifier in carbon paste electrode for the selective determination of thioridazine which is an antidepressant drug. This research is the first example of an aluminophosphate being employed in electroanalysis. The effective catalytic role of the modified electrode toward thioridazine oxidation can be attributed to the electrocatalytic activity of nickel (II) in the aluminaphosphate matrix. In addition, NiAlPO-5 has unique properties such as the high specific surface area which increases the electron transfer of thioridazine. The effects of varying the percentage of modifier, pH and potential sweep rate on the electrode response were investigated. Differential pulse voltammetry was used for quantitative determination as a sensitive method. A dynamic linear range was obtained in the range of 1.0×10(-7)-1.0×10(-5)mol L(-1). The determination of thioridazine in real samples such as commercial tablets and human serum was demonstrated.

  7. Nanostructured Solid Oxide Fuel Cell Electrodes

    SciTech Connect

    Sholklapper, Tal Zvi

    2007-01-01

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  8. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Johnson, Christopher S.; Kang, Sun-Ho; Thackeray, Michael M.

    2009-12-22

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor thereof a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0.5electrode and 0.ltoreq.y<1 in which the Li.sub.2MnO.sub.3 and LiMn.sub.2-yM.sub.yO.sub.4 components have layered and spinel-type structures, respectively, and in which M is one or more metal cations. The electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  9. Molybdenum oxide electrodes for thermoelectric generators

    DOEpatents

    Schmatz, Duane J.

    1989-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  10. Primary Water SCC Understanding and Characterization Through Fundamental Testing in the Vicinity of the Nickel/Nickel Oxide Phase Transition

    SciTech Connect

    D.S. Morton; S.A. Attanasio; G.A. Young

    2001-05-08

    This paper quantifies the nickel alloy stress corrosion crack growth rate (SCCGR) dissolved hydrogen level functionality. SCCGR has been observed to exhibit a maximum in proximity to the nickel/nickel oxide phase transition. The dissolved hydrogen level SCCGR dependency has been quantified in a phenomenological model in terms of the stability of nickel oxide not the dissolved hydrogen level. The observed SCCGR dependency has been extended to lower temperatures through the developed model and Contact Electrical Resistance (CER) measurements of the nickel/nickel oxide phase transition. Understanding obtained from this hydrogen level SCC functionality and complementary SCC subprocesses test results is discussed. Specifically, the possible SCC fundamental subprocesses of corrosion kinetics, hydrogen permeation and pickup have also been measured for nickel alloys. Secondary Ion Mass Spectroscopy (SIMS) analysis has been performed on SCCGR specimens tested in heavy water (D{sub 2}O).

  11. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOEpatents

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  12. Layered method of electrode for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1991-07-30

    A process for fabricating a fuel electrode comprising: slurry dipping to form layers which are structurally graded from all or mostly all stabilized zirconia at a first layer, to an outer most layer of substantially all metal powder, such an nickel. Higher performaance fuel electrodes may be achieved if sinter active stabilized zirconia doped for electronic conductivity is used.

  13. Solution processed nickel oxide anodes for organic photovoltaic devices

    SciTech Connect

    Mustafa, Bestoon; Griffin, Jonathan; Alsulami, Abdullah S.; Lidzey, David G.; Buckley, Alastair R.

    2014-02-10

    Nickel oxide thin films have been prepared from a nickel acetylacetonate (Ni(acac)) precursor for use in bulk heterojunction organic photovoltaic devices. The conversion of Ni(acac) to NiO{sub x} has been investigated. Oxygen plasma treatment of the NiO layer after annealing at 400 °C affords solar cell efficiencies of 5.2%. Photoelectron spectroscopy shows that high temperature annealing converts the Ni(acac) to a reduced form of nickel oxide. Additional oxygen plasma treatment further oxidizes the surface layers and deepens the NiO work function from 4.7 eV for the annealed film, to 5.0 eV allowing for efficient hole extraction at the organic interface.

  14. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  15. Impedances of Nickel Electrodes Cycled in Various KOH Concentrations

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.; Loyselle, Patricia L.

    1991-01-01

    Impedances were measured of electrodes from boiler-plate cells cycled i n KOH concentrations from 21% to 36%. These cells under accelerated conditions at 80% DOD to failure, defined discharge voltage. Cell life ranged from about 1,000 t o 40 impedances were measured at five voltages corresponding to charge. The results were analyzed using a standard circuit model including a Warburg impedance term. The kinetic resistances and Warburg slopes were greater for those electrodes which had failed earliest. Other circuit models have also been examined. The results are considered indicative but not conclusive, since the cells had been stored after failure for varying lengths of time which is known to affect the impedance. In order to minimize the effects of storage, the electrodes were cycled 10 times before the impedance measurements were taken.

  16. Iridium oxide-polymer nanocomposite electrode materials for water oxidation.

    PubMed

    Lattach, Youssef; Rivera, Juan Francisco; Bamine, Tahya; Deronzier, Alain; Moutet, Jean-Claude

    2014-08-13

    Nanocomposite anode materials for water oxidation have been readily synthesized by electrodeposition of iridium oxide nanoparticles into poly(pyrrole-alkylammonium) films, previously deposited onto carbon electrodes by oxidative electropolymerization of a pyrrole-alkylammonium monomer. The nanocomposite films were characterized by electrochemistry, transmission electron microscopy, and atomic force microscopy. They showed an efficient electrocatalytic activity toward the oxygen evolution reaction. Data from Tafel plots have demonstrated that the catalytic activity of the iridium oxide nanoparticles is maintained following their inclusion in the polymer matrix. Bulk electrolysis of water at carbon foam modified electrodes have shown that the iridium oxide-polymer composite presents a higher catalytic activity and a better operational stability than regular oxide films.

  17. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  18. Lithium metal oxide electrodes for lithium batteries

    SciTech Connect

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  19. Manganese oxide composite electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Li, Naichao

    2007-12-04

    An activated electrode for a non-aqueous electrochemical cell is disclosed with a precursor of a lithium metal oxide with the formula xLi.sub.2MnO.sub.3.(1-x)LiMn.sub.2-yM.sub.yO.sub.4 for 0electrode is activated by removing lithia, or lithium and lithia, from the precursor. A cell and battery are also disclosed incorporating the disclosed positive electrode.

  20. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  1. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  2. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  3. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  4. 40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for...

  5. 76 FR 47996 - Cobalt Lithium Manganese Nickel Oxide; Significant New Use Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-08

    ... AGENCY 40 CFR Parts 9 and 721 RIN 2070-AB27 Cobalt Lithium Manganese Nickel Oxide; Significant New Use... chemical substance identified as cobalt lithium manganese nickel oxide (CAS No. 182442-95-1), which was the... nickel oxide (PMN P-04-269; CAS No. 182442-95-1). This action requires persons who intend to...

  6. Modelling of nickel-cadmium batteries using porous electrode theory

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul J.; Di Stefano, Salvador; Glueck, Peter R.; Perrone, David E.

    1991-01-01

    A porous electrode modeling technique is discussed which is considered a viable means for quantitatively predicting Ni-Cd cell performance. The authors describe the integration of the cell model into a battery model useful in the design and operation of aerospace applications. Test data from a sealed boilerplate cell are presented for constant current charge and discharge conditions. Performance predictions for similar cases have been performed, and a comparison to the boilerplate data is made. Areas for further development are also noted.

  7. Deposition of three-dimensional graphene aerogel on nickel foam as a binder-free supercapacitor electrode.

    PubMed

    Ye, Shibing; Feng, Jiachun; Wu, Peiyi

    2013-08-14

    We reported a new type of graphene aerogel-nickel foam (GA@NF) hybrid material prepared through a facile two-step approach and explored its energy storage application as a binder-free supercapacitor electrode. By simple freeze-drying and the subsequent thermal annealing of graphene oxide hydrogel-NF hybrid precursor, three-dimensional graphene aerogels with high mass, hierarchical porosity, and high conductivity were deposited on a NF framework. The resulting binder-free GA@NF electrode exhibited satisfactory double-layer capacitive behavior with high rate capability, good electrochemical cyclic stability, and a high specific capacitance of 366 F g(-1) at a current density of 2 A g(-1). The versatility of this approach was further verified by the successful preparation of 3D graphene/carbon nanotube hybrid aerogel-NF as a supercapacitor electrode, also with improved electrochemical performance. With advantageous features, such a facile and versatile fabrication technique shows great promise in the preparation of various types of carbon-metal hybrid electrodes.

  8. Potentiometric determination of potassium cations using a nickel(II) hexacyanoferrate-modified electrode.

    PubMed

    Mortimer, R J; Barbeira, P J; Sene, A F; Stradiotto, N R

    1999-06-14

    Electroactive nickel(II) hexacyanoferrate (NiHCF) thin film modified electrodes are effective potentiometric sensors for the determination of potassium ions. The NiHCF films are deposited onto glassy carbon electrodes by repetitive potential cycling in K(3)Fe(CN)(6)/NaNO(3)/Ni(NO(3))(2) solution. The modified electrodes exhibit a linear response to potassium ions in the concentration range 1x10(-3) to 2.0 mol dm(-3), with a near-Nernstian slope (45-49 mV per decade) at 25 degrees C. In the determination of potassium ion in syrups used for treatment of potassium deficiency, the NiHCF-modified electrode gave comparable results to those obtained using flame emission spectrophotometry. PMID:18967597

  9. Enzyme-free ethanol sensor based on electrospun nickel nanoparticle-loaded carbon fiber paste electrode.

    PubMed

    Liu, Yang; Zhang, Lei; Guo, Qiaohui; Hou, Haoqing; You, Tianyan

    2010-03-24

    We have developed a novel nickel nanoparticle-loaded carbon fiber paste (NiCFP) electrode for enzyme-free determination of ethanol. An electrospinning technique was used to prepare the NiCF composite with large amounts of spherical nanoparticles firmly embedded in carbon fibers (CF). In application to electroanalysis of ethanol, the NiCFP electrode exhibited high amperometric response and good operational stability. The calibration curve was linear up to 87.5 mM with a detection limit of 0.25 mM, which is superior to that obtained with other transition metal based electrodes. For detection of ethanol present in liquor samples, the values obtained with the NiCFP electrode were in agreement with the ones declared on the label. The attractive analytical performance and simple preparation method make this novel material promising for the development of effective enzyme-free sensors.

  10. Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Cao, Dianxue; Wang, Ying; Yang, Sainan; Zhang, Dongming; Ye, Ke; Cheng, Kui; Yin, Jinling; Wang, Guiling; Xu, Yang

    2015-04-01

    In this paper, the graphene oxide nanosheets are simultaneously reduced and deposited on nickel foam (denoted as Ni-foam@GNS) by one step electrodeposition method. The interconnected crumpled graphene nanosheets grown on Ni foam serve as a three-dimensional (3D) conductive skeleton for hydrothermal deposition of MnO2 nanosheets by in-situ redox reaction. The MnO2 nanosheets anchored on the graphene covered nickel foam (denoted as Ni-foam@GNS@MnO2) show unique 3D porous interconnected networks. The samples are characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), N2 adsorption-desorption measurements and fourier transform infrared spectroscopy (FT-IR). The capacitive performances are researched by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). The results reveal that the Ni-foam@GNS@MnO2 electrode exhibits a high specific capacitance of 462 F g-1 at 0.5 A g-1 and excellent capacitance retention of 93.1% after 5000 cycles at 10 A g-1. Furthermore, the Ni-foam@GNS@MnO2 electrode delivers a high energy density of 26.1 Wh kg-1 even at a high power density of 3981 W kg-1. These results demonstrate that the Ni-foam@GNS@MnO2 composite offers great promise in large-scale energy storage device applications.

  11. Spatial temperature oscillations during hydrogen oxidation on a nickel foil

    SciTech Connect

    Lobban, L.; Luss, D. )

    1989-08-24

    Temperature waves were observed on the surface of a nickel disk on which oxidation was carried out. The temperature front moved at a velocity of about 1 cm/s and had a width of about 1 cm. Complex dynamic local temperatures of overall reaction rate may be due to interaction among temperature waves triggered at different positions rather than an exotic reaction mechanism.

  12. Submicron nickel-oxide-gold tunnel diode detectors for rectennas

    NASA Technical Reports Server (NTRS)

    Hoofring, A. B.; Kapoor, V. J.; Krawczonek, W.

    1989-01-01

    The characteristics of a metal-oxide-metal (MOM) tunnel diode made of nickel, nickel-oxide, and gold, designed and fabricated by standard integrated circuit technology for use in FIR rectennas, are presented. The MOM tunnel diode was formed by overlapping a 0.8-micron-wide layer of 1000-A of nickel, which was oxidized to form a thin layer of nickel oxide, with a 1500 A-thick layer of gold. The dc current-voltage characteristics of the MOM diode showed that the current dependence on voltage was linear about zero bias up to a bias of about 70 mV. The maximum detection of a low-level signal (10-mV ac) was determined to be at a dc voltage of 70 mV across the MOM diode. The rectified output signal due to a chopped 10.6-micron CO2 laser incident upon the rectenna device was found to increase with dc bias, with a maximum value of 1000 nV for a junction bias of 100 mV at room temperature.

  13. Reliability of Nickel Inner Electrode Lead-Free Multilayer Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Hayashi, Hiroyuki; Kawada, Shinichiro; Kimura, Masahiko; Nakai, Yoshihiro; Tabata, Toyokazu; Shiratsuyu, Kosuke; Nada, Kazushige; Takagi, Hiroshi

    2012-09-01

    The environmental reliability of lead-free (K,Na)NbO3-based multilayer ceramics with nickel inner electrodes was studied. The multilayer specimen with good piezoelectric properties was successfully obtained by adding excess zirconium to a (K,Na)NbO3-based composition. Excess zirconium probably accelerated the solid solution of potassium into the crystal lattice and prevented potassium evaporation. The electric resistivity and piezoelectric properties of the ceramics were extremely stable at a high temperature (85 °C), a low temperature (-40 °C), and a high humidity [85 °C/85% relative humidity (RH)]. Their change rates were below 10% in 500 h studies. The stability was also high in the thermal shock (from -40 to 85 °C) test. It is thus concluded that the (K,Na)NbO3-based composition containing excess zirconium is a good candidate material for nickel electrode multilayer ceramics.

  14. Zinc oxide interdigitated electrode for biosensor application

    NASA Astrophysics Data System (ADS)

    Sin L., L.; Arshad, M. K. Md.; Fathil, M. F. M.; Adzhri, R.; M. Nuzaihan M., N.; Ruslinda, A. R.; Gopinath, Subash C. B.; Hashim, U.

    2016-07-01

    In biosensors, zinc oxide (ZnO) thin film plays a crucial role in term of stability, sensitivity, biocompatibility and low cost. Interdigitated electrode (IDE) design is one of the device architecture in biosensor for label free, stability and sensitivity. In this paper, we discuss the fabrication of zinc oxide deposited on the IDE as a transducer for sensing of biomolecule. The formation of APTES had increase the performance of the surface functionalization..Furthermore we extend the discuss on the surface functionalization process which is utilized for probe attachment onto the surface of biosensor through surface immobilization process, thus enables the sensing of biomolecules for biosensor application.

  15. Hydridable material for the negative electrode in a nickel-metal hydride storage battery

    DOEpatents

    Knosp, Bernard; Bouet, Jacques; Jordy, Christian; Mimoun, Michel; Gicquel, Daniel

    1997-01-01

    A monophase hydridable material for the negative electrode of a nickel-metal hydride storage battery with a "Lave's phase" structure of hexagonal C14 type (MgZn.sub.2) has the general formula: Zr.sub.1-x Ti.sub.x Ni.sub.a Mn.sub.b Al.sub.c Co.sub.d V.sub.e where ##EQU1##

  16. Enhanced performance of layered titanate nanowire-based supercapacitor electrodes by nickel ion exchange.

    PubMed

    Zhou, Weijia; Liu, Xiaojun; Sang, Yuanhua; Zhao, Zhenhuan; Zhou, Kai; Liu, Hong; Chen, Shaowei

    2014-03-26

    Titania nanostructured materials have been used extensively for the fabrication of electrochemical capacitors. However, the devices typically exhibit relatively low capacitance and poor cycling stability. Herein, we report the synthesis of a core-shell heterostructure based on layered titanate nanowires coated with nickel hydroxide nanosheets on a titanium mesh, referred to as K2Ti4O9@Ni(OH)2/Ti, by a simple nickel ion exchange reaction. The incorporation of nickel into the titanate nanowires is confirmed by X-ray photoelectron spectroscopic measurements and elemental mapping. Scanning electron microscopic and transmission electron microscopic measurements show the formation of a highly porous network of the hybrid nanowires. Electrochemical studies show that the K2Ti4O9@Ni(OH)2/Ti electrodes possess a high specific capacitance of 340 mF/cm(2) at 50 mV/s in an aqueous electrolyte of 3 M KOH and 3 mF/cm(2) at 0.04 mA/cm(2) in the KOH/PVA solid-state electrolyte, with an excellent retention rate of 92.5% after 2000 cycles and 92.7% after 10 000 cycles, respectively. Such a performance is a few tens of times better than that of the unmodified K2Ti4O9/Ti electrode. The enhanced capability of the chemically modified titanate electrodes may open up new opportunities in the development of low-cost, high-performance, and flexible supercapacitors.

  17. An Ultralong, Highly Oriented Nickel-Nanowire-Array Electrode Scaffold for High-Performance Compressible Pseudocapacitors.

    PubMed

    Xu, Chao; Li, Ziheng; Yang, Cheng; Zou, Peichao; Xie, Binghe; Lin, Ziyin; Zhang, Zhexu; Li, Baohua; Kang, Feiyu; Wong, Ching-Ping

    2016-06-01

    Ultralong, highly oriented Ni nanowire arrays are used as the electrode scaffold to support metal-oxide- and conductive-polymer-based electrode materials with a high mass loading; the as-obtained asymmetric supercapacitor can be compressed by fourfold and exhibits superior energy and power densities with ultrahigh cycle stability.

  18. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  19. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  20. Electrospun nickel oxide nanofibers: Microstructure and surface evolution

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah; Hashaikeh, Raed

    2015-12-01

    Nickel oxide (NiO) nanofibers with controlled microstructure were synthesized through the electrospinning technique using a solution composed of nickel acetate and polyvinyl alcohol. The microstructure of NiO nanofibers was found to be highly dependent on nickel acetate concentration in the solution and the post-heat treatment. As the nickel acetate concentration increases, the crystallinity index of NiO nanofibers increases from nearly 50 percent to 90 percent and the average crystallite size in the nanofibers increases from about 20 nm to 30 nm. Further, it was found that annealing the nanofibers at 1000 °C for 2 h leads to nearly full crystallization of nanofibers with significant increase in the crystallite size to about 50 nm while maintaining the fibrous shape. For low nickel acetate concentration, and because of the small nanofibers size, the surface of the calcined nanofibers showed oxygen deficiency which promises a superior activity of these NiO nanofibers for catalytic and sensing applications.

  1. NO.sub.x sensing devices having conductive oxide electrodes

    DOEpatents

    Montgomery, Frederick C.; West, David L.; Armstrong, Timothy R.; Maxey, Lonnie C.

    2010-03-16

    A NO.sub.x sensing device includes at least one pair of spaced electrodes, at least one of which is made of a conductive oxide, and an oxygen-ion conducting material in bridging electrical communication with the electrodes.

  2. Flexible, silver nanowire network nickel hydroxide core-shell electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yuksel, Recep; Coskun, Sahin; Kalay, Yunus Eren; Unalan, Husnu Emrah

    2016-10-01

    We present a novel one-dimensional coaxial architecture composed of silver nanowire (Ag NW) network core and nickel hydroxide (Ni(OH)2) shell for the realization of coaxial nanocomposite electrode materials for supercapacitors. Ag NWs are formed conductive networks via spray coating onto polyethylene terephthalate (PET) substrates and Ni(OH)2 is gradually electrodeposited onto the Ag NW network to fabricate core-shell electrodes for supercapacitors. Synergy of highly conductive Ag NWs and high capacitive Ni(OH)2 facilitate ion and electron transport, enhance electrochemical properties and result in a specific capacitance of 1165.2 F g-1 at a current density of 3 A g-1. After 3000 cycles, fabricated nanocomposite electrodes show 93% capacity retention. The rational design explored in this study points out the potential of nanowire based coaxial energy storage devices.

  3. Oxidation Potentials in Matte Smelting of Copper and Nickel

    NASA Astrophysics Data System (ADS)

    Matousek, Jan W.

    2014-09-01

    The oxidation potential, given as the base-ten logarithm of the oxygen partial pressure in bars and the temperature [log pO2/ T, °C], defines the state of oxidation of pyrometallurgical extraction and refining processes. This property varies from copper making, [-6/1150]; to lead/zinc smelting, [-10/1200]; to iron smelting, [-13/1600]. The current article extends the analysis to the smelting of copper and nickel/copper sulfide concentrates to produce mattes of the type Cu(Ni)FeS(O) and iron silicate slags, FeOxSiO2—with oxidation potentials of [-7.5/1250].

  4. Nickel-cadmium batteries: effect of electrode phase composition on acid leaching process.

    PubMed

    Nogueira, C A; Margarido, F

    2012-01-01

    At the end of their life, Ni-Cd batteries cause a number of environmental problems because of the heavy metals they contain. Because of this, recycling of Ni-Cd batteries has been carried out by dedicated companies using, normally, pyrometallurgical technologies. As an alternative, hydrometallurgical processes have been developed based on leaching operations using several types of leachants. The effect of factors like temperature, acid concentration, reaction time, stirring speed and grinding of material on the leaching yields of metals contained in anodic and cathodic materials (nickel, cadmium and cobalt) using sulphuric acid, is herein explained based on the structural composition of the electrode materials. The nickel, cobalt and cadmium hydroxide phases, even with a small reaction time (less than 15 minutes) and low temperature (50 degrees C) and acid concentration (1.1 M H2SO4), were efficiently leached. However, leaching of the nickel metallic phase was more difficult, requiring higher values of temperature, acid concentration and reaction time (e.g. 85 degrees C, 1.1 M H2SO4 and 5 h, respectively) in order to obtain a good leaching efficiency for anodic and cathodic materials (70% and 93% respectively). The stirring speed was not significant, whereas the grinding of electrode materials seems to promote the compaction of particles, which appears to be critical in the leaching of Ni degrees. These results allowed the identification and understanding of the relationship between the structural composition of electrode materials and the most important factors that affect the H2SO4 leaching of spent Ni-Cd battery electrodes, in order to obtain better metal-recovery efficiency. PMID:22519122

  5. Myoglobin immobilization on electrodeposited nanometer-scale nickel oxide particles and direct voltammetry.

    PubMed

    Moghaddam, Abdolmajid Bayandori; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Ahadi, Sara; Saboury, Ali Akbar

    2008-04-01

    Prosperity of information on the reactions of redox-active sites in proteins can be attained by voltammetric studies in which the protein sample is located on a suitable surface. This work reports the presentation of myoglobin/nickel oxide nanoparticles/glassy carbon (Mb/NiO NPs/GC) electrode, ready by electrochemical deposition of the NiO NPs on glassy carbon electrode and myoglobin immobilization on their surfaces by the potential cycling method. Images of electrodeposited NiO NPs on the surface of glassy carbon electrode were obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM). A pair of well-defined redox peaks for Mb(Fe(III)-Fe(II)) was obtained at the prepared electrode by direct electron transfer between the protein and nanoparticles. Electrochemical parameters of immobilized myoglobin such as formal potential (E(0')), charge transfer coefficient (alpha) and apparent heterogeneous electron transfer rate constant (k(s)) were estimated by cyclic voltammetry and nonlinear regression analysis. Biocatalytic activity was exemplified at the prepared electrode for reduction of hydrogen peroxide.

  6. Fluidized Bed Selective Oxidation-Sulfation Roasting of Nickel Sulfide Concentrate: Part I. Oxidation Roasting

    NASA Astrophysics Data System (ADS)

    Yu, Dawei; Utigard, Torstein A.; Barati, Mansoor

    2014-04-01

    Two-stage oxidation-sulfation roasting of nickel sulfide concentrate in fluidized bed was investigated to generate water-soluble metal sulfates as an alternative process to smelting of the sulfide concentrate for the recovery of valuable metals. The first stage, i.e., oxidation roasting, was employed to preferentially oxidize the iron before performing sulfation roasting. A batch fluidized bed roaster was constructed for roasting tests. Roasting products from various roasting temperatures and different roasting times were analyzed by SEM/EDS, EPMA, XRD, and ICP-OES to investigate the oxidation roasting behavior of the nickel concentrate as a function of temperature and time.

  7. Method for control of edge effects of oxidant electrode

    DOEpatents

    Carr, Peter; Chi, Chen H.

    1980-12-23

    Described is an electrode assembly comprising; a. a porous electrode having a first and second exterior face with a cavity formed in the interior between said exterior faces thereby having first and second interior faces positioned opposite the first and second exterior faces; b. a counter electrode positioned facing each of the first and second exterior faces of the porous electrode; c. means for passing an oxidant through said porous electrode; and d. screening means for blocking the interior face of the porous electrode a greater amount than the blocking of the respective exterior face of the porous electrode, thereby maintaining a differential of oxidant electrode surface between the interior face and the exterior face. The electrode assembly is useful in a metal, halogen, halogen hydrate electrical energy storage device.

  8. Carboxylate Precursor Effects on MOD Derived Metal Oxide (Nickel/Nickel Oxide ) Thin Films

    NASA Astrophysics Data System (ADS)

    Gao, Xiang

    Thin films in the (Ni/NiO) system have been widely studied because of their significant potential for use in batteries, fuel cells, solar cells, supercapacitors, magnetic devices and various sensor applications. Such films typically are deposited onto suitable substrates by electrochemical or vapor deposition methods, followed by heat treatment to develop the oxide structure. In this study, by contrast, the Ni/NiO thin films were prepared by metallo-organic decomposition (MOD) technique in order to facilitate the development of nano structure feature as well as molecular scale mixing and excellent composition control. Critical parameters that must be controlled during this deposition process to achieve high quality films include: carboxylate precursor chemistry, solution chemistry, film structure chemistry, film deposition characteristics, film structure development and pyrolysis characteristics. These crucial control parameters are, for the most areas, poorly understood for this system especially for the carboxylate precursor chemistry effects on properties of Ni/NiO thin films. The goal of this work, therefore, is to understand and design those parameters in term of precursor species, viscosity, solute concentration and solvent composition as well as film deposition and heat treatment conditions that can lead to the controlled fabrication of nano-sized, high surface area, low resistive Ni/NiO thin films on Si and metallic substrates such as stainless steels and silver. The solvent system used consisted of a unique mixture of propionic acid and amylamine, in molar ratio of 0.5--2.0, with Ni acetate as the solute precursor in the concentration range of 0.2--2 mol/l. The films were prepared by spin deposition at 3000 rpm from carboxylate solution precursors with viscosity range of 10--640 cP. Good quality nano-sized Ni/NiO thin films, in the range of 0.2--2 microm thickness, on Si or stainless steel substrates were obtained by a mixed AA/PPA solvent system in the

  9. Nickel foam-based manganese dioxide-carbon nanotube composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jun; Yang, Quan Min; Zhitomirsky, Igor

    Manganese dioxide nanofibers with length ranged from 0.1 to 1 μm and a diameter of about 2-4 nm were prepared by a chemical precipitation method. Composite electrodes for electrochemical supercapacitors were fabricated by impregnation of slurries of the manganese dioxide nanofibers and multiwalled carbon nanotubes (MWCNTs) into porous nickel foam current collectors. In the composite electrodes, MWCNT formed a secondary conductivity network within the nickel foam cells. Obtained composite electrodes, containing 0-20 wt.% MWCNT with total mass loading of 40 mg cm -2, showed a capacitive behavior in the 0.1-0.5 M Na 2SO 4 solutions. The highest specific capacitance (SC) of 155 F g -1 was obtained at a scan rate of 2 mV s -1 in the 0.5 M Na 2SO 4 solutions. The SC increased with increasing MWCNT content in the composite materials and increasing Na 2SO 4 concentration in the solutions and decreased with increasing scan rate.

  10. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R.

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  11. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  12. Preparation of nickel oxide powder by decomposition of basic nickel carbonate in microwave field with nickel oxide seed as a microwave absorbing additive

    SciTech Connect

    Wang, Y.; Ke, J.J.

    1996-01-01

    Nickel oxide (NiO) powder is prepared by decomposition of basic nickel carbonate (mNi(OH){sub 2}{center_dot}nNiCO{sub 3}{center_dot}xH{sub 2}O) in microwave field with NiO seed as a microwave absorbing additive. Basic nickel carbonate (BNC) can decompose completely to NiO powder in a short time. Firstly, the heat for BNC decomposition is provided by NiO seed which absorbs microwave and then by NiO product which also absorbs microwave. The decomposition process of BNC can be accelerated by increasing the amount of BNC, the amount of NiO seed or the microwave field power. The size of NiO powder product is about 180nm when the size of BNC used is about 160nm.

  13. Structural transformation in nickel doped zinc oxide nanostructures

    SciTech Connect

    Goswami, Navendu; Sahai, Anshuman

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► A systematic study of 1–10% Ni doped ZnO nanostructures (Ni:ZnO NS). ► Effect of Ni concentration on properties of Ni:ZnO NS was intensively investigated. ► Structural transformation in Ni:ZnO NS demonstrated through characterizations. ► Alteration in vibrational modes of Ni:ZnO NS were meticulously analyzed. ► Intricacies of structural evolution, from particles to rods, were comprehended. -- Abstract: In this article, structural transformation in nickel doped zinc oxide nanostructures is reported. The ZnO nanostructures are synthesized with 1–10% of nickel doping through a chemical precipitation method. The undoped and doped nanostructures were systematically investigated employing X-ray diffraction (XRD), transmission and scanning electron microscopy (TEM/SEM), Fourier transform infrared (FTIR) and micro-Raman spectroscopy (μRS). The wurtzite phase of the material and associated lattice parameters were ascertained through XRD analysis. TEM/SEM images reveal the structural transformation of ZnO nanostructures with variation in nickel doping. The study of vibrational modes of nanostructures at different stages of structural transformation, as performed through FTIR and Raman spectroscopy, assist in deciphering the pivotal role of doping concentration in gradual evolution of nickel doped ZnO structure from nanoparticles to nanorods.

  14. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye- and quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Soo Kang, Jin; Park, Min-Ah; Kim, Jae-Yup; Ha Park, Sun; Young Chung, Dong; Yu, Seung-Ho; Kim, Jin; Park, Jongwoo; Choi, Jung-Woo; Jae Lee, Kyung; Jeong, Juwon; Jae Ko, Min; Ahn, Kwang-Soon; Sung, Yung-Eun

    2015-05-01

    Nickel nitride electrodes were prepared by reactive sputtering of nickel under a N2 atmosphere at room temperature for application in mesoscopic dye- or quantum dot- sensitized solar cells. This facile and reliable method led to the formation of a Ni2N film with a cauliflower-like nanostructure and tetrahedral crystal lattice. The prepared nickel nitride electrodes exhibited an excellent chemical stability toward both iodide and polysulfide redox electrolytes. Compared to conventional Pt electrodes, the nickel nitride electrodes showed an inferior electrocatalytic activity for the iodide redox electrolyte; however, it displayed a considerably superior electrocatalytic activity for the polysulfide redox electrolyte. As a result, compared to dye-sensitized solar cells (DSCs), with a conversion efficiency (η) = 7.62%, and CdSe-based quantum dot-sensitized solar cells (QDSCs, η = 2.01%) employing Pt counter electrodes (CEs), the nickel nitride CEs exhibited a lower conversion efficiency (η = 3.75%) when applied to DSCs, but an enhanced conversion efficiency (η = 2.80%) when applied to CdSe-based QDSCs.

