Science.gov

Sample records for nickel-based alloy machining

  1. NICKEL-BASE ALLOY

    DOEpatents

    Inouye, H.; Manly, W.D.; Roche, T.K.

    1960-01-19

    A nickel-base alloy was developed which is particularly useful for the containment of molten fluoride salts in reactors. The alloy is resistant to both salt corrosion and oxidation and may be used at temperatures as high as 1800 deg F. Basically, the alloy consists of 15 to 22 wt.% molybdenum, a small amount of carbon, and 6 to 8 wt.% chromium, the balance being nickel. Up to 4 wt.% of tungsten, tantalum, vanadium, or niobium may be added to strengthen the alloy.

  2. Nickel base coating alloy

    NASA Technical Reports Server (NTRS)

    Barrett, C. A. (Inventor); Lowell, C. E. (Inventor)

    1986-01-01

    Zirconium is added to a Ni-30 Al (beta) intermetallic alloy in the range of 0.05 w/o to 0.25 w/o. This addition is made during melting or by using metal powders. The addition of zirconium improves the cyclic oxidation resistance of the alloys at temperatures above 1100 C.

  3. Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718. Part 1: Effect of machine hammer peening

    SciTech Connect

    2013-12-01

    The effect of surface modifications induced by machine hammer peening on pitting corrosion behavior of nickel-base alloy 718 in a 3.5 wt.% NaCl solution is investigated. Severe work hardening and high compressive residual stress are generated with surface smoothing and microstructure evolution in terms of formation of nano-grains and nano-twins in the near surface region after machine hammer peening. Electrochemical tests results show that machine hammer peening has a beneficial influence on the corrosion resistance, indicated by a significant increase of the critical pitting potential (+134 mV) accompanied with lower corrosion current density and higher polarization resistance.

  4. Physics-based simulation modeling and optimization of microstructural changes induced by machining and selective laser melting processes in titanium and nickel based alloys

    NASA Astrophysics Data System (ADS)

    Arisoy, Yigit Muzaffer

    Manufacturing processes may significantly affect the quality of resultant surfaces and structural integrity of the metal end products. Controlling manufacturing process induced changes to the product's surface integrity may improve the fatigue life and overall reliability of the end product. The goal of this study is to model the phenomena that result in microstructural alterations and improve the surface integrity of the manufactured parts by utilizing physics-based process simulations and other computational methods. Two different (both conventional and advanced) manufacturing processes; i.e. machining of Titanium and Nickel-based alloys and selective laser melting of Nickel-based powder alloys are studied. 3D Finite Element (FE) process simulations are developed and experimental data that validates these process simulation models are generated to compare against predictions. Computational process modeling and optimization have been performed for machining induced microstructure that includes; i) predicting recrystallization and grain size using FE simulations and the Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, ii) predicting microhardness using non-linear regression models and the Random Forests method, and iii) multi-objective machining optimization for minimizing microstructural changes. Experimental analysis and computational process modeling of selective laser melting have been also conducted including; i) microstructural analysis of grain sizes and growth directions using SEM imaging and machine learning algorithms, ii) analysis of thermal imaging for spattering, heating/cooling rates and meltpool size, iii) predicting thermal field, meltpool size, and growth directions via thermal gradients using 3D FE simulations, iv) predicting localized solidification using the Phase Field method. These computational process models and predictive models, once utilized by industry to optimize process parameters, have the ultimate potential to improve performance of

  5. Corrosion of nickel-base alloys

    SciTech Connect

    Scarberry, R.C.

    1985-01-01

    The volume consists of three tutorial lectures and 18 contributed papers. The three tutorial lectures provide state-of-the-art background on the physical metallurgy of nickel-base alloys as it relates to corrosion. Also featured are the mechanisms and applications of these alloys and an insight into the corrosion testing techniques. The three tutorial lecture papers will help acquaint newcomers to this family of alloys with a thorough overview. The contributed papers are categorized into four major topics: general corrosion, stress corrosion cracking, fatigue and localized corrosion. Each topic is key-noted by one invited lecture followed by several contributed papers. The papers in the general corrosion section are wide ranging and cover the aspects of material selection, development of galvanic series in corrosive environments, corrosion resistance characteristics, hydrogen permeation and hydrogen embrittlement of nickel and some nickel-base alloys.

  6. The Effect of Heat Treatment on Residual Stress and Machining Distortions in Advanced Nickel Base Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    This paper describes an extension of NASA's AST and IDPAT Programs which sought to predict the effect of stabilization heat treatments on residual stress and subsequent machining distortions in the advanced disk alloy, ME-209. Simple "pancake" forgings of ME-209 were produced and given four heat treats: 2075F(SUBSOLVUS)/OIL QUENCH/NO AGE; 2075F/OIL QUENCH/1400F@8HR;2075F/OIL QUENCH/1550F@3HR/l400F@8HR; and 2160F(SUPERSOLVUS)/OIL QUENCH/1550F@3HR/ 1400F@8HR. The forgings were then measured to obtain surface profiles in the heat treated condition. A simple machining plan consisting of face cuts from the top surface followed by measurements of the surface profile opposite the cut were made. This data provided warpage maps which were compared with analytical results. The analysis followed the IDPAT methodology and utilized a 2-D axisymmetric, viscoplastic FEA code. The analytical results accurately tracked the experimental data for each of the four heat treatments. The 1550F stabilization heat treatment was found to significantly reduce residual stresses and subsequent machining distortions for fine grain (subsolvus) ME209, while coarse grain (supersolvus) ME209 would require additional time or higher stabilization temperatures to attain the same degree of stress relief.

  7. Welding and brazing of nickel and nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mortland, J. E.; Evans, R. M.; Monroe, R. E.

    1972-01-01

    The joining of four types of nickel-base materials is described: (1) high-nickel, nonheat-treatable alloys, (2) solid-solution-hardening nickel-base alloys, (3) precipitation-hardening nickel-base alloys, and (4) dispersion-hardening nickel-base alloys. The high-nickel and solid-solution-hardening alloys are widely used in chemical containers and piping. These materials have excellent resistance to corrosion and oxidation, and retain useful strength at elevated temperatures. The precipitation-hardening alloys have good properties at elevated temperature. They are important in many aerospace applications. Dispersion-hardening nickel also is used for elevated-temperature service.

  8. Nickel-base alloys combat corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.

    1995-06-01

    The modern chemical process industry must increase production efficiency to remain competitive. Manufacturers typically meet this challenge by utilizing higher temperatures and pressures, and more-corrosive catalysts. At the same time, the industry has to solve the technical and commercial problems resulting from rigid environmental regulations. To overcome these obstacles, new alloys having higher levels of corrosion resistance have been developed. These materials are based on increased understanding of the physical metallurgy of nickel-base alloys, especially the role of alloying elements. Results of many studies have led to innovations in nickel-chromium-molybdenum alloys containing both high and low amounts of nickel. Higher molybdenum and chromium contents, together with nitrogen additions, have opened up an entirely new class of alloys having unique properties. In addition, a new chromium-base, fully wrought super stainless steel shows excellent promise in solving many corrosion problems. These newer alloys have the ability to combat uniform corrosion, localized corrosion, and stress-corrosion cracking in the harsh halogenic environment of the chemical process industry. This article briefly lists some of the major highlights and corrosion data on recent nickel-chromium-molybdenum and nickel-molybdenum alloys, and the development of a chromium-base, wrought super-austenitic alloy known as Nicrofer 3033 (Alloy 33). Some comparisons with existing alloys are presented, along with a few commercial applications.

  9. Metal dusting and carburization resistance of nickel-base alloys

    SciTech Connect

    Kloewer, J.; Grabke, H.J.; Mueller-Lorenz, E.M.; Agarwal, D.C.

    1997-08-01

    Severe material failures caused by so-called metal dusting have been reported during recent years. The reason for these failures were strongly carburizing CO-H{sub 2} gas mixtures such as encountered in chemical plants for the synthesis of hydrocarbons, methanol, ammonia etc. as well as in plants for the reduction of iron ores. The carburization behavior of nine commercial nickel-base alloys and four iron-nickel-chromium alloys was investigated at 650 C in a carburizing H{sub 2}-CO-H{sub 2}O-gas with a carbon activity of a{sub c} {much_gt} 1. The iron-nickel-chromium alloys suffered severe metal dusting after a very short test period. Nickel base alloys were generally less susceptible to metal dusting than iron-base alloys. However, their corrosion behavior was found to depend sensitively on the chromium concentration of the respective alloys. Alloys like alloy 600H, with a chromium concentration of only 16%, suffered wastage rates which were similar to those of the more resistant iron-base alloys. Nickel-base alloys with chromium concentrations of 25% and above, on the other hand, showed no significant evidence of metal dusting even after 10,000 hours of exposure. It was found that these alloys are protected against metal dusting by the formation of a dense, self-healing chromia scale, which prevents the penetration of carbon into the base metal.

  10. Nickel base alloy. [for gas turbine engine stator vanes

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Waters, W. J. (Inventor)

    1977-01-01

    A nickel base superalloy for use at temperatures of 2000 F (1095 C) to 2200 F (1205 C) was developed for use as stator vane material in advanced gas turbine engines. The alloy has a nominal composition in weight percent of 16 tungsten, 7 aluminum, 1 molybdenum, 2 columbium, 0.3 zirconium, 0.2 carbon and the balance nickel.

  11. Fabrication of tungsten wire reinforced nickel-base alloy composites

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Toth, I. J.

    1974-01-01

    Fabrication methods for tungsten fiber reinforced nickel-base superalloy composites were investigated. Three matrix alloys in pre-alloyed powder or rolled sheet form were evaluated in terms of fabricability into composite monotape and multi-ply forms. The utility of monotapes for fabricating more complex shapes was demonstrated. Preliminary 1093C (2000F) stress rupture tests indicated that efficient utilization of fiber strength was achieved in composites fabricated by diffusion bonding processes. The fabrication of thermal fatigue specimens is also described.

  12. Stress corrosion crack tip microstructure in nickel-based alloys

    SciTech Connect

    Shei, S.A.; Yang, W.J.

    1994-04-01

    Stress corrosion cracking behavior of several nickel-base alloys in high temperature caustic environments has been evaluated. The crack tip and fracture surfaces were examined using Auger/ESCA and Analytical Electron Microscopy (AEM) to determine the near crack tip microstructure and microchemistry. Results showed formation of chromium-rich oxides at or near the crack tip and nickel-rich de-alloying layers away from the crack tip. The stress corrosion resistance of different nickel-base alloys in caustic may be explained by the preferential oxidation and dissolution of different alloying elements at the crack tip. Alloy 600 (UNS N06600) shows good general corrosion and intergranular attack resistance in caustic because of its high nickel content. Thermally treated Alloy 690 (UNS N06690) and Alloy 600 provide good stress corrosion cracking resistance because of high chromium contents along grain boundaries. Alloy 625 (UNS N06625) does not show as good stress corrosion cracking resistance as Alloy 690 or Alloy 600 because of its high molybdenum content.

  13. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  14. Permeability of hydrogen isotopes through nickel-based alloys

    SciTech Connect

    Edge, E.M.; Mitchell, D.J.

    1983-04-01

    Permeabilities and diffusivities of deuterium in several nickel-based alloys were measured in this investigation. Measurements were made by the gas-phase breakthrough technique in the temperature range 200 to 450/sup 0/C with applied pressures ranging from 1 to 100 kPa. The results were extrapolated to predict the permeabilities (K) of the alloys at room temperature. The alloy with the smallest deuterium permeability is Carpenter 49, for which K = 4.3 x 10/sup -18/ mol s/sup -1/ m/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The permeability of deuterium in Kovar or Ceramvar is about 80% greater than that for Carpenter 49. Premeabilities of Inconel 625, Inconel 718, Inconel 750 and Monel K-500 are all equal to about 5 x 10/sup -17/ mol m/sup -1/ s/sup -1/ Pa/sup -//sup 1/2/ at 22/sup 0/C. The validity (from a statistical standpoint) of the extrapolation of the permeabilities to room temperature is considered in detail. Published permeabilities of stainless steels and nickel-iron alloys are also reviewed. The greatest differences in permeabilities among the nickel-based alloys appear to be associated with the tendency for some alloys to form protective oxide layers. Permeabilities of deuterium through laminates containing copper are smaller than for any of the iron-nickel alloys.

  15. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1983-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  16. Attack polish for nickel-base alloys and stainless steels

    DOEpatents

    Not Available

    1980-05-28

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels is described. The chemical attack polich comprises FeNO/sub 3/, concentrated CH/sub 3/COOH, concentrated H/sub 2/SO/sub 4/ and H/sub 2/O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  17. Method of polishing nickel-base alloys and stainless steels

    DOEpatents

    Steeves, Arthur F.; Buono, Donald P.

    1981-01-01

    A chemical attack polish and polishing procedure for use on metal surfaces such as nickel base alloys and stainless steels. The chemical attack polish comprises Fe(NO.sub.3).sub.3, concentrated CH.sub.3 COOH, concentrated H.sub.2 SO.sub.4 and H.sub.2 O. The polishing procedure includes saturating a polishing cloth with the chemical attack polish and submicron abrasive particles and buffing the metal surface.

  18. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, John E.

    1998-01-01

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0-20Fe, 10-30Cr, 2-12Mo, 6 max. Nb, 0.05-3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01-0.08C, less than 0.2N, 0.1 max. 0, bal. Ni.

  19. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  20. Surface modification of nickel based alloys for improved oxidation resistance

    SciTech Connect

    Jablonski, Paul D.; Alman, David E.

    2005-02-01

    The present research is aimed at the evaluation of a surface modification treatment to enhance the high temperature stability of nickel-base superalloys. A low Coefficient Thermal Expansion (CTE ~12.5x10-6/°C) alloy based on the composition (in weight %) of Ni-22Mo-12.5Cr was produced by Vacuum Induction Melting and Vacuum Arc Melting and reduced to sheet by conventional thermal-mechanical processing. A surface treatment was devised to enhance the oxidation resistance of the alloys at high temperature. Oxidation tests (in dry and wet air; treated and untreated) were conducted 800°C to evaluate the oxidation resistance of the alloys. The results were compared to the behavior of Haynes 230 (Ni-22Cr) in the treated and untreated conditions. The treatment was not very effective for Haynes 230, as this alloy had similar oxidation behavior in both the treated and untreated conditions. However, the treatment had a significant effect on the behavior of the low CTE alloy. At 800°C, the untreated Ni-12.5Cr alloy was 5 times less oxidation resistant than Haynes 230. However, in the treated condition, the Ni-12.5Cr alloy had comparable oxidation resistance to the Haynes 230 alloy.

  1. Permeation characteristics of some iron and nickel based alloys

    SciTech Connect

    Mitchell, D.J.; Edge, E.M.

    1985-06-15

    The permeation characteristics of deuterium in several iron and nickel based alloys were measured by the gas phase breakthrough technique in the temperature range 100 to 500 /sup 0/C with applied pressures ranging from 10 Pa to 100 kPa. The restriction of the gas flux imposed by surface oxides was modeled in order to evaluate the effects of surface oxide retardation of the gas flux on the effective values of the deuterium permeabilities and diffusivities in the alloys. The most permeable alloys were 430 and 431 stainless steels. The next most permeable alloy was Monel K-500, which exceeded the permeability of pure Ni by more than a factor of five at room temperature. The alloys with permeabilities less than pure Ni were, in order of decreasing permeability: the Inconels 625, 718, and 750, the Fe-Ni-Co glass-sealing alloys Kovar and Ceramvar, and the 300-series stainless steels. Deuterium trapping within the alloys appeared to influence the values of bulk diffusivities, which were not correlated with either the permeabilities or the chemical compositions of the alloys.

  2. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  3. Elevated temperature fretting fatigue of nickel based alloys

    NASA Astrophysics Data System (ADS)

    Gean, Matthew C.

    This document details the high temperature fretting fatigue of high temperature nickel based alloys common to turbine disk and blade applications. The research consists of three area of focus: Experiments are conducted to determine quantitatively the fretting fatigue lives of advanced nickel based alloys; Analytical tools are developed and used to investigate the fretting fatigue response of the material; Fractographic analysis of the experimental results is used to improve the analytical models employed in the analysis of the experiments. Sixty three fretting fatigue experiments were conducted at 649 °C using a polycrystalline Nickel specimen in contact with directionally solidified and single crystal Nickel pads. Various influences on the fretting fatigue life are investigated. Shot peened Rene' 95 had better fretting fatigue life compared to shot peened Rene' 88. Shot peening produced a 2x increase in life for Rene' 95, but only a marginal improvement in the fretting fatigue life for Rene' 88. Minor cycles in variable amplitude loading produces significant damage to the specimen. Addition of occasional overpeaks in load produces improvements in fretting fatigue life. Contact tractions and stresses are obtained through a variety of available tools. The contact tractions can be efficiently obtained for limited geometries, while FEM can provide the contact tractions for a broader class of problems, but with the cost of increased CPU requirements. Similarly, the subsurface contact stresses can be obtained using the contact tractions as a boundary condition with either a semi-analytical FFT method or FEM. It is found that to calculate contact stresses the FFT was only marginally faster than FEM. The experimental results are combined with the analysis to produce tools that are used to design against fretting fatigue. Fractographic analysis of the fracture surface indicates the nature of the fretting fatigue crack behavior. Interrupted tests were performed to analyze

  4. Aqueous electrochemistry of precipitation-hardened nickel base alloys

    SciTech Connect

    Hosoya, K.; Ballinger, R.; Prybylowski, J.; Hwang, I.S. )

    1990-11-01

    An investigation has been conducted to explore the importance of local crack tip electrochemical processes in precipitation-hardened Ni-Cr-Fe alloys driven by galvanic couples between grain boundary precipitates and the local matrix. The electrochemical behavior of {gamma}{prime} (Ni{sub 3}(Al,Ti)) has been determined as a function of titanium concentration, temperature, and solution pH. The electrochemical behavior of Ni-Cr-Fe solid solution alloys has been investigated as a function of chromium content for a series of 10 Fe-variable Cr (6--18%)-balance Ni alloys, temperature, and pH. The investigation was conducted in neutral and pH3 solutions over the temperature range 25--300{degree}C. The results of the investigation show that the electrochemical behavior of these systems is a strong function of temperature and composition. This is especially true for the {gamma}{prime} (Ni{sub 3}(Al,Ti)) system where a transition from active/passive behavior to purely active behavior and back again occurs over a narrow temperature range near 100{degree}C. Behavior of this system was also found to be a strong function of titanium concentration. In all cases, the Ni{sub 3}(Al,Ti) phase was active with respect to the matrix. The peak in activity near 100{degree}C correlates well with accelerated crack growth in this temperature range, observed in nickel-base alloy X-750 heat treated to precipitate {gamma}{prime} on the grain boundaries. 20 refs., 23 figs., 3 tabs.

  5. HIP clad nickel base Alloy 625 for deep sour wells

    SciTech Connect

    Uhl, W.K.; Pendley, M.R.

    1984-05-01

    The hot isostatic pressing (HIP) process was used to clad nickel base Alloy 625 to AISI 4130 low alloy steel. The performance of the HIP clad material in the corrosive environment characteristic of deep, sour oil and gas wells was evaluated in laboratory tests. Included in the test program were NACE TM-01-77 sulfide stress cracking tests, chloride stress corrosion cracking tests in boiling MgCl /SUB 2'/ , and pitting and crevice corrosion tests. The HIP clad 625 performed excellently, displaying essentially the same corrosion resistance as wrought 625. Specifically the HIP clad 625 resisted sulfide stress cracking at applied stresses as high as 120% of yield strength and resisted chloride stress corrosion cracking at stresses exceeding 100% of yield. The HIP clad 625 also displayed immunity to pitting and crevice corrosion, with corrosion rates of <0.025 mm/y (1 mil/y). The 4130 base metal, however, was attacked severly in all tests. SEM/EDX analysis of the 625/4130 interface demonstrated that dilution of the cladding by the base metal was essentially eliminated.

  6. Coarsening in high volume fraction nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.

    1990-01-01

    The coarsening behavior of the gamma-prime precipitate has been examined in high volume fraction nickel-base alloys aged at elevated temperatures for times of up to 5000 h. Although the cube rate law was observed during coarsening, none of the presently available coarsening theories showed complete agreement with the experimental particle size distributions (PSDs). These discrepancies were thought to be due to elastic coherency strains which were not considered by the available models. Increasing the Mo content significantly influenced the PSDs and decreased the coarsening rate of the gamma-prime cubes, as a result of increasing the magnitude of the lattice mismatch. After extended aging times, the gamma-prime cubes underwent massive coalescence into plates at a rate which was much faster than the cuboidal coarsening rate. Once the gamma-prime plates were formed, further coarsening was not observed, and this stabilization of the microstructure was attributed to the development of dislocation networks at the gamma-gamma-prime interfaces.

  7. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy Assessed

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2002-01-01

    Gas turbine engines for future subsonic aircraft will require nickel-base disk alloys that can be used at temperatures in excess of 1300 F. Smaller turbine engines, with higher rotational speeds, also require disk alloys with high strength. To address these challenges, NASA funded a series of disk programs in the 1990's. Under these initiatives, Honeywell and Allison focused their attention on Alloy 10, a high-strength, nickel-base disk alloy developed by Honeywell for application in the small turbine engines used in regional jet aircraft. Since tensile, creep, and fatigue properties are strongly influenced by alloy grain size, the effect of heat treatment on grain size and the attendant properties were studied in detail. It was observed that a fine grain microstructure offered the best tensile and fatigue properties, whereas a coarse grain microstructure offered the best creep resistance at high temperatures. Therefore, a disk with a dual microstructure, consisting of a fine-grained bore and a coarse-grained rim, should have a high potential for optimal performance. Under NASA's Ultra-Safe Propulsion Project and Ultra-Efficient Engine Technology (UEET) Program, a disk program was initiated at the NASA Glenn Research Center to assess the feasibility of using Alloy 10 to produce a dual-microstructure disk. The objectives of this program were twofold. First, existing dual-microstructure heat treatment (DMHT) technology would be applied and refined as necessary for Alloy 10 to yield the desired grain structure in full-scale forgings appropriate for use in regional gas turbine engines. Second, key mechanical properties from the bore and rim of a DMHT Alloy 10 disk would be measured and compared with conventional heat treatments to assess the benefits of DMHT technology. At Wyman Gordon and Honeywell, an active-cooling DMHT process was used to convert four full-scale Alloy 10 disks to a dual-grain microstructure. The resulting microstructures are illustrated in the

  8. Near-Threshold Fatigue Crack Growth Behavior of Fine-Grain Nickel-Based Alloys

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Piascik, Robert S.

    2003-01-01

    Constant-Kmax fatigue crack growth tests were performed on two finegrain nickel-base alloys Inconel 718 (DA) and Ren 95 to determine if these alloys exhibit near-threshold time-dependent crack growth behavior observed for fine-grain aluminum alloys in room-temperature laboratory air. Test results showed that increases in K(sub max) values resulted in increased crack growth rates, but no evidence of time-dependent crack growth was observed for either nickel-base alloy at room temperature.

  9. Fracture behavior of nickel-based alloys in water

    SciTech Connect

    Mills, W.J.; Brown, C.M.

    1999-08-01

    The cracking resistance of Alloy 600, Alloy 690 and their welds, EN82H and EN52, was characterized by conducting J{sub IC} tests in air and hydrogenated water. All test materials displayed excellent toughness in air and high temperature water, but Alloy 690 and the two welds were severely embrittled in low temperature water. In 54 C water with 150 cc H{sub 2}/kg H{sub 2}O, J{sub IC} values were typically 70% to 95% lower than their air counterparts. The toughness degradation was associated with a fracture mechanism transition from microvoid coalescence to intergranular fracture. Comparison of the cracking response in water with that for hydrogen-precharged specimens tested in air demonstrated that susceptibility to low temperature cracking is due to hydrogen embrittlement of grain boundaries. The effects of water temperature, hydrogen content and loading rate on low temperature crack propagation were studied. In addition, testing of specimens containing natural weld defects and as-machined notches was performed to determine if low temperature cracking can initiate at these features. Unlike the other materials, Alloy 600 is not susceptible to low temperature cracking as the toughness in 54 C water remained high and a microvoid coalescence mechanism was operative in both air and water.

  10. Stack linings in high-alloy stainless steels and nickel-base alloys

    SciTech Connect

    Herda, W.R.; Grossmann, G.K.

    1999-11-01

    In power stations as well as in waste incineration plants, the stack is the last component in which residues and condensates can separate from the treated flue gas. The process of condensate formation due to temperatures below dewpoint, and the extreme corrosiveness of specific condensates are discussed in detail. Stack lining, using an appropriately corrosion-resistant metallic material, has proven to be an effective means of corrosion protection. Selected high-alloy stainless steels and nickel-base alloys, particularly well suited to this application, are introduced. The various techniques available for fitting such highly corrosion resistant linings are described in selected case histories.

  11. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  12. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOEpatents

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  13. Thermogravimetric study of reduction of oxides present in oxidized nickel-base alloy powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1976-01-01

    Carbon, hydrogen, and hydrogen plus carbon reduction of three oxidized nickel-base alloy powders (a solid solution strengthened alloy both with and without the gamma prime formers aluminum and titanium and the solid solution strengthened alloy NiCrAlY) were evaluated by thermogravimetry. Hydrogen and hydrogen plus carbon were completely effective in reducing an alloy containing chromium, columbium, tantalum, molybdenum, and tungsten. However, with aluminum and titanium present the reduction was limited to a weight loss of about 81 percent. Carbon alone was not effective in reducing any of the alloys, and none of the reducing conditions were effective for use with NiCrAlY.

  14. The strengthening mechanism of a nickel-based alloy after laser shock processing at high temperatures

    NASA Astrophysics Data System (ADS)

    Li, Yinghong; Zhou, Liucheng; He, Weifeng; He, Guangyu; Wang, Xuede; Nie, Xiangfan; Wang, Bo; Luo, Sihai; Li, Yuqin

    2013-10-01

    We investigated the strengthening mechanism of laser shock processing (LSP) at high temperatures in the K417 nickel-based alloy. Using a laser-induced shock wave, residual compressive stresses and nanocrystals with a length of 30-200 nm and a thickness of 1 μm are produced on the surface of the nickel-based alloy K417. When the K417 alloy is subjected to heat treatment at 900 °C after LSP, most of the residual compressive stress relaxes while the microhardness retains good thermal stability; the nanocrystalline surface has not obviously grown after the 900 °C per 10 h heat treatment, which shows a comparatively good thermal stability. There are several reasons for the good thermal stability of the nanocrystalline surface, such as the low value of cold hardening of LSP, extreme high-density defects and the grain boundary pinning of an impure element. The results of the vibration fatigue experiments show that the fatigue strength of K417 alloy is enhanced and improved from 110 to 285 MPa after LSP. After the 900 °C per 10 h heat treatment, the fatigue strength is 225 MPa the heat treatment has not significantly reduced the reinforcement effect. The feature of the LSP strengthening mechanism of nickel-based alloy at a high temperature is the co-working effect of the nanocrystalline surface and the residual compressive stress after thermal relaxation.

  15. Dendritic growth and structure of undercooled nickel base alloys

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Shiohara, Y.

    1988-01-01

    The principal objectives of this overall investigation are to: study means for obtaining high undercooling in levitation melted droplets, and study structures produced upon the solidification of these undercooled specimens. Thermal measurements are made of the undercooling, and of the rapid recalescence, to develop an understanding of the solidification mechanism. Comparison of results is made with the modeling studies. Characterization and metallographic work is done to gain an understanding of the relationship between rapid solidification variables and the structures so produced. In ground based work to date, solidification of undercooled Ni-25 wt percent Sn alloy was observed by high-speed cinematography and the results compared with optical temperature measurements. Also in ground based work, high-speed optical temperature measurements were made of the solidification behavior of levitated metal samples within a transparent glass medium. Two undercooled Ni-Sn alloys were examined. Measurements were carried out on samples at undercoolings up to 330 K. Microstructures of samples produced in ground based work were determined by optical metallography and by SEM, and microsegregation by electron microprobe measurements. A series of flight tests were planned to conduct experiments similar to the ground based experiments. The Space Shuttle Columbia carried an alloy undercooled experiment in the STS 61-C mission in January 1986. A sample of Ni-32.5 wt percent Sn eutectic was melted and solidified under microgravity conditions.

  16. Dual Microstructure Heat Treatment of a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2001-01-01

    Existing Dual Microstructure Heat Treat (DMHT) technology was successfully applied to Alloy 10, a high strength, nickel-base disk alloy, to produce a disk with a fine grain bore and coarse grain rim. Specimens were extracted from the DMHT disk and tested in tension, creep, fatigue, and crack growth using conditions pertinent to disk applications. These data were then compared with data from "traditional" subsolvus and supersolvus heat treatments for Alloy 10. The results showed the DMHT disk to have a high strength, fatigue resistant bore comparable to that of subsolvus Alloy 10. Further, creep resistance of the DMHT rim was comparable to that of supersolvus Alloy 10. Crack growth resistance in the DMHT rim, while better than that for subsolvus, was inferior to that of supersolvus Alloy 10. The slow cool at the end of the DMHT conversion and/or the subsolvus resolution step are thought to be responsible for degrading rim DMHT crack growth resistance.

  17. Assessment of special stainless steels and nickel-base alloys for use under offshore conditions

    SciTech Connect

    Jasner, M.R.; Herda, W.R.

    1994-12-31

    Major offshore installations are designed for a 25-years` life span and more. To predict the corrosion behavior of various alloys for such a long period results from accelerated laboratory tests have to be verified by suitable field tests. The results from laboratory tests and exposure to natural seawater show that nickel-based alloys such as alloy 59 (UNS N06059) and alloy 31 (UNS N08031) can be employed to most severe conditions. For general applications 6Mo stainless steels with 25% Ni such as alloy 926 (UNS N08926) may be used. If higher strength is required alloy 24 (18 Ni-24.5 Cr-6.2 Mn-4.3 Mo-0.6 Cu-0.45 Mn) is the preferred material.

  18. Corrosion behavior of iron and nickel base alloys under solid oxide fuel cell exposure conditions

    SciTech Connect

    Ziomek-Moroz, M.; Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.

    2006-03-01

    Topography and phase composition of the scales formed on commercial ferritic stainless steels and experimental low CTE nickel-based alloys were studied in atmospheres simulating solid oxide fuel cell (SOFC) environments. The materials were studied under dual environment conditions with air on one side of the sample and carbon monoxide on the other side at 750°C. Surface characterization techniques, such as scanning electron microscopy and X-ray diffraction analysis were used in this study.

  19. Ignition characteristics of the nickel-based alloy UNS N07718 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billiard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1989-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel based alloy UNS N07718. Ignition of the alloy was achieved by heating the top. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition, endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature. It appeared that the source of some endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  20. Evolution of precipitate in nickel-base alloy 718 irradiated with argon ions at elevated temperature

    NASA Astrophysics Data System (ADS)

    Jin, Shuoxue; Luo, Fengfeng; Ma, Shuli; Chen, Jihong; Li, Tiecheng; Tang, Rui; Guo, Liping

    2013-07-01

    Alloy 718 is a nickel-base superalloy whose strength derives from γ'(Ni3(Al,Ti)) and γ″(Ni3Nb) precipitates. The evolution of the precipitates in alloy 718 irradiated with argon ions at elevated temperature were examined via transmission electron microscopy. Selected-area electron diffraction indicated superlattice spots disappeared after argon ion irradiation, which showing that the ordered structure of the γ' and γ″ precipitates became disordered. The size of the precipitates became smaller with the irradiation dose increasing at 290 °C.

  1. Effects of neutron irradiation on deformation behavior of nickel-base fastener alloys

    SciTech Connect

    Bajaj, R.; Mills, W.J.; Kammenzind, B.F.; Burke, M.G.

    1999-07-01

    This paper presents the effects of neutron irradiation on the fracture behavior and deformation microstructure of high-strength nickel-base alloy fastener materials, Alloy X-750 and Alloy 625. Alloy X-750 in the HTH condition, and Alloy 625 in the direct aged condition were irradiated to a fluence of 2.4x10{sup 20} n/cm{sup 2} at 264 C in the Advanced Test Reactor. Deformation structures at low strains were examined. It was previously shown that Alloy X-750 undergoes hardening, a significant degradation in ductility and an increase in intergranular fracture. In contrast, Alloy 625 had shown softening with a concomitant increase in ductility and transgranular failure after irradiation. The deformation microstructures of the two alloys were also different. Alloy X-750 deformed by a planar slip mechanism with fine microcracks forming at the intersections of slip bands with grain boundaries. Alloy 625 showed much more homogeneous deformation with fine, closely spaced slip bands and an absence of microcracks. The mechanism(s) of irradiation assisted stress corrosion cracking (IASCC) are discussed.

  2. High-temperature microstructural stability in iron- and nickel-base alloys from rapid solidification processing

    SciTech Connect

    Flinn, J.E. ); Bae, J.C.; Kelly, T.F. )

    1991-08-01

    The properties and performance of metallic alloys for heat resistant applications depend on the fineness, homogeneity, and stability of their microstructures, particularly after high temperature exposures. Potential advantages of rapid solidification processing (RSP) of alloys for such applications are the homogeneity in composition and fine microstructural features derived from the nature of the RSP process. The main RSP product form is powder, is which obtained by atomizing a narrow melt stream into fine molten droplets. Rapid cooling of the droplets is typically achieved through convective cooling with noble gases such as argon or helium. Consolidation of RSP powder, either using near-net-shape methods or into forms that can be converted to final product shapes, requires exposures to fairly high temperatures, usually 900 to 1200{degrees}C for iron- and nickel-base alloys. Full consolidation, i.e., complete densification with accompanying particle bonding, usually requires pressure or stress assistance. Consolidation, as well as any subsequent thermal-mechanical processing, may affect the chemical homogeneity and fine microstructures. A study has been performed on a series of RSP iron- and nickel-base alloys. The results of microstructure examinations and mechanical properties tests of the consolidated powders, and their correlation, will be covered in this paper. 14 refs., 10 figs., 1 tab.

  3. The corrosion performance of nickel-based alloys in a reverse osmosis plant utilizing seawater

    SciTech Connect

    Al-Hashem, A.; Carew, J.; Al-Odwani, A.

    1998-12-31

    Four nickel-based alloys, UNS N06625, UNS N08825, UNS N10276, and UNS N05500, were evaluated in terms of their corrosion performance in a seawater reverse osmosis plant using the electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) and linear polarization resistance (LPR) measurements. Slight changes in the EIS spectra were observed for UNS N06625, UNSN10276 and UNS N05500 at low frequencies. However, UNS N08825 EIS spectra exhibited more changes than the other alloys at low frequencies. The OCP of UNS N10276 was more noble than the other alloys under the same conditions. The LPR measurements indicated that UNS N10276 and UNS N05500 exhibited lower corrosion rates than UNS NO6625 and UNS N08825.

  4. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Li, D. H.; Lui, R. D.; Huang, H. F.; Li, J. J.; Lei, G. H.; Huang, Q.; Bao, L. M.; Yan, L.; Zhou, X. T.; Zhu, Z. Y.

    2016-06-01

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  5. Laser-Aided Direct Writing of Nickel-Based Single-Crystal Super Alloy (N5)

    NASA Astrophysics Data System (ADS)

    Wang, Yichen; Choi, Jeongyoung; Mazumder, Jyoti

    2016-09-01

    This communication reports direct writing of René N5 nickel-based Super alloy. N5 powder was deposited on (100) single-crystal substrate of René N5, for epitaxial growth, using laser and induction heating with a specially designed closed-loop thermal control system. A thin wall (1 mm width) of René N5 single crystal of 22.1 mm (including 3 mm SX substrate) in height was successfully deposited within 100 layers. SEM and EBSD characterized the single-crystal nature of the deposit.

  6. Interface reaction between nickel-base self-fluxing alloy coating and steel substrate

    NASA Astrophysics Data System (ADS)

    Otsubo, F.; Era, H.; Kishitake, K.

    2000-06-01

    The interface reaction between a nickel-base, self-fluxing alloy coating and a steel substrate has been investigated to examine the formation of “pores,” which are observed along the interface of used boiler tubes. It was found that lumpy precipitates form along the interface instead of pores after heating at high temperatures and that the precipitates are of Fe2B boride. The adhesion strength of the coating is not decreased by the formation of Fe2B precipitates along the interface because of the increase of the adhesion due to interdiffusion.

  7. Thermal and mechanical treatments for nickel and some nickel-base alloys: Effects on mechanical properties

    NASA Technical Reports Server (NTRS)

    Hall, A. M.; Beuhring, V. F.

    1972-01-01

    This report deals with heat treating and working nickel and nickel-base alloys, and with the effects of these operations on the mechanical properties of the materials. The subjects covered are annealing, solution treating, stress relieving, stress equalizing, age hardening, hot working, cold working, combinations of working and heat treating (often referred to as thermomechanical treating), and properties of the materials at various temperatures. The equipment and procedures used in working the materials are discussed, along with the common problems that may be encountered and the precautions and corrective measures that are available.

  8. Evaluation of commercially available coating techniques for application of thermographic phosphor to nickel-based alloys

    SciTech Connect

    Beshears, D.L.; Bridges, M.J.; Harris, L.A.

    1986-04-01

    Remote temperature measurements using laser-induced fluorescence of phosphors has been established for temperatures ranging from room temperature to 1200/sup 0/C. This remote surface thermometry requires that the phosphors be firmly bonded to the surface of interest. The intent of this paper is to take a quick look at several bonding techniques used to bond the thermographic phosphor yttrium oxide doped with europium (Y/sub 2/O/sub 3/:Eu) to nickel-based alloy. The evaluation of the samples were performed after the samples had been subjected to extreme heat and, in some cases, mechanically deformed.

  9. Laser rapid manufacturing of special pattern Inco 718 nickel-based alloy component

    NASA Astrophysics Data System (ADS)

    Zhong, Minlin; Yang, Lin; Liu, Wenjin; Huang, Ting; He, Jingjiang

    2005-01-01

    Laser rapid manufacturing based on laser cladding is a novel layer additive manufacturing technology, which can be well used for producing specific material, geometry and properties components normally unavailable or very costly by conventional methods. This paper presents a project research work on laser rapid manufacturing of special pattern Inco 718 nickel based alloy component with special pattern for aeronautical application. The required pattern Inco 718 nickel based alloy component was manufactured directly by laser deposition with optimized parameters: laser power: 800W, laser beam diameter: 0.8 mm, scanning speed: 0.5 m/min, powder feeding rate: 3g/min; The basic microstructure of laser deposited sample is directionally solidified columnar structure, with metallurgical bound to the substrate. Laser deposited component has good metallurgical and compositional and hardness homogeneity. The average hardness is about Hv0.2 440. The tensile strength of the laser deposited Inco 718 sample is respectively 121 and 116 kgf/mm2 at room temperature and at 650°C, which are a little bit less than the data of forged Inco 718 plate 142 and 127 kgf/mm2 due to its directional solidified columnar structure perpendicular to the tensile test force.

  10. The Effect of Solution Heat Treatment on an Advanced Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Kantzos, P. T.

    2004-01-01

    Five heat treat options for an advanced nickel-base disk alloy, LSHR, have been investigated. These included two conventional solution heat treat cycles, subsolvus/oil quench and supersolvus/fan cool, which yield fine grain and coarse grain microstructure disks respectively, as well as three advanced dual microstructure heat treat (DMHT) options. The DMHT options produce disks with a fine grain bore and a coarse grain rim. Based on an overall evaluation of the mechanical property data, it was evident that the three DMHT options achieved a desirable balance of properties in comparison to the conventional solution heat treatments for the LSHR alloy. However, one of the DMHT options, SUB/DMHT, produced the best set of properties, largely based on dwell crack growth data. Further evaluation of the SUB/DMHT option in spin pit experiments on a generic disk shape demonstrated the advantages and reliability of a dual grain structure at the component level.

  11. Comparison of joining processes for Haynes 230 nickel based super alloy

    NASA Astrophysics Data System (ADS)

    Williston, David Hugh

    Haynes 230 is a nickel based, solid-solution strengthened alloy that is used for high-temperature applications in the aero-engine and power generation industries. The alloy composition is balanced to avoid precipitation of undesirable topologically closed-packed (TCP) intermetallic phases, such as Sigma, Mu, or Laves-type, that are detrimental to mechanical and corrosion properties. This material is currently being used for the NASA's J2X upper stage rocket nozzle extension. Current fabrication procedures use fusion welding processes to join blanks that are subsequently formed. Cracks have been noted to occur in the fusion welded region during the forming operations. Use of solid state joining processes, such as friction stir welding are being proposed to eliminate the fusion weld cracks. Of interest is a modified friction stir welding process called thermal stir welding. Three welding process: Gas Metal Arc Welding (GMAW), Electron Beam Welding (EBW), and Thermal Stir Welding (TSWing) are compared in this study.

  12. Hot Corrosion of Nickel-Base Alloys in Biomass-Derived Fuel Simulated Atmosphere

    SciTech Connect

    Leyens, C.; Pint, B.A.; Wright, I.G.

    1999-02-28

    Biomass fuels are considered to be a promising renewable source of energy. However, impurities present in the fuel may cause corrosion problems with the materials used in the hot sections of gas turbines and only limited data are available so far. As part of the Advanced Turbine Systems Program initiated by the U.S. Department of Energy, the present study provides initial data on the hot corrosion resistance of different nickel-base alloys against sodium sulfate-induced corrosion as a baseline, and against salt compositions simulating biomass-derived fuel deposits. Single crystal nickel-superalloy Rene N5, a cast NiCrAlY alloy, a NiCoCrAlY alloy representing industrially used overlay compositions, and a model {beta}NiAl+Hf alloy were tested in 1h thermal cycles at 950 C with different salt coatings deposited onto the surfaces. Whereas the NiCoCrAlY alloy exhibited reasonable resistance against pure sodium sulfate deposits, the NiCrAiY alloy and Rene N5 were attacked severely. Although considered to be an ideal alumina former in air and oxygen at higher temperatures, {beta}NiAl+Hf also suffered from rapid corrosion attack at 950 C when coated with sodium sulfate. The higher level of potassium present in biomass fuels compared with conventional fuels was addressed by testing a NiCoCrAlY alloy coated with salts of different K/Na atomic ratios. Starting at zero Na, the corrosion rate increased considerably when sodium was added to potassium sulfate. In an intermediate region the corrosion rate was initially insensitive to the K/Na ratio but accelerated when very Na-rich compositions were deposited. The key driver for corrosion of the NiCoCrAlY alloy was sodium sulfate rather than potassium sulfate, and no simple additive or synergistic effect of combining sodium and potassium was found.

  13. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  14. Infrared repair brazing of 403 stainless steel with a nickel-based braze alloy

    NASA Astrophysics Data System (ADS)

    Shiue, R. K.; Wu, S. K.; Hung, C. M.

    2002-06-01

    Martensitic stainless steel (403SS) is extensively used for intermediate and low-pressure steam turbine blades in fossil-fuel power plants. The purpose of this investigation is to study the repair of shallow cracks on the surface of 403SS steam turbine blades by infrared repair brazing using rapid thermal cycles. A nickel-based braze alloy (NICROBRAZ LM) is used as filler metal. The braze alloy after brazing is primarily comprised of borides and an FeNi3 matrix with different amounts of alloying elements, especially B and Si. As the brazing temperature increases, more Fe atoms are dissolved into the molten braze. Some boron atoms diffuse into the 403SS substrate primarily via grain boundary diffusion and form B-Cr-Fe intermetallic precipitates along the grain boundaries. The LM filler metal demonstrates better performance than 403SS in both microhardness and wear tests. It is also noted that specimens brazed in a vacuum have less porosity than those brazed in an Ar atmosphere. The shear strength of the joint is around 300 MPa except for specimens brazed in short time periods, e.g., 5 seconds in Ar flow and 30 seconds in vacuum. The fractographs mainly consist of brittle fractures and no ductile dimple fractures observed in the scanning electron microscope (SEM) examination.

  15. Oxidation and thermal fatigue of coated and uncoated NX-188 nickel-base alloy in a high velocity gas stream

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Young, S. G.

    1972-01-01

    A cast nickel-base superalloy, NX-188, coated and uncoated, was tested in a high-velocity gas stream for resistance to oxidation and thermal fatigue by cycling between room temperature and 980, 1040, and 1090 C. Contrary to the behavior of more conventional nickel-base alloys, uncoated NX-188 exhibited the greatest weight loss at the lowest test temperature. In general, on the basis of weight change and metallographic observations a coating consisting of vapor-deposited Fe-Cr-Al-Y over a chromized substrate exhibited the best overall performance in resistance to oxidation and thermal fatigue.

  16. Low-cycle fatigue behavior of a nickel-based alloy under combined bending/tension loading

    SciTech Connect

    Julien, D.; Bui-Quoc, T.; Bernard, M.; Saad, N.R.; Nguyen, H.L.

    1999-02-01

    In this paper, the effect of a combined bending/tension loading on the fatigue resistance and on the fatigue crack growth characteristics of a nickel-based alloy at room temperature is studied. For this purpose, a device was specifically designed so that it can be mounted onto a servohydraulic push-pull testing machine. With the device, a simultaneous displacement and rotation of the specimen extremities generate a combined bending/axial stress; the ratio between the bending stress and the axial stress may be specified by adjusting the eccentricity between the specimen axis and the load axis. Stress-controlled fatigue tests were carried out on plate specimens under bending/tension loading with a surface stress ratio of {minus}0.52 (ratio between the maximum cyclic stress on the back face and that on the front face of the specimen). During each test, the fatigue crack length was monitored using two traveling video cameras. The experimental results obtained under bending/tension loading have been analyzed in connection with the data obtained under pure tension loading. In particular, the fatigue crack propagation rate expressed in terms of the stress intensity factor of a crack under combined loading was examined.

  17. Corrosion behavior of stainless steel and nickel-base alloys in molten carbonate

    SciTech Connect

    Vossen, J.P.T.; Plomp, L.; Rietveld, G.; Wit, J.H.W. de

    1995-10-01

    The corrosion behavior of five commercially available alloys (AISI 316L, AISI 310S, Inconel 601, Thermax 4762, and Kanthal A1) in molten carbonate under reducing gas atmospheres was investigated with cyclic voltammetry and quasi-stationary polarization curve measurements. The reactions that proceed on these materials at distinct potentials could be deduced by comparison of the cyclic voltammograms and polarization curves with those of pure metals and model alloys. The shape of the polarization curves of all materials strongly depends on the preceding electrochemical treatment. A polarization curve recorded immediately after immersion of a sample resulted in a high anodic current. This implies that the passivation of the materials is poor. When a specimen was conditioned at {minus}1,060 mV for 10 h before recording the polarization curve, the anodic current diminished, which indicates passivation. This occurred for all materials except AISI 316L. A ranking of the corrosion properties was determined from polarization curves of samples that had been conditioned assuming the current densities to be representative. The resistance against corrosion of the alloys increases in the order: AISI 316Lnickel-base alloys.

  18. Effect of Alloy 625 Buffer Layer on Hardfacing of Modified 9Cr-1Mo Steel Using Nickel Base Hardfacing Alloy

    NASA Astrophysics Data System (ADS)

    Chakraborty, Gopa; Das, C. R.; Albert, S. K.; Bhaduri, A. K.; Murugesan, S.; Dasgupta, Arup

    2016-04-01

    Dashpot piston, made up of modified 9Cr-1Mo steel, is a part of diverse safety rod used for safe shutdown of a nuclear reactor. This component was hardfaced using nickel base AWS ER NiCr-B alloy and extensive cracking was experienced during direct deposition of this alloy on dashpot piston. Cracking reduced considerably and the component was successfully hardfaced by application of Inconel 625 as buffer layer prior to hardface deposition. Hence, a separate study was undertaken to investigate the role of buffer layer in reducing the cracking and on the microstructure of the hardfaced deposit. Results indicate that in the direct deposition of hardfacing alloy on modified 9Cr-1Mo steel, both heat-affected zone (HAZ) formed and the deposit layer are hard making the thickness of the hard layer formed equal to combined thickness of both HAZ and deposit. This hard layer is unable to absorb thermal stresses resulting in the cracking of the deposit. By providing a buffer layer of Alloy 625 followed by a post-weld heat treatment, HAZ formed in the modified 9Cr-1Mo steel is effectively tempered, and HAZ formed during the subsequent deposition of the hardfacing alloy over the Alloy 625 buffer layer is almost completely confined to Alloy 625, which does not harden. This reduces the cracking susceptibility of the deposit. Further, unlike in the case of direct deposition on modified 9Cr-1Mo steel, dilution of the deposit by Ni-base buffer layer does not alter the hardness of the deposit and desired hardness on the deposit surface could be achieved even with lower thickness of the deposit. This gives an option for reducing the recommended thickness of the deposit, which can also reduce the risk of cracking.

  19. Spectrophotometric studies and applications for the determination of yttrium in pure and in nickel base alloys.

    PubMed

    Amin, A S; Mohammed, T Y; Mousa, A A

    2003-09-01

    Yttrium reacts with 5-(4'-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (I), 5-(2'-bromophenylazo)-6-hydroxypyrimidine-2,4-dione (II), 5-(2',4'-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (III), 5-(4'-nitro-2',6'-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (IV), 5-(2'-methyl-4'-hydroxyphenylazo)-6-hydroxypyrimidine-2,4-dione (V) to form a dark pink complexes, having an absorption maximum at 610, 577, 596, 567 and 585 nm, respectively. The complex formation was completed spontaneously in theil buffer solution and the resulting complex was stable for at least 3 h after dilution. Under the optimum conditions employed, the molar absorptivities were found to be 1.60 x 10(4), 1.29 x 10(4), 1.96 x 10(4), 1.45 x 10(4) and 1.21 x 10(4) l mol(-1) cm(-1) and the molar ratios were (1:1) and (1:2) (M:L). The linear ranges were found within 95 microg of yttrium in 25 ml solution. One of the characteristics of the complex was its high tolerance for calcium and hence a method of separation and enrichment of microamounts of yttrium by using calcium oxalate precipitate was developed and applied to measure yttrium in nickel-base alloys. Interfering species and their elimination have been studied. The precision and recovery are both satisfactory.

  20. Anisotropic constitutive model for nickel base single crystal alloys: Development and finite element implementation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1986-01-01

    A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.

  1. Microstructural study of the nickel-base alloy WAZ-20 using qualitative and quantitative electron optical techniques

    NASA Technical Reports Server (NTRS)

    Young, S. G.

    1973-01-01

    The NASA nickel-base alloy WAZ-20 was analyzed by advanced metallographic techniques to qualitatively and quantitatively characterize its phases and stability. The as-cast alloy contained primary gamma-prime, a coarse gamma-gamma prime eutectic, a gamma-fine gamma prime matrix, and MC carbides. A specimen aged at 870 C for 1000 hours contained these same constituents and a few widely scattered high W particles. No detrimental phases (such as sigma or mu) were observed. Scanning electron microscope, light metallography, and replica electron microscope methods are compared. The value of quantitative electron microprobe techniques such as spot and area analysis is demonstrated.

  2. Analysis of thermoelectric properties of high-temperature complex alloys of nickel-base, iron-base and cobalt-base groups

    NASA Technical Reports Server (NTRS)

    Holanda, R.

    1984-01-01

    The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.

  3. High gas velocity oxidation and hot corrosion testing of oxide dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1975-01-01

    Several oxide dispersion strengthened (ODS) nickel-base alloys were tested in high velocity gases for cyclic oxidation resistance at temperatures to 1200 C and times to 500 hours and for hot corrosion resistance at 900 C for 200 hours. Nickel-chromium-aluminum ODS alloys were found to have superior resistance to oxidation and hot corrosion when compared to bare and coated nickel-chromium ODS alloys. The best of the alloys tested had compositions of nickel - 15.5 to 16 weight percent chromium with aluminum weight percents between 4.5 and 5.0. All of the nickel-chromium-aluminum ODS materials experienced small weight losses (less than 16 mg/sq cm).

  4. Plastic Behavior of a Nickel-Based Alloy under Monotonic-Tension and Low-Cycle-Fatigue Loading

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Wang, Yandong; Clausen, Bjorn; Li, Li; Liaw, Peter K; Ice, Gene E; Yang, Dr Ren; Choo, Hahn; Pike, Lee M; Klarstrom, Dwaine L

    2008-01-01

    The plasticity behavior of the annealed HASTELLOY C-22HSTM alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by the in-situ neutron-diffraction experiments at room temperature. Monotonic-tension and low-cycle-fatigue experiments were conducted to observe the plastic behavior of the alloy. The tension straining and cyclic-loading deformation were studied as a function of the stress. The plastic behaviors during the deformation are discussed in the light of the relationship between the stress and dislocation-density evolutions. The calculated dislocation-density evolutions within the alloys reflect the strain hardening and cyclic hardening/softening. Experimental lattice strains are compared to verify the hardening mechanism at the selected stress levels for tension and cyclic loadings. Combining with the calculations of the dislocation densities, the neutron-diffraction experiments give an evidence of the strain and cyclic hardening of the alloy.

  5. Elevated temperature creep-fatigue crack propagation in nickel-base alloys and 1 Cr-Mo-V steel

    NASA Astrophysics Data System (ADS)

    Nazmy, M.; Hoffelner, W.; Wüthrich, C.

    1988-04-01

    The crack growth behavior of several high temperature nickel-base alloys, under cyclic and static loading, is studied and reviewed. In the oxide dispersion strengthened (ODS) MA 6000 and MA 754 alloys, the high temperature crack propagation exhibited orientation dependence under cyclic as well as under static loading. The creep crack growth (CCG) behavior of cast nickel-base IN-738 and IN-939* superalloys at 850 °C could be characterized by the stress intensity factor, K 1. In the case of the alloy IN-901 at 500 °C and 600 °C, K 1 was found to be the relevant parameter to characterize the creep crack growth behavior. The energy rate line integral, C*, may be the appropriate loading parameter to describe the creep crack growth behavior of the nickel-iron base IN-800H alloy at 800 °C. The creep crack growth data of 1 Cr-Mo-V steel, with bainitic microstructure, at 550 °C could be correlated better by C * than by K 1.

  6. Effect of fast neutron irradiation on fatigue-crack growth behavior of three nickel-base alloys

    SciTech Connect

    James, L.A.

    1981-04-01

    Nickel-base alloys are often employed in reactor structural applications where high strength, resistance to corrosion, or swelling resistance are important considerations. In this study, fatigue-crack growth rate tests were conducted at 427/degree/C on Inconel 600, Inconel X-750, and Incoloy 800 irradiated in the Experimental Breeder Reactor II to total fluences ranging between 2.5 and 6.0*10/sup 22/ n/cm/sup 2/. Following irradiation, minor increases were noted in the crack growth rates of Inconel 600, minor decreases in the growth rates of Inconel X-750, and no irradiation effect in the cracking behavior of Incoloy 800. 14 refs.

