Science.gov

Sample records for nickelii copperii zincii

  1. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  2. 2,6-Bis(2,6-diethylphenyliminomethyl)pyridine coordination compounds with cobalt(II), nickel(II), copper(II), and zinc(II): synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity.

    PubMed

    Martinez-Bulit, Pablo; Garza-Ortíz, Ariadna; Mijangos, Edgar; Barrón-Sosa, Lidia; Sánchez-Bartéz, Francisco; Gracia-Mora, Isabel; Flores-Parra, Angelina; Contreras, Rosalinda; Reedijk, Jan; Barba-Behrens, Norah

    2015-01-01

    Coordination compounds with cobalt(II), nickel(II), copper(II) and zinc(II) and the ligand 2,6-bis(2,6-diethylphenyliminomethyl)pyridine (L) were synthesized and fully characterized by IR and UV-Vis-NIR spectroscopy, elemental analysis, magnetic susceptibility and X-ray diffraction for two representative cases. These novel compounds were designed to study their activity as anti-proliferative drugs against different human cancer cell lines. The tridentate ligand forms heptacoordinated compounds from nitrate metallic salts, where the nitrate acts in a chelating form to complete the seven coordination positions. In vitro cell growth inhibition was measured for Co(II), Cu(II) and Zn(II) complexes, as well as for the free ligand. Upon coordination, the IC50 value of the transition-metal compounds is improved compared to the free ligand. The copper(II) and zinc(II) compounds are the most promising candidates for further in vitro and in vivo studies. The activity against colon and prostate cell lines merits further research, in views of the limited therapeutic options for such cancer types.

  3. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide.

    PubMed

    Emam, Sanaa M; El-Saied, Fathy A; Abou El-Enein, Saeyda A; El-Shater, Heba A

    2009-03-01

    Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of furan-2-carbaldehyde 4-methoxy-N-anilinoacetohydrazone were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment and molar conductivity. Mononuclear complexes are obtained with 1:1 molar ratio except complexes 3 and 9 which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a neutral bidentate one and coordination occurs via the carbonyl oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the enolic oxygen atom, azomethine nitrogen atom and the oxygen atom of furan ring. Moreover, the ligand behaves as a neutral tridentate and coordination occurs via the carbonyl oxygen, azomethine nitrogen and furan oxygen atoms as well as a monobasic bidentate and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complex 10 possesses a square planar geometry. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes.

  4. Copper(II) and nickel(II) binding sites of peptide containing adjacent histidyl residues.

    PubMed

    Grenács, Ágnes; Sanna, Daniele; Sóvágó, Imre

    2015-10-01

    Copper(II) and nickel(II) complexes of the terminally protected nonapeptide Ac-SGAEGHHQK-NH2 modeling the metal binding sites of the (8-16) domain of amyloid-β have been studied by potentiometric, UV-vis, CD and ESR spectroscopic methods. The studies on the mutants containing only one of the histidyl residues (Ac-SGAEGAHQK-NH2, Ac-SGAEGHAQK-NH2) have also been performed. The formation of imidazole and amide coordinated mononuclear complexes is characteristic of all systems with a preference of nickel(II) binding to the His14 site, while the involvement of both histidines in metal binding is suggested in the corresponding copper(II) complexes. The formation of bis(ligand) and dinuclear complexes has also been observed in the copper(II)-Ac-SGAEGHHQK-NH2 system. The results provide further support for the copper(II) binding ability of the (8-16) domain of amyloid-β and support the previous assumptions that via the bis(ligand) complex formation copper(II) ions may promote the formation of the oligomers of amyloid-β.

  5. Polynuclear and mixed-ligand complexes of copper(II) and nickel(II) with (1-hydroxyethylidene)bisphosphonic acid

    SciTech Connect

    Amirov, R.R.; Saprykova, Z.A.

    1987-12-20

    The compositions and stabilities of heteronuclear and mixed-ligand copper(II) and nickel(II) (1-hydroxyethylidene)bisphosphonates were determined. Parameters of the compatibility of the ligands and central ions in the complexes were calculated. It was shown that the monoprotonated anion of (1-hydroxyethylidene)bisphosphonic acid is capable of terdentate coordination with the participation of the alcoholic hydroxy group. The acidities of the solutions were determined on a pH-673 meter. The spin-lattice relaxation time was measured on a pulse NMR spectrometer.

  6. Synthesis and crystal structure of thiosemicarbazide complexes of nickel(II) and copper(II)

    NASA Astrophysics Data System (ADS)

    Sadikov, G. G.; Antsyshkina, A. S.; Koksharova, T. V.; Sergienko, V. S.; Kurando, S. V.; Gritsenko, I. S.

    2012-07-01

    Thiosemicarbazide complexes of nickel(II) [Ni( TSC)2](H Sal)2 ( I) and copper(II) [Cu( TSC)2](H Sal)2 ( Ia) ( TSC is thiosemicarbazide and H Sal is a salycilate anion), as well as complexes [Ni( TSC)2](SO4) · 2H2O ( II) and [Ni( TSC)3]Cl2 · H2O ( III), are synthesized and characterized by IR spectroscopy and X-ray diffraction. Monoclinic crystals I and Ia are isostructural; space group P21/ n, Z = 2. Crystals II are monoclinic, space group P21/ m, Z = 2. Crystals III are orthorhombic, space group Pbca, Z = 8. In I and Ia, two planar salycilate anions sandwich a planar centrosymmetric [Ni( TSC)2]2+ cation to form a supermolecule. The cation and anions are additionally bound by hydrogen bonds. Other hydrogen bonds connect supermolecules into planar layers. In structure II, centrosymmetric [Ni( TSC)2]2+ cations are connected by π-stacking interactions into supramolecular ensembles of a specific type. The ensembles, water molecules, and (SO4)2- anions are bound in the crystal via hydrogen bonds. In the [Ni( TSC)3]2+ cation of structure III, ligands coordinate the Ni atom by the bidentate chelate pattern with the formation of five-membered metallocycles. These metallocycles have an envelope conformation unlike those in I and II, which are planar. In III (unlike in analogous complexes), a meridional isomer of the coordination octahedron of the Ni atom is formed. Together with Cl1- and Cl2- anions, cations form supermolecules, which are packed into planar layers with a square-cellular structure. The layers are linked by hydrogen bonds formed by crystallization water molecules that are located between the layers.

  7. Synthesis and spectroscopic studies of copper(II) and nickel(II) complexes containing hydrazonic ligands and heterocyclic coligand

    NASA Astrophysics Data System (ADS)

    Gup, Ramazan; Kırkan, Bülent

    2005-12-01

    Two types of copper(II) and nickel(II) complexes derived from benzophenone anthranoylhydrazone (L 1), 2-acetonaftanone anthranoylhydrazone (L 2), 4-phenylacetonaftonone anthranoylhydrazone (L 3), benzophenone salicyoylhydrazone (L 4), 2-acetonaftanon salicyoylhydrazone (L 5), 4-phenylacetonaftanon salicyoylhydrazone (L 6) and bidentate heterocyclic base [1,10-phenanthroline (phen)] with general stoichiometry [ML 2] and [ML(phen)]Cl have been synthesized and characterized by elemental analysis, infrared spectra, UV-vis electronic absorption spectra and magnetic susceptibility measurements. The effect of varying pH and solvent on the absorption behavior of both ligands and complexes have been investigated. According to the IR spectra, the ligands act as monobasic bidentate and coordination takes place in the enol tautomeric form.

  8. Spectral studies on cobalt(II), nickel(II) and copper(II) complexes of naphthaldehyde substituted aroylhydrazones.

    PubMed

    Singh, Pramod Kumar; Kumar, Deo Nandan

    2006-07-01

    A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes. PMID:16529995

  9. Spectral studies on cobalt(II), nickel(II) and copper(II) complexes of naphthaldehyde substituted aroylhydrazones

    NASA Astrophysics Data System (ADS)

    Singh, Pramod Kumar; Kumar, Deo Nandan

    2006-07-01

    A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H 2L 1) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H 2L 2) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, 1H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.

  10. Solvent effects on the stability of nifuroxazide complexes with cobalt(II), nickel(II) and copper(II) in alcohols.

    PubMed

    Khan, Mustayeen A; Ali, S Kauser; Bouet, Gilles M

    2002-05-21

    A spectrophotometric study of the complexation of nifuroxazide with cobalt(II), nickel(II) and copper(II) was carried out in different alcohols. The formation of a complex in each case is reported and their stability constants have been calculated. For a given solvent, the stability of the complexes increases from cobalt to copper. In the case of copper(II), the stability varies as an inverse function of the dielectric constant of the solvent. A possible structure of the complex is proposed. PMID:12009257

  11. Synthesis, structural characterization and antiproliferative and toxic bio-activities of copper(II) and nickel(II) citronellal N4-ethylmorpholine thiosemicarbazonates.

    PubMed

    Belicchi-Ferrari, Marisa; Bisceglie, Franco; Buschini, Annamaria; Franzoni, Susanna; Pelosi, Giorgio; Pinelli, Silvana; Tarasconi, Pieralberto; Tavone, Matteo

    2010-02-01

    This paper reports the syntheses and characterization of ethylmorpholine substituted citronellal thiosemicarbazone copper(II) and nickel(II) metal complexes. The compounds were characterized through elemental analyses and spectroscopic (IR, UV-Vis, NMR, MS) methods. The X-ray analysis of the two complexes shows that both Ni and Cu derivatives present a square planar coordination, where the coordinating homologous donor atoms bind in trans to each other. The compounds were tested for their biological activity after determination of their octanol-saline partition coefficients, followed by their radical scavenging properties. Eventually the complexes were tested for their proliferation inhibition on human histiocytic lymphoma U937 cell line. The GI(50) values resulted to be 2.3microM for the copper derivative and 12.3microM for the nickel derivative.

  12. Antibacterial, DNA interaction and cytotoxic activities of pendant-armed polyamine macrocyclic dinuclear nickel(II) and copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Arthi, P.; Haleel, A.; Srinivasan, P.; Prabhu, D.; Arulvasu, C.; Kalilur Rahiman, A.

    2014-08-01

    A series of dinuclear nickel(II) and copper(II) complexes (1-6) of hexaaza macrocycles of 2,6-diformyl-4-methylphenol with three different benzoyl pendant-arms, 2,2‧-benzoyliminodi(ethylamine) trihydrochloride (L), 2,2‧-4-nitrobenzoyliminodi(ethylamine) trihydrochloride (L‧) and 2,2‧-3,5-dinitrobenzoyliminodi(ethylamine) trihydrochloride (L″) have been synthesized and characterized by spectral methods. The electrochemical studies of these complexes depict two irreversible one electron reduction processes around E1pc = -0.62 to -0.76 V and E2pc = -1.21 to -1.31, and nickel(II) complexes (1-3) exhibit two irreversible one electron oxidation processes around E1pa = 1.08 to 1.14 V and E2pa = 1.71 to 1.74 V. The room temperature magnetic moment values (μeff, 1.52-1.54 BM) indicate the presence of an antiferromagnetic interaction in the binuclear copper(II) complexes (4-6) which is also observed from the broad ESR spectra with a g value of 2.14-2.15. The synthesized complexes (1-6) were screened for their antibacterial activity. The results of DNA interaction studies indicate that the dinuclear complexes can bind to calf thymus DNA by intercalative mode and display efficient cleavage of plasmid DNA. Further, the cytotoxic activity of complexes 2, 5 and 6 on human liver adenocarcinoma (HepG2) cell line has been examined. Nuclear-chromatin cleavage has also been observed with PI staining and comet assays.

  13. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition.

  14. Excessive Copper(II) and Zinc(II) Levels in Drinkable Water Sources in Areas Along the Lake Victoria Shorelines in Siaya County, Kenya.

    PubMed

    Wambu, Enos W; Omwoyo, Wesley N; Akenga, Teresa

    2016-01-01

    Copper(II) and zinc(II) levels in drinkable water sources in the alluvium areas of the Lake Victoria Basin in Siaya County of Kenya were evaluated to assess the risk posed to resident communities by hydrogeological accumulation of toxic residues in the sedimentary regions of the lake basin. The levels of the metals in water were analyzed by atomic absorption spectroscopy. Metal concentrations ranged from 0.11 to 4.29 mg/L for Cu(II) and 0.03 to 1.62 mg/L for Zn(II), which were both higher than those normally recorded in natural waters. The Cu(II) levels also exceeded WHO guidelines for drinking water in 27% of the samples. The highest prevalence of excessive Cu(II) was found among dams and open pans (38%), piped water (33%) and spring water (25%). It was estimated that 18.2% of the resident communities in the current study area are exposed to potentially toxic levels of Cu(II) through their drinking water. PMID:26615531

  15. The water soluble peripherally tetra-substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines as new potential anticancer agents.