  15. Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries

    SciTech Connect

    Go, Dae-Yeon; Park, Jinsoo; Noh, Pan-Jin; Cho, Gyu-Bong; Ryu, Ho-Suk; Nam, Tae-Hyeon; Ahn, Hyo-Jun; Kim, Ki-Won

    2014-10-15

    Highlights: • We succeeded in preparing monolithic Ni{sub 3}S{sub 2} integrated electrode through the sulfuration. • The sulfuration is a facile and useful method to synthesize metal sulfides with nanostructure. • As-prepared monolithic Ni{sub 3}S{sub 2} electrodes showed very stable and cycle performance over charge/discharge cycling. - Abstract: Monolithic nickel sulfide electrodes were prepared using a facile synthesis method, sulfuration and annealing. As-prepared Ni{sub 3}S{sub 2} electrodes were characterized by X-ray diffractometry and field emission scanning electron microscopy. Thermal stability was determined by thermal gravimetric analysis and differential scanning calorimetry. Electrochemical properties were measured by galvanostatic charge and discharge cycling for Na-ion batteries. Three kinds of Ni{sub 3}S{sub 2} electrodes were prepared by varying the sulfuration time (5, 15 and 25 min). The electrochemical results indicated that the capacities increased with an increase in sulfuration time and the cycle performance was stable as a result of monolithic integration of nanostructured Ni{sub 3}S{sub 2} on Ni plates, leading to low interfacial resistance.

  16. Controlled synthesis of size-tunable nickel and nickel oxide nanoparticles using water-in-oil microemulsions

    NASA Astrophysics Data System (ADS)

    Kumar, Ajeet; Saxena, Amit; De, Arnab; Shankar, Ravi; Mozumdar, Subho

    2013-06-01

    Industrial demands have generated a growing need to synthesize pure metal and metal-oxide nanoparticles of a desired size. We report a novel and convenient method for the synthesis of spherical, size tunable, well dispersed, stable nickel and nickel oxide nanoparticles by reduction of nickel nitrate at room temperature in a TX-100/n-hexanol/cyclohexane/water system by a reverse microemulsion route. We determined that reduction with alkaline sodium borohydrate in nitrogen atmosphere leads to the formation of nickel nanoparticles, while the use of hydrazine hydrate in aerobic conditions leads to the formation of nickel oxide nanoparticles. The influence of several reaction parameters on the size of nickel and nickel oxide nanoparticles were evaluated in detail. It was found that the size can be easily controlled either by changing the molar ratio of water to surfactant or by simply altering the concentration of the reducing agent. The morphology and structure of the nanoparticles were characterized by quasi-elastic light scattering (QELS), transmission electron microscopy (TEM), x-ray diffraction (XRD), electron diffraction analysis (EDA) and energy dispersive x-ray (EDX) spectroscopy. The results show that synthesized nanoparticles are of high purity and have an average size distribution of 5-100 nm. The nanoparticles prepared by our simple methodology have been successfully used for catalyzing various chemical reactions.

  17. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling. PMID:25919917

  18. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  19. Serum levels of protein oxidation products in patients with nickel allergy.

    PubMed

    Gangemi, Sebastiano; Ricciardi, Luisa; Minciullo, Paola Lucia; Cristani, Mariateresa; Saitta, Salvatore; Chirafisi, Joselita; Spatari, Giovanna; Santoro, Giusy; Saija, Antonella

    2009-01-01

    Nickel sensitization can not only induce allergic contact dermatitis (ACD), but also can induce an overlapping disease referred to as "systemic nickel allergy syndrome" (SNAS), characterized by urticaria/angioedema and gastrointestinal symptoms correlated to the ingestion of nickel-containing foods. This study was designed to determine if oxidative stress occurs in patients with nickel allergy. Thirty-one female patients (mean age 31.26 + 13.04 years, range 16-64 years) with confirmed nickel CD underwent oral nickel challenge because of clinically suspected SNAS; serum concentrations of protein carbonyl groups (PCGs) and nitrosylated proteins (NPs; biomarkers of oxidative stress) were measured before and after oral nickel challenge as well as in healthy female controls. Twenty-three of these 31 patients were diagnosed with SNAS because they had a positive reaction to the oral nickel challenge, and 8 patients had no reaction and therefore were classified as patients with contact nickel allergy only. Although both nickel-allergic patients and controls presented similar serum levels of PCGs, NP values in nickel-allergic patients appeared higher than in controls and tended to decrease after the challenge; furthermore, serum levels of NPs in patients affected by SNAS were higher (although not significantly) than in patients with nickel ACD only. The involvement of specific biomarkers of oxidative stress such as NPs and the lack of involvement of other biomarkers such as PCGs may help to better understand the alteration of the redox homeostasis occurring in nickel ACD and particularly in SNAS.

  20. Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors

    NASA Astrophysics Data System (ADS)

    Wang, Gongming; Lu, Xihong; Zhai, Teng; Ling, Yichuan; Wang, Hanyu; Tong, Yexiang; Li, Yat

    2012-05-01

    We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)2] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)2 nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 °C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sensitivity of ~8500 μA cm-2 mM-1 and a low detection limit of 1.2 μM glucose at an applied bias of 0.5 V vs. Ag/AgCl. The fabrication of the nanoflake electrode avoids the use of polymer binders representing additional advantage over the conventional powder based glucose sensors. Furthermore, they show good specificity to glucose in the presence of ascorbic acid, d-lactose and d-fructose.We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)2] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)2 nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 °C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sensitivity of ~8500 μA cm-2 mM-1 and a low detection limit of 1.2 μM glucose at an applied bias of 0.5 V vs. Ag/AgCl. The fabrication of the nanoflake electrode avoids the use of polymer binders representing additional advantage over the conventional powder based glucose sensors. Furthermore, they show good specificity to glucose in the presence of ascorbic acid, d-lactose and d-fructose. Electronic supplementary information (ESI) available: Electrochemical characterization and TGA analysis. See DOI: 10.1039/c2nr30302g

  1. NICKEL HYDROXIDES

    SciTech Connect

    MCBREEN,J.

    1997-11-01

    Nickel hydroxides have been used as the active material in the positive electrodes of several alkaline batteries for over a century. These materials continue to attract a lot of attention because of the commercial importance of nickel-cadmium and nickel-metal hydride batteries. This review gives a brief overview of the structure of nickel hydroxide battery electrodes and a more detailed review of the solid state chemistry and electrochemistry of the electrode materials. Emphasis is on work done since 1989.

  2. Symmetrical, bi-electrode supported solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  3. Supercapacitors with graphene oxide separators and reduced graphite oxide electrodes

    NASA Astrophysics Data System (ADS)

    Shulga, Y. M.; Baskakov, S. A.; Baskakova, Y. V.; Volfkovich, Y. M.; Shulga, N. Y.; Skryleva, E. A.; Parkhomenko, Y. N.; Belay, K. G.; Gutsev, G. L.; Rychagov, A. Y.; Sosenkin, V. E.; Kovalev, I. D.

    2015-04-01

    A supercapacitor (SC) with electrodes fabricated from graphite oxide reduced by a microwave exfoliation (MEGO) method and the separator made from the graphite oxide paper (GOP) formed after precipitation of water suspension of graphene oxide was designed for the first time. The specific capacitance of this SC exceeded 200 F/g. The specific area of our MEGO is 2400 m2/g when measured using the standard contact porosimetry method, whereas it is several times smaller (∼600 m2/g) when measured by using the Brunauer-Emmett-Teller method based on the low-temperature nitrogen adsorption. By using the angle resolved X-ray photoelectron spectroscopy we found that surface layers of the GOP separator contain smaller oxygen concentration than the bulk layers.

  4. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  5. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  6. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  7. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  8. Nickel incorporated carbon nanotube/nanofiber composites as counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash; Zhou, Zhengping; Poudel, Prashant; Thapa, Amit; Wu, Xiang-Fa; Qiao, Qiquan

    2012-08-01

    A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (Rct) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm2, much lower than that of the Pt electrode (1.81 Ω cm2). Such a low value of Rct indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (Rs) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm2, which was close to the Rs of 5.77 Ω cm2 of the Pt electrode, despite the significant difference in their thicknesses: ~22 μm for Ni-CNT-CNF composite, while ~40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (Rs-tot) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (Jsc) of 15.83 mA cm-2, open circuit voltage (Voc) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with Jsc of 15.01 mA cm-2, Voc of 0.83, and FF of 0.67.

  9. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect

    Chen, Xiao; Zhang, Bingsen; Li, Chuang; Shao, Zhengfeng; Su, Dangsheng; Williams, Christopher T.; Liang, Changhai

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  10. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors - A review

    NASA Astrophysics Data System (ADS)

    Faraji, Soheila; Ani, Farid Nasir

    2014-10-01

    Electrochemical capacitors (ECs), also known as pseudocapacitors or supercapacitors (SCs), is receiving great attention for its potential applications in electric and hybrid electric vehicles because of their ability to store energy, alongside with the advantage of delivering the stored energy much more rapidly than batteries, namely power density. To become primary devices for power supply, supercapacitors must be developed further to improve their ability to deliver high energy and power simultaneously. In this concern, a lot of effort is devoted to the investigation of pseudocapacitive transition-metal-based oxides/hydroxides such as ruthenium oxide, manganese oxide, cobalt oxide, nickel oxide, cobalt hydroxide, nickel hydroxide, and mixed metal oxides/hydroxides such as nickel cobaltite and nickel-cobalt oxy-hydroxides. This is mainly due to the fact that they can produce much higher specific capacitances than typical carbon-based electric double-layer capacitors and electronically conducting polymers. This review presents supercapacitor performance data of metal oxide thin film electrodes by microwave-assisted as an inexpensive, quick and versatile technique. Supercapacitors have established the specific capacitance (Cs) principles, therefore, it is likely that metal oxide films will continue to play a major role in supercapacitor technology and are expected to considerably increase the capabilities of these devices in near future.

  11. Modified lithium vanadium oxide electrode materials products and methods

    DOEpatents

    Thackeray, Michael M.; Kahaian, Arthur J.; Visser, Donald R.; Dees, Dennis W.; Benedek, Roy

    1999-12-21

    A method of improving certain vanadium oxide formulations is presented. The method concerns fluorine doping formulations having a nominal formula of LiV.sub.3 O.sub.8. Preferred average formulations are provided wherein the average oxidation state of the vanadium is at least 4.6. Herein preferred fluorine doped vanadium oxide materials, electrodes using such materials, and batteries including at least one electrode therein comprising such materials are provided.

  12. Graphene Oxide/ Ruthenium Oxide Composites for Supercapacitors Electrodes

    NASA Astrophysics Data System (ADS)

    Amir, Fatima

    Supercapacitors are electrical energy storage devices with high power density, high rate capability, low maintenance cost, and long life cycle. They complement or replace batteries in harvesting applications when high power delivery is needed. An important improvement in performance of supercapacitors has been achieved through recent advances in the development of new nanostructured materials. Here we will discuss the fabrication of graphene oxide/ ruthenium oxide supercacitors electrodes including electrophoretic deposition. The morphology and structure of the fabricated electrodes were investigated and will be discussed. The electrochemical properties were determined using cyclic voltammetry and galvanostatic charge/discharge techniques and the experiments that demonstrate the excellent capacitive properties of the obtained supercapacitors will also be discussed. The fabrication and characterization of the samples were performed at the Center of Functional Nanomaterials at Brookhaven National Lab. The developed approaches in our study represent an exciting direction for designing the next generation of energy storage devices. This work was supported in part by the U.S. Department of Energy through the Visiting Faculty Program and the research used resources of the Center for Functional Nanomaterials at Brookhaven National Laboratory.

  13. Evaluations of solid electrodes for use in voltammetric monitoring of heavy metals in samples from metallurgical nickel industry.

    PubMed

    Mikkelsen, Øyvind; Skogvold, Silje Marie; Schrøder, Knut H; Gjerde, Magne Ivar; Aarhaug, Thor Anders

    2003-09-01

    Evaluation of different solid electrode systems for detection of zinc, lead, cobalt, and nickel in process water from metallurgical nickel industry with use of differential pulse stripping voltammetry has been performed. Zinc was detected by differential pulse anodic stripping voltammetry (DPASV) on a dental amalgam electrode as intermetallic Ni-Zn compound after dilution in ammonium buffer solution. The intermetallic compound was observed at -375 mV, and a linear response was found in the range 0.2-1.2 mg L(-1) (r(2)=0.98) for 60 s deposition time. Simultaneous detection of nickel and cobalt in the low microg L(-1) range was successfully performed by use of adsorptive cathodic stripping voltammetry (AdCSV) of dimethylglyoxime complexes on a silver-bismuth alloy electrode, and a good correlation was found with corresponding AAS results (r(2)=0.999 for nickel and 0.965 for cobalt). Analyses of lead in the microg L(-1) range in nickel-plating solution were performed with good sensitivity and stability by DPASV, using a working electrode of silver together with a glassy carbon counter electrode in samples diluted 1:3 with distilled water and acidified with H(2)SO(4) to pH 2. A new commercial automatic at-line system was tested, and the results were found to be in agreement with an older mercury drop system. The stability of the solid electrode systems was found to be from one to several days without any maintenance needed. PMID:12898113

  14. Nickel

    SciTech Connect

    Mastromatteo, E.

    1986-10-01

    Nickel was first isolated in impure form in 1751 by Cronstedt from an ore containing niccolite (NiAs). An ore of this type had earlier caused trouble in the smelting of copper and silver in Saxony, yielding an unusually brittle product. This interfering substance was referred to as kupfernick after Old Nick and his mischievous gnomes and Cronstedt applied the name nickel to this new element. The pure metal was first prepared by Richter in 1804 and he described some of the useful properties of nickel. This paper discusses the properties, sources, and toxicity of nickel.

  15. Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Ehrlich, Grant M.; Durand, Christopher

    2005-01-01

    Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.

  16. Nickel Nanofoam/Different Phases of Ordered Mesoporous Carbon Composite Electrodes for Superior Capacitive Energy Storage.

    PubMed

    Lee, Kangsuk; Song, Haeni; Lee, Kwang Hoon; Choi, Soo Hyung; Jang, Jong Hyun; Char, Kookheon; Son, Jeong Gon

    2016-08-31

    Electrochemical energy storage devices based on electric double layer capacitors (EDLCs) have received considerable attention due to their high power density and potential for obtaining improved energy density in comparison to the lithium ion battery. Ordered mesoporous carbon (OMC) is a promising candidate for use as an EDLC electrode because it has a high specific surface area (SSA), providing a wider charge storage space and size-controllable mesopore structure with a long-range order, suppling high accessibility to the electrolyte ions. However, OMCs fabricated using conventional methods have several drawbacks including low electronic conductivity and long ionic diffusion paths in mesopores. We used nickel nanofoam, which has a relatively small pore (sub-100 nm to subμm) network structure, as a current collector. This provides a significantly shortened electronic/ionic current paths and plentiful surface area, enabling stable and close attachment of OMCs without the use of binders. Thus, we present hierarchical binder-free electrode structures based on OMC/Ni nanofoams. These structures give rise to enhanced specific capacitance and a superior rate capability. We also investigated the mesopore structural effect of OMCs on electrolyte transport by comparing the capacitive performances of collapsed lamellar, cylindrical, and spherical mesopore electrodes. The highly ordered and straightly aligned cylindrical OMCs exhibited the highest specific capacitance and the best rate capability. PMID:27490161

  17. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, Siba P.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use.

  18. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, S.P.

    1986-04-15

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use. 12 figs.

  19. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  20. Nickel-cobalt oxides/carbon nanoflakes as anode materials for lithium-ion batteries

    SciTech Connect

    NuLi, Yanna Zhang Peng; Guo Zaiping Liu Huakun; Yang Jun; Wang Jiulin

    2009-01-08

    Novel nickel-cobalt oxides/carbon nanoflakes with Ni/Co molar ratio = 1:1 and 1:2 have been synthesized by a convenient hydrothermal method followed by a simple calcination process. X-ray diffraction results showed that the composites were composed of NiO, Co{sub 3}O{sub 4}, and carbon. Scanning electron microscope measurements demonstrated that the composites were flakes less than 100 nm in thickness, and the corresponding energy dispersive spectroscopy mapping showed that the carbon was distributed homogeneously in the composites. The electrochemical results showed that the composite electrodes exhibited low initial coulombic efficiency and excellent charge-discharge cycling stability. Additionally, the effect of different Ni/Co molar ratios on the electrochemical properties of the composites was investigated, and better performance was obtained for the sample with a Ni/Co molar ratio of 1:2.

  1. Oxide dispersion strengthening of nickel electrodeposits for microsystem applications.

    SciTech Connect

    Janek, Richard P.; Kotula, Paul Gabriel; Buchheit, Thomas Edward; Michael, R. P.; Goods, Steven Howard

    2003-11-01

    Oxide dispersion strengthened nickel (ODS-Ni) electrodeposits were fabricated to net shape in a nickel sulfamate bath using the LIGA process. A 20 g/l charge of 10 nm Al{sub 2}O{sub 3} powder was suspended in the bath during electrodeposition to produce specimens containing an approximately 0.001-0.02 volume fraction dispersion of the alumina particulate. Mechanical properties are compared to baseline specimens fabricated using an identical sulfamate bath chemistry without the Al{sub 2}O{sub 3} powder charge. Results reveal that the as-deposited ODS-Ni exhibited significantly higher yield strength and ultimate tensile strength than the baseline material. This increase in as-deposited strength is attributed to Orowan strengthening. The ODS-Ni also showed improved retention of room temperature strength after annealing over a range of temperatures up to 600 C. Microscopy revealed that this resistance to anneal softening was due to an inhibition of grain growth in the presence of the oxide dispersion. Nanoindentation measurements revealed that the properties of the dispersion strengthened deposit were uniform through its thickness, even in narrow, high aspect ratio structures. At elevated temperatures, the strength of the ODS-Ni was approximately three times greater than that of the baseline material although with a significant reduction in hot ductility.

  2. Solid oxide fuel cell electrode characterization and improvement for fuel flexibility and supplemental power production

    NASA Astrophysics Data System (ADS)

    Kellogg, Isaiah Daniel

    2010-03-01

    Solid oxide fuel cells (SOFC) were fabricated and the electrodes tested for their individual catalytic effectiveness in various fuels by exposing each electrode to mixed gas while the opposite electrode was exposed to its respective pure gas. Mixed hydrogen and oxygen gas was successfully utilized as fuel in a single chamber SOFC (SC-SOFC). The conditions at which the porous nickel-yttria-stabilized zirconia (Ni-YSZ) cermet anode performed well did not significantly overlap the conditions at which the La0.8Sr 0.2Fe0.8Co0.2 oxide (LSCF) cathode performed well, but there was significant catalytic activity at both electrodes which increased the open circuit voltage (OCV) beyond that predicted by the Nernst equation. The results of these tests, and future tests of similar format, could be useful in the development of SC-SOFC electrode catalysts. Pyrolytic carbon was used as fuel in a SOFC with a YSZ electrolyte and a bi-layer anode composed of nickel gadolinia-doped ceria (Ni-GDC) and Ni-YSZ. The common problems of bulk shrinkage and emergent porosity in the YSZ layer adjacent to the GDC/YSZ interface were avoided by using an interlayer of porous Ni-YSZ as a buffer anode layer between the electrolyte and the Ni-GDC primary anode. Cells were fabricated from commercially available component powders so that unconventional production methods suggested in the literature were avoided. A cell of similar construction was used with externally applied acetylene flame soot as fuel so that soot captured at the exhaust of a diesel engine could be utilized for secondary power generation in a SOFC while decreasing particulate pollution without the need for filter regeneration.

  3. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  4. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  5. Synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing nickel oxide nanoparticles using sucrose and nickel acetate in a silica template

    SciTech Connect

    Cao Yulin; Cao Jieming Zheng Mingbo; Liu Jinsong; Ji Guangbin

    2007-02-15

    New ordered mesoporous carbons containing nickel oxide nanoparticles have been successfully synthesized by carbonization of sucrose in the presence of nickel acetate inside SBA-15 mesoporous silica template. The obtained samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, and transmission electron microscopy (TEM). The NiO nanoparticles were embedded inside the mesoporous carbon framework due to the simultaneous pyrolysis of nickel acetate during carbonization. The electrochemical testing of the as-made nanocomposites showed a large specific capacitance of 230 F g{sup -1} using 2 M KOH as the electrolyte at room temperature. This is attributed to the nanometer-sized NiO formed inside mesoporous carbons and the high surface area of the mesopores in which the NiO nanoparticles are formed. Furthermore, the synthetic process is proposed as a simple and general method for the preparation of new functionalized mesoporous carbon materials, for various applications in catalysis, sensor or advanced electrode material. - Graphical abstract: Schematic drawings of synthesis routes for the NiOCMK materials.

  6. A nonstoichiometric structural model to characterize changes in the nickel hydroxide electrode during cycling

    SciTech Connect

    Srinivasan, Venkat; Bahne, C. Cornilsen; Weidner, John W.

    2003-09-15

    Experimental capacities and mass changes are recorded using an electrochemical quartz crystal microbalance during the first 9 charge and discharge cycles of nickel hydroxide thin films cycled in 3.0 weight percent (wt%) potassium hydroxide electrolyte. For the first time, the film capacities have been corrected for the oxygen evolution side reaction, and the data used as input into the point defect-containing structural model to track the changes that occur during short-term cycling. Variations in capacity and mass during formation and charge/discharge cycling are related to changes in the point defect parameters, thus providing a structural origin for the unique experimental variations observed here and often reported in the literature, but previously unexplained. Proton-, potassium-, and water-content vary in the active material during charge/discharge cycling. The observed capacity loss, or ''capacity fade'', is explained by incomplete incorporation of potassium ions in (or near) the nickel vacancy during charge, as additional protons are then allowed to occupy the vacant lattice site. The increase in water content during reduction parallels the expansion of the electrode that is well known during cycling. This result confirms the origin of the swelling phenomenon as being caused by water incorporation. The model and methodology developed in this paper can be used to correlate electrochemical signatures with material chemical structure.

  7. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries.

    PubMed

    Wessells, Colin D; Peddada, Sandeep V; Huggins, Robert A; Cui, Yi

    2011-12-14

    The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology. (1, 2) Here, we demonstrate insertion/extraction of sodium and potassium ions in a low-strain nickel hexacyanoferrate electrode material for at least five thousand deep cycles at high current densities in inexpensive aqueous electrolytes. Its open-framework structure allows retention of 66% of the initial capacity even at a very high (41.7C) rate. At low current densities, its round trip energy efficiency reaches 99%. This low-cost material is readily synthesized in bulk quantities. The long cycle life, high power, good energy efficiency, safety, and inexpensive production method make nickel hexacyanoferrate an attractive candidate for use in large-scale batteries to support the electrical grid.

  8. Modified electrodes for NADH oxidation and dehydrogenase-based biosensors.

    PubMed

    Bartlett, P N; Simon, E; Toh, C S

    2002-05-15

    The direct electrochemical oxidation of beta-nicotinamide adenine dinucleotide (NADH) at clean electrodes proceeds through a radical cation intermediate at high overpotentials and is subject to rapid fouling. Consequently, there has been a considerable body of work over the last 20 years looking at ways in which to catalyse the reaction using a wide variety of different types of modified electrode. These studies have resulted in a good knowledge of the essential features required for efficient catalysis. In designing modified electrodes for NADH oxidation, it is not only important to identify suitable redox groups, which can catalyse NADH oxidation and can be attached to the electrode surface; it is also important to ensure facile charge transport between the immobilised redox sites in order to ensure that, in multilayer systems, the whole of the redox film contributes to the catalytic oxidation. One way to achieve this is by the use of electronically conducting polymers such as poly(aniline).

  9. Graphene oxide - Polyvinyl alcohol nanocomposite based electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Pawar, Pranav Bhagwan; Shukla, Shobha; Saxena, Sumit

    2016-07-01

    Supercapacitors are high capacitive energy storage devices and find applications where rapid bursts of power are required. Thus materials offering high specific capacitance are of fundamental interest in development of these electrochemical devices. Graphene oxide based nanocomposites are mechanically robust and have interesting electronic properties. These form potential electrode materials efficient for charge storage in supercapacitors. In this perspective, we investigate low cost graphene oxide based nanocomposites as electrode material for supercapacitor. Nanocomposites of graphene oxide and polyvinyl alcohol were synthesized in solution phase by integrating graphene oxide as filler in polyvinyl alcohol matrix. Structural and optical characterizations suggest the formation of graphene oxide and polyvinyl alcohol nanocomposites. These nanocomposites were found to have high specific capacitance, were cyclable, ecofriendly and economical. Our studies suggest that nanocomposites prepared by adding 0.5% wt/wt of graphene oxide in polyvinyl alcohol can be used an efficient electrode material for supercapacitors.

  10. Vanadia supported on nickel manganese oxide nanocatalysts for the catalytic oxidation of aromatic alcohols

    NASA Astrophysics Data System (ADS)

    Adil, Syed F.; Alabbad, Saad; Kuniyil, Mufsir; Khan, Mujeeb; Alwarthan, Abdulrahman; Mohri, Nils; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq Hussain

    2015-02-01

    Vanadia nanoparticles supported on nickel manganese mixed oxides were synthesized by co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as oxidant. It was observed that the calcination temperature and the size of particles play an important role in the catalytic process. The catalyst was evaluated for its oxidation property against aliphatic and aromatic alcohols, which was found to display selectivity towards aromatic alcohols. The samples were characterized by employing scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, and X-ray photoelectron spectroscopy.

  11. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-01

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.

  12. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-01

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. PMID:26548901

  13. Hole doping in Al-containing nickel oxide materials to improve electrochromic performance.

    PubMed

    Lin, Feng; Nordlund, Dennis; Weng, Tsu-Chien; Moore, Rob G; Gillaspie, Dane T; Dillon, Anne C; Richards, Ryan M; Engtrakul, Chaiwat

    2013-01-23

    Electrochromic materials exhibit switchable optical properties that can find applications in various fields, including smart windows, nonemissive displays, and semiconductors. High-performing nickel oxide electrochromic materials have been realized by controlling the material composition and tuning the nanostructural morphology. Post-treatment techniques could represent efficient and cost-effective approaches for performance enhancement. Herein, we report on a post-processing ozone technique that improves the electrochromic performance of an aluminum-containing nickel oxide material in lithium-ion electrolytes. The resulting materials were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible-near-infrared (UV-vis-NIR) spectroscopy, and X-ray absorption spectroscopy (XAS). It was observed that ozone exposure increased the Ni oxidation state by introducing hole states in the NiO(6) octahedral unit. In addition, ozone exposure gives rise to higher-performing aluminum-containing nickel oxide films, relative to nickel oxide containing both Al and Li, in terms of switching kinetics, bleached-state transparency, and optical modulation. The improved performance is attributed to the decreased crystallinity and increased nickel oxidation state in aluminum-containing nickel oxide electrochromic films. The present study provides an alternative route to improve electrochromic performance for nickel oxide materials. PMID:23249159

  14. Enhanced low-temperature power density of solid oxide fuel cell by nickel nanoparticle infiltration into pre-fired Ni/yttria-stabilized zirconia anode.

    PubMed

    Kang, Lee-Seung; Park, Jae Layng; Lee, Sungkyu; Jin, Yun-Ho; Hong, Hyun-Seon; Lee, Chan-Gi; Kim, Bum Sung

    2014-12-01

    The Ni/yttria-stabilized zirconia (YSZ) anode morphology of an anode-supported solid oxide fuel cell (SOFC) unit cell was improved by nickel nanoparticle infiltration. A colloidal route was selected for efficient fabrication of nickel metal nanoparticles and subsequent infiltration into the Ni/YSZ anode of a pre-fired SOFC unit cell. The power density of the anode-supported SOFC unit cell was measured by the potentiostatic method to investigate the effect of nickel nanoparticle infiltration. The increase in the power density of the Ni/YSZ anode with nickel nanoparticle infiltration became gradually less significant as the SOFC operating temperature increased from 700 to 800 degrees C. The improved performance of the Ni/YSZ anode with nickel nanoparticle infiltration compared to that of an anode without nickel nanoparticles is tentatively attributed to two factors: The discretely distributed nanoparticles on the nanostructured electrodes exhibited significant catalytic effects on the electrochemical performance of the electrodes, in addition to substantially increasing the triple phase boundary lengths.

  15. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo2O4) electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Naveen, A. Nirmalesh; Selladurai, S.

    2015-06-01

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  16. Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gopi, Chandu V. V. M.; Srinivasa Rao, S.; Kim, Soo-Kyoung; Punnoose, Dinah; Kim, Hee-Je

    2015-02-01

    Nickel sulfide (NiS) thin film has been deposited on a fluorine-doped tin oxide substrate by a hydrothermal method using 3-mercaptopropionic acid and used as an efficient counter electrode (CE) for polysulfide redox reactions in quantum dot-sensitized solar cells (QDSSCs). NiS has low toxicity and environmental compatibility. In the present study, the size of the NiS nanoparticle increases with the hydrothermal deposition time. The performance of the QDSSCs is examined in detail using polysulfide electrolyte with the NiS CE. A TiO2/CdS/CdSe/ZnS-based QDSSC using the NiS CE shows enhanced photovoltaic performance with a power conversion efficiency (PCE) of 3.03%, which is superior to that of a cell with Pt CE (PCE 2.20%) under one sun illumination (AM 1.5, 100 mW cm-2). The improved photovoltaic performance of the NiS-based QDSSC may be attributed to a low charge transfer resistance (5.08 Ω) for the reduction of polysulfide on the CE, indicating greater electrocatalytic activity of the NiS. Electrochemical impedance spectroscopy, cyclic voltammetry, and Tafel-polarization measurements were used to investigate the electrocatalytic activity of the NiS and Pt CEs.

  17. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  18. Electrodes from carbon nanotubes/NiO nanocomposites synthesized in modified Watts bath for supercapacitors

    NASA Astrophysics Data System (ADS)

    Hakamada, Masataka; Abe, Tatsuhiko; Mabuchi, Mamoru

    2016-09-01

    A modified Watts bath coupled with pulsed current electroplating is used to uniformly deposit ultrafine nickel oxide particles (diameter < 4 nm) on multiwalled carbon nanotubes. The capacitance of the multiwalled carbon nanotubes/nickel oxide electrodes was as high as 2480 F g-1 (per mass of nickel oxide), which is close to the theoretical capacitance of NiO.

  19. Carbon deposition behaviour in metal-infiltrated gadolinia doped ceria electrodes for simulated biogas upgrading in solid oxide electrolysis cells

    NASA Astrophysics Data System (ADS)

    Duboviks, V.; Lomberg, M.; Maher, R. C.; Cohen, L. F.; Brandon, N. P.; Offer, G. J.

    2015-10-01

    One of the attractive applications for reversible Solid Oxide Cells (SOCs) is to convert CO2 into CO via high temperature electrolysis, which is particularly important for biogas upgrading. To improve biogas utility, the CO2 component can be converted into fuel via electrolysis. A significant issue for SOC operation on biogas is carbon-induced catalyst deactivation. Nickel is widely used in SOC electrodes for reasons of cost and performance, but it has a low tolerance to carbon deposition. Two different modes of carbon formation on Ni-based electrodes are proposed in the present work based on ex-situ Raman measurements which are in agreement with previous studies. While copper is known to be resistant towards carbon formation, two significant issues have prevented its application in SOC electrodes - namely its relatively low melting temperature, inhibiting high temperature sintering, and low catalytic activity for hydrogen oxidation. In this study, the electrodes were prepared through a low temperature metal infiltration technique. Since the metal infiltration technique avoids high sintering temperatures, Cu-Ce0.9Gd0.1O2-δ (Cu-CGO) electrodes were fabricated and tested as an alternative to Ni-CGO electrodes. We demonstrate that the performance of Cu-CGO electrodes is equivalent to Ni-CGO electrodes, whilst carbon formation is fully suppressed when operated on biogas mixture.

  20. Studies on nickel-tungsten oxide thin films

    SciTech Connect

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup −1} and 1100 cm{sup −1} correspond to Ni-O vibration and the peak at 860 cm{sup −1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

  1. Electrochromic lithium nickel oxide thin film by pulsed laser deposition

    SciTech Connect

    Wen, S.J.; Rottkay, K. von; Rubin, M.