  7. UNDERSTANDING THE MECHANISMS CONTROLLING ENVIRONMENTALLY-ASSISTED INTERGRANULAR CRACKING OF NICKEL-BASE ALLOYS

    SciTech Connect

    Gary S. Was

    2004-02-13

    Creep and IG cracking of nickel-base alloys depend principally on two factors--the deformation behavior and the effect of the environment. We have shown that both contribute to the observed degradation in primary water. The understanding of cracking does not lie wholly within the environmental effects arena, nor can it be explained only by intrinsic mechanical behavior. Rather, both processes contribute to the observed behavior in primary water. In this project, we had three objectives: (1) to verify that grain boundaries control deformation in Ni-16Cr-9Fe at 360 C, (2) to identify the environmental effect on IGSCC, and (3) to combine CSLBs and GBCs to maximize IGSCC resistance in Ni-Cr-Fe in 360 C primary water. Experiments performed in hydrogen gas at 360 C confirm an increase in the primary creep rate in Ni-16Cr-9Fe at 360 C due to hydrogen. The creep strain transients caused by hydrogen are proposed to be due to the collapse of dislocation pile-ups, as confirmed by observations in HVEM. The observations only partially support the hydrogen-enhanced plasticity model, but also suggest a potential role of vacancies in the accelerate creep behavior in primary water. In high temperature oxidation experiments designed to examine the potential for selective internal oxidation in the IGSCC process, cracking is greatest in the more oxidizing environments compared to the low oxygen potential environments where nickel metal is stable. In Ni-Cr-Fe alloys, chromium oxides form preferentially along the grain boundaries, even at low oxygen potential, supporting a potential role in grain boundary embrittlement due to preferential oxidation. Experiments designed to determine the role of grain boundary deformation on intergranular cracking have established, for the first time, a cause-and-effect relationship between grain boundary deformation and IGSCC. That is, grain boundary deformation in Ni-16Cr-9Fe in 360 C primary water leads to IGSCC of the deformed boundaries. As well

  8. Brushing-Induced Surface Roughness of Two Nickel Based Alloys and a Titanium Based Alloy: A Comparative Study - In Vitro Study

    PubMed Central

    Acharya, B L Guruprasanna; Nadiger, Ramesh; Shetty, Bharathraj; Gururaj, G; Kumar, K Naveen; Darshan, D D

    2014-01-01

    be given to the selection of the toothbrushes and toothpastes with the medium abrasives in patients with these restorations. How to cite the article: Acharya BL, Nadiger R, Shetty B, Gururaj G, Kumar KN, Darshan DD. Brushing induced surface roughness of two nickel based alloys and a titanium based alloy: A comparative study - In vitro study. J Int Oral Health 2014;6(3):36-49. PMID:25083031

  9. The Influence of Dynamic Strain Aging on Fatigue and Creep-Fatigue Characterization of Nickel-Base Solid Solution Strengthened Alloys

    SciTech Connect

    L.J. Carroll; W.R. Lloyd; J.A. Simpson; R.N. Wright

    2010-12-01

    The nickel-base solid solution alloys, Alloy 617 and Alloy 230, have been observed to exhibit serrated yielding or dynamic strain aging (DSA) in a temperature/strain rate regime of interest for intermediate heat exchangers (IHX) of high temperature nuclear reactors. At 800°C, these nickel-base alloys are prone to large serrated yielding events at relatively low strains. The presence of DSA introduces challenges in characterizing the creep-fatigue and low cycle fatigue behavior. These challenges include inability to control the target strains as a result of DSA induced strain excursions and distorted hysteresis loops. Methods to eliminate or reduce the influence of DSA on creep-fatigue testing have been investigated, including varying the strain rate, stepping to the target strain, and adjusting servo-hydraulic tuning parameters. It has not been possible to eliminate the impact of serrated flow in the temperature range of interest for these alloys without compromising the desired test protocols.

  10. Modelling of the dynamic behaviour of hard-to-machine alloys

    NASA Astrophysics Data System (ADS)

    Hokka, M.; Leemet, T.; Shrot, A.; Bäker, M.; Kuokkala, V.-T.

    2012-08-01

    Machining of titanium alloys and nickel based superalloys can be difficult due to their excellent mechanical properties combining high strength, ductility, and excellent overall high temperature performance. Machining of these alloys can, however, be improved by simulating the processes and by optimizing the machining parameters. The simulations, however, need accurate material models that predict the material behaviour in the range of strains and strain rates that occur in the machining processes. In this work, the behaviour of titanium 15-3-3-3 alloy and nickel based superalloy 625 were characterized in compression, and Johnson-Cook material model parameters were obtained from the results. For the titanium alloy, the adiabatic Johnson-Cook model predicts softening of the material adequately, but the high strain hardening rate of Alloy 625 in the model prevents the localization of strain and no shear bands were formed when using this model. For Alloy 625, the Johnson-Cook model was therefore modified to decrease the strain hardening rate at large strains. The models were used in the simulations of orthogonal cutting of the material. For both materials, the models are able to predict the serrated chip formation, frequently observed in the machining of these alloys. The machining forces also match relatively well, but some differences can be seen in the details of the experimentally obtained and simulated chip shapes.

  11. The effect of chromium, carbon, and yttrium on the oxidation of nickel-base alloys in high temperature water

    SciTech Connect

    Angeliu, T.M. . Dept. of Materials Science and Engineering); Was, G.S. . Dept. of Nuclear Engineering Univ. of Michigan, Ann Arbor, MI . Dept. of Materials Science and Engineering)

    1993-07-01

    Since the surface film has been implicated in several models of intergranular stress corrosion cracking (IGSCC) of nickel-base alloys, this study was initiated to provide a foundation for the future study of a possible link between the nature of the surface film and IG crack susceptibility. The influence of chromium, carbon, and yttrium on the nature of the surface film formed on nickel-base alloys was investigated after 100 h of exposure in high purity, deaerated, hydrogenated water at 360 C. XPS and SEM provided information on the chemical composition, structure, morphology, and thickness of the surface film. Increasing the content from 5 to 17 weight percent (w/o) of a Ni-xCr-9Fe-low C alloy dramatically changes the surface film from predominantly Ni(OH)[sub 2] to Cr[sub 2]O[sub 3]. An additional increase in Cr from 17 to 30 w/o does not significantly alter the type, distribution, or thickness of the oxide phases formed. This suggests that there is a critical chromium concentration that controls the formation of Cr[sub 2]O[sub 3] under the test conditions. The presence of Cr[sub 2]O[sub 3] in these alloys is attributed to the high affinity of Cr for oxygen, and the increased stability of Cr[sub 2]O[sub 3] over many other oxides in reducing environments. The addition of 300 wppm carbon to a Ni-17Cr-9Fe-0.0030 C alloy increases the film thickness without changing Cr[sub 2]O[sub 3] as the dominant surface species. Yttrium implantation to 2.4 atom percent at a depth of 70 nm in Ni-17Cr-9Fe-0.0030 and 0.030 C alloys produces a similar film thickness and similar composition profiles containing slightly more Ni(OH)[sub 2] than Cr[sub 2]O[sub 3]. Yttrium is known for forming Y[sub 2]O[sub 3] which most likely promotes the formations of Cr[sub 2]O[sub 3] by acting as nucleations sites for the similarly structured chromia.

  12. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy

    SciTech Connect

    Li, Zhigang; Zhang, Lanting; Sun, Nairong; Sun, Yanle; Shan, Aidang

    2014-09-15

    The nickel based alloys with different Σ3 boundary density were achieved by cold-rolling and subsequent annealing treatment. Electron backscattered diffraction analysis showed that the grain size distribution changed with the processing parameters, and the discontinuous Σ3 boundary became continuous with the increase of prior deformation level. Furthermore, the Σ3 boundary density was found to be manipulated by both grain size distribution and Σ3 boundary density per grain which showed an increasing trend with prior deformation level and annealing temperature. - Highlights: • The prior deformation amount influenced the morphology of Σ3 boundary. • The grain size was not the only factor influencing Σ3 boundary density. • The fact that grain size distribution had an important effect on Σ3 boundary density was confirmed. • The nature of grain size distribution on Σ3 boundary density was revealed. • There was a great deviation in Σ3 boundary density between experimental results and predictions.

  13. Creep and tensile properties of several oxide dispersion strengthened nickel base alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The creep properties at 1365 K of several oxide dispersion strengthened (ODS) alloys were studied, where the creep exposures involved low strains, on the order of 1% or less, after nominally 100 hours of testing. It was found that ODS alloys possess threshold stresses for creep. Creep in polycrystalline ODS alloys is an inhomogeneous process. The threshold stresses in large grain size ODS Ni-20Cr and Ni-16Cr-4/5Al type alloys are dependent on the grain aspect ratio.

  14. Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors

    NASA Astrophysics Data System (ADS)

    Rowcliffe, A. F.; Mansur, L. K.; Hoelzer, D. T.; Nanstad, R. K.

    2009-07-01

    Because of their superior high temperature strength and corrosion properties, a set of Ni-base alloys has been proposed for various in-core applications in Gen IV reactor systems. However, irradiation-performance data for these alloys is either limited or non-existent. A review is presented of the irradiation-performance of a group of Ni-base alloys based upon data from fast breeder reactor programs conducted in the 1975-1985 timeframe with emphasis on the mechanisms involved in the loss of high temperature ductility and the breakdown in swelling resistance with increasing neutron dose. The implications of these data for the performance of the Gen IV Ni-base alloys are discussed and possible pathways to mitigate the effects of irradiation on alloy performance are outlined. A radical approach to designing radiation damage-resistant Ni alloys based upon recent advances in mechanical alloying is also described.

  15. Arrhenius-Type Constitutive Model for High Temperature Flow Stress in a Nickel-Based Corrosion-Resistant Alloy

    NASA Astrophysics Data System (ADS)

    Wang, L.; Liu, F.; Cheng, J. J.; Zuo, Q.; Chen, C. F.

    2016-04-01

    Hot deformation behavior of Nickel-based corrosion-resistant alloy (N08028) was studied in compression tests conducted in the temperature range of 1050-1200 °C and the strain rate range of 0.001-1 s-1. The flow stress behavior and microstructural evolution were observed during the hot deformation process. The results show that the flow stress increases with deformation temperature decreasing and strain rate increasing, and that the deformation activation energy ( Q) is not a constant but increases with strain rate increasing at a given strain, which is closely related with dislocation movement. On this basis, a revised strain-dependent hyperbolic sine constitutive model was established, which considered that the "material constants" in the original model vary as functions of the strain and strain rate. The flow curves of N08028 alloy predicted by the proposed model are in good agreement with the experimental results, which indicates that the revised constitutive model can estimate precisely the flow curves of N08028 alloy.

  16. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    NASA Astrophysics Data System (ADS)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  17. Effect of high temperature fatigue on the fracture toughness of a nickel-base alloy

    SciTech Connect

    Hwang, S.K.

    1981-01-01

    The purpose of the present work was to investigate the effect of cyclic loading at high temperature on the fracture toughness of a precipitate hardened alloy. A ..gamma..' precipitate hardened Inconcel X-750 alloy was chosen because of its importance in practical applications as well as its relatively well defined microstructure compared to other superalloys. This paper presents a study of the variation of the relative fracture toughness of this alloy during continuous and hold-time fatigue at 973/sup 0/K.

  18. Machining of uranium and uranium alloys

    SciTech Connect

    Morris, T.O.

    1981-12-14

    Uranium and uranium alloys can be readily machined by conventional methods in the standard machine shop when proper safety and operating techniques are used. Material properties that affect machining processes and recommended machining parameters are discussed. Safety procedures and precautions necessary in machining uranium and uranium alloys are also covered. 30 figures.

  19. Influence of Chromium and Molybdenum on the Corrosion of Nickel Based Alloys

    SciTech Connect

    Hayes, J R; Gray, J; Szmodis, A W; Orme, C A

    2005-08-02

    The addition of chromium and molybdenum to nickel creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the complementary roles of Cr and Mo in Ni alloy passivation. Four nickel alloys with varying amounts of chromium and molybdenum were studied in 1 molar salt solutions over a broad pH range. The passive corrosion and breakdown behavior of the alloys suggests that chromium is the primary element influencing general corrosion resistance. The breakdown potential was nearly independent of molybdenum content, while the repassivation potential is strongly dependant on the molybdenum content. This indicates that chromium plays a strong role in maintaining the passivity of the alloy, while molybdenum acts to stabilize the passive film after a localized breakdown event.

  20. Alloy B-10, a new nickel-based alloy for strong chloride-containing, highly acidic and oxygen-deficient environments

    SciTech Connect

    Kohler, M.; Kirchheiner, R.; Stenner, F.

    1998-12-31

    Alloy B-10 is a Ni-Mo-Cr alloy, recently developed for highly acidic but oxygen-deficient environments in the chemical process and environmental protection industries. The new nickel-based alloy with nominally (wt. %) 62 Ni, 24 MO, 8 Cr and 6 Fe, exhibits excellent corrosion resistance in intermediate concentrations of sulfuric acid, as well as in hydrochloric acid, even with additions of small amounts of oxidizing agents. In a simulated Flue Gas Desulfurization (FGD) environment of sulfuric acid of pH 1 with additions of 7% chloride and 0.01% fluoride, and also containing 15% gypsum the new alloy demonstrated high crevice corrosion resistance at 100 C, whereas a common Ni-Cr-Mo alloy of the C-type suffers crevice corrosion under the same conditions. This new alloy can easily be welded without filler or using matching filler. Good practical experience has been gained with Alloy B-10 in a district heating power station as a tube sheet and bottom wall liner for a glass tube heat exchanger working at 130 C with condensing 70% sulfuric acid.

  1. Physical Simulation of Friction Stir Welding and Processing of Nickel-Base Alloys Using Hot Torsion

    NASA Astrophysics Data System (ADS)

    Rule, James R.; Lippold, John C.

    2013-08-01

    The Gleeble hot torsion test was utilized in an attempt to simulate the friction stir-processed microstructure of three Ni-base alloys: Hastelloy X, Alloy 625, and Alloy 718. The simulation temperatures were based on actual thermal cycles measured by embedded thermocouples during friction stir processing of these alloys. Peak process temperatures were determined to be approximately 1423 K (1150 °C) for Hastelloy X and Alloy 625 K and 1373 K (352 °C and 1100 °C) for Alloy 718. The peak temperature and cooling rates were programed into the Gleeble™ 3800 thermo-mechanical simulator to reproduce the stir zone and thermo-mechanically affected zone (TMAZ) microstructures. The TMAZ was successfully simulated using this technique, but the stir zone microstructure could not be accurately reproduced, with hot torsion samples exhibiting larger grain size than actual friction stir processing trials. Shear stress and strain rates as a function of temperature were determined for each material using hot torsion simulation.

  2. Mechanical and Microstructure Study of Nickel-Based ODS Alloys Processed by Mechano-Chemical Bonding and Ball Milling

    NASA Astrophysics Data System (ADS)

    Amare, Belachew N.

    Due to the need to increase the efficiency of modern power plants, land-based gas turbines are designed to operate at high temperature creating harsh environments for structural materials. The elevated turbine inlet temperature directly affects the materials at the hottest sections, which includes combustion chamber, blades, and vanes. Therefore, the hottest sections should satisfy a number of material requirements such as high creep strength, ductility at low temperature, high temperature oxidation and corrosion resistance. Such requirements are nowadays satisfied by implementing superalloys coated by high temperature thermal barrier coating (TBC) systems to protect from high operating temperature required to obtain an increased efficiency. Oxide dispersive strengthened (ODS) alloys are being considered due to their high temperature creep strength, good oxidation and corrosion resistance for high temperature applications in advanced power plants. These alloys operating at high temperature are subjected to different loading systems such as thermal, mechanical, and thermo-mechanical combined loads at operation. Thus, it is critical to study the high temperature mechanical and microstructure properties of such alloys for their structural integrity. The primary objective of this research work is to investigate the mechanical and microstructure properties of nickel-based ODS alloys produced by combined mechano-chemical bonding (MCB) and ball milling subjected to high temperature oxidation, which are expected to be applied for high temperature turbine coating with micro-channel cooling system. Stiffness response and microstructure evaluation of such alloy systems was studied along with their oxidation mechanism and structural integrity through thermal cyclic exposure. Another objective is to analyze the heat transfer of ODS alloy coatings with micro-channel cooling system using finite element analysis (FEA) to determine their feasibility as a stand-alone structural

  3. Interdiffusional effects between tungsten fibers and an iron-nickel-base alloy

    NASA Technical Reports Server (NTRS)

    Caulfield, T.; Bellows, R. S.; Tien, J. K.

    1985-01-01

    Tungsten fibers in the INCOLOY 903 alloy were annealed for over 100 hours at 1038 C and 1200 C. It was found that interdiffusion results in the formation of a reaction zone. SEM-EDS probe analysis showed that the chemistries across this zone were constant, suggesting the zone was a compound phase. The composition of the compound was estimated to be that of a mu-type phase. The local chemistry (in atomic percent) at the reaction zone/alloy matrix interface was found to be approximately 8 pct W, 1.2 pct Nb, 40 pct Fe, 14 pct Co, and 36 pct Ni. In addition, recrystallization was observed in both the remaining tungsten fiber and the nearby INCOLOY 903 matrix after annealing at 1200 C, but not at 1038 C. The results of this study suggest that reaction zone growth kinetics can be minimized by the reduction of Co and Fe and the increase of W in the matrix alloy.

  4. Growth Stresses in Thermally Grown Oxides on Nickel-Based Single-Crystal Alloys

    NASA Astrophysics Data System (ADS)

    Rettberg, Luke H.; Laux, Britta; He, Ming Y.; Hovis, David; Heuer, Arthur H.; Pollock, Tresa M.

    2016-03-01

    Growth stresses that develop in α-Al2O3 scale that form during isothermal oxidation of three Ni-based single crystal alloys have been studied to elucidate their role in coating and substrate degradation at elevated temperatures. Piezospectroscopy measurements at room temperature indicate large room temperature compressive stresses in the oxides formed at 1255 K or 1366 K (982 °C or 1093 °C) on the alloys, ranging from a high of 4.8 GPa for René N4 at 1366 K (1093 °C) to a low of 3.8 GPa for René N5 at 1255 K (982 °C). Finite element modeling of each of these systems to account for differences in coefficients of thermal expansion of the oxide and substrate indicates growth strains in the range from 0.21 to 0.44 pct at the oxidation temperature, which is an order of magnitude higher than the growth strains measured in the oxides on intermetallic coatings that are typically applied to these superalloys. The magnitudes of the growth strains do not scale with the parabolic oxidation rate constants measured for the alloys. Significant spatial inhomogeneities in the growth stresses were observed, due to (i) the presence of dendritic segregation and (ii) large carbides in the material that locally disrupts the structure of the oxide scale. The implications of these observations for failure during cyclic oxidation, fatigue cycling, and alloy design are considered.

  5. Corrosion of ferritic-martensitic steels and nickel-based alloys in supercritical water

    NASA Astrophysics Data System (ADS)

    Ren, Xiaowei

    The corrosion behavior of ferritic/martensitic (F/M) steels and Ni-based alloys in supercritical water (SCW) has been studied due to their potential applications in future nuclear reactor systems, fossil fuel power plants and waste treatment processes. 9˜12% chromium ferritic/martensitic steels exhibit good radiation resistance and stress corrosion cracking resistance. Ni-based alloys with an austenitic face-centered cubic (FCC) structure are designed to retain good mechanical strength and corrosion/oxidation resistance at elevated temperatures. Corrosion tests were carried out at three temperatures, 360°C, 500°C and 600°C, with two dissolved oxygen contents, 25 ppb and 2 ppm for up to 3000 hours. Alloys modified by grain refinement and reactive element addition were also investigated to determine their ability to improve the corrosion resistance in SCW. A duplex oxide structure was observed in the F/M steels after exposure to 25 ppb oxygen SCW, including an outer oxide layer with columnar magnetite grains and an inner oxide layer constituted of a mixture of spinel and ferrite phases in an equiaxed grain structure. An additional outermost hematite layer formed in the SCW-exposed samples when the oxygen content was increased to 2 ppm. Weight gain in the F/M steels increased with exposure temperatures and times, and followed parabolic growth kinetics in most of the samples. In Ni-based alloys after exposure to SCW, general corrosion and pitting corrosion were observed, and intergranular corrosion was found when exposed at 600°C due to formation of a local healing layer. The general oxide structure on the Ni-based alloys was characterized as NiO/Spinel/(CrxFe 1-x)2O3/(Fe,Ni). No change in oxidation mechanism was observed in crossing the critical point despite the large change in water properties. Corrosion resistance of the F/M steels was significantly improved by plasma-based yttrium surface treatment because of restrained outward diffusion of iron by the

  6. Nickel-based Gadolinium Alloy for Neutron Adsorption Application in Ram Packages

    SciTech Connect

    Gregg Wachs; James Sterbentz; William Hurt; P. E. McConnell; C. V. Robino; F. Tovesson; T. S. Hill

    2007-10-01

    Neutron transmission experiments were performed on samples of an advanced nickel-chromium-molybdenum-gadolinium (Ni-Cr-Mo-Gd) neutron absorber alloy and chromium-nickel (Cr-Ni) stainless steel, modified by the addition of boron. The primary purpose of the experiments was to demonstrate the thermal neutron absorbing capability of the materials at specific gadolinium and boron dopant levels. The Ni-Cr-Mo-Gd alloy is envisioned to be deployed for criticality control of highly enriched U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF). For these transmission experiments, test samples were fabricated with 0.0, 1.58 and 2.1 wt% natural gadolinium dispersed in a Ni-Cr-Mo base alloy and 1.16 wt% boron in stainless steel. The transmission experiments were successfully carried out at the Los Alamos Neutron Science Center (LANSCE). Measured data from the neutron transmission experiments were compared to calculated results derived from a simple exponential transmission formula using total neutron cross sections. Excellent agreement between the measured and calculated results demonstrated the expected strong thermal absorption capability of the gadolinium and boron elements and in addition, verified the measured elemental composition of the Ni-Cr-Mo-Gd alloy and borated stainless steel test samples. The good agreement also indirectly confirmed that the size and distribution of the gadolinium in both the hot-top (as-cast) and Ni-Cr-Mo-Gd converted to plate was not a discriminator related to neutron absorption. Moreover, the Evaluated Nuclear Data File (ENDF VII) total neutron cross section data were accurate.

  7. Investigation of several commercial aluminide coatings for carburization protection of a nickel-base alloy

    SciTech Connect

    Lai, G.Y.

    1980-06-01

    Four commercial aluminide coatings applied to Hastelloy Alloy X were investigated with respect to their carburization resistance in a carburizing impure helium environment. The test gas was helium with 500 ..mu..atm H/sub 2/, 50 ..mu..atm CO, 50 ..mu..atm CH/sub 4/, and < 1.0 ..mu..atm H/sub 2/O. The uncoated specimens exposed to this test environment at 900/sup 0/C (1650/sup 0/F) for 1000 and 2000 h exhibited significant carburization. All four coatings provided good protection against carburization of the substrate Hastelloy Alloy X, presumably due to the formation of an Al/sub 2/O/sub 3/ oxide scale on the coating surface during the high-temperature corrosion exposure. The Al/sub 2/O/sub 3/ oxide is believed to be an effective barrier to carbon transport. Aluminide coatings applied to Hastelloy Alloy X exhibited a tendency for forming Kirkendall diffusion voids (or pores) in the diffusion zone during long-term high-temperature exposures (e.g., 900/sup 0/C (1650/sup 0/F) for 1000 h). Chromium addition during aluminizing, which resulted in a high chromium content in the coating, appears to be effective in preventing the pore formation during subsequent long-term high-temperature exposures.

  8. The Effect of Stabilization Heat Treatments on the Tensile and Creep Behavior of an Advanced Nickel-Based Disk Alloy

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    As part of NASA s Advanced Subsonic Technology Program, a study of stabilization heat treatment options for an advanced nickel-base disk alloy, ME 209, was performed. Using a simple, physically based approach, the effect of stabilization heat treatments on tensile and creep properties was analyzed in this paper. Solutions temperature, solution cooling rate, and stabilization temperature/time were found to have a significant impact on tensile and creep properties. These effects were readily quantified using the following methodology. First, the effect of solution cooling rate was assessed to determine its impact on a given property. The as-cooled property was then modified by using two multiplicative factors which assess the impact of solution temperature and stabilization parameters. Comparison of experimental data with predicted values showed this physically based analysis produced good results that rivaled the statistical analysis employed, which required numerous changes in the form of the regression equation depending on the property and temperature in question. As this physically based analysis uses the data for input, it should be noted that predictions which attempt to extrapolate beyond the bounds of the data must be viewed with skepticism. Future work aimed at expanding the range of the stabilization/aging parameters explored in this study would be highly desirable, especially at the higher solution cooling rates.

  9. Effect of Specific Energy Input on Microstructure and Mechanical Properties of Nickel-Base Intermetallic Alloy Deposited by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Kumar, Santosh; Chandra, Kamlesh; Vishwanadh, B.; Kishore, R.; Viswanadham, C. S.; Srivastava, D.; Dey, G. K.

    2012-12-01

    This article describes the microstructural features and mechanical properties of nickel-base intermetallic alloy laser-clad layers on stainless steel-316 L substrate, with specific attention on the effect of laser-specific energy input (defined as the energy required per unit of the clad mass, kJ/g) on the microstructure and properties of the clad layer, keeping the other laser-cladding parameters same. Defect-free clad layers were observed, in which various solidified zones could be distinguished: planar crystallization near the substrate/clad interface, followed by cellular and dendritic morphology towards the surface of the clad layer. The clad layers were characterized by the presence of a hard molybdenum-rich hexagonal close-packed (hcp) intermetallic Laves phase dispersed in a relatively softer face-centered cubic (fcc) gamma solid solution or a fine lamellar eutectic phase mixture of an intermetallic Laves phase and gamma solid solution. The microstructure and properties of the clad layers showed a strong correlation with the laser-specific energy input. As the specific energy input increased, the dilution of the clad layer increased and the microstructure changed from a hypereutectic structure (with a compact dispersion of characteristic primary hard intermetallic Laves phase in eutectic phase mixture) to near eutectic or hypoeutectic structure (with reduced fraction of primary hard intermetallic Laves phase) with a corresponding decrease in the clad layer hardness.

  10. Lubricating Properties of Ceramic-Bonded Calcium Fluoride Coatings on Nickel-Base Alloys from 75 to 1900 deg F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1962-01-01

    The endurance life and the friction coefficient of ceramic-bonded calcium fluoride (CaF2) coatings on nickel-base alloys were determined at temperatures from 75 F to 1900 F. The specimen configuration consisted of a hemispherical rider (3/16-in. rad.) sliding against the flat surface of a rotating disk. Increasing the ambient temperature (up to 1500 F) or the sliding velocity generally reduced the friction coefficient and improved coating life. Base-metal selection was critical above 1500 F. For instance, cast Inconel sliding against coated Inconel X was lubricated effectively to 1500 F, but at 1600 F severe blistering of the coatings occurred. However, good lubrication and adherence were obtained for Rene 41 sliding against coated Rene 41 at temperatures up to 1900 F; no blisters developed, coating wear life was fairly good, and the rider wear rate was significantly lower than for the unlubricated metals. Friction coefficients were 0.12 at 1500 F, 0.15 at 1700 F, and 0.17 at 1800 F and 1900 F. Because of its ready availability, Inconel X appears to be the preferred substrate alloy for applications in which the temperature does not exceed 1500 F. Rene 41 would have to be used in applications involving higher temperatures. Improved coating life was derived by either preoxidizing the substrate metals prior to the coating application or by applying a very thin (less than 0.0002 in.) burnished and sintered overlay to the surface of the coating. Preoxidation did not affect the friction coefficient. The overlay generally resulted in a higher friction coefficient than that obtained without the overlay. The combination of both modifications resulted in longer coating life and in friction coefficients intermediate between those obtained with either modification alone.

  11. High temperature corrosion of a nickel base alloy by helium impurities

    NASA Astrophysics Data System (ADS)

    Rouillard, F.; Cabet, C.; Wolski, K.; Terlain, A.; Tabarant, M.; Pijolat, M.; Valdivieso, F.

    2007-05-01

    High temperature corrosion properties of Haynes 230 were investigated in a purposely-designed facility under a typical very high temperature reactor (VHTR) impure helium medium. The study was focused on the surface oxide scale formation and its stability at about 1223 K. The alloy developed a Mn/Cr rich oxide layer on its surface under impure helium at 1173 K. Nevertheless, a deleterious reaction destructing the chromium oxide was evidenced above a critical temperature, TA. Reagents and products of this last reaction were investigated.

  12. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  13. Rupture Strength of Several Nickel-base Alloys in Sheet Form

    NASA Technical Reports Server (NTRS)

    Dance, James H; Clauss, Francis J

    1957-01-01

    The 100-hour rupture strengths of Inconel X, Inconel 700, Incoloy 901, Refractaloy 26, and R-235 at 1200 and 1350 F. in both the annealed and heat-treated conditions were determined. Inconel 700 had the highest rupture strength at both temperatures; Incoloy 901 was second strongest at 1200 F, and R-235 second strongest at 1350 F. With the exception of Incoloy 901, ductility was low. Photomicrographs show that fractures are through the grain boundaries. Results are compared with published data for other sheet alloys and bar stock.

  14. Modelling of hydrogen assisted cracking of nickel-base Alloy X-750 in water

    SciTech Connect

    Oka, T.; Ballinger, R.G.; Hwang, I.S.

    1992-12-31

    A closed-form, semi-empirical, electrochemical model has been developed to rationalize the intergranular corrosion fatigue behavior of alloy X-750 in aqueous electrolytes. The model is based on the assumption that, in the electrolytes investigated and for the microstructures studied, that hydrogen assisted crack growth is the dominant mechanism. Further, it is assumed that the rate of hydrogen reduction is a controlling factor in the magnitude of the environmental component of crack growth. Electrolyte conductivity, dissolution and passivation kinetics of precipitates, grain boundary coverage of precipitates are identified as important environmental and microstructural variables governing the hydrogen reduction rate at the crack tip. The model is compared with experimental data for fatigue crack growth where hydrogen is supplied by external charging and with data where galvanically-generated local hydrogen is responsible for enhanced crack growth. It is shown that predicted results characterize the observed effects of frequency, microstructure, electrolyte conductivity, and stress intensity factor. The agreement between the hydrogen reduction model and measured crack growth rate is believed to support the proposed galvanic corrosion mechanism for the intergranular cracking of alloy X-750 in low temperature water.

  15. Transient liquid phase bonding of titanium-, iron- and nickel-based alloys

    NASA Astrophysics Data System (ADS)

    Rahman, A. H. M. Esfakur

    The operating temperature of land-based gas turbines and jet engines are ever-increasing to increase the efficiency, decrease the emissions and minimize the cost. Within the engines, complex-shaped parts experience extreme temperature, fatigue and corrosion conditions. Ti-based, Ni-based and Fe-based alloys are commonly used in gas turbines and jet engines depending on the temperatures of different sections. Although those alloys have superior mechanical, high temperature and corrosion properties, severe operating conditions cause fast degradation and failure of the components. Repair of these components could reduce lifecycle costs. Unfortunately, conventional fusion welding is not very attractive, because Ti reacts very easily with oxygen and nitrogen at high temperatures, Ni-based superalloys show heat affected zone (HAZ) cracking, and stainless steels show intergranular corrosion and knife-line attack. On the other hand, transient liquid phase (TLP) bonding method has been considered as preferred joining method for those types of alloys. During the initial phase of the current work commercially pure Ti, Fe and Ni were diffusion bonded using commercially available interlayer materials. Commercially pure Ti (Ti-grade 2) has been diffusion bonded using silver and copper interlayers and without any interlayer. With a silver (Ag) interlayer, different intermetallics (AgTi, AgTi2) appeared in the joint centerline microstructure. While with a Cu interlayer eutectic mixtures and Ti-Cu solid solutions appeared in the joint centerline. The maximum tensile strengths achieved were 160 MPa, 502 MPa, and 382 MPa when Ag, Cu and no interlayers were used, respectively. Commercially pure Fe (cp-Fe) was diffusion bonded using Cu (25 m) and Au-12Ge eutectic interlayer (100 microm). Cu diffused predominantly along austenite grain boundaries in all bonding conditions. Residual interlayers appeared at lower bonding temperature and time, however, voids were observed in the joint

  16. Multiphase wide gap braze alloys for the repair of nickel-base superalloy turbine components: Development and characterization

    NASA Astrophysics Data System (ADS)

    Nelson, Scott David

    Gas turbine components made of nickel-base superalloys experience cracking after service in extreme environments. As these cracks can be wide, brazing or fusion welding is typically used to repair them. Properly designed and applied, brazing filler metal will help extend the useful life of damaged turbine components. During repair of defective OEM parts, brazing is also considered, provided that proper filler metals with enhanced ductility and improved resistance to low-cycle fatigue are available. This research strives to develop the brazing technique and alloys to achieve a repair with acceptable mechanical properties. Additionally, the effects of silicon and boron, as fast diffusing and melting point suppressing elements on the braze microstructure and mechanical properties were examined in detail to help guide future alloy development. Three commercially available "low-temperature" brazing powders were mixed with an additive superalloy powder to prepare a series of filler metals for wide gap brazing used to repair OEM gas turbine components. BNi-2 (Ni-7Cr-4.2Si-3B-3Fe), BNi-5 (Ni-19Cr-10Si) and BNi-9 (Ni-15Cr-3.5B) were mixed with MARM247 (Ni-10W-10Co-8.25Cr-5.5Al-3Ta-1Ti-0.7Mo-0.5Fe-0.015B) at ratios of 40, 50, and 60 wt. pct. creating a total of nine experimental filler alloys. The brazes were applied to a 0.06 inch gap in a Rene 108(TM) substrate for mechanical and microstructural analysis. The wettability and flow of each of the experimental alloys were analyzed to determine the required brazing temperature through isothermal spreadability experiments. Bend testing was performed on brazed joints to determine their mechanical properties and maximum angular deflection. The metallurgical driving factors, such as solidification behavior and compositional effects, were analyzed to correlate the resulting microstructural constituents to the mechanical properties developed through experimentation. It was found that because of the solid solubility of silicon into

  17. Pacific Northwest National Laboratory Investigation of the Stress Corrosion Cracking in Nickel-Base Alloys, Volume 2

    SciTech Connect

    Bruemmer, Stephen M.; Toloczko, Mychailo B.; Olszta, Matthew J.

    2012-03-01

    The objective of this program is to evaluate the primary water stress corrosion cracking (PWSCC) susceptibility of high chromium alloy 690 and its weld metals, establish quantitative measurements of crack-growth rates and determine relationships among cracking susceptibility, environmental conditions and metallurgical characteristics. Stress-corrosion, crack-growth rates have been determined for 12 alloy 690 specimens, 11 alloy 152/52/52M weld metal specimens, 4 alloy 52M/182 overlay specimens and 2 alloy 52M/82 inlay specimens in simulated PWR primary water environments. The alloy 690 test materials included three different heats of extruded control-rod-drive mechanism (CRDM) tubing with variations in the initial material condition and degree of cold work for one heat. Two cold-rolled (CR) alloy 690 plate heats were also obtained and evaluated enabling comparisons to the CR CRDM materials. Weld metal, overlay and inlay specimens were machined from industry mock ups to provide plant-representative materials for testing. Specimens have been tested for one alloy 152 weld, two alloy 52 welds and three alloy 52M welds. The overlay and inlay specimens were prepared to propagate stress-corrosion cracks from the alloy 182 or 82 material into the more resistant alloy 52M. In all cases, crack extension was monitored in situ by direct current potential drop (DCPD) with length resolution of about +1 µm making it possible to measure extremely low growth rates approaching 5x10-10 mm/s. Most SCC tests were performed at 325-360°C with hydrogen concentrations from 11-29 cc/kg; however, environmental conditions were modified during a few experiments to evaluate the influence of temperature, water chemistry or electrochemical potential on propagation rates. In addition, low-temperature (~50°C) cracking behavior was examined for selected alloy 690 and weld metal specimens. Extensive characterizations have been performed on material microstructures and stress-corrosion cracks by

  18. Production of Al-Co-Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing

    NASA Astrophysics Data System (ADS)

    Alkan, Murat; Sonmez, M. Seref; Derin, Bora; Yücel, Onuralp; Andreev, Dmitrii E.; Sanin, Vladimir N.; Yukhvid, Vladimir I.

    2015-05-01

    In this study, Al-Co-Ni ternary alloys were synthesized, in order to obtain low-cost starting material for Ni-based superalloy production, by a self-propagating high temperature synthesis (SHS) both under normal gravity conditions (a = 9.81 m/s2) and under high gravity conditions (up to 1000 g-force) by using a centrifugal machine. The mixture of Co3O4-NiO powder were reduced by Al powder for the production of SHS alloys with the estimated compositions of 5-10 mass% Al, 20-65 mass% Co, 25-75 mass% Ni. The effect of green mixture compositions and centrifugal overload on combustion temperature, alloy/slag separations, chemical composition and microstructure of final alloys were investigated. The chemical analysis results showed that production of SHS alloys were achieved by having up to 86.12% of Co and 92.32% of Ni recoveries. The highest metal recovery value was obtained in SHS alloy with the estimated composition of 10%Al-65%Co-25%Ni by the addition of 20% Al2O3 into the green mixture. The metal/slag separation efficiency increased by increasing the centrifugal overload.

  19. Metallographic examination of TD-nickel base alloys. [thermal and chemical etching technique evaluation

    NASA Technical Reports Server (NTRS)

    Kane, R. D.; Petrovic, J. J.; Ebert, L. J.

    1975-01-01

    Techniques are evaluated for chemical, electrochemical, and thermal etching of thoria dispersed (TD) nickel alloys. An electrochemical etch is described which yielded good results only for large grain sizes of TD-nickel. Two types of thermal etches are assessed for TD-nickel: an oxidation etch and vacuum annealing of a polished specimen to produce an etch. It is shown that the first etch was somewhat dependent on sample orientation with respect to the processing direction, the second technique was not sensitive to specimen orientation or grain size, and neither method appear to alter the innate grain structure when the materials were fully annealed prior to etching. An electrochemical etch is described which was used to observe the microstructures in TD-NiCr, and a thermal-oxidation etch is shown to produce better detail of grain boundaries and to have excellent etching behavior over the entire range of grain sizes of the sample.

  20. Fiber laser cladding of nickel-based alloy on cast iron

    NASA Astrophysics Data System (ADS)

    Arias-González, F.; del Val, J.; Comesaña, R.; Penide, J.; Lusquiños, F.; Quintero, F.; Riveiro, A.; Boutinguiza, M.; Pou, J.

    2016-06-01

    Gray cast iron is a ferrous alloy characterized by a carbon-rich phase in form of lamellar graphite in an iron matrix while ductile cast iron presents a carbon-rich phase in form of spheroidal graphite. Graphite presents a higher laser beam absorption than iron matrix and its morphology has also a strong influence on thermal conductivity of the material. The laser cladding process of cast iron is complicated by its heterogeneous microstructure which generates non-homogeneous thermal fields. In this research work, a comparison between different types of cast iron substrates (with different graphite morphology) has been carried out to analyze its impact on the process results. A fiber laser was used to generate a NiCrBSi coating over flat substrates of gray cast iron (EN-GJL-250) and nodular cast iron (EN-GJS-400-15). The relationship between processing parameters (laser irradiance and scanning speed) and geometry of a single laser track was examined. Moreover, microstructure and composition were studied by Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-Ray Diffraction (XRD). The hardness and elastic modulus were analyzed by means of micro- and nanoindentation. A hardfacing coating was generated by fiber laser cladding. Suitable processing parameters to generate the Ni-based alloy coating were determined. For the same processing parameters, gray cast iron samples present higher dilution than cast iron samples. The elastic modulus is similar for the coating and the substrate, while the Ni-based coating obtained presents a significantly superior hardness than cast iron.

  1. Prediction of PWSCC in nickel base alloys using crack growth rate models

    SciTech Connect

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-12-31

    The Ford/Andresen slip-dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material conditions. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip-dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip-dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

  2. Multiple hydrogen location in a vacancy region of a FCC iron-nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Simonetti, S.; Brizuela, G.; Juan, A.

    2010-01-01

    The interaction between four-hydrogen atoms and a FCC FeNi-based alloy ideal structure having a vacancy (V) was studied using a cluster model and a semi-empirical theoretical method. The energy of the system was calculated by the atom superposition and electron delocalisation molecular orbital (ASED-MO) method. The electronic structure was studied using the concept of density of states (DOS) and crystal orbital overlap population (COOP) curves. After a sequential absorption, the hydrogen atoms are finally positioned at their energy minima configurations, near to the vacancy. The energy difference for H agglomeration was also computed. The vacancy-H n complexes become less stable for n > 3. The changes in the electronic structure of Fe and Ni atoms near to the vacancy were also analysed. The interactions mainly involve Fe and Ni, 4s and 4p atomic orbitals. The contribution of 3d orbitals is much less important. The Fe-Fe, Fe-Ni and Ni-Ni bonds are weakened as new Fe-H, Ni-H and H-H pairs are formed. The effect of the H atoms is limited to its first neighbours. The detrimental effect of H atoms on the metallic bonds can be related to the decohesion mechanism for H embrittlement.

  3. The Corrosion and Corrosion Fatigue Behavior of Nickel Based Alloy Weld Overlay and Coextruded Claddings

    NASA Astrophysics Data System (ADS)

    Stockdale, Andrew

    The use of low NOx boilers in coal fired power plants has resulted in sulfidizing corrosive conditions within the boilers and a reduction in the service lifetime of the waterwall tubes. As a solution to this problem, Ni-based weld overlays are used to provide the necessary corrosion resistance however; they are susceptible to corrosion fatigue. There are several metallurgical factors which give rise to corrosion fatigue that are associated with the localized melting and solidification of the weld overlay process. Coextruded coatings offer the potential for improved corrosion fatigue resistance since coextrusion is a solid state coating process. The corrosion and corrosion fatigue behavior of alloy 622 weld overlays and coextruded claddings was investigated using a Gleeble thermo-mechanical simulator retrofitted with a retort. The experiments were conducted at a constant temperature of 600°C using a simulated combustion gas of N2-10%CO-5%CO2-0.12%H 2S. An alternating stress profile was used with a minimum tensile stress of 0 MPa and a maximum tensile stress of 300 MPa (ten minute fatigue cycles). The results have demonstrated that the Gleeble can be used to successfully simulate the known corrosion fatigue cracking mechanism of Ni-based weld overlays in service. Multilayer corrosion scales developed on each of the claddings that consisted of inner and outer corrosion layers. The scales formed by the outward diffusion of cations and the inward diffusion of sulfur and oxygen anions. The corrosion fatigue behavior was influenced by the surface finish and the crack interactions. The initiation of a large number of corrosion fatigue cracks was not necessarily detrimental to the corrosion fatigue resistance. Finally, the as-received coextruded cladding exhibited the best corrosion fatigue resistance.

  4. Structural evaluation of a nickel base super alloy metal foam via NDE and finite element

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Abumeri, G.; Garg, Mohit; Young, P. G.

    2008-03-01

    Cellular materials are known to be useful in the application of designing light but stiff structures. This applies to various components used in various industries such as rotorcraft blades, car bodies or portable electronic devices. Structural application of the metal foam is typically confined to light weight sandwich panels, made up of thin solid face sheets and a metallic foam core. The resulting high-stiffness structure is lighter than that constructed only out of the solid metal material. The face sheets carry the applied in-plane and bending loads and the role of the foam core is separate the face sheets to carry some of the shear stresses, while remaining integral with the face sheet. Many challenges relating to the fabrication and testing of these metal foam panels continue to exist due to some mechanical properties falling short of their theoretical potential. Hence in this study, a detailed three dimensional foam structure is generated using series of 2D Computer Tomography (CT) scans, on Haynes 25 metal foam. Series of the 2D images are utilized to construct a high precision solid model including all the fine details within the metal foam as detected by the CT scanning technique. Subsequently, a finite element analysis is then performed on an as fabricated metal foam microstructures to evaluate the foam structural durability and behavior under tensile and compressive loading conditions. The analysis includes a progressive failure analysis (PFA) using GENOA code to further assess the damage initiation, propagation, and failure. The open cell metal foam material is a cobalt-nickel-chromium-tungsten alloy that combines excellent high-temperature strength with good resistance to oxidizing environments up to 1800 °F (980 °C) for prolonged exposures. The foam is formed by a powder metallurgy process with an approximate 100 pores per inch (PPI).

  5. Development of improved low-strain creep strength in Cabot alloy R-41 sheet. [nickel base sheet alloy for reentry shielding

    NASA Technical Reports Server (NTRS)

    Rothman, M. F.

    1984-01-01

    The feasibility of improving the low-strain creep properties of a thin gauge nickel base sheet alloy through modified heat treatment or through development of a preferred crystal-lographic texture was investigated. The basic approach taken to improve the creep strength of the material by heat treatment was to increase grain size by raising the solution treatment temperature for the alloy to the range of 1420 K to 1475 K (2100 F to 2200 F). The key technical issue involved was maintenance of adequate tensile ductility following the solutioning of M6C primary carbides during the higher temperature solution treatment. The approach to improve creep properties by developing a sheet texture involved varying both annealing temperatures and the amount of prior cold work. Results identified a heat treatment for alloy R-14 sheet which yields a substantial creep-life advantage at temperatures above 1090 K (1500 F) when compared with material given the standard heat treatment. At the same time, this treatment provides reasonable tensile ductility over the entire temperature range of interest. The mechanical properties of the material given the new heat treatment are compared with those for material given the standard heat treatment. Attempts to improve creep strength by developing a sheet texture were unsuccessful.

  6. Effects of alloy composition on cyclic flame hot-corrosion attack of cast nickel-base superalloys at 900 deg C

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.

    1984-01-01

    The effects of Cr, Al, Ti, Mo, Ta, Nb, and W content on the hot corrosion of nickel base alloys were investigated. The alloys were tested in a Mach 0.3 flame with 0.5 ppmw sodium at a temperature of 900 C. One nondestructive and three destructive tests were conducted. The best corrosion resistance was achieved when the Cr content was 12 wt %. However, some lower-Cr-content alloys ( 10 wt%) exhibited reasonable resistance provided that the Al content alloys ( 10 wt %) exhibited reasonable resistance provided that the Al content was 2.5 wt % and the Ti content was Aa wt %. The effect of W, Ta, Mo, and Nb contents on the hot-corrosion resistance varied depending on the Al and Ti contents. Several commercial alloy compositions were also tested and the corrosion attack was measured. Predicted attack was calculated for these alloys from derived regression equations and was in reasonable agreement with that experimentally measured. The regression equations were derived from measurements made on alloys in a one-quarter replicate of a 2(7) statistical design alloy composition experiment. These regression equations represent a simple linear model and are only a very preliminary analysis of the data needed to provide insights into the experimental method.

  7. NEUTRON-DIFFRACTION STUDY ON PLASTIC BEHAVIOR OF A NICKEL-BASED ALLOY UNDER THE MONOTONIC-TENSION AND THE LOW-CYCLE-FATIGUE EXPERIMENTS

    SciTech Connect

    Huang, E-Wen; Barabash, Rozaliya; Clausen, Bjorn; Wang, Yandong; Yang, Dr Ren; Li, Li; Choo, Hahn; Liaw, Peter K

    2007-01-01

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  8. Neutron Diffraction Study on Plastic behavior of a Nickel-Based Alloy Under the Monotonic-Tension and the Low-Cyclic-Fatigue Experiments

    SciTech Connect

    Huang, E.-W.; Barabash, R.; Clausen, B.; Wang, Y.; Yang, R.; Li, L.; Choo, H.; Liaw, P.K.

    2007-11-02

    The plastic behavior of an annealed HASTELLOY C-22HS alloy, a face-centered cubic (FCC), nickel-based superalloy, was examined by in-situ neutron-diffraction measurements at room temperature. Both monotonic-tension and low-cycle-fatigue experiments were conducted. Monotonic-tension straining and cyclic-loading deformation were studied as a function of stress. The plastic behavior during deformation is discussed in light of the relationship between the stress and dislocation-density evolution. The calculated dislocation-density evolution within the alloy reflects the strain hardening and cyclic hardening/softening. Experimentally determined lattice strains are compared to verify the hardening mechanism at selected stress levels for tension and cyclic loadings. Combined with calculations of the dislocation densities, the neutron-diffraction experiments provide direct information about the strain and cyclic hardening of the alloy.

  9. Design of an Eta-Phase Precipitation-Hardenable Nickel-Based Alloy with the Potential for Improved Creep Strength Above 1023 K (750 °C)

    NASA Astrophysics Data System (ADS)

    Wong, Matthew J.; Sanders, Paul G.; Shingledecker, John P.; White, Calvin L.

    2015-07-01

    In a number of nickel-based superalloy systems strengthened by gamma prime ( γ'), eta-phase (Ni3Ti, η) forms during prolonged high-temperature exposure, but its effect on mechanical properties is not well characterized. Using thermodynamic modeling and design-of-experiments techniques, three modifications of the nickel-based superalloy Nimonic (Nimonic® is a trademark of Special Metals Corporation group of companies.) 263 were identified that yield increased volume fractions of the eta-phase (Ni3Ti, η) at temperatures above 1023 K (750 °C). Volume fractions of η-phase were evaluated for each alloy and heat-treatment condition using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Compared to Nimonic 263, small additions of V and Ta were found to increase the volume fraction of η-phase above 1023 K (750 °C) from approximately 5 pct to above 15 pct, thus providing a route for future mechanical behavior experimental studies, which was not in the scope of this work.

  10. Machining of low percentage beryllium copper alloys

    NASA Technical Reports Server (NTRS)

    Habermeyer, J. G.

    1969-01-01

    Airborne beryllium sampling during machining of low percentage beryllium-copper alloys shows that normal dry machining creates 45.2 microgram/cu m of airborne beryllium in the casting operators breathing zone and 2.3 microgram/cu m in an adjacent machine working area. A small vacuum system placed over the tool effectively removes airborne beryllium in the breathing zone sample to 0.2 microgram/cu m.

  11. Corrosion of austenitic stainless steels and nickel-base alloys in supercritical water and novel control methods

    SciTech Connect

    Tan, Lizhen; Allen, Todd R.; Yang, Ying

    2012-01-01

    This chapter contains sections titled: (1) Introduction; (2) Thermodynamics of Alloy Oxidation; (3) Corrosion of Austenitic Stainless Steels and Ni-Base Alloys in SCW; (4) Novel Corrosion Control Methods; (5) Factors Influencing Corrosion; (6) Summary; and (7) References.

  12. Corrosion behavior of experimental and commercial nickel-base alloys in HCl and HCl containing Fe3+

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    The effects of ferric ions on the corrosion resistance and electrochemical behavior of a series of Ni-based alloys in 20% HCl at 30ºC were investigated. The alloys studied were those prepared by the Albany Research Center (ARC), alloys J5, J12, J13, and those sold commercially, alloys 22, 242, 276, and 2000. Tests included mass loss, potentiodynamic polarization, and linear polarization.

  13. Microstructure-mechanical property relationships in transient liquid phase bonded nickel-based superalloys and iron-based ODS alloys

    NASA Astrophysics Data System (ADS)

    Aluru, Sreenivasa Charan Rajeev

    The research work presented here discusses the microstructure-mechanical property relationships in wide gap transient liquid phase (TLP) bonds, between the single crystal nickel-base superalloy CMSX-4 and two polycrystalline superalloys, IN 738 and IN 939, using wide-gap style composite interlayers. Fabrication of complicated geometries and successful repair development of gas turbine engine components made of superalloys requires a high performance metallurgical joining technique and a complete understanding of microstructure-mechanical property relationships. A number of joining processes have been investigated, but all of them have significant disadvantages that limit their ability to produce sound joints. TLP bonding has proved to be a successful method and is the most preferred joining method for nickel-based superalloys, with microstructures and compositions of the joint similar to that of the bulk substrates resulting in mechanical properties close to that of the parent metal. The current joining process used two proprietary wide-gap style composite interlayers, Niflex-110 and Niflex-115, consisting of a nickel-based core with boron-rich surfaces, and a conventional rapidly solidified metallic glass foil interlayer BNi-3 was chosen for comparison. When composite interlayers were employed, competition between wetting of the faying surfaces and formation of the eutectic along the grain boundaries was observed to lead to non-bonded regions at the faying surfaces, unless a boron-rich interlayer was employed. Composite interlayers resulted in the suppression of bondline boride formation. With the exception of this competition, adequate wetting of the substrates occurred for all interlayers. Two factors dominated the room temperature mechanical properties of the wide-gap bonds. The first was the extent of gamma-prime formation at the bondline. Results from shear testing and fractography of the bonds indicated ductile shear failure at the bondline. This was due to

  14. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] < 1 the alloys' specimens get a more negative stationary electrode potential than equilibrium electrode potentials of some uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface

  15. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  16. Grinding as an approach to the production of high-strength, dispersion-strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Orth, N. W.; Quatinetz, M.; Weeton, J. W.

    1970-01-01

    Mechanical process produces dispersion-strengthened metal alloys. Power surface contamination during milling is removed by a cleaning method that involves heating thin shapes or partially-compacted milled powder blends in hydrogen to carefully controlled temperature schedules.

  17. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  18. Dry machinability of aluminum alloys.

    SciTech Connect

    Shareef, I.; Natarajan, M.; Ajayi, O. O.; Energy Technology; Department of IMET

    2005-01-01

    Adverse effects of the use of cutting fluids and environmental concerns with regard to cutting fluid disposability is compelling industry to adopt Dry or near Dry Machining, with the aim of eliminating or significantly reducing the use of metal working fluids. Pending EPA regulations on metal cutting, dry machining is becoming a hot topic of research and investigation both in industry and federal research labs. Although the need for dry machining may be apparent, most of the manufacturers still consider dry machining to be impractical and even if possible, very expensive. This perception is mainly due to lack of appropriate cutting tools that can withstand intense heat and Built-up-Edge (BUE) formation during dry machining. The challenge of heat dissipation without coolant requires a completely different approach to tooling. Special tooling utilizing high-performance multi-layer, multi-component, heat resisting, low friction coatings could be a plausible answer to the challenge of dry machining. In pursuit of this goal Argonne National Labs has introduced Nano-crystalline near frictionless carbon (NFC) diamond like coatings (DLC), while industrial efforts have led to the introduction of composite coatings such as titanium aluminum nitride (TiAlN), tungsten carbide/carbon (WC/C) and others. Although, these coatings are considered to be very promising, they have not been tested either from tribological or from dry machining applications point of view. As such a research program in partnership with federal labs and industrial sponsors has started with the goal of exploring the feasibility of dry machining using the newly developed coatings such as Near Frictionless Carbon Coatings (NFC), Titanium Aluminum Nitride (TiAlN), and multi-layer multicomponent nano coatings such as TiAlCrYN and TiAlN/YN. Although various coatings are under investigation as part of the overall dry machinability program, this extended abstract deals with a systematic investigation of dry

  19. Influence of base alloy composition on processing time during transient liquid phase bonding of nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Hunedy, Juhaina Farouk

    An experimental investigation to study the influence of base metal composition on the time required to achieve complete isothermal solidification (t f) during TLP bonding of three Ni-base superalloys was performed. Alloys IN 738, DS Rene80 and DS IC 6 show similar behaviour when bonded at 1100 °C, with comparable tf. However, at higher temperatures, IN 738 requires extended period of time (as compared to DS Rene80 and DS IC 6) to achieve complete isothermal solidification. The prolonged tf in IN 738 appears to be caused by a more pronounced reduction in concentration gradient of the diffusing solute within the material during bonding. In contrast, the shorter complete isothermal solidification time experienced by alloy DS IC6 is attributable to its capability to better accommodate the diffusing solute, through the formation of densely packed second-phase precipitates in the diffusion affected zone (DAZ).

  20. Hydrogen adsorption and diffusion, and subcritical-crack growth in high strength steels and nickel base alloys

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.

    1973-01-01

    Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.

  1. Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy

    SciTech Connect

    Liu, Tingguang; Xia, Shuang; Li, Hui; Zhou, Bangxin; Bai, Qin

    2014-05-01

    Grain boundary engineering was carried out on an aging-treated nickel based Alloy 690, which has precipitated carbides at grain boundaries. Electron backscatter diffraction technique was used to investigate the grain boundary networks. Results show that, compared with the solution-annealed samples, the aging-treated samples with pre-existing carbides at grain boundaries need longer duration or higher temperature during annealing after low-strain tensile deformation for forming high proportion of low-Σ coincidence site lattice grain boundaries (more than 75%). The reason is that the primary recrystallization is inhibited or retarded owing to that the pre-existing carbides are barriers to grain boundaries migration. - Highlights: • Study of GBE as function of pre-existing GB carbides, tensile strain and annealing • Recrystallization of GBE is inhibited or retarded by the pre-existing carbides. • Retained carbides after annealing show the original GB positions. • More than 80% of special GBs were formed after the modification of GBE processing. • Multiple twinning during recrystallization is the key process of GBE.