    PubMed

    Barut, Burak; Sofuoğlu, Ayşenur; Biyiklioglu, Zekeriya; Özel, Arzu

    2016-09-28

    In this study, [2-(2-morpholin-4-ylethoxy)ethoxy] group substituted zinc(ii), manganese(iii) and copper(ii) phthalocyanines 2-4 and their water soluble derivatives 2a, 3a and 4a were synthesized and the interactions of compounds 2a, 3a and 4a with CT-DNA and supercoiled pBR322 plasmid DNA were investigated. The results of binding experiments showed that these compounds were able to interact with CT-DNA via intercalative mode with a strong binding affinity in the order 3a > 2a > 4a. DNA-photocleavage activities of compounds 2a, 3a and 4a were determined. These compounds cleaved supercoiled pBR322 plasmid DNA efficiently under irradiation at 650 nm for 2a and 4a, and at 750 nm for 3a. These compounds displayed remarkable inhibitory activities against topoisomerase I enzyme in a dose-dependent manner. All of these results suggest that these phthalocyanines might be suitable anticancer agents due to their strong binding affinities, significant cleavage activities and effective topoisomerase I inhibition. PMID:27534374

  16. The role of copper(II) and zinc(II) in the degradation of human and murine IAPP by insulin-degrading enzyme.

    PubMed

    Bellia, Francesco; Grasso, Giuseppe

    2014-04-01

    Amylin or islet amyloid polypeptide (IAPP) is a 37-residue peptide hormone secreted from the pancreatic islets into the blood circulation and is cleared by peptidases in the kidney. IAPP aggregates are strongly associated with β-cell degeneration in type 2 diabetes, as demonstrated by the fact that more than 95% of patients exhibit IAPP amyloid upon autopsy. Recently, it has been reported that metal ions such as copper(II) and zinc(II) are implicated in the aggregation of IAPP as well as able to modulate the proteolytic activity of IAPP degrading enzymes. For this reason, in this work, the role of the latter metal ions in the degradation of IAPP by insulin-degrading enzyme (IDE) has been investigated by a chromatographic and mass spectrometric combined method. The latter experimental approach allowed not only to assess the overall metal ion inhibition of the human and murine IAPP degradation by IDE but also to have information on copper- and zinc-induced changes in IAPP aggregation. In addition, IDE cleavage site preferences in the presence of metal ions are rationalized as metal ion-induced changes in substrate accessibility.

  17. Excessive Copper(II) and Zinc(II) Levels in Drinkable Water Sources in Areas Along the Lake Victoria Shorelines in Siaya County, Kenya.

    PubMed

    Wambu, Enos W; Omwoyo, Wesley N; Akenga, Teresa

    2016-01-01

    Copper(II) and zinc(II) levels in drinkable water sources in the alluvium areas of the Lake Victoria Basin in Siaya County of Kenya were evaluated to assess the risk posed to resident communities by hydrogeological accumulation of toxic residues in the sedimentary regions of the lake basin. The levels of the metals in water were analyzed by atomic absorption spectroscopy. Metal concentrations ranged from 0.11 to 4.29 mg/L for Cu(II) and 0.03 to 1.62 mg/L for Zn(II), which were both higher than those normally recorded in natural waters. The Cu(II) levels also exceeded WHO guidelines for drinking water in 27% of the samples. The highest prevalence of excessive Cu(II) was found among dams and open pans (38%), piped water (33%) and spring water (25%). It was estimated that 18.2% of the resident communities in the current study area are exposed to potentially toxic levels of Cu(II) through their drinking water.

  18. Copper(II) and Zinc(II) Complexes of Conformationally Constrained Polyazamacrocycles as Efficient Catalysts for RNA Model Substrate Cleavage in Aqueous Solution at Physiological pH.

    PubMed

    Bím, Daniel; Svobodová, Eva; Eigner, Václav; Rulíšek, Lubomír; Hodačová, Jana

    2016-07-18

    As part of a quest for efficient artificial catalysts of RNA phosphodiester bond cleavage, conformationally constrained mono- and bis-polyazamacrocycles in which tri- or tetraazaalkane chains link the ortho positions of a benzene ring were synthesized. The catalytic activities of mono- and dinuclear copper(II) and zinc(II) complexes of these polyazamacrocycles towards cleavage of the P-O bond in 2-hydroxypropyl-4-nitrophenylphosphate (HPNP) in aqueous solution at pH 7 have been determined. Only the complexes of the ligands incorporating three nitrogen atoms in a macrocycle proved to be capable of efficiently catalyzing HPNP transesterification. The dinuclear complexes were found to be approximately twice as efficient as their mononuclear counterparts, and exhibited Michaelis-Menten saturation kinetics with calculated rate constants of kcat ≈10(-4)  s(-1) . By means of quantum chemical calculations (DFT/COSMO-RS), several plausible reaction coordinates were described. By correlating the calculated barriers with the experimental kinetic data, two possible reaction scenarios were revealed, with activation free energies of 20-25 kcal mol(-1) . PMID:27310481

  19. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  20. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    NASA Astrophysics Data System (ADS)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  1. Novel zinc(II) and copper(II) complexes of a Mannich base derived from lawsone: Synthesis, single crystal X-ray analysis, ab initio density functional theory calculations and vibrational analysis.

    PubMed

    Neves, Amanda P; Vargas, Maria D; Téllez Soto, Claudio A; Ramos, Joanna M; Visentin, Lorenzo do C; Pinheiro, Carlos B; Mangrich, Antônio S; de Rezende, Edivaltrys I P

    2012-08-01

    Zinc(II) and copper(II) complexes of a tridentate Mannich base L1 derived from 2-hydroxy-1,4-naphthoquinone, pyridinecarboxyaldehyde and 2-aminomethylpyridine, [ZnL1Cl(2)]·H(2)O 1 and [CuL1Cl(2)]·2H(2)O 2, have been synthesized and fully characterized. The structure of complex 1 has been elucidated by a single crystal X-ray diffraction study: the zinc atom is pentacoordinate and the coordination geometry is a distorted square base pyramid, with a geometric structural parameter τ equal to 0.149. Vibrational spectroscopy and ab initio DFT calculations of both compounds have confirmed that the two complexes exhibit similar structures. Full assignment of the vibrational spectra was also supported by careful analysis of the distorted geometries generated by the normal modes. PMID:22513170

  2. NMR investigation of dynamic processes in complexes of nickel(II) and zinc(II) with iminodiacetate, n-methyliminodiacetate and n-ethyliminodiacetate

    SciTech Connect

    Wagner, M.R.

    1985-11-01

    Analysis of oxygen-17 bulk water relaxation rates with an aqueous solution of 1:1 Ni(II):ida reveals that two rate-limiting processes are involved with solvent exchange. Analysis of carbon-13 longitudinal relaxation rates of the bis-ligand complexes with zinc(II) are used to determine molecular tumbling rates and methyl rotation rates. The carbon-13 transverse relaxation rates for the carbons in the bis-ligand complex with Ni(II) are adequately fitted to the Solomon-Bloembergen equation. Three carboxylate carbon peaks are seen with the /sup 13/C spectrum of the 1:2 Ni(II):ida complex, which coalesce into a single peak above about 360 K. The mechanism and rate of ligand exchange are determined for the complexes Zn(II)L/sub 2//sup -2/ (L = mida, eida) in aqueous solution by total lineshape analysis of the proton spectrum at 500 MHz.

  3. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    PubMed

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay.

  4. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    PubMed

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay. PMID:23792913

  5. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: Synthesis, spectroscopic characterization, molecular modeling and fungicidal study

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3‧-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, 1H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl-, CH3COO-. The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  6. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: synthesis, spectroscopic characterization, molecular modeling and fungicidal study.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3'-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, (1)H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl(-), CH3COO(-). The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  7. Designed synthesis of copper(II) and nickel(II) complexes with a tridentate N2O donor Schiff base: Modulation of crystalline architectures through Csbnd H⋯π and anion⋯π interactions

    NASA Astrophysics Data System (ADS)

    Das, Mithun; Chattopadhyay, Shouvik

    2013-11-01

    Two copper(II) complexes, Cu(L1)Cl (1), Cu(L1)NCS (3) and two nickel(II) complexes Ni(L1)Cl (2), Ni(L1)NCS (4), where HL1 = 1-[(2-diethylamino-ethylimino)-methyl]-naphthalen-2-ol act as tridentate N2O donor ligand, have been prepared and characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. The geometry of the central metal ion in each of the four complexes is square planar. The existence of Csbnd H⋯π interactions in 2 gives rise to one dimensional chain structure. Complex 3 shows two Csbnd H⋯π interactions and one anion⋯π interactions which leads to a two dimensional layer structure. Each mononuclear unit of 4 has two Csbnd H⋯π interactions along b axis to form a double strand one dimensional array of the molecules in crystal packing.

  8. Synthesis, characterization and X-ray crystal structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes derived from an asymmetric bidentate Schiff-base ligand at ambient temperature

    NASA Astrophysics Data System (ADS)

    Khorshidifard, Mahsa; Amiri Rudbari, Hadi; Kazemi-Delikani, Zahra; Mirkhani, Valiollah; Azadbakht, Reza

    2015-02-01

    An asymmetric bidentate Schiff-base ligand (HL: 2-((allylimino)methyl)phenol) was prepared from reaction of salicylaldehyde and Allylamine. Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) complexes, VOL2, CoL3, CuL2 and ZnL2 were synthesized from the reaction of VO(acac)2, CoCl2·6H2O, CuCl2·2H2O and Zn(NO3)2·6H2O with the bidentate Schiff base ligand (HL: 2-allyliminomethyl-phenol) in methanol at ambient temperature. The ligand and its metal complexes were characterized by elemental analysis (CHN), FT-IR spectroscopy. In addition, 1H and 13C NMR techniques were employed for characterization of the ligand (HL) and diamagnetic complex ZnL2. The molecular structures of all complexes were determined by single crystal X-ray diffraction technique. In the ZnL2 and CuL2 complexes, the metal ion is coordinated by two nitrogen and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. In the Vanadium(IV) complex, VOL2, the vanadium center in this structure has a distorted tetragonal pyramidal N2O3 coordination sphere and for Cobalt(III) complex, CoL3, the CoIII ion is six coordinated by three bidentate Schiff base ligands in a distorted octahedral environment.

  9. Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-ol.

    PubMed

    Chetioui, Souheyla; Rouag, Djamil-Azzeddine; Djukic, Jean-Pierre; Bochet, Christian G; Touzani, Rachid; Bailly, Corinne; Crochet, Aurélien; Fromm, Katharina M

    2016-08-01

    In the copper(II) complex, bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naph-thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord-inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 37.4 (5)°, creating a weak intra-molecular Cu⋯Br inter-action [3.134 (2) Å], while in the other ligand, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 72.1 (6)°. In the isotypic nickel(II) and palladium(II) complexes, namely bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}nickel(II), [Ni(C16H8Br3N2O)2], (II), and bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}palladium(II), [Pd(C16H8Br3N2O)2], (III), respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tri-bromo-benzene rings are inclined to the naphthalene ring systems by 80.79 (18)° in (II) and by 80.8 (3)° in (III). In the crystal of (I), mol-ecules are linked by C-H⋯Br hydrogen bonds, forming chains along [010]. The chains are linked by C-H⋯π inter-actions, forming sheets parallel to (011). In the crystals of (II) and (III), mol-ecules are linked by C-H⋯π inter-actions, forming slabs parallel to (10-1). For the copper(II) complex (I), a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The formula mass and unit-cell characteristics of the disordered solvent mol-ecules were not taken into account during refinement.

  10. Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-ol.

    PubMed

    Chetioui, Souheyla; Rouag, Djamil-Azzeddine; Djukic, Jean-Pierre; Bochet, Christian G; Touzani, Rachid; Bailly, Corinne; Crochet, Aurélien; Fromm, Katharina M

    2016-08-01

    In the copper(II) complex, bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naph-thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord-inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 37.4 (5)°, creating a weak intra-molecular Cu⋯Br inter-action [3.134 (2) Å], while in the other ligand, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 72.1 (6)°. In the isotypic nickel(II) and palladium(II) complexes, namely bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}nickel(II), [Ni(C16H8Br3N2O)2], (II), and bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}palladium(II), [Pd(C16H8Br3N2O)2], (III), respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tri-bromo-benzene rings are inclined to the naphthalene ring systems by 80.79 (18)° in (II) and by 80.8 (3)° in (III). In the crystal of (I), mol-ecules are linked by C-H⋯Br hydrogen bonds, forming chains along [010]. The chains are linked by C-H⋯π inter-actions, forming sheets parallel to (011). In the crystals of (II) and (III), mol-ecules are linked by C-H⋯π inter-actions, forming slabs parallel to (10-1). For the copper(II) complex (I), a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The formula mass and unit-cell characteristics of the disordered solvent mol-ecules were not taken into account during refinement. PMID:27536389

  11. Structure-antiproliferative activity studies on l-proline- and homoproline-4-N-pyrrolidine-3-thiosemicarbazone hybrids and their nickel(ii), palladium(ii) and copper(ii) complexes.