    1996-10-01

    * Thin films of lithium nickel oxide were deposited by pulsed laser deposition (PLD) from targets of pressed LiNiO{sub 2} powder with layered structure. The composition, structure and surface air sensitivity of these films were analyzed using a variety of techniques, such as nuclear reaction analysis, Rutherford backscattering spectrometry (RBS), x-ray diffraction, infrared spectroscopy, and atomic force microscopy. Optical properties were measured using a combination of variable angle spectroscopic ellipsometry and IP spectroradiometry. Crystalline structure, surface morphology and chemical composition of Li{sub x}Ni{sub 1-x}O thin films depend strongly on deposition oxygen pressure, temperature as well as substrate target distance. The films produced at temperatures lower than 600 degrees C spontaneously absorb CO{sub 2} and H{sub 2}O at their surface once they are exposed to the air. The films deposited at 600 degrees C proved to be stable in air over a long period. Even when deposited at room temperature the PLD films are denser and more stable than sputtered films. RBS determined that the best electrochromic films had the stoichiometric composition L{sub 0.5}Ni{sub 0.5}O when deposited at 60 mTorr O{sub 2} pressure. Electrochemical tests show that the films exhibit excellent reversibility in the range 1.0 V to 3.4 V versus lithium and long cyclic life stability in a liquid electrolyte half cell. Electrochemical formatting which is used to develop electrochromism in other films and nickel oxide films is not needed for these stoichiometric films. The optical transmission range is almost 70% at 550 nm for 120 nm thick films.

  2. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-01

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded flow electrodes (28% carbon content) based on oxidized AC displayed similar viscosities (∼21 Pa s) to lower mass-loaded flow electrodes (20% carbon content) based on nonoxidized AC. The 40% increased mass loading (from 20% to 28%) resulted in a 25% increase in flow electrode gravimetric capacitance (from 65 to 83 F g(-1)) without sacrificing flowability (viscosity). The electrical energy required to remove ∼18% of the ions (desalt) from of the feed solution was observed to be significantly dependent on the mass loading and decreased (∼60%) from 92 ± 7 to 28 ± 2.7 J with increased mass densities from 5 to 23 wt %. It is shown that the surface chemistry of the active material in a flow electrode effects the electrical and pumping energy requirements of a FCDI system.

  3. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors

    SciTech Connect

    Yang, Jing-He; Yu, Qingtao; Li, Yamin; Mao, Liqun; Ma, Ding

    2014-11-15

    Highlights: • A new facile liquid-phase method has been employed for synthesis boron-doped NiO nanoflowers. • The specific surface area of NiO is as high as 200 m{sup 2} g{sup −1}. • NiO nanoflowers exhibit a high specific capacitance of ∼1309 F g{sup −1} at a charge and discharge current density of 3 A g{sup −1}. • NiO nanoflowers have excellent cycling ability and even after 2500 cycles there is no significant reduction in specific capacitance. - Abstract: Boron-doped nickel oxide (B-NiO) nanoflowers are prepared by simple thermal decomposition of nickel hydroxide. B-NiO is porous sphere with a diameter of about 400 nm. B-NiO nanoflowers are composed of approximately 30 nm nanoplates and the thickness of the nanosheets is approximately 3 nm. The specific surface area of the material is as high as 200 m{sup 2} g{sup −1} and the pore size distribution curves of B-NiO has three typical peaks in the range of mesoporous (5 nm, 13 nm and 18 nm). As an electrode for supercapacitors, the crystalline B-NiO nanoflowers have favorable characteristics, for instance, a specific capacitance of 1309 F g{sup −1} at a current density of 3 A g{sup −1} and no significant reduction in Coulombic efficiency after 2500 cycles at 37.5 A g{sup −1}. This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance supercapacitors.

  4. High dielectric constant nickel-doped titanium oxide films prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Kwei; Yen, Chih-Feng; Fan, Cho-Han

    2014-09-01

    The electrical characteristics of nickel-doped titanium oxide films prepared by liquid-phase deposition on p-type (100) silicon substrate were investigated. The aqueous solutions of ammonium hexafluorotitanate and boric acid were used as precursors for the growth of titanium oxide films and the dielectric constant is 29. The dielectric constant can be improved to 94 by nickel doping at the thermal annealing at 700 °C in nitrous oxide.

  5. Dietary nickel chloride induces oxidative intestinal damage in broilers.

    PubMed

    Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Huang, Jianying

    2013-06-01

    The purpose of this study was to investigate the oxidative damage induced by dietary nickel chloride (NiCl2) in the intestinal mucosa of different parts of the intestine of broilers, including duodenum, jejunum and ileum. A total of 240 one-day-old broilers were divided into four groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600 or 900 mg/kg NiCl2 during a 42-day experimental period. The results showed that the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and the ability to inhibit hydroxy radical and glutathione (GSH) content were significantly (p < 0.05 or p < 0.01) decreased in the 300, 600 and 900 mg/kg groups in comparison with those of the control group. In contrast, malondialdehyde (MDA) content was significantly (p < 0.05 or p < 0.01) higher in the 300, 600 and 900 mg/kg groups than that in the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could cause oxidative damage in the intestinal mucosa in broilers, which finally impaired the intestinal functions including absorptive function and mucosal immune function. The oxidative damage might be a main mechanism on the effects of NiCl2 on the intestinal health of broilers. PMID:23702803

  6. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  7. Chemical changes in secondary electron emission during oxidation of nickel /100/ and /111/ crystal surfaces

    NASA Technical Reports Server (NTRS)

    Holloway, P. H.; Hudson, J. B.

    1975-01-01

    Changes in the secondary electron spectra (which include chemical shifts of Auger transitions) between 0-70 eV during the oxidation of both (100) and (111) nickel surfaces are reported. The reaction sequence between oxygen and nickel is also briefly described. Emission rate changes are correlated with changes in the work function of the solid.

  8. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells.

  9. Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide.

    PubMed

    Ahn, Yumi; Jeong, Youngjun; Lee, Youngu

    2012-12-01

    Solution-processable silver nanowire-reduced graphene oxide (AgNW-rGO) hybrid transparent electrode was prepared in order to replace conventional ITO transparent electrode. AgNW-rGO hybrid transparent electrode exhibited high optical transmittance and low sheet resistance, which is comparable to ITO transparent electrode. In addition, it was found that AgNW-rGO hybrid transparent electrode exhibited highly enhanced thermal oxidation and chemical stabilities due to excellent gas-barrier property of rGO passivation layer onto AgNW film. Furthermore, the organic solar cells with AgNW-rGO hybrid transparent electrode showed good photovoltaic behavior as much as solar cells with AgNW transparent electrode. It is expected that AgNW-rGO hybrid transparent electrode can be used as a key component in various optoelectronic application such as display panels, touch screen panels, and solar cells. PMID:23206541

  10. Strain-Induced Electrical Properties of Lead Zirconate Titanate Thin Films on a Si wafer with Controlled Oxide Electrode Structure

    NASA Astrophysics Data System (ADS)

    Ohno, Tomoya; Ishiduka, Masaaki; Arai, Takashi; Yanagida, Hiroaki; Matsuda, Takeshi; Sakamoto, Naonori; Wakiya, Naoki; Suzuki, Hisao

    2012-09-01

    This paper shows the electrical properties of ferroelectric thin films with large compressive residual stress. In this study, the large compressive strain was applied to lead zirconate titanate (PZT) thin films by designing the bottom electrode structure on a Si wafer. The materials selected for the bottom electrode were lanthanum nickel oxide (LNO) and lanthanum strontium cobalt oxide [LSCO; (La0.5Sr0.5)CoO3] from the viewpoint of thermal expansion coefficients. As a result, the PZT thin films with morphotropic phase boundary (MPB) composition received compressive residual stress up to approximately 0.8 GPa from the bottom electrode even on a Si wafer. The compressive residual stress concomitantly increased with increasing LSCO layer thickness. In addition, the remanent polarization of the PZT thin films increased with increasing compressive residual stress.

  11. Flower-like nickel cobalt sulfide microspheres modified with nickel sulfide as Pt-free counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huo, Jinghao; Wu, Jihuai; Zheng, Min; Tu, Yongguang; Lan, Zhang

    2016-02-01

    The nickel cobalt sulfide/nickel sulfide (NiCo2S4/NiS) microspheres which exhibit flower-like morphologies are synthesized by a two-step hydrothermal method. Then the NiCo2S4/NiS microspheres are deposited on a fluorine doped SnO2 substrate by spin-casting the isopropyl alcohol solution of as-prepared microspheres. The cyclic voltammetry, electrochemical impedance spectroscopy and Tafel tests are employed to measure the electrochemical performance of NiCo2S4/NiS counter electrode. The NiCo2S4 and NiS all are used to improve the conductivity and electrocatalytic ability of the films, and the NiS can also increase the specific surface area of microspheres. The dye-sensitized solar cells (DSSCs) with the NiCo2S4/NiS counter electrode exhibite a power conversion efficiency of 8.8%, which is higher than that of DSSC with Pt counter electrode (8.1%) under the light intensity of 100 mW cm-2 (AM 1.5 G).

  12. Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Hui, Kwun Nam; Hui, Kwan San; Tang, Zikang; Jadhav, V. V.; Xia, Qi Xun

    2016-10-01

    Hierarchical chestnut-like manganese cobalt oxide (MnCo2O4) nanoneedles (NNs) are successfully grown on nickel foam using a facile and cost-effective hydrothermal method. High resolution TEM image further verifies that the chestnut-like MnCo2O4 structure is assembled by numerous 1D MnCo2O4 nanoneedles, which are formed by numerous interconnected MnCo2O4 nanoparticles with grain diameter of ∼10 nm. The MnCo2O4 electrode exhibits high specific capacitance of 1535 F g-1 at 1 A g-1 and good rate capability (950 F g-1 at 10 A g-1) in a 6 M KOH electrolyte. An asymmetric supercapacitor is fabricated using MnCo2O4 NNs on Ni foam (MnCo2O4 NNs/NF) as the positive electrode and graphene/NF as the negative electrode. The device shows an operation voltage of 1.5 V and delivers a high energy density of ∼60.4 Wh kg-1 at a power density of ∼375 W kg-1. Moreover, the device exhibits an excellent cycling stability of 94.3% capacitance retention after 12000 cycles at 30 A g-1. This work demonstrates that hierarchical chestnut-like MnCo2O4 NNs could be a promising electrode for the high performance energy storage devices.

  13. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes: crystallinity dependent performances

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchao; Zhai, Shengli; Wei, Li; Yuan, Yang; Yu, Dingshan; Wang, Liang; Wei, Jun; Chen, Yuan

    2015-08-01

    Nickel hydroxide (Ni(OH)2) is a promising pseudocapacitive material to increase the energy storage capacity of supercapacitors. Ni(OH)2 has three common crystalline structures: amorphous (amor-), α-, and β-Ni(OH)2. There is a lack of good understanding on their pros and cons as supercapacitor electrodes. In this work, we synthesized three nanocomposites with thin layers (10-15 nm) of amor-, α-, and β-Ni(OH)2 deposited on conductive multi-walled carbon nanotubes (MWCNTs). The mass loading of Ni(OH)2 is analogous in these nanocomposites, ranging from 49.1-52.2 wt% with a comparable narrow-pore size distribution centered around 4-5 nm. They were fabricated into supercapacitor electrodes at a mass loading of 6 mg cm-2 with a thickness of ˜250 μm, similar to the electrodes used in commercial supercapacitors. Our results show that MWCNT/amor-Ni(OH)2 has the highest specific capacitance (1495 or 2984 F g-1, based on the mass of total active materials or Ni(OH)2 only at the scan rate of 5 mV s-1 in 1 M KOH electrolyte). It also has the best rate capability among the three nanocomposites. Better performances can be attributed to its disordered structure, which increases its effective surface area and reduces diffusion resistance for redox reactions. However, superior performances gradually deteriorate to the same level as that of MWCNT/β-Ni(OH)2 over 3000 charge/discharge cycles, because amor- and α-Ni(OH)2 transform slowly to more ordered β-Ni(OH)2. Our results highlight that the electrochemical performances of MWCNT/Ni(OH)2 nanocomposites depend on the crystallinity of Ni(OH)2, and the performances of electrodes change upon the crystalline structure transformation of Ni(OH)2 under repeated redox reactions. Future research should focus on improving the structure stability of amor-Ni(OH)2.

  14. High pressure effects on the iron iron oxide and nickel nickel oxide oxygen fugacity buffers

    SciTech Connect

    Campbell, Andrew J; Danielson, Lisa; Righter, Kevin; Seagle, Christopher T; Wang, Yanbin; Prakapenka, Vitali B

    2009-09-25

    The chemical potential of oxygen in natural and experimental samples is commonly reported relative to a specific oxygen fugacity (fO{sub 2}) buffer. These buffers are precisely known at 1 bar, but under high pressures corresponding to the conditions of the deep Earth, oxygen fugacity buffers are poorly calibrated. Reference (1 bar) fO{sub 2} buffers can be integrated to high pressure conditions by integrating the difference in volume between the solid phases, provided that their equations of state are known. In this work, the equations of state and volume difference between the metal-oxide pairs Fe-FeO and Ni-NiO were measured using synchrotron X-ray diffraction in a multi-anvil press and laser heated diamond anvil cells. The results were used to construct high pressure fO{sub 2} buffer curves for these systems. The difference between the Fe-FeO and Ni-NiO buffers is observed to decrease significantly, by several log units, over 80 GPa. The results can be used to improve interpretation of high pressure experiments, specifically Fe-Ni exchange between metallic and oxide phases.

  15. Preparation and characterization of chemically deposited nickel sulphide film and its application as a potential counter electrode

    NASA Astrophysics Data System (ADS)

    Ray, Jaymin; Patel, Mitesh; Ghediya, Prashant; Chaudhuri, Tapas K.

    2016-07-01

    Nickel sulphide (NiS) film has emerged as a counter electrode in many applications, such as thin film batteries, dye sensitized solar cells, and supercapacitors. In this regard, we report the direct liquid coating of pure hexagonal NiS films on glass using a precursor solution of nickel-thiourea complex. A uniform and void free film is observed using scanning electron microscopy. The room temperature electrical conductivity of ˜5 × 103 S cm-1 and the positive thermoelectric power (+6 μV K-1) specify p-type conduction. The temperature variation conductivity in the range 77-300 K depicts the transition of NiS films from conducting to semi-conducting behaviour at certain transition temperatures. Preliminary results from a cyclic voltammetry study shows the feasibility of NiS films as counter electrodes.

  16. Methods for making lithium vanadium oxide electrode materials

    DOEpatents

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  17. Nickel hexacyanoferrate modified screen-printed carbon electrode for sensitive detection of ascorbic acid and hydrogen peroxide.

    PubMed

    Lin, Jie; Zhou, Dao Min; Hocevar, Samo B; McAdams, Eric T; Ogorevc, Bozidar; Zhang, Xueji

    2005-01-01

    Electrochemically modified screen-printed carbon electrode (SPCE) has been prepared by electrodepositing nickel hexacyanoferrate(III) (NiHCF) onto the electrode surface using cyclic voltammetry (CV). The performance of NiHCF-SPCE sensor was characterized and optimized by controlling several operational parameters. The NiHCF film has been proven to remain stable after CV scanning from 0 to +1.0 V vs. Ag/AgCl in the pH range of 3 to 10 and is re-useable. The most favourable supporting electrolyte solution exhibiting the optimum electroanalytical performance of the NiHCF-SPCE sensor was found to be 0.2 mol/L sodium nitrate. The electrochemical response toward ascorbic acid (AA) and H2O2 in 0.2 mol/L sodium nitrate solution was studied by using CV and the results showed that both analytes were electrocatalytically oxidized at approximately +0.4 V, while H2O2 also revealed a reduction signal at -0.8 V vs. Ag/AgCl. The NiHCF-SPCE sensor exhibited highly linear response for AA and H2O2 in the examined concentration range from 5.0x10-5 to 1.5x10-3 mol/L and from 2.0x10-5 to 1.0x10-3 mol/L (at +0.4 V), with the correlation coefficients of 0.999 and 0.998, respectively. The reproducibility of the NiHCF-SPCE sensor was followed for the determination of AA by using four individual electrodes, and the relative standard deviation of CV peak currents varied between 0.9 % and 2.2 %. The proposed NiHCF-SPCE has been shown to be a very attractive electrochemical sensor for AA and H2O2, also in a view of inexpensive mass production of disposable single-use sensors. The NiHCF-SPCE sensor was tested by measuring AA in multivitamin tablets, with recoveries obtained between 94.4 % and 108.2 % (n=5).

  18. Nickel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agricultural significance of nickel (Ni) is becoming increasingly apparent; yet, relative few farmers, growers, specialists or researchers know much about its function in crops, nor symptoms of deficiency or toxicity. The body of knowledge is reviewed regarding Ni’s background, uptake, transloc...

  19. Electrochromic properties of nano-structured nickel oxide thin film prepared by spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Lin, Sheng-Hui; Chen, Fu-Rong; Kai, Ji-Jung

    2008-01-01

    In this study, we present a simple method to improve the electrochromic properties of a nickel oxide thin film. The method involves a three-step process—(a) conducting indium tin oxide (ITO) nano-particles were first sprayed onto a conducting substrate to form a porous nano-structured ITO layer, (b) nickel oxide film was then deposited onto the nano-structured ITO layer by a spray pyrolysis technique, and (c) the substrate, ITO nano-particles layer and nickel oxide film were annealed at high temperature of 300 °C to improve adhesion of these three layers. The microstructure of the resulting electrochromic cell was investigated using scanning electron microscopy. It is evident that the nickel oxide film covers the surface of the ITO nano-particle layer and forms a nano-structured nickel oxide (NSNO) film. The switching time and contrast were characterized by Autolab PGSTAT12 potentiostat and Jasco V-570 spectrophotometer. The results suggest that the transmittance contrast and switching time of NSNO are slightly superior to those of a conventional nickel oxide (CNO) film. However, the cycling durability of NSNO can be much better than that of CNO.

  20. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode.

    PubMed

    Mardanpour, Mohammad Mahdi; Yaghmaei, Soheila

    2016-05-15

    This study reports the fabrication of a microfluidic microbial fuel cell (MFC) using nickel as a novel alternative for conventional electrodes and a non-phatogenic strain of Escherichia coli as the biocatalyst. The feasibility of a microfluidic MFC as an efficient power generator for production of bioelectricity from glucose and urea as organic substrates in human blood and urine for implantable medical devices (IMDs) was investigated. A maximum open circuit potential of 459 mV was achieved for the batch-fed microfluidic MFC. During continuous mode operation, a maximum power density of 104 Wm(-3) was obtained with nutrient broth. For the glucose-fed microfluidic MFC, the maximum power density of 5.2 μW cm(-2) obtained in this study is significantly greater than the power densities reported previously for microsized MFCs and glucose fuel cells. The maximum power density of 14 Wm(-3) obtained using urea indicates the successful performance of a microfluidic MFC using human excreta. It features high power density, self-regeneration, waste management and a low production cost (<$1), which suggest it as a promising alternative to conventional power supplies for IMDs. The performance of the microfluidic MFC as a power supply was characterized based on polarization behavior and cell potential in different substrates, operational modes, and concentrations.

  1. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    PubMed Central

    2010-01-01

    A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments. PMID:20672134

  2. Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts.

    PubMed

    Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie

    2015-08-01

    A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst.

  3. Lindqvist Polyoxoniobate Ion-Assisted Electrodeposition of Cobalt and Nickel Water Oxidation Catalysts.

    PubMed

    Liu, YuPing; Guo, Si-Xuan; Ding, Liang; Ohlin, C André; Bond, Alan M; Zhang, Jie

    2015-08-01

    A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion [Nb6O19](8-). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both [Nb6O19](8-) and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst. PMID:26158219

  4. Synthesis mechanism of lithium nickel oxide using hydrothermal electrochemical method: Thermodynamic modelling and experimental verification

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Chen, Zhenhua; Zhu, Baojun

    2005-05-01

    Potential-pOH diagrams of nickel are drawn at various temperatures to predict the reaction of nickel in a 4 M lithium hydroxide solution. Based on these diagrams, the thermodynamic stability of each constituent of nickel in 4 M LiOH solution at various temperatures is evaluated. The oxidation mechanism is studied based on the thermodynamic analysis and the oxidation proceeds in the following order: Ni, Ni(OH) 2 or HNiO 2-, NiOOH rad H 2O, NiOOH, LiNiO 2. The thermodynamic model is validated experimentally by the cyclic voltammogram method.

  5. Nano-sized nickel oxide powder synthesized by organic-inorganic solution route.

    PubMed

    Lee, Sang-Jin; Han, Young-Min; Jung, Choong-Hwan; Kwak, Ji-Yeon

    2013-02-01

    Nano-sized nickel oxide powders were synthesized by an organic-inorganic solution route employing polyvinyl alcohol (PVA) as an organic carrier. In this study, it was possible to control the physical properties of the nickel oxide powders by change of the PVA content. The experimental factors, such as the PVA content, heating temperature and time, were studied for the synthesis of nano crystalline powders. Nickel nitrate, (Ni(NO3)2, reagent grade) was used as a source of nickel cation. Once the cation source was completely dissolved in de-ionized (DI) water, 5 wt% PVA solution was added to the sol solution. The resulting gel-type precursors were completely dried and then calcined or crystallized at various temperatures in an air atmosphere in a box furnace. In the high PVA content of 2:1 mixing ratio, nano crystallite nickel oxide powders of below 5 nm in size with a high specific surface area of 151.19 m2/g were obtained at low temperature of 400 degrees C for 1 h. The PVA polymer contributed to homogeneous nickel cations in atomic scale through the fabrication process of the sol precursor. In this paper, the PVA solution technique for the fabrication of nano-sized nickel oxide powders is introduced. The effects of PVA content and heating time on the powder crystallization, morphology and specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, TEM and nitrogen gas adsorption.

  6. Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Han, Xiang; Cai, Junjie; Yang, Yong; Liu, Meilin; Zhang, Kaili

    2016-01-01

    The appropriate combination of hierarchical transition-metal oxide (TMO) micro-/nanostructures constructed from porous nanobuilding blocks with graphene sheets (GNS) in a core/shell geometry is highly desirable for high-performance lithium-ion batteries (LIBs). A facile and scalable process for the fabrication of 3D hierarchical porous zinc-nickel-cobalt oxide (ZNCO) microspheres constructed from porous ultrathin nanosheets encapsulated by GNS to form a core/shell geometry is reported for improved electrochemical performance of the TMOs as an anode in LIBs. By virtue of their intriguing structural features, the produced ZNCO/GNS core/shell hybrids exhibit an outstanding reversible capacity of 1015 mA h g(-1) at 0.1 C after 50 cycles. Even at a high rate of 1 C, a stable capacity as high as 420 mA h g(-1) could be maintained after 900 cycles, which suggested their great potential as efficient electrodes for high-performance LIBs.

  7. Graphene-Encapsulated Nanosheet-Assembled Zinc-Nickel-Cobalt Oxide Microspheres for Enhanced Lithium Storage.

    PubMed

    Zhang, Qiaobao; Chen, Huixin; Han, Xiang; Cai, Junjie; Yang, Yong; Liu, Meilin; Zhang, Kaili

    2016-01-01

    The appropriate combination of hierarchical transition-metal oxide (TMO) micro-/nanostructures constructed from porous nanobuilding blocks with graphene sheets (GNS) in a core/shell geometry is highly desirable for high-performance lithium-ion batteries (LIBs). A facile and scalable process for the fabrication of 3D hierarchical porous zinc-nickel-cobalt oxide (ZNCO) microspheres constructed from porous ultrathin nanosheets encapsulated by GNS to form a core/shell geometry is reported for improved electrochemical performance of the TMOs as an anode in LIBs. By virtue of their intriguing structural features, the produced ZNCO/GNS core/shell hybrids exhibit an outstanding reversible capacity of 1015 mA h g(-1) at 0.1 C after 50 cycles. Even at a high rate of 1 C, a stable capacity as high as 420 mA h g(-1) could be maintained after 900 cycles, which suggested their great potential as efficient electrodes for high-performance LIBs. PMID:26676945

  8. Solid-electrolyte oxide-ion electrode for molten nitrates

    SciTech Connect

    Nissen, D.A.

    1981-10-01

    An oxide ion sensitive electrode of the type Pb, PbO/ZrO/sub 2/(Y/sub 2/O/sub 3/)// was constructed and its performance tested in the binary, equimolar molten salt NaNO/sub 3/-KNO/sub 3/ over the temperature range 336 to 350/sup 0/C. The response of this electrode to oxide ion concentrations over the range 10/sup -6/ to 10/sup -10/ moles/kg is linearly dependent upon log (0/sup =/), and dE/dlog(0/sup =/) corresponds to a two-electron process.

  9. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  10. Multishelled Nickel-Cobalt Oxide Hollow Microspheres with Optimized Compositions and Shell Porosity for High-Performance Pseudocapacitors.

    PubMed

    Li, Xiangcun; Wang, Le; Shi, Jianhang; Du, Naixu; He, Gaohong

    2016-07-13

    Nickel-cobalt oxides/hydroxides have been considered as promising electrode materials for a high-performance supercapacitor. However, their energy density and cycle stability are still very poor at high current density. Moreover, there are few reports on the fabrication of mixed transition-metal oxides with multishelled hollow structures. Here, we demonstrate a new and flexible strategy for the preparation of hollow Ni-Co-O microspheres with optimized Ni/Co ratios, controlled shell porosity, shell numbers, and shell thickness. Owing to its high effective electrode area and electron transfer number (n(3/2) A), mesoporous shells, and fast electron/ion transfer, the triple-shelled Ni-Co1.5-O electrode exhibits an ultrahigh capacitance (1884 F/g at 3A/g) and rate capability (77.7%, 3-30A/g). Moreover, the assembled sandwiched Ni-Co1.5-O//RGO@Fe3O4 asymmetric supercapacitor (ACS) retains 79.4% of its initial capacitance after 10 000 cycles and shows a high energy density of 41.5 W h kg(-1) at 505 W kg(-1). Importantly, the ACS device delivers a high energy density of 22.8 W h kg(-1) even at 7600 W kg(-1), which is superior to most of the reported asymmetric capacitors. This study has provided a facile and general approach to fabricate Ni/Co mixed transition-metal oxides for energy storage. PMID:27327877

  11. Surface state and catalytic activity and selectivity of nickel catalysts in hydrogenation reactions--3. Electronic and catalytic properties of nickel catalysts. [Butylene oxides

    SciTech Connect

    Okamoto, Y.; Nitta, Y.; Imanaka, T.; Teranishi, S.

    1980-08-01

    A relationship between a parameter ..delta.. q and the ESCA chemical shift was derived from available extended Hueckel calculation results and ESCA data for nickel boride and nickel phosphide. The ..delta.. q parameter described the change in electron density at the nickel metal that occurred due to the electron transfer between nickel and the other element. The ..delta.. q parameters were estimated for Rayney nickel and Urushibara nickel, which contained aluminum and zinc alloy components, respectively, from product ratios and rate ratios measured for cyclohexene and cyclooctene hydrogenation on these catalysts. The ..delta.. q parameter correlated the increase in specific activities with increasing electron density in the hydrogenation of styrene, the increase in poisoning coefficient for carbon disulfide and triphenylphosphine with increasing electron density in the hydrogenation of styrene, and the selectivity for n-butyl alcohol in the hydrogenation of 1,2-butylene oxide on various nickel catalysts.

  12. Oxidation of TD nickel at 1050 C and 1200 C as compared with three grades of nickel of different purity

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Grisaffe, S. J.; Deadmore, D. L.

    1972-01-01

    The isothermal oxidation of three nickels of different purity, Ni-200, Ni-270, and JM-Ni, was compared with that of TD-Ni in air at 1050 and 1200 C. The samples were oxidized as ground, as polished, or as annealed and polished. Weight change, metal loss, scale thickness, oxide morphology, and scale texture were determined. In degree of oxidation, TD-Ni was nearly the same as the higher purity materials, Ni-270 and JM-Ni; and less pure Ni-200 oxidized more than the others. However, in microstructure and scale texture the TD-Ni more closely resembled Ni-200. Grinding only charged the texture of the oxides of Ni_200 and TD-Ni.

  13. Impedance studies of nickel/cadmium and nickel/hydrogen cells using the cell case as a reference electrode

    NASA Technical Reports Server (NTRS)

    Reid, Margaret A.

    1990-01-01

    Impedance measurements have been made on several Ni/Cd and Ni/H2 flight-weight cells using the case as a reference electrode. For these measurements, the voltage of the case with respect to the anode or cathode is unimportant provided that it remains stable during the measurement of the impedance. In the cells measured so far, the voltage of the cell cases with respect to the individual electrodes differ from cell to cell, even at the same overall cell voltage, but they remain stable with time. The measurements can thus be used to separate the cell impedance into the contributions of each electrode, allowing improved diagnosis of cell problems.

  14. Oxidative Dissolution of Nickel Metal in Hydrogenated Hydrothermal Solutions

    SciTech Connect

    Ziemniak, S. E.; Guilmette, P. A.; Turcotte, R. A.; Tunison, H. M.

    2007-03-27

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of metallic nickel in hydrogenated ammonia and sodium hydroxide solutions between 175 and 315 C. The solubility measurements were interpreted by means of an oxidative dissolution reaction followed by a sequence of Ni(II) ion hydrolysis reactions: Ni(s) + 2H+(aq) = Ni2+(aq) + H2(g) and Ni{sup 2+}(aq) + nH{sub 2}O = Ni(OH){sub n}{sup 2-n}(aq) + nH{sup +}(aq) where n = 1 and 2. Gibbs energies associated with these reaction equilibria were determined from a least-squares analysis of the data. The extracted thermochemical properties ({Delta}fG{sup 0}, {Delta}fH{sup 0} and S{sup 0}) for Ni2{sup +}(aq), Ni(OH){sup +}(aq) and Ni(OH){sub 2}(aq) were found to be consistent with those determined in a previous solubility study of NiO/Ni(OH){sub 2} conducted in our laboratory. The thermodynamic basis of the Ni/NiO phase boundary in aqueous solutions is examined to show that Ni(s) is stable relative to NiO(s) in solutions saturated at 25 C with 1 atm H{sub 2} for temperatures below 309 C.

  15. Nickel(II)-induced nasal epithelial toxicity and oxidative mitochondrial damage.

    PubMed

    Lee, Yoon-Jin; Lim, Soo-Sung; Baek, Byoung Joon; An, Je-Min; Nam, Hae-Seon; Woo, Kee-Min; Cho, Moon-Kyun; Kim, Sung-Ho; Lee, Sang-Han

    2016-03-01

    In probing the underlying mechanisms of nickel(II)-induced cytotoxicity on nasal epithelium, we investigated the effects of nickel(II) acetate on nasal epithelial RPMI-2650 cells. Nickel(II) elicited apoptosis, as signified by pyknotic and fragmented nuclei, increased caspase-3/7 activity, and an increase in annexin V binding, hypodiploid DNA, and Bax/Bcl-2 protein ratio. Nickel(II)-induced G2/M arrest was associated with up-regulation of p21(WAF1/CIP1) expression, decrease in phosphorylation at Thr(161) of Cdc2, and down-regulation of cyclin B1. Associated with these responses, ROS generation and mitochondrial depolarization increased in a nickel(II) concentration-dependent fashion. Pretreatment with N-acetylcysteine (NAC) attenuated these changes. p53 reporter gene assay and analyses of p53, Puma, Bax, and Bcl-2 protein levels indicated that NAC inhibited nickel(II)-induced activation of p53-mediated mitochondrial apoptotic pathway. Collectively, our study provides evidences that nickel(II) may induce oxidative damage on nasal epithelium in which antioxidant NAC protects cells against nickel(II)-induced apoptosis through the prevention of oxidative stress-mediated mitochondrial damage. PMID:26809061

  16. Structure and Chemistry of Nickel Oxide-Nickel Platinum-Platinum Interfaces

    NASA Astrophysics Data System (ADS)

    Yang, Judith Chun-Hsu

    Recent investigations have demonstrated that interfacial reactions can be used to modify the mechanical strength of metal-ceramic interfaces. To better understand this phenomena, the structure and chemistry of model metal-ceramic interfaces, formed by diffusion bonding single crystals of NiO and Pt together, were studied using electron microscopy techniques. Lattice imaging shows that the interface structure between NiO and Pt may facet depending on the relative twist geometry between them. As suggested by Ni-Pt phase diagrams and previous work, suitable choice of annealing temperature, time and oxygen partial pressure allows the formation of the intermetallic compound NiPt. Conventional transmission electron microscope (CTEM) studies reveal the presence of a 0-20 nm thick NiPt interlayer after heat treatment at low oxygen activities. Electron energy loss spectroscopy (EELS) investigations showed that the nickel diffuses into the platinum for 100nm. Some thermodynamic and kinetic information of the NiPt formation at the NiO -Pt interface, based on the CTEM and EELS studies, is presented. The influence of crystallography, impurities and oxygen activity on the interfacial reactions were investigated. In the (100)_{NiO}//(100)_ {Pt} system, a NiPt layer forms along the interface. Whereas in the (100)_{NiO }//(111)_{Pt} system, NiPt particles appear within the Pt matrix. The growth of the intermetallic interlayer is also sensitive to impurities. The presence of silicon impurities in the heat treatment furnace reduces the thickness of the NiPt interlayer by nearly a factor of ten. The NiPt interlayer may or may not form due to slight changes in the oxygen activity of the heat treatment. A simple bonding model was previously proposed to explain why NiPt improves the interfacial shear strength. That is, the NiPt layer prevents the formation of weak Pt-O bonds. In order to experimentally check this model, NiPt -NiO interface planes, produced by internal oxidation in order

  17. Reduced chemically modified graphene oxide for supercapacitor electrode

    PubMed Central

    2014-01-01

    An efficient active material for supercapacitor electrodes is prepared by reacting potassium hydroxide (KOH) with graphene oxide followed by chemical reduction with hydrazine. The electrochemical performance of KOH treated graphene oxide reduced for 24 h (reduced chemically modified graphene oxide, RCMGO-24) exhibits a specific capacitance of 253 F g-1 at 0.2 A g-1 in 2 M H2SO4 compared to a value of 141 F g-1 for graphene oxide reduced for 24 h (RGO-24), and good cyclic stability up to 3,000 cycles. Interestingly, RCMGO-24 demonstrated a higher specific capacitance and excellent cycle stability due to its residual oxygen functional groups that accelerate the faradaic reactions and aid in faster wetting. This non-annealed strategy offers the potential for simple and cost-effective preparation of an active material for a supercapacitor electrode. PMID:25298756

  18. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOEpatents

    Schmatz, Duane J.