  2. Friction and wear of oxide-ceramic sliding against IN-718 nickel base alloy at 25 to 800 C in atmospheric air

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Deadmore, Daniel L.

    1989-01-01

    The friction and wear of oxide-ceramics sliding against the nickel base alloy IN-718 at 25 to 800 C were measured. The oxide materials tested were mullite (3Al2O3.2SiO2); lithium aluminum silicate (LiAlSi(x)O(y)); polycrystalline monolithic alpha alumina (alpha-Al2O3); single crystal alpha-Al2O3 (sapphire); zirconia (ZrO2); and silicon carbide (SiC) whisker-reinforced Al2O3 composites. At 25 C the mullite and zirconia had the lowest friction and the polycrystalline monolithic alumina had the lowest wear. At 800 C the Al2O3-8 vol/percent SiC whisker composite had the lowest friction and the Al2O3-25 vol/percent SiC composite had the lowest wear. The friction of the Al2O3-SiC whisker composites increased with increased whisker content while the wear decreased. In general, the wear-resistance of the ceramics improve with their hardness.

  3. A feasibility study of a diffusion barrier between Ni-Cr-Al coatings and nickel-based eutectic alloys

    NASA Technical Reports Server (NTRS)

    Young, S. G.; Zellars, G. R.

    1978-01-01

    Coating systems have been proposed for potential use on eutectic alloy components in high-temperature gas turbine engines. In a study to prevent the deterioration of such systems by diffusion, a tungsten sheet 25 microns thick was placed between eutectic alloys and an Ni-Cr-Al layer. Layered test specimens were aged at 1100 C for as long as 500 h. Without the tungsten barrier the delta phase of the eutectic deteriorated by diffusion of niobium into the Ni-Cr-Al. Insertion of the tungsten barrier stopped the diffusion of niobium from the delta phase. Chromium diffusion from the Ni-Cr-Al into the gamma/gamma-prime phase of the eutectic was greatly reduced by the barrier. However, the barrier thickness decreased with time, and tungsten diffused into both the Ni-Cr-Al and the eutectic. When the delta platelets were aligned parallel rather than perpendicular to the Ni-Cr-Al layer, diffusion into the eutectic was reduced.

  4. The role of intergranular chromium carbides on intergranular oxidation of nickel based alloys in pressurized water reactors primary water

    NASA Astrophysics Data System (ADS)

    Gaslain, F. O. M.; Le, H. T.; Duhamel, C.; Guerre, C.; Laghoutaris, P.

    2016-02-01

    Alloy 600 is used in pressurized water reactors (PWRs) but is susceptible to primary water stress corrosion cracking (PWSCC). Intergranular chromium carbides have been found beneficial to reduce PWSCC. Focussed ion beam coupled with scanning electron microscopy (FIB/SEM) 3D tomography has been used to reconstruct the morphology of grain boundary oxide penetrations and their interaction with intergranular Cr carbides in Alloy 600 subjected to a PWR environment. In presence of intergranular Cr carbides, the intergranular oxide penetrations are less deep but larger than without carbide. However, the intergranular oxide volumes normalized by the grain boundary length for both samples are similar, which suggest that intergranular oxidation growth rate is not affected by carbides. Analytical transmission electron microscopy (TEM) shows that the intergranular oxide consists mainly in a spinel-type oxide containing nickel and chromium, except in the vicinity of Cr carbides where Cr2O3 was evidenced. The formation of chromium oxide may explain the lower intergranular oxide depth observed in grain boundaries containing Cr carbides.

  5. A multiple linear regression analysis of hot corrosion attack on a series of nickel base turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1985-01-01

    Multiple linear regression analysis was used to determine an equation for estimating hot corrosion attack for a series of Ni base cast turbine alloys. The U transform (i.e., 1/sin (% A/100) to the 1/2) was shown to give the best estimate of the dependent variable, y. A complete second degree equation is described for the centered" weight chemistries for the elements Cr, Al, Ti, Mo, W, Cb, Ta, and Co. In addition linear terms for the minor elements C, B, and Zr were added for a basic 47 term equation. The best reduced equation was determined by the stepwise selection method with essentially 13 terms. The Cr term was found to be the most important accounting for 60 percent of the explained variability hot corrosion attack.

  6. Prediction of pure water stress corrosion cracking (PWSCC) in nickel base alloys using crack growth rate models

    SciTech Connect

    Thompson, C.D.; Krasodomski, H.T.; Lewis, N.; Makar, G.L.

    1995-02-22

    The Ford/Andresen slip dissolution SCC model, originally developed for stainless steel components in BWR environments, has been applied to Alloy 600 and Alloy X-750 tested in deaerated pure water chemistry. A method is described whereby the crack growth rates measured in compact tension specimens can be used to estimate crack growth in a component. Good agreement was found between model prediction and measured SCC in X-750 threaded fasteners over a wide range of temperatures, stresses, and material condition. Most data support the basic assumption of this model that cracks initiate early in life. The evidence supporting a particular SCC mechanism is mixed. Electrochemical repassivation data and estimates of oxide fracture strain indicate that the slip dissolution model can account for the observed crack growth rates, provided primary rather than secondary creep rates are used. However, approximately 100 cross-sectional TEM foils of SCC cracks including crack tips reveal no evidence of enhanced plasticity or unique dislocation patterns at the crack tip or along the crack to support a classic slip dissolution mechanism. No voids, hydrides, or microcracks are found in the vicinity of the crack tips creating doubt about classic hydrogen related mechanisms. The bulk oxide films exhibit a surface oxide which is often different than the oxides found within a crack. Although bulk chromium concentration affects the rate of SCC, analytical data indicates the mechanism does not result from chromium depletion at the grain boundaries. The overall findings support a corrosion/dissolution mechanism but not one necessarily related to slip at the crack tip.

  7. The Effect of Alloying on Topologically Close Packed Phase Instability in Advanced Nickel-Based Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Arenas, David; Keller, Dennis; Vasudevan, Vijay

    1998-01-01

    An investigation was conducted to describe topologically close packed (TCP) phase instability as a function of composition in the advanced Ni-base superalloy Rene N6. TCP phases are detrimental to overall high-temperature performance of Ni-base superalloys because of their brittle nature and because they deplete the Ni-rich matrix of potent solid solution strengthening elements. Thirty-four variations of polycrystalline Rene N6 determined from a design-of-experiments approach were cast and homogenized at 1315"C for 80 hours followed by exposure at 10930C for 400 hours to promote TCP formation. The alloys had the following composition ranges in atomic percent: Co 10.61 to 16.73%, Mo 0.32 to 1.34%, W 1.85 to 2.52%, Re 1.80 to 2.1 1 %, Ta 2.36 to 3.02%, Al 11.90 to 14.75%, and Cr 3.57 to 6.23%. Physical and chemical characteristics of all n-ticrostructures obtained were described using various analytical techniques. From these observations, a mathematical description of TCP occurrence (omega and P phase) was generated for polycrystalline Rene N6.

  8. Role of cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R.; Barefoot, J.; Tien, J.; Sanchez, J.

    1982-01-01

    The effect of cobalt or substituting for cobalt on the mechanical properties of nickel-based superalloys is discussed. Waspaloy, UDIMET 700, and NIMONIC 115, which are representative of Ni-Cr-Co-Al-Ti-Mo superalloys having different gamma prime contents which are strengthened by a heavily alloyed matrix, coherent gamma prime precipitates, and carbides at the grain boundaries. Microstructure and in situ and extracted phase STEM micro-analysis were used to evaluate the three alloys.

  9. Investigation on the Microstructure and Ductility-Dip Cracking Susceptibility of the Butt Weld Welded with ENiCrFe-7 Nickel-Base Alloy-Covered Electrodes

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Wang, Huang; He, Guo

    2015-03-01

    The weld metal of the ENiCrFe-7 nickel-based alloy-covered electrodes was investigated in terms of the microstructure, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility. Besides the dendritic gamma-Ni(Cr,Fe) phase, several types of precipitates dispersed on the austenitic matrix were observed, which were determined to be the Nb-rich MC-type carbides with "Chinese script" morphology and size of approximately 3 to 10 µm, the Mn-rich MO-type oxides with size of approximately 1 to 2 µm, and the spherical Al/Ti-rich oxides with size of less than 1 µm. The discontinuous Cr-rich M23C6-type carbides predominantly precipitate on the grain boundaries, which tend to coarsen during reheating but begin to dissolve above approximately 1273 K (1000 °C). The threshold strain for DDC at each temperature tested shows a certain degree of correlation with the grain boundary carbides. The DDC susceptibility increases sharply as the carbides coarsen in the temperature range of 973 K to 1223 K (700 °C to 950 °C). The growth and dissolution of the carbides during the welding heat cycles deteriorate the grain boundaries and increase the DDC susceptibility. The weld metal exhibits the minimum threshold strain of approximately 2.0 pct at 1323 K (1050 °C) and the DTR less than 873 K (600 °C), suggesting that the ENiCrFe-7—covered electrode has less DDC susceptibility than the ERNiCrFe-7 bare electrode but is comparable with the ERNiCrFe-7A.

  10. Internal nitridation of nickel-base alloys. Part 1: Behavior of binary and ternary alloys of the Ni-Cr-Al-Ti system

    SciTech Connect

    Krupp, U.; Christ, H.J.

    1999-10-01

    The internal-nitriding behavior of several model alloys of the Ni-Cr-Al-Ti system in an oxygen-free nitrogen atmosphere at 800--1100 C was studied. Thermogravimetry as well as various metallographic techniques (SEM and TEM) were used. It was shown that both the nitrogen solubility and the nitrogen diffusion coefficient are strongly affected by the Cr content of the Ni alloy. Hence, in Ni-Cr-Ti alloys a higher chromium content leads to an increased depth of the internal precipitation of TiN. Nitridation of the alloying element Cr takes place only at high concentrations of Cr. In general, the nitridation rate was found to obey Wagner`s parabolic rate law of internal oxidation. Changes in the parabolic rate constant with alloy composition can be understood by means of thermodynamic calculations in combination with microstructural observations.

  11. Internal nitridation of nickel-base alloys. Part 2: Behavior of quaternary Ni-Cr-Al-Ti alloys and computer-based description

    SciTech Connect

    Krupp, U.; Christ, H.J.

    1999-10-01

    Whereas in Part 1 of this study the process of internal nitridation was described for binary and ternary alloys within the Ni-Cr-Al-Ti system, this part focuses on quaternary Ni-Cr-Al-Ti alloys, which are similar to commercial Ni-base alloys used in high-temperature applications regarding their chemical compositions. These alloys can simultaneously form two different nitride-precipitation zones consisting of TiN and AlN. In order to quantify the nitridation process, thermogravimetric measurements in an oxygen-free nitrogen atmosphere in the temperature range 800--1100 C were carried out and supplemented by extensive microstructural studies. While single-nitride internal nitridation can easily be described by Wagner`s theory of internal oxidation, modeling of the more complex internal-precipitation reactions that involves more than one nitride requires a numerical treatment of both the diffusion and the thermochemical processes in the alloy. For this purpose, a computer simulation was developed in which the commercial thermodynamic software ChemApp is combined with a finite-difference diffusion calculation. It was shown that this calculation technique can be applied successfully to quantitatively describe the internal-nitridation process of the Ni-Cr-Al-Ti model alloys used in this study.

  12. Separating the Influence of Environment from Stress Relaxation Effects on Dwell Fatigue Crack Growth in a Nickel-Base Disk Alloy

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Gabb, T. P.; Ghosn, L. J.

    2016-01-01

    Both environmental embrittlement and crack tip visco-plastic stress relaxation play a significant role in determining the dwell fatigue crack growth (DFCG) resistance of nickel-based disk superalloys. In the current study performed on the Low Solvus High Refractory (LSHR) disk alloy, the influence of these two mechanisms were separated so that the effects of each could be quantified and modeled. Seven different microstructural variations of LSHR were produced by controlling the cooling rate and the subsequent aging and thermal exposure heat treatments. Through cyclic fatigue crack growth testing performed both in air and vacuum, it was established that four out of the seven LSHR heat treatments evaluated, possessed similar intrinsic environmental resistance to cyclic crack growth. For these four heat treatments, it was further shown that the large differences in dwell crack growth behavior which still persisted, were related to their measured stress relaxation behavior. The apparent differences in their dwell crack growth resistance were attributed to the inability of the standard linear elastic fracture mechanics (LEFM) stress intensity parameter to account for visco-plastic behavior. Crack tip stress relaxation controls the magnitude of the remaining local tensile stresses which are directly related to the measured dwell crack growth rates. It was hypothesized that the environmentally weakened grain boundary crack tip regions fail during the dwells when their strength is exceeded by the remaining local crack tip tensile stresses. It was shown that the classical creep crack growth mechanisms such as grain boundary sliding did not contribute to crack growth, but the local visco-plastic behavior still plays a very significant role by determining the crack tip tensile stress field which controls the dwell crack growth behavior. To account for the influence of the visco-plastic behavior on the crack tip stress field, an empirical modification to the LEFM stress

  13. Oxidation in oxygen at 900 deg and 1000 deg C of four nickel-base cast superalloys: NASA-TRW VIA, B-1900, alloy 713C, and IN-738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1977-01-01

    The oxidation at 900 and 1,000 C of four nickel-base superalloys in 1 atmosphere of slowly flowing oxygen was investigated. Thermogravimetric rate data were obtained for periods to 100 hours. The morphology and composition of the oxide scales formed after 100 hours were studied by optical microscopy, X-ray diffraction, electron microprobe, scanning electron microscopy, and X-ray photoelectron spectroscopy (ESCA). Alloys B-1900 and VIA were found to be primarily alumina formers, though probably 25 percent of their surface was covered by CR2O3-containing oxides at 900 C. Alloys 713C and IN-738 were primarily chromia formers, though the surface of 713C at 1,000 C was covered with NiO, and the surface of IN-738 at both temperatures was covered with a thin layer of TiO2.

  14. Strength of inserts in titanium alloy machining

    NASA Astrophysics Data System (ADS)

    Kozlov, V.; Huang, Z.; Zhang, J.

    2016-04-01

    In this paper, a stressed state of a non-worn cutting wedge in a machined titanium alloy (Ti6Al2Mo2Cr) is analyzed. The distribution of contact loads on the face of a cutting tool was obtained experimentally with the use of a ‘split cutting tool’. Calculation of internal stresses in the indexable insert made from cemented carbide (WC8Co) was carried out with the help of ANSYS 14.0 software. Investigations showed that a small thickness of the cutting insert leads to extremely high compressive stresses near the cutting edge, stresses that exceed the ultimate compressive strength of cemented carbide. The face and the base of the insert experience high tensile stresses, which approach the ultimate tensile strength of cemented carbide and increase a probability of cutting insert destruction. If the thickness of the cutting insert is bigger than 5 mm, compressive stresses near the cutting edge decrease, and tensile stresses on the face and base decrease to zero. The dependences of the greatest normal and tangential stresses on thickness of the cutting insert were found. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (dimension of specific contact loads and stresses); γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°].

  15. Effect of casting geometry on mechanical properties of two nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Johnston, J. R.; Dreshfield, R. L.; Collins, H. E.

    1976-01-01

    An investigation was performed to determine mechanical properties of two rhenium-free modifications of alloy TRW, and to evaluate the suitability of the alloy for use in a small integrally cast turbine rotor. The two alloys were initially developed using stress rupture properties of specimens machined from solid gas turbine blades. Properties in this investigation were determined from cast to size bars and bars cut from 3.8 by 7.6 by 17.8 cm blocks. Specimens machined from blocks had inferior tensile strength and always had markedly poorer rupture lives than cast to size bars. At 1,000 C the cast to size bars had shorter rupture lives than those machined from blades. Alloy R generally had better properties than alloy S in the conditions evaluated. The results show the importance of casting geometry on mechanical properties of nickel base superalloys and suggest that the geometry of a component can be simulated when developing alloys for that component.

  16. Nickel Base Superalloy Turbine Disk

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P. (Inventor); Gauda, John (Inventor); Telesman, Ignacy (Inventor); Kantzos, Pete T. (Inventor)

    2005-01-01

    A low solvus, high refractory alloy having unusually versatile processing mechanical property capabilities for advanced disks and rotors in gas turbine engines. The nickel base superalloy has a composition consisting essentially of, in weight percent, 3.0-4.0 N, 0.02-0.04 B, 0.02-0.05 C, 12.0-14.0 Cr, 19.0-22.0 Co, 2.0-3.5 Mo, greater than 1.0 to 2.1 Nb, 1.3 to 2.1 Ta,3.04.OTi,4.1 to 5.0 W, 0.03-0.06 Zr, and balance essentially Ni and incidental impurities. The superalloy combines ease of processing with high temperature capabilities to be suitable for use in various turbine engine disk, impeller, and shaft applications. The Co and Cr levels of the superalloy can provide low solvus temperature for high processing versatility. The W, Mo, Ta, and Nb refractory element levels of the superalloy can provide sustained strength, creep, and dwell crack growth resistance at high temperatures.

  17. Nickel-Based Superalloy Resists Embrittlement by Hydrogen

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan; Chen, PoShou

    2008-01-01

    A nickel-based superalloy that resists embrittlement by hydrogen more strongly than does nickel alloy 718 has been developed. Nickel alloy 718 is the most widely used superalloy. It has excellent strength and resistance to corrosion as well as acceptably high ductility, and is recognized as the best alloy for many high-temperature applications. However, nickel alloy 718 is susceptible to embrittlement by hydrogen and to delayed failure and reduced tensile properties in gaseous hydrogen. The greater resistance of the present nickel-based superalloy to adverse effects of hydrogen makes this alloy a superior alternative to nickel alloy 718 for applications that involve production, transfer, and storage of hydrogen, thereby potentially contributing to the commercial viability of hydrogen as a clean-burning fuel. The table shows the composition of the present improved nickel-based superalloy in comparison with that of nickel alloy 718. This composition was chosen to obtain high resistance to embrittlement by hydrogen while maintaining high strength and exceptional resistance to oxidation and corrosion. The most novel property of this alloy is that it resists embrittlement by hydrogen while retaining tensile strength greater than 175 kpsi (greater than 1.2 GPa). This alloy exhibits a tensile elongation of more than 20 percent in hydrogen at a pressure of 5 kpsi (approximately equal to 34 MPa) without loss of ductility. This amount of elongation corresponds to 50 percent more ductility than that exhibited by nickel alloy 718 under the same test conditions.

  18. Considerations on the performance and fabrication of candidate materials for the Yucca Mountain repository waste packages highly corrosion resistant nickel-base and titanium-base alloys

    SciTech Connect

    Dalder, E; Goldberg, A

    1995-11-30

    Among the metallurgical factors that affect the performance of a material in a given environment are alloy composition, alloy segregation, depletion of alloying elements, non-uniform microstructures, precipitation leading to an increase in susceptibility to corrosion as well as decreases in ductility, residual plastic deformation, and residual stresses. Precipitation often occurs preferentially at grain boundaries, causing depletion of critical elements in regions adjacent to these boundaries. Continuous grain-boundary precipitates can lead to drops in ductility and toughness. The presence of non-metallic inclusions, if excessive and/or segregated, can also cause embrittlement. Segregation of alloying elements can result in localized galvanic action. Depletion of alloying elements as well as segregation can result in reductions in the concentrations of critical elements below those necessary to resist localized corrosion. Segregation and alloy depletion can also facilitate precipitation that could lead to embrittlement.

  19. Sample preparation of metal alloys by electric discharge machining

    NASA Technical Reports Server (NTRS)

    Chapman, G. B., II; Gordon, W. A.

    1976-01-01

    Electric discharge machining was investigated as a noncontaminating method of comminuting alloys for subsequent chemical analysis. Particulate dispersions in water were produced from bulk alloys at a rate of about 5 mg/min by using a commercially available machining instrument. The utility of this approach was demonstrated by results obtained when acidified dispersions were substituted for true acid solutions in an established spectrochemical method. The analysis results were not significantly different for the two sample forms. Particle size measurements and preliminary results from other spectrochemical methods which require direct aspiration of liquid into flame or plasma sources are reported.

  20. Dynamic oxidation behavior at 1000 and 1100 C of four nickel-base cast alloys, NASA-TRW VIA, B-1900, 713C, and 738X

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.

    1974-01-01

    The superalloys NASA-TRW VIA, B-1900, 713C, and 738X were tested cyclically and isothermally for resistance to oxidation in high velocity gas streams for 100 hours at specimen temperatures of 1000 C and 1100 C. Alloys VIA and B-1900, which were the most oxidation resistant, displayed slight and very similar weight changes and metal losses. Alloy 713C also sustained only slight metal losses, but it exhibited some tendency to spall. Alloy 738X was found to be the most susceptible to cyclic oxidation; this resulted in heavy spalling, which in turn caused high weight losses and high metal losses. Oxidation test results are related to the amounts of chromium aluminum, and the refractory metals in the alloys investigated.

  1. Isothermal and cyclic oxidation at 1000 and 1100 deg C of four nickel-base alloys: NASA-TRW VIA, B-1900, 713C, and 738X

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Santoro, G. J.; Lowell, C. E.

    1973-01-01

    The isothermal and cyclic oxidation resistance of four cast Ni-base gamma + gamma prime alloys, NASA-TRW Via, B-1900, 713C, and 738X, was determined in still air at 1000 and 1100 C. The oxidation process was evaluated by specific sample weight change with time, sample thickness change, X-ray diffraction of the scales, and sample metallography. The behavior is discussed in terms of the Cr, Al, and refractory metal contents of the alloys.

  2. High weldability nickel-base superalloy

    DOEpatents

    Gibson, Robert C.; Korenko, Michael K.

    1980-01-01

    This is a nickel-base superalloy with excellent weldability and high strength. Its composition consists essentially of, by weight percent, 10-20 iron, 57-63 nickel, 7-18 chromium, 4-6 molybdenum, 1-2 niobium, 0.2-0.8 silicon, 0.01-0.05 zirconium, 1.0-2.5 titanium, 1.0-2.5 aluminum, 0.02-0.06 carbon, and 0.002-0.015 boron. The weldability and strength of this alloy give it a variety of applications. The long-time structural stability of this alloy together with its low swelling under nuclear radiation conditions, make it especially suitable for use as a duct material and controlling element cladding for sodium-cooled nuclear reactors.

  3. Ultrashort pulse laser machining of metals and alloys

    SciTech Connect

    Perry, Michael D.; Stuart, Brent C.

    2003-09-16

    The invention consists of a method for high precision machining (cutting, drilling, sculpting) of metals and alloys. By using pulses of a duration in the range of 10 femtoseconds to 100 picoseconds, extremely precise machining can be achieved with essentially no heat or shock affected zone. Because the pulses are so short, there is negligible thermal conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond approximately 0.1-1 micron (dependent upon the particular material) from the laser machined surface. Due to the short duration, the high intensity (>10.sup.12 W/cm.sup.2) associated with the interaction converts the material directly from the solid-state into an ionized plasma. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces with negligible redeposition either within the kerf or on the surface. Since there is negligible heating beyond the depth of material removed, the composition of the remaining material is unaffected by the laser machining process. This enables high precision machining of alloys and even pure metals with no change in grain structure.

  4. A lifetime-prediction approach to understanding corrosion: The corrosion-fatigue and corrosion behavior of a nickel-based superalloy and a nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Steward, Rejanah Vernice

    Lifetime-prediction models are useful for simulating a material's in-service behavior or outcome. Perhaps the greatest advantage of these models is the ability to use the predicted results to help optimize engineering designs and reduce costs. The HastelloyRTM C-2000RTM superalloy is a single-phase material and face-centered cubic in structure at all temperatures. The C-2000RTM alloy is a commercially designed alloy manufactured to function in both reducing and oxidizing solutions. C-2000RTM is used as a fabrication material for heat exchangers, piping for chemical refineries, and storage repositories. The corrosion properties of C-2000RTM are excellent, and the ductility and fatigue properties are good. In this study, C-2000RTM is used to verify the theoretical basis of an electrochemical-micromechanical crack-initiation corrosion-fatigue model for materials under passive electrochemical conditions. The results from electrochemical and mechanical experiments, along with the findings from the conventional electron microscopy and a laser interferometer will be presented. A nanocrystalline Ni-18 weight percent (wt.%) Fe alloy is examined to investigate its electrochemical behavior in a 3.5 wt.% NaCl solution. Three Ni-18 wt.% Fe samples were annealed at 400°C for 3, 8, and 24 hours (hrs.) to study the effects of grain sizes on the electrochemical properties of bulk Ni-18 wt.% Fe. The electrochemical results from the annealed samples are compared with those measured for the as-received Ni-18 wt.% Fe material consisting of an average grain size of 23 nanometers (nm). The samples annealed for times longer than 8 hrs. appear to have undergone an abnormal grain growth, where nanometer and micrometer (mum) grain sizes are present. Unlike the electrochemical results for the as-received material, the annealed nanocrystalline materials appear to be susceptible to localized corrosion. Consequently, these larger grains within the nanoncrystalline-grain matrix are

  5. Creep-fatigue damage evaluation of a nickel-base heat-resistant alloy Hastelloy XR in simulated HTGR helium gas environment

    NASA Astrophysics Data System (ADS)

    Tsuji, Hirokazu; Nakajima, Hajime

    1994-02-01

    The properties of Hastelloy XR, which is a developed alloy as the structural material for high-temperature components of the HTTR, under creep-fatigue interaction conditions were examined by performing a series of axial strain-controlled fully reversed fatigue tests in the simulated HTGR helium gas environment at 700, 800, 900 and 950°C. Two types of evaluation techniques, i.e., the life fraction rule and the ductility exhaustion one, were applied for the evaluation of the creep damage during the strain holding. The fatigue life reduction due to the strain holding is observed even at hold times of 6 s, and the saturation point of the fatigue life reduction shifts to the shorter hold time side with increasing temperature. The life fraction rule predicts an excessively conservative value for the creep damage. The ductility exhaustion rule can predict the fatigue life under the effective creep condition much more successfully than the life fraction one.

  6. The continuing battle against defects in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.

    1986-01-01

    In the six decades since the identification of age hardenable nickel-base superalloys their compositions and microstructures have changed markedly. Current alloys are tailored for specific applications. Thus their microstructures are defined for that application. This paper briefly reviews the evolution of superalloy microstructures and comments on the appearance and implications of microstructural defects in high performance superalloys. It is seen that new alloys and proceses have generated new types of defects. Thus as the industry continues to develop new alloys and processes it must remain vigilant toward the identification and control of new types of defects.

  7. Minimum quantity lubrication machining of aluminum and magnesium alloys

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sukanta

    2011-12-01

    The use of minimum quantity lubrication (MQL) machining, i.e. drilling and tapping of aluminum and magnesium alloys using very low quantities of cutting fluids was studied and the MQL machining performance was compared to dry and conventional flooded conditions. An experimental drilling station with an MQL system was built to measure torque and thrust force responses. Uncoated and diamond-like carbon (DLC) coated HSS drills were tested against 319 Al and AZ91 alloys using 10--50 ml/h of distilled water (H 2O-MQL) and a fatty acid based MQL agent (FA-MQL). The results indicated that H2O-MQL used in conjunction with non-hydrogenated DLC (NH-DLC) coatings reduced the average torque and thrust-force compared to dry cutting and achieved a performance comparable with conventional flooded drilling. At least 103 holes could be drilled using NH-DLC in H2O-MQL and uncoated HSS in FA-MQL in drilling of both 319 Al and AZ91. MQL drilling and tapping provided a stable machining performance, which was evident from the uniform torque and force patterns and also resulted in desirable hole surface, thread quality and chip segments. The maximum temperature generated in the workpiece during MQL machining was lower than that observed in dry drilling and tapping, and comparable to flooded conditions. The mechanical properties of the material adjacent to drilled holes, as evaluated through plastic strain and hardness measurements, revealed a notable softening in case of dry drilling, with magnesium alloys exhibiting a recrystallized grain zone, but not for MQL drilling. Softened aluminum and magnesium promoted adhesion to the tools resulted built-up edge formation and consequently high torques and thrust-forces were generated. NH-DLC coatings' low COF in H 2O-MQL against 319 Al (0.10) and AZ91 (0.12) compared to uncoated HSS (0.63 and 0.65) limited the temperature increase during NH-DLC in H2 O-MQL drilling and hence both torques and thrust forces were effectively reduced.

  8. Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

  9. Influence of machining parameters on cutting tool life while machining aluminum alloy fly ash composite

    NASA Astrophysics Data System (ADS)

    Rao, C. R. Prakash; chandra, Poorna; Kiran, R.; Asha, P. B.

    2016-09-01

    Metal matrix composites containing fly ash as reinforcement are primarily preferred because these materials possess lower density and higher strength to weight ratio. The metal matrix composites possess hetrogeneous microstructure which is due to the presence of hard ceramic particles. While turning composites, the catastrophic failure of cutting tools is attributed to the presence of hard particles. Selection of optimal cutting conditions for a given machining process and grade of cutting tools are of utmost importance to enhance the tool life during turning operation. Thus the research work was aimed at the experimental investigation of the cutting tool life while machining aluminum alloy composite containing 0-15% fly-ash. The experiments carried out following ISO3685 standards. The carbide inserts of grade K10 and style CGGN120304 were the turning tools. The cutting speed selected was between 200m/min to 500m/min in step of 100m/min, feed of 0.08 & 0.16 mm/revolution and constant depth of cut of 1.0 mm. The experimental results revealed that the performance of K10 grade carbide insert found better while machining composite containing 5% filler, at all cutting speeds and 0.08mm/revolution feed. The failures of carbide tools are mainly due to notch wear followed by built up edge and edge chipping.

  10. Understanding the roles of the strategic element cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Dreshfield, R. L.

    1983-01-01

    The United States imports over 90% of its cobalt, chromium, columbium, and tantalum, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. Research progress in understanding the roles of cobalt and some possible substitutes effects on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed.

  11. Effects of cobalt in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Jarrett, R. N.

    1983-01-01

    The role of cobalt in a representative wrought nickel-base superalloy was determined. The results show cobalt affecting the solubility of elements in the gamma matrix, resulting in enhanced gamma' volume fraction, in the stabilization of MC-type carbides, and in the stabilization of sigma phase. In the particular alloy studied, these microstructural and microchemistry changes are insufficient in extent to impact on tensile strength, yield strength, and in the ductilities. Depending on the heat treatment, creep and stress rupture resistance can be cobalt sensitive. In the coarse grain, fully solutioned and aged condition, all of the alloy's 17% cobalt can be replaced by nickel without deleteriously affecting this resistance. In the fine grain, partially solutioned and aged condition, this resistance is deleteriously affected only when one-half or more of the initial cobalt content is removed. The structure and property results are discussed with respect to existing theories and with respect to other recent and earlier findings on the impact of cobalt, if any, on the performance of nickel-base superalloys.

  12. Machining studies of die cast aluminum alloy-silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Sornakumar, Thambu; Kathiresan, Marimuthu

    2010-10-01

    Metal matrix composites (MMCs) with high specific stiffness, high strength, improved wear resistance, and thermal properties are being increasingly used in advanced structural, aerospace, automotive, electronics, and wear applications. Aluminum alloy-silicon carbide composites were developed using a new combination of the vortex method and the pressure die-casting technique in the present work. Machining studies were conducted on the aluminum alloy-silicon carbide (SiC) composite work pieces using high speed steel (HSS) end-mill tools in a milling machine at different speeds and feeds. The quantitative studies on the machined work piece show that the surface finish is better for higher speeds and lower feeds. The surface roughness of the plain aluminum alloy is better than that of the aluminum alloy-silicon carbide composites. The studies on tool wear show that flank wear increases with speed and feed. The end-mill tool wear is higher on machining the aluminum alloy-silicon carbide composites than on machining the plain aluminum alloy.

  13. Quench Crack Behavior of Nickel-base Disk Superalloys

    NASA Technical Reports Server (NTRS)

    Gayda, John; Kantzos, Pete; Miller, Jason

    2002-01-01

    There is a need to increase the temperature capability of superalloy turbine disks to allow higher operating temperatures in advanced aircraft engines. When modifying processing and chemistry of disk alloys to achieve this capability, it is important to preserve the ability to use rapid cooling during supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is an understanding of the key variables controlling the cracking tendencies of nickel-base disk alloys during quenching from supersolvus heat treatments. The objective of this study was to investigate the quench cracking tendencies of several advanced disk superalloys during simulated heat treatments. Miniature disk specimens were rapidly quenched after solution heat treatments. The responses and failure modes were compared and related to the quench cracking tendencies of actual disk forgings. Cracking along grain boundaries was generally observed to be operative. For the alloys examined in this study, the solution temperature not alloy chemistry was found to be the primary factor controlling quench cracking. Alloys with high solvus temperatures show greater tendency for quench cracking.

  14. Aluminum alloys for satellite boxes : engineering guidelines for obtaining adequate strength while minimizing residual stresses and machining distortion.

    SciTech Connect

    Younger, Mandy S.; Eckelmeyer, Kenneth Hall

    2007-11-01

    This report provides strategies for minimizing machining distortion in future designs of aluminum alloy satellite boxes, based in part on key findings from this investigation. The report outlines types of aluminum alloys and how they are heat treated, how residual stresses develop during heat treatment of age hardening alloys, ways residual stresses can be minimized, and the design of machining approaches to minimize distortion in parts that contain residual stresses. Specific recommendations are made regarding alloy selection, heat treatment, stress relieving, and machining procedures for boxes requiring various strength levels with emphasis on 6061 and 7075 aluminum alloys.

  15. The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf; Karaca, Haluk E.; Noebe, Ronald D.; Jawahir, I. S.

    2015-06-01

    Poor machinability with conventional machining processes is a major shortcoming that limits the manufacture of NiTi components. To better understand the effects of phase state on the machining performance of NiTi alloys, cutting temperature, tool-wear behavior, cutting force components, tool-chip contact length, chip thickness, and machined surface quality data were generated from a NiTi alloy using precooled cryogenic, dry, minimum quantity lubrication (MQL), and preheated machining conditions. Findings reveal that machining NiTi in the martensite phase, which was achieved through precooled cryogenic machining, profoundly improved the machining performance by reducing cutting force components, notch wear, and surface roughness. Machining in the austenite state, achieved through preheating, did not provide any benefit over dry and MQL machining, and these processes were, in general, inferior to cryogenic machining in terms of machining performance, particularly at higher cutting speeds.

  16. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Chih-Cheng; Ho, Wen-Fu

    2016-05-01

    This study evaluated the machinability of a series of binary Ti-Si alloys with a goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated through cutting force. The experimental results indicate that alloying with Si significantly improved the machinability of c.p. Ti in terms of cutting force under the present cutting conditions. As the Si content increases, the cutting force decreases then greatly increases. The cutting forces of c.p. Ti and the Ti-Si alloys increased as the feed rate increased from 30 to 60 m/min under the cutting speed of 55 or 110 m/min. The cutting force of Ti-5Si at cutting speed 55 m/min was approximately 49% lower than that of c.p. Ti; at cutting speed 110 m/min, it was approximately 62% lower than that of c.p. Ti. The cutting force of Ti-10Si was significantly higher than those of the other Ti-Si alloys and c.p. Ti, a result that can be explained by a higher degree of hardness (626 HV) and larger amounts of Ti5Si3 (47.10 vol.%). For Ti-5Si, there was no obvious adhesion of chips observed on the cut surfaces. Furthermore, the specimens had the lowest surface roughness (Ra) values, approximately 0.3-0.4 μm, under the four cutting conditions. When cutting force, chip length, and surface roughness results are considered, the Ti-5Si alloy developed in this study is a viable candidate for machining.

  17. Evaluation of the Machinability of Cast Ti-Si Alloys with Varying Si Content

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Chih-Cheng; Ho, Wen-Fu

    2016-05-01

    This study evaluated the machinability of a series of binary Ti-Si alloys with a goal of developing a titanium alloy with better machinability than commercially pure titanium (c.p. Ti). The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated through cutting force. The experimental results indicate that alloying with Si significantly improved the machinability of c.p. Ti in terms of cutting force under the present cutting conditions. As the Si content increases, the cutting force decreases then greatly increases. The cutting forces of c.p. Ti and the Ti-Si alloys increased as the feed rate increased from 30 to 60 m/min under the cutting speed of 55 or 110 m/min. The cutting force of Ti-5Si at cutting speed 55 m/min was approximately 49% lower than that of c.p. Ti; at cutting speed 110 m/min, it was approximately 62% lower than that of c.p. Ti. The cutting force of Ti-10Si was significantly higher than those of the other Ti-Si alloys and c.p. Ti, a result that can be explained by a higher degree of hardness (626 HV) and larger amounts of Ti5Si3 (47.10 vol.%). For Ti-5Si, there was no obvious adhesion of chips observed on the cut surfaces. Furthermore, the specimens had the lowest surface roughness (Ra) values, approximately 0.3-0.4 μm, under the four cutting conditions. When cutting force, chip length, and surface roughness results are considered, the Ti-5Si alloy developed in this study is a viable candidate for machining.

  18. Mechanical properties of nanostructured nickel based superalloy Inconel 718

    NASA Astrophysics Data System (ADS)

    Mukhtarov, Sh; Ermachenko, A.

    2010-07-01

    This paper will describe the investigations of a nanostructured (NS) state of nickel based INCONEL® alloy 718. This structure was generated in bulk semiproducts by severe plastic deformation (SPD) via multiple isothermal forging (MIF) of a coarse-grained alloy. The initial structure consisted of γ-phase grains with disperse precipitations of γ"-phase in the forms of discs, 50-75 nm in diameter and 20 nm in thickness. The MIF generated structures possess a large quantity of non-coherent plates and rounded precipitations of δ-phase, primarily along grain boundaries. In the duplex (γ+δ) structure the grains have high dislocation density and a large number of nonequilibrium boundaries. Investigations to determine mechanical properties of the alloy in a nanostructured state were carried out. Nanocrystalline Inconel 718 (80 nm) possesses a very high room-temperature strength after SPD. Microcrystalline (MC) and NS states of the alloy were subjected to strengthening thermal treatment, and the obtained results were compared in order to determine their mechanical properties at room and elevated temperatures.

  19. Selection Of Cutting Inserts For Aluminum Alloys Machining By Using MCDM Method

    NASA Astrophysics Data System (ADS)

    Madić, Miloš; Radovanović, Miroslav; Petković, Dušan; Nedić, Bogdan

    2015-07-01

    Machining of aluminum and its alloys requires the use of cutting tools with special geometry and material. Since there exists a number of cutting tools for aluminum machining, each with unique characteristics, selection of the most appropriate cutting tool for a given application is very complex task which can be viewed as a multi-criteria decision making (MCDM) problem. This paper is focused on multi-criteria analysis of VCGT cutting inserts for aluminum alloys turning by applying recently developed MCDM method, i.e. weighted aggregated sum product assessment (WASPAS) method. The MCDM model was defined using the available catalogue data from cutting tool manufacturers.

  20. X-ray photoelectron spectroscopy study of nickel and nickel-base alloy surface alterations in simulated hot corrosion conditions with emphasis on eventual application to turbine blade corrosion

    NASA Technical Reports Server (NTRS)

    Mateescu, G. D.; Smith, S. R.

    1979-01-01

    Research on the high temperature oxidation and Na2SO4 induced hot corrosion of some nickel base superalloys was accomplished by using ESCA to determine the surface composition of the oxidized or corroded samples. Oxidation was carried out at 900 or 1000 C in slowly flowing O2 for samples of B-1900, NASA-TRW VIA, 713C, and IN-738. Oxidation times ranged from 0.5 to 100 hr. Hot corrosion of B-1900 was induced applying a coating of Na2SO4 to peroxidized samples, the heating to 900 C in slowly flowing O2. For oxidized samples, the predominant type of scale formed by each superalloy was determined, and a marked surface enrichment of Ti was found in each case. For corroded samples, the transfer of significant amounts of material from the oxide layer to the surface of the salt layer was observed to occur long before the onset of accelerating weight-gain. Changes in surface composition were observed to coincide with the beginning of accelerating corrosion, the most striking of which was a tenfold decrease in the sulfur to sodium ration and an increase in the Cr(VI) ratio.

  1. Effects of cobalt on the hot workability of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Collier, J. P.; Tien, J. K.

    1984-01-01

    The effect of cobalt on the workability of nickel-base superalloys is examined with reference to experimental results for four heats of alloys based on the Nimonic 115 composition with varying amounts of nickel substituted for the nominal 14 percent cobalt. It is shown that Co lowers the gamma-prime solvus, which in turn lowers the Cr23C6 carbide solvus. It is further shown that these solvus temperatures bracket the hot working range for the alloys. However, thermomechanical processing modifications reflecting the effect of Co on the gamma-prime and carbide solvi are shown to restore the workability and the properties of alloys with little or no cobalt.

  2. New approach for assessing the weldability of precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Moosavy, Homam Naffakh; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Khodabakhshi, Meisam; Mapelli, Carlo

    2013-12-01

    A new procedure was proposed for evaluating the weldability of nickel-base superalloys. The theory is on the basis of two microstructural patterns. In pattern I, the weld microstructure exhibits severe alloying segregation, many low-melting eutectic structures, and low weldability. The weld requires a weaker etchant and a shorter time for etching. In pattern II, the weld microstructure displays less alloying segregation, low quantity of eutectic structures, and high weldability. The weld needs a stronger etchant and a longer time for etching. Five superalloys containing different amounts of Nb and Ti were designed to verify the patterns. After welding operations, the welds were etched by four etchants with different corrosivities. The weldability was determined by TG-DSC measurements. The metallography and weldability results confirmed the theoretic patterns. Finally, the etchant corrosivity and etching time were proposed as new criteria to evaluate the weldability of nickel-base superalloys.

  3. Welding of nickel-base superalloys having a nil-ductility range

    NASA Technical Reports Server (NTRS)

    Smashey, Russell W. (Inventor); Kelly, Thomas J. (Inventor); Snyder, John H. (Inventor); Sheranko, Ronald L. (Inventor)

    1999-01-01

    An article made of a nickel-base superalloy having a nil-ductility range from the solidus temperature of the alloy to about 600.degree. F. below the solidus temperature is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, adjusting the temperature of the article to a welding temperature of from about 1800.degree. F. to about 2100.degree. F., welding a preselected area in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected area so as to locally melt the alloy in the preselected area, providing a filler metal having the same composition as the nickel-based superalloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.

  4. Effect of Machining Parameters on Surface Integrity in Machining Nimonic C-263 Super Alloy Using Whisker-Reinforced Ceramic Insert

    NASA Astrophysics Data System (ADS)

    Ezilarasan, C.; Senthil kumar, V. S.; Velayudham, A.

    2013-06-01

    Whisker-reinforced ceramic inserts were used to conduct turning trials on nimonic C-263 super alloy to study the effect of different combinations of cutting parameters on surface integrity (roughness, microhardness, and residual stress) by employing energy dispersive spectroscopy, scanning electron microscopy, x-ray diffraction, and Vicker's microhardness test. Abrasion, adhesion and diffusion were found to be the main tool wear mechanisms in turning nimonic C-263 alloy. Based on characterization of surface roughness, a combination of 190 m/min cutting speed and 0.102 mm/rev feed rate was found to be the critical condition for turning nimonic C-263 alloy. Microhardness varied between 550 and 690 HV at the feed rates of 0.102-0.143 mm/rev for a cutting speed of 250 m/min after 9 min of turning. A tensile residual stress of 725-850 MPa on the machined surface was recorded at the preceding combination of cutting parameters. Cutting speed and cutting time had a dominant effect on the magnitude of the residual stress. No evidence of thermal relaxation and reduction in the degree of work hardening was noted during machining at high cutting speed.

  5. Machinability Evaluation of Ti-5Nb- xFe Alloys for Dental Applications

    NASA Astrophysics Data System (ADS)

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang; Hsu, Kuan-Huang; Ho, Wen-Fu

    2015-03-01

    In this study, we evaluated the machinability of a series of Ti-5Nb- xFe alloys with an Fe content ranging from 1 to 5 mass% and compared the results to those of commercially pure titanium (c.p. Ti) and Ti-6Al-4V. The alloys were slotted using a milling machine and end mills under four cutting conditions. Machinability was evaluated using cutting force which was measured using a dynamometer. The experimental results indicate that the addition of Fe significantly affected the machinability of the Ti alloys in terms of cutting force under the present cutting conditions. Under certain conditions, the cutting force of Ti-5Nb-4Fe was lower than that of c.p. Ti and Ti-6Al-4V, a result which can be explained by a higher degree of hardness and greater amounts of ω phase. Ti-5Nb-4Fe also had a better surface finish: cutting marks were less apparent and metal chips did not adhere to the cut surfaces under cutting condition C (cutting speed: 1.83 m/s, feed rate: 0.0005 m/s, and depth of cut: 0.0002 m). Ti-5Nb-4Fe had the lowest average surface roughness ( R a) after machining (approximately 0.27 μm under cutting condition C).

  6. Metals and Alloys; Machine Shop Work 3: 9557.03.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to assist the instructor in systematically planning and presenting a variety of meaningful lessons to facilitate the necessary training for the machine shop student. The materials are designed to enable the student to learn the manipulative skills and related knowledge necessary to understand…

  7. Effect of Alloying, Heat Treatment and Carbon Content on White Layer Formation in Machining of Steels

    SciTech Connect

    Han, Sangil; Melkote, Shreyes N; Riester, Laura

    2005-01-01

    This paper describes an experimental investigation of the effects of alloying, carbon content, and heat treatment on white layer formation in machining of steels. The investigation is carried out by machining steels that differ in alloying, heat treatment and carbon content, via orthogonal cutting tests performed with low cBN content tools. The depth of white layer and its hardness are measured for every case. Specifically, the thickness and hardness of white layer produced in cutting AISI 1045 and AISI 4340 annealed steels are compared to determine the effect of alloying on white layer formation. The effect of heat treatment on white layer formation and its hardness are investigated by machining annealed and hardened (53 HRC) AISI 4340 steels. The effect of carbon content on white layer formation is investigated by cutting hardened AISI 52100 and AISI 4340 steels of the same hardness (53 HRC). The results of the study show that alloying, heat treatment, and carbon content influence white layer formation and its hardness.

  8. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    SciTech Connect

    Fell, H.A.

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  9. Compositional Effects on Nickel-Base Superalloy Single Crystal Microstructures

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Garg,Anita; Rogers, Richard B.; Nathal, Michael V.

    2012-01-01

    Fourteen nickel-base superalloy single crystals containing 0 to 5 wt% chromium (Cr), 0 to 11 wt% cobalt (Co), 6 to 12 wt% molybdenum (Mo), 0 to 4 wt% rhenium (Re), and fixed amounts of aluminum (Al) and tantalum (Ta) were examined to determine the effect of bulk composition on basic microstructural parameters, including gamma' solvus, gamma' volume fraction, volume fraction of topologically close-packed (TCP) phases, phase chemistries, and gamma - gamma'. lattice mismatch. Regression models were developed to describe the influence of bulk alloy composition on the microstructural parameters and were compared to predictions by a commercially available software tool that used computational thermodynamics. Co produced the largest change in gamma' solvus over the wide compositional range used in this study, and Mo produced the largest effect on the gamma lattice parameter and the gamma - gamma' lattice mismatch over its compositional range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had a significant impact on their concentrations in the gamma matrix and, to a smaller extent, in the gamma' phase. The gamma phase chemistries exhibited strong temperature dependencies that were influenced by the gamma and gamma' volume fractions. A computational thermodynamic modeling tool significantly underpredicted gamma' solvus temperatures and grossly overpredicted the amount of TCP phase at 982 C. Furthermore, the predictions by the software tool for the gamma - gamma' lattice mismatch were typically of the wrong sign and magnitude, but predictions could be improved if TCP formation was suspended within the software program. However, the statistical regression models provided excellent estimations of the microstructural parameters based on bulk alloy composition, thereby demonstrating their usefulness.

  10. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  11. Finite Element Simulation of Machining of Ti6Al4V Alloy

    SciTech Connect

    Rizzuti, S.; Umbrello, D.

    2011-05-04

    Titanium and its alloys are an important class of materials, especially for aerospace applications, due to their excellent combination of strength and fracture toughness as well as low density. However, these materials are generally regarded as difficult to machine because of their low thermal conductivity and high chemical reactivity with cutting tool materials. Moreover, the low thermal conductivity of Titanium inhibits dissipation of heat within the workpiece causing an higher temperature at the cutting edge and generating for higher cutting speed a rapid chipping at the cutting edge which leads to catastrophic failure. In addition, chip morphology significantly influences the thermo-mechanical behaviour at the workpiece/tool interface, which also affects the tool life.In this paper a finite element analysis of machining of TiAl6V4 is presented. In particular, cutting force, chip morphology and segmentation are taken into account due to their predominant roles to determine machinability and tool wear during the machining of these alloys. Results in terms of residual stresses are also presented. Moreover, the numerical results are compared with experimental ones.

  12. Effects of cobalt on structure, microchemistry and properties of a wrought nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Tien, J. K.

    1982-01-01

    The effect of cobalt on the basic mechanical properties and microstructure of wrought nickel-base superalloys has been investigated experimentally by systematically replacing cobalt by nickel in Udimet 700 (17 wt% Co) commonly used in gas turbine (jet engine) applications. It is shown that the room temperature tensile yield strength and tensile strength only slightly decrease in fine-grained (disk) alloys and are basically unaffected in coarse-grained (blading) alloys as cobalt is removed. Creep and stress rupture resistances at 760 C are found to be unaffected by cobalt level in the blading alloys and decrease sharply only when the cobalt level is reduced below 8 vol% in the disk alloys. The effect of cobalt is explained in terms of gamma prime strengthening kinetics.

  13. Thermal stability of the nickel-base superalloy B-1900 + Hf with tantalum variations

    NASA Technical Reports Server (NTRS)

    Harmon, B. S.; Pletka, B. J.; Janowski, G. M.

    1987-01-01

    The microstructure of the solutionized and aged nickel-base superalloy B-1900 + Hf was examined after additional aging at 982 C for 72, 250, and 1000 hours. Alloy compositions that were examined contained the normal 1.34 at. pct (4.3 wt pct) Ta as well as 0.67 at. pct and zero Ta levels. The gamma-prime phase agglomerated, became platelike in morphology, and decreased in volume fraction for all three alloys throughout the aging treatments. Changes which occurred in the gamma and gamma-prime phase compositions were nearly complete after 72 hours of aging while changes in the MC carbide composition continued throughout the aging. Blocky M6C carbides precipitated along the grain boundaries of all three alloys in the first 72 hours of aging. In addition, an acicular form of this Mo/Cr/Ni-rich carbide developed in the intragranular regions of the Ta-containing alloys.

  14. Methodology Developed for Modeling the Fatigue Crack Growth Behavior of Single-Crystal, Nickel-Base Superalloys

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Because of their superior high-temperature properties, gas generator turbine airfoils made of single-crystal, nickel-base superalloys are fast becoming the standard equipment on today's advanced, high-performance aerospace engines. The increased temperature capabilities of these airfoils has allowed for a significant increase in the operating temperatures in turbine sections, resulting in superior propulsion performance and greater efficiencies. However, the previously developed methodologies for life-prediction models are based on experience with polycrystalline alloys and may not be applicable to single-crystal alloys under certain operating conditions. One of the main areas where behavior differences between single-crystal and polycrystalline alloys are readily apparent is subcritical fatigue crack growth (FCG). The NASA Lewis Research Center's work in this area enables accurate prediction of the subcritical fatigue crack growth behavior in single-crystal, nickel-based superalloys at elevated temperatures.

  15. Corrosion resistance of sodium sulfate coated cobalt-chromium-aluminum alloys at 900 C, 1000 C, and 1100 C

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    The corrosion of sodium sulfate coated cobalt alloys was measured and the results compared to the cyclic oxidation of alloys with the same composition, and to the hot corrosion of compositionally equivalent nickel-base alloys. Cobalt alloys with sufficient aluminum content to form aluminum containing scales corrode less than their nickel-base counterparts. The cobalt alloys with lower aluminum levels form CoO scales and corrode more than their nickel-base counterparts which form NiO scales.

  16. A concept for the EQ coating system for nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Kawagishi, K.; Sato, A.; Harada, H.

    2008-07-01

    Nickel-based single-crystal superalloys with high concentrations of refractory elements are prone to generate a diffusion layer called a secondary reaction zone (SRZ) beneath their bond coating during long exposure to high temperatures. The SRZ causes a reduction of the load-bearing cross section and it is detrimental to the creep properties of thin-walled turbine airfoils. In this study, a new bond coat system, “EQ coating,” which is thermodynamically stable and suppresses SRZ has been proposed. Diffusion couples of coating materials and substrate alloys were made and heat treated at 1,100°C for 300 h and 1,000 h. Cyclic oxidation examinations were carried out at 1,100°C in air and the oxidation properties of EQ coating materials were discussed. High-velocity frame-sprayed EQ coatings designed for second-generation nickel-based superalloys were deposited on fourth-and fifth-generation nickel-based superalloys, and the stability of the microstructure at the interface and creep property of the coating system were investigated.

  17. Application of machine-learning methods to solid-state chemistry: ferromagnetism in transition metal alloys

    NASA Astrophysics Data System (ADS)

    Landrum, Gregory A.; Genin, Hugh

    2003-12-01

    Machine-learning methods are a collection of techniques for building predictive models from experimental data. The algorithms are problem-independent: the chemistry and physics of the problem being studied are contained in the descriptors used to represent the known data. The application of a variety of machine-learning methods to the prediction of ferromagnetism in ordered and disordered transition metal alloys is presented. Applying a decision tree algorithm to build a predictive model for ordered phases results in a model that is 100% accurate. The same algorithm achieves 99% accuracy when trained on a data set containing both ordered and disordered phases. Details of the descriptor sets for both applications are also presented.

  18. Growth of pores during the creep of a single crystal nickel-base superalloy

    SciTech Connect

    Komenda, J.; Henderson, P.J.

    1997-12-01

    The use of single crystal (SX) nickel-base superalloys is set to increase in the future with the introduction of SX blades into land-based gas turbines for power generation. Cavities are pre-existing in SX alloys as interdendritic casting porosity, from which cracks nucleate and grow during the later stages of creep. It is generally assumed that no new cavities nucleate during creep. In this respect, cavities in SX alloys have been considered uninteresting and there have been no quantitative studies of cavities during the creep of SX alloys. However, cavities can be easily studied by optical microscopy, which could be readily developed into a remaining life assessment technique should the results prove interesting. This was the motivation for the work presented here.

  19. Fatigue and creep-fatigue deformation of several nickel-base superalloys at 650 C

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Maier, R. D.

    1982-01-01

    Transmission electron microscopy has been used to study the bulk deformation characteristics of seven nickel-base superalloys tested in fatigue and creep-fatigue at 650 C. The alloys were Waspalloy, HIP Astroloy, H plus F Astroloy, H plus F Rene 95, IN 100, MERL 76, and NASA IIB-7. The amount of bulk deformation observed in all the alloys was low. In tests with inelastic strain amplitudes less than about 0.003, only some grains exhibited yielding and the majority of those had the 110 line near the tensile axis. Deformation occurred on octahedral systems for all of the alloys except MERL 76 which also showed abundant primary cube slip. Creep-fatigue cycling occasionally produced extended faults between partial dislocations, but otherwise deformation was much the same as for fatigue cycling.

  20. Influence of Solid Solution Hardening on Creep Properties of Single-Crystal Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Fleischmann, Ernst; Konrad, Christian; Preußner, Johannes; Völkl, Rainer; Affeldt, Ernst; Glatzel, Uwe

    2015-03-01

    Improving the creep resistance of the matrix by alloying with refractory elements is a major strengthening effect in nickel-based superalloy with rhenium as one of the most effective elements. In this work, the influence of rhenium on creep properties of single-phase single crystals with varying rhenium content and matrix-near composition is investigated. The use of single-crystalline material leads to very distinct results which are not deteriorated by grain boundary effects. So the strengthening effect can be solely attributed to the alloying element rhenium and is quantified for the first time. By comparing the creep strength of two matrix compositions with the corresponding single-crystal superalloys using the threshold stress concept, the potential of creep strengthening of the matrix in two-phase single-crystal alloys is quantified.