    PubMed

    Dobrova, Aliona; Platzer, Sonja; Bacher, Felix; Milunovic, Miljan N M; Dobrov, Anatolie; Spengler, Gabriella; Enyedy, Éva A; Novitchi, Ghenadie; Arion, Vladimir B

    2016-09-14

    Two water-soluble thiosemicarbazone-proline (H2L(1)) and thiosemicarbazone-homoproline hybrids (H2L(2)) were synthesised. By reaction of H2L(1) with NiCl2·6H2O, PdCl2 and CuCl2·2H2O in ethanol, the series of square-planar complexes [Ni(H2L(1))Cl]Cl·1.3H2O (1·1.3H2O), [Pd(H2L(1))Cl]Cl·H2O (2·H2O) and [Cu(H2L(1))Cl]Cl·0.7H2O (3·0.7H2O) was prepared, and starting from H2L(2) and CuCl2·2H2O in methanol, the complex [Cu(H2L(2))Cl2]·H2O (4·H2O) was obtained. The compounds have been characterised by elemental analysis, spectroscopic methods (IR, UV-vis and NMR spectroscopy), ESI mass spectrometry and single crystal X-ray crystallography (H2L(1), 1, 2 and 4). As a solid, 1 is diamagnetic, while it is paramagnetic in methanolic solution. The effective magnetic moment of 3.26 B.M. at room temperature indicates the change in coordination geometry from square-planar to octahedral upon dissolution. The in vitro anticancer potency of ligand precursors H2L(1) and H2L(2) and metal complexes 1-4 was studied in three human cancer cell lines (A549, CH1 and SW480) and in noncancerous murine embryonal fibroblasts (NIH/3T3), and the mechanism of cell death was also assayed by flow cytometry. Clear-cut structure-activity relationships have been established. The metal ions exert marked effects in a divergent manner: copper(ii) increases, whereas nickel(ii) and palladium(ii) decrease the cytotoxicity of the hybrids. The antiproliferative activity of H2L(1) and metal complexes 1-3 decreases in all three tumour cell lines in the following rank order: 3 > H2L(1) > 1 > 2. The role of square-planar geometry in the underlying mechanism of cytotoxicity of the metal complexes studied seems to be negligible, while structural modifications at the terminal amino group of thiosemicarbazide and proline moieties are significant for enhancing the antiproliferative activity of both hybrids and copper(ii) complexes. PMID:27485263

  12. Synthesis and second-order nonlinear optical properties of new copper(II), nickel(II), and zinc(II) Schiff-base complexes. Toward a role of inorganic chromosphores for second harmonic generation

    SciTech Connect

    Lacroix, P.G.; Di Bella, S.; Ledoux, I.

    1996-02-01

    A new Schiff-base ligand based on the condensation of diaminomaleonitrile and 4-(diethylamino)salicylaldehyde is reported with its copper, nickel, and zinc complexes. Their second-order nonlinear optical properties are investigated by electric field induced second harmonic (EFISH) and ZINDO quantum-chemical calculation to probe the role of the metal center in the nonlinearity. All of the complexes exhibit a second-order nonlinear response that is larger than that of the ligand with an hyperpolarizability {beta} value of 400 ({+-}100) 10{sup -30} cm{sup 5} esu{sup -1} for the zinc derivative at 1.34 {mu}m. Theoretical calculations indicate that the two-level model is inadequate to describe the nonlinearity in such systems. 41 refs., 3 figs., 2 tabs.

  13. Synthesis, characterization, X-ray crystal structures and antibacterial activities of Schiff base ligands derived from allylamine and their vanadium(IV), cobalt(III), nickel(II), copper(II), zinc(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Amiri Rudbari, Hadi; Iravani, Mohammad Reza; Moazam, Vahid; Askari, Banafshe; Khorshidifard, Mahsa; Habibi, Neda; Bruno, Giuseppe

    2016-12-01

    A new Schiff base ligand, HL2, and four new Schiff base complexes, NiL12, PdL12, NiL22 and ZnL22, have been prepared and characterized by elemental analysis (CHN), FT-IR and UV-Vis spectroscopy. 1H and 13C NMR techniques were employed for characterization of the ligand (HL2) and the diamagnetic complexes (PdL12 and ZnL22). The molecular structures of PdL12, NiL22 and ZnL22 complexes were determined by the single crystal X-ray diffraction technique. The crystallographic data reveal that in these complexes the metal centers are four-coordinated by two phenolate oxygen and two imine nitrogen atoms of two Schiff base ligands. The geometry around the metal center in the PdL12 and NiL22 complexes is square-planar and for ZnL22 it is a distorted tetrahedral.In the end, five new (HL2, NiL12, PdL12, NiL22 and ZnL22) and six reported (HL1, VOL12, CoL13, CuL12, ZnL12 and Zn2L14) Schiff base compounds were tested for their in vitro antimicrobial activity against Staphylococcus aureus and Escherichia coli as examples of Gram-positive and Gram-negative bacterial strains, respectively, by disc diffusion method.

  14. Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry.

    PubMed

    Zhao, Lingling; Zhong, Shuxian; Fang, Keming; Qian, Zhaosheng; Chen, Jianrong

    2012-11-15

    A dual-cloud point extraction (d-CPE) procedure has been developed for simultaneous pre-concentration and separation of heavy metal ions (Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion) in water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). The procedure is based on forming complexes of metal ion with 8-hydroxyquinoline (8-HQ) into the as-formed Triton X-114 surfactant rich phase. Instead of direct injection or analysis, the surfactant rich phase containing the complexes was treated by nitric acid, and the detected ions were back extracted again into aqueous phase at the second cloud point extraction stage, and finally determined by ICP-OES. Under the optimum conditions (pH=7.0, Triton X-114=0.05% (w/v), 8-HQ=2.0×10(-4) mol L(-1), HNO3=0.8 mol L(-1)), the detection limits for Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ions were 0.01, 0.04, 0.01, 0.34, 0.05, and 0.04 μg L(-1), respectively. Relative standard deviation (RSD) values for 10 replicates at 100 μg L(-1) were lower than 6.0%. The proposed method could be successfully applied to the determination of Cd2+, Co2+, Ni2+, Pb2+, Zn2+, and Cu2+ ion in water samples.

  15. Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-ol

    PubMed Central

    Chetioui, Souheyla; Rouag, Djamil-Azzeddine; Djukic, Jean-Pierre; Bochet, Christian G.; Touzani, Rachid; Bailly, Corinne; Crochet, Aurélien; Fromm, Katharina M.

    2016-01-01

    In the copper(II) complex, bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naph­thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord­inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tri­bromo­benzene ring is inclined to the naphthalene ring system by 37.4 (5)°, creating a weak intra­molecular Cu⋯Br inter­action [3.134 (2) Å], while in the other ligand, the tri­bromo­benzene ring is inclined to the naphthalene ring system by 72.1 (6)°. In the isotypic nickel(II) and palladium(II) complexes, namely bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}nickel(II), [Ni(C16H8Br3N2O)2], (II), and bis­{(E)-1-[(2,4,6-tri­bromo­phen­yl)diazen­yl]naphthalen-2-olato}palladium(II), [Pd(C16H8Br3N2O)2], (III), respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tri­bromo­benzene rings are inclined to the naphthalene ring systems by 80.79 (18)° in (II) and by 80.8 (3)° in (III). In the crystal of (I), mol­ecules are linked by C—H⋯Br hydrogen bonds, forming chains along [010]. The chains are linked by C—H⋯π inter­actions, forming sheets parallel to (011). In the crystals of (II) and (III), mol­ecules are linked by C—H⋯π inter­actions, forming slabs parallel to (10-1). For the copper(II) complex (I), a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9–18]. The formula mass and unit-cell characteristics of the disordered solvent mol­ecules were not taken into account during refinement. PMID:27536389

  16. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications.

    PubMed

    David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr

    2015-12-21

    Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very

  17. Cadmium(II) and zinc(II) complexes of pyrrole-appended oxacarbaporphyrin: a side-on coordination mode of O-confused carbaporphyrin.

    PubMed

    Pawlicki, Miłosz; Latos-Grazyński, Lechosław; Szterenberg, Ludmiła

    2005-12-26

    A pyrrole adduct of 5,20-diphenyl-10,15-di(p-tolyl)-2-oxa-21-carbaporphyrin [(H,pyr)OCPH]H(2) reacted with sodium ethanolate to yield 5,20-diphenyl-10,15-di(p-tolyl)-3-ethoxy-3-(2'-pyrrol)-2-oxa-21-carbaporphyrin [(EtO,pyr)OCPH]H(2). Subsequently, "true" O-confused oxaporphyrin with a pendant pyrrole ring [(pyr)OCPH]H was formed by the addition of acid to [(EtO,pyr)OCPH]H(2), which triggered an ethanol elimination. In the course of this process, the tetrahedral-trigonal rearrangements originated at the C(3) atom. Insertion of zinc(II), cadmium(II), and nickel(II) into [(pyr)OCPH]H yielded [(pyr)OCPH]Zn(II)Cl, [(pyr)OCPH]Cd(II)Cl, and [(pyr)OCP]Ni(II). The formation of [(pyr)OCP]Ni(II) was accompanied by the C(21)H dehydrogenation step. The nickel(II) ion of [(pyr)OCP]Ni(II), coordinated to a dianionic macrocyclic ligand, is bound by three pyrrolic nitrogens and a trigonally hybridized C(21) atom of the inverted furan. The pyrrole-appended O-confused carbaporphyrin acts as a monoanionic ligand toward zinc(II) and cadmium(II) cations. Three nitrogen atoms and the C(21)H fragment of the inverted furan occupy equatorial positions. In (1)H NMR spectra, the unique inner C(21)H resonances of the inverted furan ring are located at 0.15 ppm for [(pyr)OCPH]Zn(II)Cl, and at 0.21 ppm for [(pyr)OCPH]Cd(II)Cl. The proximity of the furan fragment to the metal ion induces direct scalar couplings between the spin-active nucleus of the metal ((111/113)Cd) and the adjacent (1)H nucleus. The interaction of the metal ion and C(21)H was also reflected by significant changes in carbon chemical shifts ([(pyr)OCPH]Zn(II)Cl, 78.3 ppm; [(pyr)OCPH]Cd(II)Cl, 81.4 ppm; the free base, 101.3 ppm). The density functional theory (DFT) has been applied to model the molecular structures of zinc(II) and cadmium(II) complexes of O-confused oxaporphyrin with an appended pyrrole ring. The Cd...C(21) distance in the optimized structure exceeds the typical Cd-C bond lengths, but is much shorter than the

  18. STUDIES ON BIOSORPTION OF ZINC(II) AND COPPER(II) ON DESULFOVIBRIO DESULFURICANS

    EPA Science Inventory

    The objectives of thes studies are to determine the equilibrium concentration and kinetics of metal sorption on sulfate-reducing bacteria (SRB) isolates. Adsorption establishes the net reversible cellular metal uptake and is related to SRB metal toxicity and the effects of enviro...

  19. Nickel(II) and copper(II) complexes with humic acid anions and their derivatives

    SciTech Connect

    Ryabova, I.N.

    2008-01-15

    Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

  20. Synthesis and characterization of ferrocene-chelating heteroscorpionate complexes of nickel(II) and zinc(II).

    PubMed

    Abubekerov, Mark; Diaconescu, Paula L

    2015-02-16

    The first example of a ferrocene-chelating heteroscorpionate, [Li(THF)2][fc(PPh2)(BH[(3,5-Me)2pz]2)] ((fc(P,B))Li(THF)2, fc = 1,1'-ferrocenediyl) is described. Starting from a previously reported compound, fcBr(PPh2), a series of ferrocene derivatives, fc(PPh2)(B[OMe]2), [Li(OEt2)][fc(PPh2)(BH3)], [Li(THF)2][fc(PPh2)(BH[(3,5-Me)2pz]2)] (pz = pyrazole), was isolated and characterized. Compound (fc(P,B))Li(THF)2 allowed the synthesis of the corresponding nickel and zinc complexes, (fc(P,B))NiCl, (fc(P,B))NiMe, (fc(P,B))ZnCl, and (fc(P,B))ZnMe. All compounds were characterized by NMR spectroscopy, while the zinc and nickel complexes were also characterized by X-ray crystallography. The redox behavior of (fc(P,B))NiCl, (fc(P,B))NiMe, (fc(P,B))ZnCl, and (fc(P,B))ZnMe was studied by cyclic voltammetry and supported by density functional theory calculations.

  1. Monomeric and dimeric disulfide complexes of nickel(II).

    PubMed

    Iluc, Vlad M; Laskowski, Carl A; Brozek, Carl K; Harrold, Nicole D; Hillhouse, Gregory L

    2010-08-01

    Elemental sulfur reacts with a bulky bis(phosphine)nickel(0) complex to give a monomeric nickel(II) eta(2)-disulfido complex, oxidation of which results in the elimination of sulfur with dimerization to give an eta(2),eta(2)-disulfidodinickel(II) derivative in which the S-S bond can be reductively cleaved in a redox-reversible fashion. PMID:20586478

  2. Metal complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid and benzohydroxamic acid. Crystal and molecular structure of [Cu(phen)2(Cl)]Cl x H2Sha, a model for a peroxidase-inhibitor complex.

    PubMed

    O'Brien, E C; Farkas, E; Gil, M J; Fitzgerald, D; Castineras, A; Nolan, K B

    2000-04-01

    Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.