    1990-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  19. Fragmentation of [Ni(NO3)3](-): A Study of Nickel-Oxygen Bonding and Oxidation States in Nickel Oxide Fragments.

    PubMed

    Hester, Thomas H; Albury, Rachael M; Pruitt, Carrie Jo M; Goebbert, Daniel J

    2016-07-01

    Gas-phase nickel nitrate anions are known to produce nickel oxide nitrate anions, [NiOx(NO3)y](-) upon fragmentation. The goal of this study was to investigate the properties of nickel oxide nitrate complexes generated by electrospray ionization using a tandem quadrupole mass spectrometer and theoretical calculations. The [Ni(NO3)3](-) ion undergoes sequential NO2(•) elimination to yield [NiO(NO3)2](-) and [NiO2(NO3)](-), followed by elimination of O2. The electronic structure of the nickel oxide core influences decomposition. Calculations indicate electron density from oxygen is delocalized onto the metal, yielding a partially oxidized oxygen in [NiO(NO3)2](-). Theoretical studies suggest the mechanism for O2 elimination from [NiO2(NO3)](-) involves oxygen atom transfer from a nitrate ligand to yield an intermediate, [NiO(O2)(NO2)](-), containing an oxygen radical anion ligand, O(•-), a superoxide ligand, O2(•-), and a nitrite ligand bound to Ni(2+). Electron transfer from superoxide partially reduces both the metal and oxygen and yields the energetically favored [NiO(NO2)](-) + O2 products. PMID:27328831

  20. Adhesion of Germanium Electrode on Nickel Substrate for Lithium Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Jeyaranjan, Aadithya

    Lithium ion batteries (LIBs) have gained increasing popularity due to their high potential, low self-discharge, zero priming and minimal memory effect. However, the emergence of electrical vehicles and hybrid electrical vehicles in the automobile industry, where LIBs are predominantly in use, instilled a need to improve LIB batteries by experimenting with new materials. Graphite, the commonly used anode material for LIBs suffers from low theoretical capacity (372 mA h g-1) and torpid rate performance. Germanium (Ge) seems to be a promising substitute of carbon due to its high theoretical capacity, high Li+ diffusivity and electrical conductivity. However, Ge undergoes large volumetric change (+/-370%). This causes deboning of the thin film Ge electrode from the substrate current collector, causing a rapid decrease in the electrolytic performance. The process of ion beam mixing claims to have overcome this problem. In our current study, the adhesion strength of Ge thin film over Nickel (Ni) substrate (with and without ion beam mixing) is being measured using nanoindentation and the superlayer indentation test. Nanoindentation is one of the popular techniques to measure the mechanical properties and adhesion of thin film coatings. In this technique, a very small indenter of a desired geometry indents the film/substrate pair and the work of adhesion is calculated by knowing the plastic depth of indentation and the radius of indentation. Superlayer indentation is analogous to normal indentation but with a highly stressed superlayer on top to restrict the out-of-plane displacements, it reduces the plastic pile up around the indenter tip. The results from our study strongly suggest the possibility of dramatically increasing the adhesion strength by ion bombardment, which can be achieved by atomic level intermixing of the film/substrate pair. These, in turn, suggest that Ge could be an effective successor to graphite in the near future.

  1. Influence of external mechanical loadings (creep, fatigue) on oxygen diffusion during nickel oxidation

    SciTech Connect

    Moulin, G.; Arevalo, P.; Salleo, A.

    1996-02-01

    This study deals with the influence of various mechanical loadings (fatigue, creep, creep-fatigue) on oxygen diffusion in a particular system, oxidizing nickel. A distinction between the behavior of the oxide layer and underlying nickel was noted during the first step of oxidation at 550{degrees}C, in P{sub O{sub 2}}= 1 atm. Mechanical loading causes a decrease of the oxygen mobility through the oxide scale (factor of 10{sup 3}). The oxide thicknesses on nickel undergoing mechanical loadings are different than for an unloaded sample, due to distinct contributions of the oxygen and nickel fluxes in the growing oxide. In the substrate, the ingress of oxygen becomes easier with a constant tensile load (creep). The intergranular-oxygen diffusion coefficient, D{sub i}, is increased by a factor of 10{sup 2} with respect to other samples. In creep, oxygen diffusion takes place along grain boundaries of a structure with smaller grains than in unstrained Ni. A short fatigue period during creep-fatigue decreases the sensitivity of nickel to intergranular-oxygen diffusion.

  2. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  3. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior.

    PubMed

    Cui, Ling; Murray, Erica P

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%-18% O₂ at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  4. Effect of Electrode Configuration on Nitric Oxide Gas Sensor Behavior

    PubMed Central

    Cui, Ling; Murray, Erica P.

    2015-01-01

    The influence of electrode configuration on the impedancemetric response of nitric oxide (NO) gas sensors was investigated for solid electrochemical cells [Au/yttria-stabilized zirconia (YSZ)/Au)]. Fabrication of the sensors was carried out at 1050 °C in order to establish a porous YSZ electrolyte that enabled gas diffusion. Two electrode configurations were studied where Au wire electrodes were either embedded within or wrapped around the YSZ electrolyte. The electrical response of the sensors was collected via impedance spectroscopy under various operating conditions where gas concentrations ranged from 0 to 100 ppm NO and 1%–18% O2 at temperatures varying from 600 to 700 °C. Gas diffusion appeared to be a rate-limiting mechanism in sensors where the electrode configuration resulted in longer diffusion pathways. The temperature dependence of the NO sensors studied was independent of the electrode configuration. Analysis of the impedance data, along with equivalent circuit modeling indicated the electrode configuration of the sensor effected gas and ionic transport pathways, capacitance behavior, and NO sensitivity. PMID:26404312

  5. Design of a neutral three-dimensional electro-Fenton system with foam nickel as particle electrodes for wastewater treatment.

    PubMed

    Liu, Wei; Ai, Zhihui; Zhang, Lizhi

    2012-12-01

    In this work, we demonstrate a novel three-dimensional electro-Fenton system (3D-E-Fenton) for wastewater treatment with foam nickel, activated carbon fiber and Ti/RuO(2)-IrO(2) as the particle electrodes, the cathode, and the anode respectively. This 3D-E-Fenton system could exhibit much higher rhodamine B removal efficiency (99%) than the counterpart three-dimensional electrochemical system (33%) and E-Fenton system (19%) at neutral pH in 30 min. The degradation efficiency enhancement was attributed to much more hydroxyl radicals generated in the 3D-E-Fenton system because foam nickel particle electrodes could activate molecular oxygen to produce O(2)(-) via a single-electron transfer pathway to subsequently generate more H(2)O(2) and hydroxyl radicals. This is the first observation of molecular oxygen activation over the particle electrodes in the three-dimensional electrochemical system. These interesting findings could provide some new insight on the development of high efficient E-Fenton system for wastewater treatment at neutral pH. PMID:23141376

  6. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2006-11-14

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Ni, and where M' is one or more ions with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  7. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  8. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    NASA Astrophysics Data System (ADS)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  9. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Alesker, Maria; Page, Miles; Shviro, Meital; Paska, Yair; Gershinsky, Gregory; Dekel, Dario R.; Zitoun, David

    2016-02-01

    Investigation of the hydrogen oxidation reaction (HOR) in alkaline media has been pursued in the past few years side by side with the development of alkaline membrane fuel cells (AMFCs), also called anion exchange membrane fuel cells (AEM-FCs). In this communication, we present the synthesis, electrochemistry and AMFC test of a platinum-free HOR catalyst. The anode catalyst is prepared by growing palladium nanoparticles onto nanoparticles of an oxophilic metal (nickel), resulting in nano-dispersed, interconnected crystalline phases of Ni and Pd. When used in the anode of a hydrogen/air AMFC, such Pd/Ni catalyst exhibits high HOR activity, resulting in record high performance for a platinum-free AMFC (0.4 A cm-2 at 0.6 V vs RHE). The enhancement of HOR catalytic activity vs. that observed at Pd (or Ni) alone is revealed directly in rotating disc electrode tests of this Pd/Ni catalyst that shows a significant negative shift (200 mV) of the onset potential for the HOR current vs. the case of Pd.

  10. Fabrication and characterization of protonic-ceramic fuel cells and electrolysis cells utilizing infiltrated lanthanum nickelate electrodes

    NASA Astrophysics Data System (ADS)

    Babiniec, Sean M.

    High-temperature protonic ceramics (HTPCs) have gained interest as fuel cell and electrolysis cell electrolytes, as well as hydrogen separation membranes. The transport of hydrogen as opposed to oxygen results in several benefits and applications, including higher fuel efficiency, dehydrogenation of fuel streams, and hydrogen-based chemical synthesis. However, limited work has been done in the development of air/steam electrodes for these devices. This work presents the characterization of lanthanum nickelate, La 2NiO4+delta (LN), as a potential air/steam electrode material for use with BaCe0.2Zr0.7Y0.1O3-delta (BCZY27) HTPC electrolytes fabricated by the solid-state reactive sintering technique. Two types of devices were made; a symmetric cell used for electrode characterization, and a full fuel cell/electrolysis cell used for device performance characterization. The symmetric cell consists of a 1 mm thick BCZY27 substrate with identical air/steam electrodes on both sides. Air/steam electrodes were made by infiltrating ˜ 50 nm lanthanum nickelate nanoparticles into a BCZY27 porous backbone. The fuel cell/electrolysis cell consists of a 1mm thick Ni/BCZY27 anode support, a 25 mum thick BCZY27 electrolyte, and a 50 mum thick porous BCZY27 backbone infiltrated with lanthanum nickelate. Through symmetric cell testing, it was found that the electrode polarization resistance decreases with increasing oxygen content, indicating good oxygen reduction reaction characteristics. A minimum polarization resistance was found as 2.58 Ohm-cm2 in 3% humidied oxygen at 700 °C. Full cell testing revealed a peak power density of 27 mW-cm-2 at 700 °C. Hydrogen flux measurements were also taken in the both galvanic/post-galvanic and electrolytic operation. Galvanic/post-galvanic fluxes exhibit a very high faradaic efficiency. However, electrolytic hydrogen fluxes were much lower than the calculated hydrogen faradaic flux, indicating a different charge carrier other than protons is

  11. Oxidative methane reforming with an intelligent catalyst: sintering-tolerant supported nickel nanoparticles.

    PubMed

    Deng, Jie; Cai, Mengdie; Sun, Wenjing; Liao, Xuemei; Chu, Wei; Zhao, Xiu Song

    2013-11-01

    Smart Catalyst: The cyclical diffusion of nanometer-sized nickel clusters into and out of the perovskite structure under elevated temperature and reducing and oxidizing atmosphere could in situ redeliver and redisperse Ni, thereby reinforcing the anti-coking and -sintering of Ni during oxidative reforming of CH4 . PMID:24124009

  12. Study of the mechanism of the hydrogen evolution reaction at Raney nickel electrodes in the presence of organic compounds

    SciTech Connect

    Cheong, A.K.; Lasia, A.; Lessard, J. . Dept. de Chimie)

    1994-04-01

    The hydrogen evolution reaction (HER) has been studied at Raney nickel electrodes in the absence and presence of several organic compounds. A poisoning effect of nonreducible organic substrates on the kinetics of the HER was studied. It was found that only pyridine had a strong inhibiting effect on the HER. A compound having one reducible double bond, trans-cinnamic acid, was used as a model in a study of the mechanism of the electrocatalytic hydrogenation (ECH) reaction and its influence on the HER. It was established that the HER proceeds via the Volmer-Hyrovsky reaction mechanism, and the slowest step is the Heyrovsky reaction.

  13. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  14. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts.

    PubMed

    Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone

    2015-12-21

    We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential.

  15. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts.

    PubMed

    Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone

    2015-12-21

    We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential. PMID:26617200

  16. Performance Enhancement and Side Reactions in Rechargeable Nickel-Iron Batteries with Nanostructured Electrodes.

    PubMed

    Lei, Danni; Lee, Dong-Chan; Magasinski, Alexandre; Zhao, Enbo; Steingart, Daniel; Yushin, Gleb

    2016-01-27

    We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability. PMID:26720271

  17. Performance Enhancement and Side Reactions in Rechargeable Nickel-Iron Batteries with Nanostructured Electrodes.

    PubMed

    Lei, Danni; Lee, Dong-Chan; Magasinski, Alexandre; Zhao, Enbo; Steingart, Daniel; Yushin, Gleb

    2016-01-27

    We report for the first time a solution-based synthesis of strongly coupled nanoFe/multiwalled carbon nanotube (MWCNT) and nanoNiO/MWCNT nanocomposite materials for use as anodes and cathodes in rechargeable alkaline Ni-Fe batteries. The produced aqueous batteries demonstrate very high discharge capacities (800 mAh gFe(-1) at 200 mA g(-1) current density), which exceed that of commercial Ni-Fe cells by nearly 1 order of magnitude at comparable current densities. These cells also showed the lack of any "activation", typical in commercial batteries, where low initial capacity slowly increases during the initial 20-50 cycles. The use of a highly conductive MWCNT network allows for high-capacity utilization because of rapid and efficient electron transport to active metal nanoparticles in oxidized [such as Fe(OH)2 or Fe3O4] states. The flexible nature of MWCNTs accommodates significant volume changes taking place during phase transformation accompanying reduction-oxidation reactions in metal electrodes. At the same time, we report and discuss that high surface areas of active nanoparticles lead to multiple side reactions. Dissolution of Fe anodes leads to reprecipitation of significantly larger anode particles. Dissolution of Ni cathodes leads to precipitation of Ni metal on the anode, thus blocking transport of OH(-) anions. The electrolyte molarity and composition have a significant impact on the capacity utilization and cycling stability.

  18. Synthesis and assembly of nickel nanoparticles by electrodeposition on conductive polymer composite electrodes

    NASA Astrophysics Data System (ADS)

    Heinig, N. F.; Kharbanda, N.; Zhou, X. J.; Leung, K. T.

    2004-03-01

    Uniformly sized and well dispersed nickel nanoparticles have been grown on polypyrrole substrates by electrochemical deposition. Electrochemical synthesis can produce highly ordered crystallites, and is a quick and cost-effective way of producing nanostructures. Depending on growth conditions, the nickel particles ranged in size from 10 to 50 nm. The samples were characterized by scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy (EDS), and electron spectroscopy for chemical analysis (ESCA). Optimum growth conditions are determined and discussed. The nickel nanoparticle growth mechanism is compared and contrasted with previous work on copper nanoparticles on polypyrrole.

  19. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  20. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  1. Investigation on the Microstructure and Ductility-Dip Cracking Susceptibility of the Butt Weld Welded with ENiCrFe-7 Nickel-Base Alloy-Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Wang, Huang; He, Guo

    2015-03-01

    The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.

  2. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation.

    PubMed

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-01-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm(-2) (57 mA cm(-2) after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting. PMID:27306541

  3. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. I. A structural and morphological study

    NASA Astrophysics Data System (ADS)

    Escudero, M. J.; Rodrigo, T.; Mendoza, L.; Cassir, M.; Daza, L.

    Porous nickel cathode was protected by potentiostatically deposited cobalt at different experimental conditions: oxidation potential and electrolysis duration. The deposition growth increased with the oxidation potential yielding a more developed granular structure with smaller grains. Thin layers of Co 3O 4 were identified by X-ray diffraction (XRD) and Raman spectroscopy. CoOOH was detected by X-ray photoelectron spectroscopy (XPS) before annealing treatment and Co 3O 4 after heating the sample at 500 °C during 4 h in air. After this treatment, some morphological changes were observed on the coated samples due to grain compaction and oxidation of the nickel substrate. The porosity of the coated samples was relatively close to that of the sole porous nickel. These coatings exhibited an appropriate dual-pore structure with macro and micro pores, a basic MCFC requirement.

  4. Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Fan, Ke; Chen, Hong; Ji, Yongfei; Huang, Hui; Claesson, Per Martin; Daniel, Quentin; Philippe, Bertrand; Rensmo, Håkan; Li, Fusheng; Luo, Yi; Sun, Licheng

    2016-06-01

    Highly active and low-cost electrocatalysts for water oxidation are required due to the demands on sustainable solar fuels; however, developing highly efficient catalysts to meet industrial requirements remains a challenge. Herein, we report a monolayer of nickel-vanadium-layered double hydroxide that shows a current density of 27 mA cm-2 (57 mA cm-2 after ohmic-drop correction) at an overpotential of 350 mV for water oxidation. Such performance is comparable to those of the best-performing nickel-iron-layered double hydroxides for water oxidation in alkaline media. Mechanistic studies indicate that the nickel-vanadium-layered double hydroxides can provide high intrinsic catalytic activity, mainly due to enhanced conductivity, facile electron transfer and abundant active sites. This work may expand the scope of cost-effective electrocatalysts for water splitting.

  5. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOEpatents

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  6. Method of preparing a dimensionally stable electrode for use in a MCFC

    DOEpatents

    Swarr, Thomas E.; Wnuck, Wayne G.

    1987-12-22

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H.sub.2 gas mixture in a ratio of about 100/1 and at a temperature below 800.degree. C. is used as the oxidizing medium. This method permits the use of less than 5 weight percent chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  7. Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode.

    PubMed

    Yue, Hong Yan; Zhang, Hong; Chang, Jing; Gao, Xin; Huang, Shuo; Yao, Long Hui; Lin, Xuan Yu; Guo, Er Jun

    2015-11-01

    A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM(-1) in the range of 25 nM-0.1 μM and 1.85 mA mM(-1) in the range of 0.1-60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.

  8. Accumulation of nickel ions in seedlings of Vicia sativa L. and manifestations of oxidative stress.

    PubMed

    Ivanishchev, V V; Abramova, E A

    2015-05-01

    The accumulation of nickel ions in the roots and shoots of vetch seedlings (Vicia sativa L.) at increasing concentrations of nickel chloride in the medium was studied. It was shown that the accumulation of nickel in the shoots was increased when the concentration of nickel chloride in the medium was more than 50 μM. The bioconcentration factor and sustainability index for vetch seedlings were calculated under the experimental conditions. The obtained results were similar to parameters for other plants, grown on a nutrient medium or soil substrate. First, the obtained results allowed estimate the limits of nickel chloride concentrations for four of five zones, which correspond to the theoretical concept of dose-response curves in the studies on the influence of physiologically essential heavy metals on plants (Prasad 2010). Some parameters of oxidative stress caused by the presence of nickel chloride in the medium were shown. It seems that at low nickel concentrations in the medium in vetch seedlings the increase of several biochemical parameters (catalase activity and proline) caused by the high amylase activity in seeds.

  9. Gold-TiO2-Nickel catalysts for low temperature-driven CO oxidation reaction

    NASA Astrophysics Data System (ADS)

    Hinojosa-Reyes, Mariana; Zanella, Rodolfo; Maturano-Rojas, Viridiana; Rodríguez-González, Vicente

    2016-04-01

    Nickel-doped-TiO2 catalysts were prepared by the sol-gel method and surface modified with gold nanoparticles (AuNPs) by the urea-deposition-precipitation technique. The as-synthesized catalysts were characterized by X-ray diffraction, Raman and XPS spectroscopies, N2 physisorption, STEM-HAADF microscopy and TPR hydrogen consumption. The Au/TiO2-Ni catalysts were evaluated catalytically performing CO oxidation reactions. The catalyst with nickel content of 1 wt. % (Au/TiO2-Ni 1) showed the highest CO conversion with respect to the high-nickel-content or bare/commercial TiO2 at 0 °C. In situ DRIFTS showed a strong participation of both nickel due to the presence of surface-nickel-metallic nanoparticles formed during the CO adsorption process at reaction temperatures above 200 °C, and surface-bridged-nickel-CO species. A minor deactivation rate was observed for the Au/TiO2-Ni 1 catalyst in comparison with the Au/TiO2 one. The oxygen vacancies that were created on the sol-gel-doped TiO2 improved the catalytic behavior during the performance of CO oxidation reactions, and inhibited the AuNP sintering.

  10. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules.

    PubMed

    Miao, Yuqing; Ouyang, Lei; Zhou, Shilin; Xu, Lina; Yang, Zhuoyuan; Xiao, Mingshu; Ouyang, Ruizhuo

    2014-03-15

    The electrocatalysis toward small molecules, especially small organic compounds, is of importance in a variety of areas. Nickel based materials such as nickel, its oxides, hydroxides as well as oxyhydroxides exhibit excellent electrocatalysis performances toward many small molecules, which are widely used for fuel cells, energy storage, organic synthesis, wastewater treatment, and electrochemical sensors for pharmaceutical, medical, food or environmental analysis. Their electrocatalytic mechanisms are proposed from three aspects such as Ni(OH)2/NiOOH mediated electrolysis, direct electrocatalysis of Ni(OH)2 or NiOOH. Under exposure to air or aqueous solution, two distinct layers form on the Ni surface with a Ni hydroxide layer at the air-oxide interface and an oxide layer between the metal substrate and the outer hydroxide layer. The transformation from nickel or its oxides to hydroxides or oxyhydroxides could be further speeded up in the strong alkaline solution under the cyclic scanning at relatively high positive potential. The redox transition between Ni(OH)2 and NiOOH is also contributed to the electrocatalytic oxidation of Ni and its oxides toward small molecules in alkaline media. In addition, nickel based materials or nanomaterials, their preparations and applications are also overviewed here.

  11. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1987-01-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  12. Preparation and Study on Nickel Oxide Reduction of Polyacrylonitrile-Based Carbon Nanofibers by Thermal Treatment.

    PubMed

    Lee, Yeong Ju; Kim, Hyun Bin; Jeun, Joon Pyo; Lee, Dae Soo; Koo, Dong Hyun; Kang, Phil Hyun

    2015-08-01

    Carbon materials containing magnetic nanopowder have been attractive in technological applications such as electrochemical capacitors and electromagnetic wave shielding. In this study, polyacrylonitrile (PAN) fibers containing nickel nanoparticles were prepared using an electrospinning method and thermal stabilization. The reduction of nickel oxide was investigated under a nitrogen atmosphere within a temperature range of 600 to 1,000 °C. Carbon nanofibers containing nickel nanoparticles were characterized by FE-SEM, EDS, XRD, TGA, and VSM. It was found that nickel nanoparticles were formed by a NiO reduction in PAN as a function of the thermal treatment. These results led to an increase in the coercivity of nanofibers and a decrease in the remanence magnetization.

  13. Preparation and Study on Nickel Oxide Reduction of Polyacrylonitrile-Based Carbon Nanofibers by Thermal Treatment.

    PubMed

    Lee, Yeong Ju; Kim, Hyun Bin; Jeun, Joon Pyo; Lee, Dae Soo; Koo, Dong Hyun; Kang, Phil Hyun

    2015-08-01

    Carbon materials containing magnetic nanopowder have been attractive in technological applications such as electrochemical capacitors and electromagnetic wave shielding. In this study, polyacrylonitrile (PAN) fibers containing nickel nanoparticles were prepared using an electrospinning method and thermal stabilization. The reduction of nickel oxide was investigated under a nitrogen atmosphere within a temperature range of 600 to 1,000 °C. Carbon nanofibers containing nickel nanoparticles were characterized by FE-SEM, EDS, XRD, TGA, and VSM. It was found that nickel nanoparticles were formed by a NiO reduction in PAN as a function of the thermal treatment. These results led to an increase in the coercivity of nanofibers and a decrease in the remanence magnetization. PMID:26369192

  14. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode.

    PubMed

    Chandra, Sulekh; Hooda, Sunita; Tomar, Praveen Kumar; Malik, Amrita; Kumar, Ankit; Malik, Sakshi; Gautam, Seema

    2016-05-01

    The PVC based-ion selective electrode viz., bis nitrato[4-hydroxyacetophenone semicarbazone] nickel(II) as an ionophore was prepared for the determination of thiocyanate ion. The ionophore was characterized by FT-IR, UV-vis, XRD, magnetic moment and elemental analysis (CHN). On the basis of spectral studies an octahedral geometry has been assigned. The best performance was obtained with a membrane composition of 31% PVC, 63% 2-nitrophenyl octylether, 4.0% ionophore and 2.0% trioctylmethyl ammonium chloride. The electrode exhibited an excellent Nernstian response to SCN(-) ion ranging from 1.0 × 10(-7) to 1.0 × 10(-1)M with a detection limit of 8.6 × 10(-8)M and a slope of -59.4 ± 0.2 mV/decade over a wide pH range (1.8-10.7) with a fast response time (6s) at 25 °C. The proposed electrode showed high selectivity for thiocyanate ion over a number of common inorganic and organic anions. It was successfully applied to direct determination of thiocyanate in biological (urine and saliva) samples in order to distinguish between smokers and non-smokers, environmental samples and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution. PMID:26952393

  15. Nonlinear refraction properties of nickel oxide thin films at 800 nm

    SciTech Connect

    Melo, Ronaldo P. Jr. de; Silva, Blenio J. P. da; Santos, Francisco Eroni P. dos; Azevedo, A.; Araujo, Cid B. de

    2009-11-01

    Measurements of the nonlinear refractive index, n{sub 2}, of nickel oxide films prepared by controlled oxidation of nickel films deposited on substrates of soda-lime glass are reported. The structure and morphology of the samples were characterized by scanning electron microscopy, atomic force microscopy, and x-ray diffractometry. Samples of excellent optical quality were prepared. The nonlinear measurements were performed using the thermally managed eclipse Z-scan technique at 800 nm. A large value of n{sub 2}approx =10{sup -12} cm{sup 2}/W and negligible nonlinear absorption were obtained.

  16. Ternary Platinum-Copper-Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes.

    PubMed

    Shen, Yi; Lua, Aik Chong; Xi, Jingyu; Qiu, Xinping

    2016-02-10

    Developing cost-effective and efficient hydrogen evolution reaction (HER) electrocatalysts for hydrogen production is of paramount importance to attain a sustainable energy future. Reported herein is a novel three-dimensional hierarchical architectured electrocatalyst, consisting of platinum-copper-nickel nanoparticles-decorated carbon nanofiber arrays, which are conformally assembled on carbon felt fabrics (PtCuNi/CNF@CF) by an ambient-pressure chemical vapor deposition coupled with a spontaneous galvanic replacement reaction. The free-standing PtCuNi/CNF@CF monolith exhibits high porosities, a well-defined geometry shape, outstanding electron conductivity, and a unique characteristic of localizing platinum-copper-nickel nanoparticles in the tips of carbon nanofibers. Such features render PtCuNi/CNF@CF as an ideal binder-free HER electrode for hydrogen production. Electrochemical measurements demonstrate that the PtCuNi/CNF@CF possesses superior intrinsic activity as well as mass-specific activity in comparison with the state-of-the-art Pt/C catalysts, both in acidic and alkaline solutions. With well-tuned composition of active nanoparticles, Pt42Cu57Ni1/CNF@CF showed excellent durability. The synthesis strategy reported in this work is likely to pave a new route for fabricating free-standing hierarchical electrodes for electrochemical devices. PMID:26784023

  17. A facile electrochemical fabrication of hierarchically structured nickel-copper composite electrodes on nickel foam for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Yin, Zuwei; Chen, Fuyi

    2014-11-01

    A NiCu composite electrode with hierarchical structure has been successfully fabricated by an electrochemical method, which consisted of galvanic replacement reaction (GRR), activation process and cyclic voltammetry (CV) treatment. The three-dimensional (3D) Ni-Cu precursors were prepared firstly by dipping Ni foam into three kinds of different copper ion solutions and identified that CuCl2 is a favorite electrolyte. This may be attributed to the adsorption of chloride ion on copper surface to form the CuCln1-n complex and the hydrolysis of CuCln1-n. After an activation process to reduce the hydrolytic product Cu2O into Cu, a CV treatment was performed to form a hierarchical structure to improve the surface area and to heighten the hydrogen evolution reaction (HER) activity. The optimal number of CV cycles is 3.

  18. Investigations of gas/electrode interactions in solid oxide fuel cells using vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Abernathy, Harry Wilson, III

    The goal of current solid oxide fuel cell (SOFC) research is to design electrode materials and other system components that permit the fuel cell to be operated in the 400-700°C range. Cell performance in this lower temperature range is limited by the oxygen reduction process at the SOFC cathode and by multiple contamination processes. The work presented demonstrates that Raman spectroscopy, a form of vibrational spectroscopy, can provide structural and compositional information complementary to that from traditional characterization methods. Initial experiments into the oxygen reduction mechanism on SOFC cathodes were unable to detect surface oxygen species on selected perovksite-based SOFC cathode materials. However, the Raman signal from the cathode surface was able to be enhanced by depositing silver or gold nanoparticles on the cathode, creating the so-called surface-enhanced Raman scattering (SERS) effect. The Raman sample chamber was also used to study two possible electrode contamination processes. First, the deposition of carbon on nickel and copper anodes was observed when exposed to different hydrocarbon fuel gases. Second, the poisoning of an SOFC cathode by chromium-containing vapor (usually generated by stainless steel SOFC system components) was monitored. Overall, Raman spectroscopy was shown to be useful in many areas crucial to the development of practical, cost-effective SOFCs. The techniques developed here could also be applied to other high temperature electrochemical and catalytic systems.

  19. Electrochromic nickel oxide simultaneously doped with lithium and a metal dopant

    SciTech Connect

    Gillaspie, Dane T; Weir, Douglas G

    2014-04-01

    An electrochromic device comprising a counter electrode layer comprised of lithium metal oxide which provides a high transmission in the fully intercalated state and which is capable of long-term stability, is disclosed. Methods of making an electrochromic device comprising such a counter electrode are also disclosed.