  1. Analysis of Nickel Based Hardfacing Materials Manufactured by Laser Cladding for Sodium Fast Reactor

    NASA Astrophysics Data System (ADS)

    Aubry, P.; Blanc, C.; Demirci, I.; Dal, M.; Malot, T.; Maskrot, H.

    For improving the operational capacity, the maintenance and the decommissioning of the future French Sodium Fast Reactor ASTRID which is under study, it is asked to find or develop a cobalt free hardfacing alloy and the associated manufacturing process that will give satisfying wear performances. This article presents recent results obtained on some selected nickel-based hardfacing alloys manufactured by laser cladding, particularly on Tribaloy 700 alloy. A process parameter search is made and associated the microstructural analysis of the resulting clads. A particular attention is made on the solidification of the main precipitates (chromium carbides, boron carbides, Laves phases,…) that will mainly contribute to the wear properties of the material. Finally, the wear resistance of some samples is evaluated in simple wear conditions evidencing promising results on tribology behavior of Tribaloy 700.

  2. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  3. Understanding the roles of the strategic element cobalt in nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Dreshfield, R. L.

    1984-01-01

    Research progress in understanding the effects of cobalt and some possible substitute on microstructure, mechanical properties, and environmental resistance of turbine alloys is discussed. The United States imports over 90 percent of its cobalt, chromium, tantalum and columbium, all key elements in high temperature nickel base superalloys for aircraft gas turbine disks and airfoils. NASA, through joint government/industry/university teams, undertook a long range research program aimed at reducing or eliminating these strategic elements by examining their basic roles in superalloys and identifying viable substitutes.

  4. Status of the Development of Beryllium-Copper Alloy Ignition Capsules by Precision Machining

    NASA Astrophysics Data System (ADS)

    Nobile, Arthur

    2005-10-01

    Cu-doped Be capsules are being developed for ignition on the National Ignition Facility (NIF). The fabrication approach being pursued at Los Alamos is based on bonding of cylindrical parts containing precision machined hemispherical cavities, followed by machining the external contour to produce a spherical capsule. While we have demonstrated this approach, there are several key issues that need to be resolved before a capsule meeting NIF specifications can be produced. These issues are synthesis of high purity small grain size Be-Cu alloy, formation of a hemishell bond strong enough to allow the capsule to be machined after the hemishells are bonded, precision machining and polishing of the capsule to meet stringent specifications for surface finish and spherical quality, and filling with DT. In this paper we report on the progress that has been made on these issues. This work is performed at Los Alamos National Laboratory and supported by U.S. Department of Energy under contract number W7405-ENG36

  5. Micrographic detection of plastic deformation in nickel-base alloys

    DOEpatents

    Steeves, A.F.; Bibb, A.E.

    1980-09-20

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  6. Micrographic detection of plastic deformation in nickel base alloys

    DOEpatents

    Steeves, Arthur F.; Bibb, Albert E.

    1984-01-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm.sup.2 and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  7. The effect of interface properties on nickel base alloy composites

    NASA Technical Reports Server (NTRS)

    Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.

    1995-01-01

    This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.

  8. Elevated temperature deformation of TD-nickel base alloys

    NASA Technical Reports Server (NTRS)

    Petrovic, J. J.; Kane, R. D.; Ebert, L. J.

    1972-01-01

    Sensitivity of the elevated temperature deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Measured activation enthalpies in tension and creep were not the same. In tension, the internal stress was not proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and increasing grain diameter, to high values compared with that of the self diffusion enthalpy. It has been postulated that two concurrent processes contribute to the elevated temperature deformation of polycrystalline TD-nickel: (1) diffusion controlled grain boundary sliding, and (2) dislocation motion.

  9. Micrographic detection of plastic deformation in nickel base alloys

    SciTech Connect

    Steeves, A.F.; Bibb, A.E.

    1984-05-01

    A method for detecting low levels of plastic deformation in metal articles comprising electrolytically etching a flow free surface of the metal article with nital at a current density of less than about 0.1 amp/cm/sup 2/ and microscopically examining the etched surface to determine the presence of alternating striations. The presence of striations indicates plastic deformation in the article.

  10. Process of welding gamma prime-strengthened nickel-base superalloys

    DOEpatents

    Speigel, Lyle B.; White, Raymond Alan; Murphy, John Thomas; Nowak, Daniel Anthony

    2003-11-25

    A process for welding superalloys, and particularly articles formed of gamma prime-strengthened nickel-base superalloys whose chemistries and/or microstructures differ. The process entails forming the faying surface of at least one of the articles to have a cladding layer of a filler material. The filler material may have a composition that is different from both of the articles, or the same as one of the articles. The cladding layer is machined to promote mating of the faying surfaces, after which the faying surfaces are mated and the articles welded together. After cooling, the welded assembly is free of thermally-induced cracks.

  11. Improving the Oxidation Resistance in Advanced Single Crystal Nickel-Based Superalloys for Turbine Applications

    SciTech Connect

    Alexander, K.B.; Kenik, E.A.; Miller, M.K.; Lin, L.S.; Cetel, A.D.

    1999-07-01

    The focus of this project was the examination of the role of yttrium and other alloying elements on the microstructure and oxidation performance of improved single crystal nickel-based superalloys for advanced turbine applications. The microstructure and microchemistry of both base and modified alloys and their surface oxides have been measured with state-of-the-art microanalytical techniques (atom probe field ion microscopy) and then correlated with identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine-test oxidation performance. The overall technical goals included; (1) identifying the partitioning behavior of the elemental additions in these superalloys before and after burner rig and engine tests and the effect on the misfit energy between the phases in the alloys; (2) examining the oxidation performance of these newly-developed alloys; (3) identifying the influence of pre-oxidation processing on the subsequent oxidation performance; and (4) relating the microstructural and microchemical observations to the observed performance of these superalloys. The comparison of the base and modified alloys will produce a better understanding of the interaction between chemistry, structure, and performance in superalloys. In addition, it will lead to optimized alloys with improved performance including enhanced durability in the operating environments at the elevated temperature required to improve energy efficiency. The availability of alloys capable of higher temperature operation will minimize the need for expensive coatings in extreme temperature applications.

  12. Prediction of rupture lifetime in thin sections of a nickel base superalloy

    SciTech Connect

    Pandey, M.C. ); Taplin, D.M.R. . School of Manufacturing, Materials and Mechanical Engineering)

    1994-09-15

    The prediction of rupture lifetime of a component can be based on the data generated from round, flat and tubular specimens. An investigation on the influence of specimen geometry on the creep behavior of Inconel alloy X-750 showed that the tubular specimen exhibited better creep performance when rupture lifetime data were compared on the basis of section size. However, the time to rupture data of all three specimen geometries merged together when compared on the basis of the volume to surface area ratio (V/S) indicating that there is a definite relationship between V/S and the rupture lifetime. This analysis is now extended in another gamma prime strengthened nickel base superalloy. The chemical composition of the alloy in wt%, is as follows: 0.07C-0.66Si-0.07Cu-0.79Fe-19.1Cr-2.35Ti-1.52Al and remainder nickel. Analysis of the rupture lifetime data of a gamma prime strengthened nickel base superalloy shows that time-to-rupture is controlled by the volume to surface area ratio. Furthermore, the normalization of the volume to surface area ratio with the grain size shows that the time-to-rupture data of two grain sizes, 55 and 250 [mu]m, can be represented by a single curve.

  13. Weldability of a Nickel-based Superalloy

    NASA Technical Reports Server (NTRS)

    Kalinowski, Joseph M.

    1994-01-01

    The electron beam welding process is used to investigate the weldability of the Ni-based superalloy Udimet 720LI. This is a modified form of the alloy Udimet 720, which has reduced concentrations of interstitial elements such as boron, silicon, and carbon. The history of high strength superalloys like this one suggests that welding will be difficult because of their tendency towards hot cracking during the welding process, or strain-age cracking during the post-weld aging process. Studies were done on several sizes of weldability test specimens to determine if Udimet 720LI will exhibit cracking tendencies. It was found that the alloy was not susceptible to hot cracking unless it had received the four-step aging heat treatment that is recommended by the manufacturer. It was also found that a restrained weldment is susceptible to strain-age cracking; however, if the weldment is allowed to deform then warpage can occur instead of cracking.

  14. Advanced microcharacterization of nickel-base superalloys

    SciTech Connect

    Anderson, I.M.; Miller, M.K.; Pike, L.M.; Klarstrom, D.L.

    2000-02-01

    The purpose of this project was to characterize the microstructural and microchemical effects of a process revision on HAYNES{reg{underscore}sign} 242{trademark}, a polycrystalline Ni-base superalloy used principally for high temperature applications, such as seal and containment rings in gas turbine engines. The process revision from the current one-step heat treating cycle to a two-step heat treatment would result in savings of energy and ultimately cost to the consumer. However, the proposed process revision could give rise to unforeseen microstructural modifications, such as a change in the size distribution of the ordered particles responsible for alloy strength or the formation of additional phases, which could affect alloy properties and hence performance. Advanced microcharacterization methods that allow images of the microstructure to be acquired at length scales from one micrometer down to the atomic level were used to reveal the effect of the process revision on alloy microstructure. Energy filtered imaging was used to characterize the size distribution and morphology of ordered precipitates and other phases, as well as the partitioning behavior of major elements (Ni, Mo, Cr) among these phases. The compositions of individual ordered particles, including fine-scale compositional variations at precipitate-matrix interfaces, and solute segregation behavior at grain boundaries were characterized at the atomic level by atom probe tomography. The atomic site distributions of selected elements in the ordered precipitates were characterized by atom-location by channeling-enhanced microanalysis (ALCHEMI). The results of these advanced microcharacterization methods were correlated with mechanical testing of similar alloys to address structure-property relationships.

  15. Selective oxidation and internal nitridation during high-temperature exposure of single-crystalline nickel-base superalloys

    SciTech Connect

    Krupp, U.; Christ, H.J.

    2000-01-01

    The process of internal nitridation of the three commercial single-crystalline nickel-base superalloys CMSX-2, CMSX-6, and SRR99 has been studied in air and oxygen-free nitrogen atmospheres at 800 C to 1,100 C using thermogravimetric techniques supplemented by extensive microstructural examinations. Non-protective oxide formation, particularly cracking and spalling at edges or curved surfaces, enables nitrogen to penetrate into the alloy leading to the precipitation of stable Ti and Al nitrides. The high-temperature corrosion behavior of the superalloys studied is strongly affected by composition differences between dendritic and interdendritic areas due to segregation resulting in an inhomogeneous internal precipitation zone. Furthermore, the stability of the strengthening {radical} phase (N3i(Al, Ti, Ta)) in front of the growing internal-nitridation zone was observed to depend clearly on the alloy composition. Therefore, the near-surface area of the alloys can be weakened by {radical} depletion and by embrittlement resulting from internal-nitride precipitation. The results obtained on the nickel-base superalloys are discussed, taking into account the results of a computer-based simulation of internal-corrosion processes. Furthermore, results on Ni-base model alloys of the system Ni-Cr-Al-Ti provided information on the role of the alloy composition. It was found that a higher Cr concentration seems to increase the nitrogen solubility and diffusion in Ni-base alloys.

  16. Anisotropy of high temperature strength in precipitation-hardened nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Nakagawa, Y. G.; Terashima, H.; Yoshizawa, H.; Ohta, Y.; Murakami, K.

    1986-01-01

    The anisotropy of high temperature strength of nickel-base superalloy, Alloy 454, in service for advanced jet engine turbine blades and vanes, was investigated. Crystallographic orientation dependence of tensile yield strength, creep and creep rupture strength was found to be marked at about 760C. In comparison with other single crystal data, a larger allowance in high strength off-axial orientation from the 001 axis, and relatively poor strength at near the -111 axis were noted. From transmission electron microscopy the anisotropic characteristics of this alloy were explained in terms of available slip systems and stacking geometries of gamma-prime precipitate cuboids which are well hardened by a large tantalum content. 100 cube slip was considered to be primarily responsible for the poor strength of the -111 axis orientation replacing the conventional 111 plane slip systems.

  17. Finite Element Analysis of Warpage in Laminated Aluminium Alloy Plates for Machining of Primary Aeronautic Parts

    SciTech Connect

    Reis, A. C.; Moreira Filho, L. A.; Menezes, M. A.

    2007-04-07

    The aim of this paper consists in presenting a method of simulating the warpage in 7xxx series aluminium alloy plates. To perform this simulation finite element software MSC.Patran and MSC.Marc were used. Another result of this analysis will be the influence on material residual stresses induced on the raw material during the rolling process upon the warpage of primary aeronautic parts, fabricated through machining (milling) at Embraer. The method used to determinate the aluminium plate residual stress was Layer Removal Test. The numerical algorithm Modified Flavenot Method was used to convert layer removal and beam deflection in stress level. With such information about the level and profile of residual stresses become possible, during the step that anticipate the manufacturing to incorporate these values in the finite-element approach for modelling warpage parts. Based on that warpage parameter surely the products are manufactured with low relative vulnerability propitiating competitiveness and price.

  18. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  19. Experimental Design for Evaluation of Co-extruded Refractory Metal/Nickel Base Superalloy Joints

    SciTech Connect

    ME Petrichek

    2005-12-16

    Prior to the restructuring of the Prometheus Program, the NRPCT was tasked with delivering a nuclear space reactor. Potential NRPCT nuclear space reactor designs for the Prometheus Project required dissimilar materials to be in contact with each other while operating at extreme temperatures under irradiation. As a result of the high reactor core temperatures, refractory metals were the primary candidates for many of the reactor structural and cladding components. They included the tantalum-base alloys ASTAR-811C and Ta-10W, the niobium-base alloy FS-85, and the molybdenum base alloys Moly 41-47.5 Rhenium. The refractory metals were to be joined to candidate nickel base alloys such as Haynes 230, Alloy 617, or Nimonic PE 16 either within the core if the nickel-base alloys were ultimately selected to form the outer core barrel, or at a location exterior to the core if the nickel-base alloys were limited to components exterior to the core. To support the need for dissimilar metal joints in the Prometheus Project, a co-extrusion experiment was proposed. There are several potential methods for the formation of dissimilar metal joints, including explosive bonding, friction stir welding, plasma spray, inertia welding, HIP, and co-extrusion. Most of these joining methods are not viable options because they result in the immediate formation of brittle intermetallics. Upon cooling, intermetallics form in the weld fusion zone between the joined metals. Because brittle intermetallics do not form during the initial bonding process associated with HIP, co-extrusion, and explosive bonding, these three joining procedures are preferred for forming dissimilar metal joints. In reference to a Westinghouse Astronuclear Laboratory report done under a NASA sponsored program, joints that were fabricated between similar materials via explosive bonding had strengths that were directly affected by the width of the diffusion barrier. It was determined that the diffusion zone should not exceed

  20. Effect of microstructure on high-temperature mechanical behavior of nickel-base superalloys for turbine disc applications

    NASA Astrophysics Data System (ADS)

    Sharpe, Heather Joan

    2007-05-01

    Engineers constantly seek advancements in the performance of aircraft and power generation engines, including, lower costs and emissions, and improved fuel efficiency. Nickel-base superalloys are the material of choice for turbine discs, which experience some of the highest temperatures and stresses in the engine. Engine performance is proportional to operating temperatures. Consequently, the high-temperature capabilities of disc materials limit the performance of gas-turbine engines. Therefore, any improvements to engine performance necessitate improved alloy performance. In order to take advantage of improvements in high-temperature capabilities through tailoring of alloy microstructure, the overall objectives of this work were to establish relationships between alloy processing and microstructure, and between microstructure and mechanical properties. In addition, the projected aimed to demonstrate the applicability of neural network modeling to the field of Ni-base disc alloy development and behavior. The first phase of this work addressed the issue of how microstructure varies with heat treatment and by what mechanisms these structures are formed. Further it considered how superalloy composition could account for microstructural variations from the same heat treatment. To study this, four next-generation Ni-base disc alloys were subjected to various controlled heat-treatments and the resulting microstructures were then quantified. These quantitative results were correlated to chemistry and processing, including solution temperature, cooling rate, and intermediate hold temperature. A complex interaction of processing steps and chemistry was found to contribute to all features measured; grain size, precipitate distribution, grain boundary serrations. Solution temperature, above a certain threshold, and cooling rate controlled grain size, while cooling rate and intermediate hold temperature controlled precipitate formation and grain boundary serrations. Diffusion

  1. The effect of electric discharge machined notches on the fracture toughness of several structural alloys

    SciTech Connect

    Joyce, J.A.; Link, R.E.

    1993-09-01

    Recent computational studies of the stress and strain fields at the tip of very sharp notches have shown that the stress and strain fields are very weakly dependent on the initial geometry of the notch once the notch has been blunted to a radius that is 6 to 10 times the initial root radius. It follows that if the fracture toughness of a material is sufficiently high so that fracture initiation does not occur in a specimen until the crack-tip opening displacement (CTOD) reaches a value from 6 to 10 times the size of the initial notch tip diameter, then the fracture toughness will be independent of whether a fatigue crack or a machined notch served as the initial crack. In this experimental program the fracture toughness (J{sub Ic} and J resistance (J-R) curve, and CTOD) for several structure alloys was measured using specimens with conventional fatigue cracks and with EDM machined notches. The results of this program have shown, in fact, that most structural materials do not achieve initiation CTOD values on the order of 6 to 10 times the radius of even the smallest EDM notch tip presently achievable. It is found furthermore that tougher materials do not seem to be less dependent on the type of notch tip present. Some materials are shown to be much more dependent on the type of notch tip used, but no simple pattern is found that relates this observed dependence to the material strength toughness, or strain hardening rate.

  2. The use of cutting temperature to evaluate the machinability of titanium alloys.

    PubMed

    Kikuchi, Masafumi

    2009-02-01

    This study investigated the machinability of titanium, two commercial titanium alloys (Ti-6Al-4V and Ti-6Al-7Nb) and free-cutting brass using the cutting temperature. The cutting temperature was estimated by measuring the thermal electromotive force of the tool-workpiece thermocouple during cutting. The thermoelectric power of each metal relative to the tool had previously been determined. The metals were slotted using a milling machine and carbide square end mills under four cutting conditions. The cutting temperatures of Ti-6Al-4V and Ti-6Al-7Nb were significantly higher than that of the titanium, while that of the free-cutting brass was lower. This result coincided with the relationship of the magnitude of the cutting forces measured in a previous study. For each metal, the cutting temperature became higher when the depth of cut or the cutting speed and feed increased. The increase in the cutting speed and feed was more influential on the value than the increase in the depth of cut when two cutting conditions with the same removal rates were compared. The results demonstrated that cutting temperature measurement can be utilized to develop a new material for dental CAD/CAM applications and to optimize the cutting conditions.

  3. Internal hydrogen effects on tensile properties of iron- and nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Hicks, P. D.; Altstetter, C. J.

    1990-01-01

    Two nickel-base alloys [superalloys INCONEL 718 (IN718) and INCONEL 625 (IN625)] and one iron-base superalloy (A286) were chosen to study the effects of internal H charging on their room-temperature slow strain rate mechanical behavior. Uniform internal H contents ranged from 0 to 50 wt ppm H (0 to 3000 at. ppm H), and a strain rate of 8.5 X 10-7 m/s was used with notched strip specimens. The three alloys showed varying losses in strength and ductility, and the strongest alloy, IN718, showed a decrease of 67 pet in ductility for a dissolved H content of 40 wt ppm. Superalloy A286 showed a corresponding 50 pet decrease in ductility, and IN625 showed a 29 pet loss in ductility. Fractographic evidence and the marked decrease in strength of the alloys lead the authors to conclude that the enhanced localized plasticity mechanism for H embrittlement is possibly operative in these face-centered cubic (fcc) alloys.

  4. Simulated Single Tooth Bending of High Temperature Alloys

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert, F.; Burke, Christopher

    2012-01-01

    Future unmanned space missions will require mechanisms to operate at extreme conditions in order to be successful. In some of these mechanisms, very high gear reductions will be needed to permit very small motors to drive other components at low rotational speed with high output torque. Therefore gearing components are required that can meet the mission requirements. In mechanisms such as this, bending fatigue strength capacity of the gears is very important. The bending fatigue capacity of a high temperature, nickel-based alloy, typically used for turbine disks in gas turbine engines and two tool steel materials with high vanadium content, were compared to that of a typical aerospace alloy-AISI 9310. Test specimens were fabricated by electro-discharge machining without post machining processing. Tests were run at 24 and at 490 C. As test temperature increased from 24 to 490 C the bending fatigue strength was reduced by a factor of five.

  5. Neutron Absorbing Alloys

    DOEpatents

    Mizia, Ronald E.; Shaber, Eric L.; DuPont, John N.; Robino, Charles V.; Williams, David B.

    2004-05-04

    The present invention is drawn to new classes of advanced neutron absorbing structural materials for use in spent nuclear fuel applications requiring structural strength, weldability, and long term corrosion resistance. Particularly, an austenitic stainless steel alloy containing gadolinium and less than 5% of a ferrite content is disclosed. Additionally, a nickel-based alloy containing gadolinium and greater than 50% nickel is also disclosed.

  6. Dendritic growth and crystalline quality of nickel-base single grains

    NASA Astrophysics Data System (ADS)

    Siredey, Nathalie; Boufoussi, M'Bareck; Denis, Sabine; Lacaze, Jacques

    1993-05-01

    It is a usual observation that subgrains exist in nickel-base single grain components solidified by the lost wax process. The associated misorientations are generally small, but they can eventually lead to casting defects in the case of highly complex mold shapes. This work presents an attempt to relate the formation of subgrain boundaries with the development of the dendritic solidification microstructure. Experimental investigations have been undertaken on cast components made of AM1 nickel-base superalloy designed for high temperature turbine blades. Single grains were obtained by means of a grain selector at the bottom of each part. Metallographic observations have been made to characterize the dendritic array, together with gamma diffraction to measure the crystalline quality of the material and X-ray topography for mapping of misorientations on a dendritic scale. Small misorientations between dendrite stems have been found at the upper end of the selector which lead to the formation of subgrains. Moreover, during the growth process, the total mosaicity of the material increases, firstly as a consequence of an increase in the misorientations between subgrains, and secondly because of a decrease of the internal quality of each subgrain. It is proposed that misorientations are due to thermomechanical stresses which build up during λ' precipitation at temperatures slightly below the solidus temperature of the alloy.

  7. The stability of lamellar gamma-gamma-prime structures. [nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.

    1987-01-01

    The stability of stress-annealed gamma/gamma-prime lamellar structures were investigated using three nickel-base single-crystal alloys (the NASAIR 100 and two similar alloys, E and F, containing 5 and 10 wt pct Co, respectively) stress-annealed at 1000 C to form lamellae perpendicular to the applied stress. The rate of the lamellar thickening under various thermal and creep exposures was examined by SEM. For unstressed aging at 1100 C, the lamellar structures of the NASAIR and the E alloys exhibited continuous but slow lamellar coarsening, whereas the lamellae of the alloy F showed pronounced thickening plus spheroidization. Resistance to lamellar thickening was correlated with high magnitudes of lattice mismatch, which promoted a more regular lamellar structure and a finer spacing of misfit dislocations. Specimens which were tension-annealed prior to compressive creep testing exhibited an earlier onset of tertiary creep in comparison with only heat-treated specimens. This was associated with accelerated lamellar coarsening in the stress-annealed specimens.

  8. Characteristics and treatability of oil-bearing wastes from aluminum alloy machining operations.

    PubMed

    Chen, Luke; Hsieh, Chueh-Chen; Wetherbee, John; Yang, Chen-Lu

    2008-04-15

    Enomoto Industry Co., exclusively uses water-based cutting fluids in its aluminum alloy machining operations. Since the cost of disposal can be much greater than the cost of purchase, the treatability of spent cutting fluids is becoming a major criterion for cutting fluid selection. Samples were collected from the machining lines at Enomoto's facility to determine their characteristics and evaluate their treatability with centrifugation, chemical coagulation and electrochemical coagulation. As expected, oil and grease (O&G) and total suspended solids (TSS) are the main reasons that spent cutting fluids are prohibited from being discharged into local swage systems. The average O&G found in the spent cutting fluids is 87,354 mg/L with TSS of more than 70,000 mg/L. Both O&G and TSS are the major contributors to the high turbidity of these waste effluents. A centrifuge with a relative centrifugal force of 1318 x g, was able to reduce 60% of the turbidity. By adding the coagulant aluminum chloride, the oil-water emulsion was destabilized, and the turbidity was reduced from 3249 Formazin Attenuation Units (FAU) to around 314 FAU. With freshly generated aluminum ions in the spent cutting fluid, the electrochemical process destabilized the oil-water emulsion system. The coalesced oil droplets were adsorbed onto the highly dispersed aluminum coagulant. The oil-rich sludge that was generated in the operation was then floated to the surface, forming a blanket that was removed by skimming. The electrochemical treatment was able to reduce the turbidity to less than 14 FAU, which is the detection limit of the Hach DR/4000 UV-vis spectrophotometer. PMID:17850956

  9. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    SciTech Connect

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Mapelli, Carlo

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  10. Yielding and deformation behavior of the single crystal nickel-base superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Milligan, W. W., Jr.

    1986-01-01

    Interrupted tensile tests were conducted to fixed plastic strain levels in 100 ordered single crystals of the nickel based superalloy PWA 1480. Testing was done in the range of 20 to 1093 C, at strain rate of 0.5 and 50%/min. The yield strength was constant from 20 to 760 C, above which the strength dropped rapidly and became a stong function of strain rate. The high temperature data were represented very well by an Arrhenius type equation, which resulted in three distinct temperature regimes. The deformation substructures were grouped in the same three regimes, indicating that there was a fundamental relationship between the deformation mechanisms and activation energies. Models of the yielding process were considered, and it was found that no currently available model was fully applicable to this alloy. It was also demonstrated that the initial deformation mechanism (during yielding) was frequently different from that which would be inferred by examining specimens which were tested to failure.

  11. Microstructure-property relationships in directionally solidified single-crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, Rebecca A.; Nathal, Michael V.

    1988-01-01

    This paper discusses some of the microstructural features which influence the creep properties of directionally solidified and single-crystal nickel-base superalloys. Gamma prime precipitate size and morphology, gamma-gamma (prime) lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single-crystal superalloys at high temperatures, where directional gamma (prime) coarsening is prominent, and at lower temperatures, where gamma (prime) coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  12. Microstructure-property relationships in directionally solidified single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.

    1986-01-01

    Some of the microstructural features which influence the creep properties of directionally solidified and single crystal nickel-base superalloys are discussed. Gamma precipitate size and morphology, gamma-gamma lattice mismatch, phase instability, alloy composition, and processing variations are among the factors considered. Recent experimental results are reviewed and related to the operative deformation mechanisms and to the corresponding mechanical properties. Special emphasis is placed on the creep behavior of single crystal superalloys at high temperatures, where directional gamma coarsening is prominent, and at lower temperatures, where gamma coarsening rates are significantly reduced. It can be seen that very subtle changes in microstructural features can have profound effects on the subsequent properties of these materials.

  13. Stereological characterization of {gamma}' phase precipitation in CMSX-6 monocrystalline nickel-base superalloy

    SciTech Connect

    Szczotok, Agnieszka; Richter, Janusz; Cwajna, Jan

    2009-10-15

    The purpose of this investigation was to study in detail the means to quantitatively evaluate {gamma}' phase precipitation. Many of the mechanical properties of superalloys are directly influenced by the presence of the {gamma}' (gamma prime) precipitate phase dispersed in a {gamma} matrix phase. The {gamma}' precipitates act as effective barriers to dislocation motion and restrict plastic deformation, particularly at high temperatures. Due to this, it is essential to accurately quantify the {gamma}' precipitate size, volume fraction and distribution. Investigations based on quantitative metallography and image analysis were performed on a monocrystalline nickel-base superalloy taking into consideration various {gamma}' precipitate sizes present in that alloy microstructure. The authors of the present paper propose a new method of quantifying the total volume fraction of the {gamma}' phase applying images of the microstructure with {gamma}' phase precipitates registered using light microscopy, scanning electron microscopy (at two different magnifications) and scanning transmission electron microscopy.

  14. Dynamic Process Analysis In Cutting Zone During Machining Of Nickel Alloys

    NASA Astrophysics Data System (ADS)

    Czán, Andrej; Šajgalík, Michal; Martikáň, Anton; Mrázik, Jozef

    2015-12-01

    To generally improve effectivity of parts production and metal cutting process, there are used process models of super alloys together with finite element modeling simulations. Advanced measurement methods of the process could improve and verify the accuracy of these models. These methods cause many error sources when using empiric or exact methods such as infrared radiation thermography to measure the temperature distribution of the tool, workpiece, and chip during metal cutting. Measuring of metal machining is challenging due to factors such as the high magnification required, high surface speeds and deformations, micro-blackbody effects, changing emissivity and deformations present at metal cutting. As part of an ongoing effort to improve our understanding of uncertainties associated with these measurement methods, multimeasurement sets of experiments were performed. First set of measurements observed connection between surface temperature and the internal temperature of the cutting tool. This was accomplished by measuring the temperature using a thermal camera in cutting zone. Second set performed high-speed scan of dynamic processes such as formation of elastic and plastic deformation. During this operation was applied high-speed scannning system using macro conversion lens for monitoring of micro-structural changes in deformation areas. Next necessary applied set is recording of dynamic processes by implementation of piezoelectric measurement device for monitoring of cutting forces. The outputs from multimeasuring system are the basis for verification of theoretical knowledge from this field and elimination of uncertainties, which arise by using computer simulation systems.

  15. Laser-Machined Shape Memory Alloy Sensors for Position Feedback in Active Catheters

    PubMed Central

    Tung, Alexander T.; Park, Byong-Ho; Liang, David H.; Niemeyer, Günter

    2008-01-01

    Catheter-based interventions are a form of minimally invasive surgery that can decrease hospitalization time and greatly lower patient morbidity compared to traditional methods. However, percutaneous catheter procedures are hindered by a lack of precise tip manipulation when actuation forces are transmitted over the length of the catheter. Active catheters with local shape-memory-alloy (SMA) actuation can potentially provide the desired manipulation of a catheter tip, but hysteresis makes it difficult to control the actuators. A method to integrate small-volume, compliant sensors on an active catheter to provide position feedback for control would greatly improve the viability of SMA-based active catheters. In this work, we describe the design, fabrication, and performance of resistance-based position sensors that are laser-machined from superelastic SMA tubing. Combining simple material models and rapid prototyping, we can develop sensors of appropriate stiffness and sensitivity with simple modifications in sensor geometry. The sensors exhibit excellent linearity over the operating range and are designed to be easily integrated onto an active catheter substrate. PMID:19759806

  16. Analysis of the Influence of Laser Welding on Fatigue Crack Growth Behavior in a Newly Developed Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Buckson, R. A.; Ojo, O. A.

    2015-01-01

    The influence of laser welding on fatigue crack growth (FCG) behavior of a newly developed nickel-base superalloy, Haynes 282 was studied. Laser welding resulted in cracking in the heat affected zone (HAZ) of the alloy during welding and FCG test results show that this produces deleterious effect on the fatigue crack growth behavior of Haynes 282. However, two post weld heat treatments, including a new thermal treatment schedule developed in this work, are used to significantly improve the resistance of the Haynes 282 fatigue crack growth after laser welding. The effects of laser welding and thermal treatments are discussed in terms of HAZ cracking and heterogeneity of slip, respectively.

  17. Extraordinary plastic behaviour of the γ‧ precipitate in a directionally solidified nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ma, Lifeng; Yang, Gongxian; Song, Xiaolong

    2016-01-01

    The deformation behaviour of the γ‧ precipitate in a directionally solidified nickel-based superalloy is investigated using microscopic observations after tensile testing at room temperature. It is found that coarse γ‧ precipitates (604 nm) are sheared by strongly coupled dislocations, and some γ‧ precipitates are elongated to approximately 3-6 times of their original lengths. It reveals that, at room temperature, the γ‧ precipitate within the experimental superalloy has a significant plastic deformation capacity in comparison with Ni3Al bulk alloys. Based on the experimental observations, the extraordinary plastic behaviour of the γ‧ precipitate is analysed.

  18. Imaging and characterization of fine gamma' precipitates in a commercial nickel-base superalloy.

    PubMed

    Sarosi, P M; Viswanathan, G B; Whitis, D; Mills, M J

    2005-04-01

    Empirical datasets of volume fractions and size distributions of small gamma' precipitates from "real" multi-component engineering nickel-based superalloys are vital to calibrate and validate the computer models which predict high sensitivities of mechanical properties to size and volume fraction of these fine gamma precipitates, and in order to accelerate microstructure and alloy development. Consequently, we investigated a number of imaging techniques available in a Tecnai F-20 FEG/TEM and selected the technique which best enabled rapid and extensive acquisition of these datasets using the engineering alloy, René 88'DT. The EFTEM technique was found to be the most appropriate method for imaging fine gamma' precipitates while further investigation showed that the Cr-M-edge, in comparison with other ionization-edges provided the best images based largely on contrast-to-noise ratio. Imaging of the Cr-M-edge elemental maps were further improved by investigating the effects of microscope parameters, imaging filter parameters and analysis of the experimental electron energy loss spectra obtained from this alloy. In addition, a novel technique to determine the volume fraction of the fine gamma' precipitates without the need to determine the absolute thickness of the TEM foil is proposed. PMID:15777602

  19. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    SciTech Connect

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  20. Imaging and characterization of fine gamma' precipitates in a commercial nickel-base superalloy.

    PubMed

    Sarosi, P M; Viswanathan, G B; Whitis, D; Mills, M J

    2005-04-01

    Empirical datasets of volume fractions and size distributions of small gamma' precipitates from "real" multi-component engineering nickel-based superalloys are vital to calibrate and validate the computer models which predict high sensitivities of mechanical properties to size and volume fraction of these fine gamma precipitates, and in order to accelerate microstructure and alloy development. Consequently, we investigated a number of imaging techniques available in a Tecnai F-20 FEG/TEM and selected the technique which best enabled rapid and extensive acquisition of these datasets using the engineering alloy, René 88'DT. The EFTEM technique was found to be the most appropriate method for imaging fine gamma' precipitates while further investigation showed that the Cr-M-edge, in comparison with other ionization-edges provided the best images based largely on contrast-to-noise ratio. Imaging of the Cr-M-edge elemental maps were further improved by investigating the effects of microscope parameters, imaging filter parameters and analysis of the experimental electron energy loss spectra obtained from this alloy. In addition, a novel technique to determine the volume fraction of the fine gamma' precipitates without the need to determine the absolute thickness of the TEM foil is proposed.

  1. Computational Thermodynamic Study to Predict Complex Phase Equilibria in the Nickel-Base Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Copland, Evan H.; Jacobson, Nathan S.; Ritzert, Frank J.

    2001-01-01

    A previous study by Ritzert et al. on the formation and prediction of topologically closed packed (TCP) phases in the nickel-base superalloy Rene' N6 is re-examined with computational thermodynamics. The experimental data on phase distribution in forty-four alloys with a composition within the patent limits of the nickel-base superalloy Rene' N6 provide a good basis for comparison to and validation of a commercial nickel superalloy database used with ThermoCalc. Volume fraction of the phases and partitioning of the elements are determined for the forty-four alloys in this dataset. The baseline heat treatment of 400 h at 1366 K was used. This composition set is particularly interesting since small composition differences lead to dramatic changes in phase composition. In general the calculated values follow the experimental trends. However, the calculations indicated no TCP phase formation when the experimental measurements gave a volume percent of TCP phase less than 2 percent. When TCP phases were predicted, the calculations under-predict the volume percent of TCP phases by a factor of 2 to 8. The calculated compositions of the gamma and gamma' phases show fair agreement with the measurements. However, the calculated compositions of the P Phase do not agree with those measured. This may be due to inaccuracies in the model parameters for P phase and/or issues with the microprobe analyses of these phases. In addition, phase fraction diagrams and sigma and P phase solvus temperatures are calculated for each of the alloys. These calculations indicate that P phase is the primary TCP phase formed for the alloys considered here at 1366 K. Finally, a series of isopleths are calculated for each of the seven alloying elements. These show the effect of each alloying element on creating TCP phases.

  2. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Choi, S. G.; Choi, W. K.; Yang, B. Y.; Lee, E. S.

    2014-09-01

    In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  3. Development of Novel Pre-alloyed PM Steels for Optimization of Machinability and Fatigue Resistance of PM Components

    NASA Astrophysics Data System (ADS)

    Mardan, Milad; Blais, Carl

    2016-03-01

    It is well known that a large proportion of ferrous PM components require secondary machining operations for dimensional conformance or for producing geometrical features that cannot be generated during die compaction. Nevertheless, the machining behavior of PM parts is generally characterized as being "difficult" due to the presence of residual porosity that lowers thermal conductivity and induces interrupted cutting. Several admixed additives such as MnS and BN-h can be used to improve the machining behavior of PM steels. Nevertheless, their negative effect on mechanical properties, especially fatigue resistance, makes their utilization uninteresting for the fabrication of high-performance PM steel components. This article summarizes the work carried out to develop a novel PM steel that was especially engineered to form machinability enhancing precipitates. This new material is pre-alloyed with tin (Sn) in order to form Cu-Sn (Cu(α)) precipitates during transient liquid phase sintering. The newly developed material presents machinability improvement of 165% compared to reference material used in the PM industry as well as increases in toughness and fatigue resistance of 100% and 13%, respectively.

  4. Selection of etching methods of primary carbides in MAR-M247 nickel-base superalloy for computer-aided quantitative metallography

    SciTech Connect

    Szczotok, Agnieszka . E-mail: agnieszka.szczotok@polsl.pl; Szala, Janusz . E-mail: janusz.szala@polsl.pl; Cwajna, Jan . E-mail: jan.cwajna@polsl.pl; Hetmanczyk, Marek . E-mail: marek.hetmanczyk@polsl.pl

    2006-06-15

    The usefulness of various etching methods for revealing the structure of MAR-M247 nickel-base superalloy and image acquisition methods were analyzed from a desire to estimate primary carbides quantitatively. The analysis was carried out on images registered using light and scanning electron microscopes. The analyzed images contained a complete range of primary carbides occurring in the matrix and on the grain boundaries of MAR-M247 alloy.

  5. The Effect of the Heat Treatment on the Dust Emission During Machining of an Al-7Si-Mg Cast Alloys

    NASA Astrophysics Data System (ADS)

    Djebara, A.; Zedan, Y.; Kouam, J.; Songmene, V.

    2013-12-01

    This paper reports on the effect of artificial aging on the machinability of Al-7Si-Mg (A356) cast alloys for the as-received alloy, solution heat-treated (SHT) alloy and then aged SHT alloy at 155, 180, and 220 °C, respectively. The influence of heat treatment on the machinability of the alloys studied was considered using innovative criteria such as dust emission. The effect of various lubrication modes including dry, mist, and wet process, as well as cutting speed and feed rate, was also investigated. The results obtained from the statistically designed experiments indicate that at the same cutting conditions, the A356-T7 heat treatment generates less dust emission level compared to other various heat treatments (there is 32% less airborne swarf produced than with A356-T6). Aging at low temperature was observed to produce the greatest level of the dust emission while the aging at higher temperatures is accompanied by a reduction in the dust emission level. Fracture surface analysis using scanning electron microscope, has shown that dust emission levels were strongly dependent on the nature of the fracture surface of the alloys studied, with different heat treatments. A change in chip formation was also found to be a function of age hardening and dust emission during machining of the tested aluminum alloy. A correlation was established between the cutting speed, the feed rate, and the dust emission, which is useful for determining the conditions required for minimal dust emission.

  6. Method of improving fatigue life of cast nickel based superalloys and composition

    DOEpatents

    Denzine, Allen F.; Kolakowski, Thomas A.; Wallace, John F.

    1978-03-14

    The invention consists of a method of producing a fine equiaxed grain structure (ASTM 2-4) in cast nickel-base superalloys which increases low cycle fatigue lives without detrimental effects on stress rupture properties to temperatures as high as 1800.degree. F. These superalloys are variations of the basic nickel-chromium matrix, hardened by gamma prime [Ni.sub.3 (Al, Ti)] but with optional additions of cobalt, tungsten, molybdenum, vanadium, columbium, tantalum, boron, zirconium, carbon and hafnium. The invention grain refines these alloys to ASTM 2 to 4 increasing low cycle fatigue life by a factor of 2 to 5 (i.e. life of 700 hours would be increased to 1400 to 3500 hours for a given stress) as a result of the addition of 0.01% to 0.2% of a member of the group consisting of boron, zirconium and mixtures thereof to aid heterogeneous nucleation. The alloy is vacuum melted and heated to 250.degree.-400.degree. F. above the melting temperature, cooled to partial solidification, thus resulting in said heterogeneous nucleation and fine grains, then reheated and cast at about 50.degree.-100.degree. F. of superheat. Additions of 0.1% boron and 0.1% zirconium (optional) are the preferred nucleating agents.

  7. Fatigue crack propagation of nickel-base superalloys at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1988-01-01

    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interaction are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

  8. Fatigue crack propagation of nickel-base superalloys at 650 deg C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1985-01-01

    The 650 C fatigue crack propagation behavior of two nickel-base superalloys, Rene 95 and Waspaloy, is studied with particular emphasis placed on understanding the roles of creep, environment, and two key grain boundary alloying additions, boron and zirconium. Comparison of air and vacuum data shows the air environment to be detrimental over a wide range of frequencies for both alloys. More in-depth analysis on Rene 95 shows at lower frequencies, such as 0.02 Hz, failure in air occurs by intergranular, environmentally-assisted creep crack growth, while at higher frequencies, up to 5.0 Hz, environmental interactions are still evident but creep effects are minimized. The effect of B and Zr in Waspaloy is found to be important where environmental and/or creep interactions are presented. In those instances, removal of B and Zr dramatically increases crack growth and it is therefore plausible that effective dilution of these elements may explain a previously observed trend in which crack growth rates increase with decreasing grain size.

  9. Microscopic evaluation of creep-fatigue interaction in a nickel-based superalloy

    SciTech Connect

    Santella, Michael L; Yamamoto, Masato; Shingledecker, John P; Boehlert, C. J.; Ogata, Takashi

    2009-01-01

    In order to verify the applicability of Nickel-based alloy Alloy 263 for the thick component, a series of creep, fatigue and creep-fatigue experiments were carried out. To investigate the detailed damage process under the creep-fatigue condition, simple aged, crept, fatigued, and creep-fatigued specimens were subjected to electron back scattering diffraction (EBSD) pattern observation in the SEM. While the simple aged and fatigued specimens showed no remarkable local change in orientation (less than 1deg), the crept specimen exhibited inhomogeneous change of crystallographic orientation, at most 5 degrees, within the grains. This shows that the creep strain is inhomogeneously distributed in the grains due to the effect of relative constraint among the grains. The creep-fatigued specimen exhibited similar local inhomogeniety in strain distribution compared to the crept sample near the center of the grains. However, the creep-fatigued specimen showed remarkable local change in orientation at the vicinity of grain boundaries up to 15 degrees, indicating the occurrence of high strain concentration nearby the grain boundaries. A detailed observation of creep-fatigue damage evolution process in SEM revealed that the inhomogeneous grain deformation precedes the remarkable inhomogeneous deformation nearby the grain boundaries, and followed by the grain boundary cracking.

  10. Multi-objective constrained design of nickel-base superalloys using data mining- and thermodynamics-driven genetic algorithms

    NASA Astrophysics Data System (ADS)

    Menou, Edern; Ramstein, Gérard; Bertrand, Emmanuel; Tancret, Franck

    2016-06-01

    A new computational framework for systematic and optimal alloy design is introduced. It is based on a multi-objective genetic algorithm which allows (i) the screening of vast compositional ranges and (ii) the optimisation of the performance of novel alloys. Alloys performance is evaluated on the basis of their predicted constitutional and thermomechanical properties. To this end, the CALPHAD method is used for assessing equilibrium characteristics (such as constitution, stability or processability) while Gaussian processes provide an estimate of thermomechanical properties (such as tensile strength or creep resistance), based on a multi-variable non-linear regression of existing data. These three independently well-assessed tools were unified within a single C++ routine. The method was applied to the design of affordable nickel-base superalloys for service in power plants, providing numerous candidates with superior expected microstructural stability and strength. An overview of the metallurgy of optimised alloys, as well as two detailed examples of optimal alloys, suggest that improvements over current commercial alloys are achievable at lower costs.

  11. Hot corrosion studies of four nickel-base superalloys - B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel-base superalloys has been studied at 900 and 1000 C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of Na2SO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In order of decending susceptibility to hot corrosion, these alloys were ranked: B-1900, 713C, NASA-TRW VIA, IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  12. High temperature low-cycle fatigue mechanisms in single crystals of nickel-based superalloy Mar-M 200

    NASA Technical Reports Server (NTRS)

    Milligan, W. W.; Jayaraman, N.

    1984-01-01

    Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.

  13. Creep data analyses of a columnar-grained nickel-base superalloy by conventional and {beta}-envelope methods

    SciTech Connect

    Krishna, M.S.G.; Sriramamurthy, A.M.; Radhakrishnan, V.M.

    1998-08-01

    Creep-rupture properties of a columnar-grained nickel-base superalloy have been evaluated over a wide temperature range (1,033 to 1,311 K) and stress levels (80 to 850 MPa). Creep data analyses based on the conventional approach as well as on a new graphical method--the {beta}-envelope method--have been carried out for creep strain and life estimation purposes. The relation between minimum creep rate of the alloy with the applied stress obeys simple power law, whereas the rupture data of the alloy fits well to the Larson-Miller parameter. Also, the Monkman-Grant relation between the minimum creep rate and the rupture life produces a trend with some degree of scatter in the data. The latter relation in its generalized form by the {beta}-envelope method exhibited the best correlation with significantly reduced scatter in the data.

  14. Weldability and microstructure development in nickel-base superalloys

    SciTech Connect

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1997-11-01

    The integrity of nickel-base superalloy single-crystal welds depends on the weld cracking tendency, weld metal dendrite selection process, stray crystal formation, and macro- and microstructure development. These phenomena have been investigated in commercial nickel-base superalloy single crystal welds. During electron beam and laser beam welding, transverse and longitudinal weld cracking occurred. However, the weld cracking tendency was reduced with preheating. Most of the dendritic growth pattern development in these welds can be explained by a geometric model. However, the welds also contained misoriented stray crystals, which were frequently associated with weld cracks. The formation of stray crystals was related to thermal and constitutional supercooling effects. Fine-scale elemental partitioning between {gamma} and {gamma}{prime} phase was measured with atom-probe field-ion microscopy. Marked differences in partitioning characteristics in two welds were observed and are related to differences in cooling rates. In this paper, the modeling tools available to describe the above are reviewed.

  15. Influence of composition on microstructural parameters of single crystal nickel-base superalloys

    SciTech Connect

    MacKay, R.A.; Gabb, T.P.; Garg, A.; Rogers, R.B.; Nathal, M.V.

    2012-08-15

    Fourteen nickel-base superalloy single crystals containing a range of chromium (Cr), cobalt (Co), molybdenum (Mo), and rhenium (Re) levels, and fixed amounts of aluminum (Al) and tantalum (Ta), were examined to determine the effect of bulk composition on basic microstructural parameters, including {gamma} Prime solvus, {gamma} Prime volume fraction, topologically close-packed (TCP) phases, {gamma} and {gamma} Prime phase chemistries, and {gamma}-{gamma} Prime lattice mismatch. Regression models describing the influence of bulk alloy composition on each of the microstructural parameters were developed and compared to predictions by a commercially-available software tool that used computational thermodynamics. Co produced the largest change in {gamma} Prime solvus over the wide compositional range explored and Mo produced the biggest effect on the {gamma} lattice parameter over its range, although Re had a very potent influence on all microstructural parameters investigated. Changing the Cr, Co, Mo, and Re contents in the bulk alloy had an impact on their concentrations in the {gamma} matrix and to a smaller extent in the {gamma} Prime phase. The software tool under-predicted {gamma} Prime solvus temperatures and {gamma} Prime volume fractions, and over-predicted TCP phase volume fractions at 982 Degree-Sign C. However, the statistical regression models provided excellent estimations of the microstructural parameters and demonstrated the usefulness of such formulas. - Highlights: Black-Right-Pointing-Pointer Effects of Cr, Co, Mo, and Re on microstructure in new low density superalloys Black-Right-Pointing-Pointer Co produced a large change in {gamma} Prime solvus; Mo had a large effect on lattice mismatch. Black-Right-Pointing-Pointer Re exhibited very potent influence on all microstructural parameters was investigated. Black-Right-Pointing-Pointer {gamma} and {gamma} Prime phase chemistries both varied with temperature and alloy composition. Black

  16. Thermal-mechanical fatigue behavior of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Pelloux, R. M.; Marchand, N.

    1986-01-01

    The main achievements of a 36-month research program are presented. The main objective was to gain more insight into the problem of crack growth under thermal mechanical fatigue (TMF) conditions. This program was conducted at M.I.T. for the period of September 1982 to September 1985. The program was arranged into five technical tasks. Under Task I, the literature of TMF data was reviewed. The goal was to identify the crack propagation conditions in aircraft engines (hot section) and to assess the validity of conventional fracture mechanics parameters to address TMF crack growth. The second task defined the test facilities, test specimen and the testing conditions needed to establish the effectiveness of data correlation parameters identified in Task I. Three materials (Inconel X-750, Hastelloy-X, and B-1900) were chosen for the program. Task II was accomplished in collaboration with Pratt & Whitney Aircraft engineers. Under Task III, a computerized testing system to measure the TMF behavior (LCF and CG behaviors) of various alloys systems was built. The software used to run isothermal and TMF tests was also developed. Built around a conventional servohydraulic machine, the system is capable of push-pull tests under stress or strain and temperature controlled conditions in the temperature range of 25C to 1050C. A crack propagation test program was defined and conducted under Task IV. The test variables included strain range, strain rate (frequency) and temperature. Task V correlated and generalized the Task IV data for isothermal and variable temperature conditions so that several crack propagation parameters could be compared and evaluated. The structural damage (mode of cracking and dislocation substructure) under TMF cycling was identified and contrasted with the isothermal damage to achieve a sound fundamental mechanistic understanding of TMF.

  17. Wave propagation in an anisotropic nickel-based superalloy

    PubMed

    Amulele; Every

    2000-03-01

    The effects of elastic anisotropy on ultrasound propagation in a nickel-based single crystal test component are studied using a 25 MHz focused probe in a water immersion system. Anisotropy gives rise to directionally dependent acoustic wavespeeds, beam steering, acoustic energy focusing and mode conversion for normal incidence. Transverse mode echoes are particularly strong in the vicinity of crystallographic directions in which the Gaussian curvature of the slowness surface is zero and divergence of the echo amplitude is predicted on the basis of the stationary phase approximation. There are other directions where the transverse mode echoes vanish for symmetry reasons. The longitudinal mode echo amplitude also shows significant variation with direction. Overall there is good agreement between the echo signal arrival times and amplitudes we measure and calculation. Progress in applying this technique to gas turbine blades is reported. PMID:10829669

  18. Wave propagation in an anisotropic nickel-based superalloy

    PubMed

    Amulele; Every

    2000-03-01

    The effects of elastic anisotropy on ultrasound propagation in a nickel-based single crystal test component are studied using a 25 MHz focused probe in a water immersion system. Anisotropy gives rise to directionally dependent acoustic wavespeeds, beam steering, acoustic energy focusing and mode conversion for normal incidence. Transverse mode echoes are particularly strong in the vicinity of crystallographic directions in which the Gaussian curvature of the slowness surface is zero and divergence of the echo amplitude is predicted on the basis of the stationary phase approximation. There are other directions where the transverse mode echoes vanish for symmetry reasons. The longitudinal mode echo amplitude also shows significant variation with direction. Overall there is good agreement between the echo signal arrival times and amplitudes we measure and calculation. Progress in applying this technique to gas turbine blades is reported.

  19. Effect of Mo on the High-Temperature Creep Resistance and Machinability of a Recycled Al-Alloy with High Iron Impurity

    NASA Astrophysics Data System (ADS)

    Ain, W. Q.; Faisal, M. K.; Talari, M. K.; Darham, W.; Ratnam, M. M.; Kwon, Y.; Kim, N. J.; Prasada Rao, A. K.

    2016-08-01

    Reported work focuses on the effect of morphology of the Fe-rich intermetallic phases on the machinability of Al-alloy containing >2wt.% Fe, obtained from automotive scrap. Effect of Mo addition on the microstructure, high-temperature impression creep and thereby the machinability of the Al-recycled alloy were studied. The machinability of the recycled alloy was estimated by investigating the built-up-edge (BUE) and surface roughness (R a). SEM-EDS and TEM-SADP studies have shown that the crystal structure (BCC) of the Al8Fe2Si phase remained unchanged; however, Mo replaced few Fe atoms with little effect on the lattice dimension. It has been found that the addition of Mo to the recycled alloy suppresses the formation of β-phase (Al5FeSi) by suppressing the peritectic transformation of α (Al8Fe2Si) phase. Such suppression is found to improve the high-temperature creep resistance and the machinability with the increase in the Mo addition level.

  20. Effect of Mo on the High-Temperature Creep Resistance and Machinability of a Recycled Al-Alloy with High Iron Impurity

    NASA Astrophysics Data System (ADS)

    Ain, W. Q.; Faisal, M. K.; Talari, M. K.; Darham, W.; Ratnam, M. M.; Kwon, Y.; Kim, N. J.; Prasada Rao, A. K.

    2016-10-01

    Reported work focuses on the effect of morphology of the Fe-rich intermetallic phases on the machinability of Al-alloy containing >2wt.% Fe, obtained from automotive scrap. Effect of Mo addition on the microstructure, high-temperature impression creep and thereby the machinability of the Al-recycled alloy were studied. The machinability of the recycled alloy was estimated by investigating the built-up-edge (BUE) and surface roughness ( R a). SEM-EDS and TEM-SADP studies have shown that the crystal structure (BCC) of the Al8Fe2Si phase remained unchanged; however, Mo replaced few Fe atoms with little effect on the lattice dimension. It has been found that the addition of Mo to the recycled alloy suppresses the formation of β-phase (Al5FeSi) by suppressing the peritectic transformation of α (Al8Fe2Si) phase. Such suppression is found to improve the high-temperature creep resistance and the machinability with the increase in the Mo addition level.

  1. Study of the Effect of Lubricant Emulsion Percentage and Tool Material on Surface Roughness in Machining of EN-AC 48000 Alloy

    NASA Astrophysics Data System (ADS)

    Soltani, E.; Shahali, H.; Zarepour, H.

    2011-01-01

    In this paper, the effect of machining parameters, namely, lubricant emulsion percentage and tool material on surface roughness has been studied in machining process of EN-AC 48000 aluminum alloy. EN-AC 48000 aluminum alloy is an important alloy in industries. Machining of this alloy is of vital importance due to built-up edge and tool wear. A L9 Taguchi standard orthogonal array has been applied as experimental design to investigate the effect of the factors and their interaction. Nine machining tests have been carried out with three random replications resulting in 27 experiments. Three type of cutting tools including coated carbide (CD1810), uncoated carbide (H10), and polycrystalline diamond (CD10) have been used in this research. Emulsion percentage of lubricant is selected at three levels including 3%, 5% and 10%. Statistical analysis has been employed to study the effect of factors and their interactions using ANOVA method. Moreover, the optimal factors level has been achieved through signal to noise ratio (S/N) analysis. Also, a regression model has been provided to predict the surface roughness. Finally, the results of the confirmation tests have been presented to verify the adequacy of the predictive model. In this research, surface quality was improved by 9% using lubricant and statistical optimization method.