  3. Use of anodic stripping voltammetry to determine zinc(II), lead(II), and copper(II) in foods

    SciTech Connect

    Maksimkina, L.M.; Gus'kova, V.P.

    1988-01-20

    The existing standard procedure for the polarographic determination of Zn, Pb, and Cu, based on the cathodic polarization of a dropping mercury electrode, is laborious and time-consuming and allows one to determine the above-mentioned trace elements only when they are separated beforehand. We consider the possibility of using anodic stripping voltammetry with a mercury film electrode for the simultaneous determination of Zn(II), Pb(II), and Cu(II) in foods.

  4. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    PubMed

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-01

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  5. Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1.

    PubMed

    Chen, Xin Cai; Wang, Yuan Peng; Lin, Qi; Shi, Ji Yan; Wu, Wei Xiang; Chen, Ying Xu

    2005-12-10

    To study Pseudomonas putida CZ1, having high tolerance to copper and zinc on the removal of toxic metals from aqueous solutions, the biosorption of Cu(II) and Zn(II) by living and nonliving P. putida CZ1 were studied as functions of reaction time, initial pH of the solution and metal concentration. It was found that the optimum pH for Zn(II) removal by living and nonliving cells was 5.0, while it was 5.0 and 4.5, respectively, for Cu(II) removal. At the optimal conditions, metal ion biosorption was increased as the initial metal concentration increased. The adsorption data with respect to both metals provide an excellent fit to the Langmuir isotherm. The binding capacity of living cells is significantly higher than that of nonliving cells at tested conditions. It demonstrated that about 40-50% of the metals were actively taken up by P. putida CZ1, with the remainder being passively bound to the bacterium. Moreover, desorption efficiency of Cu(II) and Zn(II) by living cells was 72.5 and 45.6% under 0.1M HCl and it was 95.3 and 83.8% by nonliving cells, respectively. It may be due to Cu(II) and Zn(II) uptake by the living cells enhanced by intracellular accumulation. PMID:16289732

  6. Enhancing the Photostability of Arylvinylenebipyridyl Compounds as Fluorescent Indicators for Intracellular Zinc(II) Ions

    PubMed Central

    Yuan, Zhao; Younes, Ali H.; Allen, John R.; Davidson, Michael W.; Zhu, Lei

    2015-01-01

    Arylvinylenebipyridyl (AVB) ligands are bright, zinc(II)-sensitive fluoroionophores. The applicability of AVBs as fluorescent indicators for imaging cellular zinc(II), however, is limited by low photostability, partially attributable to the photoisomerization of the vinylene functionality. Two configurationally immobilized (i.e., “locked”) AVB analogues are prepared in this work. The zinc(II)-sensitive photophysical properties and zinc(II) affinities of both AVBs and their locked analogues are characterized in organic and aqueous media. The zinc(II) sensitivity of the emission is attributed to the zinc(II)-dependent energies of the charge transfer excited states of these compounds. The configurationally locked ligands have improved photostability, while maintaining the brightness and zinc(II) sensibility of their AVB progenitors. The feasibility of the “locked” AVB analogues with improved photostability for imaging intracellular Zn(II) of eukaryotic cells using laser confocal fluorescence microscopy is demonstrated. PMID:25942357

  7. Supramolecular architecture and magnetic properties of copper(II) and nickel(II) porphyrinogen-TCNQ electron-transfer salts.

    PubMed

    Ballester, Loreto; Gil, Ana M; Gutiérrez, Angel; Perpiñán, M Felisa; Azcondo, M Teresa; Sánchez, Ana E; Marzin, Claude; Tarrago, Georges; Bellitto, Carlo

    2002-06-01

    The compounds [Cu(Tz)-(MeOH)2](TCNQ)2 (1), [Ni(Tz)-(MeOH)2](TCNQ)2 (2), [Cu(Tz)2]-(TCNQ)7 (3) and [Ni(Tz)2](TCNQ)7 (4) (Tz = 2,7,12,17-tetramethyl-1,6,11,16-tetraazaporphyrinogen) were obtained by metathesis reaction of [M(Tz)](ClO4)2 with LiTCNQ and Et3NH(TCNQ)2, respectively. They were characterized by a combination of spectroscopic and physical methods. Compound 1 crystallizes in the monoclinic space group P2(1)/n with a = 8.310(2), b = 25.180(4), c = 20.727(4) A, beta = 93.58(2) degrees; Z = 4. Compound 3 crystallizes in the triclinic space group P1 with a = 11.244(1), b = 16.700(1), c = 17.321(1) A, a = 113.47(1), beta = 108.52(1), gamma = 96.12(1) degrees; Z = 2. The asymmetric unit of the compound 1 is formed by cationic [Cu(Tz)(MeOH)2]2+ and by two crystallographically non equivalent TCNQ.- anions; these anions form dimeric units by overlap of the pi clouds. The dimers form hydrogen bonds with the metal-lomacrocyclic cation through the methanol ligands. According to this structure the compound is paramagnetic and behaves as an insulator in the temperature range studied. The paramagnetism arises only from the metal-complex moieties. Compound 3 shows an unprecedented structure due to the steric requirements of the macrocycle that favors the stacking of the TCNQ groups. The structure consists of infinite stacks of TCNQ units separated by the metal-macrocyclic units; there are seven TCNQ molecules per formula unit, one of which is formally mono-anionic, while the other six bear one half of an electron per molecule. The copper is six-coordinate in a very distorted octahedral environment. The Tz ligand is located in the equatorial plane and the apical nitrogens of the nitrile groups of two TCNQ molecules complete the coordination around the copper. The compound is a semiconductor and its magnetic behavior can be explained by the sum of the Curie contribution of the metal complex and the contribution arising from the magnetic-exchange interactions of the spins located on the TCNQ units. The latter is found to be typical of one-dimensional antiferromagnetic distorted chains of S = 1/2 spins and can be fitted according to a one-dimensional Heisenberg antiferromagnetic model.

  8. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Şenol, Cemal; Hayvali, Zeliha; Dal, Hakan; Hökelek, Tuncer

    2011-06-01

    New Schiff base derivatives ( L 1 and L 2) were prepared by the condensation of 2-hydroxy-3-methoxybenzaldehyde ( o-vanillin) and 3-hydroxy-4-methoxybenzaldehyde ( iso-vanillin) with 5-methylfurfurylamine. Two new complexes [Ni(L 1) 2] and [Cu(L 1) 2] have been synthesized with bidentate NO donor Schiff base ligand ( L 1). The Ni(II) and Cu(II) atoms in each complex are four coordinated in a square planar geometry. Schiff bases ( L 1 and L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] were characterized by elemental analyses, FT-IR, UV-vis, mass and 1H, 13C NMR spectroscopies. The crystal structures of the ligand ( L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] have also been determined by using X-ray crystallographic technique.

  9. Copper(II) and nickel(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone: Synthesis, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Prathima, B.; Subba Rao, Y.; Adinarayana Reddy, S.; Reddy, Y. P.; Varada Reddy, A.

    2010-09-01

    Benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone ligand (L) has been synthesized from benzyloxybenzaldehyde and 4-phenyl-3-thiosemicarbazide. Complexes of this ligand with chlorides of Cu(II) and Ni(II) have been prepared. The structure of the ligand (L) is proposed based on elemental analysis, IR and 1H NMR spectra. Its complexes with Cu(II) and Ni(II) ions are characterized from the studies of electronic as well as EPR spectra. On the basis of electronic and EPR studies, rhombically distorted octahedral structure has been proposed for Cu(II) complex while the Ni(II) complex has been found to acquire an octahedral structure. The ligand and their metal complexes have been tested in vitro for their biological effects. Their antibacterial activities against Gram-negative bacteria ( Escherichia coli and Klebsiella pneumoniae) and Gram-positive bacteria ( Staphylococcus aureus and Bacillus subtilis) have been investigated. The prepared metal complexes exhibit higher antibacterial activities than the parent ligand. The in vitro antioxidant activity of free ligand and its metal(II) complexes have also been investigated and the results however reveal that the ligand exhibits greater antioxidant activity than its complexes.

  10. L- and D-proline thiosemicarbazone conjugates: coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity.

    PubMed

    Milunovic, Miljan N M; Enyedy, Éva A; Nagy, Nóra V; Kiss, Tamás; Trondl, Robert; Jakupec, Michael A; Keppler, Bernhard K; Krachler, Regina; Novitchi, Ghenadie; Arion, Vladimir B

    2012-09-01

    Two enantiomerically pure thiosemicarbazone-proline conjugates with enhanced aqueous solubility, namely, 2-hydroxy-3-methyl-(S)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [L-Pro-STSC or (S)-H(2)L] and 2-hydroxy-3-methyl-(R)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [D-Pro-STSC or (R)-H(2)L] have been synthesized and characterized by elemental analysis, spectroscopic methods (UV-vis and (1)H and (13)C NMR), and electrospray ionization mass spectrometry. The metal complexation behavior of L-Pro-STSC, stoichiometry, and thermodynamic stability of iron(II), iron(III), copper(II), and zinc(II) complexes in 30% (w/w) dimethyl sulfoxide/H(2)O solvent mixture have been studied by pH-potentiometric, UV-vis-spectrophotometric, circular dichroism, electron paramagnetic resonance, (1)H NMR spectroscopic, and spectrofluorimetric measurements. By the reaction of CuCl(2)·2H(2)O with (S)-H(2)L and (R)-H(2)L, respectively, the complexes [Cu[(S)-H(2)L]Cl]Cl and [Cu[(R)-H(2)L]Cl]Cl have been prepared and comprehensively characterized. An X-ray diffraction study of [Cu[(R)-H(2)L]Cl]Cl showed the formation of a square-planar copper(II) complex, which builds up stacks with interplanar separation of 3.3 Å. The antiproliferative activity of two chiral ligands and their corresponding copper(II) complexes has been tested in two human cancer cell lines, namely, SW480 (colon carcinoma) and CH1 (ovarian carcinoma). The thiosemicarbazone-proline conjugates L- and D-Pro-STSC show only moderate cytotoxic potency with IC(50) values of 62 and 75 μM, respectively, in CH1 cells and >100 μM in SW480 cells. However, the corresponding copper(II) complexes are 13 and 5 times more potent in CH1 cells, based on a comparison of IC(50) values, and in SW480 cells the increase in the antiproliferative activity is even higher. In both tested cell lines, L-Pro-STSC as well as its copper(II) complex show slightly stronger antiproliferative activity than the

  11. L- and D-proline thiosemicarbazone conjugates: coordination behavior in solution and the effect of copper(II) coordination on their antiproliferative activity.

    PubMed

    Milunovic, Miljan N M; Enyedy, Éva A; Nagy, Nóra V; Kiss, Tamás; Trondl, Robert; Jakupec, Michael A; Keppler, Bernhard K; Krachler, Regina; Novitchi, Ghenadie; Arion, Vladimir B

    2012-09-01

    Two enantiomerically pure thiosemicarbazone-proline conjugates with enhanced aqueous solubility, namely, 2-hydroxy-3-methyl-(S)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [L-Pro-STSC or (S)-H(2)L] and 2-hydroxy-3-methyl-(R)-pyrrolidine-2-carboxylate-5-methylbenzaldehyde thiosemicarbazone [D-Pro-STSC or (R)-H(2)L] have been synthesized and characterized by elemental analysis, spectroscopic methods (UV-vis and (1)H and (13)C NMR), and electrospray ionization mass spectrometry. The metal complexation behavior of L-Pro-STSC, stoichiometry, and thermodynamic stability of iron(II), iron(III), copper(II), and zinc(II) complexes in 30% (w/w) dimethyl sulfoxide/H(2)O solvent mixture have been studied by pH-potentiometric, UV-vis-spectrophotometric, circular dichroism, electron paramagnetic resonance, (1)H NMR spectroscopic, and spectrofluorimetric measurements. By the reaction of CuCl(2)·2H(2)O with (S)-H(2)L and (R)-H(2)L, respectively, the complexes [Cu[(S)-H(2)L]Cl]Cl and [Cu[(R)-H(2)L]Cl]Cl have been prepared and comprehensively characterized. An X-ray diffraction study of [Cu[(R)-H(2)L]Cl]Cl showed the formation of a square-planar copper(II) complex, which builds up stacks with interplanar separation of 3.3 Å. The antiproliferative activity of two chiral ligands and their corresponding copper(II) complexes has been tested in two human cancer cell lines, namely, SW480 (colon carcinoma) and CH1 (ovarian carcinoma). The thiosemicarbazone-proline conjugates L- and D-Pro-STSC show only moderate cytotoxic potency with IC(50) values of 62 and 75 μM, respectively, in CH1 cells and >100 μM in SW480 cells. However, the corresponding copper(II) complexes are 13 and 5 times more potent in CH1 cells, based on a comparison of IC(50) values, and in SW480 cells the increase in the antiproliferative activity is even higher. In both tested cell lines, L-Pro-STSC as well as its copper(II) complex show slightly stronger antiproliferative activity than the

  12. Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction.