  20. The synthesis, characterization and reactivity of high oxidation state nickel fluorides

    SciTech Connect

    Chacon, L.C. |

    1997-12-01

    The research described in this thesis has mainly addressed the challenge of the synthesis of thermodynamically unstable nickel fluorides, which cannot be made by traditional thermal methods. A low-temperature approach towards the synthesis of such transition metal fluorides exploits the greater thermodynamic stability of high oxidation states in anions and involves the use of anhydrous hydrogen fluoride (aHF) as a solvent. The general method consists of combining an aHF soluble starting material (e.g., K{sub 2}NiF{sub 6}) with a Lewis fluoroacid (e.g., BF{sub 3}), which precipitates a neutral polymeric solid state fluoride: 2 K{sup +} + NiF{sub 6}{sup 2{minus}} + BF{sub 3} {r_arrow} NiF{sub 4} + 2 BF{sub 4}{sup {minus}} + 2 K{sup +}. At room temperature, this reaction yields a different structural phase, with composition K{sub x}NiF{sub 3} (x {approx} 0.18). This material has a pseudo-hexagonal tungsten bronze structure (H{sub 0}-K{sub x}NiF{sub 3}), and is an ionic conductor, probably due to K{sup +} ions hosted in the lattice channels. R-NiF{sub 3} is capable of fluorinating a wide range of inorganic and organic substrates. These reactions have probably shed light on the mechanism of the Simons Electrochemical Fluorination (ECF) Process, an important industrial method of fluorinating organic compounds. It has long been speculated that NiF{sub 3} plays a role in the ECF process, which uses nickel electrodes in aHF solvent. K{sub 2}NiF{sub 6} also fluorinates organic compounds in aHF, but interestingly, yields different fluorinated products. The reduction of R-NiF{sub 3} and K{sub 2}NiF{sub 6} during fluorination reactions yields NiF{sub 2}. A method has been developed to regenerate NiF{sub 6}{sup 2{minus}} from NiF{sub 2}.

  1. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  2. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  3. Photopatternable transparent conducting oxide nanoparticles for transparent electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Won Jin; Kim, Sung Jin; Cartwright, Alexander N.; Prasad, Paras N.

    2013-02-01

    We report a method to fabricate tailored transparent electrodes using photopatternable transparent conducting oxide nanoparticles (TCO NPs). We demonstrate solution-processed micropatterns by a conventional photolithography technique. We have synthesized indium tin oxide (ITO) NPs and functionalized them with a photolabile group, such as t-butoxycarbonyl (t-BOC), which can be deprotected by a chemical amplification reaction in the solid state film. The chemical amplification reaction leads to a shortening of the ligand that changes the solubility of the resulting ITO films. This ligand shortening process also contributes to a reduction of the sheet resistance in the resulting photopatterned ITO films. Furthermore, we have demonstrated the general viability and strength of this approach by also photopatterning zinc oxide (ZnO) NPs.

  4. Oxidation chemistry of 2'-deoxyadenosine at pyrolytic graphite electrode.

    PubMed

    Goyal, Rajendra N; Dhawan, Aikta

    2006-10-01

    The electrochemical oxidation of 2'-deoxyadenosine has been investigated in phosphate containing supporting electrolytes in pH range 2-10 at a pyrolytic graphite electrode by cyclic sweep voltammetry, spectral studies, controlled potential electrolysis and related techniques. The oxidation of 2'-deoxyadenosine occurred in a single well-defined oxidation peak (I(a)), over the entire pH range. The electrooxidation occurred by the loss of 6.0+/-0.5 e(-) per mole over the entire pH range. The kinetics of the decay of the UV-absorbing intermediates has been studied and found to follow pseudo first order kinetics having rate constant (k) in the range (5.7-7.7)x10(-4) s(-1). The major products of electrooxidation were separated by HPLC and characterized by GC-MS/MS, (1)H NMR and a tentative mechanism for electrooxidation of 2'-deoxyadenosine has been suggested.

  5. Lithium Metal Oxide Electrodes For Lithium Cells And Batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-20

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  6. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil

    2008-12-23

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0oxidation state and with at least one ion being Mn or Ni, and where M' is one or more ion with an average tetravalent oxidation state. Complete cells or batteries are disclosed with anode, cathode and electrolyte as are batteries of several cells connected in parallel or series or both.

  7. Exfoliated graphite-ruthenium oxide composite electrodes for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Mitra, Sagar; Lokesh, K. S.; Sampath, S.

    The performance of exfoliated graphite (EG)-ruthenium oxide (RuO x) composites as binderless electrodes is evaluated for electrochemical capacitors (ECs). A composite of EG-RuO x is prepared by a modified sol-gel process. The material is characterized using X-ray diffraction and microscopy. Electrochemical capacitors with the composite electrodes in the presence of aqueous sulfuric acid (H 2SO 4) electrolyte are evaluated using voltammetry, impedance and charge-discharge studies. Cyclic voltammetry reveals very stable current-voltage behaviour up to several thousands of cycles, as well as high specific capacitances, e.g., a few hundreds of farads per gram for the composite that contains 16.5 wt.% RuO x.

  8. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  9. Carbohydrates electrocatalytic oxidation using CNT-NiCo-oxide modified electrodes.

    PubMed

    Arvinte, Adina; Sesay, Adama-Marie; Virtanen, Vesa

    2011-03-15

    A new sensor for an amplified electrochemical detection of carbohydrates is proposed, where carbohydrates are oxidized by CNT-NiCo-oxide composite in basic solutions. Cyclic voltammograms of the modified electrode show a stable and well defined redox couple in alkaline media due to the synergy of Ni(II)/Ni(III) system with Co(II)/Co(III). The modified electrode shows excellent electrocatalytic activity towards monosaccharides oxidation at reduced overpotential in alkaline solutions. Six monosaccharides were determined amperometrically at the surface of this modified electrode with high sensitivity over a wide range of concentrations, from 0.02 up to 12.12 mM. Low detection limit of 5 μM for glucose could be obtained.

  10. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  11. Effect of Co/Ni ratios in cobalt nickel mixed oxide catalysts on methane combustion

    SciTech Connect

    Lim, Tae Hwan; Cho, Sung June; Yang, Hee Sung; Engelhard, Mark H.; Kim, Do Heui

    2015-07-31

    A series of cobalt nickel mixed oxide catalysts with the varying ratios of Co to Ni, prepared by co-precipitation method, were applied to methane combustion. Among the various ratios, cobalt nickel mixed oxides having the ratios of Co to Ni of (50:50) and (67:33) demonstrate the highest activity for methane combustion. Structural analysis obtained from X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) evidently demonstrates that CoNi (50:50) and (67:33) samples consist of NiCo2O4and NiO phase and, more importantly, NiCo2O4spinel structure is largely distorted, which is attributed to the insertion of Ni2+ions into octahedral sites in Co3O4spinel structure. Such structural dis-order results in the enhanced portion of surface oxygen species, thus leading to the improved reducibility of the catalysts in the low temperature region as evidenced by temperature programmed reduction by hydrogen (H2TPR) and X-ray photoelectron spectroscopy (XPS) O 1s results. They prove that structural disorder in cobalt nickel mixed oxides enhances the catalytic performance for methane combustion. Thus, it is concluded that a strong relationship between structural property and activity in cobalt nickel mixed oxide for methane combustion exists and, more importantly, distorted NiCo2O4spinel structure is found to be an active site for methane combustion.

  12. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    NASA Astrophysics Data System (ADS)

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C) subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  13. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore.

    PubMed

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-07-04

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process.

  14. Mechanism of sodium chloride in promoting reduction of high-magnesium low-nickel oxide ore

    PubMed Central

    Zhou, Shiwei; Wei, Yonggang; Li, Bo; Wang, Hua; Ma, Baozhong; Wang, Chengyan

    2016-01-01

    Sodium chloride has been proved that it is an effective promoter for the reduction of high-magnesium, low-nickel oxide ore. The aim of current work is to clarify the promotion behavior of sodium chloride in the roasting reduction process. The influence of moisture on the reduction of ore in the presence of sodium chloride is studied to get clear comprehension of promotion process. In the presence of moisture, the HCl is produced by pyrohydrolysis of sodium chloride for chlorinating nickel and iron oxides, moreover, interactions between metallic oxides and sodium chloride are also a way for chlorination at high temperature (>802 °C); subsequently, the metal chloride would be reduced by reductant. In the absence of moisture, the magnetic separation results show that the recoveries of iron and nickel have a significant increase; moreover, olivine structure would be destroyed gradually with the increase of roasting temperature in the action of sodium chloride, and the sodium chloride existed in high-magnesium, low-nickel oxide ore could make the NiO isolate from NiO-bearing minerals. The NiO reacts with Fe2O3 at high temperature to form NiFe2O4, which is conductive to the formation of Ni-Fe alloy during the reduction process. PMID:27374991

  15. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Pecoits, Ernesto; Lalonde, Stefan V; Papineau, Dominic; Nisbet, Euan G; Barley, Mark E; Arndt, Nicholas T; Zahnle, Kevin; Kamber, Balz S

    2009-04-01

    It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere.

  16. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event.

    PubMed

    Konhauser, Kurt O; Pecoits, Ernesto; Lalonde, Stefan V; Papineau, Dominic; Nisbet, Euan G; Barley, Mark E; Arndt, Nicholas T; Zahnle, Kevin; Kamber, Balz S

    2009-04-01

    It has been suggested that a decrease in atmospheric methane levels triggered the progressive rise of atmospheric oxygen, the so-called Great Oxidation Event, about 2.4 Gyr ago. Oxidative weathering of terrestrial sulphides, increased oceanic sulphate, and the ecological success of sulphate-reducing microorganisms over methanogens has been proposed as a possible cause for the methane collapse, but this explanation is difficult to reconcile with the rock record. Banded iron formations preserve a history of Precambrian oceanic elemental abundance and can provide insights into our understanding of early microbial life and its influence on the evolution of the Earth system. Here we report a decline in the molar nickel to iron ratio recorded in banded iron formations about 2.7 Gyr ago, which we attribute to a reduced flux of nickel to the oceans, a consequence of cooling upper-mantle temperatures and decreased eruption of nickel-rich ultramafic rocks at the time. We measured nickel partition coefficients between simulated Precambrian sea water and diverse iron hydroxides, and subsequently determined that dissolved nickel concentrations may have reached approximately 400 nM throughout much of the Archaean eon, but dropped below approximately 200 nM by 2.5 Gyr ago and to modern day values ( approximately 9 nM) by approximately 550 Myr ago. Nickel is a key metal cofactor in several enzymes of methanogens and we propose that its decline would have stifled their activity in the ancient oceans and disrupted the supply of biogenic methane. A decline in biogenic methane production therefore could have occurred before increasing environmental oxygenation and not necessarily be related to it. The enzymatic reliance of methanogens on a diminishing supply of volcanic nickel links mantle evolution to the redox state of the atmosphere. PMID:19360085

  17. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  18. Long Cyclic Life in Manganese Oxide-Based Electrodes.

    PubMed

    Wang, Zhaoming; Qin, Qingqing; Xu, Wei; Yan, Jian; Wu, Yucheng

    2016-07-20

    Long cyclic life is very important to the practical application of the pseudocapacitors. A systematic study has been carried out to reveal what key factors and how they affecting the cycling behaviors of manganese oxides. The specific capacitance degradation of MnOx is usually attributed to the so-called "dissolution" issue. Our results indicate that "dissoluted MnOx" is in the form of the "flotsam" derived from the detached active materials instead of Mn(2+) in the solution, which causes color change of electrolyte and the loss of specific capacitance. During the cycling, the morphology of manganese oxides transformed to flower-like flakes regardless of the starting structures. After that, it tends to form nanowires especially at elevated temperatures. According to the relative low electrochemical utility of nanowires, specific capacitance might decrease at this stage. These results put forward new questions on charge storage mechanism. Besides, electrochemical oxidation of MnOx leads to an increase in specific capacitance. The cycling behavior of MnOx is mainly determined by these three factors. Excitingly, a very stable cycling performance with no capacitance degradation over 40 000 cycles has been achieved in MnO2 hierarchical sphere-based electrodes. This study provides insightful understanding of the fundamental cycling behavior of MnOx-based electrodes and useful instructions for developing highly stable supercapacitors. PMID:27347779

  19. Oxidation of nickel surfaces by low energy ion bombardment

    NASA Astrophysics Data System (ADS)

    Saric, Iva; Peter, Robert; Kavre, Ivna; Badovinac, Ivana Jelovica; Petravic, Mladen

    2016-03-01

    We have studied formation of oxides on Ni surfaces by low energy oxygen bombardment using X-ray photoemission spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Different oxidation states of Ni ions have been identified in XPS spectra measured around Ni 2p and O 1s core-levels. We have compared our results with thermal oxidation of Ni and shown that ion bombardment is more efficient in creating thin oxide films on Ni surfaces. The dominant Ni-oxide in both oxidation processes is NiO (Ni2+ oxidation state), while some Ni2O3 contributions (Ni3+ oxidation state) are still present in all oxidised samples. The oxide thickness of bombarded Ni samples, as determined by SIMS, was shown to be related to the penetration depth of oxygen ions in Ni.

  20. Solvothermal synthesis of NiAl double hydroxide microspheres on a nickel foam-graphene as an electrode material for pseudo-capacitors

    SciTech Connect

    Momodu, Damilola; Bello, Abdulhakeem; Dangbegnon, Julien; Barzeger, Farshad; Taghizadeh, Fatimeh; Fabiane, Mopeli; Manyala, Ncholu; Johnson, A. T. Charlie

    2014-09-15

    In this paper, we demonstrate excellent pseudo-capacitance behavior of nickel-aluminum double hydroxide microspheres (NiAl DHM) synthesized by a facile solvothermal technique using tertbutanol as a structure-directing agent on nickel foam-graphene (NF-G) current collector as compared to use of nickel foam current collector alone. The structure and surface morphology were studied by X-ray diffraction analysis, Raman spectroscopy and scanning and transmission electron microscopies respectively. NF-G current collector was fabricated by chemical vapor deposition followed by an ex situ coating method of NiAl DHM active material which forms a composite electrode. The pseudocapacitive performance of the composite electrode was investigated by cyclic voltammetry, constant charge–discharge and electrochemical impedance spectroscopy measurements. The composite electrode with the NF-G current collector exhibits an enhanced electrochemical performance due to the presence of the conductive graphene layer on the nickel foam and gives a specific capacitance of 1252 F g{sup −1} at a current density of 1 A g{sup −1} and a capacitive retention of about 97% after 1000 charge–discharge cycles. This shows that these composites are promising electrode materials for energy storage devices.

  1. Lithium metal oxide electrodes for lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kim, Jaekook

    2004-01-13

    A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

  2. Hydrogen gas sensors based on electrostatically spray deposited nickel oxide thin film structures

    NASA Astrophysics Data System (ADS)

    Jamal, Raied K.; Aadim, Kadhim A.; Al-Zaidi, Qahtan G.; Taaban, Iman N.

    2015-09-01

    A simple, low-cost, and home-built electrostatic spray deposition (ESD) system with the stable cone-jet mode was used to deposit nickel oxide (NiO) thin films on glass substrates kept at temperature of 400 °C as the primary precursor solution of 0.1 M concentration hydrated nickel chloride was dissolved in isopropyl alcohol. Electrical measurements showed that these films were of n-type conductivity while their resistance response to hydrogen flow in air ambient was varied by 2.81% with the rise and recovery time of 48 s and 40 s, respectively.

  3. The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method

    NASA Astrophysics Data System (ADS)

    Sahebian, S.; Zebarjad, S. M.; Vahdati Khaki, J.; Lazzeri, A.

    2016-07-01

    In this paper, nickel oxide (NiO) nanoparticles have been fabricated using wet method and deposited on the surface of multi-walled carbon nanotube (MWCNT). To do so, functional groups were introduced on the surface of MWCNTs by treating with concentrated nitric acid. Nickel oxide nanoparticles were formed on the surface of functionalized MWCNTs by incipient wetness impregnation of nickel nitrate, and the resultant product was calcinated in air atmosphere. Characteristics of the NiO/MWCNT were examined by various techniques, for example, Fourier transform spectroscopy (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and nitrogen adsorption-desorption isothermal as well as vibrating sample magnetometer (VSM). The FTIR spectra showed that carboxyl and hydroxyl functional groups existed on the surface of MWNTs after modification by concentrated nitric acid. The pattern of XRD indicated that MWNTs and nickel oxide nanoparticles coexisted in the NiO/MWCNT sample. The TEM images revealed that the NiO nanoparticles were distributed on the surface of the MWNTs, with the size ranging from 5 to 60 nm. Thermogravimetric analysis proved that NiO content decorated on MWCNTs was 80 and 15 wt%. The results of the Brunauer-Emmett-Teller (BET) data showed that the slight increment in the specific surface areas and porosities in the presence of the NiO nanoparticles on the surface of CNT.

  4. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  5. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  6. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  7. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGESBeta

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  8. Extra and Intracellular Synthesis of Nickel Oxide Nanoparticles Mediated by Dead Fungal Biomass

    PubMed Central

    Salvadori, Marcia Regina; Ando, Rômulo Augusto; Oller Nascimento, Cláudio Augusto; Corrêa, Benedito

    2015-01-01

    The use of dead biomass of the fungus Hypocrea lixii as a biological system is a new, effective and environmentally friendly bioprocess for the production and uptake of nickel oxide nanoparticles (NPs), which has become a promising field in nanobiotechnology. Dead biomass of the fungus was successfully used to convert nickel ions into nickel oxide NPs in aqueous solution. These NPs accumulated intracellularly and extracellularly on the cell wall surface through biosorption. The average size, morphology and location of the NPs were characterized by transmission electron microscopy, high-resolution transmission electron microscopy, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The NPs were mainly spherical and extra and intracellular NPs had an average size of 3.8 nm and 1.25 nm, respectively. X-ray photoelectron spectroscopy analysis confirmed the formation of nickel oxide NPs. Infrared spectroscopy detected the presence of functional amide groups, which are probable involved in particle binding to the biomass. The production of the NPs by dead biomass was analyzed by determining physicochemical parameters and equilibrium concentrations. The present study opens new perspectives for the biosynthesis of nanomaterials, which could become a potential biosorbent for the removal of toxic metals from polluted sites. PMID:26043111

  9. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  10. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    SciTech Connect

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

  11. Submicron-Scale Heterogeneities in Nickel Sorption of Various Cell-Mineral Aggregates Formed by Fe(II)-Oxidizing Bacteria.

    PubMed

    Schmid, Gregor; Zeitvogel, Fabian; Hao, Likai; Ingino, Pablo; Adaktylou, Irini; Eickhoff, Merle; Obst, Martin

    2016-01-01

    Fe(II)-oxidizing bacteria form biogenic cell-mineral aggregates (CMAs) composed of microbial cells, extracellular organic compounds, and ferric iron minerals. CMAs are capable of immobilizing large quantities of heavy metals, such as nickel, via sorption processes. CMAs play an important role for the fate of heavy metals in the environment, particularly in systems characterized by elevated concentrations of dissolved metals, such as mine drainage or contaminated sediments. We applied scanning transmission (soft) X-ray microscopy (STXM) spectrotomography for detailed 3D chemical mapping of nickel sorbed to CMAs on the submicron scale. We analyzed different CMAs produced by phototrophic or nitrate-reducing microbial Fe(II) oxidation and, in addition, a twisted stalk structure obtained from an environmental biofilm. Nickel showed a heterogeneous distribution and was found to be preferentially sorbed to biogenically precipitated iron minerals such as Fe(III)-(oxyhydr)oxides and, to a minor extent, associated with organic compounds. Some distinct nickel accumulations were identified on the surfaces of CMAs. Additional information obtained from scatter plots and angular distance maps, showing variations in the nickel-iron and nickel-organic carbon ratios, also revealed a general correlation between nickel and iron. Although a high correlation between nickel and iron was observed in 2D maps, 3D maps revealed this to be partly due to projection artifacts. In summary, by combining different approaches for data analysis, we unambiguously showed the heterogeneous sorption behavior of nickel to CMAs.

  12. Vanadium nanobelts coated nickel foam 3D bifunctional electrode with excellent catalytic activity and stability for water electrolysis

    NASA Astrophysics Data System (ADS)

    Yu, Yu; Li, Pei; Wang, Xiaofang; Gao, Wenyu; Shen, Zongxu; Zhu, Yanan; Yang, Shuliang; Song, Weiguo; Ding, Kejian

    2016-05-01

    Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity.Pursuit of highly active, stable and low-cost electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is the key point for large-scale water splitting. A vanadium nanobelts coating on a nickel foam (V/NF) is proposed as an excellent 3D bifunctional electrode for water electrolysis here, which exhibits high activities with overpotentials of 292 and 176 mV at 10 mA cm-2 for OER and HER, respectively. When employed as a bifunctional electrocatalyst in an alkaline water electrolyzer, a cell voltage of 1.80 V was required to achieve 20 mA cm-2 with a slight increase during a 24 h durability test. The existence of the appropriate amount of nitrogen and oxygen elements in the surface region of vanadium nanobelts is regarded to be responsible for the electrocatalytic activity. Electronic supplementary information (ESI) available: More SEM, TEM images, XRD patterns, LSV curves, XPS spectra. See DOI: 10.1039/c6nr02395a

  13. Practical nitric oxide measurement employing a nitric oxide-selective electrode

    NASA Astrophysics Data System (ADS)

    Ichimori, K.; Ishida, H.; Fukahori, M.; Nakazawa, H.; Murakami, E.

    1994-08-01

    An NO-selective electrode was developed as an easily applicable tool for a real-time nitric oxide (NO) measurement. The working electrode (0.2 mm diam) was made from Pt/Ir alloy coated with a three-layered membrane. The counterelectrode was made from a carbon fiber. When a stable NO donor, S-nitroso-N-acetyl-dl-penicillamine, was applied, the electrode current increased in a dose-dependent fashion. The current and calculated NO concentration showed a linear relationship in the range from 0.2 nM (S/N=1) to 1 μM of NO. The response of the electrode was 1.14±0.09 s. The effects of temperature, pH, and chemicals other than NO on the electrode current were also evaluated. Electrodes which were placed in the luminal side of rat aortic rings exhibited 30 pA of current due to NO generation induced by the addition of 10-6 M of acetylcholine. The current was eliminated in the presence of 50 μM NG-monomethyl-L-arginine, an inhibitor of NO synthase. Thus, this NO-selective electrode is applicable to real-time NO assay in biological systems.

  14. Probing and mapping electrode surfaces in solid oxide fuel cells.

    PubMed

    Blinn, Kevin S; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A; Liu, Meilin

    2012-09-20

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen (1-7). The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion(2). Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation(8-12). It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition(8, 10, 13, 14) ("coking") and sulfur poisoning(11, 15) and the manner in which surface modifications stave off this degradation(16). The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM

  15. Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

    PubMed Central

    Blinn, Kevin S.; Li, Xiaxi; Liu, Mingfei; Bottomley, Lawrence A.; Liu, Meilin

    2012-01-01

    Solid oxide fuel cells (SOFCs) are potentially the most efficient and cost-effective solution to utilization of a wide variety of fuels beyond hydrogen 1-7. The performance of SOFCs and the rates of many chemical and energy transformation processes in energy storage and conversion devices in general are limited primarily by charge and mass transfer along electrode surfaces and across interfaces. Unfortunately, the mechanistic understanding of these processes is still lacking, due largely to the difficulty of characterizing these processes under in situ conditions. This knowledge gap is a chief obstacle to SOFC commercialization. The development of tools for probing and mapping surface chemistries relevant to electrode reactions is vital to unraveling the mechanisms of surface processes and to achieving rational design of new electrode materials for more efficient energy storage and conversion2. Among the relatively few in situ surface analysis methods, Raman spectroscopy can be performed even with high temperatures and harsh atmospheres, making it ideal for characterizing chemical processes relevant to SOFC anode performance and degradation8-12. It can also be used alongside electrochemical measurements, potentially allowing direct correlation of electrochemistry to surface chemistry in an operating cell. Proper in situ Raman mapping measurements would be useful for pin-pointing important anode reaction mechanisms because of its sensitivity to the relevant species, including anode performance degradation through carbon deposition8, 10, 13, 14 ("coking") and sulfur poisoning11, 15 and the manner in which surface modifications stave off this degradation16. The current work demonstrates significant progress towards this capability. In addition, the family of scanning probe microscopy (SPM) techniques provides a special approach to interrogate the electrode surface with nanoscale resolution. Besides the surface topography that is routinely collected by AFM and STM

  16. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis.

  17. Preparation and characterization of superparamagnetic nickel oxide particles by chemical route

    NASA Astrophysics Data System (ADS)

    Kalaie, Mohammad Reza; Youzbashi, Amir Ali; Meshkot, Mohammad Ali; Hosseini-Nasab, Farzad

    2016-08-01

    Homogeneous nickel oxide (NiO) nanoparticles with different sizes between 6 and 30 nm with narrow size distribution and low agglomeration were synthesized successfully by using different precipitated precursors and heat treatment under certain conditions. Powders were analyzed by different characterization methods. X-ray diffraction patterns revealed that the sizes of nanoparticles synthesized by nickel hydroxide and nickel oxalate precursors are under 10 nm, which are in good agreement with transition electron microscopy and field emission electron microscopy results. According to the vibrating sample magnetometer data, the NiO nanoparticles with sizes about 6 nm show superparamagnetic behavior. For superparamagnetic particles, the magnetization at maximum applied field of 20 kOe is 2.46 emu g-1.

  18. Bimetallic oxidative addition involving radical intermediates in nickel-catalyzed alkyl-alkyl Kumada coupling reactions.

    PubMed

    Breitenfeld, Jan; Ruiz, Jesus; Wodrich, Matthew D; Hu, Xile

    2013-08-14

    Many nickel-based catalysts have been reported for cross-coupling reactions of nonactivated alkyl halides. The mechanistic understanding of these reactions is still primitive. Here we report a mechanistic study of alkyl-alkyl Kumada coupling catalyzed by a preformed nickel(II) pincer complex ([(N2N)Ni-Cl]). The coupling proceeds through a radical process, involving two nickel centers for the oxidative addition of alkyl halide. The catalysis is second-order in Grignard reagent, first-order in catalyst, and zero-order in alkyl halide. A transient species, [(N2N)Ni-alkyl(2)](alkyl(2)-MgCl), is identified as the key intermediate responsible for the activation of alkyl halide, the formation of which is the turnover-determining step of the catalysis. PMID:23865460

  19. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. PMID:26695242

  20. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20 μM, 4-400 μM and 0.3-40 μM, respectively, and the detection limits were 0.17 μM, 1.33 μM and 0.1 μM (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis.

  1. Electrodeposited reduced-graphene oxide/cobalt oxide electrodes for charge storage applications

    NASA Astrophysics Data System (ADS)

    García-Gómez, A.; Eugénio, S.; Duarte, R. G.; Silva, T. M.; Carmezim, M. J.; Montemor, M. F.

    2016-09-01

    In the present work, electrochemically reduced-graphene oxide/cobalt oxide composites for charge storage electrodes were prepared by a one-step pulsed electrodeposition route on stainless steel current collectors and after that submitted to a thermal treatment at 200 °C. A detailed physico-chemical characterization was performed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectroscopy. The electrochemical response of the composite electrodes was studied by cyclic voltammetry and charge-discharge curves and related to the morphological and phase composition changes induced by the thermal treatment. The results revealed that the composites were promising materials for charge storage electrodes for application in redox supercapacitors, attaining specific capacitances around 430 F g-1 at 1 A g-1 and presenting long-term cycling stability.

  2. Modified silver nanowire transparent electrodes with exceptional stability against oxidation.

    PubMed

    Idier, J; Neri, W; Labrugère, C; Ly, I; Poulin, P; Backov, R

    2016-03-11

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones. PMID:26866415

  3. Modified silver nanowire transparent electrodes with exceptional stability against oxidation

    NASA Astrophysics Data System (ADS)

    Idier, J.; Neri, W.; Labrugère, C.; Ly, I.; Poulin, P.; Backov, R.

    2016-03-01

    We report an easy method to prepare thin, flexible and transparent electrodes that show enhanced inertness toward oxidation using modified silver nanowires (Ag NWs). Stabilization is achieved through the adsorption of triphenylphosphine (PPh3) onto the Ag NW hybrid dispersions prior to their 2D organization as transparent electrodes on polyethylene terephtalate (PET) films. After 110 days in air (20 °C) under atmospheric conditions, the transmittance of the PET/Ag NW/PPh3 based films is nearly unchanged, while the transmittance of the PET/Ag NW-based films decreases by about 5%. The sheet resistance increases for both materials as time elapses, but the rate of increase is more than four times slower for films stabilized by PPh3. The improved transmittance and conductivity results in a significantly enhanced stability for the figure of merit σ dc/σ op. This phenomenon is highlighted in highly oxidative nitric acid vapor. The tested stabilized films in such conditions exhibit a decrease to σ dc/σ op of only 38% after 75 min, whereas conventional materials exhibit a relative loss of 71%. In addition, by contrast to other classes of stabilizers, such as polymer or graphene-based encapsulants, PPh3 does not alter the transparency or conductivity of the modified films. While the present films are made by membrane filtration, the stabilization method could be implemented directly in other liquid processes, including industrially scalable ones.

  4. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    PubMed

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators.

  5. Nanostructured Metal Oxide Coatings for Electrochemical Energy Conversion and Storage Electrodes

    NASA Astrophysics Data System (ADS)

    Cordova, Isvar Abraxas

    The realization of an energy future based on safe, clean, sustainable, and economically viable technologies is one of the grand challenges facing modern society. Electrochemical energy technologies underpin the potential success of this effort to divert energy sources away from fossil fuels, whether one considers alternative energy conversion strategies through photoelectrochemical (PEC) production of chemical fuels or fuel cells run with sustainable hydrogen, or energy storage strategies, such as in batteries and supercapacitors. This dissertation builds on recent advances in nanomaterials design, synthesis, and characterization to develop novel electrodes that can electrochemically convert and store energy. Chapter 2 of this dissertation focuses on refining the properties of TiO2-based PEC water-splitting photoanodes used for the direct electrochemical conversion of solar energy into hydrogen fuel. The approach utilized atomic layer deposition (ALD); a growth process uniquely suited for the conformal and uniform deposition of thin films with angstrom-level thickness precision. ALD's thickness control enabled a better understanding of how the effects of nitrogen doping via NH3 annealing treatments, used to reduce TiO2's bandgap, can have a strong dependence on TiO2's thickness and crystalline quality. In addition, it was found that some of the negative effects on the PEC performance typically associated with N-doped TiO2 could be mitigated if the NH 3-annealing was directly preceded by an air-annealing step, especially for ultrathin (i.e., < 10 nm) TiO2 films. ALD was also used to conformally coat an ultraporous conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold with an ultrathin layer of TiO2. The integration of these ultrathin films and the oxide nanoparticles resulted in a heteronanostructure design with excellent PEC water oxidation photocurrents (0.7 mA/cm2 at 0 V vs. Ag/AgCl) and charge transfer efficiency. In Chapter 3, two innovative

  6. Efficient reversible electrodes for solid oxide electrolyzer cells

    DOEpatents

    Elangovan, Singaravelu; Hartvigsen, Joseph J.

    2011-07-12

    An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A'yBO(3-.differential.), wherein 0.ltoreq.x.ltoreq.0.5, 0.ltoreq.y.ltoreq.0.5, and 0.8.ltoreq.z.ltoreq.1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.

  7. Efficient reversible electrodes for solid oxide electrolyzer cells

    DOEpatents

    Elangovan, S.; Hartvigsen, Joseph J.; Zhao, Feng

    2013-01-15

    An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO.sub.2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H.sub.2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(.sub.1-x)La.sub.x)(z-y)A'.sub.yBO(3-.differential.), wherein 0nickel oxide intermixed with magnesium oxide.

  8. Nickel oxide and molybdenum oxide thin films for infrared imaging prepared by biased target ion-beam deposition

    NASA Astrophysics Data System (ADS)

    Jin, Yao; Saint John, David; Jackson, Tom N.; Horn, Mark W.

    2014-06-01

    Vanadium oxide (VOx) thin films have been intensively used as sensing materials for microbolometers. VOx thin films have good bolometric properties such as low resistivity, high negative temperature coefficient of resistivity (TCR) and low 1/f noise. However, the processing controllability of VOx fabrication is difficult due to the multiple valence states of vanadium. In this study, metal oxides such as nickel oxide (NiOx) and molybdenum oxide (MoOx) thin films have been investigated as possible new microbolometer sensing materials with improved process controllability. Nickel oxide and molybdenum oxide thin films were prepared by reactive sputtering of nickel and molybdenum metal targets in a biased target ion beam deposition tool. In this deposition system, the Ar+ ion energy (typically lower than 25 eV) and the target bias voltage can be independently controlled since ions are remotely generated. A residual gas analyzer (RGA) is used to precisely control the oxygen partial pressure. A real-time spectroscopic ellipsometry is used to monitor the evolution of microstructure and properties of deposited oxides during growth and post-deposition. The properties of deposited oxide thin films depend on processing parameters. The resistivity of the NiOx thin films is in the range of 0.5 to approximately 100 ohm-cm with a TCR from -2%/K to -3.3%/K, where the resistivity of MoOx is between 3 and 2000 ohm-cm with TCR from -2.1%/K to -3.2%/K. We also report on the thermal stability of these deposited oxide thin films.