  2. CO2 laser cut quality of Inconel 718 nickel - based superalloy

    NASA Astrophysics Data System (ADS)

    Hasçalık, Ahmet; Ay, Mustafa

    2013-06-01

    This paper experimentally investigates the cut quality of laser cutting for the age hardened Inconel 718 nickel based super alloy, with the use of a continuous CO2 4.0 kW laser cutting system. The quality of the cut has been monitored by measuring the kerf taper ratio, the recast layer thickness and the surface roughness of the cut specimens. The effects of processing parameters, such as the laser power, the cutting speed and the assisting gas pressure were evaluated. Scanning electron microscopy (SEM), Energy Dispersive Spectrography (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and Knoop hardness tests are carried out to examine the cutting defects, the kerf size variation and formed carbide on the surfaces. A statistical analysis of the results has been performed in order for the effect of each parameter on the cutting quality to be determined. The regression analysis has been used for the development of empirical models able to describe the effect of the process parameters on the quality of laser cutting.

  3. Influence of gaseous hydrogen on the mechanical properties of high temperature alloys

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Tensile tests of six nickel-base and one cobalt-base alloy were conducted in 34.5 MN/sq m helium and hydrogen environments at temperatures from 297 K to 1,088 K. Mechanical properties tests of the nickel-base alloy MAR M-246 (Hf modified), in two cast conditions, were conducted in gaseous environments at temperatures from 297 K to 1,144 K and pressures from one atmosphere to 34.5 MN/sq m. The objective of this program was to obtain the mechanical properties of the various alloys proposed for use in space propulsion systems in a pure hydrogen environment at different temperatures and to compare with the mechanical properties in helium at the same conditions. All testing was conducted on solid specimens exposed to external gaseous pressure. Smooth and notched tensile properties were determined using ASTM tensile testing techniques, and creep-rupture life was determined using ASTM creep-rupture techniques. Low-cycle fatigue life was established by constant total strain and constant stress testing using smooth specimens and a closed-loop test machine.

  4. The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the microstructure of single crystal nickel-base superalloys was investigated. Co was replaced by Ni, and Ta was replaced by either Ni or W, according to a matrix of compositions based on MAR-M247. Substitution of Ni for Co caused an increase in gamma-prime solvus temperature, an increase in gamma-gamma-prime lattice mismatch, and the precipitation of W-rich phases in the alloys with high refractory metal levels. Substitution of Ni for Ta caused large decreases in gamma-prime solvus temperature, gamma-prime volume fraction, and gamma-gamma-prime lattice mismatch, whereas substitution of W for Ta resulted in smaller decreases in these features. For the alloys with gamma-prime particles that remained coherent, substitution of Ni for Co caused an increase in gamma-prime coarsening rate. The two alloys with the largest magnitude of lattice mismatch possessed gamma-prime particles which lost coherency during unstressed aging and exhibited anomalously low coarsening rates. Creep exposure at 1000 C resulted in the formation of gamma-prime lamellae oriented perpendicular to the applied stress axis in all alloys.

  5. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory R.

    2000-01-01

    High Cycle Fatigue (HCF) induced failures in aircraft gas-turbine engines is a pervasive problem affecting a wide range of components and materials. HCF is currently the primary cause of component failures in gas turbine aircraft engines. Turbine blades in high performance aircraft and rocket engines are increasingly being made of single crystal nickel superalloys. Single-crystal Nickel-base superalloys were developed to provide superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys previously used in the production of turbine blades and vanes. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. PWA1493, identical to PWA1480, but with tighter chemical constituent control, is used in the NASA SSME (Space Shuttle Main Engine) alternate turbopump, a liquid hydrogen fueled rocket engine. Objectives for this paper are motivated by the need for developing failure criteria and fatigue life evaluation procedures for high temperature single crystal components, using available fatigue data and finite element modeling of turbine blades. Using the FE (finite element) stress analysis results and the fatigue life relations developed, the effect of variation of primary and secondary crystal orientations on life is determined, at critical blade locations. The most advantageous crystal orientation for a given blade design is determined. Results presented demonstrates that control of secondary and primary crystallographic orientation has the potential to optimize blade design by increasing its resistance to fatigue crack growth without adding additional weight or cost.

  6. Effect of crystallographic orientation on plastic deformation of single crystal nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Westbrooke, Eboni F.

    Nickel-base superalloys, with gamma/gamma' microstructure, are the primary material used in turbines for aerospace applications. The blades in the hottest region of the turbine engine are made of single crystal Ni-base superalloys. It has been shown that the critical resolved shear stress (CRSS) of these materials is orientation dependent (also known as non-Schmid effect). The purpose of this research was to investigate the plastic deformation mechanisms of single crystal Ni-base superalloys as a function of crystallographic orientation in order to understand the factors that contribute to the non-Schmid effect. The superalloys in this study possessed alloying elements in amounts which defined them as 1st and 2nd generation superalloys. Tensile samples of various orientations were loaded to different strain levels. The mechanisms of plastic deformation were characterized by optical and scanning electron microscopy (SEM) observations of deformation bands as well as the dislocation structures using transmission electron microscopy (TEM). It was confirmed that the CRSS of the single crystals did not follow Schmid's law and the near <111> specimens showed the lowest values. The degree of non-Schmid behavior in the <111> specimens was diminished by HIP'ing, which resulted in closure of solidification pores. Furthermore, it was shown that the CRSS for the <100> loaded samples was smallest when loaded along the secondary dendrite arms. The slip analysis by optical microscopy showed that the deformation bands did not follow the expected {111} slip planes for all samples. Studies in SEM proved that those slip bands that followed the {111} planes were associated with extensive shearing of gamma' particles. In addition, it was found that the presence of tri-axial stress states within the macrostructure influenced the deformation path significantly. The TEM observations of deformed specimens revealed that plastic deformation took place mainly in the gamma channels in specimens

  7. Effects of silicon on the oxidation, hot-corrosion, and mechanical behavior of two cast nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.

    1977-01-01

    Cast specimens of nickel-base superalloys 713C and Mar-M200 with nominal additions of 0, 0.5, and 1 wt% Si were evaluated for oxidation and corrosion resistance, tensile and stress-rupture properties, microstructure, and phase relations. Results are compared with those of an earlier study of the effects of Si in B-1900. Si had similar effects on all three superalloys. It improves oxidation resistance but the improvement in 713C and Mar-M200 was considerably less than in B-1900. Hot-corrosion resistance is also improved somewhat. Si is, however, detrimental to mechanical properties, in particular, rupture strength and tensile ductility. Si has two obvious microstructural effects. It increases the amount of gamma-prime precipitated in eutectic nodules and promotes a Mo(Ni,Si)2 Laves phase in the alloys containing Mo. These microstructural effects do not appear responsible for the degradation of mechanical properties, however.

  8. Hot corrosion studies of four nickel-base superalloys: B-1900, NASA-TRW VIA, 713C and IN738

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Kohl, F. J.; Stearns, C. A.

    1976-01-01

    The susceptibility to hot corrosion of four nickel base superalloys has been studied at 900 deg and 1000 deg C in one atmosphere of slowly flowing oxygen. Hot corrosion was induced by coating the samples with known doses of NaSO4 and oxidizing the coated samples isothermally on a sensitive microbalance. In general, the order of susceptibility found was: B-1900 is greater than 713C is greater than NASA-TRW VIA and is greater than IN738. This order corresponds to the order of decreasing molybdenum content of the alloys. Chemical evidence for B-1900 indicates that hot corrosion is instigated by acid fluxing of the protective Al2O3 coating by MoO3.

  9. Polycrystal plasticity modeling of nickel-based superalloy IN 617 subjected to cyclic loading at high temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Oskay, Caglar

    2016-06-01

    A crystal plasticity finite element (CPFE) model considering isothermal, large deformation and cyclic loading conditions has been formulated and employed to investigate the mechanical response of a nickel-based alloy at high temperature. The investigations focus on fatigue and creep-fatigue hysteresis response of IN 617 subjected to fatigue and creep-fatigue cycles. A new slip resistance evolution equation is proposed to account for cyclic transient features induced by solute drag creep that occur in IN 617 at 950 °C. The crystal plasticity model parameters are calibrated against the experimental fatigue and creep-fatigue data based on an optimization procedure that relies on a surrogate modeling (i.e. Gaussian process) technique to accelerate multi-parameter optimizations. The model predictions are validated against experimental data, which demonstrates the capability of the proposed model in capturing the hysteresis behavior for various hold times and strain ranges in the context of fatigue and creep-fatigue loading.

  10. The influence of cobalt on the microstructure of the nickel-base superalloy MAR-M247

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Maier, R. D.; Ebert, L. J.

    1982-01-01

    Nickel was substituted for Co to produce 0, 5, and the standard 10% versions of MAR-M247, a cast nickel-base superalloy. The microstructures of the alloys were examined in as-cast, heat treated, aged, and stress-rupture tested conditions using a variety of metallographic techniques and differential thermal analysis. As cobalt concentration was reduced from 10 to 0 wt %, the gamma-prime weight fraction decreased from 59 to 41%; W and Ti concentrations in the gamma-prime phase increased from 5 to 8 and 2 to 3 at.%, respectively; the mean gamma-prime particle size increased from 0.6 to 0.8 micron; Cr and Al concentrations in the gamma matrix decreased from 17 to 13 and 15 to 12 at.%, respectively; and the weight fraction of carbides increased by approximately 1%.

  11. Bonding titanium to Rene 41 alloy

    NASA Technical Reports Server (NTRS)

    Scott, R. W.

    1972-01-01

    Pair of intermediate materials joined by electron beam welding method welds titanium to Rene 41 alloy. Bond is necessary for combining into one structure high strength-to-density ratio titanium fan blades and temperature resistant nickel-base alloy turbine-buckets in VTOL aircraft lift-fan rotor.

  12. Anisotropy of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Maier, R. D.; Dreshfield, R. L.

    1980-01-01

    The effects of crystal orientation on the mechanical properties of single crystals of the nickel-based superalloy Mar-M247 are investigated. Tensile tests at temperatures from 23 to 1093 C and stress rupture tests at temperatures from 760 to 1038 C were performed for 52 single crystals at various orientations. During tensile testing between 23 and 760 C, single crystals with high Schmid factors were found to be favorably oriented for slip and to exhibit lower strength and higher ductility than those with low Schmid factors. Crystals which required large rotations to become oriented for cross slip were observed to have the shortest stress rupture lives at 760 C, while those which required little or no rotation had the longest lives. In addition, stereographic triangles obtained for Mar-M247 and Mar-M200 single crystals reveal that crystals with orientations near the -111 had the highest lives, those near the 001 had high lives, and those near the 011 had low lives.

  13. Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Ojo, O. A.; Chaturvedi, M. C.

    2007-02-01

    The effect of preweld overaging heat treatment on the microstructural response in the heat-affected zone (HAZ) of a precipitation-hardened nickel-base superalloy INCONEL 738LC subjected to the welding thermal cycle ( i.e., rapid) was investigated. The overaging heat treatment resulted in the formation of an interfacial microconstituent containing M23X6 particles and coarsening of primary and secondary γ' precipitates. The HAZ microstructures around welds in the overaged alloy were simulated using the Gleeble thermomechanical simulation system. Microstructural examination of simulated HAZs and those present in tungsten inert gas (TIG) welded specimens showed the occurrence of extensive grain boundary liquation involving liquation reaction of the interfacial microconstituents containing M23X6 particles and MC-type carbides. In addition, the coarsened γ' precipitate particles present in the overaged alloy persisted well above their solvus temperature to temperatures where they constitutionally liquated and contributed to considerable liquation of grain boundaries, during continuous rapid heating. Intergranular HAZ microfissuring, with resolidified product formed mostly on one side of the microfissures, was observed in welded specimens. This suggested that the HAZ microfissuring generally occurred by decohesion across one of the solid-liquid interfaces during the grain boundary liquation stage of the weld thermal cycle. Correlation of simulated HAZ microstructures with hot ductility properties of the alloy revealed that the temperature at which the alloy exhibited zero ductility during heating was within the temperature range at which grain boundary liquation was observed. The on-cooling ductility of the alloy was significantly damaged by the on-heating liquation reaction, as reflected by the considerably low ductility recovery temperature (DRT). Important characteristics of the intergranular liquid that could influence HAZ microfissuring of the alloy in overaged

  14. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  15. A study of reduced chromium content in a nickel-base superalloy via element substitution and rapid solidification processing. Ph.D. ThesisFinal Report

    NASA Technical Reports Server (NTRS)

    Powers, William O.

    1987-01-01

    A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.

  16. A SEM and EDS based Study of the Microstructural Modifications of Turning Inserts in the Dry Machining of Ti6Al4V Alloy

    NASA Astrophysics Data System (ADS)

    Gerez, J. M.; Sanchez-Carrilero, M.; Salguero, J.; Batista, M.; Marcos, M.

    2009-11-01

    Titanium and its alloys are considered as low machinability materials because of its low thermal conductivity, which provokes a high temperature in the tool-chip interface. However, thanks to its excellent relationship weight/mechanical properties, this material is widely used in the aerospace industrial sector. This paper reports on the results of an analysis of the surface changes of hard metal (WC-Co) turning inserts employed in the dry turning of alloy UNS 56400 (Ti-6Al-4V), widely used in aerospace industry. The analysis has been developed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) techniques.

  17. The fracture morphology of nickel-base superalloys tested in fatigue and creep-fatigue at 650 C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Miner, R. V.

    1981-01-01

    The fracture surfaces of compact tension specimens from seven nickel-base superalloys fatigue tested at 650 C were studied by scanning electron microscopy and optical metallography to determine the nature and morphology of the crack surface in the region of stable growth. Crack propagation testing was performed as part of an earlier study at 650 C in air using a 0.33 Hz fatigue cycle and a creep-fatigue cycle incorporating a 900 second dwell at maximum load. In fatigue, alloys with a grain size greater than 20 micrometers, HIP Astroloy, Waspaloy, and MERL 76, exhibited transgranular fracture. MERL 76 also displayed numerous fracture sites which were associated with boundaries of prior powder particles. The two high strength, fine grain alloys, IN 100 and NASA IIB-7, exhibited intergranular fracture. Rene 95 and HIP plus forged Astroloy displayed a mixed failure mode that was transgranular in the coarse grains and intergranular in the fine grains. Under creep-fatigue conditions, fracture was found to be predominantly intergranular in all seven alloys.

  18. The influence of cobalt, tantalum, and tungsten on the elevated temperature mechanical properties of single crystal nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The influence of composition on the tensile and creep strength of 001-line oriented nickel-base superalloy single crystals at temperatures near 1000 C was investigated. Cobalt, tantalum, and tungsten concentrations were varied according to a matrix of compositions based on the single crystal version of MAR-M247. For alloys with the baseline refractory metal level of 3 wt pct Ta and 10 wt pct W, decreases in Co level from 10 to 0 wt pct resulted in increased tensile and creep strength. Substitution of 2 wt pct W for 3 wt pct Ta resulted in decreased creep life at high stresses, but improved life at low stresses. Substitution of Ni for Ta caused large reductions in tensile strength and creep resistance, and corresponding increases in ductility. For these alloys with low Ta-plus-W totals, strength was independent of Co level. The effects of composition on properties were related to the microstructural features of the alloys. In general, high creep strength was associated with high levels of gamma-prime volume fraction, gamma-gamma-prime lattice mismatch, and solid solution hardening.

  19. Creep-rupture in powder metallurgical nickel-base superalloys at intermediate temperatures

    NASA Astrophysics Data System (ADS)

    Law, C. C.; Blackburn, M. J.

    1980-03-01

    To gain insight into the factors which control the creep-rupture properties of powder metallurgical nickel-base superalloys at intermediate temperatures (650 to 775°C), a comparative study was conducted on the alloys AF115, modified MAR-M432 (B6) and modified IN100 (MERL76). Creep-rupture properties in these alloys were characterized in terms of the stress and temperature dependence of the secondary creep rate, ɛS, andrupture time, t R . Within the limited stress ranges used, the stress dependence of both ɛS and t R at 704°C can be represented by power laws ɛS and C n and t R = Mσ -p ; where C, M, n, and p are constants. The stress exponents n and p are approximately equal for both AF115 and B6 with values of 16 and 7, respectively. In the case of MERL76, n and p are different, with values of 15 and 5, respectively. The apparent activation energies, Q, are 700, 370 and 520 KJ mol-1 for AF115, B6 and MERL76, respectively. For these alloys, long creep-rupture lives are associated with large values of n and Q. The sig-nificant differences in n and Q values between AF115 and B6 were related to creep re-covery processes for which the lattice misfit between the gamma and the gamma prime was identified to be an important parameter. However, the unequal n and p values in MERL76 compared with those in AF115 and B6, were traced to differences in fracture mode. Failures in AF115 and B6 were initiated at carbide particles at grain boundaries. In contrast, fracture in MERL76 was initiated at grain boundary triple junctions. The rupture lives of AF115 and B6 can be modeled reasonably well by the growth of cavities during secondary creep and propagation of a surface-nucleated crack during the tertiary creep.

  20. Deformation Twin Nucleation and Growth Characterization in Magnesium Alloys Using Novel EBSD Pattern Analysis and Machine Learning Tools

    NASA Astrophysics Data System (ADS)

    Rampton, Travis M.

    Deformation twinning in Magnesium alloys both facilitates slip and forms sites for failure. Currently, basic studies of twinning in Mg are facilitated by electron backscatter diffraction (EBSD) which is able to extract a myriad of information relating to crystalline microstructures. Although much information is available via EBSD, various problems relating to deformation twinning have not been solved. This dissertation provides new insights into deformation twinning in Mg alloys, with particular focus on AZ31. These insights were gained through the development of new EBSD and related machine learning tools that extract more information beyond what is currently accessed. The first tool relating to characterization of deformed and twinned materials focuses on surface topography crack detection. The intensity map across EBSD images contains vital information that can be used to detect evolution of surface roughness and crack formation, which typically occurs at twin boundaries. The method of topography recovery resulted in reconstruction errors as low as 2% over a 500 microm length. The method was then applied to a 3 microm x 3 microm area of twinned Tantalum which experienced topographic alterations. The topography of Ta correlated with other measured changes in the microstructure. Additionally, EBSD images were used to identify the presence of cracks in Nickel microstructures. Several cracks were identified on the Ni specimen, demonstrating that cracks as thin as 34 nm could be measured. A further EBSD based tool developed for this study was used to identify thin compression twins in Mg; these are often missed in a traditional EBSD scan due to their size relative to the electron probe. This tool takes advantage of crystallographic relationships that exist between parent and twinned grains; common planes that exist in both grains lead to bands of consistent intensity as a scan crosses a twin. Hence, twin boundaries in a microstructure can be recognized, even when

  1. Application of electrochemical techniques for machining titanium aluminide-based alloys

    SciTech Connect

    Ziomek-Moroz, M.; Su, W; Alman, David E.; Hawk, Jeffrey A.

    1997-01-01

    Intermetallic materials with excellent resistance to high-temperature oxidation have been considered as potential replacements for superalloys used as aerospace materials. Titanium aluminides are especially attractive for this role. However, further commercialization of titanium aluminides requires the development of non-conventional machining, such as electrochemical machining (ECM). As a first attempt in the development of the ECM process, the corrosion behavior of arc-melted gamma TiAl and alpha 2 Ti3Al was investigated along with pure titanium and aluminum in deaerated and non-deaerated solutions of sulfuric acid, sodium sulfate, and sodium hydroxide. Two types of electrochemical experiments were carried out, namely, potentiodynamic and potentiostatic. In the Na2SO4 solution, the highest current was found for Al and the lowest for TiAl. The shape of the polarization curves indicates that the intermetallics show similar behavior to that of Ti. It has been found that, in sulfuric acid, current values decrease with increasing titanium content. In the sodium sulfate and sodium hydroxide solutions, current values initially decrease with increasing titanium content and remain unchanged for higher concentrations of titanium.

  2. Very high cycle fatigue behavior of nickel-based superalloy Rene 88 DT

    NASA Astrophysics Data System (ADS)

    Miao, Jiashi

    The fatigue behavior of the polycrystalline nickel-based superalloy Rene 88 DT has been investigated at 593°C up to the very high cycle fatigue regime using ultrasonic fatigue techniques. Conventional damage tolerant methods failed to predict the fatigue life nor the large fatigue life viability of two orders of magnitude observed in the very high cycle regime. Fatigue crack initiation rather than fatigue crack growth is the life determining process in this alloy in the very high cycle regime. At 593°C, all fatigue failures have subsurface origins. Most fatigue crack initiation sites consist of a large crystallographic facet or a cluster of several large crystallographic facets. By combining electron backscatter diffraction, metallographic serial sectioning and SEM-stereo-image-based quantitative fractographic analysis, critical microstructure features associated with subsurface crystallographic fatigue crack initiation were identified. Subsurface fatigue cracks formed by the localization of cyclic plastic deformation on {111} slip planes in the region close to and parallel to twin boundaries in favorably oriented large grains. The facet plane in the crack initiation grain is parallel to the slip plane with the highest resolved shear stresses. Analytical calculations show that twin boundary elastic incompatibility stresses contribute to the onset of cyclic plastic strain localization in the fatigue crack initiation grains. Favorably oriented neighbor grains also can assist with fatigue crack initiation and especially early small crack propagation. Environment may play an important role in the shift of fatigue crack initiation sites from surface to subsurface at elevated temperature. The fatigue behavior of Rene 88 DT was also investigated under fully reversed loading at room temperature using ultrasonic fatigue techniques. Cyclic plastic strain localization and microcrack formation on specimen surfaces were quantitatively studied by EBSD. All microcracks examined

  3. The effect of hydrogen on the deformation behavior of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Walston, W. S.; Thompson, A. W.; Bernstein, I. M.

    1989-01-01

    The effect of hydrogen on the tensile deformation behavior of PWA 1480 is presented. Tensile tests were interrupted at different plastic strain levels to observe the development of the dislocation structure. Transmission electron microscopy (TEM) foils were cut perpendicular to the tensile axis to allow the deformation of both phases to be simultaneously observed as well as parallel to zone axes (III) to show the superdislocations on their slip planes. Similar to other nickel-base superalloys, hydrogen was detrimental to the room temperature tensile properties of PWA 1480. There was little effect on strength, however the material was severely embrittled. Even without hydrogen, the elongation-to-failure was only approximately 3 percent. The tensile fracture surface was made up primarily of ductile voids with regions of cleavage fracture. These cleavage facets are the eutectic (gamma') in the microstructure. It was shown by quantitative fractography that hydrogen embrittles the eutectic (gamma') and causes the crack path to seek out and fracture through the eutectic (gamma'). There was two to three times the amount of cleavage on the fracture surface of the hydrogen-charged samples than on the surface of the uncharged samples. The effect of hydrogen can also be seen in the dislocation structure. There is a marked tendency for dislocation trapping in the gamma matrix with and without hydrogen at all plastic strain levels. Without hydrogen there is a high dislocation density in the gamma matrix leading to strain exhaustion in this region and failure through the matrix. The dislocation structure at failure with hydrogen is slightly different. The TEM foils cut parallel to zone axes (III) showed dislocations wrapping around gamma precipitates. Zone axes (001) foils show that there is a lower dislocation density in the gamma matrix which can be linked to the effects of hydrogen on the fracture behavior. The primary activity in the gamma precipitates is in the form of

  4. Surface treatment by electric discharge machining of Ti-6Al-4V alloy for potential application in orthopaedics.

    PubMed

    Harcuba, Petr; Bačáková, Lucie; Stráský, Josef; Bačáková, Markéta; Novotná, Katarína; Janeček, Miloš

    2012-03-01

    This study investigated the properties of Ti-6Al-4V alloy after surface treatment by the electric discharge machining (EDM) process. The EDM process with high peak currents proved to induce surface macro-roughness and to cause chemical changes to the surface. Evaluations were made of the mechanical properties by means of tensile tests, and of surface roughness for different peak currents of the EDM process. The EDM process with peak current of 29 A was found to induce sufficient surface roughness, and to have a low adverse effect on tensile properties. The chemical changes were studied by scanning electron microscopy equipped with an energy dispersive X-ray analyser (EDX). The surface of the benchmark samples was obtained by plasma-spraying a titanium dioxide coating. An investigation of the biocompatibility of the surface-treated Ti-6Al-4V samples in cultures of human osteoblast-like MG 63 cells revealed that the samples modified by EDM provided better substrates for the adhesion, growth and viability of MG 63 cells than the TiO2 coated surface. Thus, EDM treatment can be considered as a promising surface modification to orthopaedic implants, in which good integration with the surrounding bone tissue is required.

  5. Microstructure evolution and FEM analysis of a [111] oriented single crystal nickel-based superalloy during tensile creep

    NASA Astrophysics Data System (ADS)

    Tian, Sugui; Li, Qiuyang; Su, Yong; Yu, Huichen; Xie, Jun; Zhang, Shu

    2015-03-01

    By means of the elastic-plastic stress-strain finite element method (FEM), the distribution of the von Mises stress and strain energy density in the regions near the interfaces of the cuboidal γ/ γ' phases is calculated to investigate the rafted behaviors of γ' phase in a [111] oriented single crystal (SC) nickel-based superalloy. Results show that, after fully heat treated, the microstructure of the superalloy consists of the cuboidal γ' phase embedded coherently in the γ matrix and arranged regularly along the <100> orientation. And the parameters and misfits of γ'/ γ phases in the alloy increase with the temperature. After crept for 50 h, the γ' phase in alloy has transformed into the mesh-like rafted structure on (010) plane along [001] and [100] orientations. When the tensile stress is applied along [111] direction, the change of the strain energy on the planes of the cuboidal γ' phase results in the directional diffusion of the elements. Thereinto, compared with (010) plane, the bigger expanding strain occurs on (100) and (001) planes along the [010], [001] and [010], [100] directions, which may trap the Al and Ti atoms with bigger radius to promote the directional growth of γ' phase on (010) plane along [100] and [001] directions. This is thought to be the main reason for the γ' phase directionally growing into the mesh-like rafted structure on (010) plane.

  6. Choosing An Alloy For Automotive Stirling Engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    Report describes study of chemical compositions and microstructures of alloys for automotive Stirling engines. Engines offer advantages of high efficiency, low pollution, low noise, and ability to use variety of fuels. Twenty alloys evaluated for resistance to corrosion permeation by hydrogen, and high temperature. Iron-based alloys considered primary candidates because of low cost. Nickel-based alloys second choice in case suitable iron-based alloy could not be found. Cobalt-based alloy included for comparison but not candidate, because it is expensive strategic material.

  7. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  8. An investigation of the initiation stage of hot corrosion in Ni-base alloys

    NASA Technical Reports Server (NTRS)

    Huang, T. T.; Meier, G. H.

    1979-01-01

    The commercial nickel base alloy, IN-738, and high purity laboratory alloys were prepared to simulate the effects of the major elements in IN-738. Results indicate that the initiation of hot corrosion attack of IN-738 and other similar alloys is the result of local penetration of molten salt through the protective oxide scale.

  9. High temperature cyclic oxidation data. Part 1: Turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.

    1989-01-01

    Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  10. High-temperature cyclic oxidation data. Part 2: Turbine alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.; Garlick, Ralph G.

    1989-01-01

    Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  11. Effects of a range of machined and ground surface finishes on the simulated reactor helium corrosion of several candidate structural materials. [Inconel MA 754

    SciTech Connect

    Thompson, L.D.

    1981-02-01

    This report discusses the corrosion behavior of several candidate reactor structural alloys in a simulated advanced high-temperature gas-cooled reactor (HTGR) environment over a range of lathe-machined and centerless-ground surface finishes. The helium environment contained 50 Pa H/sub 2//5 Pa CO/5 Pa CH/sub 4//<0.05 Pa H/sub 2/O (500 ..mu..atm H/sub 2//50 ..mu..atm CO/50 ..mu..atm CH/sub 4//<0.5 ..mu..atm H/sub 2/O) at 900/sup 0/C for a total exposure of 3000 h. The test alloys included two vacuum-cast superalloys (IN 100 and IN 713LC); a centrifugally cast austenitic alloy (HK 40); three wrought high-temperature alloys (Alloy 800H, Hastelloy X, and Inconel 617); and a nickel-base oxide-dispersion-strengthened alloy (Inconel MA 754). Surface finish variations did not affect the simulated advanced-HTGR corrosion behavior of these materials. Under these conditions, the availability of reactant gaseous impurities controls the kinetics of the observed gas-metal interactions. Variations in the near-surface activities and mobilities of reactive solute elements, such as chromium, which might be expected to be affected by changes in surface finish, do not seem to greatly influence corrosion in this simulated advanced HTGR environment. 18 figures, 4 tables.

  12. Susceptibility to hot corrosion of four nickel-base superalloys, NASA-TRW VIA, B-1900, 713C and IN-738

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1977-01-01

    The susceptibility to hot corrosion of four nickel-base, cast superalloys has been studied at 900 and 1000 C. The test consisted of coating alloy samples with known amounts of Na2SO4 and oxidizing the coated samples isothermally in 1 atmosphere of slowly flowing oxygen, the weight-gain being monitored on a sensitive recording microbalance. Susceptibility to hot corrosion decreased in the order of decreasing molybdenum content of the alloys. Preoxidation of samples before hot-corrosion testing markedly increased the induction period observed prior to the inception of hot corrosion for all alloys tested. X-ray diffraction analyses of the oxide scales were made. All samples that underwent hot corrosion showed the presence of a (Ni,Co)MoO4 layer near the alloy-oxide interface. Several specimens displayed resistance to hot corrosion and these showed NaTaO3 as a prominent feature in their oxide scale. Our results may be interpreted as indicating that molybdenum in an alloy is detrimental, with respect to hot corrosion, while tantalum is beneficial.

  13. Lattice parameter variations during aging in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.; Garlick, R. G.

    1988-01-01

    The importance of the state of coherency on measurements of gamma/gamma-prime lattice mismatch has been experimentally demonstrated during aging at 1000 C of specimens of an alloy with composition Ni-(8.6)Cr-(5.3)Al-(10.1)Co-(11.7)W-(1.2)Ti-(0.7)Mo (wt pct). Lattice parameter measurements are given as a function of aging time, and the corresponding sample microstructures are presented. The results show that changes of the two phases during aging did not influence the lattice parameter measurements, indicating that aging specimens to produce a semicoherent gamma/gamma-prime structure provides a good approximation of the true, unconstrained lattice mismatch.

  14. Competing fatigue mechanisms in Nickel-base superalloy Rene 88DT

    NASA Astrophysics Data System (ADS)

    Chang, Paul N.

    Nickel base superalloys exhibit superior high temperature mechanical properties required for aircraft engine components. It has been known that the processing of these alloys by the powder metallurgy route introduces inclusions inside the material. The presence of such inclusions often leads to competing failure modes in fatigue that is described by a step-wise or two distinct S-N curves involving both the surface and internally-initiated cracks, resulting in large uncertainties of fatigue life. A clear understanding of such behavior is yet to be established. The principal objective of this research is to examine the effect of inclusions on the extent of fatigue failure competition from surface and internal initiators at two different specimen test volumes. Experimental fatigue testing has been performed to explore how the presence of inclusions affects the competing fatigue failure modes. In addition, how the competing failure modes will behave with changes in the specimen size was also studied. Two groups of material each with two different specimen sizes were used in this study. It has been shown that the two crack initiation mechanisms occurred in the small unseeded Rene 88DT specimens tested at 650ºC over the stress range tested. Additionally, the fatigue lives were reduced with increase in specimen volume. All fatigue failures in seeded material occurred due to crack initiations from the seeded inclusions. In the fatigue life of seeded material, two competing and separate S-N curves were found in small test volume, whereas, in the large test volume, the regions were separated by a "step" in S-N curve. It has been found that the largest inclusion size observed in metallographic surfaces was smaller than the size determined from the fatigue failure origin. An analysis method based on extreme value statistics developed by Murakami was used to predict the largest size of inclusion in the test volume. The results of this study clearly show that competition for

  15. On Electro Discharge Machining of Inconel 718 with Hollow Tool

    NASA Astrophysics Data System (ADS)

    Rajesha, S.; Sharma, A. K.; Kumar, Pradeep

    2012-06-01

    Inconel 718 is a nickel-based alloy designed for high yield, tensile, and creep-rupture properties. This alloy has been widely used in jet engines and high-speed airframe parts in aeronautic application. In this study, electric discharge machining (EDM) process was used for machining commercially available Inconel 718. A copper electrode with 99.9% purity having tubular cross section was employed to machine holes of 20 mm height and 12 mm diameter on Inconel 718 workpieces. Experiments were planned using response surface methodology (RSM). Effects of five major process parameters—pulse current, duty factor, sensitivity control, gap control, and flushing pressure on the process responses—material removal rate (MRR) and surface roughness (SR) have been discussed. Mathematical models for MRR and SR have been developed using analysis of variance. Influences of process parameters on tool wear and tool geometry have been presented with the help of scanning electron microscope (SEM) micrographs. Analysis shows significant interaction effect of pulse current and duty factor on MRR yielding a wide range from 14.4 to 22.6 mm3/min, while pulse current remains the most contributing factor with approximate changes in the MRR and SR of 48 and 37%, respectively, corresponding to the extreme values considered. Interactions of duty factor and flushing pressure yield a minimum surface roughness of 6.2 μm. The thickness of the sputtered layer and the crack length were found to be functions of pulse current. The hollow tool gets worn out on both the outer and the inner edges owing to spark erosion as well as abrasion due to flow of debris.

  16. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel-based

  17. Effects of Solutioning on the Dissolution and Coarsening of γ' Precipitates in a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Zhou, Yu; Zhao, Zihua; Zhang, Zheng

    2015-04-01

    The dissolution and the coarsening of the γ' precipitates in a nickel-based superalloy GTD-111 solutionized under various solution heat treatment conditions were investigated. The γ' solvus temperature for the GTD-111 superalloy was about 1180.79 °C obtained by differential scanning calorimetry test. The dissolution and the coarsening of γ' in the dendrite core were simultaneously observed, but the γ' precipitates in the interdendritics only occurred to coarsen under the condition of 1125 °C/2 h. The γ' dissolution, including dendrite core and interdendritics, gradually played a dominant role in the competition between the dissolution and the coarsening of γ' during the solutioning with the increase of solution temperature and holding time, indicating that the elastic strain field of the alloy gradually reduced. The solution condition of 1225 °C/6 h or 1250 °C/2 h was the optimal solutioning schedule than the other schedules. For a lower solution temperature, the volume fraction of primary γ' precipitates can faster reach its equilibrium value which is larger than that for a higher solution temperature. With the increase of holding time, the γ' dissolution rate continuously decreased, and the dissolution activation energy of γ' gradually increased.

  18. Description of a high temperature quenching furnace for the study of the directional solidification of nickel-base superalloys

    SciTech Connect

    Schmale, D.T.; Kelley, J.B.; Damkroger, B.K.

    1994-06-01

    A high temperature resistance furnace has been modified for the study of directional solidification of nickel-base superalloys such as alloys 718 and 625. The furnace will be used to study segregation and solidification phenomena that occur in consumable-electrode melting processes such as vacuum arc remelting and electro-slag remelting. The system consists of a water cooled high temperature furnace (maximum temperature {approximately}2900 C), roughing vacuum,system, cooling system, cooled hearth, molten metal quenching bath, and a mechanism to lower the hearth from the furnace into the molten metal bath. The lowering mechanism is actuated by a digital stopping motor with a programmable controller. The specimen (1.9 cm dia {times} 14 cm long) is melted and contained within an alumina tube (2.54 cm dia {times} 15.24 cm long) which is seated on a copper hearth cooled with {approximately}13 C water. Directional solidification can then be accomplished by decreasing the furnace temperature while holding the specimen in position, maintaining the temperature gradient in the furnace and lowering the specimen at a controlled rate or a combination of both. At any point the specimen can be lowered rapidly into the 70 C molten metal bath to quench the specimen, preserve the solidification structure, and minimize solid state diffusion, enhancing the ability to study the localized solidification conditions.

  19. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment

    NASA Astrophysics Data System (ADS)

    Sidhu, T. S.; Prakash, S.; Agrawal, R. D.

    2006-09-01

    No alloy is immune to hot corrosion attack indefinitely. Coatings can extend the lives of substrate materials used at higher temperatures in corrosive environments by forming protective oxides layers that are reasonably effective for long-term applications. This article is concerned with studying the performance of high-velocity oxyfuel (HVOF) sprayed NiCrBSi, Cr3C2-NiCr, Ni-20Cr, and Stellite-6 coatings on a nickel-base superalloy at 900 °C in the molten salt (Na2SO4-60% V2O5) environment under cyclic oxidation conditions. The thermogravimetric technique was used to establish kinetics of corrosion. Optical microscope, x-ray diffraction, scanning electron microscopy/electron dispersive analysis by x-ray (SEM/EDAX), and electron probe microanalysis (EPMA) techniques were used to characterize the as-sprayed coatings and corrosion products. The bare superalloy suffered somewhat accelerated corrosion in the given environmental conditions. whereas hot corrosion resistance of all the coated superalloys was found to be better. Among the coating studied, Ni-20Cr coated superalloy imparted maximum hot corrosion resistance, whereas Stellite-6 coated indicated minimum resistance. The hot corrosion resistance of all the coatings may be attributed to the formation of oxides and spinels of nickel, chromium, or cobalt.

  20. Burner Rig Evaluation of Thermal Barrier Coating Systems for Nickel-Base Alloys

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.

    1981-01-01

    Eight plasma sprayed bond coatings were evaluated for their potential use with ZrO2-Y2O3 thermal barrier coatings (TECs) which are being developed for coal derived fuel fired gas turbines. Longer TBC lives in cyclic burner rig oxidation to 1050 C were achieved with the more oxidation resistant bond coatings. These were Ni-14.1Cr-13.4A1-0.10Ar, Ni-14.1C4-14.4Al-0.16Y, and Ni-15.8Cr-12.8Al-0.36Y on Rene 41. The TBC systems performed best when 0.015-cm thick bond coatings were employed that were sprayed at 20 kW using argon 3.5v/o hydrogen. Cycling had a more life limiting influence on the TBC than accumulated time at 1050 C.

  1. Corrosion, stress corrosion cracking, and electrochemistry of the iron and nickel base alloys in caustic environments

    SciTech Connect

    Koehler, R.; Beck, F. H.; Agrawal, A. K.; Soendjasmono, B.; Staehle, R. W.

    1980-02-01

    The electrochemical behavior of high purity (99.95% to 99.99%) iron in 0.6M NaCl and 1.0M Na/sub 2/SO/sub 4/ containing H/sub 2/S (50 ppM to 34,000 ppM) was studied using cyclic voltammetry, chronoamperometry, and slow scan rate polarization. Results have indicated that iron does undergo passivation in sulfate solutions containing H/sub 2/S. Iron dissolution depends on the presence of Cl/sup -/, the concentration of H/sub 2/S and solution pH. An equation is given that describes the anodic Tafel current densities. The slow strain rate test was used to evaluate the effect of electrode potential on the susceptibility of 2-1/4Cr, Mo steel to stress corrosion cracking in boiling 50% NaOH solution. Susceptibility decreased and general corrosion increased with increasing potentials. Failures contained a combination of ductile and brittle fracture. Time-to-failure was longest for controlled potentials of -700 and -600mV (Hg/HgO reference) in the -1100 to -400mV range used in this study.

  2. Evaluation of dispersion strengthened nickel-base alloy heat shields for space shuttle application

    NASA Technical Reports Server (NTRS)

    Johnson, R., Jr.; Killpatrick, D. H.

    1973-01-01

    The work reported constitutes the first phase of a two-phase program. Vehicle environments having critical effects on the thermal protection system are defined; TD Ni-20Cr material characteristics are reviewed and compared with TD Ni-20Cr produced in previous development efforts; cyclic load, temperature, and pressure effects on TD Ni-20Cr sheet material are investigated; the effects of braze reinforcement in improving the efficiency of spotwelded, diffusion-bonded, or seam-welded joints are evaluated through tests of simple lap-shear joint samples; parametric studies of metallic radiative thermal protection systems are reported; and the design, instrumentation, and testing of full-scale subsize heat shield panels are described. Tests of full-scale subsize panels included simulated meteoroid impact tests; simulated entry flight aerodynamic heating in an arc-heated plasma stream; programmed differential pressure loads and temperatures simulating mission conditions; and acoustic tests simulating sound levels experienced by heat shields during about boost flight. Test results are described, and the performances of two heat shield designs are compared and evaluated.

  3. The effects of tantalum on the microstructure of two polycrystalline nickel-base superalloys - B-1900 + Hf and MAR-M247

    NASA Technical Reports Server (NTRS)

    Heckel, R. W.; Pletka, B. J.; Janowski, G. M.

    1986-01-01

    The effect of changing the content of Ta on the gamma/gamma-prime carbide microstructure was investigated in two crystalline nickel-base superalloys: conventionally cast B-1900 + Hf, and both conventionally cast and directionally solidified MAR-M247. The changes occurring in the microstructure effects were similar in both alloys. The gamma-prime and carbide volume fractions increased linearly with Ta additions, while the gamma-prime phase compositions did not change. Bulk Ta additions increased the levels of Cr and Co (in addition to that of Ta) of the gamma phase, a result of the approximately constant partitioning ratios for these two elements. The addition of Ta led to a partial replacement of Hf in the MC carbides. In addition, Cr-rich M(23)C(6) carbides formed as a result of MC carbide decomposition during heat treatment.

  4. Strainrange partitioning behavior of the nickel-base superalloys, Rene' 80 and in 100

    NASA Technical Reports Server (NTRS)

    Halford, G. R.; Nachtigall, A. J.

    1978-01-01

    A study was made to assess the ability of the method of Strainrange Partitioning (SRP) to both correlate and predict high-temperature, low cycle fatigue lives of nickel base superalloys for gas turbine applications. The partitioned strainrange versus life relationships for uncoated Rene' 80 and cast IN 100 were also determined from the ductility normalized-Strainrange Partitioning equations. These were used to predict the cyclic lives of the baseline tests. The life predictability of the method was verified for cast IN 100 by applying the baseline results to the cyclic life prediction of a series of complex strain cycling tests with multiple hold periods at constant strain. It was concluded that the method of SRP can correlate and predict the cyclic lives of laboratory specimens of the nickel base superalloys evaluated in this program.

  5. Recent progress in studies of metallic nickel and nickel-based nanoparticles' genotoxicity and carcinogenicity.

    PubMed

    Magaye, Ruth; Zhao, Jinshun

    2012-11-01

    Recently, nanoparticles have been the focus of many research and innovation. Metallic nickel and nickel-based nanoparticles are among those being exploited. Nickel fine particles are known to be genotoxic and carcinogenic. It has been discovered that many properties of nano sized elements and materials are not present in their bulk states. The nano size of these particles renders them the ability to be easily transported into biological systems, thus raising the question of their effects on the susceptible system. Therefore scientific research on the effects of nickel nanoparticles is important. This mini-review intends to summarize the current knowledge on the genotoxicity and carcinogenicity potential of metallic nickel and nickel-based nanoparticles implicated in in vitro and in vivo mammalian studies. PMID:23000472

  6. Method of Making a Nickel Fiber Electrode for a Nickel Based Battery System

    NASA Technical Reports Server (NTRS)

    Britton, Doris L. (Inventor)

    2001-01-01

    The general purpose of the invention is to develop a high specific energy nickel electrode for a nickel based battery system. The invention discloses a method of producing a lightweight nickel electrode which can be cycled to deep depths of discharge (i.e., 40% or greater of electrode capacity). These deep depths of discharge can be accomplished by depositing the required amount of nickel hydroxide active material into a lightweight nickel fiber substrate.

  7. Evolution of Microstructure in a Nickel-based Superalloy as a Function of Ageing Time

    SciTech Connect

    Chen, Wei-Ren; Smith, Gregory Scott; Porcar, L.; Liaw, Peter K; Kai, Ji-Jung; Ren, Yang

    2011-01-01

    An experimental investigation, combining synchrotron X-ray powder diffraction, small-angle neutron-scattering, and transmission electron microscopy, has been undertaken to study the microstructure of nanoprecipitates in a nickel-based superalloy. Upon increasing the ageing time during a heat-treatment process, the average size of the precipitates first decreases before changing to a monotonical growth stage. Possible reasons for this observed structural evolution, which is predicted thermodynamically, are suggested.

  8. Mechanism of beneficial effect of tantalum in hot corrosion of nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Stearns, C. A.; Kohl, F. J.

    1977-01-01

    X-ray diffraction and electron microprobe analyses were used to examine a prominent NaTaO3 pattern formed in a number of nickel-base superalloys. It is found that a beneficial effect of tantalum with respect to hot corrosion attack arises from the ability of Ta2O5 to tie up Na2O and prevent the formation of a molten Na2MoO4 phase.

  9. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  10. [Determination of trace bismuth in iron, steel and alloy by hydride generation-atomic fluorimetry].

    PubMed

    Liu, Q

    2000-02-01

    With the aid of hydride generation-atomic fluorimetry, an analysis method by adding thiosemicarbazide-ascorbic acid and phosphoric acid to eliminate the interference of matrix has been developed for the determination of trace bismuth in iron, steel and alloy. The detection limit is Bi = 0.02 microgram.g-1 (3 sigma, n = 11, sample amount 0.2000 g). The method has been applied to determine trace arsenic in middle and low alloy steel, ferro and nickel-based superalloy, nickel-based superalloy, cobalt-based superalloy, copper alloy with satisfactory results. PMID:12953459

  11. [Determination of trace bismuth in iron, steel and alloy by hydride generation-atomic fluorimetry].

    PubMed

    Liu, Q

    2000-02-01

    With the aid of hydride generation-atomic fluorimetry, an analysis method by adding thiosemicarbazide-ascorbic acid and phosphoric acid to eliminate the interference of matrix has been developed for the determination of trace bismuth in iron, steel and alloy. The detection limit is Bi = 0.02 microgram.g-1 (3 sigma, n = 11, sample amount 0.2000 g). The method has been applied to determine trace arsenic in middle and low alloy steel, ferro and nickel-based superalloy, nickel-based superalloy, cobalt-based superalloy, copper alloy with satisfactory results.

  12. Weldability of High Alloys

    SciTech Connect

    Maroef, I

    2003-01-22

    The purpose of this study was to investigate the effect of silicon and iron on the weldability of HAYNES HR-160{reg_sign} alloy. HR-I60 alloy is a solid solution strengthened Ni-Co-Cr-Si alloy. The alloy is designed to resist corrosion in sulfidizing and other aggressive high temperature environments. Silicon is added ({approx}2.75%) to promote the formation of a protective oxide scale in environments with low oxygen activity. HR-160 alloy has found applications in waste incinerators, calciners, pulp and paper recovery boilers, coal gasification systems, and fluidized bed combustion systems. HR-160 alloy has been successfully used in a wide range of welded applications. However, the alloy can be susceptible to solidification cracking under conditions of severe restraint. A previous study by DuPont, et al. [1] showed that silicon promoted solidification cracking in the commercial alloy. In earlier work conducted at Haynes, and also from published work by DuPont et al., it was recognized that silicon segregates to the terminal liquid, creating low melting point liquid films on solidification grain boundaries. Solidification cracking has been encountered when using the alloy as a weld overlay on steel, and when joining HR-160 plate in a thickness greater than19 millimeters (0.75 inches) with matching filler metal. The effect of silicon on the weldability of HR-160 alloy has been well documented, but the effect of iron is not well understood. Prior experience at Haynes has indicated that iron may be detrimental to the solidification cracking resistance of the alloy. Iron does not segregate to the terminal solidification product in nickel-base alloys, as does silicon [2], but iron may have an indirect or interactive influence on weldability. A set of alloys covering a range of silicon and iron contents was prepared and characterized to better understand the welding metallurgy of HR-160 alloy.

  13. Effect of machining damage on low cycle fatigue crack initiation life in drilled holes in UdimetRTM 720

    NASA Astrophysics Data System (ADS)

    Magadanz, Christine M.

    White layer is a generic term for a light etching surface layer on metal alloys that can result under extreme deformation conditions in wear, sliding or machining. While there has been some characterization of white layer due to abusive machining, the specific effect on fatigue crack initiation life has not been well documented. This study aimed to establish a relationship between the presence of white layer due to abusive machining and fatigue crack initiation life in a wrought nickel based superalloy (Udimet ® 720). Low cycle fatigue testing was conducted on large specimens containing through holes drilled with parameters aimed at creating holes with and without white layer. Initially, Acoustic Emission monitoring technologies were used to monitor for acoustic events associated with crack initiation, however, this technology was deemed unreliable for this testing. Instead, cycles to crack initiation was determined using striation density measurements on each fracture surface to estimate the number of cycles of crack propagation, which was subtracted from the total number of cycles for the specimen. A total of sixteen specimens were tested in this manner. The results suggested that the crack initiation lives of holes machined with good machining parameters were statistically longer than crack initiation lives of holes machined with poor machining parameters. The mean initiation life of the poorly machined specimens was a factor of approximately 2 times shorter than the mean initiation life of the well machined specimens. The holes machined with good machining parameters exhibited subsurface initiations which suggested that no anomalies affected crack initiation for these specimens. It was also shown that some of the poorly machined holes exhibited subsurface initiations rather than initiations at white layer damage. These holes had better surface finish than the poorly machined specimens that did fail at white layer. The mean initiation life of the poorly

  14. Cold machining of high density tungsten and other materials

    NASA Technical Reports Server (NTRS)

    Ziegelmeier, P.

    1969-01-01

    Cold machining process, which uses a sub-zero refrigerated cutting fluid, is used for machining refractory or reactive metals and alloys. Special carbide tools for turning and drilling these alloys further improve the cutting performance.

  15. Environmentally Assisted Cracking of Nickel Alloys - A Review

    SciTech Connect

    Rebak, R

    2004-07-12

    Nickel can dissolve a large amount of alloying elements while still maintaining its austenitic structure. That is, nickel based alloys can be tailored for specific applications. The family of nickel alloys is large, from high temperature alloys (HTA) to corrosion resistant alloys (CRA). In general, CRA are less susceptible to environmentally assisted cracking (EAC) than stainless steels. The environments where nickel alloys suffer EAC are limited and generally avoidable by design. These environments include wet hydrofluoric acid and hot concentrated alkalis. Not all nickel alloys are equally susceptible to cracking in these environments. For example, commercially pure nickel is less susceptible to EAC in hot concentrated alkalis than nickel alloyed with chromium (Cr) and molybdenum (Mo). The susceptibility of nickel alloys to EAC is discussed by family of alloys.

  16. Manufacturing of nickel-base superalloys with improved high-temperature performance

    SciTech Connect

    McKamey, C.G.; George, E.P.; Liu, C.T.; Horton, J.A.; Carmichael, C.A.; Kennedy, R.L.; Cao, W.D.

    2000-01-01

    This report summarizes the results of research conducted as part of CRADA ORNL95-0327 between Oak Ridge National Laboratory and Teledyne Allvac (now Allvac, an Allegheny Teledyne Co.). The objective was to gain a better understanding of the role of trace elements in nickel-based superalloys, with the ultimate goal of enhancing performance without significantly increasing production cost. Two model superalloys, IN 718 and Waspaloy, were selected for this study, and the synergistic effects of P and B additions on creep and stress rupture properties were determined. Wherever possible the underlying physical mechanisms responsible for the observed effects were investigated.

  17. Precipitation of the δ-Ni3Nb phase in two nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Sundararaman, M.; Mukhopadhyay, P.; Banerjee, S.

    1988-03-01

    The precipitation of the equilibrium δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys—INCONEL 718 and INCONEL* 625—both of which are hardenable by the precipitation of the metastable γ″-Ni3Nb phase. The morphology and the distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and the δ phases has been determined. The nucleation of the δ phase at stacking faults within pre-existing δ" precipitates has been discussed.

  18. Toothbrushing causes elemental release from dental casting alloys over extended intervals.

    PubMed

    Wataha, John C; Lockwood, Petra E; Mettenburg, Donald; Bouillaguet, Serge

    2003-04-15

    The release of elements from dental alloys has been linked to alloy biocompatibility. Much of the research measuring elemental release has been done in vitro under passive conditions. The current study supplements a previous report that measured elemental release from dental alloys during and after the equivalent of 1 week of toothbrushing. In the current study, toothbrushing times were extended to the equivalent of 2 years, and elemental release was measured during and after brushing, with and without toothpaste. The results showed that for the major classes of dental alloys, brushing alone caused no significant elemental release during the brushing, and only minor increases after brushing. Brushing with toothpaste caused significant increases in elemental release for all elements of all alloys, but the largest increases were for the two nickel-based alloys. Nickel released during brushing with toothpaste reached 600-800 microg/cm(2) of alloy surface. Both beryllium-containing and non-beryllium-containing nickel-based alloys behaved similarly, refuting claims that non-beryllium alloys are superior in this regard. Thus, brushing with toothpaste under these extended in vitro conditions appears to increase the biological liabilities from elemental release for all alloys, but primarily for nickel-based alloys. PMID:12632388

  19. Electrical discharge machining (EDM) of Inconel 718 by using copper electrode at higher peak current and pulse duration

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Lajis, M. A.

    2013-12-01

    This experimental work is an attempt to investigate the performance of Copper electrode when EDM of Nickel Based Super Alloy, Inconel 718 is at higher peak current and pulse duration. Peak current, Ip and pulse duration (pulse on-time), ton are selected as the most important electrical pulse parameters. In addition, their influence on material removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra) are experimentally investigated. The ranges of 10 mm diameter of Copper electrode are used to EDM of Inconel 718. After the experiments, MRR, EWR, and Ra of the machined surfaces need to be measured in order to evaluate the performance of the EDM process. In order to obtain high MRR, higher peak current in range of 20A to 40A and pulse duration in range of 200μs to 400μs were used. Experimental results have shown that machining at a highest peak current used of 40A and the lowest pulse duration of 200μs used for the experiment yields the highest material removal rate (MRR) with value 34.94 mm3/min, whereas machining at a peak current of 20A and pulse duration of 400μs yields the lowest electrode wear rate (EWR) with value -0.0101 mm3/min. The lowest surface roughness (Ra) is 8.53 μm achieved at a lowest peak current used of 20A and pulse duration of 200μs.

  20. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    SciTech Connect

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is more than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.

  1. Quantitative experimental determination of the solid solution hardening potential of rhenium, tungsten and molybdenum in single-crystal nickel-based superalloys

    DOE PAGES

    Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; Glatzel, Uwe

    2015-01-31

    Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less

  2. Quantitative analytical electron microscopy of multiphase alloys.

    PubMed

    Prybylowski, J; Ballinger, R; Elliott, C

    1989-02-01

    In this paper, we present a technique for analysis of composition gradients, using an analytical electron microscope, within the primary phase of a two-phase alloy for the case where the second-phase particle size is similar to the size of the irradiated volume. If the composition difference between the two phases is large, the detected compositional fluctuations associated with varying phase fractions may mask any underlying composition gradient of the primary phase. The analysis technique was used to determine grain boundary chromium concentration gradients in a nickel-base superalloy, alloy X-750. The technique may also be of use in other alloy systems. PMID:2709131

  3. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  4. Underwater wet flux-cored arc welding development of stainless steel and nickel-based materials

    SciTech Connect

    Findlan, S.J.; Frederick, G.J.

    1995-12-31

    The inaccessibility and high radiation fields of components in the lower two thirds of a reactor pressure vessel (RPV) has generated the need for an automated underwater wet welding process to address repair applications. Mechanical methods presently employed for this type of repair application produce crevices, which promote concerns of intergranular stress corrosion cracking (IGSCC), crevice corrosion and pitting. To address these concerns, the EPRI Repair and Replacement Applications Center (RRAC) has developed underwater wet flux-cored arc welding (FCAW) technology for the welding of stainless steel and nickel based materials. The benefits of underwater wet welding include: (1) provides a permanent repair; (2) offers crevice-five conditions; (3) reduces future inspection requirements (4) eliminates the potential for ``loose parts`` (5) can be performed in a timely approach. Underwater wet shielded metal arc welding (SMAW) has been successfully used to repair components in radiation areas of the upper section of the RPV, although this process is a manual operation and is impractical for remote applications. The developmental work at the EPRI RRAC is directed towards remote repair applications of nickel-based and stainless steel components, which are inaccessible with normal manual repair techniques, e.g., access hole covers. The flux-cored arc welding process (FCAW) was considered a viable option for underwater development, due to the ease of automation, out of position welding proficiency and self-shielding capabilities.