    PubMed

    Regel, M; Sastre, A M; Szymanowski, J

    2001-02-01

    Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction using CYANEX921, CYANEX923, CYANEX302, tributyl phosphate, and ALAMINE336 extractants was studied. Tributyl phosphate was selected as suitable extractant. It permitted both effective zinc(II) extraction and the stripping from loaded organic phase with water. The presence of iron(II) did not affect zinc extraction, and only negligible oxidation of iron(II) was observed during extraction experiments. CYANEX reagents and ALAMINE336 extracted zinc(II) strongly, but the stripping with water was ineffective. Moreover, a significant oxidation of iron(II) to iron(III) occurred during extraction. Each of three reagents (CYANEX923, ALAMINE336 and TBP) extracted iron(III) very well. Thus, if iron(III) was present in the spent pickling solution, prior to the extraction it had to be reduced to iron(II). The oxidation was low for tributyl phosphate and high for CYANEX923 and ALAMINE336. CYANEX302 was inactive both for zinc(II) and iron(III) and could not be used for extraction of zinc(II) from spent pickling hydrochloric acid solutions.

  13. Synthesis, characterization and electrical properties of peripherally tetra-aldazine substituted novel metal free phthalocyanine and its zinc(II) and nickel(II) complexes.

    PubMed

    Bayrak, Rıza; Dumludağ, Fatih; Akçay, Hakkı Türker; Değirmencioğlu, İsmail

    2013-03-15

    The novel phthalonitrile containing azine segment and its corresponding tetra aldazine substituted metal free- and metallo-phthalocyanines (Zn(II) and Ni(II)) were synthesized and characterized by IR, (1)H NMR, Mass, UV-Vis spectroscopy and elemental analysis and addition to these techniques for substituted phthalonitrile (13)C NMR have been used. In addition, dc and ac electrical properties of the films of these novel phthalocyanines were investigated as a function of temperature (295-523 K) and frequency (40-10(5)Hz). Activation energy values of the films of the phthalocyanines were calculated from straight portions of the Arrhenius plot (lnσ(dc)-1/T curves) as 0.70 eV, 0.93 eV and 0.91 eV for the films of metal free, nickel- and zinc-phthalocyanines, respectively. From impedance spectroscopy measurements, it is observed that bulk resistance decreases with increasing temperature indicating semiconductor property.

  14. Two supramolecular architectures constructed from dinuclear zinc(II) unit

    NASA Astrophysics Data System (ADS)

    Lou, Ben-Yong; Yuan, Da-Qiang; Wang, Rui-Hu; Xu, Ying; Wu, Ben-Lai; Han, Lei; Hong, Mao-Chun

    2004-07-01

    Two supramolecular architectures, [Zn 2( D, L-sala) 2(4-H 2Npy) 2·2H 2O] n ( 1) (4-H 2Npy=4-aminopyridine) and [Zn 2( D, L-sala) 2(4,4'-bpy)·0.5H 2O] n ( 2) (4,4'-bpy=4,4'-bipyridine), have been constructed from dinuclear zinc(II) unit [Zn 2( D, L-sala) 2] (sala= N-(2-hydroxybenzyl)-alanine anion). For 1, four dimmers link together through N-H⋯O hydrogen bonds to give rise to a square ring that is extended into two-dimensional supramolecular network. For 2, dinuclear units are connected by 4,4'-bipyridine to generate a one-dimensional chain with ladder structure, which is connected through hydrogen bonds into three-dimensional supramolecular framework. Complex 1 exhibits intense photoluminescence at 402 nm upon photo-excitation at 348 nm, while complex 2 gives two intense photoluminescent peaks at 464 and 613 nm upon photo-excitation at 350 nm.

  15. Investigation of copper(II) tetrafluoroborate catalysed epoxide opening

    PubMed Central

    Capes, Amy S.; Crossman, Arthur T.; Webster, Lauren A.; Ferguson, Michael A.J.; Gilbert, Ian H.

    2011-01-01

    We report the extension of the copper(II) tetrafluoroborate catalysed opening of epoxides with alcohols to include a wider variety of alcohols, a range of solvents and a method to purify the products from the reaction. PMID:22505782

  16. Removal of nickel(II) from aqueous solution by Vigna unguiculata (cowpea) pods biomass.

    PubMed

    Guyo, Upenyu; Sibanda, Kudakwashe; Sebata, Edith; Chigondo, Fidelis; Moyo, Mambo

    2016-01-01

    The potential to remove nickel(II) ions from aqueous solution using a biosorbent prepared from Vigna unguiculata pods (VUPs) was investigated in batch experiments. The batch mode experiments were conducted utilising the independent variables of pH (2 to 8), contact time (5 to 120 min), dosage concentration (0.2 to 1.6 g), nickel(II) concentrations (10 to 80 mg L(-1)) and temperature (20 to 50°C). The biosorption data fitted best to the Freundlich biosorption model with a correlation coefficient (R(2)) of 0.993 and lowest chi-squared value of 31.89. The maximum sorption capacity of the VUP for nickel(II) was 27.70 mg g(-1). Kinetics studies revealed that the biosorption process followed the pseudo-second-order model as it had the lowest sum of square error value (0.808) and correlation coefficient close to unity (R(2) = 0.998). The calculated thermodynamic parameters showed that the biosorption process was feasible, spontaneous and endothermic. Consequently, the study demonstrated that VUP biomass could be used as a biosorbent for the removal of nickel(II) from aqueous solution. PMID:27191550

  17. Removal of nickel(II) from aqueous solution by Vigna unguiculata (cowpea) pods biomass.

    PubMed

    Guyo, Upenyu; Sibanda, Kudakwashe; Sebata, Edith; Chigondo, Fidelis; Moyo, Mambo

    2016-01-01

    The potential to remove nickel(II) ions from aqueous solution using a biosorbent prepared from Vigna unguiculata pods (VUPs) was investigated in batch experiments. The batch mode experiments were conducted utilising the independent variables of pH (2 to 8), contact time (5 to 120 min), dosage concentration (0.2 to 1.6 g), nickel(II) concentrations (10 to 80 mg L(-1)) and temperature (20 to 50°C). The biosorption data fitted best to the Freundlich biosorption model with a correlation coefficient (R(2)) of 0.993 and lowest chi-squared value of 31.89. The maximum sorption capacity of the VUP for nickel(II) was 27.70 mg g(-1). Kinetics studies revealed that the biosorption process followed the pseudo-second-order model as it had the lowest sum of square error value (0.808) and correlation coefficient close to unity (R(2) = 0.998). The calculated thermodynamic parameters showed that the biosorption process was feasible, spontaneous and endothermic. Consequently, the study demonstrated that VUP biomass could be used as a biosorbent for the removal of nickel(II) from aqueous solution.

  18. Structural and spectroscopic characterization of two new blue luminescent pyridylbenzimidazole zinc(II) complexes.

    PubMed

    DeStefano, Matthew R; Geiger, David K

    2016-06-01

    Luminescent metal complexes are used in photooptical devices. Zinc(II) complexes are of interest because of the ability to tune their color, their high thermal stability and their favorable carrier transport character. In particular, some zinc(II) complexes with aryl diimine and/or heterocyclic ligands have been shown to emit brightly in the blue region of the spectrum. Zinc(II) complexes bearing derivatized imidazoles have been explored for possible optoelectronic applications. The structures of two zinc(II) complexes of 5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole (L), namely dichlorido(dimethylformamide-κO){5,6-dimethyl-2-(pyridin-2-yl-κN)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN(3)}zinc(II) dimethylformamide monosolvate, [ZnCl2(C20H18N4)(C3H7NO)]·C3H7NO, (I), and bis(acetato-κ(2)O,O'){5,6-dimethyl-2-(pyridin-2-yl-κN)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κN(3)}zinc(II) ethanol monosolvate, [Zn(C2H3O2)2(C20H18N4)]·C2H5OH, (II), are reported. Complex (I) crystallized as a dimethylformamide solvate and exhibits a distorted trigonal bipyramidal coordination geometry. The coordination sphere consists of a bidentate L ligand spanning axial to equatorial sites, two chloride ligands in equatorial sites, and an O-bound dimethylformamide ligand in the remaining axial site. The other complex, (II), crystallized as an ethanol solvate. The Zn(II) atom has a distorted trigonal prismatic coordination geometry, with two bidentate acetate ligands occupying two edges and a bidentate L ligand occupying the third edge of the prism. Complexes (I) and (II) emit in the blue region of the spectrum. The results of density functional theory (DFT) calculations suggest that the luminescence of L results from π*←π transitions and that the luminescence of the complexes results from interligand charge-transfer transitions. The orientation of the 2-(pyridin-2-yl) substituent with respect to the benzimidazole system was found to have an impact on

  19. Antibacterial and antifungal metal based triazole Schiff bases.

    PubMed

    Chohan, Zahid H; Hanif, Muhammad

    2013-10-01

    A new series of four biologically active triazole derived Schiff base ligands (L(1)-L(4)) and their cobalt(II), nickel(II), copper(II) and zinc(II) complexes (1-16) have been synthesized and characterized. The ligands were prepared by the condensation reaction of 3-amino-5-methylthio-1H-1,2,4-triazole with chloro-, bromo- and nitro-substituted 2-hydroxybenzaldehyde in an equimolar ratio. The antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent antibacterial and antifungal than the parent Schiff bases against one or more bacterial and fungal species.

  20. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity☆

    PubMed Central

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2013-01-01

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC50 value of 13.8 μM, which was less potent than copper(II) chloride (IC50 5.3 μM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  1. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity

    SciTech Connect

    Milacic, Vesna; Chen Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q. Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC{sub 50} value of 13.8 {mu}M, which was less potent than copper(II) chloride (IC{sub 50} 5.3 {mu}M). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells.

  2. Pyrrolidine dithiocarbamate-zinc(II) and -copper(II) complexes induce apoptosis in tumor cells by inhibiting the proteasomal activity.

    PubMed

    Milacic, Vesna; Chen, Di; Giovagnini, Lorena; Diez, Alejandro; Fregona, Dolores; Dou, Q Ping

    2008-08-15

    Zinc and copper are trace elements essential for proper folding, stabilization and catalytic activity of many metalloenzymes in living organisms. However, disturbed zinc and copper homeostasis is reported in many types of cancer. We have previously demonstrated that copper complexes induced proteasome inhibition and apoptosis in cultured human cancer cells. In the current study we hypothesized that zinc complexes could also inhibit the proteasomal chymotrypsin-like activity responsible for subsequent apoptosis induction. We first showed that zinc(II) chloride was able to inhibit the chymotrypsin-like activity of a purified 20S proteasome with an IC(50) value of 13.8 microM, which was less potent than copper(II) chloride (IC(50) 5.3 microM). We then compared the potencies of a pyrrolidine dithiocarbamate (PyDT)-zinc(II) complex and a PyDT-copper(II) complex to inhibit cellular proteasomal activity, suppress proliferation and induce apoptosis in various human breast and prostate cancer cell lines. Consistently, zinc complex was less potent than copper complex in inhibiting the proteasome and inducing apoptosis. Additionally, zinc and copper complexes appear to use somewhat different mechanisms to kill tumor cells. Zinc complexes were able to activate calpain-, but not caspase-3-dependent pathway, while copper complexes were able to induce activation of both proteases. Furthermore, the potencies of these PyDT-metal complexes depend on the nature of metals and also on the ratio of PyDT to the metal ion within the complex, which probably affects their stability and availability for interacting with and inhibiting the proteasome in tumor cells. PMID:18501397

  3. Synthesis, structure and urease inhibition studies of Schiff base copper(II) complexes with planar four-coordinate copper(II) centers.

    PubMed

    Dong, Xiongwei; Guo, Taolian; Li, Yuguang; Cui, Yongming; Wang, Qiang

    2013-10-01

    Seven new Schiff base copper(II) complexes with planar four-coordinate copper(II) centers have been synthesized and structurally characterized. The solid state structures of complexes 1, 3, 4, 5, 6 and 7 present a square-planar coordination geometry at the metal centers while complex 2 shows a slightly distorted square-planar geometry. Density functional theory calculations have been performed to evaluate the electronic structure of copper(II) complex 7. Inhibition of jack bean urease by copper(II) complexes 1-7 have also been investigated, and potent inhibitory activities with IC50 range of 2.60-17.00μM have been observed for these mononuclear copper(II) complexes. A docking analysis using a DOCK program was conducted to explain the urease inhibitory activity of the copper(II) complexes and the structure-activity relationships were further discussed.

  4. Spectrophotometric determination of copper(II) with o-bromophenylfluorone.

    PubMed

    Yamaguchi, Takako; Samma, Megumi; Kamino, Shinichiro; Matsushita, Momoka; Hashimoto, Tomoyuki; Fujita, Yoshikazu

    2009-12-01

    A simple, reliable and sensitive spectrophotometric method for the determination of copper(II) was established with o-bromophenylfluorone (OBPF), a novel chemical probe, in the presence of poly(N-vinylpyrrolidone). Beer's law was obeyed in the range of 8-160 ng ml(-1), with an apparent molar absorptivity at 570 nm, the relative standard deviation being 3.64 x 10(5) dm3 mol(-1) cm(-1) and 0.72% (n = 5). This method was applied to the recovery tests of copper(II) in human urine, bovine serum and tap water; the results were satisfactory.