  9. Direct electrochemistry of glucose oxidase and biosensing for glucose based on boron-doped carbon-coated nickel modified electrode.

    PubMed

    Yang, Lijun; Xiong, Huayu; Zhang, Xiuhua; Wang, Shengfu; Zhang, Xungao

    2011-05-15

    A novel biosensor for detecting glucose had been constructed by the immobilization of glucose oxidase (GOD) on chitosan-boron-doped carbon-coated nickel (BCNi) nanoparticle modified electrode. The GOD-chitosan-BCNi bionanocomposite film was characterized with scanning electron microscope (SEM). The film was propitious to the immobilization of GOD and to the retention of its bioactivity. The direct electrochemistry and electrocatalysis of GOD on modified electrode had been investigated by cyclic voltammogram (CV) and amperometric measurements. The GOD displayed a pair of stable, well-defined and quasi-reversible redox peaks in pH 7.0 phosphate buffer solution (PBS). Furthermore, the biosensor was applied to detect glucose with a broad linear range from 2.50×10(-5) to 1.19×10(-3) M, the detection limit was brought down to 8.33×10(-6) M at a signal to noise ratio of 3 and with an applied potential of -0.2V. The proposed biosensor showed rapid response (within 3s), low detection limit, high affinity to glucose and accepted storage stability over one-month period, which demonstrated that the chitosan-BCNi film has potential applications in the immobilization of other third-generation enzyme biosensors.

  10. Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2016-10-01

    Precious platinum counter electrode (CE) has been an economic burden for future commercialization of dye-sensitized solar cells (DSSCs). Low-platinum alloy CE catalysts are promising in bringing down the solar cell cost without reducing photovoltaic performances. We present here a facile strategy of fabricating ZnO nanorods assisted platinum-nickel (PtNi) alloy microtube CEs for liquid-junction DSSCs. By adjusting the concentration of zinc precursors, the ZnO nanostructures and therefore PtNi alloys are optimized to maximize the electrocatalytic behaviors toward triiodide reduction reaction. The maximal power conversion efficiency is determined as high as 8.43% for liquid-junction DSSC device with alloyed PtNi microtube CE synthesized at 75 mM Zn(NO3)2 aqueous solution, yielding a 32.8% enhancement in cell efficiency in comparison with the solar cell from pristine platinum electrode. Moreover, the dissolution resistance and charge-transfer ability toward redox couples have also been markedly enhanced due to competitive dissolution reactions and alloyed effects.

  11. FeS/nickel foam as stable and efficient counter electrode material for quantum dot sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Geng, Huifang; Zhu, Liqun; Li, Weiping; Liu, Huicong; Quan, Linlin; Xi, Fanxing; Su, Xunwen

    2015-05-01

    A stable and efficient FeS/nickel foam (NF) counter electrode for quantum dots-sensitized solar cells (QDSCs) is first fabricated by electrochemistry deposition and characterized with scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), current voltage and impedance spectroscopy. The QDSC based on FeS/NF CE achieves a power conversion efficiency (PCE) of 4.39% attributing to the high fill factor (FF) of 0.58, and the PCE is much higher than that of based on FeS/FTO CE (2.76%) and other reported FeS CEs (1.76% and 3.34%). The phenomenon that the electrode can transform between FeS/NF (in the polysulfide electrolyte) and Fe2O3/NF (in the air) spontaneously is first reported. And the excellent stability in photoelectric performance of the CE is also demonstrated in the present work. Therefore, the FeS/NF is very promising as a stable and efficient CE for QDSCs.

  12. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells.

    PubMed

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-12-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

  13. Efficient Nickel Sulfide and Graphene Counter Electrodes Decorated with Silver Nanoparticles and Application in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yue, Gentian; Li, Fumin; Yang, Guang; Zhang, Weifeng

    2016-05-01

    We reported a facile two-step electrochemical-chemical approach for in situ growth of nickel sulfide and graphene counter electrode (CE) decorated with silver nanoparticles (signed NiS/Gr-Ag) and served in dye-sensitized solar cells (DSSCs). Under optimum conditions, the DSSC achieved a remarkable power conversion efficiency of 8.36 % assembled with the NiS/Gr-Ag CE, much higher than that based on the Pt CE (7.76 %). The surface morphology of NiS/Gr-Ag CE exhibited a smooth surface with cross-growth of NiS, graphene, and Ag nanoparticles, which was beneficial to the fast mass transport of electrolytes; increased the contact area of electrolytes and active materials; and enabled to speed up the reduction of triiodide to iodide. The research on the electrochemical properties also showed that the NiS/Gr-Ag CE possessed lower charge transfer resistance and more excellent electrocatalytic activity in iodide/triiodide electrolyte compared to the Pt electrode.

  14. NiO nanoarrays of a few atoms thickness on 3D nickel network for enhanced pseudocapacitive electrode applications

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Velusamy; Kadumudi, Firoz Babu; Ho, Nhu Thuy; Kim, Ji-Woong; Park, Sungkyun; Bae, Jong-Seong; Choi, Won Mook; Cho, Shinuk; Kim, Yong Soo

    2016-01-01

    The present work focuses on the development of template-free mesoporous NiO nanoarrays with large surface area grown on 3D nickel foam networks by a seed mediated aqueous chemical growth technique and subsequent annealing process. The resultant binder-free, well-aligned and vertically grown NiO nanoarrays exhibits a micron-sized planar structure as well as an ultrathin thickness (˜7 nm). The unique surface and electronic structure facilitates surface-dependent electrochemical reaction processes with no dead volume. They deliver a high capacitance of 2065 F g-1 at a current density of 16 A g-1 as a three electrode system. A specific capacitance of 1247 F g-1 is maintained at a higher current rate of 70 A g-1 with 88.9% retention after 5000 cycles. Finally, in a solid-state asymmetric supercapacitor configuration using NiO//activated carbon, the device delivers an enhanced supercapacitive performance, with an energy density of 43.5 Wh kg-1 and power density of 2.1 kW kg-1. Thus, the current research paves the way for the use of NiO nanoarrays as an electrode material for practical supercapacitor devices with higher cycling retention and rate capacity.

  15. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo{sub 2}O{sub 4}) electrode material for supercapacitors

    SciTech Connect

    Naveen, A. Nirmalesh Selladurai, S.

    2015-06-24

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  16. Resistance of nickel-chromium-aluminum alloys to cyclic oxidation at 1100 C and 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.

    1976-01-01

    Nickel-rich alloys in the Ni-Cr-Al system were evaluated for cyclic oxidation resistance in still air at 1,100 and 1,200 C. A first approximation oxidation attack parameter Ka was derived from specific weight change data involving both a scaling growth constant and a spalling constant. An estimating equation was derived with Ka as a function of the Cr and Al content by multiple linear regression and translated into countour ternary diagrams showing regions of minimum attack. An additional factor inferred from the regression analysis was that alloys melted in zirconia crucibles had significantly greater oxidation resistance than comparable alloys melted otherwise.

  17. Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

    SciTech Connect

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2006-11-20

    Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.

  18. Highly porous nickel@carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Zhang, Dongming; Guo, Fen; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-06-01

    Highly porous nickel@carbon sponge electrode with low cost is synthesized via a facile sponge carbonization method coupled with a direct electrodeposition of Ni. The obtained electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The catalytic performances of urea electro-oxidation in alkaline medium are investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The Ni@carbon sponge electrode exhibits three-dimensional open network structures with a large surface area. Remarkably, the Ni@carbon sponge electrode shows much higher electrocatalytic activity and lower onset oxidation potential towards urea electro-oxidation compared to a Ni/Ti flat electrode synthesized by the same procedure. The Ni@carbon sponge electrode achieves an onset oxidation potential of 0.24 V (vs. Ag/AgCl) and a peak current density of 290 mA cm-2 in 5 mol L-1 NaOH and 0.10 mol L-1 urea solutions accompanied with a desirable stability. The impressive electrocatalytic activity is largely attributed to the high intrinsic electronic conductivity, superior porous network structures and rich surface Ni active species, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation in alkaline medium, indicating promising applications in fuel cells.

  19. CO oxidation at nickel centres by N2O or O2 to yield a novel hexanuclear carbonate.

    PubMed

    Horn, Bettina; Limberg, Christian; Herwig, Christian; Feist, Michael; Mebs, Stefan

    2012-08-25

    Reaction of a nickel(0) carbonyl complex, K(2)[L(tBu)NiCO](2), with N(2)O generates a cyclic carbonate compound composed of six [Ni(II)(CO(3))K](+) units. The same product can also be obtained using O(2) as the oxidant in a solid-state/gas reaction. These conversions represent unique examples of a nickel-bound CO oxidation by N(2)O and O(2), respectively. PMID:22785444

  20. The origin of unusual dislocation structures observed in ion-thinned nickel oxide

    SciTech Connect

    Little, J. A.; Westmacott, K. H.

    1982-09-01

    In this paper, ion-thinned single crystals of nickel oxide were examined and found to contain some unusual dislocation configurations showing anomalous contrast under certain diffracting conditions. These configurations took the form of glissile dislocations threading the foil but leaving long trailing dislocations in the near surface region at both top and bottom surfaces. The Burgers vector of the dislocations was identified as (a/2) (110) as expected for nickel oxide, and the contrast anomalies were ascribed to certain surface effects. Finally, the dislocations themselves were thought to have arisen as a result of cleavage processes in the crystal, and their retention in the foil is attributed to the formation of reduced surface layers during the ion thinning.

  1. Nickel(II) Oxide Solubility and Phase Stability in High Temperature Aqueous Solutions

    SciTech Connect

    S.E. Ziemniak; M.A. Goyette

    2003-03-17

    A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of nickel(II) oxide (NiO) in deoxygenated ammonium and sodium hydroxide solutions between 21 and 315 C. Solubilities were found to vary between 0.4 and 400 nanomolal (nm). The measured nickel ion solubilities were interpreted via a Ni(II) ion hydroxo- and amino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. Two solid phase transformations were observed: at temperatures below 149 C, the activity of Ni(II) ions in aqueous solution was controlled by a hydrous Ni(II) oxide (theophrastite) solid phase rather than anhydrous NiO (bunsenite); above 247 C, Ni(II) activities were controlled by cubic rather than rhombohedral bunsenite.

  2. Nickel (II) Oxide Solubility and Phase Stability in High Temperature Aqueous Solutions

    SciTech Connect

    SE Ziemniak; MA Goyette

    2004-06-17

    A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of nickel(II) oxide (NiO) in deoxygenated ammonium and sodium hydroxide solutions between 21 and 315 C. Solubilities were found to vary between 0.4 and 400 nmol kg{sup -1}. The measured nickel ion solubilities were interpreted via a Ni(II) ion hydroxo-and amino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. Two solid phase transformations were observed: at temperatures below 149 C, the activity of Ni(II) ions in aqueous solution was controlled by a hydrous Ni(II) oxide (theophrastite) solid phase rather than anhydrous NiO (bunsenite); above 247 C, Ni(II) activities were controlled by cubic rather than rhombohedral bunsenite.

  3. Synthesis and Characterization of Novel Chromium-Free Nickel Alloy Electrode Materials

    NASA Astrophysics Data System (ADS)

    Nataraj, J. R.; Krishna, M.; Murthy, H. N. Narasimha; Prasad, C. S.; Bhanukiran, V. T.; Sharma, S. C.

    2013-07-01

    The synthesis of two Cr-free nickel-based alloys designated as 1S with 6.5 pct Mn and 2H without Mn of compositions varying between 40 to 43.5Ni, 20Mo, 22 to 25Fe, 10Cu, 6.5 to 0Mn, 1Ti, and 0.5Al (wt pct) as filler materials for TIG welding application was performed. New filler materials were developed to reduce carcinogenic hexavalent chromium (Cr6+) fumes generated during the welding of 300 series austenitic stainless steel. The Cr-free nickel alloys were characterized for microstructure and mechanical properties. The developed alloys showed good microstructure stability in as-cast and solution-treated conditions. A material properties simulation software JMatPro predicted that 2H alloy has 2 wt pct more γ (solid solution) phase than in 1S but has 2.2 wt pct less γ' (strengthening precipitates) phase than in 1S alloy. The tensile strength of 1S alloy was about 2.2 pct more than 2H. The solution treatment of both alloys decreased the hardness, tensile and yield strengths by about 21 pct but ductility improved by about 17 pct. Fracture studies of both alloys showed the ductile mode of failure.

  4. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media

    NASA Astrophysics Data System (ADS)

    Asazawa, Koichiro; Yamada, Koji; Tanaka, Hirohisa; Taniguchi, Masatoshi; Oguro, Keisuke

    Electrochemical oxidation of hydrazine and its derivatives on the surface of various metal electrodes in alkaline media was investigated. A comparison of various polycrystalline metal electrodes (Ni, Co, Fe, Cu, Ag, Au, and Pt) showed that Co and Ni electrodes have a lower onset potential for hydrazine oxidation than the Pt electrode. The onset oxidation potential of APA (aminopolyacrylamide), a hydrazine derivative (-0.127 V vs. reversible hydrogen electrode, RHE), was similar to that of hydrazine hydrate (-0.178 V vs. RHE) in the case of the Co electrode. APA oxidation was possible because of hydrazine desorption that was caused by APA hydrolysis. The hydrolysis reaction was brought about by a heat treatment. This result suggests that the hydrazine hydrolysis reaction of hydrazine derivatives makes it possible to store hydrazine hydrate safely.

  5. Water Oxidation and Oxygen Monitoring by Cobalt-Modified Fluorine-Doped Tin Oxide Electrodes

    SciTech Connect

    Kent, CA; Concepcion, JJ; Dares, CJ; Torelli, DA; Rieth, AJ; Miller, AS; Hoertz, PG; Meyer, TJ

    2013-06-12

    Electrocatalytic water oxidation occurs at fluoride-doped tin oxide (FTO) electrodes that have been surface-modified by addition of Co(II). On the basis of X-ray photoelectron spectroscopy and transmission electron microscopy measurements, the active surface site appears to be a single site or small-molecule assembly bound as Co(II), with no evidence for cobalt oxide film or cluster formation. On the basis of cyclic voltammetry measurements, surface-bound Co(II) undergoes a pH-dependent 1e(-)/1H(+) oxidation to Co(III), which is followed by pH-dependent catalytic water oxidation. O-2 reduction at FTO occurs at -0.33 V vs NHE, allowing for in situ detection of oxygen as it is formed by water oxidation on the surface. Controlled-potential electrolysis at 1.61 V vs NHE at pH 7.2 resulted in sustained water oxidation catalysis at a current density of 0.16 mA/cm(2) with 29 000 turnovers per site over an electrolysis period of 2 h. The turnover frequency for oxygen production per Co site was 4 s(-1) at an overpotential of 800 mV at pH 7.2. Initial experiments with Co(II) on a mesoporous, high-surface-area nanoFTO electrode increased the current density by a factor of similar to 5

  6. Corrosion behavior of iron and nickel base alloys under solid oxide fuel cell exposure conditions

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.

    2006-03-01

    Topography and phase composition of the scales formed on commercial ferritic stainless steels and experimental low CTE nickel-based alloys were studied in atmospheres simulating solid oxide fuel cell (SOFC) environments. The materials were studied under dual environment conditions with air on one side of the sample and carbon monoxide on the other side at 750°C. Surface characterization techniques, such as scanning electron microscopy and X-ray diffraction analysis were used in this study.

  7. Structural characterization of nickel oxide/hydroxide nanosheets produced by CBD technique

    SciTech Connect

    Taşköprü, T.; Zor, M.; Turan, E.

    2015-10-15

    Graphical abstract: SEM images of (a) as deposited β-Ni(OH)2 and (b) NiO samples deposited with pH 10 solution. The inset figures shows the absorbance spectra of (a) β-Ni(OH)2 and (b) NiO samples. - Highlights: • The formation of β-Ni(OH){sub 2} and NiO were confirmed with XRD, SEM, FT-IR and Raman. • Porous nickel oxide was synthesized after heat treatment of nickel hydroxide. • The increase in pH value changes the nanoflake structure to hexagonal nanosheet. • On increasing the pH from 8 to 11, the band gap decreases from 3.52 to 3.37 eV. - Abstract: Nickel hydroxide samples were deposited onto glass substrates using Ni(NO{sub 3}){sub 2}·6H{sub 2}O and aqueous ammonia by chemical bath deposition technique. The influence of pH of solution was investigated by means of X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Raman spectroscopy, optical absorption and BET analysis. The as-deposited samples were identified as β-Ni(OH){sub 2}, were transformed into NiO after heat treatment in air at 500 °C for 2 h. Porous nickel oxide nanosheets are obtained by heating nickel hydroxide nanosheets. The optical transitions observed in the absorbance spectra below optical band gap is due to defects or Ni{sup 2+} vacancies in NiO samples. The band gap energy of NiO samples changes between 3.37 and 3.52 eV depending on the pH values.

  8. Minimizing electrode edge in organic transistors with ultrathin reduced graphene oxide for improving charge injection efficiency.

    PubMed

    Xu, Zeyang; Chen, Xiaosong; Zhang, Suna; Wu, Kunjie; Li, Hongwei; Meng, Yancheng; Li, Liqiang

    2016-05-11

    Electrode materials and geometry play a crucial role in the charge injection efficiency in organic transistors. Reduced graphene oxide (RGO) electrodes show good compatibility with an organic semiconductor from the standpoint of energy levels and ordered growth of the organic semiconductor, both of which are favourable for charge injection. However, the wide electrode edge (>10 nm) in commonly-used RGO electrodes is generally detrimental to charge injection. In this study, ultrathin (about 3 nm) RGO electrodes are fabricated via a covalency-based assembly strategy, which has advantages such as robustness against solvents, high conductivity, transparency, and easy scaling-up. More remarkably, the ultrathin electrode fabricated in this study has a narrow edge, which may facilitate the diffusion and assembly of organic semiconductors and thus form a uniform semiconductor film across the electrode/channel junction area. As a result, the minimized electrode edge may significantly improve the charge injection in organic transistors compared with thick electrodes. PMID:27062997

  9. Preparation of nickel oxide and carbon nanosheet array and its application in glucose sensing

    SciTech Connect

    Li Xin; Hu Anzheng; Jiang Jian; Ding Ruimin; Liu Jinping; Huang Xintang

    2011-10-15

    Nickel oxide and carbon (NiO/C) nanosheet array was fabricated on Ti foil for the first time by calcining the precursor, which was synthesized through the hydrothermal reaction of nickel acetate, urea and glucose. The slow release of OH{sup -} by the hydrolysis of urea aided in the direct nucleation and adhesion of precursor seeds on Ti substrate. The presence of carbon ensured a large specific surface area and good conductivity of the final NiO/C composite. The prepared NiO/C nanosheet array exhibited higher catalytic oxidation activity of glucose compared with the pure NiO nanosheet at a detection limit of 2 {mu}M, linear range up to 2.6 mM (R{sup 2}=0.99961), and sensitivity of 582.6 {mu}Am M{sup -1} cm{sup -2}. With good analytical performance, simple preparation and low cost, this composite is promising for nonenzymatic glucose sensing. - Graphical abstract: The thickness of nanosheets is about 90-120 nm. They are decorated with small particles. In glucose sensing, NiO and carbon composite exhibits higher response current than pure NiO. Highlights: > Nickel oxide and carbon (NiO/C) nanosheet array was prepared on Ti substrate. > Presence of carbon ensured a large specific surface area and a good conductivity. > NiO/C composite showed better performance in glucose sensing than pure NiO.

  10. Electrospun strontium titanata nanofibers incorporated with nickel oxide nanoparticles for improved photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Alharbi, Abdulaziz; Alarifi, Ibrahim M.; Khan, Waseem S.; Asmatulu, Ramazan

    2015-03-01

    The inexpensive sources of fossil fuels in the world are limited, and will deplete soon because of the huge demand on the energy and growing economies worldwide. Thus, many research activities have been focused on the non-fossil fuel based energy sources, and this will continue next few decades. Water splitting using photocatalysts is one of the major alternative energy technologies to produce hydrogen directly from water using photon energy of the sun. Numerous solid photocatalysts have been used by researchers for water splitting. In the present study, nickel oxide and strontium titanata were chosen as photocatalysts for water splitting. Poly (vinyl pyrrolidone) (PVP) was incorporated with nickel oxide [Ni2O3] (co-catalyst), while poly (vinyl acetate) (PVAc) was mixed with titanium (IV) isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2]. Then, two solutions were electrospun using coaxial electrospinning technique to generate nanoscale fibers incorporated with NiOx nanoparticles. The fibers were then heat treated at elevated temperatures for 2hr in order to transform the strontium titanata and nickel oxide into crystalline form for a better photocatalytic efficiency. The morphology of fibers was characterized via scanning electron microscopy (SEM), while the surface hydrophobicity was determined using water contact angle goniometer. The UV-vis spectrophotometer was also used to determine the band gap energy values of the nanofibers. This study may open up new possibilities to convert water into fuel directly using the novel photocatalysts.

  11. Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni

    SciTech Connect

    Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

    2004-09-08

    Lithium manganese oxides substituted with nickel or cobalt were characterized electrochemically in lithium cell configurations. The compounds studied were either single-phase layered structures with either primarily O2 or O3 stacking arrangements, or O2/O3 intergrowths, prepared from P2, P3 and P2/P3 sodium-containing precursors, respectively. The stacking arrangements are extremely sensitive to the Na/T. M. (T. M. = transition metal) ratios and the level of substitution. Phase diagrams showing the stability regions of the various arrangements for the Na-Ni-Mn-O system are presented. A possible correlation between vacancies and electrochemical performance is suggested. For high levels of substitution with Ni, fewer defects are possible for materials containing more O3 component and higher discharge capacities can be achieved, but spinel conversion upon cycling also occurs more rapidly as the O3 content increases. Intergrowths show intermediate behavior and represent a potential route towards designing stable, high capacity electrodes.

  12. Synthesis and characterization of aluminosilicate catalyst impregnated by nickel oxide

    NASA Astrophysics Data System (ADS)

    Maulida, Iffana Dani; Sriatun, Taslimah

    2015-09-01

    Aluminosilicate as a catalyst has been synthesized by pore-engineering using CetylTrimethylAmmonium-Bromide (CTAB) as templating agent. It can produce bigger aluminosilicate pore therefore it will be more suitable for bulky molecule. The aims of this research are to synthesize aluminosilicate supported by Nickel, using CTAB surfactant as templating agent for larger pore radius than natural zeolite and characterize the synthesis product, consist of total acid sites and surface area characteristic. This research has been done with following steps. First, making sodium silicate and sodium aluminate. Second, aluminosilicate was synthesized by direct methods, calcined at 550, 650 and 750°C variation temperature, characterized product by X-RD and FTIR spectrometer. Third, NiCl2 was impregnated to the aluminosilicate that has the best cristallinity and main TO4 functional groups product (550 sample). Variation of NiCl2:aluminosilicate (w/w) ratio were 25%:75%, 50%:50% and 75%:25%. Last but not least characterization of catalytic properties was performed. It comprised total acidity test (gravimetric method) and Surface Area Analyzer. The result shows that the product synthesized by direct method at 550oC calcination temperature has the best cristallinity and main functional groups of TO4. The highest total acid sites was 31.6 mmole/g (Imp-A sample). Surface Area Analyzer shows that Imp-B sample has the best pore distribution and highest total pore volume and specific surface area with value 32.424 cc/g and 46.8287 m2/g respectively. We can draw the conclusion that the most potential catalyst is Imp-A sample compared to Imp-B and Imp-C because it has the highest total acid sites. However the most effective catalyst used for product selectivity was Imp-B sample among all samples.

  13. Electrocatalytically Active Nickel-Based Electrode Coatings Formed by Atmospheric and Suspension Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Aghasibeig, M.; Mousavi, M.; Ben Ettouill, F.; Moreau, C.; Wuthrich, R.; Dolatabadi, A.

    2014-01-01

    Ni-based electrode coatings with enhanced surface areas, for hydrogen production, were developed using atmospheric plasma spray (APS) and suspension plasma spray (SPS) processes. The results revealed a larger electrochemical active surface area for the coatings produced by SPS compared to those produced by APS process. SEM micrographs showed that the surface microstructure of the sample with the largest surface area was composed of a large number of small cauliflower-like aggregates with an average diameter of 10 μm.

  14. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    NASA Astrophysics Data System (ADS)

    Mu, Nan

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000°C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455°C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedes the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain beta-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al2O3 scale at elevated temperatures. The drawbacks to the currently-used beta-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt+Hf-modified gamma-Ni+gamma'-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase gamma-Ni and gamma'-Ni3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O3 formation by suppressing the NiO growth on both gamma-Ni and gamma'-Ni3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (˜970°C) in the very early stage of oxidation. It

  15. Hydrogen oxidation catalysis by a nickel diphosphine complex with pendant tert-butyl amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. Scott; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; DuBois, M. Rakowski

    2010-01-01

    A bis-diphosphine nickel complex with tert-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. Finally, the turnover rate of 50 s-1 under 1.0 atm H2 at a potential of -0.77 V vs. the ferrocene couple is 5 times faster than the rate reported heretofore for any other synthetic molecular H2 oxidation catalyst.

  16. High frequency clipper like behavior of tri-layer nickel oxide stack

    NASA Astrophysics Data System (ADS)

    Koiry, S. P.; Ratnadurai, R.; Krishnan, S.; Bhansali, S.

    2012-04-01

    We report on AC propagation in vertically stacked tri-layer nickel oxide (NiO) film with gradient in oxide composition. These studies reveal that the stacked film clips both positive and negative peaks of the AC signals and these clipping characteristics are analogous to a symmetrical clipper. These characteristics are obtained without using any clipper circuit elements like diodes or transistors and DC power source. We propose that the clipping characteristic of NiO stack is a result of space charge generated during signal propagation.

  17. Morphology engineering of high performance binary oxide electrodes.

    PubMed

    Chen, Kunfeng; Sun, Congting; Xue, Dongfeng

    2015-01-14

    Advances in materials have preceded almost every major technological leap since the beginning of civilization. On the nanoscale and microscale, mastery over the morphology, size, and structure of a material enables control of its properties and enhancement of its usefulness for a given application, such as energy storage. In this review paper, our aim is to present a review of morphology engineering of high performance oxide electrode materials for electrochemical energy storage. We begin with the chemical bonding theory of single crystal growth to direct the growth of morphology-controllable materials. We then focus on the growth of various morphologies of binary oxides and their electrochemical performances for lithium ion batteries and supercapacitors. The morphology-performance relationships are elaborated by selecting examples in which there is already reasonable understanding for this relationship. Based on these comprehensive analyses, we proposed colloidal supercapacitor systems beyond morphology control on the basis of system- and ion-level design. We conclude this article with personal perspectives on the directions toward which future research in this field might take. PMID:25406718

  18. Nanorecycling: Monolithic Integration of Copper and Copper Oxide Nanowire Network Electrode through Selective Reversible Photothermochemical Reduction.

    PubMed

    Han, Seungyong; Hong, Sukjoon; Yeo, Junyeob; Kim, Dongkwan; Kang, Bongchul; Yang, Min-Yang; Ko, Seung Hwan

    2015-11-01

    Laser induced selective photothermochemical reduction is demonstrated to locally and reversibly control the oxidation state of Cu and Cu oxide nanowires in ambient conditions without any inert gas environment. This new concept of "nanorecycling" can monolithically integrate Cu and Cu oxide nanowires by restoring oxidized Cu, considered unusable for the electrode, back to a metallic state for repetitive reuse.

  19. Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium.

    PubMed

    Busó-Rogero, Carlos; Herrero, Enrique; Feliu, Juan M

    2014-07-21

    Ethanol oxidation in 0.1 M NaOH on single-crystal electrodes has been studied using electrochemical and FTIR techniques. The results show that the activity order is the opposite of that found in acidic solutions. The Pt(111) electrode displays the highest currents and also the highest onset potential of all the electrodes. The onset potential for the oxidation of ethanol is linked to the adsorption of OH on the electrode surface. However, small (or even negligible) amounts of CO(ads) and carbonate are detected by FTIR, which implies that cleavage of the C-C bond is not favored in this medium. The activity of the electrodes diminishes quickly upon cycling. The diminution of the activity is proportional to the measured currents and is linked to the formation and polymerization of acetaldehyde, which adsorbs onto the electrode surface and prevents further oxidation. PMID:24782218

  20. Oxidation behavior of nickel-chromium-aluminum-yttrium - Magnesium oxide and nickel-chromium-aluminum-yttrium - zirconate type of cermets

    NASA Technical Reports Server (NTRS)

    Zaplatynsky, I.

    1976-01-01

    The 1100 and 1200 C cyclic oxidation resistance of dense Ni-Cr-Al-Y - MgO, Ni-Cr-Al-Y - CaZrO3, Ni-Cr-Al-Y - SrZrO3, Ni-Cr-Al-Y - MgZro3 cermets and a 70 percent dense Ni-Cr-Al-Y developmental material was determined. The cermets contained 60 and 50 volume percent of Ni-Cr-Al-Y which formed a matrix with the oxide particles imbedded in it. The cermets containing MgO were superior to cermets based on zirconates and to the porous Ni-Cr-Al-Y material.

  1. The definition of the process of electrochemical impregnation of nickel electrodes

    NASA Technical Reports Server (NTRS)

    Antoine, P.

    1983-01-01

    Electrochemical impregnation was studied during a series of experiments designed to define the optimal conditions for the fabrication of dimensionally stable cell anodes of Ni-H2 and Ni-Cd systems. The influence of various parameters, such as current and duration of electrolysis, temperature and acidity of the chemical bath, the concentrations of Ni and Co as well as the use of ethanol was determined. Results show that the electrochemical impregnation process as defined is industrially feasible and it is suggested that Ni-H2 and Ni-Cd type electrodes be produced in sufficient quantity to further evaluate their performance characteristics.

  2. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    SciTech Connect

    J. E. O'Brien; R. C. O'Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  3. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed.

  4. Porous-electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1981-09-17

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  5. Highly efficient electron field emission from graphene oxide sheets supported by nickel nanotip arrays.

    PubMed

    Ye, Dexian; Moussa, Sherif; Ferguson, Josephus D; Baski, Alison A; El-Shall, M Samy

    2012-03-14

    Electron field emission is a quantum tunneling phenomenon whereby electrons are emitted from a solid surface due to a strong electric field. Graphene and its derivatives are expected to be efficient field emitters due to their unique geometry and electrical properties. So far, electron field emission has only been achieved from the edges of graphene and graphene oxide sheets. We have supported graphene oxide sheets on nickel nanotip arrays to produce a high density of sharp protrusions within the sheets and then applied electric fields perpendicular to the sheets. Highly efficient and stable field emission with low turn-on fields was observed for these graphene oxide sheets, because the protrusions appear to locally enhance the electric field and dramatically increase field emission. Our simple and robust approach provides prospects for the development of practical electron sources and advanced devices based on graphene and graphene oxide field emitters. PMID:22288579

  6. Study on thermodynamics and oxidation mechanism of ethylene glycol in the preparation of nanometer nickel powders

    SciTech Connect

    Jin Shengming . E-mail: shmjin@mail.csu.edu.cn; Yuan Liangsheng; Zhou Ying; Qiu Guanzhou; Wan Cuifeng

    2006-11-09

    Nanometer nickel powders have been prepared using the polyol method with NaOH, Ni(NO{sub 3}){sub 2}.6H{sub 2}O, ethylene glycol (EG), and polyvinylpyrrolidone (PVP) as raw materials. The thermodynamics of the reaction system was studied, and the E-pH diagram of Ni-EG-H{sub 2}O was plotted. The oxidation products of EG were predicted from the E-pH diagram, and CO{sub 3} {sup 2-} in alkaline solutions was identified as the product through the IR spectrum and CaCO{sub 3} sediment. Field-emission scanning electron micrograph (FE-SEM) showed that spherical nanometer nickel powders were obtained.