  5. Eddy Current Nondestructive Residual Stress Assessment in Shot-Peened Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Blodgett, M. P.; Yu, F.; Nagy, P. B.

    2005-04-01

    Shot peening and other mechanical surface enhancement methods improve the fatigue resistance and foreign-object damage tolerance of metallic components by introducing beneficial near-surface compressive residual stresses and hardening the surface. However, the fatigue life improvement gained via surface enhancement is not explicitly accounted for in current engine component life prediction models because of the lack of accurate and reliable nondestructive methods that could verify the presence of compressive near-surface residual stresses in shot-peened hardware. In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in surface-treated components. This technique is based on the so-called piezoresistivity effect, i.e., the stress-dependence of electrical resistivity. We found that, in contrast with most other materials, surface-treated nickel-base superalloys exhibit an apparent increase in electrical conductivity at increasing inspection frequencies, i.e., at decreasing penetration depths. Experimental results are presented to illustrate that the excess frequency-dependent apparent eddy current conductivity of shot-peened nickel-base superalloys can be used to estimate the absolute level and penetration depth of the compressive residual stress layer both before and after partial thermal relaxation.

  6. Dual-Alloy Disks are Formed by Powder Metallurgy

    NASA Technical Reports Server (NTRS)

    Harf, F. H.; Miner, R. V.; Kortovich, C. S.; Marder, J. M.

    1982-01-01

    High-performance disks have widely varying properties from hub to rim. Dual property disk is fabricated using two nickel-base alloys, AF-115 for rim and Rene 95 for hub. Dual-alloy fabrication may find applications in automobiles, earth-moving equipment, and energy conversion systems as well as aircraft powerplants. There is potential for such applications as shafts, gears, and blades.

  7. Method of applying a cerium diffusion coating to a metallic alloy

    DOEpatents

    Jablonski, Paul D.; Alman, David E.

    2009-06-30

    A method of applying a cerium diffusion coating to a preferred nickel base alloy substrate has been discovered. A cerium oxide paste containing a halide activator is applied to the polished substrate and then dried. The workpiece is heated in a non-oxidizing atmosphere to diffuse cerium into the substrate. After cooling, any remaining cerium oxide is removed. The resulting cerium diffusion coating on the nickel base substrate demonstrates improved resistance to oxidation. Cerium coated alloys are particularly useful as components in a solid oxide fuel cell (SOFC).

  8. Thermal-mechanical fatigue behavior of nickel-base superalloys. Final Report

    SciTech Connect

    Pelloux, R.M.; Marchand, N.

    1986-03-01

    The main achievements of a 36-month research program are presented. The main objective was to gain more insight into the problem of crack growth under thermal mechanical fatigue (TMF) conditions. This program was conducted at M.I.T. for the period of September 1982 to September 1985. The program was arranged into five technical tasks. Under Task I, the literature of TMF data was reviewed. The goal was to identify the crack propagation conditions in aircraft engines (hot section) and to assess the validity of conventional fracture mechanics parameters to address TMF crack growth. The second task defined the test facilities, test specimen and the testing conditions needed to establish the effectiveness of data correlation parameters identified in Task I. Three materials (Inconel X-750, Hastelloy-X, and B-1900) were chosen for the program. Task II was accomplished in collaboration with Pratt and Whitney Aircraft engineers. Under Task III, a computerized testing system to measure the TMF behavior (LCF and CG behaviors) of various alloys systems was built. The software used to run isothermal and TMF tests was also developed. Built around a conventional servohydraulic machine, the system is capable of push-pull tests under stress or strain and temperature controlled conditions in the temperature range of 25C to 1050C. A crack propagation test program was defined and conducted under Task IV. The test variables included strain range, strain rate (frequency) and temperature. Task V correlated and generalized the Task IV data for isothermal and variable temperature conditions so that several crack propagation parameters could be compared and evaluated. The structural damage (mode of cracking and dislocation substructure) under TMF cycling was identified and contrasted with the isothermal damage to achieve a sound fundamental mechanistic understanding of TMF.

  9. Aero engine test experience with CMSX-4{reg_sign} alloy single-crystal turbine blades

    SciTech Connect

    Fullagar, K.P.L.; Broomfield, R.W.; Hulands, M.; Harris, K.; Erickson, G.L.; Sikkenga, S.L.

    1996-04-01

    A team approach involving a turbine engine company (Rolls-Royce), its single-crystal casting facilities, and a superalloy developer and ingot manufacturer (Cannon-Muskegon), utilizing the concepts of simultaneous engineering, has been used to develop CMSX-4 alloy successfully for turbine blade applications. CMSX-4 alloy is a second-generation nickel-base single-crystal superalloy containing 3 percent (wt) rhenium (Re) and 70 percent volume fraction of the coherent {gamma}{prime} precipitate strengthening phase. The paper details the single-crystal casting process and heat treatment manufacturing development for turbine blades in CMSX-4 alloy. Competitive single-crystal casting yields are being achieved in production and extensive vacuum heat treatment experience confirms CMSX-4 alloy to have a practical production solution heat treat/homogenization ``window.`` The creep-rupture data-base on CMSX-4 alloy now includes 325 data points from 17 heats including 3,630 kg (8,000 lb) production size heats. An appreciable portion of this data was machined-from-blade (MFB) properties, which indicate turbine blade component capabilities based on single-crystal casting process, component configuration, and heat treatment. The use of hot isostatic pressing (HIP) has been shown to eliminate single-crystal casting micropores, which along with the essential absence of {gamma}/{gamma}{prime} eutectic phase, carbides, stable oxide, nitride and sulfide inclusions, results in remarkably high mechanical fatigue properties, with smooth and particularly notched specimens. The Re addition has been shown not only to benefit creep and mechanical fatigue strength, but also bare oxidation, hot corrosion, and coating performance. The high level of balanced properties determined by extensive laboratory evaluation has been confirmed during engine testing of the Rolls-Royce Pegasus turbofan.

  10. Structure-property effects of tantalum additions to nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Heckel, R. W.; Pletka, B. J.; Koss, D. A.; Jackson, M. R.

    1982-01-01

    The characterization of the effect of Ta on the structure of Ni base superalloys, the determination of the effects of Ta (structure) variations on the mechanical, thermal, and oxidation behavior, and the identification of alloying elements which have potential as substitutes for Ta are investigated. Mar M247 type alloys are emphasized; nominal and analyzed compositions of ten alloys under study are given. X-ray and composition analysis are being used to determine the partitioning of alloying elements between gamma, gamma primes, and MC (cubic) as a function of Ta content. The diffusional interactions of the Mar M247-type alloys with as cast beta + gamma alloys are studied to determine the effects of Ta on alloy/coating degradation.

  11. Constitutive modeling for Ti-6Al-4V alloy machining based on the SHPB tests and simulation

    NASA Astrophysics Data System (ADS)

    Chen, Guang; Ke, Zhihong; Ren, Chengzu; Li, Jun

    2016-06-01

    A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 104-106 s-1. Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar (SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10-4-104s-1. The Johnson Cook (JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3×104 s-1) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests (10-4-104 s-1) and simulation (up to 3×104 s-1). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation.

  12. Behavior of nickel-base superalloy single crystals under thermal-mechanical fatigue

    NASA Astrophysics Data System (ADS)

    Fleury, E.; Rémy, L.

    1994-12-01

    The thermal-mechanical fatigue behavior of AM1 nickel-base superalloy single crystals is studied using a cycle from 600 °C to 1100 °C. It is found to be strongly dependent on crystallo-graphic orientation, which leads to different shapes of the stress-strain hysteresis loops. The cyclic stress-strain response is influenced by variation in Young’s modulus, flow stress, and cyclic hardening with temperature for every crystallographic orientation. The thermalmechanical fatigue life is mainly spent in crack growth. Two main crack-initiation mechanisms occur, depending on the mechanical strain range. Oxidation-induced cracking is the dominant damage mechanism in the lifetime of interest for turbine blades.

  13. Temperature dependence of gamma-gamma prime lattice mismatch in nickel-base superalloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Mackay, R. A.; Garlick, R. G.

    1985-01-01

    High temperature X-ray diffraction techniques were used to determine the gamma-gamma prime lattice mismatch of three different nickel-base superalloys at temperatures between 18 and 1000 C. The measurements were performed on oriented single-crystal disks which had been aged to produce a semicoherent gamma-gamma prime structure. The thermal expansion of the lattice parameters of the gamma and gamma-prime phases was described by a second-order polynomial expression. The expansion of the gamma-prime phase was consistently smaller than that of the gamma phase, which caused the lattice mismatch to become more negative at higher temperatures. It was also shown that high values of lattice mismatch resulted in increased rates of directional gamma-prime coarsening during elevated temperature creep exposure.

  14. The high temperature deformation in cyclic loading of a single crystal nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, T. P.; Welsch, G.

    1989-01-01

    The high temperature cyclic stress softening response of the single crystal nickel-base superalloy PWA 1480 was investigated. Specimens oriented near the 001- and 111-lines were tested at 1050 C in low-cycle fatigue and then microstructurally evaluated. The 001- and 111-line specimens had dissimilar flow behavior in monotonic tensile tests, but comparable softening in low-cycle fatigue. This softening was accompanied by rapid generation of dislocation networks at the gamma-gamma-prime interfaces and by a slower time-dependent coarsening of gamma-prime precipitates. Due to the rapid formation of a dislocation substructure at the gamma-gamma-prime interfaces, the cyclic stress softening could be modeled with an existing theory which related cyclic stress to the evolving microstructure and dislocation structure.

  15. Calibration approach to electron probe microanalysis: A study with PWA-1480, a nickel base superalloy

    NASA Technical Reports Server (NTRS)

    Terepka, F. M.; Vijayakumar, M.; Tewari, S. N.

    1989-01-01

    The utility of an indirect calibration approach in electron probe microanalysis is explored. The methodology developed is based on establishing a functional relationship between the uncorrected k-ratios and the corresponding concentrations obtained using one of the ZAF correction schemes, for all the desired elements in the concentration range of interest. In cases where a very large number of analyses are desired, such a technique significantly reduces the total time required for the microprobe analysis without any significant loss of precision in the data. A typical application of the method in the concentration mapping of the transverse cross-section of a dendrite in directionally solidified PWA-1480, a nickel-based superalloy, is described.

  16. Microstructures induced by a stress gradient in a nickel-based superalloy

    SciTech Connect

    Ignat, M.; Buffiere, J.Y.; Chaix, J.M. )

    1993-03-01

    The evolution of the microstructure of single crystals of a nickel-based superalloy during high temperature (1,323 K, 1,050 C) creep in bending has been studied. Bending provides both tensile and compressive stress gradients, consequently the effects of varying stress conditions on the evolution of the morphology of the [gamma][prime] precipitates can be determined from a single specimen. The morphological changes were analyzed by scanning electron microscopy using image analysis techniques and by transmission electron microscopy, then described by dimensionless parameters. The authors discuss the dependence of the morphological changes in the superalloy on the stresses acting in the sample (magnitude and sign). The authors also discuss the driving mechanisms for the observed morphological changes.

  17. Thermal stress development in a nickel based superalloy during weldability test

    SciTech Connect

    Feng, Z.; Zacharia, T.; David, S.A.

    1997-11-01

    A finite element model has been developed to quantitatively evaluate the local thermomechanical conditions for weld metal solidification cracking in a laboratory weldability test (the Sigmajig test). The loading mechanism in the Sigmajig test was simulated by means of nonlinear spring elements. The effects of weld pool solidification on the thermal and mechanical behaviors of the specimen were considered. An efficient algorithm was developed to include the solidification effects in the material constitutive relations. Stress/temperature/location diagrams were constructed to reveal the local stress development behind the traveling weld pool where solidification cracking occurs. Based on the concept of the material resistance to cracking and the mechanical driving force for cracking, the calculated local stress in the solidification temperature range was used to explain the experimentally observed cracking initiation behaviors of a nickel-based superalloy single crystal under different welding and loading conditions.

  18. Shock wave loading of Nickel based superalloy and microstructural features of the compacts

    NASA Astrophysics Data System (ADS)

    Sharma, A. D.; Sharma, A. K.; Thakur, N.

    2015-02-01

    Explosive shock wave loading has been employed to consolidate micro-sized nickel based IN718 superalloy powder. Cylindrical geometry configuring the various critical parameters with optimized detonation pressure has been used to consolidate the powder with desirable means. The thrust on the work is to compact the powder nearer to theoretical density having almost negligible density gradient and without melting the core of the specimen. XRD study indicates that the crystal structure of the post compacts remains the same. Shock wave loading deformed the particles as has been inferred from SEM. The variation in particle size has been measured from Laser Diffraction based Particle Size Analyzer (LDPSA). It is found that this is a rapid fast technique to produce larger and crack free compacts of metal powders without their melting and with less particle size variation.

  19. Replacing critical and strategic refractory metal elements in nickel-base superalloys. [NASA's COSAM program

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Dreshfield, R. L.; Nathal, M. V.

    1983-01-01

    Because of the import status and essential nature of their use, cobalt, chromium, tantalum, and niobium were identified as strategic and critical in the aerospace industry. NASA's Conservation of Strategic Aerospace Materials (COSAM) program aims to reduce the need for strategic materials used in gas turbine engines. Technological thrusts in two major areas are under way to meet the primary objective of conserving the use of strategic materials in nickelbase superalloys. These thrusts consist of strategic element substitution and alternative material identification. The program emphasizes cooperative research teams involving NASA Lewis Research Center, universities, and industry. The adoption of refractory metals in nickel-base superalloys is summarized including their roles in mechanical strengthening and environmental resistance; current research activities under way in the COSAM Program are presented as well as research findings to date.

  20. Electrochemical polarisation studies on plasma-sprayed nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Khan, M. Adam

    2015-08-01

    The plasma-sprayed NiCr-Cr2O3 and Al2O3-40 % TiO2 powders are deposited as coating on nickel-based superalloy. The electrochemical polarisation studies were carried out with 1.0 M H2SO4 solution as a corrosive medium. The corrosion current density of the coated sample was found to be decreased and exhibits better corrosion resistance than bare metal. The characterisation studies on the exposed sample result reveal that the bare metal has undergone severe intergranular attack and segregation on austenitic phase. The corrosion products formed are in the form of sulphides, and contribution of sulphur was noticed through EDS analysis.

  1. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.

    PubMed

    Kawi, Sibudjing; Kathiraser, Yasotha; Ni, Jun; Oemar, Usman; Li, Ziwei; Saw, Eng Toon

    2015-11-01

    In recent decades, rising anthropogenic greenhouse gas emissions (mainly CO2 and CH4 ) have increased alarm due to escalating effects of global warming. The dry carbon dioxide reforming of methane (DRM) reaction is a sustainable way to utilize these notorious greenhouse gases. This paper presents a review of recent progress in the development of nickel-based catalysts for the DRM reaction. The enviable low cost and wide availability of nickel compared with noble metals is the main reason for persistent research efforts in optimizing the synthesis of nickel-based catalysts. Important catalyst features for the rational design of a coke-resistant nickel-based nanocatalyst for the DRM reaction are also discussed. In addition, several innovative developments based on salient features for the stabilization of nickel nanocatalysts through various means (which include functionalization with precursors, synthesis by plasma treatment, stabilization/confinement on mesoporous/microporous/carbon supports, and the formation of metal oxides) are highlighted. The final part of this review covers major issues and proposed improvement strategies pertaining to the rational design of nickel-based catalysts with high activity and stability for the DRM reaction.

  2. Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.

    PubMed

    Kawi, Sibudjing; Kathiraser, Yasotha; Ni, Jun; Oemar, Usman; Li, Ziwei; Saw, Eng Toon

    2015-11-01

    In recent decades, rising anthropogenic greenhouse gas emissions (mainly CO2 and CH4 ) have increased alarm due to escalating effects of global warming. The dry carbon dioxide reforming of methane (DRM) reaction is a sustainable way to utilize these notorious greenhouse gases. This paper presents a review of recent progress in the development of nickel-based catalysts for the DRM reaction. The enviable low cost and wide availability of nickel compared with noble metals is the main reason for persistent research efforts in optimizing the synthesis of nickel-based catalysts. Important catalyst features for the rational design of a coke-resistant nickel-based nanocatalyst for the DRM reaction are also discussed. In addition, several innovative developments based on salient features for the stabilization of nickel nanocatalysts through various means (which include functionalization with precursors, synthesis by plasma treatment, stabilization/confinement on mesoporous/microporous/carbon supports, and the formation of metal oxides) are highlighted. The final part of this review covers major issues and proposed improvement strategies pertaining to the rational design of nickel-based catalysts with high activity and stability for the DRM reaction. PMID:26440576

  3. The Effect of Tungsten and Niobium on the Stress Relaxation Rates of Disk Alloy CH98

    NASA Technical Reports Server (NTRS)

    Gayda, John

    2003-01-01

    Gas turbine engines for future subsonic transports will probably have higher pressure ratios which will require nickel-base superalloy disks with 1300 to 1400 F temperature capability. Several advanced disk alloys are being developed to fill this need. One of these, CH98, is a promising candidate for gas turbine engines and is being studied in NASA s Advanced Subsonic Technology (AST) program. For large disks, residual stresses generated during quenching from solution heat treatment are often reduced by a stabilization heat treatment, in which the disk is heated to 1500 to 1600 F for several hours followed by a static air cool. The reduction in residual stress levels lessens distortion during machining of disks. However, previous work on CH98 has indicated that stabilization treatments decrease creep capability. Additions of the refractory elements tungsten and niobium improve tensile and creep properties after stabilization, while maintaining good crack growth resistance at elevated temperatures. As the additions of refractory elements increase creep capability, they might also effect stress relaxation rates and therefore the reduction in residual stress levels obtained for a given stabilization treatment. To answer this question, the stress relaxation rates of CH98 with and without tungsten and niobium additions are compared in this paper for temperatures and times generally employed in stabilization treatments on modern disk alloys.

  4. Surface Characterization and Mechanical Properties' Evaluation of Boride-Dispersed Nickel-Based Coatings Deposited on Copper Through Thermal Spray Routes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2012-09-01

    The present study concerns understanding the microstructures and wear resistance of nickel-based alloy (Ni 68.4, Cr 17, B 3.9, Si 4.9, and Fe 5.8) coatings on copper developed by flame spraying and high-velocity oxy-fuel (HVOF) coating techniques. The microstructure of flame spray deposition consists of predominantly equiaxed γ-Ni grains, refined Ni3B precipitates, and Ni2.9Cr0.7Fe0.36 phase. On the other hand, HVOF spray deposition reduces the porosity content significantly in the presence of very fine (with average precipitate size varying from μm to nm range) borides (chromium boride, Cr2B; and nickel boride, Ni3B) in γ-Ni matrix. The microhardness of the HVOF-sprayed and flame-sprayed surfaces were improved to 935 VHN and 251 VHN, respectively as compared with 82 VHN of the as-received substrate. Wear resistance property against WC indenter was also improved in deposited layers with a maximum improvement in HVOF spray deposition. The mechanism of wear was investigated.

  5. Development of oxide dispersion strengthened turbine blade alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Merrick, H. F.; Curwick, L. R. R.; Kim, Y. G.

    1977-01-01

    There were three nickel-base alloys containing up to 18 wt. % of refractory metal examined initially for oxide dispersion strengthening. To provide greater processing freedom, however, a leaner alloy was finally selected. This base alloy, alloy D, contained 0.05C/15Cr / 2Mo/4W/2Ta/4.5Al/2.Ti/015Zr/0.01-B/Bal. Ni. Following alloy selection, the effect of extrusion, heat treatment, and oxide volume fraction and size on microstructure and properties were examined. The optimum structure was achieved in zone annealed alloy D which contained 2.5 vol. % of 35 mm Y2O3 and which was extruded 16:1 at 1038 C.

  6. Casting Characteristics of Aluminum Die Casting Alloys

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The research program investigates the casting characteristics of selected aluminum die casting alloys. Specifically, the alloys' tendencies towards die soldering and sludge formation, and the alloys' fluidity and machinability are evaluated. It was found that: When the Fe and Mn contents of the alloy are low; caution has to be taken against possible die soldering. When the alloy has a high sludge factor, particularly a high level of Fe, measures must be taken to prevent the formation of large hardspots. For this kind of alloy, the Fe content should be kept at its lowest allowable level and the Mn content should be at its highest possible level. If there are problems in die filling, measures other than changing the alloy chemistry need to be considered first. In terms of alloy chemistry, the elements that form high temperature compounds must be kept at their lowest allowable levels. The alloys should not have machining problems when appropriate machining techniques and machining parameters are used.

  7. Evaluation of corrosion testing techniques for selection of corrosion resistant alloys for sour gas service

    SciTech Connect

    Bhavsar, R.B.; Hibner, E.L.

    1996-08-01

    Slow strain rate (SSR) and C-ring stress corrosion cracking (SCC) tests have historically been used to screen alloys for sour gas environments. The relevance of these testing techniques in predicting actual field corrosion behavior was evaluated for age-hardenable nickel base alloy 925 (UNS N09925) and alloy 718 (UNS N07718). While SSR testing provides an acceptable accelerated screening tool for ranking alloys in sour oil field environments, C-ring SCC testing ranks alloys higher in sour environments than SSR testing.

  8. The correlation between the temperature dependence of the CRSS and the formation of superlattice-intrinsic stacking faults in the nickel-base superalloy PWA 1480. [critical resolved shear stress

    NASA Technical Reports Server (NTRS)

    Milligan, Walter W.; Antolovich, Stephen D.

    1989-01-01

    The PWA 1480 nickel-base superalloy is known to exhibit a unique minimum in the critical resolved shear stress (CRSS) at about 400 C. This paper reports an observation of a deformation mechanism whose temperature dependence correlates exactly with the reduction in the CRSS. It was found that, after monotonic or cyclic deformation of PWA 1480 at 20 C, the deformation substructures typically contain high density of superlattice-intrinsic stacking faults (S-ISFs) within the gamma-prime precipitates. As the temperature of deformation is increased, the density of S-ISFs is reduced, until finally no faults are observed after deformation in the range from 400 to 705 C. The reduction in the fault density corresponds exactly to the reduction in the CRSS, and the temperature at which the fault density is zero corresponds with the minimum in the CRRS. Two possible mechanisms related to the presence of the S-ISFs in the alloy are considered.

  9. Directional solidification processing of alloys using an applied electric field

    NASA Technical Reports Server (NTRS)

    McKannan, Eugene C. (Inventor); Schmidt, Deborah D. (Inventor); Ahmed, Shaffiq (Inventor); Bond, Robert W. (Inventor)

    1992-01-01

    A method is provided for obtaining an alloy having an ordered microstructure which comprises the steps of heating the central portion of the alloy under uniform temperature so that it enters a liquid phase while the outer portions remain solid, applying a constant electric current through the alloy during the heating step, and solidifying the liquid central portion of the alloy by subjecting it to a temperature-gradient zone so that cooling occurs in a directional manner and at a given rate of speed while maintaining the application of the constant electric current through the alloy. The method is particularly suitable for use with nickel-based superalloys. The method of the present invention produces an alloy having superior characteristics such as reduced segregation. After subsequent precipitation by heat-treatment, the alloys produced by the present invention will have excellent strength and high-temperature resistance.

  10. Modelling of recovery controlled creep in nickel-base superalloy single crystals

    SciTech Connect

    Svoboda, J.; Lukas, P.

    1997-01-01

    A model of the kinetics of recovery controlled creep in {l_angle}001{r_angle} oriented nickel-base superalloy single crystals has been developed. Two basic deformation mechanisms have been considered, namely (1) deformation of {gamma} channels by slip in discrete slip systems connected with the generation of dislocations and their deposition at the {gamma}/{gamma}{prime} interfaces; and (2) dynamic recovery of the dislocation structure due to non-conservative motion (a combination of slip and climb) of dislocations along the {gamma}/{gamma}{prime} interfaces and their annihilation. The climb of dislocations is conditioned by the diffusive transport of vacancies generated and annihilated at the climbing dislocations. In the steady-state creep the rate of the slip deformation in all the {gamma} channels is in equilibrium with the recovery induced diffusional deformation. The model predicts realistic values of the steady-state creep rates and their dependence on the applied stress, as well as the strains corresponding to the end of the primary creep stage, dislocation densities at the {gamma}/{gamma}{prime} interfaces and resolved shear stresses both in the {gamma} channels and in the {gamma}{prime} particles.

  11. Successful Surface Treatments for Reducing Instabilities in Advanced Nickel-base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; MacKay, Rebecca A.; Garg, Anita; Ritzert, Frank J.

    2004-01-01

    An optimized carburization treatment has been developed to mitigate instabilities that form in the microstructures of advanced turbine airfoil materials. Current turbine airfoils consist of a single crystal superalloy base that provides the mechanical performance of the airfoil, a thermal barrier coating (TBC) that reduces the temperature of the base superalloy, and a bondcoat between the superalloy and the TBC, that improves the oxidation and corrosion resistance of the base superalloy and the spallation resistance of the TBC. Advanced nickel-base superalloys containing high levels of refractory metals have been observed to develop an instability called secondary reaction zone (SRZ), which can form beneath diffusion aluminide bondcoats. This instability between the superalloy and the bondcoat has the potential of reducing the mechanical properties of thin-wall turbine airfoils. Controlled gas carburization treatments combined with a prior stress relief heat treatment and adequate surface preparation have been utilized effectively to minimize the formation of SRZ. These additional processing steps are employed before the aluminide bondcoat is deposited and are believed to change the local chemistry and local stresses of the surface of the superalloy. This paper presents the detailed processing steps used to reduce SRZ between platinum aluminide bondcoats and advanced single crystal superalloys.

  12. Creep lifetime prediction of oxide-dispersion-strengthened nickel-base superalloys: A micromechanically based approach

    NASA Astrophysics Data System (ADS)

    Heilmaier, M.; Reppich, B.

    1996-12-01

    The high-temperature creep behavior of the oxide-dispersion-strengthened (ODS) nickel-base superalloys MA 754 and MA 6000 has been investigated at temperatures up to 1273 K and lifetimes of approximately 4000 hours using monotonic creep tests at constant true stress σ, as well as true constant extension rate tests (CERTs) atdot \\varepsilon . The derivation of creep rupture-lifetime diagrams is usually performed with conventional engineering parametric methods, according to Sherby and Dorn or Larson and Miller. In contrast, an alternative method is presented that is based on a more microstructural approach. In order to describe creep, the effective stress model takes into account the hardening contribution σ p caused by the presence of second-phase particles, as well as the classical Taylor back-stress σ p caused by dislocations. The modeled strain rate-stress dependence can be transferred directly into creep-rupture stress-lifetime diagrams using a modified Monkman-Grant (MG) relationship, which adequately describes the interrelation betweendot \\varepsilon representing dislocation motion, and lifetime t f representing creep failure. The comparison with measured creep-rupture data proves the validity of the proposed micromechanical concept.

  13. Laser micro-hole drilling in thermal barrier coated nickel based superalloy

    NASA Astrophysics Data System (ADS)

    Gupta, Umashanker; Nath, A. K.; Bandyopadhyay, P. P.

    2016-09-01

    This investigation deals with laser drilling of micro holes in yttria stabilised zirconia coated nickel based superalloy using a power modulated fiber laser. The parameters taken into account are assist gas pressure, modulation frequency, pulse on time and hole inclination angle. These parameters affect the important geometrical characteristics of holes, e.g., hole diameter, hole wall smoothness, taper angle and recast layer thickness. It has been found that the assist gas pressure has a significant effect on hole entry and exit diameter, taper angle and hole wall smoothness. It has also been observed less number of pulses of higher energy produces a hole with smaller entry and exit diameter, smaller taper angle, smoother hole wall and a thin stretched recast layer (∼ 15μm). The minimum achieved hole entrance diameter, exit diameter and taper was 342 μm, 200 μm and 3.54° respectively. Off normal drilling produces a hole with elliptical entrance. The eccentricity of such holes increases with inclination angle. Thick recast layers are produced at high inclination angles.

  14. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1984-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperature range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4 - MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significant role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Ns2MoO4 - MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4 - MoO3 melt.

  15. Thermomechanical fatigue behavior of coated and bare nickel-based superalloy single crystals

    SciTech Connect

    Chataigner, E.; Remy, L.

    1996-12-31

    The thermal-mechanical fatigue behavior of chromium-aluminum coated [001] single crystals of AM1, a nickel-base superalloy for turbine blades, is studied using a diamond shape cycle from 600 to 1,100 C. Comparison with bare specimens does not show any significant difference in thermal-mechanical fatigue nor in isothermal low cycle fatigue at high temperature. Metallographic observations on fracture surfaces and longitudinal sections of specimens tested to fatigue life or to a definite fraction of expected life have shown that the major crack tends to initiate from casting micropores in the sub-surface area very early in bare and coated specimens, under low cycle fatigue or thermal-mechanical fatigue. But the interaction between oxidation and fatigue cracking seems to play a major role. A simple model proposed by Reuchet and Remy has been identified for this single crystal superalloy. Its application to the life prediction under low cycle fatigue and thermal-mechanical fatigue for bare and coated single crystals with different orientations is shown.

  16. Temperature dependence of the structural order in the {gamma}{prime} phase of nickel base superalloy

    SciTech Connect

    Royer, A.; Bastie, P.; Veron, M.

    1999-03-19

    Single crystal nickel base superalloys are used for the high-temperature parts of aircraft engines like turbine blades. Their good mechanical properties at high temperature are related to the precipitation of an ordered {gamma}{prime} phase which induces a structural hardening of the material. The {gamma}{prime} phase has an ordered L1{sub 2} structure while the {gamma} matrix is disordered and has a FCC structure. The volume fraction of f{gamma}{prime} of the {gamma}{prime} phase evolves with the temperature and a complete solutionizing occurs above 1,280 C in the AM1 superalloy. The {gamma}{prime} phase of Ni based superalloys is usually analyzed through its prototype Ni{sub 3}Al. As the Ni{sub 3}Al structure remains totally ordered up to temperature very close to the melting point, it is commonly assumed in superalloys that the {gamma}{prime} phase precipitates are fully ordered up to their solutionizing and that the volume fraction of the precipitates is equivalent to the volume fraction of the ordered phase. However, in superalloys, it is difficult to separate experimentally the effects related to the solutionizing of the precipitates from those due to a possible partial disordering of the {gamma}{prime} phase and this assumption has not been verified yet. The aim of this paper is to study the structural order in the {gamma}{prime} phase of a superalloy.

  17. A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Chen, Xiao-Min; Chen, Ming-Song; Zhou, Ying; Wen, Dong-Xu; He, Dao-Guang

    2016-06-01

    The metadynamic recrystallization (MDRX) behaviors of a typical nickel-based superalloy are investigated by two-pass hot compression tests and four conventional stress-based conventional approaches (offset stress method, back-extrapolation stress method, peak stress method, and mean stress method). It is found that the conventional stress-based methods are not suitable to evaluate the MDRX softening fractions for the studied superalloy. Therefore, a new approach, `maximum stress method,' is proposed to evaluate the MDRX softening fraction. Based on the proposed method, the effects of deformation temperature, strain rate, initial average grain size, and interpass time on MDRX behaviors are discussed in detail. Results show that MDRX softening fraction is sensitive to deformation parameters. The MDRX softening fraction rapidly increases with the increase of deformation temperature, strain rate, and interpass time. The MDRX softening fraction in the coarse-grain material is lower than that in the fine-grain material. Moreover, the observed microstructures indicate that the initial coarse grains can be effectively refined by MDRX. Based on the experimental results, the kinetics equations are established and validated to describe the MDRX behaviors of the studied superalloy.

  18. Studies on the hot corrosion of a nickel-base superalloy, Udimet 700

    NASA Technical Reports Server (NTRS)

    Misra, A. K.

    1986-01-01

    The hot corrosion of a nickel-base superalloy, Udimet 700, was studied in the temperture range of 884 to 965 C and with different amounts of Na2SO4. Two different modes of degradation were identified: (1) formation of Na2MoO4-MoO3 melt and fluxing by this melt, and (2) formation of large interconnected sulfides. The dissolution of Cr2O3, TiO2 in the Na2SO4 melt does not play a significnt role in the overall corrosion process. The conditions for the formation of massive interconnected sulfides were identified and a mechanism of degradation due to sulfide formation is described. The formation of Na2MoO4-MoO3 melt requires an induction period and various physiochemical processes during the induction period were identified. The factors affecting the length of the induction period were also examined. The melt penetration through the oxide appears to be the prime mode of degradation whether the degradation is due to the formation of sulfides or the formation of the Na2MoO4-MoO3 melt.

  19. Influence of microstructures on thermal fatigue property of a nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Xia, Peng-Cheng; Chen, Feng-Wen; Xie, Kun; Qiao, Ling; Yu, Jin-Jiang

    2015-03-01

    Effect of microstructures such as the distribution and shape of carbide and γ' phase on thermal fatigue property of a superalloy was investigated experimentally. The resistance of thermal fatigue of the studied alloy decreases with the rising upper temperature. For the as-cast alloy, the thermal fatigue crack mostly origins from carbide at low upper temperature and results from oxidation at high upper temperature. The thermal fatigue crack of the heat treated alloy is mainly initiated by the oxidized cavity and then propagates through the join of the oxidized cavity. The orientation of crack propagation and direction of dendrite growth of alloy have the angle of 45°. There is γ' denuded region near the thermal fatigue crack because of oxidation.

  20. STEM analysis of the local chemical composition in the nickel-based superalloy CMSX-2 after creep at high temperature

    SciTech Connect

    Buffiere, J.Y.; Cheynet, M.C.; Ignat, M.

    1996-02-01

    High temperature creep of nickel-based superalloy single crystals is characterized by directional coalescence of the {gamma}{prime} reinforcing precipitates. The morphology of the coalesced structures depends on experimental parameters such as the sense and direction of the creep stress as well as on intrinsic parameters such as the sign of the misfit between matrix and precipitates. For single crystals of the commercial superalloy CMSX-2 submitted to <100> creep at 1,323K, the initially cuboidal {gamma}{prime} precipitates coalesce into platelets arranged perpendicular or parallel to the stress direction when the stress is in tension or in compression, respectively. So far, however, the evolution of the local chemical composition around dislocations had not been experimentally investigated in nickel-based superalloys.

  1. Properties and microstructures for dual alloy combinations of three superalloys with alloy 901

    NASA Technical Reports Server (NTRS)

    Harf, F. H.

    1985-01-01

    Dual alloy combinations have potential for use in aircraft engine components such as turbine disks where a wide range of stress and temperature regimes exists during operation. Such alloy combinations may directly result in the conservation of elements which are costly or not available domestically. Preferably, a uniform heat treatment yielding good properties for both alloys should be used. Dual alloy combinations of iron rich Alloy 901 with nickel base superalloys Rene 95, Astroloy, or MERL 76 were not isostatically pressed from prealloyed powders. Individual alloys, alloy mixtures, and layered alloy combinations were given the heat treatments specified for their use in turbine disks or appropriate for Alloy 901. Selected specimens were overaged for 1500 hr at 650 C. Metallographic examinations revealed the absence of phases not originally present in either alloy of a combination. Mechanical tests showed adequate properties in combinations of Rene 95 or Astroloy with Alloy 901 when given the Alloy 901 heat treatment. Combinations with MERL 76 had better properties when given the MERL 76 heat treatment. The results indicate that these combinations are promising candidates for use in turbine disks.

  2. Microstructure and mechanical properties of hip-consolidated Rene 95 powders. [hot-isostatic pressed nickel-based powder metal

    NASA Technical Reports Server (NTRS)

    Shimanuki, Y.; Nishino, Y.; Masui, M.; Doi, H.

    1980-01-01

    The effects of heat-treatments on the microstructure of P/M Rene 95 (a nickel-based powder metal), consolidated by the hot-isostatic pressing (HIP), were examined. The microstructure of as-HIP'd specimen was characterized by highly serrated grain boundaries. Mechanical tests and microstructural observations reveal that the serrated grain boundaries improved ductility at both room and elevated temperatures by retarding crack propagation along grain boundaries.

  3. Development of a hydrogen-based annealing process for desulfurization of single crystalline, nickel-based superalloy. Final report

    SciTech Connect

    Smith, M.; Mickle, T.H.; Frazier, W.E.; Waldman, J.

    1994-11-05

    The presence of minor amounts of sulfur (1-10 ppm) in nickel-based superalloys has been associated with reduced oxidation resistance and premature spallation of protective coatings. A hydrogen annealing process has been developed by NAWCADWAR which effectively reduces the sulfur content of superalloys. The conditions which allow effective desulfurization are delineated. Diffusion of sulfur through the superalloy is found to be the rate controlling step for the process.

  4. Fabrication of coatings and bulk products made of a nickel-based material by additive technology laser metal deposition

    NASA Astrophysics Data System (ADS)

    Gorunov, A. I.

    2016-01-01

    It is shown that products made of a nickel-based material can be formed by direct additive laser deposition. Ring samples with good antifriction properties are formed. The material after direct laser deposition is characterized by a heterogeneous structure: coarse inclusions with a high hardness are distributed in a softer matrix. Final laser treatment leads to the formation of a homogeneous microstructure and the refinement of second phases.

  5. Resistance of a directionally solidified gamma/gamma prime-delta eutectic alloy to recrystallization. [Ni-base alloy

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1976-01-01

    A lamellar nickel-base directionally-solidified eutectic gamma/gamma prime-delta alloy has potential as an advanced gas turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 750 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability may not be a serious problem in the use of this alloy.

  6. Alloy and structural optimization of a directionally solidified lamellar eutectic alloy

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1976-01-01

    Mechanical property characterization tests of a directionally solidified Ni-20 percent Cb-2.5 percent Al-6 percent Cr cellular eutectic turbine blade alloy demonstrated excellent long time creep stability and indicated intermediate temperature transverse tensile ductility and shear strength to be somewhat low for turbine blade applications. Alloy and structural optimization significantly improves these off-axis properties with no loss of longitudinal creep strength or stability. The optimized alloy-structure combination is a carbon modified Ni-20.1 percent Cb-2.5 percent Al-6.0 percent Cr-0.06 percent C composition processed under conditions producing plane front solidification and a fully-lamellar microstructure. With current processing technology, this alloy exhibits a creep-rupture advantage of 39 C over the best available nickel base superalloy, directionally solidified MAR M200+ Hf. While improved by about 20 percent, shear strength of the optimized alloy remains well below typical superalloy values.

  7. The Effects of Stress Triaxiality, Temperature and Strain Rate on the Fracture Characteristics of a Nickel-Base Superalloy

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Guo, Weiguo; Guo, Jin; Wang, Ziang; Lu, Shengli

    2016-05-01

    In this work, to study the effects of stress triaxiality, temperature, and strain rate on the fracture behaviors of a single-crystal Nickel-base superalloy, a series of experiments over a temperature range of 293 to 1373 K, strain rate range of 0.001 to 4000/s, and stress triaxiality range of -0.6 to 1.1 are conducted. Anomalous peak of stress is noticed in the yield stress versus temperature curves, and strain rate effect on the anomalous peak of yield stress is analyzed. The anomalous peak shifts to higher temperature as the strain rate increases. Then the effects of stress triaxiality, temperature, and strain rate on its fracture behaviors, including strain to fracture, path of crack propagation, and fracture surface, are observed and analyzed. A valley of the fracture strain is formed in the fracture strain versus temperature curve over the selected temperature range. The micrograph of fracture surface is largely dependent on the temperature, stress triaxiality, and strain rate. Finally, the original Johnson-Cook (J-C) fracture criterion cannot describe the effect of stress triaxiality and temperature on the fracture behaviors of single-crystal Nickel-base superalloy. A modified J-C fracture criterion is developed, which takes the anomalous stress triaxiality and temperature effects on the fracture behaviors of single-crystal Nickel-base superalloy into account.

  8. TUNGSTEN BASE ALLOYS

    DOEpatents

    Schell, D.H.; Sheinberg, H.

    1959-12-15

    A high-density quaternary tungsten-base alloy having high mechanical strength and good machinability composed of about 2 wt.% Ni, 3 wt.% Cu, 5 wt.% Pb, and 90wt.% W is described. This alloy can be formed by the powder metallurgy technique of hot pressing in a graphite die without causing a reaction between charge and the die and without formation of a carbide case on the final compact, thereby enabling re-use of the graphite die. The alloy is formable at hot- pressing temperatures of from about 1200 to about 1350 deg C. In addition, there is little component shrinkage, thereby eliminating the necessity of subsequent extensive surface machining.

  9. High temperature low cycle fatigue mechanisms for nickel base and a copper base alloy. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Shih, C. I.

    1982-01-01

    Damage mechanisms were studied in Rene' 95 and NARloy Z, using optical, scanning and transmission in microscopy. In necklace Rene' 95, crack initiation was mainly associated with cracking of surface MC carbides, except for hold time tests at higher strain ranges where initiation was associated more with a grain boundary mechanism. A mixed mode of propagation with a faceted fracture morphology was typical for all cycle characters. The dependence of life on maximum tensile stress can be demonstrated by the data falling onto three lines corresponding to the three tensile hold times, in the life against maximum tensile stress plot. In NARloy Z, crack initiation was always at the grain boundaries. The mode of crack propagation depended on the cycle character. The life decreased with decreasing strain rate and with tensile holds. In terms of damage mode, different life prediction laws may be applicable to different cycle characters.

  10. Biocorrosion investigation of two shape memory nickel based alloys: Ni-Mn-Ga and thin film NiTi.

    PubMed

    Stepan, L L; Levi, D S; Gans, E; Mohanchandra, K P; Ujihara, M; Carman, G P

    2007-09-01

    Thin film nitinol and single crystal Ni-Mn-Ga represent two new shape memory materials with potential to be used as percutaneously placed implant devices. However, the biocompatibility of these materials has not been adequately assessed. Immersion tests were conducted on both thin film nitinol and single crystal Ni-Mn-Ga in Hank's balanced salt solution at 37 degrees C and pH 7.4. After 12 h, large pits were found on the Ni-Mn-Ga samples while thin film nitinol displayed no signs of corrosion. Further electrochemical tests on thin film nitinol samples revealed breakdown potentials superior to a mechanically polished nitinol disc. These results suggest that passivation or electropolishing of thin film nitinol maybe unnecessary to promote corrosion resistance.

  11. Precipitation reactions and corrosion resistance of thermally aged and welded alloy 825

    SciTech Connect

    Crum, J.R.; Tassen, C.S.; Nagashima, T.

    1997-09-01

    Oil refinery hydrotreating and hydrodesulfurization are high temperature processes which can cause sensitization and/or reduced ductility in some materials of construction, while the presence of sulfur and other impurities in these processes can lead to various corrosion mechanisms. Alloy 825 (UNS N08825) is often used in this demanding application. The effects of long term elevated temperature exposure and welding on the mechanical properties, microstructure and corrosion resistance of this nickel base alloy have been investigated.

  12. Microstructural indicators of transition mechanisms in time-dependent fatigue crack growth in nickel base superalloys

    NASA Astrophysics Data System (ADS)

    Heeter, Ann E.

    Gas turbine engines are an important part of power generation in modern society, especially in the field of aerospace. Aerospace engines are design to last approximately 30 years and the engine components must be designed to survive for the life of the engine or to be replaced at regular intervals to ensure consumer safety. Fatigue crack growth analysis is a vital component of design for an aerospace component. Crack growth modeling and design methods date back to an origin around 1950 with a high rate of accuracy. The new generation of aerospace engines is designed to be efficient as possible and require higher operating temperatures than ever seen before in previous generations. These higher temperatures place more stringent requirements on the material crack growth performance under creep and time dependent conditions. Typically the types of components which are subject to these requirements are rotating disk components which are made from advanced materials such as nickel base superalloys. Traditionally crack growth models have looked at high temperature crack growth purely as a function of temperature and assumed that all crack growth was either controlled by a cycle dependent or time dependent mechanism. This new analysis is trying to evaluate the transition between cycle-dependent and time-dependent mechanism and the microstructural markers that characterize this transitional behavior. The physical indications include both the fracture surface morphology as well as the shape of the crack front. The research will evaluate whether crack tunneling occurs and whether it consistently predicts a transition from cycle-dependent crack growth to time-dependent crack growth. The study is part of a larger research program trying to include the effects of geometry, mission profile and environmental effects, in addition to temperature effects, as a part of the overall crack growth system. The outcome will provide evidence for various transition types and correlate those

  13. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  14. Development of an extra-high strength powder metallurgy nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Kent, W. B.

    1977-01-01

    A program was conducted to optimize the composition of NASA IIb-11, an alloy originally developed as a wrought material, for thermal stability and to determine the feasibility for producing the alloy using powder metallurgy techniques. Seven compositions were melted and atomized, hot isostatically pressed, cross rolled to disks and heat treated. Tensile and stress rupture properties from room temperature to 870 C (1600 F) were determined in addition to thermal stability characteristics. Processing variables included hot isostatic pressing parameters and handling, cross rolling procedures and heat treatment cycles. NASA IIb-11E displayed the best combination of overall properties for service as a 760 C (1400 F) disk material. Its composition is 0.06 C, 8.5 Cr, 9.0 Co, 2.0 Mo, 7.1 W, 6.6 Ta, 4.5 Al, 0.75 Ti, 0.5 V, 0.7 Hf, 0.01 B, 0.05 Zr and balance Ni. While the alloy exhibits the highest 760 C (1400 F) rupture strength reported for any powder metallurgy disk alloy to date, additional studies to further evaluate the effects of heat treatment may be required. The alloy is not susceptible to topologically close-packed phase formation during thermal exposure at 870 C (1600 F) for 1,500 hours, but its mechanical property levels are lowered due to grain boundary carbide formation.

  15. Deleterious Phase Formation in Next- Generation Nickel-Base Superalloys Predicted

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank J.

    1999-01-01

    Nickel- (Ni-) base superalloy single crystals represent the state-of-the-art for turbine engine airfoil applications because they offer the best balance of properties under the high operating temperatures required for efficient engine operation. Current trends in alloy design take advantage of improved creep rupture strength with the addition of higher levels of refractory elements. In particular, the addition of significantly higher levels of rhenium in third-generation superalloys is key for both microstructural stability and creep rupture strength. Although refractories provide strength benefits, alloys tend to be unstable when their refractory content is high because of topologically close-packed (TCP) phases. The formation of these phases in sufficient amount is detrimental to the performance of these alloys because of their brittle nature and because they deplete the Nirich matrix of potent solid-solution strengthening elements.

  16. Laser Clad Nickel Based Superalloys: Microstructure Evolution And High Temperature Oxidation Studies

    NASA Astrophysics Data System (ADS)

    Sircar, S.; Ribaudo, C.; Mazumder, J.

    1988-10-01

    Application of alloy coatings with superior oxidation resistance at elevated temperatures (1200°C) on superalloy components is of interest at present. There is a general consensus that the addition of rare earths such as hafnium (Hf) to these alloys has a pronounced effect on their performance. An in situ laser cladding technique was used to produce Ni-Al-Cr-Hf alloys on a nickel alloy substrate. Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), and Scanning Transmission Electron Microscope (STEM) attached with Energy Dispersive X-ray (EDX) analyzers were employed for microstructural evolution studies of alloys produced during the laser cladding process. The microstructure of these alloys mainly consists of dendrites of Y' of the Ni3Al type with about 11-14 wt% Hf and an interdendritic eutectic phase. Electron microscopy in the dendritic zones reveals ordered domains whose morphology depends on laser cladding process parameters. Variation in these parameters produced only subtle changes in the composition and cell spacing of the dendritic phase. The eutectic constituent consists of a Hf-rich phase and a Hf-lean phase in an alternating lamellar structure. Convergent beam diffraction and x-ray spectroscopy techniques were used to characterize the constituents. A possible phase transformation sequence has been suggested. Differential Thermal Analysis (DTA) work indicates that the Y' dissolution temperature for the claddings is at least as high as the substrate material (Rene 80). Single cycle oxidation tests of eight hours at 1200°C in slowly flowing air reveal that the claddings have a lower weight gain rate than the substrate itself. Microchemistry and microstructure of the oxidized samples are examined using SEM attached with EDX and Auger Electron Spectroscopic (AES) techniques. The improvement in the oxidation resistance is believed to be at least partially due to the mechanical pegging between alumina coated hafnia protrusions and the

  17. Burner rig alkali salt corrosion of several high temperature alloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1977-01-01

    The hot corrosion of five alloys was studied in cyclic tests in a Mach 0.3 burner rig into whose combustion chamber various aqueous salt solutions were injected. Three nickel-based alloys, a cobalt-base alloy, and an iron-base alloy were studied at temperatures of 700, 800, 900, and 1000 C with various salt concentrations and compositions. The relative resistance of the alloys to hot corrosion attack was found to vary with temperature and both concentration and composition of the injected salt solution. Results indicate that the corrosion of these alloys is a function of both the presence of salt condensed as a liquid on the surface and of the composition of the gas phases present.

  18. Homogenizing a Nickel-Based Superalloy: Thermodynamic and Kinetic Simulation and Experimental Results

    SciTech Connect

    Paul D. Jablonski; Christopher J. Cowen

    2009-03-01

    If the chemical inhomogeneity profile is known a priori, kinetic modeling software such as diffusion-controlled transformations (DICTRA) can be used to model the homogenization kinetics of an alloy. In this study, the Scheil module within the Thermo-Calc software was used to predict the as-cast segregation present within the Ni-based superalloy Nimonic 105. The segregation profiles were read into DICTRA to refine the homogenization heat treatment of this alloy. The thermodynamic and kinetic modeling of the computationally predicted heat treatment and microstructure, and subsequent experimental verification on a real casting of Nimonic 105, are presented.

  19. Methodological fundamentals of computer-assisted designing of nickel-based superalloys

    NASA Astrophysics Data System (ADS)

    Logunov, A. V.; Shmotin, Yu. N.; Danilov, D. V.

    2015-12-01

    More than 180 Russian and foreign nickel superalloys are analyzed to develop regression models to find a relation between chemical composition and a number of the most important thermodynamic, structural, and strength parameters, which directly influence the high-temperature strength of the alloys. The high accuracy of constructing the characteristics of distribution of alloying elements between the γ and γ' phases under scarce experimental data conditions is ensured by the application of bunch map analysis of random characteristics, which allowed the reliability of the calculated results to be significantly increased.

  20. Detailed Analysis of the Solution Heat Treatment of a Third-Generation Single-Crystal Nickel-Based Superalloy CMSX-10K®

    NASA Astrophysics Data System (ADS)

    Pang, Hon Tong; D'Souza, Neil; Dong, Hongbiao; Stone, Howard J.; Rae, Catherine M. F.

    2016-02-01

    A detailed analysis of the response of as-cast third-generation single-crystal nickel-based superalloy CMSX-10K® to solution heat treatment (SHT) has been carried out, alongside an SHT optimization exercise. The analysis was conducted through microstructural characterization, differential scanning calorimetry, and compositional homogeneity measurements, quantifying (i) the dissolution and microstructural evolution of the inter-dendritic constituents, (ii) the shift in thermo-physical characteristics of the material, and (iii) the change in compositional homogeneity across the microstructure, in order to gain further understanding of these phenomena during the progression of the SHT. During the early stages of SHT, the coarse cellular γ'/narrow γ channel inter-dendritic constituents which were the last areas to solidify during casting, progressively dissolve; homogenization between these inter-dendritic areas and adjacent dendritic areas leads to a rapid increase in the incipient melting temperature T IM. The fine γ/γ' morphology which were the first inter-dendritic constituents to solidify after primary γ dendrite solidification were found to progressively coarsen; however, subsequent dissolution of these coarsened γ/γ' inter-dendritic areas did not result in significant increases in the T IM until the near-complete dissolution of these inter-dendritic areas. After the final SHT step, residual compositional micro-segregation could still be detected across the microstructure despite the near-complete dissolution of these remnant inter-dendritic areas; even so the T IM of the material approached the solidus temperature of the alloy.

  1. Fretting of Nickel-Chromium-Aluminum Alloys at Temperatures to 816 C

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    A series of four nickel-based alloys containing 10 percent and 20 percent chromium in combination with 2 percent and 5 percent aluminum were fretted in dry air at temperatures to 816 C. At all temperatures, the alloys showed far less fretting wear than did high-purity nickel. This was attributed to the formation of protective oxide films on the alloys, the result of the selective oxidation of the alloy constituents. Increasing the aluminum concentration reduced fretting wear at all temperatures. Increasing the chromium concentration from 10 percent to 20 percent resulted in decreased fretting wear at 23 and 540 C, but increased fretting wear at 650 and 816 C.

  2. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    NASA Astrophysics Data System (ADS)

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.; Negri, R. Martín

    2013-12-01

    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ˜ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain

  3. Magnetic and elastic anisotropy in magnetorheological elastomers using nickel-based nanoparticles and nanochains

    SciTech Connect

    Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.; Negri, R. Martín; Perez, Oscar E.; Butera, Alejandro; Jorge, Guillermo; Oliveira, Cristiano L. P.

    2013-12-07

    Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hard spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ∼ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is

  4. Weldability of HAYNES 282 alloy for new fabrications and after service exposure

    SciTech Connect

    White, H; Santella, Michael L; Specht, Eliot D

    2009-01-01

    The effect of alloying elements on the mechanical properties and weldability of wrought gamma prime strengthened nickel based superalloys is well known. An understanding of the basic guidelines concerning alloying additions has led to the invention and development of HAYNES 282 alloy for applications in aircraft and land based gas turbines and other high performance high temperature environments. The alloy combines exceptional high temperature properties with good weldability and fabricability. At high temperatures (?900 >C), the alloy is stronger in creep strength than Waspaloy alloy (UNS N07001) and it approaches the creep strength of R-41 alloy (UNS N07041). Because the alloy has better thermal stability, fabricability and weldability than Waspaloy and R-41 alloys, it is currently being considered as a candidate universal consumable for welding/repair welding of gamma prime strengthened nickel based superalloys and it is also being considered as a suitable replacement for applications where R-41, Waspaloy and C263 (UNS N07263) alloys are currently being used. The alloy was designed to have improved resistance to strain age cracking, a problem common to gamma prime strengthened nickel based superalloys. In this paper, the results from time resolved X-ray diffraction studies during a welding thermal cycle; gas metal arc welding of thick and gas tungsten arc welding of thin section annealed material (for new fabrications) and annealed and aged material (welding under the aged/service exposed condition); and the results from heat affected zone physical simulations of the weldment measured 2 mm from the weld centreline of annealed (for new fabrication) and annealed and aged (service exposed) material will be presented. Creep properties (870 C/159 MPa) of the weldment will be discussed as well as mechanisms leading to failure.

  5. Modern fiber laser beam welding of the newly-designed precipitation-strengthened nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Goodarzi, Massoud; Khodabakhshi, Meisam; Mapelli, Carlo; Barella, Silvia

    2014-04-01

    In the present research, the modern fiber laser beam welding of newly-designed precipitation-strengthened nickel-base superalloys using various welding parameters in constant heat input has been investigated. Five nickel-base superalloys with various Ti and Nb contents were designed and produced by Vacuum Induction Melting furnace. The fiber laser beam welding operations were performed in constant heat input (100 J mm-2) and different welding powers (400 and 1000 W) and velocities (40 and 100 mm s-1) using 6-axis anthropomorphic robot. The macro- and micro-structural features, weld defects, chemical composition and mechanical property of 3.2 mm weldments were assessed utilizing optical and scanning electron microscopes equipped with EDS analysis and microhardness tester. The results showed that welding with higher powers can create higher penetration-to-width ratios. The porosity formation was increased when the welding powers and velocities were increased. None of the welds displayed hot solidification and liquation cracks in 400 and 1000 W welding powers, but liquation phenomenon was observed in all the heat-affected zones. With increasing the Nb content of the superalloys the liquation length was increased. The changing of the welding power and velocity did not alter the hardness property of the welds. The hardness of welds decreased when the Ti content declined in the composition of superalloys. Finally, the 400 and 1000 W fiber laser powers with velocity of 40 and 100 m ms-1 have been offered for hot crack-free welding of the thin sheet of newly-designed precipitation-strengthened nickel-base superalloys.