  5. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Nickel(II) complexes, having the general composition Ni(L) 2X 2, have been synthesized [where L: isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-]. All the Ni(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to two unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. Newly synthesized ligand and its nickel(II) complexes have been screened against different bacterial and fungal growth.

  6. Electrochemical, catalytic and antimicrobial activity of N-functionalized tetraazamacrocyclic binuclear nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Prabu, R.; Vijayaraj, A.; Suresh, R.; Shenbhagaraman, R.; Kaviyarasan, V.; Narayanan, V.

    2011-02-01

    The five binuclear nickel(II) complexes have been synthesized by the Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclo-tetradecane (PC) with appropriate aliphatic diamines and nickel(II) perchlorate. All the five complexes were characterized by elemental and spectral analysis. The electronic spectra of the complexes show three d-d transition in the range of 550-1055 nm due to 3A 2g → 3T 2g(F), 3A 2g → 3T 1g(F) and 3A 2g → 3T 1g(P). These spin allowed electronic transitions are characteristic of an octahedral Ni 2+ center. Electrochemical studies of the complexes show two irreversible one electron reduction waves at cathodic region. The reduction potential of the complexes shifts towards anodically upon increasing the chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves at anodic region. The oxidation potential of the complexes shift towards anodically upon increasing the chain length of the macrocyclic ring. The catalytic activities of the complexes were observed to be increase with increase the macrocyclic ring size. The observed rate constant values for the catalytic hydrolysis of 4-nitrophenyl phosphate are in the range of 5.85 × 10 -3 to 9.14 × 10 -3 min -1. All the complexes were screened for antimicrobial activity.

  7. Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy.

    PubMed

    Göksel, Meltem

    2016-09-15

    Zinc(II) phthalocyanine containing [2-(tert-butoxycarbonyl)amino]ethoxy and iodine groups (A and B), as well as their deprotected mono-amino and tri-iodine zinc(II) phthalocyanine (2) were obtained. This structure surrounds by substituents with functional groups. From this perspective it can be used a starting material for many reactions and applications, such as sonogashira coupling, carbodiimide coupling. An example of a first diversification reaction of this compound was obtained with conjugation of a biotin. Asymmetrically biotin conjugated and heavy atom bearing zinc(II) phthalocyanine (3) were synthesized characterized for the first time and photophysical, photochemical and photobiological properties of these phthalocyanines were compared in this study. PMID:27423301

  8. Synthesis of asymmetric zinc(II) phthalocyanines with two different functional groups & spectroscopic properties and photodynamic activity for photodynamic therapy.

    PubMed

    Göksel, Meltem

    2016-09-15

    Zinc(II) phthalocyanine containing [2-(tert-butoxycarbonyl)amino]ethoxy and iodine groups (A and B), as well as their deprotected mono-amino and tri-iodine zinc(II) phthalocyanine (2) were obtained. This structure surrounds by substituents with functional groups. From this perspective it can be used a starting material for many reactions and applications, such as sonogashira coupling, carbodiimide coupling. An example of a first diversification reaction of this compound was obtained with conjugation of a biotin. Asymmetrically biotin conjugated and heavy atom bearing zinc(II) phthalocyanine (3) were synthesized characterized for the first time and photophysical, photochemical and photobiological properties of these phthalocyanines were compared in this study.

  9. The Synthesis of Copper(II) Carboxylates Revisited

    ERIC Educational Resources Information Center

    Kushner, Kevin; Spangler, Robert E.; Salazar, Ralph A., Jr.; Lagowski, J. J.

    2006-01-01

    An electrochemical synthesis of copper(II) carboxylates has been developed and used in the general chemistry laboratory course for chemistry majors. This synthesis, using nonaqueous solutions, supplements the strategy of providing experiences in synthetic chemistry described by Yoder et al. ("J. Chem. Educ." 1995, 72, 267). (Contains 1 table.)

  10. Nitric oxide and bcl-2 mediated the apoptosis induced by nickel(II) in human T hybridoma cells

    SciTech Connect

    Guan Fuqin; Zhang Dongmei; Wang Xinchang; Chen Junhui . E-mail: jhchen@nju.edu.cn

    2007-05-15

    Although effects of nickel(II) on the immune system have long been recognized, little is known about the effects of nickel(II) on the induction of apoptosis and related signaling events in T cells. In the present study, we investigated the roles and signaling pathways of nickel(II) in the induction of apoptosis in a human T cell line jurkat. The results showed that the cytotoxic effects of Ni involved significant morphological changes and chromosomal condensation (Hoechst 33258 staining). Analyses of hypodiploid cells and FITC-Annexin V and PI double staining showed significant increase of apoptosis in jurkat cells 6, 12 and 24 h after nickel(II) treatment. Flow cytometry analysis also revealed that the loss of mitochondrial membrane potential (MMP) occurred concomitantly with the onset of NiCl{sub 2}-induced apoptosis. Induction of apoptotic cell death by nickel was mediated by reduction of bcl-2 expression. Furthermore, nickel stimulated the generation of nitric oxide (NO). These results suggest that nickel(II) chloride induces jurkat cells apoptosis via nitric oxide generation, mitochondrial depolarization and bcl-2 suppression.

  11. Competitive adsorption of copper(II), cadmium(II), lead(II) and zinc(II) onto basic oxygen furnace slag.

    PubMed

    Xue, Yongjie; Hou, Haobo; Zhu, Shujing

    2009-02-15

    Polluted and contaminated water can often contain more than one heavy metal species. It is possible that the behavior of a particular metal species in a solution system will be affected by the presence of other metals. In this study, we have investigated the adsorption of Cd(II), Cu(II), Pb(II), and Zn(II) onto basic oxygen furnace slag (BOF slag) in single- and multi-element solution systems as a function of pH and concentration, in a background solution of 0.01M NaNO(3). In adsorption edge experiments, the pH was varied from 2.0 to 13.0 with total metal concentration 0.84mM in the single element system and 0.21mM each of Cd(II), Cu(II), Pb(II), and Zn(II) in the multi-element system. The value of pH(50) (the pH at which 50% adsorption occurs) was found to follow the sequence Zn>Cu>Pb>Cd in single-element systems, but Pb>Cu>Zn>Cd in the multi-element system. Adsorption isotherms at pH 6.0 in the multi-element systems showed that there is competition among various metals for adsorption sites on BOF slag. The adsorption and potentiometric titrations data for various slag-metal systems were modeled using an extended constant-capacitance surface complexation model that assumed an ion-exchange process below pH 6.5 and the formation of inner-sphere surface complexes at higher pH. Inner-sphere complexation was more dominant for the Cu(II), Pb(II) and Zn(II) systems.

  12. Aspartate-Based CXCR4 Chemokine Receptor Binding of Cross-Bridged Tetraazamacrocyclic Copper(II) and Zinc(II) Complexes.

    PubMed

    Maples, Randall D; Cain, Amy N; Burke, Benjamin P; Silversides, Jon D; Mewis, Ryan E; D'huys, Thomas; Schols, Dominique; Linder, Douglas P; Archibald, Stephen J; Hubin, Timothy J

    2016-08-26

    The CXCR4 chemokine receptor is implicated in a number of diseases including HIV infection and cancer development and metastasis. Previous studies have demonstrated that configurationally restricted bis-tetraazamacrocyclic metal complexes are high-affinity CXCR4 antagonists. Here, we present the synthesis of Cu(2+) and Zn(2+) acetate complexes of six cross-bridged tetraazamacrocycles to mimic their coordination interaction with the aspartate side chains known to bind them to CXCR4. X-ray crystal structures for three new Cu(2+) acetate complexes and two new Zn(2+) acetate complexes demonstrate metal-ion-dependent differences in the mode of binding the acetate ligand concomitantly with the requisite cis-V-configured cross-bridged tetraazamacrocyle. Concurrent density functional theory molecular modelling studies produced an energetic rationale for the unexpected [Zn(OAc)(H2 O)](+) coordination motif present in all of the Zn(2+) cross-bridged tetraazamacrocycle crystal structures, which differs from the chelating acetate [Zn(OAc)](+) structures of known unbridged and side-bridged tetraazamacrocyclic Zn(2+) -containing CXCR4 antagonists. PMID:27458983

  13. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes.

    PubMed

    Brandel, Jérémy; Humbert, Nicolas; Elhabiri, Mourad; Schalk, Isabelle J; Mislin, Gaëtan L A; Albrecht-Gary, Anne-Marie

    2012-03-01

    Pseudomonas aeruginosa is an opportunistic pathogen, synthesizing two major siderophores, pyoverdine (Pvd) and pyochelin (Pch), to cover its needs in iron(III). If the high affinity and specificity of Pvd toward iron(III) (pFe = 27.0) was well described in the literature, the physicochemical and coordination properties of Pch toward biologically relevant metals (Fe(III), Cu(II) or Zn(II)) have been only scarcely investigated. We report a thorough physico-chemical investigation of Pch (potentiometry, spectrophotometries, ESI/MS) that highlighted its moderate but significantly higher affinity for Fe(3+) (pFe = 16.0 at p[H] 7.4) than reported previously. We also demonstrated that Pch strongly chelates divalent metals such as Zn(II) (pZn = 11.8 at p[H] 7.4) and Cu(II) (pCu = 14.9 at p[H] 7.4) and forms predominantly 1 : 2 (M(2+)/Pch) complexes. Kinetic studies revealed that the formation of the ferric Pch complexes proceeds through a Eigen-Wilkins dissociative ligand interchange mechanism involving two protonated species of Pch and the Fe(OH)(2+) species of Fe(III). Our physico-chemical parameters supports the previous biochemical studies which proposed that siderophores are not only devoted to iron(III) shuttling but most likely display other specific biological role in the subtle metals homeostasis in microorganisms. This work also represents a step toward deciphering the role of siderophores throughout evolution. PMID:22261733

  14. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    ERIC Educational Resources Information Center

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  15. Crystal structures of copper(II) and nickel(II) nitrate and chloride complexes with 4-bromo-2-[(2-hydroxyethylimino)-methyl]phenol

    SciTech Connect

    Chumakov, Yu. M.; Tsapkov, V. I.; Filippova, I. G.; Bocelli, G.; Gulea, A. P.

    2008-07-15

    The crystal structures of {l_brace}4-bromo-2-[(2-hydroxyethylimino)-methyl]phenolo{r_brace}aquacopper(II) nitrate hemihydrate (I), chloro-{l_brace}4-bromo-2-[(2-hydroxyethylimino)-methyl]phenolo{r_brace}copper hemihydrate (II), and chloro-{l_brace}4-bromo-2-[(2-hydroxyethylimino)-methyl]phenolo{r_brace}aquanickel (III) are determined using X-ray diffraction. Crystals of compound I are formed by cationic complexes, nitrate ions, and solvate water molecules. In the cation, the copper atom coordinates the singly deprotonated molecule of tridentate azomethine and the water molecule. The copper complexes are joined into centrosymmetric dimers by the O{sub w}-H...O hydrogen bonds. The crystal structure of compound II is composed of binuclear copper complexes and solvate water molecules. The copper atom coordinates the O,N,O ligand molecule and the chlorine ion, which fulfills a bridging function. The coordination polyhedron of the metal atom is a distorted tetragonal bipyramid in which the vertex is occupied by the chlorine atom of the neighboring complex in the dimer. Compound III is a centrosymmetric dimer complex. The coordination polyhedra of two nickel atoms related via the inversion center are distorted octahedra shared by the edge.

  16. Metal complexes derived from hydrazoneoxime ligands: V. Spectral and structural studies on diacetylmonoxime n-alkanoylhydrazones and their nickel(II) and copper(II) complexes.

    PubMed

    Salem, Nahed M H; El Sayed, Laila; Haase, Wolfgang; Iskander, Magdi F

    2015-01-01

    A series of diacetylmonoxime n-alkanoylhydrazones (H₂L(n), n=4, 5, 6, 12 and 16) were prepared by the condensation of diacetylmonoxime with the corresponding n-alkanoylhydrazine in ethanol. The X-ray crystal structure of diacetylmonoxime octadecanoyl hydrazone has been solved and its molecular and supramolecular structures have been discussed. Both neutral dinuclear Cu(II) and Ni(II) complexes, [{M(L(n))}₂] (M=Cu, Ni and n=4, 5, 6, 12 and 16) as well as cationic dinuclear Cu(II) complexes, [Cu₂(L(n))(HL(n))]NO₃ (n=12 and 16) have been also prepared and characterized by elemental analyses, FD- and ESI-mass spectra as well as IR, UV-Vis, (1)H NMR, (13)C NMR spectra. Variable temperature magnetic susceptibility measurements for dinuclear Cu(II) complexes have been also discussed.

  17. Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: a study to understand their biological activity.