  7. Magnetically retrievable nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) spinel nanocatalyst for alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Bhat, Pooja B.; Bhat, Badekai Ramachandra

    2016-03-01

    Ultrasmall nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) nanocatalyst was synthesized by traditional co-precipitation method and was examined for oxidation of aromatic alcohols to carbonyls using hydrogen peroxide as terminal oxidant. A very high surface area of 104.55 m2 g-1 was achieved for ferromagnetic MnFe2O4 and 100.50 m2 g-1 for superparamagnetic NiFe2O4, respectively. Efficient oxidation was observed due to the synergized effect of nickel hydroxide (bronsted base) on Lewis center (Fe) of the nanocatalyst. Catalyst recycling experiments revealed that the ultrasmall nanocatalyst can be easily recovered by external magnet and applied for nearly complete oxidation of alcohols for at least five successive cycles. Furthermore, the nickel hydroxide functionalised ultrasmall nanocatalyst exhibited higher efficiency for benzyl alcohol oxidation compared to Ni(OH)2, bare MnFe2O4 and NiFe2O4. Higher conversion rate was observed for nickel hydroxide functionalised NiFe2O4 compared to MnFe2O4. Ultrasmall magnetic nickel hydroxide functionalised nanocatalyst showed environmental friendly, greener route for the oxidation of alcohols without significant loss in activity and selectivity within successive runs.

  8. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    SciTech Connect

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui . E-mail: jhchen@nju.edu.cn

    2007-05-15

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl{sub 2}-induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression.

  9. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  10. Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage

    NASA Astrophysics Data System (ADS)

    Sun, Wenping; Rui, Xianhong; Zhu, Jixin; Yu, Linghui; Zhang, Yu; Xu, Zhichuan; Madhavi, Srinivasan; Yan, Qingyu

    2015-01-01

    Outstanding sodium and lithium storage capability is successfully demonstrated in ultrathin NiO nanosheets (4-5 nm in thickness) synthesized via a facile solvothermal process followed by annealing in air. For sodium storage, the NiO nanosheets deliver a high reversible specific capacity of 299 mA h g-1 at a current density of 1 A g-1, and the capacity still remains up to 154 mA h g-1 at 10 A g-1. Upon charge/discharge cycling, the specific capacity maintains to be as high as 266 mA h g-1 during the 100th cycle at 1 A g-1. Such sodium storage capability of NiO nanosheets is by far one of the best reported for transition metal oxides. For lithium storage, the cell achieves a high reversible specific capacity of 1242 and 250 mA h g-1 at 0.2 and 15 A g-1, respectively. The capacity for lithium storage maintains to be 851 mA h g-1 during the 170th cycle at 2 A g-1. The present results demonstrate that ultrathin NiO nanosheets are highly attractive for fast sodium/lithium diffusion with high-rate capability for rechargeable sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs).

  11. Reduced graphene oxide-nickel nanoparticles/biopolymer composite films for the sub-millimolar detection of glucose.

    PubMed

    Krishna, Rahul; Campiña, José M; Fernandes, Paula M V; Ventura, João; Titus, Elby; Silva, António F

    2016-06-20

    Hybrid conjugates of graphene with metallic/semiconducting nanostructures can improve the sensitivity of electrochemical sensors due to their combination of well-balanced electrical/electrocatalytic properties and superior surface-to-volume ratio. In this study, the synthesis and physical characterization of a hybrid conjugate of reduced graphene oxide and nickel nanoparticles (rGO-Ni NPs) is presented. The conjugate was further deposited onto a glassy carbon electrode as a nanocomposite film of chitosan and glucose oxidase. The electrochemical response and morphology of the films were investigated using SEM, CV, and EIS, and their applications as a glucose biosensor explored for the first time in proof-of-concept tests. The low operating potential along with the good linearity and sensitivity (up to 129 μA cm(-2) mM(-1)) found in the sub-millimolar range suggest potential applications in the self-management of hypoglycemia from blood samples or in the development of non-invasive assays for body fluids such as saliva, tears or breath. PMID:27214596

  12. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  13. Crumpled indium-tin-oxide electrodes for transparency tuning

    NASA Astrophysics Data System (ADS)

    Ong, Hui-Yng; Shrestha, Milan; Lau, Gih Keong

    2016-04-01

    Optical transparency of an indium-tin-oxide (ITO) thin film depends on its topography. Wrinkling of ITO thin film can reduce normal transmittance or visibility by scattering the incident light away. In this paper, we study topography change of ITO thin film and its effect on normal transmittance of light. Coating of ITO thin film on adhesive poly-acrylate elastomer forms wrinkles and folds when subjected to mechanical compression and surface buckling. At excessive compression, such as 25% equi-biaxial, folds of the ITO thin film are so deep and convoluted like crumpling of a piece of paper. This crumpled form of ITO thin film can well obscure the light passing even though a flat ITO thin film is transparent. Surprisingly, the crumpled ITO thin film remains continuous and conductive even with 25% equi-biaxial compression despite the fact that ITO is known to be brittle. These crumpled ITO thin films were subsequently used to make compliant electrodes for Dielectric elastomer actuator (DEA). These crumpled ITO thin film can be reversibly unfolded through the DEA's areal expansion. This DEA with 14.2% equi-biaxially crumpled ITO thin films can produce 37% areal expansion and demonstrate an optical transmittance change from 39.14% to 52.08% at 550nm wavelength.

  14. The neuroprotective effects of taurine against nickel by reducing oxidative stress and maintaining mitochondrial function in cortical neurons.

    PubMed

    Xu, Shangcheng; He, Mindi; Zhong, Min; Li, Li; Lu, Yonghui; Zhang, Yanwen; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2015-03-17

    Previous studies have indicated that oxidative stress and mitochondrial dysfunction are involved in the toxicity of nickel. Taurine is recognized as an efficient antioxidant and is essential for mitochondrial function. To investigate whether taurine could protect against the neurotoxicity of nickel, we exposed primary cultured cortical neurons to various concentrations of nickel chloride (NiCl2; 0.5mM, 1mM and 2mM) for 24h or to 1mM NiCl2 for various periods (0 h, 12h, 24h and 48 h). Our results showed that taurine efficiently reduced lactate dehydrogenase (LDH) release induced by NiCl2. Along with this protective effect, taurine pretreatment not only significantly reversed the increase of ROS production and mitochondrial superoxide concentration, but also attenuated the decrease of superoxide dismutase (SOD) activity and glutathione (GSH) concentration in neurons exposed to NiCl2 for 24h. Moreover, nickel exposure reduced ATP production, disrupted the mitochondrial membrane potential and decreased mtDNA content. These types of oxidative damage in the mitochondria were efficiently ameliorated by taurine pretreatment. Taken together, our results indicate that the neuroprotective effects of taurine against the toxicity of nickel might largely depend on its roles in reducing oxidative stress and improving mitochondrial function. Taurine may have great pharmacological potential in treating the adverse effects of nickel in the nervous system.

  15. Studies on hydride-forming alloys as the active material of a metal hydride electrode for a nickel metal hydride cell

    SciTech Connect

    Lim, H.S.; Zelter, G.R.; Allison, D.U.; Reilly, J.J.; Srinivasan, S.; Stockel, J.F.

    1997-12-01

    Multi-component AB{sub 5} hydrides are attractive replacements for the cadmium electrode in nickel-cadmium batteries. The archetype compound of the AB{sub 5} alloy class is LaNi{sub 5}, but in a typical battery electrode mischmetal is substituted for La and Ni is substituted in part by variety of metals. This paper deals with the effect on cycle life upon the partial substitution of various lanthanides for La and Sn, In, Al, Co, and Mn for Ni. The presence of Ce was shown to enhance cycle life as did Sn in some cases. An electrode of La{sub 0.67}Ce{sub 0.33}B{sub 5} alloy gave over 3,500 cycles (to specific capacity of 200 mAh/g), indicating that it is a very attractive alloy for a practical Ni/MH{sub x} cell.

  16. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates.

    PubMed

    Qu, Weidong; Zhang, Luyan; Chen, Gang

    2013-04-15

    Graphene-nickel nanoparticle hybrid was prepared by the one-step far infrared-assisted reduction of graphene oxide and nickel (II) ions using hydrazine. It was loaded on the surface of a magnetic electrode for electrochemical sensing. The feasibility and performance of the novel electrode were demonstrated by measuring carbohydrates using cyclic voltammetry and amperometry. It demonstrated that nickel nanoparticles decorated on graphene sheets exhibited higher electrocatalytic activity toward the oxidation of carbohydrates while graphene improved the electron transduction. The synergistic effect significantly enhanced the current response of carbohydrates.

  17. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris.

    PubMed

    Gong, Ning; Shao, Kuishuang; Feng, Wei; Lin, Zhengzhi; Liang, Changhua; Sun, Yeqing

    2011-04-01

    Adverse effects of manufactured nickel oxide nanoparticles on the microalgae Chlorellavulgaris were determined by algal growth-inhibition test and morphological observation via transmission electron microscopy (TEM). Results showed that the NiO nanoparticles had severe impacts on the algae, with 72 h EC(50) values of 32.28 mg NiOL(-1). Under the stress of NiO nanoparticles, C. vulgaris cells showed plasmolysis, cytomembrane breakage and thylakoids disorder. NiO nanoparticles aggregated and deposited in algal culture media. The presence of algal cells accelerated aggregation of nanoparticles. Moreover, about 0.14% ionic Ni was released when NiO NPs were added into seawater. The attachment of aggregates to algal cell surface and the presence of released ionic Ni were likely responsible for the toxic effects. Interestingly, some NiO nanoparticles were reduced to zero valence nickel as determined by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. The maximum ratios of nickel reduction was achieved at 72 h of exposure, in accordance with the time-course of changes in soluble protein content of treated C. vulgaris, implying that some proteins of algae are involved in the process. Our results indicate that the toxicity and bioavailability of NiO nanoparticles to marine algae are reduced by aggregation and reduction of NiO. Thus, marine algae have the potential for usage in nano-pollution bio-remediation in aquatic system. PMID:21216429

  18. Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films

    PubMed Central

    Sun, Ke; Saadi, Fadl H.; Lichterman, Michael F.; Hale, William G.; Wang, Hsin-Ping; Zhou, Xinghao; Plymale, Noah T.; Omelchenko, Stefan T.; He, Jr-Hau; Papadantonakis, Kimberly M.; Brunschwig, Bruce S.; Lewis, Nathan S.

    2015-01-01

    Reactively sputtered nickel oxide (NiOx) films provide transparent, antireflective, electrically conductive, chemically stable coatings that also are highly active electrocatalysts for the oxidation of water to O2(g). These NiOx coatings provide protective layers on a variety of technologically important semiconducting photoanodes, including textured crystalline Si passivated by amorphous silicon, crystalline n-type cadmium telluride, and hydrogenated amorphous silicon. Under anodic operation in 1.0 M aqueous potassium hydroxide (pH 14) in the presence of simulated sunlight, the NiOx films stabilized all of these self-passivating, high-efficiency semiconducting photoelectrodes for >100 h of sustained, quantitative solar-driven oxidation of water to O2(g). PMID:25762067

  19. Toxic Effects of Nickel Oxide Bulk and Nanoparticles on the Aquatic Plant Lemna gibba L.

    PubMed Central

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0–1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242

  20. Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.

    PubMed

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid; Dewez, David

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0-1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing.

  1. Toxic effects of nickel oxide bulk and nanoparticles on the aquatic plant Lemna gibba L.

    PubMed

    Oukarroum, Abdallah; Barhoumi, Lotfi; Samadani, Mahshid; Dewez, David

    2015-01-01

    The aquatic plant Lemna gibba L. was used to investigate and compare the toxicity induced by 30 nm nickel oxide nanoparticles (NiO-NPs) and nickel(II) oxide as bulk (NiO-Bulk). Plants were exposed during 24 h to 0-1000 mg/L of NiO-NPs or NiO-Bulk. Analysis of physicochemical characteristics of nanoparticles in solution indicated agglomerations of NiO-NPs in culture medium and a wide size distribution was observed. Both NiO-NPs and NiO-Bulk caused a strong increase in reactive oxygen species (ROS) formation, especially at high concentration (1000 mg/L). These results showed a strong evidence of a cellular oxidative stress induction caused by the exposure to NiO. Under this condition, NiO-NPs and NiO-Bulk induced a strong inhibitory effect on the PSII quantum yield, indicating an alteration of the photosynthetic electron transport performance. Under the experimental conditions used, it is clear that the observed toxicity impact was mainly due to NiO particles effect. Therefore, results of this study permitted determining the use of ROS production as an early biomarker of NiO exposure on the aquatic plant model L. gibba used in toxicity testing. PMID:26075242

  2. Efficient spin transport through native oxides of nickel and permalloy with platinum and gold overlayers

    NASA Astrophysics Data System (ADS)

    Zink, B. L.; Manno, M.; O'Brien, L.; Lotze, J.; Weiler, M.; Bassett, D.; Mason, S. J.; Goennenwein, S. T. B.; Johnson, M.; Leighton, C.

    2016-05-01

    We present measurements of spin pumping detected by the inverse spin Hall effect voltage and ferromagnetic resonance spectroscopy in a series of metallic ferromagnet/normal metal thin film stacks. We compare heterostructures grown in situ to those where either a magnetic or nonmagnetic oxide is introduced between the two metals. The heterostructures, either nickel with a platinum overlayer (Ni/Pt) or the nickel-iron alloy permalloy (Py) with a gold overlayer (Py/Au), were also characterized in detail using grazing-incidence x-ray reflectivity, Auger electron spectroscopy, and both SQUID and alternating-gradient magnetometry. We verify the presence of oxide layers, characterize layer thickness, composition, and roughness, and probe saturation magnetization, coercivity, and anisotropy. The results show that while the presence of a nonmagnetic oxide at the interface suppresses spin transport from the ferromagnet to the nonmagnetic metal, a thin magnetic oxide (here the native oxide formed on both Py and Ni) somewhat enhances the product of the spin-mixing conductance and the spin Hall angle. We also observe clear evidence of an out-of-plane component of magnetic anisotropy in Ni/Pt samples that is enhanced in the presence of the native oxide, resulting in perpendicular exchange bias. Finally, the dc inverse spin Hall voltages generated at ferromagnetic resonance in our Py/Au samples are large, and suggest values for the spin Hall angle in gold of 0.04 <αSH<0.22 , in line with the highest values reported for Au. This is interpreted as resulting from Fe impurities. We present indirect evidence that the Au films described here indeed have significant impurity levels.

  3. Occupational toxicology of nickel and nickel compounds.

    PubMed

    Zhao, Jinshun; Shi, Xianglin; Castranova, Vincent; Ding, Min

    2009-01-01

    Nickel and nickel compounds are widely used in industry. The high consumption of nickel products inevitably leads to occupational and environmental pollution. In occupational settings, exposure to nickel and nickel compounds occurs primarily during nickel refining, electroplating, and welding. The most common airborne exposures to nickel in the workplace are to insoluble nickel species, such as metallic nickel, nickel sulfide, and nickel oxides from dusts and fumes. The chemical and physical properties of nickel and nickel compounds strongly influence their bioavailability and toxicity. The lung and the skin are the principal target organs upon occupational exposure. inhalation exposure is a primary route for nickel-induced toxicity in the workplace. The most important adverse health effects due to occupational exposure to nickel and its compounds are skin allergies, lung fibrosis, and lung cancer. The exact mechanisms of nickel-induced carcinogenesis are not clear. This review summarizes the current knowledge on occupational toxicology of nickel and its compounds. The subtopics include: chemical and physical properties, uses, occupational exposures, occupational exposure limits, toxicokinetics, biological monitoring, acute toxicity, chronic toxicity, genotoxicity, reproductive toxicity, carcinogenicity, molecular mechanisms of carcinogenesis, and gaps in knowledge. PMID:19888907

  4. Hierarchical 3-dimensional nickel-iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Palanisamy; Maiyalagan, Thandavarayan; Marsili, Enrico; Ghosh, Srabanti; Niedziolka-Jönsson, Joanna; Jönsson-Niedziolka, Martin

    2015-12-01

    Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for various applications because they produce more reaction-active sites than 1-D and 2-D nanostructured materials and exhibit attractive optical, electrical and catalytic properties. In this work, freestanding 3-D/Ni-Fe interconnected hierarchical nanosheets, hierarchical nanospheres, and porous nanospheres are directly grown on a flexible carbon fiber paper (CFP) substrate by a single-step hydrothermal process. Among the nanostructures, 3-D/Ni-Fe interconnected hierarchical nanosheets show excellent electrochemical properties because of its high conductivity, large specific active surface area, and mesopores on its walls (vide infra). The 3-D/Ni-Fe hierarchical nanosheet array modified CFP substrate is further explored as a novel electrode for electrochemical non-enzymatic glucose sensor application. The 3-D/Ni-Fe hierarchical nanosheet arrays exhibit significant catalytic activity towards the electrochemical oxidation of glucose, as compared to the 3-D/Ni-Fe hierarchical nanospheres, and porous nanospheres. The 3-D/Ni-Fe hierarchical nanosheet arrays can access a large amount of glucose molecules on their surface (mesopore walls) for an efficient electrocatalytic oxidation process. Moreover, 3-D/Ni-Fe hierarchical nanosheet arrays showed higher sensitivity (7.90 μA μM-1 cm-2) with wide linear glucose concentration ranging from 0.05 μM to 0.2 mM, and the low detection limit (LOD) of 0.031 μM (S/N = 3) is achieved by the amperometry method. Further, the 3-D/Ni-Fe hierarchical nanosheet array modified CFP electrode can be demonstrated to have excellent selectivity towards the detection of glucose in the presence of 500-fold excess of major important interferents. All these results indicate that 3-D/Ni-Fe hierarchical nanosheet arrays are promising candidates for non-enzymatic glucose sensing.Three-dimensional nickel-iron (3-D/Ni-Fe) nanostructures are exciting candidates for

  5. Simulation of deep water wet weld microstructures using electrodes with high oxidizing potential

    SciTech Connect

    Pope, A.M.; Liu, S.; Olson, D.L.

    1994-12-31

    The properties of underwater wet (UWW) welds are greatly affected by water depth. Ibarra and Olson [1] showed that the oxygen content of the weld increases with increasing depth while the amount of deoxidants such as Mn and Si decreases. This change in chemical composition adversely affects both the tensile strength and toughness of the weld. The present research was designed to understand the influence of oxidizing ingredients in the electrode covering on the chemical composition, weld bead appearance and microstructure of wet welds. Changes in the ability of the electrode to supply oxygen to the weld pool were made through modifications of the hematite to rutile (Fe{sub 2}O{sub 3}/TiO{sub 2}) ratio in the covering.The weld deposited by the rutile electrode (no hematite addition) presented the lowest oxygen content (1700 ppm). When the oxidizing character of the electrode increased the concentration of inclusions, mainly FeO, in the weld also increased. However, the increase in oxygen pickup was not monotonous but reached a `saturation` value at approximately 2100 ppm. These results suggest that the microstructure and properties of wet welds deposited at great depths by rutile electrodes will be similar to those made by oxidizing electrodes at much shallower depths. Hence studying oxidizing electrodes and improving their properties will help the development of electrodes for wet welding at greater depths. It is also a much cheaper way of `simulating` welding at higher pressures.

  6. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation.

    PubMed

    He, Yapeng; Lin, Haibo; Wang, Xue; Huang, Weimin; Chen, Rongling; Li, Hongdong

    2016-06-28

    A boron-doped diamond electrode with a three-dimensional network was fabricated on a mesh titanium substrate. Properties such as higher surface area, enhanced mass transfer and a hydrophobic surface endowed the prepared electrode with excellent electrochemical oxidation ability towards contaminants. PMID:27264247

  7. A hydrophobic three-dimensionally networked boron-doped diamond electrode towards electrochemical oxidation.

    PubMed

    He, Yapeng; Lin, Haibo; Wang, Xue; Huang, Weimin; Chen, Rongling; Li, Hongdong

    2016-06-28

    A boron-doped diamond electrode with a three-dimensional network was fabricated on a mesh titanium substrate. Properties such as higher surface area, enhanced mass transfer and a hydrophobic surface endowed the prepared electrode with excellent electrochemical oxidation ability towards contaminants.

  8. Comparative in vitro cytotoxicity of nickel oxides and nickel-copper oxides to rat, mouse, and dog pulmonary alveolar macrophages.

    PubMed

    Benson, J M; Henderson, R F; Pickrell, J A

    1988-01-01

    Metal oxides containing either Ni alone (NiO's) or both Ni and Cu (Ni-CuO's) are encountered during Ni refining. Six NiO compounds calcined at temperatures ranging from less than 650 to 1045 degrees and four Ni-CuO's containing from 6.9 to 28% Cu and 44 to 69% Ni were screened for their in vitro cytotoxicity to alveolar macrophages (AM). NiO's were less toxic to rat AM than were the Ni-CuO compounds. The toxicity of the Ni-CuO compounds increased with increasing Cu content and decreasing Ni content of the molecules, indicating that the toxicity was due to the Cu content of the molecules. AM obtained from beagle dogs, F344/N rats, and B6C3F1 mice displayed the following species sensitivities: dog greater than rat = mouse, with dog AM being most sensitive. The observed differences in species sensitivities correlated with differences in the phagocytic abilities of dog, rat, and mouse AM, with the ranking of phagocytic abilities of the AM in decreasing order of ability being dog greater than rat greater than mouse. PMID:3398078

  9. High-performance hybrid supercapacitor with 3D hierarchical porous flower-like layered double hydroxide grown on nickel foam as binder-free electrode

    NASA Astrophysics Data System (ADS)

    Zhang, Luojiang; Hui, Kwun Nam; San Hui, Kwan; Lee, Haiwon

    2016-06-01

    The synthesis of layered double hydroxide (LDH) as electroactive material has been well reported; however, fabricating an LDH electrode with excellent electrochemical performance at high current density remains a challenge. In this paper, we report a 3D hierarchical porous flower-like NiAl-LDH grown on nickel foam (NF) through a liquid-phase deposition method as a high-performance binder-free electrode for energy storage. With large ion-accessible surface area as well as efficient electron and ion transport pathways, the prepared LDH-NF electrode achieves high specific capacity (1250 C g-1 at 2 A g-1 and 401 C g-1 at 50 A g-1) after 5000 cycles of activation at 20 A g-1 and high cycling stability (76.7% retention after another 5000 cycles at 50 A g-1), which is higher than those of most previously reported NiAl-LDH-based materials. Moreover, a hybrid supercapacitor with LDH-NF as the positive electrode and porous graphene nanosheet coated on NF (GNS-NF) as the negative electrode, delivers high energy density (30.2 Wh kg-1 at a power density of 800 W kg-1) and long cycle life, which outperforms the other devices reported in the literature. This study shows that the prepared LDH-NF electrode offers great potential in energy storage device applications.

  10. Synthesis of carbon nanotubes over 3D cubical Co-KIT-6 and nickel decorated graphene by Hummer's method, its application as counter electrode in dye sensitive solar cell

    NASA Astrophysics Data System (ADS)

    Subramanian, Sunu; Pandurangan, Arumugam

    2016-04-01

    The challenges on carbon nanotubes and graphene are still the subject of many research works due to its unique properties. There are three main methods to synthesis carbon nanotubes in which chemical vapor deposition (CVD) method can use for large scale production. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for CVD method using metal impregnation method to produce cobalt loadings of 2, 4 and 6 wt%. The catalysts were characterized by XRD, FTIR &TEM. Carbon nanotubes (CNTs) synthesized on Co-KIT-6 was also characterized by XRD, TGA, SEM & Raman spectra. Graphene was synthesized by Hummers method, which is the most common method for preparing graphene oxide. Graphene oxide was prepared by oxidation of graphite using some oxidizing agents like sulphuric acid, sodium nitrate and potassium permanganate. This graphene oxide is further treated with hydrazine solution to convert it into chemically converted graphene and also decorated with nickel metal and characterized. Hummer's method is important for large scale production of graphene. Both Graphene and carbon nanotubes are used in different fields due to its unique properties. Both Graphene and carbon nanotubes are fabricated in counter electrode of Dye sensitized solar cells (DSSC). By cyclic voltammetry study, it confirms that both materials are good and efficient to replace platinum in the DSSC.

  11. Improved performance of Pd electrocatalyst supported on three-dimensional nickel foam for direct ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, You-Ling; Zhao, Yong-Qing; Xu, Cai-Ling; Zhao, Dan-Dan; Xu, Mao-Wen; Su, Zhong-Xing; Li, Hu-Lin

    To improve the performance of direct ethanol fuel cells (DEFCs), a three-dimensional (3D), hierarchically structured Pd electrode has been successfully fabricated by directly electrodepositing Pd nanoparticles on the nickel foam (referred as Pd/Nickel foam electrode hereinafter). The electrochemical properties of the as-prepared electrode for ethanol oxidation have been investigated by cyclic voltammetry (CV). The results show that the oxidation peak current density of the Pd/Nickel foam electrode is 107.7 mA cm -2, above 8 times than that of Pd film electrode at the same Pd loading (0.11 mg cm -2), and a 90 mV negative shift of the onset potential is found on the Pd/Nickel foam electrode compared with the Pd film electrode. Furthermore, the peak current density of the 500th cycle remains 98.1% of the maximum value for the Pd/Nickel foam electrode after a 500-cycle test, whereas it is only 14.2% for the Pd film. The improved electrocatalytic activity and excellent stability of the Pd/Nickel foam electrode make it a favorable platform for direct ethanol fuel cell applications.

  12. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  13. Studies on Synthesis, Structural and Electrical Properties of Complex Oxide Thin Films: Barium Strontium Titanate and Lanthanum Strontium Nickelate

    NASA Astrophysics Data System (ADS)

    Podpirka, Adrian A.

    High performance miniaturized passives are of great importance for advanced nanoelectronic packages for several applications including efficient power delivery. Low cost thin film capacitors fabricated directly on package (and/or on-chip) are an attractive approach towards realizing such devices. This thesis aims to explore fundamental frequency dependent dielectric and insulating properties of thin film high-k dielectric constant in the perovskite and perovskite-related complex oxides. Throughout this thesis, we have successfully observed the role of structure, strain and oxygen stoichiometry on the dielectric properties of thin film complex oxides, allowing a greater understanding of processing conditions and polarization mechanisms. In the first section of the thesis, we explore novel processing methods in the conventional ferroelectric, barium strontium titanate, Ba1-xSr xTiO3 (BST), using ultraviolet enhanced oxidation techniques in order to achieve improvements in the dielectric properties. Using this method, we also explore the growth of BST on inexpensive non-noble metals such as Ni which presents technical challenges due to the ability to oxidize at high temperatures. We observe a significant lowering of the dielectric loss while also lowering the process temperature which allows us to maintain an intimate interface between the dielectric layer and the metal electrode. The second section of this thesis explores the novel dielectric material, Lanthanum Strontium Nickelate, La2-xSrxNiO4 (LSNO), which exhibits a colossal dielectric response. For the first time, we report on the colossal dielectric properties of polycrystalline and epitaxial thin film LSNO. We observe a significant polarization dependence on the microstructure due to the grain/grain boundary interaction with charged carriers. We next grew epitaxial films on various insulating oxide substrates in order to decouple the grain boundary interaction. Here we observed substrate dependent dielectric

  14. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  15. Ultraflexible polymer solar cells using amorphous zinc-indium-tin oxide transparent electrodes.

    PubMed

    Zhou, Nanjia; Buchholz, Donald B; Zhu, Guang; Yu, Xinge; Lin, Hui; Facchetti, Antonio; Marks, Tobin J; Chang, Robert P H

    2014-02-01

    Polymer solar cells are fabricated on highly conductive, transparent amorphous zinc indium tin oxide (a-ZITO) electrodes. For two representative active layer donor polymers, P3HT and PTB7, the power conversion efficiencies (PCEs) are comparable to reference devices using polycrystalline indium tin oxide (ITO) electrodes. Benefitting from the amorphous character of a-ZITO, the new devices are highly flexible and can be repeatedly bent to a radius of 5 mm without significant PCE reduction. PMID:24123578

  16. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  17. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  18. Synthesis and Defect Structure Analysis of Complex Oxides for Li-Ion Battery Electrodes

    NASA Astrophysics Data System (ADS)

    Hao, Xiaoguang

    Lithium-ion batteries have attracted increased attention for energy storage development due to the vast demand from portable electronics, (hybrid) electric vehicles and future power grids. The research in this dissertation is focused on the development of oxide electrodes for lithium-ion batteries with high power density and improved stability. One of the promising cathodes for lithium-ion batteries is lithium manganospinel (LiMn2O4). However, this compound suffers from manganese dissolution and a Jahn-Teller distortion due to Mn3+, especially in oxygen deficient LiMn2O4-delta. Hydrothermal based synthesis methods were developed to eliminate oxygen vacancies to enable high power in cathodes composed of nano-sized spinel particles. The relationship between oxygen defects and the capacity fading mechanism was demonstrated, and collapse of the mechanical structure was identified in defect-rich LiMn 2O4-delta. Next, the nickel substituted manganospinel, LiNi0.5Mn 1.5O4 shows unexpected high voltage side reactions. To overcome this drawback, a thin and chemically inert titanate was used as an artificial SEI (solid electrolyte interface) coating to prohibit transition-metal dissolution and parasitic side reactions, which led to a 200% improvement of the capacity retention at 55°C and negligible polarization losses. Finally, the spinel-structured lithium titanate (Li 4Ti5O12) is introduced as an anode material for lithium-ion batteries due to its higher operating potential and excellent structural stability compared to current graphite anodes. However, the poor electronic conductivity and low lithium diffusion coefficient hinder its wide application. Given these advantages, a facile, low-cost solution method is explored to synthesize nano-sized titanates. Rapid charge/ discharge was achieved up to rates of 100 C (36 second charge/ discharge) due to a shorter lithium mean-free path and better contact between the active material and conductive agents.

  19. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent.

    PubMed

    Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P

    2014-08-01

    In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles.

  20. Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications

    SciTech Connect

    Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S.; Cetel, A.D.

    1999-07-01

    The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine tests and the effect on the misfit energy between the phases in the alloys; (2) examining the oxidation performance of these newly-developed alloys; (3) identifying the influence of pre-oxidation processing on the subsequent oxidation performance; and (4) relating the microstructural and microchemical observations to the observed performance of these superalloys. The comparison of the base and modified alloys will produce a better understanding of the interaction between chemistry, structure, and performance in superalloys. In addition, it will lead to optimized alloys with improved performance including enhanced durability in the operating environments at the elevated temperature required to improve energy efficiency. The availability of alloys capable of higher temperature operation will minimize the need for expensive coatings in extreme temperature applications.

  1. Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells.

    PubMed

    Park, Hyungmin; Li, Xiaxi; Lai, Samson Y; Chen, Dongchang; Blinn, Kevin S; Liu, Mingfei; Choi, Sinho; Liu, Meilin; Park, Soojin; Bottomley, Lawrence A

    2015-09-01

    Carbon deposition on nickel anodes degrades the performance of solid oxide fuel cells that utilize hydrocarbon fuels. Nickel anodes with BaO nanoclusters deposited on the surface exhibit improved performance by delaying carbon deposition (i.e., coking). The goal of this research was to visualize early stage deposition of carbon on nickel surface and to identify the role BaO nanoclusters play in coking resistance. Electrostatic force microscopy was employed to spatially map carbon deposition on nickel foils patterned with BaO nanoclusters. Image analysis reveals that upon propane exposure initial carbon deposition occurs on the Ni surface at a distance from the BaO features. With continued exposure, carbon deposits penetrate into the BaO-modified regions. After extended exposure, carbon accumulates on and covers BaO. The morphology and spatial distribution of deposited carbon was found to be sensitive to experimental conditions.

  2. Oxidation and thermal fatigue of coated and uncoated NX-188 nickel-base alloy in a high velocity gas stream

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Young, S. G.