  6. Alloy 602 CA -- A new alloy for the furnace industry

    SciTech Connect

    Brill, U.; Agarwal, D.C.

    1995-12-31

    Improving the economics of heat treatment facilities is often a question of raising the service temperature, which itself rests on the temperature capability of the alloys used. With the newly-developed alloy 602CA introduced to the market in 1992, there is now a nickel-base alloy available which provides sufficient high temperature strength and corrosion resistance up to 1,200 C, without any, special requirements on manufacturing and processing. Because of the excellent mechanical properties and corrosion resistance of this alloy it was possible to substitute uncooled all-metal furnace rolls for water-cooled asbestos rolls, in a continuous annealing furnace operating at up to 1,200 C. These rolls have now been in service for up to two years without any technical problems, and have proved themselves as a more economic and less environmentally dangerous, solution, This paper describes the mechanical properties and corrosion behavior of the new alloy, and gives some calculations on economic efficiency.

  7. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Precipitate Contribution to the Acoustic Nonlinearity in Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Chung-seok, Kim; Cliff, Lissenden J.

    2009-08-01

    The influence of γ' precipitate on the acoustic nonlinearity is investigated for a nickel-based superalloy, which is subjected to creep deformation. During creep deformation, the cuboidal γ' precipitate is preferentially coarsened in a direction perpendicular to the applied stress axis. The length and shape factor of the γ' precipitate increase with creep time. The increase of relative acoustic nonlinearity with increasing fraction of creep life is discussed in relation to the rafting of γ' precipitate, which is closely related to the scattering and distortion of the acoustic wave.

  8. Study of alumina-trichite reinforcement of a nickel-based matric by means of powder metallurgy

    NASA Technical Reports Server (NTRS)

    Walder, A.; Hivert, A.

    1982-01-01

    Research was conducted on reinforcing nickel based matrices with alumina trichites by using powder metallurgy. Alumina trichites previously coated with nickel are magnetically aligned. The felt obtained is then sintered under a light pressure at a temperature just below the melting point of nickel. The halogenated atmosphere technique makes it possible to incorporate a large number of additive elements such as chromium, titanium, zirconium, tantalum, niobium, aluminum, etc. It does not appear that going from laboratory scale to a semi-industrial scale in production would create any major problems.

  9. Microstructure, creep properties, and rejuvenation of service-exposed alloy 713C turbine blades

    NASA Astrophysics Data System (ADS)

    Maccagno, T. M.; Koul, A. K.; Immarigeon, J.-P.; Cutler, L.; Allem, R.; L'Espérance, G.

    1990-12-01

    A study was carried out on the microstructure and creep properties of aero engine first-stage turbine blades made from Alloy 713C nickel-base superalloy. Results are reported for new blades, blades in two service-exposed conditions, and service-exposed blades subjected to one of three rejuvenation treatments: a recoating heat treatment, a hot isostatic pressing (HIP) + recoating heat treatment, and a HIP + controlled cooling + recoating heat treatment. The blade microstructure undergoes significant change during service, and this leads to a loss in creep properties exhibited by specimens machined from the blade airfoils. Good correlations were observed between the rupture time and the amount of blade airfoil untwist and between the minimum creep rate and the amount of untwist. The recoating heat treatment and the HIP + controlled cooling + recoating treatment were moderately successful in restoring the microstructure and creep properties of the service-exposed blades. In comparison, the HIP + recoating treatment was very successful in rejuvenating creep properties but only for blades having a chemical composition with a lower propensity to form σ phase. For the blades with an unfavorable composition, σ phase was found to form preferentially near the grain boundaries during creep testing, and this had a detrimental effect on the creep properties. Nonetheless, the degree of rejuvenation for these blades was always at least as good as that obtained through the recoating heat treatment alone.

  10. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  11. On apparent activation energies of creep in nickel-base superalloys

    SciTech Connect

    Picasso, A.C. |; Marzocca, A.J.

    1999-09-10

    Generally, the steady state is well defined in the creep curve in pure metals and some single-phase alloys. In this case, the diagram log {dot {epsilon}} vs. {epsilon} (where {epsilon} is the plastic strain) shows an extensive range of strain where the steady-state creep rate is maintained approximately constant. However, in those materials which present an unstable substructure, such as the particle strengthened alloys, the strain rate reaches a momentary minimum value instead of a steady-state creep rate. In this way, the minimum creep rate is observed in a regime of unstable transition. In this work, a study of the apparent activation energy of creep for IN-X750 was performed, using the differential temperature step technique. The tests were carried out near the minimum strain rate in order to analyze the influence of the material substructure on the values of the apparent activation energy.

  12. Influence of molybdenum on the creep properties of nickel-base superalloy single crystals

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Nathal, M. V.; Pearson, D. D.

    1990-01-01

    The Mo content of an alloy series based on Ni-6 wt pct Al-6 wt pct Ta was systematically varied from 9.8 to 14.6 wt pct, in order to ascertain the influence of Mo on the creep properties of single crystals. The optimum initial gamma-gamma prime microstructure for raft development and creep strength was established in each alloy before testing. It was found that, as the Mo content increased from 9.8 to 14.0 percent, the magnitude of the lattice mismatch increased; upon reaching 14.6 percent, a degradation of mechanical properties occurred due to the precipitation of a third phase. These results suggest that small refractory metal content and initial gamma-prime variations can profoundly affect mechanical properties.

  13. New vistas in the determination of hydrogen in aerospace engine metal alloys

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1986-01-01

    The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.

  14. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  15. On rafting in a single crystal nickel-base superalloy after high and low temperature creep

    SciTech Connect

    Henderson, P.; Berglin, L.; Jansson, C.

    1998-12-18

    Rafting (also known as directional coarsening) was first studied more than 25 years ago in SX Udimet 700. At intermediate temperatures, 700--800 C, no microstructural changes were seen during the creep of SX alloys in tests which lasted less than a few thousand hours. In a study of CMSX-4 crept at 750 C the immediate area of the fracture contained many cracks, but away from the fracture the microstructure looked identical to that of the uncrept material. It was not possible to see a change in the material with scanning electron microscopy. The aim of the work presented here was to find a way of imaging low and intermediate temperature creep damage using simple techniques and equipment readily available in most laboratories. This area is one of practical importance as SX alloys are being introduced into industrial gas turbines for power generation and principles for condition assessment need to be developed which are relevant to the temperature of usage. As a first step towards finding a solution it was necessary to study the conditions under which rafting occurred in other SX alloys and a brief summary of some important findings is given.

  16. Effect of Surface Preparation on the 815°C Oxidation of Single-Crystal Nickel-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Sudbrack, Chantal K.; Beckett, Devon L.; MacKay, Rebecca A.

    2015-11-01

    A primary application for single-crystal superalloys has been jet engine turbine blades, where operation temperatures reach well above 1000°C. The NASA Glenn Research Center is considering use of single-crystal alloys for future, lower temperature application in the rims of jet engine turbine disks. Mechanical and environmental properties required for potential disk rim operation at 815°C are being examined, including the oxidation and corrosion behavior, where there is little documentation at intermediate temperatures. In this study, single-crystal superalloys, LDS-1101+Hf and CMSX-4+Y, were prepared with different surface finishes and compared after isothermal and cyclic oxidation exposures. Surface finish has a clear effect on oxide formation at 815°C. Machined low-stress ground surfaces after exposure for 440 h produce thin Al2O3 external scales, which is consistent with higher temperature oxidation, whereas polished surfaces with a mirror finish yield much thicker NiO external scales with subscale of Cr2O3-spinel-Al2O3, which may offer less reliable oxidation resistance. Additional experiments separate the roles of cold-work, localized deformation, and the extent of polishing and surface roughness on oxide formation.

  17. Machine Shop Grinding Machines.

    ERIC Educational Resources Information Center

    Dunn, James

    This curriculum manual is one in a series of machine shop curriculum manuals intended for use in full-time secondary and postsecondary classes, as well as part-time adult classes. The curriculum can also be adapted to open-entry, open-exit programs. Its purpose is to equip students with basic knowledge and skills that will enable them to enter the…

  18. Equilibrium partition ratios, densities, and transport phenomena in nickel-base superalloys

    NASA Astrophysics Data System (ADS)

    Sung, Pil Kyung

    To simulate transport phenomena, macrosegregation and segregation defects known as "freckles" during directional solidification of Ni-base superalloys, numerical modeling can be used; hence it is essential to have reasonably accurate values of the thermodynamic and transport properties for the alloys. In this research, therefore, the equilibrium partition ratios of the solutes in the Ni-Al-Ta-Cr quaternary system, as a model alloy, were measured, and the solid- and liquid-densities in Ni-base superalloys. were estimated. Also, the importance of these properties on the sensitivity of the results of numerical simulations was studied. The partition ratios apply to equilibria between melts and gamma-phase in the range of 1615 K to 1694 K, and it was found that the equilibrium partition ratio of Ta varies from approximately 0.6 at dilute Ta to 0.85 at 17 wt.% Ta. For the same range of Ta-contents, the partition ratios of Al and Cr vary much less and range from about 0.92 to 0.96. In addition to the partition ratios, the liquidus temperatures of the liquid in equilibrium with gamma in the Ni-Al-Ta-Cr system were estimated with a multidimensional regression analysis. To calculate the densities of solid Ni-base superalloys as functions of temperature and composition, lattice parameters at 20°C and coefficients of thermal expansion (CTEs) were estimated by combining available data. The CTEs calculated from the regressions result in densities that are within 0.5% error or less for seventeen alloys. To estimate the densities of liquid Ni-base superalloys, the densities and temperature coefficients of density of the liquid transition-metals, which are used as alloy elements in Ni-base superalloys, were applied to a simple correlation. By using this approach, the estimates of the liquid densities of five Ni-base superalloys agree with the measured values to +/-2.5%. Finally, the importance of using reasonably accurate estimates of the transport properties was illustrated by

  19. Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades

    NASA Technical Reports Server (NTRS)

    MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

    2002-01-01

    The High-Speed Research (HSR) Airfoil Alloy program developed fourth-generation single-crystal superalloys with up to an 85 F increase in creep rupture capability over current production airfoil alloys. Recent results have been generated at the NASA Glenn Research Center on these fourth-generation alloys, but in coated form, for subsonic turbine blade applications under NASA's Ultra-Efficient Engine Technology (UEET) Program. One goal for UEET is to optimize the airfoil alloy/thermal barrier coating system for 3100 F turbine inlet temperatures. The state-of-the art turbine blade airfoil system consists of a superalloy single crystal that provides the basic mechanical performance of the airfoil. A thermal barrier coating is used to reduce the temperature of the base superalloy, and a bondcoat is deposited between the base material and the thermal barrier coating. The bondcoat improves the oxidation and corrosion resistance of the base superalloy and improves the spallation resistance of the thermal barrier coating. A commercial platinum aluminide bondcoat was applied to the HSR-developed alloys, and a diffusion zone developed as a result of interaction between the bondcoat and the superalloy. Optimized strength is obtained for superalloys when the refractory element content is high and the limits of microstructural stability are approached or exceeded slightly. For fourthgeneration alloys, instability leads to the formation of topologically close packed (TCP) phases, which form internally in the superalloy, and a secondary reaction zone (SRZ), which forms under the diffusion zone. There was a concern that excessive quantities of either TCP or SRZ might decrease the mechanical properties of the superalloy, with SRZ thought to be particularly detrimental and its formation unpredictable. Thus, an SRZreduction effort was initiated in the NASA UEET Program so that methods developed during the HSR project could be optimized further to reduce or eliminate the SRZ. An SRZ

  20. The metallurgy of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  1. Platinum-modified diffusion aluminide coatings on nickel-base superalloys. Final report, June 1985-June 1988

    SciTech Connect

    Kim, G.M.; Meier, G.H.; Pettit, F.S.

    1993-03-01

    Conventional and platinum modified diffusion aluminide coatings on some state-of-the art single crystal and polycrystalline nickel-base superalloys have been compared in tests designed to establish conditions representative of those existing in gas turbines operating over a range of applications. Resistance of these coatings to oxidation, high temperature hot corrosion, and low temperature hot corrosion have been compared. Platinum has been found to significantly improve the resistance of diffusion aluminides to all of these forms of degradation but the improvement with regard to low temperature hot corrosion is not as great as in the case of the other two forms of attack. Substrate composition has been found to exert a very significant effect on the lives of coatings in the high temperature tests. In the case of high temperature oxidation, elements such as Hf are important in that they extend coating lives whereas for high temperature hot corrosion the type and concentration of refractory elements are significant factors affecting coating lives. A limited number of experiments have indicated intermittent hot corrosion exposures degrade the subsequent cyclic oxidation resistance of Pt-aluminide coatings.... Superalloys, Nickel-base superalloys, Oxidation resistance, Platinum coatings, Single crystals.

  2. Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: a comparative study.

    PubMed

    Amouyal, Yaron; Seidman, David N

    2012-10-01

    Recent developments in the technology of laser-pulsed local-electrode atom-probe (LEAP) tomography include a picosecond ultraviolet (UV) laser system having a 355 nm wavelength and both external and in-vacuum optics. This approach ensures focusing of the laser beam to a smaller spot diameter than has heretofore been obtained using a green (532 nm wavelength) picosecond laser. We compare the mass spectra acquired, using either green or UV laser pulsing, from nickel-based superalloy specimens prepared either electrochemically or by lifting-out from bulk material using ion-beam milling in a dual-beam focused ion beam microscope. The utilization of picosecond UV laser pulsing yields improved mass spectra, which manifests itself in higher signal-to-noise ratios and mass-resolving power (m/Δm) in comparison to green laser pulsing. We employ LEAP tomography to investigate the formation of misoriented defects in nickel-based superalloys and demonstrate that UV laser pulsing yields better accuracy in compositional quantification than does green laser pulsing. Furthermore, we show that using a green laser the quality of mass spectra collected from specimens that were lifted-out by ion milling is usually poorer than for electrochemically-sharpened specimens. Employing UV laser pulsing yields, however, improved mass spectra in comparison to green laser pulsing even for ion-milled microtips. PMID:23046701

  3. Influence of cooling rate on the development of multiple generations of {gamma}' precipitates in a commercial nickel base superalloy

    SciTech Connect

    Singh, A.R.P.; Nag, S.; Hwang, J.Y.; Viswanathan, G.B.; Tiley, J.; Srinivasan, R.; Fraser, H.L.; Banerjee, R.

    2011-09-15

    The compositional and microstructural evolution of different generations of {gamma}' precipitates during the continuous cooling of a commercial nickel base superalloy, Rene88DT, has been characterized by three dimensional atom probe tomography coupled with energy-filtered transmission electron microscopy studies. After solutionizing in the single {gamma} phase field, continuous cooling at a very high rate results in a monomodal size distribution of {gamma}' precipitates with a high nucleation density and non-equilibrium compositions. In contrast, a relatively slower cooling rate ({approx} 24 deg. C/min) results in a multi-modal size distribution of {gamma}' precipitates with the larger first generation primary precipitates exhibiting close to equilibrium composition, along with the smaller scale secondary {gamma}' precipitates, exhibiting non-equilibrium composition (excess of Co and Cr, depleted in Al and Ti). The composition of the {gamma} matrix near these precipitates also exhibits similar trends with the composition being closer to equilibrium near the primary precipitates as compared to the secondary precipitates. - Highlights: {yields} Effect of cooling rate on the precipitation of {gamma}' particles in commercial nickel base superalloy. {yields} Couples EFTEM and 3DAP studies to determine the composition and morphology of {gamma}' precipitates. {yields} Determination of near and far field compositional variations within the gamma matrix leading to subsequent precipitation.

  4. Microstructure Evolution and Analysis of A [011] Orientation, Single-Crystal, Nickel-Based Superalloy During Tensile Creep

    NASA Astrophysics Data System (ADS)

    Tian, Sugui; Zhang, Shu; Li, Chenxi; Yu, Huichen; Su, Yong; Yu, Xingfu; Yu, Lili

    2012-10-01

    By means of the elastic-plastic finite-element method (FEM) for calculating the distribution features of the von Mises stress and strain energy density, the influences of the applied stress on the von Mises stress of the γ'/ γ phases and the rafting of the γ' phase for the [011] orientation, single-crystal, nickel-based superalloy are investigated. The results show that, after being fully heat treated, the microstructure of the [011] orientation, single-crystal, nickel-based superalloy consists of the cuboidal γ' phase embedded coherently in the γ matrix, and the cuboidal γ' phase on (100) plane is regularly arranged along a 45 deg angle relative to the [011] orientation. Compared with the matrix channel of [010] orientation, the bigger von Mises stress is produced within the [001] matrix channel when the tensile stress is applied along the [011] orientation. Under the action of the larger principal stress component, the bigger expanding lattice strain occurs on the (001) plane of the cuboidal γ' phase along the [010] direction, which may trap the Al, Ti atoms with a bigger atomic radius for promoting the directional growth of the γ' phase into the stripe-like rafted structure along the [001] orientation. The changes of the interatomic potential energy, misfit stress, and interfacial energy during the tensile creep are thought to be the driving forces of promoting the elements' diffusion and directional growth of the γ' phase.

  5. Atom-probe tomography of nickel-based superalloys with green or ultraviolet lasers: a comparative study.

    PubMed

    Amouyal, Yaron; Seidman, David N

    2012-10-01

    Recent developments in the technology of laser-pulsed local-electrode atom-probe (LEAP) tomography include a picosecond ultraviolet (UV) laser system having a 355 nm wavelength and both external and in-vacuum optics. This approach ensures focusing of the laser beam to a smaller spot diameter than has heretofore been obtained using a green (532 nm wavelength) picosecond laser. We compare the mass spectra acquired, using either green or UV laser pulsing, from nickel-based superalloy specimens prepared either electrochemically or by lifting-out from bulk material using ion-beam milling in a dual-beam focused ion beam microscope. The utilization of picosecond UV laser pulsing yields improved mass spectra, which manifests itself in higher signal-to-noise ratios and mass-resolving power (m/Δm) in comparison to green laser pulsing. We employ LEAP tomography to investigate the formation of misoriented defects in nickel-based superalloys and demonstrate that UV laser pulsing yields better accuracy in compositional quantification than does green laser pulsing. Furthermore, we show that using a green laser the quality of mass spectra collected from specimens that were lifted-out by ion milling is usually poorer than for electrochemically-sharpened specimens. Employing UV laser pulsing yields, however, improved mass spectra in comparison to green laser pulsing even for ion-milled microtips.

  6. Behavior of Ni-Cr-Si coating alloys in Na/sub 2/SO/sub 4/, V/sub 2/O/sub 5/, and mixed salt hot corrosion. Final report

    SciTech Connect

    Corey, R.G.; Khan, A.S.; Barkalow, R.H.; Hecht, R.J.

    1983-10-01

    This report describes the results of a program to select coating alloys that are resistant to vanadium- and sulfate-induced hot corrosion and solid particle erosion in the 700 to 900/sup 0/C temperature range. Test materials, methods, and results are discussed. The principal alloy coatings that were tested were high-chromium, nickel-base alloys with additions of silicon, aluminum, and tantalum.

  7. Analysis of Grain Boundary Character in a Fine-Grained Nickel-Based Superalloy 718

    NASA Astrophysics Data System (ADS)

    Araujo, L. S.; dos Santos, D. S.; Godet, S.; Dille, J.; Pinto, A. L.; de Almeida, L. H.

    2014-11-01

    In the current work, sheets of superalloy 718 were processed via thermomechanical route by hot and cold rolling, followed by annealing below the δ phase solvus temperature and precipitation hardening to optimum strength. Grain boundary character distribution throughout the processing was mapped via EBSD and its evolution discussed. The results show that it is possible to process the alloy to a fine grain size obtaining concomitantly a considerably high proportion of special boundaries Σ3, Σ9, and Σ27. The precipitation of δ phase presented a strong grain refining role, without significantly impairing the twinning mechanism and, consequently, the Σ3, Σ9, and Σ27 boundary formations.

  8. Atom probe field-ion microscopy investigation of nickel base superalloy welds

    SciTech Connect

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1998-11-01

    Microstructure development and elemental partitioning between {gamma} and {gamma}{prime} were measured in PWA-1480 electron beam welds and CMSX-4 pulsed-laser welds. In PWA-1480 EB welds, eutectic {gamma}{prime} phases were observed along the dendritic boundaries. The elemental partitioning between {gamma} and {gamma}{prime} was found to be similar to that in PWA-1480 base metal. In CMSX-4 pulsed laser welds, negligible eutectic {gamma}{prime} was observed. In addition, fine and irregularly shaped {gamma}{prime} precipitates were observed. The elemental partitioning between {gamma} and {gamma}{prime} was found to be different from that measured in the base metal. Large concentration gradients were observed in the {gamma} phase. The {gamma}{prime} precipitation kinetics in CM247DS alloy was measured using dilatometry and showed differences with different cooling rates. The microstructural investigations showed that at large undercoolings the number density of {gamma}{prime} precipitates increased and led to a finer size. This supports the microstructure development observations in PWA-1480 and CMSX-4 welds. Thermodynamic and kinetic calculations for the Ni-Al-Cr alloy system showed that as the cooling rate increases, the {gamma}{prime} growth leads to large concentration gradients in the {gamma} phase. The calculations agree with the atom probe results from PWA-1480 and CMSX-4 welds.

  9. Experience with the use of alloy 59 (UNS N06059) in industrial applications

    SciTech Connect

    White, F.E.; Grossmann, G.K.; Decking, H.; Agarwal, D.C.

    1996-08-01

    Alloy 59 (UNS N06059) is a high-chromium, high-molybdenum nickel-base alloy designed to provide the widest possible range of corrosion resistance under both oxidizing and reducing conditions. After its introduction some 6 years ago, it rapidly established itself as the prime alloy for many high-severity applications. Of these, flue gas desulfurization (FGD) systems have become the biggest. Increasingly, however, alloy 59 has found application in many other industries. After briefly recalling the principal properties of alloy 59, the paper describes a number of applications which demonstrate the versatility of this alloy. These include, in addition to FGD, the chemical industry, the pharmaceutical industry, metals processing, aluminum refining and welding. Mention is made of the excellent fabrication characteristics of alloy 59, which make it easier to ensure that its corrosion-resistant properties are replicated in fabricated components.

  10. The correlation between swelling and radiation-induced segregation in iron-chromium-nickel alloys.

    SciTech Connect

    Allen, T. R.; Busby, J. T.; Kenik, E. A.; Was, G. S.

    1998-03-05

    The magnitudes of both void swelling and radiation-induced segregation (RIS) in iron-chromium-nickel alloys are dependent on bulk alloy composition. Because the diffusivity of nickel via the vacancy flux is slow relative to chromium, nickel enriches and chromium depletes at void surfaces during irradiation. This local composition change reduces the subsequent vacancy flux to the void, thereby reducing void swelling. In this work, the resistance to swelling from major element segregation is estimated using diffusivities derived from grain boundary segregation measurements in irradiated iron-chromium-nickel alloys. The resistance to void swelling in iron- and nickel-base alloys correlates with the segregation and both are functions of bulk alloy composition. Alloys that display the greatest amount of nickel enrichment and chromium depletion are found to be most resistant to void swelling, as predicted. Additionally, swelling is shown to be greater in alloys in which the RIS profiles are slow to develop.

  11. Corrosion Behavior of Alloy 22 in Chloride Solutions Containing Organic Acids

    SciTech Connect

    Carranza, R M; Giordano, C M; Rodr?guez, M A; Rebak, R B

    2005-11-04

    Alloy 22 (N06022) is a nickel based alloy containing alloying elements such as chromium, molybdenum and tungsten. It is highly corrosion resistant both under reducing and under oxidizing conditions. Electrochemical studies such as electrochemical impedance spectroscopy (EIS) were performed to determine the corrosion behavior of Alloy 22 in 1M NaCl solutions at various pH values from acidic to neutral at 90 C. Tests were also carried out in NaCl solutions containing oxalic acid or acetic acid. It is shown that the corrosion rate of Alloy 22 was higher in a solution containing oxalic acid than in a solution of the same pH acidified with HCl. Acetic acid was not corrosive to Alloy 22. The corrosivity of oxalic acid was attributed to its capacity to form stable complex species with metallic cations from Alloy 22.

  12. Effect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys

    NASA Technical Reports Server (NTRS)

    Arakere, N. K.; Swanson, G.

    2002-01-01

    High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal turbine blade superalloys are PWA 1480/1493, PWA 1484, RENE' N-5 and CMSX-4. These alloys play an important role in commercial, military and space propulsion systems. Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. The failure modes of single crystal turbine blades are complicated to predict due to the material orthotropy and variations in crystal orientations. Fatigue life estimation of single crystal turbine blades represents an important aspect of durability assessment. It is therefore of practical interest to develop effective fatigue failure criteria for single crystal nickel alloys and to investigate the effects of variation of primary and secondary crystal orientation on fatigue life. A fatigue failure criterion based on the maximum shear stress amplitude /Delta(sub tau)(sub max))] on the 24 octahedral and 6 cube slip systems, is presented for single crystal nickel superalloys (FCC crystal). This criterion reduces the scatter in uniaxial LCF test data considerably for PWA 1493 at 1200 F in air. Additionally, single crystal turbine blades used in the alternate advanced high-pressure fuel turbopump (AHPFTP/AT) are modeled using a large-scale three-dimensional finite element model. This finite element model is capable of accounting for material orthotrophy and variation in primary and secondary crystal orientation. Effects of variation in crystal orientation on blade stress response are studied based on 297

  13. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This

  14. Evidence of multimicrometric coherent γ' precipitates in a hot-forged γ-γ' nickel-based superalloy.

    PubMed

    Charpagne, M-A; Vennéguès, P; Billot, T; Franchet, J-M; Bozzolo, N

    2016-07-01

    This paper demonstrates the existence of large γ' precipitates (several micrometres in diameter) that are coherent with their surrounding matrix grain in a commercial γ-γ' nickel-based superalloy. The use of combined energy dispersive X-ray spectrometry and electron backscattered diffraction (EBSD) analyses allowed for revealing that surprising feature, which was then confirmed by transmission electron microscopy (TEM). Coherency for such large second-phase particles is supported by a very low crystal lattice misfit between the two phases, which was confirmed thanks to X-ray diffractograms and TEM selected area electron diffraction patterns. Dynamic recrystallization of polycrystalline γ-γ' nickel-based superalloys has been extensively studied in terms of mechanisms and kinetics. As in many materials with low stacking fault energy, under forging conditions, the main softening mechanism is discontinuous dynamic recrystallization. This mechanism occurs with preferential nucleation on the grain boundaries of the deformed matrix. The latter is then being consumed by the growth of the newly formed grains of low energy and by nucleation that keeps generating new grains. In the case of sub-solvus forging, large γ' particles usually pin the migrating boundaries and thus limit grain growth to a size which is determined by the distribution of second-phase particles, in good agreement with the Smith-Zener model. Under particular circumstances, the driving force associated with the difference in stored energy between the growing grains and the matrix can be large enough that the pinning forces can be overcome, and some grains can then reach much larger grain sizes. In the latter exceptional case, some intragranular primary γ' particles can be observed, although they are almost exclusively located on grain boundaries and triple junctions otherwise. In both cases, primary precipitates have no special orientation relationship with the surrounding matrix grain(s). This

  15. Nickel Based Superalloy with Improved Weldability and Oxidation Resistance. Fourth quarterly report for the period July 1999 to October 1999

    SciTech Connect

    George Simkovich; Eric Whitney

    1999-11-01

    The aim of this project is to determine and provide technical and economic data to a commercial end user of the alloy so that a full-scale alloy qualification program can be defined and implemented. The object of this project is to define the compositional range for a new alloy that is suitable for evaluation and qualification by a commercial enterprise. Alloy properties that will need to be determined include weldability, oxidation resistance, creep strength, resistance to thermo-mechanical fatigue, microstructure stability, and cost. Test results will be used to finalize the compositional range of an alloy that will undergo a rigorous qualification process.

  16. Analyses of Elemental Partitioning in Advanced Nickel-Base Superalloy Single Crystals

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Thomas, Kimberly J.

    2005-01-01

    Aircraft propulsion engines for the High Speed Civil Transport which may be developed early in the 21st century will require significantly different durability requirements than those which currently power civil aircraft. The durability will be more difficult to achieve because it is expected that the new aircraft engines will have to operate at near maximum power for more than half of each flight compared to 5 to 10 percent for typical current aircraft. To meet this requirement, a team of NASA, Pratt & Whitney Aircraft, and General Electric personnel have been formed to develop an appropriate alloy for the mission. This report summarizes the work performed by a part of that team up to the retirement of one of its members, R.L. Dreshfield. The prime purpose of the report is to assemble the data obtained in a single document so that it may be more accessible to those who may wish to pursue it at a later date.

  17. Fatigue crack growth and low cycle fatigue of two nickel base superalloys

    NASA Technical Reports Server (NTRS)

    Stoloff, N. S.; Duquette, D. J.; Choe, S. J.; Golwalkar, S.

    1983-01-01

    The fatigue crack growth and low cycle fatigue behavior of two P/M superalloys, Rene 95 and Astroloy, in the hot isostatically pressed (HIP) condition, was determined. Test variables included frequency, temperature, environment, and hold times at peak tensile loads (or strains). Crack initiation sites were identified in both alloys. Crack growth rates were shown to increase in argon with decreasing frequency or with the imposition of hold times. This behavior was attributed to the effect of oxygen in the argon. Auger analyses were performed on oxide films formed in argon. Low cycle fatigue lives also were degraded by tensile hold, contrary to previous reports in the literature. The role of environment in low cycle fatigue behavior is discussed.

  18. Resistance of a gamma/gamma prime - delta directionally solidified eutectic alloy to recrystallization

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Scheuermann, C. M.; Andrews, C. W.

    1975-01-01

    The lamellar directionally solidified nickel-base eutectic alloy gamma/gamma prime-delta has potential as an advanced turbine blade material. The microstructural stability of this alloy was investigated. Specimens were plastically deformed by uniform compression or Brinell indentation, then annealed between 705 and 1120 C. Microstructural changes observed after annealing included gamma prime coarsening, pinch-off and spheroidization of delta lamellae, and the appearance of an unidentified blocky phase in surface layers. All but the first of these was localized in severely deformed regions, suggesting that microstructural instability is not a serious problem in the use of this alloy.

  19. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, C.T.; Takeyama, Masao.

    1994-02-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.

  20. Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures

    DOEpatents

    Liu, Chain T.; Takeyama, Masao

    1994-01-01

    The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.

  1. Quantitative characterization and comparison of precipitate and grain shape in Nickel -base superalloys using moment invariants

    NASA Astrophysics Data System (ADS)

    Callahan, Patrick Gregory

    A fundamental objective of materials science and engineering is to understand the structure-property-processing-performance relationship. We need to know the true 3-D microstructure of a material to understand certain geometric properties of a material, and thus fulfill this objective. Focused ion beam (FIB) serial sectioning allows us to find the true 3-D microstructure of Ni-base superalloys. Once the true 3-D microstructure is obtained, an accurate quantitative description and characterization of precipitate and/or grain shapes is needed to understand the microstructure and describe it in an unbiased way. In this thesis, second order moment invariants, the shape quotient Q, a convexity measure relating the volume of an object to the volume of its convex hull, V/Vconv, and Gaussian curvature have been used to compare an experimentally observed polycrystalline IN100 microstructure to three synthetic microstructures. The three synthetic microstructures used different shape classes to produce starting grain shapes. The three shape classes are ellipsoids, superellipsoids, and the shapes generated when truncating a cube with an octahedron. The microstructures are compared using a distance measure, the Hellinger distance. The Hellinger distance is used to compare distributions of shape descriptors for the grains in each microstructure. The synthetic microstructure that has the smallest Hellinger distance, and so best matched the experimentally observed microstructure is the microstructure that used superellipsoids as a starting grain shape. While it has the smallest Hellinger distance, and is approaching realistic grain morphologies, the superellipsoidal microstructure is still not realistic. Second order moment invariants, Q, and V/V conv have also been used to characterize the γ' precipitate shapes from four experimental Ru-containing Ni-base superalloys with differences in alloying additions. The superalloys are designated UM-F9, UM-F18, UM-F19, and UM-F22. The

  2. Processing studies of powder metallurgically-produced high temperature alloys (Processing studies of oxide dispersed alloys for service above 1000/sup 0/ C). Final report

    SciTech Connect

    Grant, N.J.; Smith, C.H.

    1986-01-01

    It was demonstrated that the use of homogeneous, fine, R.S. powders of Nickel-base Superalloy IN-100 (a commercial jet engine blade alloy), converted to very fine flake and blended with Y/sub 2/O/sub 3/, will produce an extremely stable alloy with outstanding creep and stress rupture properties from about 950 to at least 1100/sup 0/C. The RS OD IN-100 alloy has comparable properties to those reported for the MA-6000 alloy developed by Benjamin et al, but offers a cheaper, faster, much more reproducible product. An operating temperature advantage of 150 to 200/sup 0/C appears attainable for the RS OD IN-100 alloy over that for the commercial precision cast alloy of the same basic composition.

  3. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    NASA Technical Reports Server (NTRS)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  4. Electrochemical Machining Removes Deep Obstructions

    NASA Technical Reports Server (NTRS)

    Catania, Mark J.

    1987-01-01

    Electrochemical machining (ECM) is effective way of removing obstructing material between two deep holes supposed to intersect but do not because of misalignment of drilling tools. ECM makes it possible to rework costly castings otherwise scrapped. Method fast even for tough or hard alloys and complicated three-dimensional shapes.

  5. Anisotropy of machine building materials

    NASA Technical Reports Server (NTRS)

    Ashkenazi, Y. K.

    1981-01-01

    The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.

  6. Fatigue Crack Growth Behavior of Nickel-base Superalloy Haynes 282 at 550-750 °C

    NASA Astrophysics Data System (ADS)

    Rozman, K. A.; Kruzic, J. J.; Hawk, J. A.

    2015-08-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at temperatures of 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 Hz and 0.25 Hz. Increasing the temperature from 550 to 750 °C caused the fatigue crack growth rates to increase from ~20 to 60% depending upon the applied stress intensity level. The effect of reducing the applied loading frequency increased the fatigue crack growth rates from ~20 to 70%, also depending upon the applied stress intensity range. The crack path was observed to be transgranular for the temperatures and frequencies used during fatigue crack growth rate testing. At 750 °C, there were some indications of limited intergranular cracking excursions at both loading frequencies; however, the extent of intergranular crack growth was limited and the cause is not understood at this time.

  7. Influence of cubic boron nitride grinding on the fatigue strengths of carbon steels and a nickel-base superalloy

    SciTech Connect

    Kawagoishi, N.; Chen, Q.; Kondo, E.; Goto, M.; Nisitani, H.

    1999-04-01

    The influence of cubic boron nitride (CBN) grinding on fatigue strength was investigated on an annealed carbon steel, a quenched and tempered carbon steel at room temperature, and a nickel-base superalloy, Inconel 718, at room temperature and 500 C. The results were discussed from several viewpoints, including surface roughness, residual stress, and work hardening or softening due to CBN grinding. The fatigue strength increased upon CBN grinding at room temperature, primarily because of the generation of compressive residual stress in the surface region. However, in the case of Inconel 718, this marked increase in the fatigue strength tended to disappear at the elevated temperature due to the release of compressive residual stress and the decrease of crack growth resistance at an elevated temperature.

  8. Fracture of single crystals of the nickel-base superalloy PWA 1480E in hydrogen at 22 C

    NASA Technical Reports Server (NTRS)

    Chen, P. S.; Wilcox, R. C.

    1991-01-01

    The present study investigates the hydrogen-induced fracture behavior of notched single crystals of the PWA 1480E nickel-based superalloy. Notched single crystals with seven different crystal orientations were tensile tested at 22 C in a hydrogen atmosphere at 34 MPa. Hydrogen-enhanced cleavage along 100-line planes in the notched region was found to be due to cracking along the gamma/gamma-prime interfaces. Cleavage on 111-line-type planes was observed only outside the notch region. The occurrence of 100- and 111-line-types of cleavage was independent of the single-crystal orientation. Outside the notch region, the fracture surfaces of specimens tested in hydrogen appeared very similar to those tested in helium. Differences in the fracture surfaces were located primarily near the notch region.

  9. Confidence bounds for the estimation of the volume phase fraction from a single image in a nickel base superalloy.

    PubMed

    Blanc, Rémi; Baylou, Pierre; Germain, Christian; Da Costa, Jean-Pierre

    2010-06-01

    We propose an image-based framework to evaluate the uncertainty in the estimation of the volume fraction of specific microstructures based on the observation of a single section. These microstructures consist of cubes organized on a cubic mesh, such as monocrystalline nickel base superalloys. The framework is twofold: a model-based stereological analysis allows relating two-dimensional image observations to three-dimensional microstructure features, and a spatial statistical analysis allows computing approximate confidence bounds while assessing the representativeness of the image. The reliability of the method is assessed on synthetic models. Volume fraction estimation variances and approximate confidence intervals are computed on real superalloy images in the context of material characterization. PMID:20350338

  10. Effect of crystallographic orientation on subcritical grain boundary cracking in a conventionally cast polycrystalline nickel-based superalloy.

    PubMed

    Swaminathan, Kameshwaran; Blendell, John E; Trumble, Kevin P

    2013-08-01

    The role of grain orientation and grain boundary misorientation on the formation of subcritical grain boundary cracks in creep of a conventionally cast nickel-based superalloy has been studied. The crystallographic orientations of the grains adjacent to grain boundaries normal to the tensile axis were measured using electron backscattered diffraction. The difference in the Schmid factor for the {111} <112> slip system between the grains was compared to the occurrence of grain boundary cracking. In addition, the difference in the amount of potential primary creep was calculated. The cracked grain boundaries were found to have a larger difference in Schmid factor, as well as a larger difference in potential primary creep, compared with uncracked grain boundaries. PMID:23718929

  11. High-Temperature Oxidation Behavior of Two Nickel-Based Superalloys Produced by Metal Injection Molding for Aero Engine Applications

    NASA Astrophysics Data System (ADS)

    Albert, Benedikt; Völkl, Rainer; Glatzel, Uwe

    2014-09-01

    For different high-temperature applications like aero engines or turbochargers, metal injection molding (MIM) of superalloys is an interesting processing alternative. For operation at high temperatures, oxidation behavior of superalloys produced by MIM needs to match the standard of cast or forged material. The oxidation behavior of nickel-based superalloys Inconel 713 and MAR-M247 in the temperature interval from 1073 K to 1373 K (800 °C to 1100 °C) is investigated and compared to cast material. Weight gain is measured discontinuously at different oxidation temperatures and times. Analysis of oxidized samples is done via SEM and EDX-measurements. MIM samples exhibit homogeneous oxide layers with a thickness up to 4 µm. After processing by MIM, Inconel 713 exhibits lower weight gain and thinner oxide layers than MAR-M247.

  12. Influence of an aluminide coating on the TMF life of a single crystal nickel-base superalloy

    SciTech Connect

    Affeldt, E.E.

    1999-10-01

    TMF tests were conducted with bare and aluminide coated single crystal nickel-based superalloy specimens. Temperature cycling was between 400 C and 1,100 C with a phase shift (135 deg) that is typical for damaged locations on turbine blades. Stress response is characterized by a constant range and the formation of a tensile mean stress as a result of relaxation in the high temperature part of the cycle which is in compression. Bare specimens showed crack initiation from typical oxide hillocks. Coated specimens showed life reduction with respect to the bare ones caused by brittle cracking of the coating in the low temperature part of the cycle. Isothermal bending tests of coated specimens confirmed the low ductility of the coating at temperatures below 600 C but quantitative correlation with the TMF test results failed.

  13. Confidence bounds for the estimation of the volume phase fraction from a single image in a nickel base superalloy.

    PubMed

    Blanc, Rémi; Baylou, Pierre; Germain, Christian; Da Costa, Jean-Pierre

    2010-06-01

    We propose an image-based framework to evaluate the uncertainty in the estimation of the volume fraction of specific microstructures based on the observation of a single section. These microstructures consist of cubes organized on a cubic mesh, such as monocrystalline nickel base superalloys. The framework is twofold: a model-based stereological analysis allows relating two-dimensional image observations to three-dimensional microstructure features, and a spatial statistical analysis allows computing approximate confidence bounds while assessing the representativeness of the image. The reliability of the method is assessed on synthetic models. Volume fraction estimation variances and approximate confidence intervals are computed on real superalloy images in the context of material characterization.

  14. Effect of crystallographic orientation on subcritical grain boundary cracking in a conventionally cast polycrystalline nickel-based superalloy.

    PubMed

    Swaminathan, Kameshwaran; Blendell, John E; Trumble, Kevin P

    2013-08-01

    The role of grain orientation and grain boundary misorientation on the formation of subcritical grain boundary cracks in creep of a conventionally cast nickel-based superalloy has been studied. The crystallographic orientations of the grains adjacent to grain boundaries normal to the tensile axis were measured using electron backscattered diffraction. The difference in the Schmid factor for the {111} <112> slip system between the grains was compared to the occurrence of grain boundary cracking. In addition, the difference in the amount of potential primary creep was calculated. The cracked grain boundaries were found to have a larger difference in Schmid factor, as well as a larger difference in potential primary creep, compared with uncracked grain boundaries.

  15. ON THE INFLUENCE OF COLD WORK ON RESISTIVITY VARIATIONS WITH THERMAL EXPOSURE IN IN-718 NICKEL-BASE SUPERALLOY

    SciTech Connect

    Madhi, Elhoucine; Nagy, Peter B.

    2010-02-22

    In nickel-base superalloys, irreversible electrical conductivity changes occur above a transition temperature where thermally-activated microstructural evolution initiates. The electrical conductivity first decreases above about 450 deg. C then increases above 600 deg. C. However, the presence of plastic deformation results in accelerated microstructure evolution at an earlier transition temperature. It was recently suggested that this well-known phenomenon might explain the notable conductivity difference between the peened near-surface part and the intact part at sufficiently large depth in surface-treated specimens. The influence of cold work on the electrical conductivity change with thermal exposure offers a probable answer to one of the main remaining questions in eddy current residual stress assessment, namely unusually fast and occasionally even non-monotonic decay of the apparent eddy current conductivity (AECC) change that was observed at temperatures as low as 400 deg. C. To validate this explanation, the present study investigates the influence of cold work on low-frequency Alternating Current Potential Drop (ACPD) resistivity variations with thermal exposure. In-situ resistivity monitoring was conducted throughout various heating cycles using the ACPD technique. IN-718 nickel-base superalloy specimens with different levels of cold work were exposed to gradually increasing peak temperatures from 400 deg. C to 800 deg. C. The results indicate that the initial irreversible rise in resistivity is approximately one order of magnitude higher and occurs at about 50 deg. C lower temperature in cold-worked samples of 30% plastic strain than in the intact material.

  16. Silver-hafnium braze alloy

    DOEpatents

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  17. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, J.E.; Kelly, T.F.

    1999-06-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains. 20 figs.

  18. Strengthening of metallic alloys with nanometer-size oxide dispersions

    DOEpatents

    Flinn, John E.; Kelly, Thomas F.

    1999-01-01

    Austenitic stainless steels and nickel-base alloys containing, by wt. %, 0.1 to 3.0% V, 0.01 to 0.08% C, 0.01 to 0.5% N, 0.05% max. each of Al and Ti, and 0.005 to 0.10% O, are strengthened and ductility retained by atomization of a metal melt under cover of an inert gas with added oxygen to form approximately 8 nanometer-size hollow oxides within the alloy grains and, when the alloy is aged, strengthened by precipitation of carbides and nitrides nucleated by the hollow oxides. Added strengthening is achieved by nitrogen solid solution strengthening and by the effect of solid oxides precipitated along and pinning grain boundaries to provide temperature-stabilization and refinement of the alloy grains.

  19. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, Claudette G.; Liu, Chain T.

    1990-01-01

    An improved iron aluminide alloy of the DO.sub.3 type that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy corrosion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26-30 at. % aluminum, 0.5-10 at. % chromium, 0.02-0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron.

  20. Iron aluminide alloys with improved properties for high temperature applications

    DOEpatents

    McKamey, C.G.; Liu, C.T.

    1990-10-09

    An improved iron aluminide alloy of the DO[sub 3] type is described that has increased room temperature ductility and improved high elevated temperature strength. The alloy system further is resistant to corrosive attack in the environments of advanced energy conversion systems such as those using fossil fuels. The resultant alloy is relatively inexpensive as contrasted to nickel based and high nickel steels currently utilized for structural components. The alloy system consists essentially of 26--30 at. % aluminum, 0.5--10 at. % chromium, 0.02--0.3 at. % boron plus carbon, up to 2 at. % molybdenum, up to 1 at. % niobium, up to 0.5 at. % zirconium, up to 0.1 at. % yttrium, up to 0.5 at. % vanadium and the balance iron. 3 figs.

  1. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  2. Effect of Heating Rate on the Pressureless Sintering Densification of a Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Levasseur, David; Brochu, Mathieu

    2016-05-01

    Pressureless sintering of Inconel 718 has important technological applications for the densification of metal injection molding or additive manufacturing of parts with powder/binder systems. The effect of heating rates ranging from 15 to 200 K/minute on the sintering behavior of fine (-325 mesh) Inconel 718 powders was studied using the master sintering curve (MSC) concept. A pressureless pulsed electric current sintering setup was used to heat samples. The temperature at the onset of sintering increased as the heating rate increased. The formation of a supersolidus liquid fraction was shifted toward higher temperatures for increased heating rates. The apparent activation energy of sintering was obtained by least squares fitting of the sintering data to the MSC and was in good agreement with the lattice diffusion activation energy of the alloying elements present in Inconel 718. The MSC followed different kinetics for low heating rates (≤50 K/minute) and high heating rates (≥75 K/minute), and these differences were related to liquation kinetics.

  3. Characterization of the Micro-Welding Process for Repair of Nickel Base Superalloys

    NASA Astrophysics Data System (ADS)

    Durocher, J.; Richards, N. L.

    2007-12-01

    Micro-welding is a low-heat input process whereby a metal or cermet, is deposited by the generation of a low-power arc between a consumable electrode and a substrate. The low-heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. At present, the repair of turbine blades and vanes commonly involves gas tungsten arc welding and these components are susceptible to heat affected zone cracking during the weld repair process; vacuum brazing is also used but mainly on low-stress components such as stators. In this study, the low-heat input characteristic of micro-welding has been utilized to simulate repair of Inconel (Trade Mark of Special Metals) 625, Inconel 718, and Inconel 722 filler alloys to a cast Inconel 738 substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  4. Microstructural evolution and mechanical behavior of nickel-based superalloy 625 made by selective laser melting

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Adams, Paul; Albright, Thomas

    2015-03-01

    The mechanical properties and microstructures of Selective Laser Melted (SLM) alloy 625 procured from different suppliers were compared. The post-SLM process of hot isostatic pressing (HIP) led to a relatively coarse recrystallized gamma matrix phase that was similar in all the suppliers' materials, resulting in nearly identical tensile properties. These similarities obscure significant differences between them with respect to the population of second phase particles, which consisted of carbides or Laves phase. During solidification, the final liquid phase is concentrated in Nb, Mo, Si and C, and leads to L --> γ + carbide/Laves eutectic reactions. Secondary particles are very small prior to HIP and their composition has not been analyzed yet, but are limited to the fine-grained eutectic regions of the material prior to HIP. During HIP the gamma phase recrystallizes to remove the original as-solidified SLM microstructure, but secondary particles nucleate and grow where their elemental constituents first solidified, leading to a non-homogeneous distribution. Quasi-static tensile properties do not appear to be sensitive to these differences, but it is likely that other mechanical properties will be affected, especially fatigue and fracture behavior. Surface roughness, large grain size, and pores and voids left unhealed by the HIP cycle will also influence fatigue and fracture. Surface roughness and porosity in particular are features that could be improved by implementing novel approaches to laser processing in SLM.

  5. Stereological characterization of the {gamma}' particles in a nickel base superalloy: Comparison between transmission electron microscopy and atomic force microscopy techniques

    SciTech Connect

    Risbet, M. Feaugas, X.; Guillemer-Neel, C.; Clavel, M.

    2008-09-15

    Critical comparison of transmission electron microscopy and atomic force microscopy techniques was provided concerning size measurements of {gamma}' precipitates in a nickel-base superalloy. The divergence between results is explained in terms of the resolution limit for atomic force microscopy, linked both to the tip dimension and the diameter of the investigated particles.

  6. Effects of chromium and aluminum on mechanical and oxidation properties of iron-nickel-base superalloys based on CG-27

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1985-01-01

    The effects of chromium and aluminum on the mechanical and oxidation properties of a series of gamma-prime-strengthened alloys based on CG-27 were studied. Gamma-prime dispersion and solid-solution strengthening were the principal modes of alloy strengthening. The oxidation attack parameter K sub a decreased with increasing Cr and Al contents for each alloy group based on Al content. As a group, alloys with 3 wt % Al had the lowest attack parameters. Therefore, 3 wt % is the optimum level of Al for parabolic oxidation behavior. Spalling, due to diffusion-induced grain growth, was controlled by the overall Cr and Al levels. The alloy with 4 wt % Cr and 3 wt % Al had stress-rupture properties superior to those of the base alloy, CG-27, and maintained parabolic oxidation behavior while the Cr content was reduced by two-thirds of its value in cast CG-27.

  7. Cladding Alloys for Fluoride Salt Compatibility

    SciTech Connect

    Muralidharan, Govindarajan; Wilson, Dane F; Walker, Larry R; Santella, Michael L; Holcomb, David Eugene

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  8. Nickel alloys combat high-temperature corrosion

    SciTech Connect

    Agarwal, D.C.; Herda, W.R.; Brill, U.

    1995-10-01

    During the last few decades, a better understanding of alloying effects, advances in melting technology, and the development of controlled thermomechanical processing have led to new and improved high-temperature alloys. Most such alloys have sufficient amounts of chromium (with or without additions of aluminum or silicon) to form chromium oxide, alumina, and/or silica protective oxide scales, which provide resistance to environmental degradation. However, oxides cannot protect against failure by creep, mechanical or thermal fatigue, thermal shock, or embrittlement. In the real world, failure is typically caused by a combination of two or more attack modes, which synergistically accelerate degradation. To counter these attacks, two new nickel-base alloys have been developed, in which high-temperature corrosion resistance has been optimized by the careful addition of elements such as chromium, aluminum, silicon, and rare earths. They provide economical and reliable solutions to attack by oxygen, sulfur, halogens, carbon compounds, and nitrogen in a range of high-temperature applications. For example, Alloy 602CA is utilized in heat treating equipment, catalytic automotive parts, and chemical processing apparatus. Alloy 45TM has been successfully used in coal gasification equipment, incinerators, refineries, and process machinery involving severe sulfidizing conditions.

  9. Preliminary study of oxide-dispersion-strengthened B-1900 prepared by mechanical alloys

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.; Quatinetz, M.

    1975-01-01

    An experimental oxide dispersion strengthened (ODS) alloy based on the B-1900 composition was produced by the mechanical alloying process. Without optimization of the processing for the alloy or the alloy for the processing, recrystallization of the extruded product to large elongated grains was achieved. Materials having grain length-width ratios of 3 and 5.5 were tested in tension and stress-rupture. The ODS B-1900 exhibited tensile strength similar to that of cast B-1900. Its stress-rupture life was lower than that of cast B-1900 at 760 C. At 1095 C the ODS B-1900 with the higher grain length-width ratio (5.5) had stress-rupture life superior to that of cast B-1900. It was concluded that, with optimization, oxide dispersion strengthening of B-1900 and other complex cast nickel-base alloys has potential for improving high temperature properties over those of the cast alloy counterparts.

  10. Advanced Testing Techniques to Measure the PWSCC Resistance of Alloy 690 and its Weld Metals

    SciTech Connect

    P.Andreson

    2004-10-01

    Wrought Alloy 600 and its weld metals (Alloy 182 and Alloy 82) were originally used in pressurized water reactors (PWRs) due to the material's inherent resistance to general corrosion in a number of aggressive environments and because of a coefficient of thermal expansion that is very close to that of low alloy and carbon steel. Over the last thirty years, stress corrosion cracking in PWR primary water (PWSCC) has been observed in numerous Alloy 600 component items and associated welds, sometimes after relatively long incubation times. The occurrence of PWSCC has been responsible for significant downtime and replacement power costs. As part of an ongoing, comprehensive program involving utilities, reactor vendors and engineering/research organizations, this report will help to ensure that corrosion degradation of nickel-base alloys does not limit service life and that full benefit can be obtained from improved designs for both replacement components and new reactors.

  11. Electrochemical machining development for turbine generator rotor slots. Final report

    SciTech Connect

    Not Available

    1984-03-01

    The Electrochemical Machining Development for Turbine Generator Rotor Slots was initiated to provide a viable alternative to conventional machining of slots in conventional rotor forging materials and in advanced metallurgical alloys. ECM was selected because it is a stress-free machining process and is insensitive to material hardness. ECM concepts were developed and reviewed with ECM consultants prior to development work.

  12. Stress corrosion cracking of several high strength ferrous and nickel alloys

    NASA Technical Reports Server (NTRS)

    Nelson, E. E.

    1971-01-01

    The stress corrosion cracking resistance of several high strength ferrous and nickel base alloys has been determined in a sodium chloride solution. Results indicate that under these test conditions Multiphase MP35N, Unitemp L605, Inconel 718, Carpenter 20Cb and 20Cb-3 are highly resistant to stress corrosion cracking. AISI 410 and 431 stainless steels, 18 Ni maraging steel (250 grade) and AISI 4130 steel are susceptible to stress corrosion cracking under some conditions.

  13. Influence of copper on nickel-based catalysts in the conversion of glycerol

    SciTech Connect

    Miranda, Barbara C.; Chimentao, Ricardo J.; Szanyi, Janos; Braga, Adriano H.; Santos, Joao Batista O.; Gispert-Guirado, Francesc; Llorca, Jordi; Medina, Francesc

    2015-05-01

    The catalytic transformation of glycerol to value-added compounds was investigated over bimetallic Ni-Cu/γ-Al2O3 catalysts with Ni/Cu atomic ratios of 8/1, 4/1, 2/1, 1/1, 1/2, 1/4, and 1/8. XPS analysis revealed that the surface composition of the catalyst exhibited progressive enrichment of Cu as its content in the catalyst increased. H2-chemisorption indicated that the total number of exposed Ni atoms decreased as the Cu content increased. As a result, deep hydrogenolysis to produce CH4 was inhibited by the addition of Cu to the Ni catalyst, yielding higher selectivity towards the dehydration products of glycerol such as hydroxyacetone. FTIR spectra of adsorbed CO reveals that Cu asserts both geometric and electronic effects on the adsorption properties of Ni. The geometrical effect is visualized by the progressive disappearance of the bridge-bound adsorbed CO on metallic Ni by the incorporation of Cu. This suggests that the deep hydrogenolysis of glycerol to CH4 formation requires an ensemble of adjacent active Ni atoms. The electronic effect of Cu on Ni is indicated by the red shift of the IR peak of adsorbed CO as the Cu content increases. The electronic interaction between Cu and Ni species was also substantiated by XANES results. HTREM revealed metal particles very well distributed on the support with particle size of 1.5 to 5 nm. The Ni-Cu samples were not a total intermetallic alloys. We also gratefully acknowledge the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division for the support of this work. The research related to the FTIR of adsorption of CO (Proposal 48209) was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE Office of Biological and Environmental Research located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under

  14. Development of Creep-Resistant NiAl(Ti,Hf) Single-Crystal Alloys

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Nickel-base superalloys are the current choice for high-temperature jet engine applications such as turbine blades and vanes. However, after more than five decades of use, nickel-base superalloys have reached their limit, since the operating temperatures in gas turbine engines are now approaching the melting temperature of these alloys. Thus alternative materials, such as lightweight NiAl intermetallic alloys with superior properties, (e.g., high melting temperature, high thermal conductivity, and excellent chemical stability and oxidation resistance) are required for the next generation of high-temperature structural materials for more efficient 21st century civil transport systems. The two major disadvantages that have historically prevented the application of NiAl as a high-temperature structural material are its poor creep resistance and low room-temperature ductility. Alloying strategies similar to those used for nickel-base superalloys are being used to improve the high-temperature strength via solid-solution and precipitate-hardening effects. This study highlights the potent role of Ti and Hf as potential solid-solution strengtheners in NiAl and also the added effect of second-phase particles when Ti and Hf are both used.