    PubMed

    Bisceglie, Franco; Pinelli, Silvana; Alinovi, Rossella; Goldoni, Matteo; Mutti, Antonio; Camerini, Alessandro; Piola, Lorenzo; Tarasconi, Pieralberto; Pelosi, Giorgio

    2014-11-01

    This paper reports the synthesis and characterization of trans-cinnamaldehyde thiosemicarbazone (Htcin), cuminaldehyde thiosemicarbazone (Htcum) and their copper and nickel complexes. All the compounds, which on healthy cells (human fibroblasts) show a neglectable cytotoxicity, were screened in vitro in cell line U937 for their antileukemic activity. These compounds, in spite of their molecular similarity, present variegated behaviors. Htcin shows no inhibition activity in U935 cells, while both its metal complexes inhibit proliferation with IC50 at μM concentrations. The other ligand, Htcum, and its metal complexes, besides inhibiting proliferation, induce apoptosis. The cell cycle analysis highlights a G2/M checkpoint stop suggesting a possible direct action on DNA or on topoisomerase IIa. From CD and UV spectroscopy experiments, the DNA results to be not the main target of all these molecules, while both copper complexes are effective topoisomerase IIa inhibitors. All of these molecules activate caspase-9 and caspase-3, while caspase-8 activity is significantly induced by both cinnamaldehyde metal complexes. Tests on PgP and intracellular metal concentrations (determined by mean of atomic absorption spectrometry) show that the compounds tend to accumulate in the cytoplasm and that the cells do not manage to pump out copper and nickel ions.

  18. Metal complexes derived from hydrazoneoxime ligands: V. Spectral and structural studies on diacetylmonoxime n-alkanoylhydrazones and their nickel(II) and copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Salem, Nahed M. H.; El Sayed, Laila; Haase, Wolfgang; Iskander, Magdi F.

    2015-01-01

    A series of diacetylmonoxime n-alkanoylhydrazones (H2Ln, n = 4, 5, 6, 12 and 16) were prepared by the condensation of diacetylmonoxime with the corresponding n-alkanoylhydrazine in ethanol. The X-ray crystal structure of diacetylmonoxime octadecanoyl hydrazone has been solved and its molecular and supramolecular structures have been discussed. Both neutral dinuclear Cu(II) and Ni(II) complexes, [{M(Ln)}2] (M = Cu, Ni and n = 4, 5, 6, 12 and 16) as well as cationic dinuclear Cu(II) complexes, [Cu2(Ln)(HLn)]NO3 (n = 12 and 16) have been also prepared and characterized by elemental analyses, FD- and ESI-mass spectra as well as IR, UV-Vis, 1H NMR, 13C NMR spectra. Variable temperature magnetic susceptibility measurements for dinuclear Cu(II) complexes have been also discussed.

  19. Nickel(II) and copper(II) coordination polymers with 1,2-bis(tetrazol-1-yl)ethane and thiocyanate: Structure, supramolecular isomerism and magnetism

    NASA Astrophysics Data System (ADS)

    Liu, Pei-Pei; Wang, Yan-Qin; Tian, Chun-Yan; Peng, Hui-Qi; Gao, En-Qing

    2009-02-01

    Two heteroleptic coordination polymers with the flexible 1,2-bis(tetrazol-1-yl)ethane (btze) ligand, [Ni(btze) 2(SCN) 2] n ( 1) and [Cu(btze)(SCN) 2] n ( 2), have been synthesized in presence of thiocyanate. Compound 1 is composed of 1D chains with double btze bridges in the V-shaped gauche conformation, while 2 exhibits 2D coordination networks in which 1D chains with double N, S-thiocyanate bridges are cross-linked by btze bridges in the Z-shaped transoid conformation. In both compounds, the coordination motifs are stacked into 3D architectures through S···S and C-H···N interactions. The structures of 1 and a previously reported compound illustrate an interesting type of supramolecular isomerism. The two isomers exhibit almost identical 1D coordination structure and 2D hydrogen bonded superstructure, and the difference lies only in the interlayer packing associated with S···S contacts. Compound 2 exhibits weak antiferromagnetic interactions with J = 0.29 cm -1, consistent with the structural observation that the thiocyanate bridge adopts an equatorial-axial disposition between Cu(II) ions.

  20. Carbene formation upon reactive dissolution of metal oxides in imidazolium ionic liquids.

    PubMed

    Wellens, Sil; Brooks, Neil R; Thijs, Ben; Meervelt, Luc Van; Binnemans, Koen

    2014-03-01

    Metal oxides were found to dissolve in different imidazolium ionic liquids with a hydrogen atom in the C2 position of the imidazolium ring, but not if a methyl substituent was present in the C2 position. The crystal structure of the product that crystallised from an ionic liquid containing dissolved silver(i) oxide showed that this was a silver(i) carbene complex. The presence of carbenes in solution was proven by (13)C NMR spectroscopy and the reactions were also monitored by Raman spectroscopy. The dissolution of other metal oxides, namely copper(ii) oxide, zinc(ii) oxide and nickel(ii) oxide, was also studied in imidazolium ionic liquids and it was found that stable zinc(ii) carbenes were formed in solution, but these did not crystallise under the given experimental conditions. A crystalline nickel(ii) carbene complex could be obtained from a solution of nickel(ii) chloride dissolved in a mixture of 1-butyl-3-methylimidazolium and 1-ethyl-3-methylimidazolium acetate. PMID:24390601

  1. Zinc(II) oxide solubility and phase behavior in aqueous sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1990-02-01

    A platinum-lined, flowing autoclave facility is used to investigate the solubility/phase behavior of zinc(II) oxide in aqueous sodium phosphate solutions at temperatures between 290 and 560 K. ZnO solubilities are observed to increase continuously with temperature and phosphate concentration. At higher phosphate concentrations, a solid phase transformation to NaZnPO{sub 4} is observed. NaZnPO{sub 4} solubilities are retrograde with temperature. The measured solubility behavior is examined via a Zn(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reaction equilibria are obtained from a least-squares analysis of the data. The existence of two new zinc(II) ion complexes is reported for the first time: Zn(OH){sub 2}(HPO{sub 4}){sup 2{minus}} and Zn(OH){sub 3}(H{sub 2}PO{sub 4}){sup 2{minus}}. A summary of thermochemical properties for species in the systems ZnO-H{sub 2}O and ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O is also provided. 21 refs., 10 figs., 7 tabs.

  2. Synthesis of new microbial pesticide metal complexes derived from coumarin-imine ligand.

    PubMed

    Elhusseiny, Amel F; Aazam, Elham S; Al-Amri, Huda M

    2014-07-15

    A series of metal complexes of zinc(II), cadmium(II), copper(II), nickel(II) and palladium(II) have been synthesized from coumarin-imine ligand, 8-[(1E)-1-(2-aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate, [HL]. The structures of the complexes were proposed in the light of their spectroscopic, molar conductance, magnetic and thermal studies. The ligand coordinated in a tridentate manner through the azomethine nitrogen, the phenolic oxygen and the amine nitrogen and all complexes were non-electrolytes with different geometrical arrangements around the central metal ion. Photoluminescence data unambiguously showed remarkable fluorescence enhancement to Zn(2+) over other cations. The antimicrobial screening tests revealed that copper(II) complex exhibited the highest potency and its minimum inhibitory concentration on the enzymatic activities of the tested microbial species was determined. No toxin productivity was detected for all tested toxigenic species upon the exposure of copper complex. PMID:24704603

  3. Synthesis of new microbial pesticide metal complexes derived from coumarin-imine ligand

    NASA Astrophysics Data System (ADS)

    Elhusseiny, Amel F.; Aazam, Elham S.; Al-Amri, Huda M.

    2014-07-01

    A series of metal complexes of zinc(II), cadmium(II), copper(II), nickel(II) and palladium(II) have been synthesized from coumarin-imine ligand, 8-[(1E)-1-(2-aminophenyliminio)ethyl]-2-oxo-2H-chromen-7-olate, [HL]. The structures of the complexes were proposed in the light of their spectroscopic, molar conductance, magnetic and thermal studies. The ligand coordinated in a tridentate manner through the azomethine nitrogen, the phenolic oxygen and the amine nitrogen and all complexes were non-electrolytes with different geometrical arrangements around the central metal ion. Photoluminescence data unambiguously showed remarkable fluorescence enhancement to Zn2+ over other cations. The antimicrobial screening tests revealed that copper(II) complex exhibited the highest potency and its minimum inhibitory concentration on the enzymatic activities of the tested microbial species was determined. No toxin productivity was detected for all tested toxigenic species upon the exposure of copper complex.

  4. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-01

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  5. Evolution of copper(II) as a new alkene amination promoter and catalyst

    PubMed Central

    Chemler, Sherry R.

    2010-01-01

    Copper(II) carboxylates and chiral copper(II) triflate·bis(oxazoline) complexes promote and catalyze intramolecular alkene carboamination, diamination and aminooxygenation reactions, creating an array of nitrogen heterocycles. High diastereoselectivity and enantioselectivity can be achieved in these transformations. This account reviews the discovery and development of these useful and interesting reactions. PMID:21379363

  6. Neutral nickel(II) phthalocyanine as a stable catalyst for visible-light-driven hydrogen evolution from water.

    PubMed

    Yuan, Yong-Jun; Tu, Ji-Ren; Lu, Hong-Wei; Yu, Zhen-Tao; Fan, Xiao-Xing; Zou, Zhi-Gang

    2016-01-28

    Neutral nickel(ii) phthalocyanine was found to be an efficient and stable catalyst for photocatalytic H2 evolution from water when coupled with an iridium complex as the photosensitizer and triethanolamine as the sacrificial electron donor. The result shows that the Ni-N sigma bond can enhance the stability of the catalyst. PMID:26743686

  7. Electronic Transitions as a Probe of Tetrahedral versus Octahedral Coordination in Nickel(II) Complexes: An Undergraduate Inorganic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Filgueiras, Carlos A. L.; Carazza, Fernando

    1980-01-01

    Discusses procedures, theoretical considerations, and results of an experiment involving the preparation of a tetrahedral nickel(II) complex and its transformation into an octahedral species. Suggests that fundamental aspects of coordination chemistry can be demonstrated by simple experiments performed in introductory level courses. (Author/JN)

  8. Syntheses, characterization and antifungal activity of heteroleptic nickel(II) complexes with N-alkylsulfonyldithiocarbimates and phosphines

    NASA Astrophysics Data System (ADS)

    Vidigal, Antonio E. C.; Rubinger, Mayura M. M.; Oliveira, Marcelo R. L.; Guilardi, Silvana; Souza, Rafael A. C.; Ellena, Javier; Zambolim, Laércio

    2016-06-01

    Four nickel(II) complexes of general formula [Ni(RSO2Ndbnd CS2) (PPh3)2] where R = CH3 (2a), CH3CH2 (2b), CH3(CH2)3 (2c) and CH3(CH2)7 (2d) and PPh3 = triphenylphosphine; and two nickel(II) complexes of general formula [Ni(RSO2Ndbnd CS2)dppe] where R = CH3(CH2)3 (3c) and CH3(CH2)7 (3d) and dppe = 1,2-bis(diphenylphosphine)ethane) were prepared. These new complexes were obtained by the reaction of nickel(II) chloride hexahydrate with potassium N-alkylsulfonyldithiocarbimates and the appropriate phosphine using ethanol/water as solvent. The IR, UV-Vis and 1H, 13C and 31P NMR spectra, elemental analysis of Ni and the HR-ESI-MS were consistent with the formation of square planar nickel(II) complexes with mixed ligands. The structures of the compounds 2b and 2c were determined by single crystal X-ray diffraction. The compounds are isostructural and crystallize in the space group P 1 bar of the triclinic system. The activities of the complexes were investigated in vitro against Botrytis cinerea, Colletotrichum acutatum and Alternaria solani, fungi species that affect various commercially important plants. All the complexes were active.

  9. Copper(II) thiaethyneporphyrin and copper(II) 21-phosphoryl N-confused porphyrin hybrids. intramolecular copper(II)-carbon interaction inside of a porphyrinoid surrounding.

    PubMed

    Grzegorzek, Norbert; Nojman, Elżbieta; Szterenberg, Ludmiła; Latos-Grażyński, Lechosław

    2013-03-01

    Stabilization of unusual organocopper(II) species via the very efficient protection of the copper(II)-carbon bond has been achieved encapsulating the copper(II) center in the coordination core of suitably constructed carbaporphyrinoids. Copper(II) was inserted into hybrid N-confused porphyrins which contain 21-diphenylphosphoryl-, 21-diphenylthiophosphoryl-, or 21-phosphinodithioic substituents or into 20-thiaethyneporphyrin, an aromatic porphyrinoid, which combines two structural motifs of 21-thiaporphyrin and ethyne. Two distinctly different types of the copper(II)-carbon bond have been detected. Copper(II) hybrid N-confused porphyrins reveal the η(1)-C(21) side-on coordination. The unprecedented equatorial metal(II)···η(2)-CC interaction has been trapped in a copper(II) thiaethyneporphyrin surrounding.