    1972-01-01

    A cast nickel-base superalloy, NX-188, coated and uncoated, was tested in a high-velocity gas stream for resistance to oxidation and thermal fatigue by cycling between room temperature and 980, 1040, and 1090 C. Contrary to the behavior of more conventional nickel-base alloys, uncoated NX-188 exhibited the greatest weight loss at the lowest test temperature. In general, on the basis of weight change and metallographic observations a coating consisting of vapor-deposited Fe-Cr-Al-Y over a chromized substrate exhibited the best overall performance in resistance to oxidation and thermal fatigue.

  3. Nickel oxide grafted andic soil for efficient cesium removal from aqueous solution: adsorption behavior and mechanisms.

    PubMed

    Ding, Dahu; Lei, Zhongfang; Yang, Yingnan; Feng, Chuanping; Zhang, Zhenya

    2013-10-23

    An andic soil, akadama clay, was modified with nickel oxide and tested for its potential application in the removal of cesium from aqueous solution. Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and powder X-ray diffraction (XRD) results revealed the nickel oxide was successfully grafted into akadama clay. N2 adsorption-desorption isotherms indicated the surface area decreased remarkably after modification while the portion of mesopores increased greatly. Thermogravimetric-differential thermal analysis (TG-DTA) showed the modified akadama clay had better thermostability than the pristine akadama clay. Decreases in cation exchange capacity (CEC) and ζ-potential were also detected after the modification. Adsorption kinetic and isotherm studies indicated the adsorption of Cs+ on the modified akadama clay was a monolayer adsorption process. Adsorption capacity was greatly enhanced for the modified akadama clay probably due to the increase in negative surface charge caused by the modification. The adsorption of Cs+ on the modified akadama clay was dominated by an electrostatic adsorption process. Results of this work are of great significance for the application of akadama clay as a promising adsorbent material for cesium removal from aqueous solutions.

  4. Reduced graphene oxide hydrogels deposited in nickel foam for supercapacitor applications: Toward high volumetric capacitance

    DOE PAGESBeta

    Pham, Viet Hung; Dickerson, James H.

    2016-02-21

    Graphene hydrogels have been considered as ideal materials for high-performance supercapacitors. However, their low volumetric capacitance significantly limits its real application. In this study, we report an environment-friendly and scalable method to prepare high packing density, electrochemically reduced graphene oxide hydrogels (ERGO) for supercapacitor application by the electrophoretic deposition of graphene oxide onto nickel foam, followed by the electrochemical reduction and hydraulic compression of the deposited materials. The as-prepared ERGO on nickel foam was hydraulic compressed up to 20 tons, resulting in an increase of the packing density of ERGO from 0.0098 to 1.32 g cm–3. Consequently, the volumetric capacitancemore » and volumetric energy density of ERGOs greatly increased from 1.58 F cm–3 and 0.053 Wh cm–3 (as-prepared ERGO) to 176.5 F cm–3 and 6.02 Wh cm–3 (ERGO compressed at 20 tons), respectively. The ERGOs also exhibited long-term electrochemical stability with a capacitance retention in the range of approximately 79–90% after 10 000 cycles. Lastly, we believe that these high packing density ERGOs are promising for real-world energy storage devices for which scalable, cost-effective manufacturing is of significance and for which space constraints are paramount.« less

  5. Hydrogen Oxidation Catalysis by a Nickel Diphosphine Complex with Pendant tert-Butyl Amines

    SciTech Connect

    Yang, Jenny Y.; Chen, Shentan; Dougherty, William G.; Kassel, W. S.; Bullock, R. Morris; DuBois, Daniel L.; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Rakowski DuBois, Mary

    2010-11-09

    A bis-diphosphine nickel complex with t-butyl functionalized pendant amines [Ni(PCy2Nt-Bu2)2]2+ has been synthesized. It is a highly active electrocatalyst for the oxidation of hydrogen in the presence of base. The turn-over rate of 50 s 1 under 1.0 atm H2 at a potential of –0.77 V vs the ferrocene couple is 5 times faster than the rate reported heretofore for any other molecular H2 oxidation catalyst. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. Computational resources were provided by the Environmental Molecular Science Laboratory (EMSL) and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory.

  6. Nickel Phosphine Catalysts with Pendant Amines for Electrocatalytic Oxidation of Alcohols

    SciTech Connect

    Weiss, Charles J.; Wiedner, Eric S.; Roberts, John A.; Appel, Aaron M.

    2015-01-01

    Nickel phosphine complexes with pendant amines have been found to be electrocatalysts for the oxidation of primary and secondary alcohols, with turnover frequencies as high as 3.3 s-1. These complexes are the first electrocatalysts for alcohol oxidation based on non-precious metals, which will be critical for use in fuel cells. The research by CJW, ESW, and AMA was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. The research by JASR was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. Enhanced removal of nickel(II) ions from aqueous solutions by SDS-functionalized graphene oxide

    PubMed Central

    Salihi, Elif Çalışkan; Wang, Jiabin; Coleman, Daniel J. L.; Šiller, Lidija

    2016-01-01

    ABSTRACT In this paper, a one-pot and easy-to-handle method at room temperature without additional chemicals for the modification of graphene oxide (GO) with surfactant is found. Removal of nickel (II) ions from aqueous solutions by GO and surfactant (sodium dodecyl sulphate) modified graphene oxide (SDS-GO) was studied spectrophotometrically at room temperature as a function of time, initial concentration and pH. Adsorption capacity of the adsorbent was increased dramatically (from 20.19 to 55.16 mg/g found by Langmuir model) due to the functionalization of the surface by SDS. The driving force of the adsorption of Ni(II) ions is electrostatic attraction and Ni(II) ions adsorbed on the GO surface chemically besides ion exchange. PMID:27365545

  8. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting.

    PubMed

    Morales-Guio, Carlos G; Mayer, Matthew T; Yella, Aswani; Tilley, S David; Grätzel, Michael; Hu, Xile

    2015-08-12

    Sunlight-driven water splitting to produce hydrogen fuel is an attractive method for renewable energy conversion. Tandem photoelectrochemical water splitting devices utilize two photoabsorbers to harvest the sunlight and drive the water splitting reaction. The absorption of sunlight by electrocatalysts is a severe problem for tandem water splitting devices where light needs to be transmitted through the larger bandgap component to illuminate the smaller bandgap component. Herein, we describe a novel method for the deposition of an optically transparent amorphous iron nickel oxide oxygen evolution electrocatalyst. The catalyst was deposited on both thin film and high-aspect ratio nanostructured hematite photoanodes. The low catalyst loading combined with its high activity at low overpotential results in significant improvement on the onset potential for photoelectrochemical water oxidation. This transparent catalyst further enables the preparation of a stable hematite/perovskite solar cell tandem device, which performs unassisted water splitting.

  9. Melting of oxidized nickel ores in a barbotage unit: I. Thermodynamic analysis of melting

    NASA Astrophysics Data System (ADS)

    Pakhomov, R. A.; Starykh, R. V.

    2015-09-01

    The possibility of effective processing of oxidized nickel ores (ONOs) to form ferronickel in a barbotage unit (Vanyukov furnace for liquid bath melting (LBM)) is theoretically corroborated. The heat balances of the LBM processing of unreduced ONOs or the cinder preliminarily reduced in tubular kilns to form ferronickel are calculated. It is shown that deep reduction of ONOs and melting of the reduced cinder are energetically more favorable than direct melting of a slightly dried ore to form ferronickel. The proposed twostage scheme of processing of ONOs makes it possible to decrease the furnace area and the effluent gas flow. Parallel reduction and oxidation processes in the same region of a bubbled slag melt during direct melting of unreduced ore is debatable.

  10. Metal/Metal Oxide Differential Electrode pH Sensors

    NASA Technical Reports Server (NTRS)

    West, William; Buehler, Martin; Keymeulen, Didier

    2007-01-01

    Solid-state electrochemical sensors for measuring the degrees of acidity or alkalinity (in terms of pH values) of liquid solutions are being developed. These sensors are intended to supplant older electrochemical pH sensors that include glass electrode structures and reference solutions. The older sensors are fragile and subject to drift. The present developmental solid-state sensors are more rugged and are expected to be usable in harsh environments. The present sensors are based on a differential-electrode measurement principle. Each sensor includes two electrodes, made of different materials, in equilibrium with the solution of interest.

  11. Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors

    NASA Astrophysics Data System (ADS)

    Babakhani, Banafsheh

    The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected

  12. The JPL/NASA/TAMU nickel-cadmium battery model development status

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul

    1993-01-01

    A discussion of the development of a fundamental cell model is presented in vugraph format. The nickel oxide layer is described in terms of the electronic conductivity of the oxide layer and proton diffusion through the oxide layer. The kinetic and conductivity expressions for the cadmium electrode were improved. The development process yielded performance predictions that are significantly improved.

  13. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection.

    PubMed

    Li, Bing; Pan, Genhua; Avent, Neil D; Lowry, Roy B; Madgett, Tracey E; Waines, Paul L

    2015-10-15

    A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration.

  14. Efficient inverted polymer solar cells based on conjugated polyelectrolyte and zinc oxide modified ITO electrode

    SciTech Connect

    Yuan, Tao; Zhu, Xiaoguang; Tu, Guoli; Zhou, Lingyu; Zhang, Jian

    2015-02-23

    Efficient inverted polymer solar cells (PSCs) were constructed by utilizing a conjugated polyelectrolyte PF{sub EO}SO{sub 3}Na and zinc oxide to modify the indium tin oxide (ITO) electrode. The ITO electrode modified by PF{sub EO}SO{sub 3}Na and zinc oxide possesses high transparency, increased electron mobility, smoothened surface, and lower work function. PTB7:PC{sub 71}BM inverted PSCs containing the modified ITO electrode achieved a high power conversion efficiency (PCE) of 8.49%, exceeding that of the control device containing a ZnO modified ITO electrode (7.48%). Especially, PCE-10:PC{sub 71}BM inverted polymer solar cells achieved a high PCE up to 9.4%. These results demonstrate a useful approach to improve the performance of inverted polymer solar cells.

  15. Nickel-regulated heart rate variability: The roles of oxidative stress and inflammation

    SciTech Connect

    Chuang, Hsiao-Chi; Hsueh, Tzu-Wei; Chang, Chuen-Chau; Hwang, Jing-Shiang; Chuang, Kai-Jen; Yan, Yuan-Horng; Cheng, Tsun-Jen

    2013-01-15

    Heart rate variability (HRV) has been reported to be a putative marker of cardiac autonomic imbalance caused by exposure to ambient particulate matter (PM). Our objective in this study was to determine the effects on HRV from exposure to nickel, an important chemical component of ambient PM that results in oxidative stress and inflammation. HRV data were collected for 72 h before lung exposure (baseline) and 72 h after intratracheal exposure (response) to nickel sulphate (NiSO{sub 4}; 526 μg) in Wistar Kyoto (WKY) and spontaneously hypertensive (SH) rats. The antioxidant N-acetyl-L-cysteine (NAC) and the anti-inflammatory celecoxib were intraperitoneally injected to examine post-exposure oxidative and inflammatory responses. Self-controlled experiments examined the effects of NiSO{sub 4} exposure on average normal-to-normal intervals (ANN), natural logarithm-transformed standard deviation of the normal-to-normal intervals (LnSDNN) and root mean square of successive differences of adjacent normal-to-normal intervals (LnRMSSD); the resulting data were sequentially analysed using the generalised estimating equation model. HRV effects on NiSO{sub 4}-exposed SH rats were greater than those on NiSO{sub 4}-exposed WKY rats. After adjusted the HRV responses in the WKY rats as control, ANN and LnRMSSD were found to be quadratically increased over 72 h after exposure to NiSO{sub 4}. Both NAC and celecoxib mitigated the NiSO{sub 4}-induced alterations in HRV during the exposure period. The results suggest that concurrent Ni-induced oxidative stress and inflammatory responses play important roles in regulating HRV. These findings help bridge the gap between epidemiological and clinical studies on the plausible mechanisms of the cardiovascular consequences induced by chemical components in ambient PM. -- Highlights: ► To determine the effects on HRV from exposure to nickel. ► ANN and LnRMSSD were found to be quadratically increased after exposure to Ni. ► NAC and

  16. Kinetics of CO/CO2 and H2/H2O reactions at Ni-based and ceria-based solid-oxide-cell electrodes.

    PubMed

    Graves, Christopher; Chatzichristodoulou, Christodoulos; Mogensen, Mogens B

    2015-01-01

    The solid oxide electrochemical cell (SOC) is an energy conversion technology that can be operated reversibly, to efficiently convert chemical fuels to electricity (fuel cell mode) as well as to store electricity as chemical fuels (electrolysis mode). The SOC fuel-electrode carries out the electrochemical reactions CO2 + 2e(-) ↔ CO + O(2-) and H2O + 2e(-) ↔ H2 + O(2-), for which the electrocatalytic activities of different electrodes differ considerably. The relative activities in CO/CO2 and H2/H2O and the nature of the differences are not well studied, even for the most common fuel-electrode material, a composite of nickel and yttria/scandia stabilized zirconia (Ni-SZ). Ni-SZ is known to be more active for H2/H2O than for CO/CO2 reactions, but the reported relative activity varies widely. Here we compare AC impedance and DC current-overpotential data measured in the two gas environments for several different electrodes comprised of Ni-SZ, Gd-doped CeO2 (CGO), and CGO nanoparticles coating Nb-doped SrTiO3 backbones (CGOn/STN). 2D model and 3D porous electrode geometries are employed to investigate the influence of microstructure, gas diffusion and impurities.Comparing model and porous Ni-SZ electrodes, the ratio of electrode polarization resistance in CO/CO2vs. H2/H2O decreases from 33 to 2. Experiments and modelling suggest that the ratio decreases due to a lower concentration of impurities blocking the three phase boundary and due to the nature of the reaction zone extension into the porous electrode thickness. Besides showing higher activity for H2/H2O reactions than CO/CO2 reactions, the Ni/SZ interface is more active for oxidation than reduction. On the other hand, we find the opposite behaviour in both cases for CGOn/STN model electrodes, reporting for the first time a higher electrocatalytic activity of CGO nanoparticles for CO/CO2 than for H2/H2O reactions in the absence of gas diffusion limitations. We propose that enhanced surface reduction at the

  17. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes.

    PubMed

    Weiland, James D; Anderson, David J; Humayun, Mark S

    2002-12-01

    Stimulating electrode materials must be capable of supplying high-density electrical charge to effectively activate neural tissue. Platinum is the most commonly used material for neural stimulation. Two other materials have been considered: iridium oxide and titanium nitride. This study directly compared the electrical characteristics of iridium oxide and titanium nitride by fabricating silicon substrate probes that differed only in the material used to form the electrode. Electrochemical measurements indicated that iridium oxide had lower impedance and a higher charge storage capacity than titanium nitride, suggesting better performance as a stimulating electrode. Direct measurement of the electrode potential in response to a biphasic current pulse confirmed that iridium oxide uses less voltage to transfer the same amount of charge, therefore using less power. The charge injection limit for titanium nitride was 0.87 mC/cm2, contradicting other reports estimating that titanium nitride was capable of injecting 22 mC/cm2. Iridium oxide charge storage was 4 mC/cm2, which is comparable to other published values for iridium oxide. Electrode efficiency will lead to an overall more efficient and effective device.

  18. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed. PMID:27711259

  19. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed.

  20. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting.

    PubMed

    Tang, Chun; Cheng, Ningyan; Pu, Zonghua; Xing, Wei; Sun, Xuping

    2015-08-01

    Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270 mV required to achieve 20 mA cm(-2) and strong durability in 1.0 M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of 1.63 V.

  1. Oxygen Reduction Kinetics of La2-xSrxNiO 4+delta Electrodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Guan, Bo

    In the development of intermediate temperature solid oxide fuel cell (IT-SOFC), mixed ionic-electronic conductors (MIEC) have drawn big interests due to their both ionic and electronic species transport which can enlarge the 3-dimension of the cathode network. This thesis presents an investigation of MIEC of Ruddlesden-popper (RP) phases like K2NiF4 type La2NiO4+delta (LNO)-based oxides which have interesting transport, catalytic properties and suitable thermal expansion coefficients. The motivation of this present work is to further understand the fundamental of the effect of Sr doing on the oxygen reduction reaction (ORR) kinetics of LNO cathode. Porous symmetrical cells of La2-xSrxNiO4+delta (0≤x≤0.4) were fabricated and characterized by electrochemical impedance spectroscopy (EIS) in different PO2 from temperature range of 600˜800°C. The spectra were analyzed based on the impedance model introduced by Adler et al. The rate determining steps (RDS) for ORR were proposed and the responsible reasons were discussed. The overall polarization resistances of doped samples increase with Sr level. Surface oxygen exchange and bulk ionic diffusion co-control the ORR kinetics. With high Sr content (x=0.3, 0.4), oxygen ion transfer resistance between nickelate/electrolyte is observed. However for porous symmetrical cells it is hard to associate the resistance from EIS directly to each ORR elementary processes because of the difficulty in describing the microstructure of the porous electrode. The dense electrode configuration was adopted in this thesis. By using the dense electrode, the surface area, the thickness of electrode, the interface between electrode and electrolyte and lastly the 3PB are theoretically well-defined. Through this method, there is a good chance to distinguish the contribution of surface exchange from other processes. Dense and thin electrode layers in thickness of ˜40 mum are fabricated by using a novel spray modified pressing method. Negligible

  2. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes.

    PubMed

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  3. Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes

    PubMed Central

    Li, Yiwen; Chen, Yulong; Qiu, Mingxia; Yu, Hongyu; Zhang, Xinhai; Sun, Xiao Wei; Chen, Rui

    2016-01-01

    We have employed anodic aluminum oxide as a template to prepare ultrathin, transparent, and conducting Al films with a unique nanomesh structure for transparent conductive electrodes. The anodic aluminum oxide template is obtained through direct anodization of a sputtered Al layer on a glass substrate, and subsequent wet etching creates the nanomesh metallic film. The optical and conductive properties are greatly influenced by experimental conditions. By tuning the anodizing time, transparent electrodes with appropriate optical transmittance and sheet resistance have been obtained. The results demonstrate that our proposed strategy can serve as a potential method to fabricate low-cost TCEs to replace conventional indium tin oxide materials. PMID:26831759

  4. Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications

    SciTech Connect

    Kandalkar, Sunil G.; Lee, Hae-Min; Chae, Heeyeop; Kim, Chang-Koo

    2011-01-15

    Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared through electrodeposition on copper substrates using an ammonia-complexed cobalt chloride solution. The structural and morphological properties of the film were studied using an X-ray diffractometer and scanning electron microscopy, and the results showed that the electrodeposited cobalt oxide film had a nanocrystalline and porous structure. The electrochemical behavior of the electrodeposited cobalt oxide electrode was evaluated in a KOH solution using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests. The electrodeposited cobalt oxide electrode exhibited a specific capacitance of 235 F/g at a scan rate of 20 mV/s. The specific energy and the specific power of the electrode were 4.0 Wh/kg and 1.33 kW/kg, respectively.

  5. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    USGS Publications Warehouse

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  6. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    NASA Astrophysics Data System (ADS)

    Hem, J. D.; Lind, C. J.; Roberson, C. E.

    1989-11-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ˜0.02 molar solution of Mn 2+ chloride, nitrate, or perchlorate with Cu 2+ or Ni 2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu 2Mn 3O 8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, βMnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO 2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included βMnOOH, Ni(OH) 2, and the same two forms of MnO 2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu 2+ and Ni 2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems.

  7. Catalytic Oxidation of Alcohol via Nickel Phosphine Complexes with Pendant Amines

    SciTech Connect

    Weiss, Charles J.; Das, Partha Pratim; Higgins, Deanna LM; Helm, Monte L.; Appel, Aaron M.

    2014-09-05

    Nickel complexes were prepared with diphosphine ligands that contain pendant amines, and these complexes catalytically oxidize primary and secondary alcohols to their respective aldehydes and ketones. Kinetic and mechanistic studies of these prospective electrocatalysts were performed to understand what influences the catalytic activity. For the oxidation of diphenylmethanol, the catalytic rates were determined to be dependent on the concentration of both the catalyst and the alcohol. The catalytic rates were found to be independent of the concentration of base and oxidant. The incorporation of pendant amines to the phosphine ligand results in substantial increases in the rate of alcohol oxidation with more electron-donating substituents on the pendant amine exhibiting the fastest rates. We thank Dr. John C. Linehan, Dr. Elliott B. Hulley, Dr. Jonathan M. Darmon, and Dr. Elizabeth L. Tyson for helpful discussions. Research by CJW, PD, DLM, and AMA was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Research by MLH was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  8. Preparation and characterization of nanostructured nickel oxide thin films by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Ghafori, Sa'ad; Kadhim, Ghada A.

    2013-12-01

    Transparent crystalline nanostructured nickel oxide (NiO) thin films were prepared using a simple spray pyrolysis technique from hydrated nickel chloride salt solution (NiCl2·6H2O) onto glass and silicon (n-type) substrates at different temperatures (280, 320, 360, and 400 °C) and with different solution concentrations (0.025, 0.05, 0.075, and 0.1 M). Structural and morphological properties of the grown NiO films were studied using X-ray diffraction (XRD) and atomic force microscope. Optical properties and chemical analysis of the films were characterized by UV-visible absorption spectra and Fourier transform infrared spectroscopy, respectively. The XRD result showed that the deposited film has an amorphous structure when deposited at temperature of T s = 280 °C and concentration of 0.025 M. At higher temperatures ( T s = 320, 360, 400 °C) and solution concentrations (0.05, 0.075, 0.1 M), the deposited films have cubic polycrystalline structure formed with preferred orientation along (111) plane. The band gap of NiO film increases from 3.4 to 3.8 eV as the molarity decreased from 0.1 to 0.05 M.

  9. Reactivity of a Nickel Sulfide with Carbon Monoxide and Nitric Oxide.

    PubMed

    Hartmann, Nathaniel J; Wu, Guang; Hayton, Trevor W

    2016-09-28

    The reactivity of the "masked" terminal nickel sulfide complex, [K(18-crown-6)][(L(tBu))Ni(II)(S)] (L(tBu) = {(2,6-(i)Pr2C6H3)NC((t)Bu)}2CH), with the biologically important small molecules CO and NO, was surveyed. [K(18-crown-6)][(L(tBu))Ni(II)(S)] reacts with carbon monoxide (CO) via addition across the Ni-S bond to give a carbonyl sulfide complex, [K(18-crown-6)][(L(tBu))Ni(II)(S,C:η(2)-COS)] (1). Additionally, [K(18-crown-6)][(L(tBu))Ni(II)(S)] reacts with nitric oxide (NO) to yield a nickel nitrosyl, [(L(tBu))Ni(NO)] (2), and a perthionitrite anion, [K(18-crown-6)][SSNO] (3). The isolation of 3 from this reaction confirms, for the first time, that transition metal sulfides can react with NO to form the biologically important [SSNO](-) anion. PMID:27606792

  10. Pr4Ni3O10+δ: A new promising oxygen electrode material for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Vibhu, Vaibhav; Rougier, Aline; Nicollet, Clément; Flura, Aurélien; Fourcade, Sébastien; Penin, Nicolas; Grenier, Jean-Claude; Bassat, Jean-Marc

    2016-06-01

    The present work is focused on the study of Pr4Ni3O10+δ as a new cathode material for Solid Oxide Fuel Cells (SOFCs). The structural study leads to an indexation in orthorhombic structure with Fmmm space group, this structure being thermally stable throughout the temperature range up to 1000 °C under air and oxygen. The variation of oxygen content (10+δ) as a function of temperature under different atmospheres show that Pr4Ni3O10+δ is always oxygen over-stoichiometric, which further suggests its MIEC properties. The polarization resistance (Rp) of Pr4Ni3O10+δ electrode is measured for GDC/co-sintered and two-step sintered half cells. The Rp for co-sintered sample is found to be 0.16 Ω cm2 at 600 °C under air, which is as low as the one of highest performing Pr2NiO4+δ nickelate (Rp = 0.15 Ω cm2 at 600 °C). Moreover, an anode supported (Ni-YSZ//YSZ) single cell including GDC//Pr4Ni3O10+δ co-sintered electrode shows a maximum power density of 1.60 W cm-2 at 800 °C and 0.68 W cm-2 at 700 °C. Here, the work is emphasized on the very close electrochemical performance of Pr4Ni3O10+δ compared to the one of Pr2NiO4+δ with higher chemical stability, which gives great interests to consider this material as a very interesting oxygen-electrode for SOFCs.

  11. Cultivation of an Obligate Fe(II)-Oxidizing Lithoautotrophic Bacterium Using Electrodes

    PubMed Central

    Summers, Zarath M.; Gralnick, Jeffrey A.; Bond, Daniel R.

    2013-01-01

    ABSTRACT Fe(II)-oxidizing aerobic bacteria are poorly understood, due in part to the difficulties involved in laboratory cultivation. Specific challenges include (i) providing a steady supply of electrons as Fe(II) while (ii) managing rapid formation of insoluble Fe(III) oxide precipitates and (iii) maintaining oxygen concentrations in the micromolar range to minimize abiotic Fe(II) oxidation. Electrochemical approaches offer an opportunity to study bacteria that require problematic electron donors or acceptors in their respiration. In the case of Fe(II)-oxidizing bacteria, if the electron transport machinery is able to oxidize metals at the outer cell surface, electrodes poised at potentials near those of natural substrates could serve as electron donors, eliminating concentration issues, side reactions, and mineral end products associated with metal oxidation. To test this hypothesis, the marine isolate Mariprofundus ferrooxydans PV-1, a neutrophilic obligate Fe(II)-oxidizing autotroph, was cultured using a poised electrode as the sole energy source. When cells grown in Fe(II)-containing medium were transferred into a three-electrode electrochemical cell, a cathodic (negative) current representing electron uptake by bacteria was detected, and it increased over a period of weeks. Cultures scraped from a portion of the electrode and transferred into sterile reactors consumed electrons at a similar rate. After three transfers in the absence of Fe(II), electrode-grown biofilms were studied to determine the relationship between donor redox potential and respiration rate. Electron microscopy revealed that under these conditions, M. ferrooxydans PV-1 attaches to electrodes and does not produce characteristic iron oxide stalks but still appears to exhibit bifurcate cell division. PMID:23362318

  12. [Degradation of aniline by a dual-electrode electrochemical oxidation process].

    PubMed

    Cen, Shi-Hong; Song, Xiao-Yan; Chu, Yan-Yang

    2011-08-01

    The efficiency and the mechanism of aniline degradation by an electrochemical oxidation process using a Ti/SnO2-Sb2O5 electrode as the anode and a graphite electrode as the cathode, were studied in two aqueous electrolytes with/without Fe2+. The results showed that the reasonable anodic potential was about 2.0 V +/- 0.1 V for Ti/SnO2-Sb2O5 electrode to oxidize organic compounds, while the optimum cathodic potential was -0.65 V for graphite electrode to reduce O2 generating H2O2. The oxidation degradation of aniline could not take place only by the single action of H2O2. Anodic oxidation was accounted for the degradation of aniline in the absence of Fe2+, while in the presence of Fe2+ both electro-Fenton oxidation and anodic oxidation (dual-electrode electrochemical oxidation) could degradate aniline effectively, and in this case the former was the main mechanism. Under the conditions of -0.65 V cathodic potential, pH 3.0 and 0.5 mmol x L(-1) Fe2+, the removal rate of COD was 77.5% after 10 h treatment and a current efficiency of 97.8% for COD removal could be obtained. This work indicates that the dual-electrode electrochemical oxidation is feasible for the degradation of organic compounds with a high current efficiency by using Ti/SnO2-Sb2O5 as anode as well as the reasonable anodic and cathodic potentials.

  13. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum–nickel hydroxide–graphene

    PubMed Central

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-01-01

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum–nickel hydroxide–graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts. PMID:26602295

  14. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene.

    PubMed

    Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie

    2015-11-25

    Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.

  15. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes.

    PubMed

    Summers, Zarath M; Gralnick, Jeffrey A; Bond, Daniel R

    2013-01-29

    Fe(II)-oxidizing aerobic bacteria are poorly understood, due in part to the difficulties involved in laboratory cultivation. Specific challenges include (i) providing a steady supply of electrons as Fe(II) while (ii) managing rapid formation of insoluble Fe(III) oxide precipitates and (iii) maintaining oxygen concentrations in the micromolar range to minimize abiotic Fe(II) oxidation. Electrochemical approaches offer an opportunity to study bacteria that require problematic electron donors or acceptors in their respiration. In the case of Fe(II)-oxidizing bacteria, if the electron transport machinery is able to oxidize metals at the outer cell surface, electrodes poised at potentials near those of natural substrates could serve as electron donors, eliminating concentration issues, side reactions, and mineral end products associated with metal oxidation. To test this hypothesis, the marine isolate Mariprofundus ferrooxydans PV-1, a neutrophilic obligate Fe(II)-oxidizing autotroph, was cultured using a poised electrode as the sole energy source. When cells grown in Fe(II)-containing medium were transferred into a three-electrode electrochemical cell, a cathodic (negative) current representing electron uptake by bacteria was detected, and it increased over a period of weeks. Cultures scraped from a portion of the electrode and transferred into sterile reactors consumed electrons at a similar rate. After three transfers in the absence of Fe(II), electrode-grown biofilms were studied to determine the relationship between donor redox potential and respiration rate. Electron microscopy revealed that under these conditions, M. ferrooxydans PV-1 attaches to electrodes and does not produce characteristic iron oxide stalks but still appears to exhibit bifurcate cell division. IMPORTANCE Electrochemical cultivation, supporting growth of bacteria with a constant supply of electron donors or acceptors, is a promising tool for studying lithotrophic species in the laboratory

  16. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.

    PubMed

    Terasawa, Naohiro; Asaka, Kinji

    2014-12-01

    The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable

  17. Expanded nickel screen electrical connection supports for solid oxide fuel cells

    DOEpatents

    Draper, Robert; Antol, Ronald F.; Zafred, Paolo R.

    2002-01-01

    A solid oxide fuel assembly is made, wherein rows (14, 24) of fuel cells (16, 18, 20, 26, 28, 30), each having an outer interconnection (36) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh (22) between each row of cells, the corrugated mesh (22) having top crown portions (40) and bottom shoulder portions (42), where the top crown portion (40) contacts outer interconnections (36) of the fuel cells (16, 18, 20) in a first row (14), and the bottom shoulder portions (42) contacts outer electrodes (32) of the fuel cells in a second row (24), said mesh electrically connecting each row of fuel cells, and where there are no metal felt connections between any fuel cells.

  18. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C.; Coffey, Gregory W.; Pederson, Larry R.; Marina, Olga A.; Hardy, John S.; Singh, Prabhaker; Thomsen, Edwin C.

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  19. Nickel nanocrystals grown on sparse hierarchical CuS microflowers as high-performance counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shi, Zhaoliang; Zhou, Wei; Ma, Yiran

    2016-07-01

    Three kinds of hierarchical CuS microflowers composed of thin nanosheets have been synthesized by a simple wet chemical method. It is shown that the CuS microflowers provide suitable substrates to grow nickel nanocrystals. The prepared Ni@CuS hybrids combined with conductive glass (FTO) have been used as counter electrodes for dye-sensitized solar cells (DSSCs). The electrode made of the active material of Ni@CuS microflowers with sparsest petals show an optimal photoelectric conversion efficiency of 4.89%, better than those made of single component of Ni (3.39%) or CuS (1.65%), and other two Ni@CuS composites. The improved performances could be ascribed to the synergetic effect of the catalytic effect towards I3‑/I‑ from sparse CuS hierarchical structure and uniformly grown Ni nanocrystals. Besides, the introduced Ni nanocrystals could increase the conductivity of the hybrid and facilitate the transport of electrons. The hybrid Ni@CuS composites serving as counter electrodes have much enhanced electrochemical properties, which provide a feasible route to develop high-active non-noble hybrid counter electrode materials.

  20. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Zhaohui; Tammela, Petter; Strømme, Maria; Nyholm, Leif

    2015-02-01

    A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes.A robust and compact freestanding conducting polymer-based electrode material based on nanocellulose coupled polypyrrole@graphene oxide paper is straightforwardly prepared via in situ polymerization for use in high-performance paper-based charge storage devices, exhibiting stable cycling over 16 000 cycles at 5 A g-1 as well as the largest specific volumetric capacitance (198 F cm-3) so far reported for flexible polymer-based electrodes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07251k