  15. High Temperature Irradiation Effects in Selected Generation IV Structural Alloys

    SciTech Connect

    Nanstad, Randy K; McClintock, David A; Hoelzer, David T; Tan, Lizhen; Allen, Todd R.

    2009-01-01

    In the Generation IV Materials Program cross-cutting task, irradiation and testing were carried out to address the issue of high temperature irradiation effects with selected current and potential candidate metallic alloys. The materials tested were (1) a high-nickel iron-base alloy (Alloy 800H); (2) a nickel-base alloy (Alloy 617); (3) two advanced nano-structured ferritic alloys (designated 14YWT and 14WT); and (4) a commercial ferritic-martensitic steel (annealed 9Cr-1MoV). Small tensile specimens were irradiated in rabbit capsules in the High-Flux Isotope Reactor at temperatures from about 550 to 700 C and to irradiation doses in the range 1.2 to 1.6 dpa. The Alloy 800H and Alloy 617 exhibited significant hardening after irradiation at 580 C; some hardening occurred at 660 C as well, but the 800H showed extremely low tensile elongations when tested at 700 C. Notably, the grain boundary engineered 800H exhibited even greater hardening at 580 C and retained a high amount of ductility. Irradiation effects on the two nano-structured ferritic alloys and the annealed 9Cr-1MoV were relatively slight at this low dose.

  16. Corrosion behavior of nickel-containing alloys in artificial sweat.

    PubMed

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed. PMID:3403567

  17. Corrosion behavior of nickel-containing alloys in artificial sweat.

    PubMed

    Randin, J P

    1988-07-01

    The corrosion resistance of various nickel-containing alloys was measured in artificial sweat (perspiration) using the Tafel extrapolation method. It was found that Ni, CuNi 25 (coin alloy), NiAl (colored intermetallic compounds), WC + Ni (hard metal), white gold (jewelry alloy), FN42 and Nilo Alby K (controlled expansion alloys), and NiP (electroless nickel coating) are in an active state and dissolve readily in oxygenated artificial sweat. By contrast, austenitic stainless steels, TiC + Mo2C + Ni (hard metal), NiTi (shape-memory alloy), Hastelloy X (superalloy), Phydur (precipitation hardening alloy), PdNi and SnNi (nickel-containing coatings) are in a passive state but may pit under certain conditions. Cobalt, Cr, Ti, and some of their alloys were also investigated for the purpose of comparison. Cobalt and its alloys have poor corrosion resistance except for Stellite 20. Chromium and high-chromium ferritic stainless steels have a high pitting potential but the latter are susceptible to crevice corrosion. Ti has a pitting potential greater than 3 V. Comparison between the in vitro measurements of the corrosion rate of nickel-based alloys and the clinical observation of the occurrence of contact dermatitis is discussed.

  18. On the creep deformation mechanisms of an advanced disk nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Unocic, Raymond R.

    The main objective of this research was aimed at investigating the fundamental relationship between microstructure and creep deformation mechanisms using a variety of electron microscopy characterization techniques. The alloy used in this research, Rene 104, is a newer generation powder metallurgy Ni-base superalloy that was developed specifically for aircraft gas turbine disk applications with extended service durability at temperatures exceeding 650°C. The influence of stress and temperature was studied first and it was found that during creep deformation at temperatures between 677--815°C and stresses between 345--724MPa a variety of distinctly different creep deformation mechanisms were operative. In addition to identifying the creep deformation mechanisms an attempt was made to determine the creep rate limiting process so that an improved understanding of the fundamental processes that control deformation can be better understood. Microtwinning was found to the dominant deformation mechanism following creep at 677°C/690MPa and 704°C/724MPa. Microtwins form by the motion of paired a/6<112> Shockley partial dislocations that shear both the gamma matrix and gamma' precipitates. The rate limiting process in this mechanism is diffusion mediated atomic reordering that occurs in the wake of the shearing, twinning partial dislocations in order to maintain the ordered L12 structure of the gamma' precipitates. This reordering process helps to fundamentally explain the temperature and rate dependence of microtwinning under creep conditions within this temperature and stress regime. At a slightly higher temperature but lower stress (760°C and 345MPa), a stacking fault related shearing mechanism, which typically spanned only a few micrometers in length, was the principle deformation mode. The faults left behind in the gamma' precipitates determined to be extrinsic in nature. During creep at the highest temperature and lowest stress (815°C and 345MPa) a thermally

  19. Nickel based superalloy with improved weldability and oxidation resistance. Fifth quarterly report for the period November 1999 - January 2000

    SciTech Connect

    Simkovich, George; Whitney, Eric

    2000-02-29

    This program is part of the US Department of Energy (DOE) Energy Related Inventions Program (ERIP). The purpose of ERIP is to promote and facilitate the development of energy saving technologies that may not otherwise be developed solely by commercial enterprises. The program has been highly successful in achieving its mission. The aim of this project is to determine and provide technical and economic data to a commercial end user of the alloy so that a full-scale alloy qualification program can be defined and implemented. The object of this project is to define the compositional range for a new alloy that is suitable for evaluation and qualification by a commercial enterprise. Alloy properties that will need to be determined include weldability, oxidation resistance, creep strength, resistance to thermo-mechanical fatigue, microstructure stability, and cost. Test results will be used to finalize the compositional range of an alloy that will undergo a rigorous qualification process.

  20. Development of Lead-Free Copper Alloy-Graphite Castings

    SciTech Connect

    Rohatgi, P.K.

    1999-10-01

    In this project, graphite is used as a substitute for lead in order to maintain the machinability of plumbing components at the level of leaded brass. Graphite dispersed in Cu alloy was observed to impart good machinability and reduce the sizes of chips during machining of plumbing components in a manner similar to lead. Copper alloys containing dispersed graphite particles could be successfully cast in several plumbing fixtures which exhibited acceptable corrosion rate, solderability, platability, and pressure tightness. The power consumption for machining of composites was also lower than that of the matrix alloy. In addition, centrifugally cast copper alloy cylinders containing graphite particles were successfully made. These cylinders can therefore be used for bearing applications, as substitutes for lead-containing copper alloys. The results indicate that copper graphite alloys developed under this DOE project have a great potential to substitute for lead copper alloys in both plumbing and bearing applications.

  1. Investigation of surface roughness and tool wear length with varying combination of depth of cut and feed rate of Aluminium alloy and P20 steel machining.

    NASA Astrophysics Data System (ADS)

    Varmma a/l Suparmaniam, Madan; Razlan Yusoff, Ahmad

    2016-02-01

    High-speed milling technique is often used in many industries to boost productivity of the manufacturing of high-technology components. The occurrence of wear highly limits the efficiency and accuracy of high- speed milling operations. In this paper, analysis of high-speed milling process parameters such as material removal rate, cutting speed, feed rate and depth of cut carried out by implemented to conventional milling. This experiment investigate the effects of varying combination of depth of cut and feed rate to tool wear rate length using metallurgical microscope and surface roughness using portable surface roughness tester after end milling of Aluminium and P20 steel. Results showed that feed rate significantly influences the surface roughness value while depth of cut does not as the surface roughness value keep increasing with the increase of feed rate and decreasing depth of cut. Whereas, tool wear rate almost remain unchanged indicates that material removal rate strongly contribute the wear rate. It believe that with no significant tool wear rate the results of this experiment are useful by showing that HSM technique is possible to be applied in conventional machine with extra benefits of high productivity, eliminating semi-finishing operation and reducing tool load for finishing.

  2. Electric machine

    SciTech Connect

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  3. Nonplanar machines

    SciTech Connect

    Ritson, D. )

    1989-05-01

    This talk examines methods available to minimize, but never entirely eliminate, degradation of machine performance caused by terrain following. Breaking of planar machine symmetry for engineering convenience and/or monetary savings must be balanced against small performance degradation, and can only be decided on a case-by-case basis. 5 refs.

  4. Effect of B, Zr, and C on Hot Tearing of a Directionally Solidified Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Grodzki, J.; Hartmann, N.; Rettig, R.; Affeldt, E.; Singer, R. F.

    2016-06-01

    The effect of the minor elements B, Zr, and C on the castability of a Nickel-based γ'-strengthened superalloy has been investigated. Tube-like specimens were prepared by directional solidification where the rigid ceramic core leads to hoop stresses and grain boundary cracking. It was found that an important improvement in castability can be achieved by adjusting the minor elemental composition. Too low C (≤0.15 pct) and too high B and Zr contents (≥0.05 pct) lead to material that is very prone to solidification cracking and should be avoided. The results cannot be rationalized on the basis of the current models for solidification cracking. Instead, pronounced hot tearing is observed to occur at high amounts of γ/ γ'-eutectic and high Zr contents. The critical film stage where dendrites at the end of solidification do not touch and are separated by thin liquid films must be avoided. How Zr promotes the film stage will be discussed in the paper.

  5. Effects of processing and microstructure on the fatigue behaviour of the nickel-base superalloy Rene95

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.

    1984-01-01

    Forms of the nickel-base superalloy Rene95 produced by three processing methods were evaluated in tensile, low cycle fatigue and fatigue crack propagation tests at 540 and 650 C. Two powder-metallurgy (PM) forms, hot-isostatically-pressed and extruded-and-forged, and a conventionally cast-and-wrought form were all given the same heat treatment. The extruded-and-forged form showed superior fatigue life in low strain range tests though the two PM forms exhibited nearly identical mechanical behavior in all other respects. Further, this life difference could not be explained by significant differences in the types, sizes or shapes of the defects initiating failure. The cast-and-wrought Rene95, however, had lower strength, ductility and fatigue life, but higher fatigue crack propagation resistance because of a larger grain size. It did not exhibit the environmentally-assisted intergranular mode of propagation which occurs in PM Rene95 and other fine-grained superalloys at these test temperatures and frequencies.

  6. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  7. Fatigue Crack Growth Mechanisms for Nickel-based Superalloy Haynes 282 at 550-750 °C

    NASA Astrophysics Data System (ADS)

    Rozman, Kyle A.; Kruzic, Jamie J.; Sears, John S.; Hawk, Jeffrey A.

    2015-10-01

    The fatigue crack growth rates for nickel-based superalloy Haynes 282 were measured at 550, 650, and 750 °C using compact tension specimens with a load ratio of 0.1 and cyclic loading frequencies of 25 and 0.25 Hz. The crack path was observed to be primarily transgranular for all temperatures, and the observed effect of increasing temperature was to increase the fatigue crack growth rates. The activation energy associated with the increasing crack growth rates over these three temperatures was calculated less than 60 kJ/mol, which is significantly lower than typical creep or oxidation mechanisms; therefore, creep and oxidation cannot explain the increase in fatigue crack growth rates. Transmission electron microscopy was done on selected samples removed from the cyclic plastic zone, and a trend of decreasing dislocation density was observed with increasing temperature. Accordingly, the trend of increasing crack growth rates with increasing temperature was attributed to softening associated with thermally assisted cross slip and dislocation annihilation.

  8. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium–sulfur cells

    PubMed Central

    Jiang, Jian; Zhu, Jianhui; Ai, Wei; Wang, Xiuli; Wang, Yanlong; Zou, Chenji; Huang, Wei; Yu, Ting

    2015-01-01

    Elemental sulfur cathodes for lithium/sulfur cells are still in the stage of intensive research due to their unsatisfactory capacity retention and cyclability. The undesired capacity degradation upon cycling originates from gradual diffusion of lithium polysulfides out of the cathode region. To prevent losses of certain intermediate soluble species and extend lifespan of cells, the effective encapsulation of sulfur plays a critical role. Here we report an applicable way, by using thin-layered nickel-based hydroxide as a feasible and effective encapsulation material. In addition to being a durable physical barrier, such hydroxide thin films can irreversibly react with lithium to generate protective layers that combine good ionic permeability and abundant functional polar/hydrophilic groups, leading to drastic improvements in cell behaviours (almost 100% coulombic efficiency and negligible capacity decay within total 500 cycles). Our present encapsulation strategy and understanding of hydroxide working mechanisms may advance progress on the development of lithium/sulfur cells for practical use. PMID:26470847

  9. Local x-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys

    SciTech Connect

    Brueckner, U.; Epishin, A.; Link, T.

    1997-12-01

    The structure of the dendrites in the single-crystal nickel-base superalloys SC16, SRR99 and CMSX4 with different refractory element levels (Mo + Ta + W + Re) has been investigated by local X-ray diffraction. A special technique was used to improve the spatial resolution of the X-ray diffraction and to enable the precise control of the X-ray spot position within the dendritic structure. A significant change of the {gamma}/{gamma}{prime}-lattice misfit was found within the dendrite in the superalloys with higher refractory element levels SRR99 and CMSX4. The observed misfit change is based on the change of the {gamma}-lattice parameter due to segregation of W and Re. The intensity of the X-ray beam reflected from the dendrite periphery was found to be weaker than that from the dendrite centre because of the mosaicity. Therefore misfit measurements without knowledge of the X-ray spot position in the dendritic structure lead to values that correspond more to the dendrite core.

  10. The effect of hydrogen on deformation substructure, flow and fracture in a nickel-base single crystal superalloy

    NASA Technical Reports Server (NTRS)

    Dollar, M.; Bernstein, I. M.

    1988-01-01

    The room temperature flow and fracture of a nickel-base single crystal gamma/gamma-/prime superalloy in the presence and absence of hydrogen is explored. The procedure of hydrogen-charging employed in this study provides a very high and uniform hydrogen concentration of the order of 5000 at.-ppm in the material. It is shown that the most compelling hydrogen-induced changes in deformation behavior are enhanced dislocation accumulation in the gamma matrix and extensive cross-slip of super-dislocations. The explanation of these changes is proposed. Both effects contribute to the increase of flow stress and the notable work hardening that occurs prior to fracture. Hydrogen enhanced strain localization in the gamma matrix leads to the dramatic loss of ductility and premature cracking, which manifests as failure macroscopically parallel to the 100-plane-oriented faces of gamma-prime precipitates. On the microscale, cracking, while limited to the gamma matrix, occurs parallel to multiple 111-plane-oriented slip systems.

  11. High-temperature measurements of lattice parameters and internal stresses of a creep-deformed monocrystalline nickel-base superalloy

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Strehler, Marcus; Mughrabi, Haël

    1996-04-01

    High-temperature X-ray line profile measurements were performed to maximal temperatures of 1050 °C on samples of the nickel-base superalloy SRR 99. The samples with rod axes near the [001] direction were investigated in the initially undeformed state and after creep deformation at different temperatures and stresses. For the measurements of the (002) and (020) line profiles, a special X-ray double crystal diffractometer with negligible line broadening was used which was equipped with a high-temperature vacuum chamber. The line profiles were evaluated for the lattice parameters of the matrix phase γ and the precipitated γ' phase and for values of the lattice mismatch parallel and perpendicular to the stress axis, respectively, which were found to be different. Elastic, tetragonal distortions of the phases γ and γ' could be determined between room temperature and about 900 °C. These distortions are thermally induced due to the different thermal expansion coefficients of the two phases and deformation induced due to interfacial dislocation networks which were built up during deformation. At the high temperatures of the X-ray measurements, at least partial recovery of the deformation-induced internal stresses occurred, depending on the temperature of the X-ray measurements. The results are discussed and compared with data obtained by complementary techniques.

  12. The Cyclic Stress-Strain Behavior of a Single Crystal Nickel-Base Superalloy. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.

    1988-01-01

    The cyclic stress-strain response and similar deformation structures of the single crystal nickel based superalloy was described under a specific set of conditions. The isothermal low cycle fatigue response and deformation structures were described at a typical intermediate temperature and at high temperature. Specimens oriented near the (001) and (111) crystallographic orientations were tested at 1050 C, where more moderate orientation effects were expected. This enabled the description of the deformation structures at each of the 2 temperatures and their relationship to the observed cyclic stress-strain behavior. The initial yield strength of all specimens tested at 650 C was controlled by the shearing of the gamma prime precipitates by dislocation pairs. Low cycle fatigue tests at 650 C had cyclic hardening, which was associated with dislocation interactions in the gamma matrix. The initial yield strength of specimens tested at 1050 C was associated with dislocation bypassing of the gamma prime precipitates. Low cycle fatigue tests at 1050 C had cyclic softening, associated with extensive dislocation recovery at the gamma-gamma prime interfaces along with some gamma prime precipitate coarsening.

  13. On the Feasibility of Eddy Current Characterization of the Near-Surface Residual Stress Distribution in Nickel-Base Superalloys

    SciTech Connect

    Blodgett, Mark P.; Nagy, Peter B.

    2004-02-26

    In light of its frequency-dependent penetration depth, the measurement of eddy current conductivity has been suggested as a possible means to allow the nondestructive evaluation of subsurface residual stresses in shot-peened specimens. This technique is based on the so-called electroelastic effect, i.e., the stress-dependence of the electrical conductivity. Unfortunately, the relatively small ({approx}1%) change in electrical conductivity caused by the presence of compressive residual stresses is often distorted, or even completely overshadowed, by the accompanying conductivity loss caused by cold work and surface roughness effects. Recently, it was observed that, in contrast with most other materials, shot-peened Waspaloy and IN100 specimens exhibit an apparent increase in electrical conductivity at increasing inspection frequencies. This observation by itself indicates that in these materials the measured conductivity change is probably dominated by residual stress effects, since both surface roughness and increased dislocation density are known to decrease rather than increase the conductivity and the presence of crystallographic texture does not affect the electrical conductivity of these materials, which crystallize in cubic symmetry. Our preliminary experiments indicate that probably there exists a unique 'window of opportunity' for eddy current NDE in nickel-base superalloys. We identified five major effects that contribute to this fortunate constellation of material properties, which will be reviewed in this presentation.

  14. Microstructural Changes of a Creep-Damaged Nickel-Based K002 Superalloy Containing Hf Element under Different HIP Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomeng; Zhou, Yu; Dong, Jian; Wang, Tianyou; Zhao, Zihua; Zhang, Zheng

    2016-02-01

    Effects of hot isostatic pressing (HIP) temperature on the microstructural evolution of a nickel-based K002 superalloy containing Hf element after long-term service were investigated using three different soaking temperatures during HIP. The degraded γ' precipitates represented coarse and irregular morphology after long-term service. These γ' precipitates still were of coarse and irregular shape, but the size and volume fraction of γ' precipitates were markedly reduced under HIP condition of 1,190°C/200 MPa/4 h, indicating that the γ' precipitates were experiencing a dissolution process. Meanwhile, the concentrically oriented N-type γ' rafting structure around the cavities was formed. With HIP temperature increase to 1,220°C and 1,250°C, the small-sized, cubic and regular γ' precipitates were re-precipitated, and the concentrically oriented γ' structure vanished. The unstable morphology induced by the nucleation and growth of γ matrix was found near the creep cavities, indicating that the solute atoms diffused inward the creep-induced cavities during HIP. However, at HIP temperature of 1,220°C and 1,250°C, a large number of blocky MC(2)-type carbides containing amounts of Hf elements were precipitated, demonstrating that HIP treatment at higher temperatures can result in the formation of a large number of blocky MC(2)-type carbides.

  15. The influence of primary and secondary orientations on the elastic response of a nickel-base single-crystal superalloy

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Kalluri, Sreeramesh; Mcgaw, Michael A.

    1993-01-01

    The influence of primary orientation on the elastic response of a (001)-oriented nickel-base single-crystal superalloy, PWA 1480, was investigated under mechanical, thermal, and combined thermal and mechanical loading conditions using finite element techniques. Elastic stress analyses were performed using the MARC finite element code on a square plate of PWA 1480 material. Primary orientation of the single crystal superalloy was varied in increments of 2 deg, from 0 to 10 deg, from the (001) direction. Two secondary orientations (0 and 45 deg) were considered, with respect to the global coordinate system, as the primary orientation angle was varied. The stresses developed within the single crystal plate were determined for each loading condition. In this paper, the influence of the angular offset between the primary crystal orientation and the loading direction on the elastic stress response of the PWA 1480 plate is presented for different loading conditions. The influence of primary orientation angle, when constrained between the bounds considered, was not found to be as significant as the influence of the secondary orientation angle, which is not typically controlled.

  16. Microstructural Characterization of a Polycrystalline Nickel-Based Superalloy Processed via Tungsten-Intert-Gas-Shaped Metal Deposition

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Bache, Martin R.; Whittaker, Mark T.

    2010-12-01

    Recent trials have produced tungsten-inert-gas (TIG)-welded structures of a suitable scale to allow an evaluation of the technique as an economic and commercial process for the manufacture of complex aeroengine components. The employment of TIG welding is shown to have specific advantages over alternative techniques based on metal inert gas (MIG) systems. Investigations using the nickel-based superalloy 718 have shown that TIG induces a smaller weld pool with less compositional segregation. In addition, because the TIG process involves a pulsed power source, a faster cooling rate is achieved, although this rate, in turn, compromises the deposition rate. The microstructures produced by the two techniques differ significantly, with TIG showing an absence of the detrimental delta and Laves phases typically produced by extended periods at a high temperature using MIG. Instead, an anisotropic dendritic microstructure was evident with a preferred orientation relative to the axis of epitaxy. Niobium was segregated to the interdendritic regions. A fine-scale porosity was evident within the microstructure with a maximum diameter of approximately 5 μm. This porosity often was found in clusters and usually was associated with the interdendritic regions. Subsequent postdeposition heat treatment was shown to have no effect on preexisting porosity and to have a minimal effect on the microstructure.

  17. Effect of orientations on in situ tensile deformation and fracture behaviours of nickel-base single-crystal superalloys

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhou, B. M.; Zhou, Y. Z.; Li, J. G.; Jin, T.; Sun, X. F.; Zhang, Z. F.

    2014-07-01

    After systematically investigating in situ tensile deformation and fracture behaviours of nickel-base single-crystal superalloys with four different orientations, their slip and fracture modes in relation to the orientations are obtained and shown as follows. In [0 0 1] oriented specimen, four slip systems were activated and the crack initiated along the interactive location between the third slip bands (SBs) and deformation bands in priority. The crack propagation involves all three crack opening types of I, II and III. [0 1 1] oriented specimens exhibited obvious low strain hardening rate and high ductility, which can be attributed to the balance between the softening caused by the propagation of SBs and the latent hardening caused by the propagation of deformation bands. Except for ? case, the critical resolved shear stress (CRSS) of the other oriented superalloys at room temperature is approximate, which is due to non-Schmid behaviour in superalloys. Lall-Chin-Pope model is used to explain the orientation dependence of CRSS. Furthermore, the fracture modes of different oriented specimens depend on the intensity of intrusion and extrusion and the degree of match between normal stress and shear stress. The shear stress is beneficial to the crack initiation and the normal stress contributes to the crack propagation.

  18. Quantification of precipitates and their effects on the response of nickel-base superalloy to shot peening

    NASA Astrophysics Data System (ADS)

    Chandrasekar, R.; Lo, C. C. H.; Frishman, A. M.; Larson, B. F.; Nakagawa, N.

    2012-05-01

    This paper reports on a microstructural study of a nickel-base superalloy, Inconel 718, with a focus on quantifying precipitate density and their effects on conductivity variations. The study is motivated by eddy current (EC) characterization of residual stresses, where observed EC signals are attempted to correlate with stress profiles of shot peened superalloy surfaces. It has been observed that the correlation is less universal than anticipated, and in fact strongly influenced by the material hardness, or the aging conditions. For example, the soft sample surface exhibits significantly stronger EC signals than the fully hardened sample when both are shot peened at the same Almen intensity. Thus, the objective of the present study is to examine this complex material response against aging and shot peening treatments at the microstructure scale, by the use of techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM). We will describe preparations of a series of Inconel 718 samples that was aged and shot peened at various conditions, and present microstructural data obtained from SEM and TEM images such as precipitate densities, correlated with bulk properties such as the hardness and conductivity.

  19. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems.

  20. Permutation Machines.

    PubMed

    Bhatia, Swapnil; LaBoda, Craig; Yanez, Vanessa; Haddock-Angelli, Traci; Densmore, Douglas

    2016-08-19

    We define a new inversion-based machine called a permuton of n genetic elements, which allows the n elements to be rearranged in any of the n·(n - 1)·(n - 2)···2 = n! distinct orderings. We present two design algorithms for architecting such a machine. We define a notion of a feasible design and use the framework to discuss the feasibility of the permuton architectures. We have implemented our design algorithms in a freely usable web-accessible software for exploration of these machines. Permutation machines could be used as memory elements or state machines and explicitly illustrate a rational approach to designing biological systems. PMID:27383067

  1. Modeling Selective Intergranular Oxidation of Binary Alloys

    SciTech Connect

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-07

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 µm ahead of grain boundary crack tips were documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (~100s of nm). We present a mathematical kinetics model that adapts Wagner’s model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  2. Modeling selective intergranular oxidation of binary alloys

    NASA Astrophysics Data System (ADS)

    Xu, Zhijie; Li, Dongsheng; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    Intergranular attack of alloys under hydrothermal conditions is a complex problem that depends on metal and oxygen transport kinetics via solid-state and channel-like pathways to an advancing oxidation front. Experiments reveal very different rates of intergranular attack and minor element depletion distances ahead of the oxidation front for nickel-based binary alloys depending on the minor element. For example, a significant Cr depletion up to 9 μm ahead of grain boundary crack tips was documented for Ni-5Cr binary alloy, in contrast to relatively moderate Al depletion for Ni-5Al (˜100 s of nm). We present a mathematical kinetics model that adapts Wagner's model for thick film growth to intergranular attack of binary alloys. The transport coefficients of elements O, Ni, Cr, and Al in bulk alloys and along grain boundaries were estimated from the literature. For planar surface oxidation, a critical concentration of the minor element can be determined from the model where the oxide of minor element becomes dominant over the major element. This generic model for simple grain boundary oxidation can predict oxidation penetration velocities and minor element depletion distances ahead of the advancing front that are comparable to experimental data. The significant distance of depletion of Cr in Ni-5Cr in contrast to the localized Al depletion in Ni-5Al can be explained by the model due to the combination of the relatively faster diffusion of Cr along the grain boundary and slower diffusion in bulk grains, relative to Al.

  3. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  4. Determination of γ-γ' lattice misfit in a single-crystal nickel-based superalloy using convergent beam electron diffraction aided by finite element calculations.

    PubMed

    Brunetti, G; Settefrati, A; Hazotte, A; Denis, S; Fundenberger, J-J; Tidu, A; Bouzy, E

    2012-02-01

    In single-crystal nickel-based superalloys, the lattice mismatch associated with interface coherency between γ matrix and γ' precipitates has a strong influence on mechanical properties. The unconstrained lattice misfit in a single-crystal of the MC2 nickel-based superalloy is determined using convergent beam electron diffraction measurements and finite element calculations. The apparent lattice parameters of both constrained phases are obtained in thin foils, using a new multi-pattern approach, which allows for unambiguous determination of all the lattice parameters considering the real symmetry of the strained crystals. Finite element calculations are used to establish relations between the constrained and unconstrained lattice parameters, with the stress relaxation resulting from the thin foil geometry taken into account. PMID:22055767

  5. Determination of γ-γ' lattice misfit in a single-crystal nickel-based superalloy using convergent beam electron diffraction aided by finite element calculations.

    PubMed

    Brunetti, G; Settefrati, A; Hazotte, A; Denis, S; Fundenberger, J-J; Tidu, A; Bouzy, E

    2012-02-01

    In single-crystal nickel-based superalloys, the lattice mismatch associated with interface coherency between γ matrix and γ' precipitates has a strong influence on mechanical properties. The unconstrained lattice misfit in a single-crystal of the MC2 nickel-based superalloy is determined using convergent beam electron diffraction measurements and finite element calculations. The apparent lattice parameters of both constrained phases are obtained in thin foils, using a new multi-pattern approach, which allows for unambiguous determination of all the lattice parameters considering the real symmetry of the strained crystals. Finite element calculations are used to establish relations between the constrained and unconstrained lattice parameters, with the stress relaxation resulting from the thin foil geometry taken into account.

  6. A weldability study of Haynes Alloy No 242

    SciTech Connect

    Maguire, M.C.; Headley, T.J.

    1990-01-01

    The weldability of Haynes {reg sign} Alloy No. 242 {trademark}, a new alloy derived from the Ni-Mo-Cr system, was investigated. Susceptibility to fusion zone hot cracking was determined by Varestraint testing, and hot ductility was characterized by Gleeble testing. Solidification phase transformation data was recorded with differential thermal analysis (DTA). Weld microstructures were characterized with scanning electron microscopy (SEM), analytical electron microscopy (AEM), and electron probe microanalysis (EPMA). The results of this study indicate that this alloy has better hot cracking resistance than high strength nickel base superalloy 718; however, it has lower resistance than other alloys derived from the Ni-Cr-Mo ternary such as the Hastelloy alloys B2, C-4, C-22, C-276, and W. Segregation patterns in weld microstructures agree well with established information concerning this family of alloys. Prediction of solidification products with the Ni-Mo-Cr phase diagram based on a chemical equivalence was unsuccessful due to the higher carbon content of this alloy which favors the formation of M{sub 6}C. Solidification in Alloy 242 terminates with the formation of two eutectic-like constituents: (1) a M{sub 6}C/austenite eutectic, and (2) a second eutectic with austenite and an undetermined phase. This latter phase has a composition similar to the M{sub 6}C phase, but with a different crystal structure (cubic, ao = 6.6 {Angstrom}). 11 refs., 10 figs., 4 tabs.

  7. Resistivity-Microstructure Relationships in Nickel Base Superalloys Used in Gas Turbine Engines for Power Generation and as Interconnects in Solid Oxide Fuel Cells

    SciTech Connect

    Gerhardt, Rosario A.

    2012-02-20

    This report summarizes the results accomplished during this 3-year with funds from this grant. The most important new contribution was the development of a microstructural model, based on analysis of the small angle scattering spectra that can relate the measured electrical resistivity to the precipitate population present in a nickel base superalloy in a quantitative way. A total of 24 research articles were published or were in press at the time the final report was written.

  8. AEM investigations of primary water SCC in nickel alloys

    SciTech Connect

    Fish, J.S.; Perry, D.J.; Lewis, N.; Thompson, C.D.; Yang, W.J.S.

    1997-08-01

    The microstructure of nickel alloys, particularly the grain boundary composition and intergranular precipitates, plays an important role in high temperature primary water stress corrosion cracking (SCC) performance. Analytical electron microscopy (AEM) was used to examine SCC cracks in Alloys 600 and X-750 to investigate the role of grain boundary precipitates, dislocations and oxides in primary water SCC (PWSCC). Analysis of oxides by AEM and ESCA/Auger indicates that the crack tip oxides are different than the oxides formed on the outer surfaces. Comparison of heats with good and poor SCC resistance has identified metallurgical features that affect cracking. These AEM results show that the mechanism of PWSCC in nickel-base alloys does not involve void formation or blunting of the crack tip near intergranular carbides. The role of grain boundary composition, the interaction of cracks with carbides and other intergranular precipitates, and observations from AEM examinations ahead of the crack tip are discussed in relation to the mechanism of SCC.

  9. Survey of physical property data for several alloys. [Nitronic 33; copper C10400; copper C17510

    SciTech Connect

    Pawel, R.E.; Williams, R.K.

    1985-08-01

    This report summarizes an examination of physical property data available in the literature for six alloys of potential interest to the Toroidal Fusion Core Experiment in the Fusion Energy Program. The properties of thermal expansion, density, specific heat, electrical resistivity, and thermal conductivity were compiled for six alloys: Nitronic 33, a low-nickel, high manganese stainless steel; nickel-base Inconnel Alloys 625, 718, and X-750; and copper alloys C10400 and C17510. The temperatures of interest were 4-500 K for the Nitronic 33 and the Inconels, and 250-400 K for the copper alloys. Where data were lacking, estimates were made based on theory or comparisons with similar materials.

  10. Thermoelastic Stress Analysis: The Mean Stress Effect in Metallic Alloys

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    1999-01-01

    The primary objective of this study involved the utilization of the thermoelastic stress analysis (TSA) method to demonstrate the mean stress dependence of the thermoelastic constant. Titanium and nickel base alloys, commonly employed in aerospace gas turbines, were the materials of interest. The repeatability of the results was studied through a statistical analysis of the data. Although the mean stress dependence was well established, the ability to confidently quantify it was diminished by the experimental variations. If calibration of the thermoelastic response to mean stress can be successfully implemented, it is feasible to use the relationship to determine a structure's residual stress state.

  11. Welding of titanium and nickel alloy by combination of explosive welding and spark plasma sintering technologies

    SciTech Connect

    Malyutina, Yu. N. Bataev, A. A. Shevtsova, L. I.; Mali, V. I. Anisimov, A. G.

    2015-10-27

    A possibility of titanium and nickel-based alloys composite materials formation using combination of explosive welding and spark plasma sintering technologies was demonstrated in the current research. An employment of interlayer consisting of copper and tantalum thin plates makes possible to eliminate a contact between metallurgical incompatible titanium and nickel that are susceptible to intermetallic compounds formation during their interaction. By the following spark plasma sintering process the bonding has been received between titanium and titanium alloy VT20 through the thin powder layer of pure titanium that is distinguished by low defectiveness and fine dispersive structure.

  12. Localized corrosion behavior of nickel alloys in model SO/sub 2/ scrubber environments

    SciTech Connect

    Hibner, E.L.; Ross, R.W. Jr.

    1987-01-01

    Nickel base alloys and austenitic stainless steels have been evaluated in a working model limestone flue gas desulfurization system previously described in the literature. Corrosion in the absorber and outlet duct zones was characterized in terms of environmental effects on localized corrosion propagation of each alloy. Increasingly environmental chloride and/or fluoride content produced a more severe environment, even in the presence of flyash. Crevice pits which initiated in 30 days, failed to propagate with additional exposure to 90 days; however, the degree of initiation increased.

  13. Monel Machining

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Castle Industries, Inc. is a small machine shop manufacturing replacement plumbing repair parts, such as faucet, tub and ballcock seats. Therese Castley, president of Castle decided to introduce Monel because it offered a chance to improve competitiveness and expand the product line. Before expanding, Castley sought NERAC assistance on Monel technology. NERAC (New England Research Application Center) provided an information package which proved very helpful. The NASA database was included in NERAC's search and yielded a wealth of information on machining Monel.

  14. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    SciTech Connect

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  15. On the thermodynamic efficiency of a nickel-based multiferroic thermomagnetic generator: From bulk to atomic scale

    SciTech Connect

    Sandoval, Samuel M. Sepulveda, Abdon E. Keller, Scott M.

    2015-04-28

    A model is developed to correlate the effects of size on the thermodynamic efficiency for a nickel-based multiferroic thermomagnetic generator device. Three existing models are combined in order to estimate this correlation, they are (1) thermodynamic efficiency relations, (2) a model of ferromagnetic transition behavior, and (3) the bond-order length strength correlation. At the smallest size considered, a monolayer of nickel atoms shows a reduction in Curie temperature from its bulk value of T{sub c,Bulk}=630 K to T{sub c,ML}=240 K. This difference is analytically shown to affect the thermodynamic efficiency values when compared to bulk. Various nickel nanofilms are considered as a working body, such that the combined model predicts relative efficiency values that are comparable to the bulk scale, but operating closer to room-temperature when compared to bulk form. This result is unexpected since the absolute efficiency is shown to increase as a function of decreasing size, this discrepancy is explained as a consequence of Curie point suppression. The combined model is also applied to a hypothetical composite made of separated layers of nickel with distinct thicknesses. This composite material is predicted to spread the ferromagnetic transition across a much larger temperature range as compared to bulk nickel, such that this material may be better suited for different applications; for example, as a sensor or thermal switch. Moreover, this combined model is also shown to give a lower-bound estimate for thermodynamic efficiency, since the actual performance depends on material characterizations that have yet to be determined.

  16. Novel Approach to Tar Removal from Biomass Producer Gas by Means of a Nickel-Based Catalyst

    NASA Astrophysics Data System (ADS)

    Vosecký, M.; Kameníková, P.; Pohořelý, M.; Skoblja, S.; Punčochář, M.

    The nickel-based catalyst was exposed to the raw gas from gasification of woody biomass with air in a fluidized-bed. After dust removal on a barrier filter and sulphur compounds capture, namely H2S, on an active sorbent made of CuO and ZnO, higher hydrocarbons as tar components were decomposed/reformed on aNi-catalyst. Steam reforming reactions led to decomposition of tar and all hydrocarbons higher than CH4 into mainly H2 and CO which further underwent reaction with steam via the water gas shift reaction to CO2. The reforming reactions caused approximately 10-20 % decrease in the lower heating values of the producer gas from the inlet values 5.0-6.5 MJ m-3. The gas yield increased fromvalues 2.4-2.6 m3 kg-1 to values 2.8-3.0 m3 kg-1 on dry biomass basis. The chosen tar removal concept based on combination of dolomite in the fluidized-bed with the secondary catalytic reactor was proved by 20 hours long experiment in which the finaltar content below 30 mg m-3 was attained corresponding to more than 97 % tar conversion. H2S content in producer gas was expected to be below 100 vol. ppm, bulk of which was captured on the sorbent. Only limited deactivation of thecatalyst by sulphur compounds was found in the front of the catalyst bed where sulphur content was determined as high as 173 wt. ppm compared to 22 wt. ppm in the fresh sample.

  17. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    NASA Astrophysics Data System (ADS)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  18. Disk Alloy Development

    NASA Technical Reports Server (NTRS)

    Gabb, Tim; Gayda, John; Telesman, Jack

    2001-01-01

    The advanced powder metallurgy disk alloy ME3 was designed using statistical screening and optimization of composition and processing variables in the NASA HSR/EPM disk program to have extended durability at 1150 to 1250 "Fin large disks. Scaled-up disks of this alloy were produced at the conclusion of this program to demonstrate these properties in realistic disk shapes. The objective of the UEET disk program was to assess the mechanical properties of these ME3 disks as functions of temperature, in order to estimate the maximum temperature capabilities of this advanced alloy. Scaled-up disks processed in the HSR/EPM Compressor / Turbine Disk program were sectioned, machined into specimens, and tested in tensile, creep, fatigue, and fatigue crack growth tests by NASA Glenn Research Center, in cooperation with General Electric Engine Company and Pratt & Whitney Aircraft Engines. Additional sub-scale disks and blanks were processed and tested to explore the effects of several processing variations on mechanical properties. Scaled-up disks of an advanced regional disk alloy, Alloy 10, were used to evaluate dual microstructure heat treatments. This allowed demonstration of an improved balance of properties in disks with higher strength and fatigue resistance in the bores and higher creep and dwell fatigue crack growth resistance in the rims. Results indicate the baseline ME3 alloy and process has 1300 to 1350 O F temperature capabilities, dependent on detailed disk and engine design property requirements. Chemistry and process enhancements show promise for further increasing temperature capabilities.

  19. Alloy 10 Al -- A new sulfidation and carburization resistant alloy for fuel combustion and conversion

    SciTech Connect

    Kloewer, J.; Sauthoff, G.; Letzig, D.

    1996-08-01

    A new nickel-base high-temperature alloy, alloy 10 Al, which contains 30% iron, 10% aluminum and 8% chromium, has been developed. Alloy 10 Al has a lamellar eutectic two-phase microstructure with one phase being the intermetallic phase NiAl and the second phase being Ni(Fe,Cr) solid solution. The high-temperature corrosion behavior of the new alloy has been determined in both air and hot process gases containing methane, sulfur dioxide and hydrogen sulfide, respectively. It was found that the corrosion resistance against carburization, sulfidation and oxidation was excellent due to the formation of a dense protective alumina scale. The adherence of the alumina scale was increased by an addition of 0.1% hafnium. The concentration of chromium was found to have a remarkable impact on oxidation and high temperature corrosion resistance. Alloys without chromium showed an increased corrosion rate in both air and sulfur-containing gas atmospheres due to the initial formation of nickel oxides. In sulfidizing gases at least 4% chromium are required to stabilize the formation of alumina and to prevent the formation of nickel/sulfur compounds.

  20. Workout Machine

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Orbotron is a tri-axle exercise machine patterned after a NASA training simulator for astronaut orientation in the microgravity of space. It has three orbiting rings corresponding to roll, pitch and yaw. The user is in the middle of the inner ring with the stomach remaining in the center of all axes, eliminating dizziness. Human power starts the rings spinning, unlike the NASA air-powered system. Marketed by Fantasy Factory (formerly Orbotron, Inc.), the machine can improve aerobic capacity, strength and endurance in five to seven minute workouts.

  1. Alloy materials

    DOEpatents

    Hans Thieme, Cornelis Leo; Thompson, Elliott D.; Fritzemeier, Leslie G.; Cameron, Robert D.; Siegal, Edward J.

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  2. Alloy 45TM in waste incineration applications

    SciTech Connect

    Agarwal, D.C.; Kloewer, J.; Grossmann, G.K.

    1997-08-01

    Industrial and municipal wastes produced in the western society are being increasingly destroyed and managed by controlled high temperature incineration. Depending on the chemical make-up of the waste stream and operational parameters of the incinerator, a variety of high temperature corrosive environments are generated. Typically most of the modern incineration systems consist of a high temperature incinerator chamber, a heat recovery system, a quench section to further reduce the temperature of the flue gas stream and a host of air pollution control equipment to scrub acidic gases and control the particulate emissions. This paper describes the development of a new nickel-base high chromium-high silicon alloy, which has shown good resistance to high temperature corrosion in incinerator environments. Some field test data are also presented.

  3. Wacky Machines

    ERIC Educational Resources Information Center

    Fendrich, Jean

    2002-01-01

    Collectors everywhere know that local antique shops and flea markets are treasure troves just waiting to be plundered. Science teachers might take a hint from these hobbyists, for the next community yard sale might be a repository of old, quirky items that are just the things to get students thinking about simple machines. By introducing some…

  4. High temperature reactivity of two chromium-containing alloys in impure helium

    NASA Astrophysics Data System (ADS)

    Cabet, C.; Chapovaloff, J.; Rouillard, F.; Girardin, G.; Kaczorowski, D.; Wolski, K.; Pijolat, M.

    2008-04-01

    Chromium-rich nickel base alloys 617 and 230 are promising candidate materials for very high temperature gas-cooled reactors (VHTR) but they must resist corrosion in the impure primary cooling helium over very long times. The impurities of the hot helium can promote the development of chromium-rich surface oxides that appear to protect the alloys against intensive corrosion processes. However above a critical temperature (typically in the range 1173-1273 K), chromium oxide is reduced by carbon from the alloy and the surface layer is not stable anymore. Depending on the gas composition, the unprotected material rapidly either gains or loses carbon with a dramatic impact on its mechanical properties. The deleterious reaction of chromia and carbon thus fixes an ultimate reactor operating temperature. Critical temperature measurements are presented for alloys 617 and 230 and the influence of carbon monoxide partial pressure in helium is discussed.

  5. Combating high temperature environmental degradation by existing and new nickel and iron base alloys

    SciTech Connect

    Agarwal, D.C.; Brill, U.

    1994-12-31

    The need for high temperature materials is encountered in a wide variety of modem industries such as in metallurgical, chemical, petrochemical, glass manufacture, heat treatment, waste incinerators, heat recovery, advanced energy conversion systems and others. Depending on the condition of chemical make-up and temperatures, a variety of aggressive corrosive environments are produced, which could be either sulfidizing, carburizing, halogenizing, nitriding, reducing and oxidizing in nature or a combination thereof All high temperature alloys have certain limitations and the optimum choice is often a compromise between the mechanical property requirement constraints at maximum temperature of operation and environmental degradation constraints imposed due to the corrosive species present. This paper addresses the various deterioration mechanisms in metallic alloys system due to the above modes of attack and the role of various alloying elements in minimizing the environmental degradation. Some laboratory and field data on two new nickel base alloys are also presented.

  6. Job Grading Standard for Machine Tool Operator, WG-3431.

    ERIC Educational Resources Information Center

    Civil Service Commission, Washington, DC. Bureau of Policies and Standards.

    The standard covers nonsupervisory work involved in the set up, adjustment, and operation of conventional machine tools to perform machining operations in the manufacture and repair of castings, forgings, or parts from raw stock made of various metals, metal alloys, and other materials. A general description of the job at both the WG-8 and WG-9…

  7. Effect of volume fraction and size of fine-gamma prime particles on raising the creep strength of a DS nickel-base superalloy

    NASA Technical Reports Server (NTRS)

    Lin, D. L.; Yao, D. L.; Lin, X. J.; Sun, C. Q.

    1986-01-01

    The creep behavior of a directionally solidifified nickel-base superalloy, DKS3, has been investigated as a function of the volume fraction and size of the gamma-prime phase at 760 and 950 C. The dislocation structure and morphology of gamma-prime was examined by transmission electron microscopy at the primary, secondary and tertiary creep stages at 73.8 kgf/sq mm. Experimental results are described in terms of a high temperature creep model in the range of temperatures and applied stresses where shearing of the gamma-prime phase does not control the straining process.

  8. Cladding Alloys for Fluoride Salt Compatibility Final Report

    SciTech Connect

    Muralidharan, Govindarajan; Wilson, Dane F; Santella, Michael L; Holcomb, David Eugene

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  9. Effects of silicon additions on oxidation and mechanical behavior of the nickel-base superalloy B-1900

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Lowell, C. E.

    1975-01-01

    Test specimens with nominal additions of Si were tested in oxidation, thermal fatigue, sulfidation, tension, and stress rupture, and were also extensively studied metallographically. Alloy B-1900 modified with 0.6- or 1.2-wt% Si exhibited oxidation resistance equivalent to that of aluminide-coated B-1900 during cyclic, high-gas-velocity oxidation tests. Resistances to thermal fatigue and sulfidation were improved by the Si additions, but were not superior to aluminide-coated B-1900. Stress-rupture tests at 1000 C of specimens given the standard heat treatment to simulate an aluminide coating cycle showed Si to be detrimental. However, application of another heat treatment increased the rupture life of the alloy with 0.6-wt% Si to that of the unmodified B-1900 given the standard heat treatment.

  10. Investigation of the Formation of Topologically Close Packed Phase Instabilities in Nickel-Based Superalloy Rene N6

    NASA Technical Reports Server (NTRS)

    Ritzert, Frank; Keller, Dennis; Vasudevan, Vijay

    1999-01-01

    Topologically close packed (TCP) phase instability in third generation Ni-base superalloys is understood to hinder component performance when used in high-temperature jet engine applications. The detrimental effects on high temperature performance from these brittle phases includes weakening of the Ni-rich matrix through the depletion of potent solid solution strengthening elements. Thirty-four compositional variations of polycrystalline Rene N6 were defined from a design-of-experiments approach and then cast, homogenized, and finally aged to promote TCP formation. Our prior work reported on the results of the multiple retression modeling of these alloys in order to predict the volume fraction of TCP. This paper will present further regression modeling results on these alloys in order to predict the occurrence of TCP in third generation Ni-base superalloy microstructures. Kinetic results are also discussed.

  11. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    SciTech Connect

    Shen, Chen

    2015-01-01

    We report here a constitutive model for predicting long-term creep strain evolution in’ strengthened Ni-base superalloys. Dislocation climb-bypassing’, typical in intermediate’ volume fraction (~20%) alloys, is considered as the primary deformation mechanism. Dislocation shearing’ to anti-phase boundary (APB) faults and diffusional creep are also considered for high-stress and high-temperature low-stress conditions, respectively. Additional damage mechanism is taken into account for rapid increase in tertiary creep strain. The model has been applied to Alloy 282, and calibrated in a temperature range of 1375-1450°F, and stress range of 15-45ksi. The model parameters and a MATLAB code are provided. This report is prepared by Monica Soare and Chen Shen at GE Global Research. Technical discussions with Dr. Vito Cedro are greatly appreciated. This work was supported by DOE program DE-FE0005859

  12. Machine Learning

    NASA Astrophysics Data System (ADS)

    Hoffmann, Achim; Mahidadia, Ashesh

    The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for

  13. Microstructural Evaluations of Baseline HSR/EPM Disk Alloys

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Garg, Anita; Ellis, David L.

    2004-01-01

    Six alloys representing two classes of powder metallurgy nickel-based superalloys were examined by transmission electron microscopy (TEM) and phase extraction. Alloys KM4, CH98, IN-100 and 456 are based on a Ni-18Co-12Cr composition while alloys Rene' 88 DT and SR 3 have lower Al and Co and higher Cr contents. The lambda size distributions were determined from quantitative image analysis of the TEM images. The volume fraction of lambda and carbides and the composition of the phases were determined by a combination of phase extraction and TEM. The results showed many similarities in lambda size distributions, grain boundary serrations, and grain boundary carbide frequencies between alloys KM4, CH98, 456, Rene' 88 DT and SR 3 when heat treated to give an approximate grain size of ASTM 6. The density of grain boundary carbides in KM4 was shown to substantially increase as the grain size increased. IN-100 and 456 subjected to a serration cooling heat treatment had much more complex lambda size distributions with very large intergranular and intragranular secondary lambda as well as finer than average cooling and aging lambda. The grain boundary carbides in IN-100 were similar to the other alloys, but 456 given the serration cooling heat treatment had a more variable density of grain boundary carbides. Examination of the phases extracted from the matrix showed that there were significant differences in the phase chemistries and elemental partitioning ratios between the various alloys.

  14. Use of ferrofluids in machining of metals

    NASA Astrophysics Data System (ADS)

    Podgorkov, V. V.

    1985-03-01

    Ferrofluids controlled by an external magnetic field are suitable as lubricants for moving metal machining parts. Empirical relations of the form M sub c = kDt sub bs sup av sup c were established for the unit cutting torque M sub c as function of the drill diameter, the depth of hole t, the feed rate s, and the cutting rate v when holes in Al3V aluminum alloy, TsAM10-5 zinc alloy, VT1 titanium alloy, or 12Cr18Ni10Ti stainless are cut with a drill of R6M5 high-speed steel using a fixture made of nonmagnetic stainless and a ferrofluid based on MVP mineral tool oil as lubricant. Values of the coefficient and the exponents were determined by the Student significance test and Fisher adequacy test. It is found that ferrofluid as lubricant is more effective in machining of nonmagnetic materials.

  15. Localized corrosion resistance of corrosion-resistant Ni based alloys in hot concentrated seawater

    SciTech Connect

    Sugahara, Katsuo; Takizawa, Yoshio

    1998-12-31

    Localized corrosion resistance of stainless steel (Type 316L), a titanium-based alloy (Ti-0.15Pd) and corrosion-resistant nickel-based alloys (a new alloy MAT-21 (Alloy T) and Alloy C-276) was evaluated in four simulated seawater solutions containing 1.8 to 22.0 wt% of chloride ions concentrated by evaporation. Stress corrosion cracking was observed on the 316L stainless steel but not on Alloy T and Alloy C-276 in the solutions. Pitting attack occurred on the surface of the 316L stainless steel base metal in all the solutions. Alloy C-276 suffered pitting attack on the surface including the welded section only in the solutions containing 18.9 and 22.0 wt% of chloride ions, respectively. No pitting attack occurred over any part of the surface including the welded section of Alloy T in any of the solutions. No crevice corrosion was observed in an immersion test of Alloy T and the Ti-0.15 5Pd alloy using test pieces with crevices although crevice corrosion was seen the creviced test pieces of Alloy C-276 and the 316L stainless steel. It was found that both Alloy T and the Ti-0.15Pd alloy, which exhibit high repassivation potentials for crevice corrosion (E{sub r,CREV})corresponding to crevice corrosion potentials, have excellent crevice corrosion resistance, while these alloys which exhibit corrosion potentials greater than E{sub r,CREV}in a solution with a high chloride ion concentration and a high dissolved oxygen concentration in open air may be corroding in the crevices.

  16. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  17. Fullerene Machines

    NASA Technical Reports Server (NTRS)

    Globus, Al; Saini, Subhash

    1998-01-01

    Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically accessible and of great interest. We have computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Preliminary results suggest that these gears can be cooled by a helium atmosphere and a laser motor can power fullerene gears if a positive and negative charge have been added to form a dipole. In addition, we have unproven concepts based on experimental and computational evidence for support structures, computer control, a system architecture, a variety of components, and manufacture. Combining fullerene machines with the remarkable mechanical properties of carbon nanotubes, there is some reason to believe that a focused effort to develop fullerene nanotechnology could yield materials with tremendous properties.

  18. A Hydrogen-Deuterium Exchange Study on Nickel-based Binary-Ternary Amorphous and Crystalline Membranes

    NASA Astrophysics Data System (ADS)

    Adibhatla, Anasuya

    Hydrogen is a major role player in current global sustainable energy scenario. Research around the world is carried out to harness hydrogen from all possible sources. One of these sources is water gas shift reaction after the coal gasification process. Sustainable infrastructure can be viable in countries like USA and Australia, making this process viable. Various methods are used to harness this hydrogen from the water gas. One of these methods is the use of inorganic membranes based on Pd, Ag, Ni, Zr and other transition metals. Pd addition to the membranes makes the membranes more expensive for commercial use. Various bulk properties like hydrogen permeation and absorption are studied on Pd and Pd-based alloys. Alternate alloys based on Ni, V, Ta etc are being studied to substitute the use of Pd making this technology more cost efficient. A current balance in research in this area is fund to exist by coating the non-precious metal membranes with Pd to improve the surface interaction with hydrogen. The nature of membranes used for hydrogen separation is important aspect for the overall performance. Crystalline materials provide better bulk properties, however, are not durable under high temperature and hydrogen pressure. In this research, non-Pd coated Ni-based amorphous membranes were made by melt spin technique, which have been studied for their surface properties. Gas phase H2-D2 exchange reaction has been carried out on the membrane surface. This provides a measure of catalytic activity of the above mentioned membranes. More studies included the crystallographic phase change determination, bulk hydrogen solubility measurements, surface conduction measurements and surface morphological studies. During this research, it has been observed that crystalline materials provide more surface activity for hydrogen than their amorphous counterparts. Ni64Zr36 alloy has been shown to exhibit similar kinetic rates as metallic Ni. Also, microkinetic analysis was performed

  19. Induction machine

    DOEpatents

    Owen, Whitney H.

    1980-01-01

    A polyphase rotary induction machine for use as a motor or generator utilizing a single rotor assembly having two series connected sets of rotor windings, a first stator winding disposed around the first rotor winding and means for controlling the current induced in one set of the rotor windings compared to the current induced in the other set of the rotor windings. The rotor windings may be wound rotor windings or squirrel cage windings.

  20. Corrosion Behavior of Candidate Alloys for Supercritical Water Reactors

    SciTech Connect

    Sridharan, K.; Zillmer, A.; Licht, J.R.; Allen, T.R.; Anderson, M.H.; Tan, L.

    2004-07-01

    The corrosion and stress corrosion cracking behavior of metallic cladding and other core internal structures is critical to the success of the Generation IV Supercritical Water-cooled Reactors (SCWR). The eventual materials selected will be chosen based on the combined corrosion, stress-corrosion, mechanical performance, and radiation stability properties. Among the materials being considered are austenitic stainless steels, ferritic/martensitic steels, and nickel-base alloys. This paper reports initial studies on the corrosion performance of the candidate alloys 316 austenitic stainless steel, Inconel 718, and Zircaloy-2, all exposed to supercritical water at 300-500 deg. C in a corrosion loop at the University of Wisconsin. Long-term corrosion performance of AISI 347, also a candidate austenitic steel, has also been examined by sectioning samples from a component that was exposed for a period of about 30 years in supercritical water at the Genoa 3 Supercritical Water fossil power plant located in Genoa, Wisconsin. (authors)