  10. Adsorptive removal of nickel(II) ions from aqueous environment: A review.

    PubMed

    Raval, Nirav P; Shah, Prapti U; Shah, Nisha K

    2016-09-01

    Among various methods adsorption can be efficiently employed for the treatment of heavy metal ions contaminated wastewater. In this context the authors reviewed variety of adsorbents used by various researchers for the removal of nickel(II) ions from aqueous environment. One of the objectives of this review article is to assemble the scattered available enlightenment on a wide range of potentially effective adsorbents for nickel(II) ions removal. This work critically assessed existing knowledge and research on the uptake of nickel by various adsorbents such as activated carbon, non-conventional low-cost materials, nanomaterials, composites and nanocomposites. The system's performance is evaluated with respect to the overall metal removal and the adsorption capacity. In addition, the equilibrium adsorption isotherms, kinetics and thermodynamics data as well as various optimal experimental conditions (solution pH, equilibrium contact time and dosage of adsorbent) of different adsorbents towards Ni(II) ions were also analyzed. It is evident from a literature survey of more than 190 published articles that agricultural solid waste materials, natural materials and biosorbents have demonstrated outstanding adsorption capabilities for Ni(II) ions. PMID:27149285

  11. The interaction of zinc(II) and hydroxamic acids and a metal-triggered Lossen rearrangement.

    PubMed

    Duchácková, Lucie; Roithová, Jana

    2009-12-14

    The structure and reactivity of a complex of zinc(II), water, acetic acid, and acetohydroxamic acid, in which one of the acids is deprotonated, is investigated by means of mass spectrometry, labeling studies, and density functional calculations to unravel the exceptional binding properties of hydroxamic acids towards zinc-containing enzymes at the molecular level. It is shown that acetohydroxamic acid is deprotonated in the complex, whereas acetic acid is present in its neutral form. The binding energies of the ligands towards zinc increase in the following order: water

  12. Structural studies on acetophenone- and benzophenone-derived thiosemicarbazones and their zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Ferraz, Karina S. O.; Silva, Nayane F.; Da Silva, Jeferson G.; Speziali, Nivaldo L.; Mendes, Isolda C.; Beraldo, Heloisa

    2012-01-01

    In the present work N(3)- meta-chlorophenyl-(HAc3 mCl, 1) and N(3)- meta-fluorphenyl-(HAc3 mF, 2) acetophenone thiosemicarbazone, and N(3)- meta-chlorophenyl-(HBz3 mCl, 3) and N(3)- meta-fluorphenyl-(HBz3 mF, 4) benzophenone thiosemicarbazone were obtained, as well as their zinc(II) complexes [Zn(Ac3 mCl) 2] ( 5), [Zn(Ac3 mF) 2] ( 6), [Zn(Bz3 mCl) 2] ( 7) and [Zn(Bz3 mF) 2] ( 8). Upon re-crystallization in DMSO:acetone conversion of 8 into [Zn(Bz3 mF) 2]·(DMSO) ( 8a) occurred. The crystal structures of 2, 5 and 8a were determined.

  13. Zero thermal expansion in a flexible, stable framework : tetramethylammonium copper(I) zinc(II) cyanide.

    SciTech Connect

    Phillips, A. E.; Halder, G. J.; Chapman, K. W.; Goodwin, A. L.; Kepert, C. J.; Univ. Sydney; Univ. Cambridge

    2010-01-13

    Tetramethylammonium copper(I) zinc(II) cyanide, which consists of N(CH{sub 3}){sub 4}{sup +} ions trapped within a cristobalite-like metal cyanide framework, has been studied by variable-temperature powder and single-crystal X-ray diffraction. Its coefficient of thermal expansion is approximately zero over the temperature range 200-400 K and comparable with the best commercial zero thermal expansion materials. The atomic displacement parameters, apparent bond lengths, and structure of a low-temperature, low-symmetry phase reveal that the low-energy vibrational modes responsible for this behavior maintain approximately rigid Zn coordination tetrahedra but involve significant distortion of their Cu counterparts.

  14. Highly sensitive sensing of zinc(II) by development and characterization of a PVC-based fluorescent chemical sensor

    NASA Astrophysics Data System (ADS)

    Aksuner, Nur; Henden, Emur; Yenigul, Berrin; Yilmaz, Ibrahim; Cukurovali, Alaaddin

    2011-03-01

    A sensor membrane with excellent performance based on 1-methyl-1-phenyl-3-[1-hydroxyimino-2-(succinimido)ethyl]cyclobutane has been developed for the determination of zinc(II) ions. The sensing membrane is capable of determining zinc(II) with an outstanding high selectivity over a dynamic range between 8.0 × 10 -8 and 1.6 × 10 -4 mol L -1 with a limit of detection of 2.5 × 10 -8 mol L -1 (1.6 μg L -1). It can be easily and completely regenerated by using 0.1 mol L -1 EDTA solution. The optical sensor developed here was found to be stable, cost effective, easy to prepare, and has unique selectivity towards Zn 2+ ion with respect to common metal ions. The proposed sensor was then applied for the determination of zinc in tap water and hair samples with satisfactory results.

  15. Synthesis and structural characterization of zinc(II) and cobalt(II) complexes based on multidentate hydrazone ligands

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yuan Zhuo; Liu, E.; Yang, Chengxiong; Golen, James A.; Rheingold, Arnold L.; Zhang, Guoqi

    2016-04-01

    Two multidentate Schiff base ligands containing a hydrazone unit have been synthesized and investigated for zinc(II) and cobalt(II) coordination chemistry. The reactions of the 4-pyridyl derived hydrazone ligand HL1 with zinc(II) or cobalt(II) salts gave three mononuclear complexes that were structurally characterized by X-ray diffraction analysis. The results revealed that the ligand could adopt different coordination modes when various counter anions were employed. While in the case that zinc dichloride was used as a metal salt a neutral mononuclear mono-ligand complex was formed, the deprotonation of hydrazone occurred when zinc(II) or cobalt(II) nitrate were present and two new isostructural mononuclear bis-ligand complexes were isolated. Modification of the hydrazone ligand with oxygen donors was found to have a significant impact on the ligand reactivity, and a similar reaction of H2L2 with cobalt(II) nitrate gave a protonated product of H2L2 without the incorporation of cobalt(II), which features a one-dimensional hydrogen-bonded network in the solid state.

  16. Synthesis, crystal structure and spectroscopic properties of a supramolecular zinc(II) complex with N2O2 coordination sphere.

    PubMed

    Dong, Wen-Kui; Zhang, Li-Sha; Sun, Yin-Xia; Zhao, Meng-Meng; Li, Gang; Dong, Xiu-Yan

    2014-01-01

    A new hexa-coordinated zinc(II) complex, namely [ZnL(H2O)2]n, with N2O2 coordination sphere (H2L=4,4'-dibromo-6,6'-dichloro-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol) has been synthesized and structurally characterized by elemental analyses, IR, UV-vis spectra and TG-DTA analyses, etc. Crystallographic data are monoclinic, space group P2(1)/c, a=24.634(2)Å, b=10.144(1)Å, c=7.9351(6)Å, β=91.371(2)°, V=1982.4(3)Å(3), Dc=2.099 g/cm(3), Z=4. The zinc(II) complex exhibits a slightly distorted octahedral geometry with halogen-substituted Salen-type bisoxime forming the basal N2O2 coordination sphere and two oxygen atoms from two coordinated water molecules in the axial position. The hydrogen-bonding and π-π stacking interactions have stabilized the zinc(II) complex molecules to form a self-assembling infinite dual metal-water chain-like structure with the nearest Zn⋯Zn distance of 4.954(4)Å.

  17. The effects of molecular and lattice structures on thermotropic phase behaviour of zinc(II) undecanoate and isomeric zinc(II) undecynoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.; Ellis, Henry A.

    2013-02-01

    Molecular structures, hydrocarbon chain packing, in the crystal lattice and their effects on the thermal behaviour of saturated and isomeric zinc(II) undecynoates have been investigated by a variety of physical methods. All the compounds crystallize in a monoclinic crystal system with a being the long axis. The hydrocarbon chains adopt the fully extended all-trans conformation and are arranged as methyl-methyl overlapping bilayers within a lamellar. Furthermore, in order to enhance lattice stability, hydrocarbon chains, from different layers in the lamellar are not in the same plane but are packed in an alternating spatial arrangement and are tilted at ca. 60° to the metal basal plane. In a molecule, four carbonyl groups bind to a zinc atom, in a bridging bidentate mode, to form a three dimensional polymeric network. At elevated temperatures a highly viscous phase, a polymeric ionic mesophase, possibly a smectic C phase, is observed for 10-undecynoate only, whereas two crystal-crystal and crystal-isotropic liquid transitions are observed for the undecanoate and 9-undecynoate, respectively. Though head group coordination is nearly iso-structural, differences in molecular symmetry and lattice packing are evident. These arise from differences in the spatial orientation of the high electron density hydrocarbon chains in the crystal lattice. Indeed, it is the relative balance between head group electrostatic and van der Waals interactions at elevated temperatures that accounts for formation of the mesophase. Surprisingly, all the freshly synthesized compounds are meta-stable, only achieving complete stability over several days. Furthermore, on heating and cooling the compounds, thermotropic behaviour is altered so that on re-heating, subtle changes in phase textures are observed.

  18. Nickel(II) Oxide Solubility and Phase Stability in High Temperature Aqueous Solutions

    SciTech Connect

    S.E. Ziemniak; M.A. Goyette

    2003-03-17

    A platinum-lined, flowing autoclave facility was used to investigate the solubility behavior of nickel(II) oxide (NiO) in deoxygenated ammonium and sodium hydroxide solutions between 21 and 315 C. Solubilities were found to vary between 0.4 and 400 nanomolal (nm). The measured nickel ion solubilities were interpreted via a Ni(II) ion hydroxo- and amino-complexing model and thermodynamic functions for these equilibria were obtained from a least-squares analysis of the data. Two solid phase transformations were observed: at temperatures below 149 C, the activity of Ni(II) ions in aqueous solution was controlled by a hydrous Ni(II) oxide (theophrastite) solid phase rather than anhydrous NiO (bunsenite); above 247 C, Ni(II) activities were controlled by cubic rather than rhombohedral bunsenite.

  19. Potentiometric determination of potassium cations using a nickel(II) hexacyanoferrate-modified electrode.

    PubMed

    Mortimer, R J; Barbeira, P J; Sene, A F; Stradiotto, N R

    1999-06-14

    Electroactive nickel(II) hexacyanoferrate (NiHCF) thin film modified electrodes are effective potentiometric sensors for the determination of potassium ions. The NiHCF films are deposited onto glassy carbon electrodes by repetitive potential cycling in K(3)Fe(CN)(6)/NaNO(3)/Ni(NO(3))(2) solution. The modified electrodes exhibit a linear response to potassium ions in the concentration range 1x10(-3) to 2.0 mol dm(-3), with a near-Nernstian slope (45-49 mV per decade) at 25 degrees C. In the determination of potassium ion in syrups used for treatment of potassium deficiency, the NiHCF-modified electrode gave comparable results to those obtained using flame emission spectrophotometry. PMID:18967597

  20. Integrated and Passive 1,2,3-Triazolyl Groups in Fluorescent Indicators for Zinc(II) Ions – Thermodynamic and Kinetic Evaluations

    PubMed Central

    Simmons, J. Tyler; Allen, John R.; Morris, Deborah R.; Clark, Ronald J.; Levenson, Cathy W.; Davidson, Michael W.; Zhu, Lei

    2013-01-01

    In addition to being a covalent linker in molecular conjugation chemistry, the function of a 1,2,3-triazolyl moiety resulting from the copper(I)-catalyzed azide-alkyne cycloaddition reaction as a ligand for metal ions is receiving considerable attention. In this work, we characterize the thermodynamic and kinetic effects of incorporating a 1,2,3-triazolyl group in a multidentate ligand scaffold on metal coordination in the context of fluorescent zinc(II) indicator development. Ligands L14, BrL14, and FL14 (1,4-isomers) contain the 1,4- disubstituted-1,2,3-triazolyl group that is capable of binding with zinc(II) in conjunction with a di(2-picolylamino) (DPA) moiety within a multidentate ligand scaffold. The 1,2,3-triazolyl in the 1,4-isomers is therefore “integrated” in chelation. The 1,5-isomers L15, BrL15, and FL15 contain 1,2,3-triazolyls that are excluded from participating in zinc(II) coordination. These 1,2,3- triazolyls are “passive linkers”. Zinc(II) complexes of 2:1 (ligand/metal) stoichiometry are identified in solution using 1H NMR spectroscopy and isothermal titration calorimetry (ITC), and in one case, characterized in the solid state. The 1:1 ligand/zinc(II) affinity ratio of L14 over L15, which is attributed to the affinity enhancement of a 1,2,3-triazolyl group to zinc(II) over that of the solvent acetonitrile, is quantified at 18 (−1.7 kcal/mol at 298 K) using an ITC experiment. Fluorescent ligands FL14 and FL15 are evaluated for their potential in zinc(II) sensing applications under pH neutral aqueous conditions. The 1,4-isomer FL14 binds zinc(II) both stronger and faster than the 1,5-isomer FL15. Visualization of free zinc(II) ion distribution in live HeLa cells is achieved using both FL14 and FL15. The superiority of FL14 in staining endogenous zinc(II) ions in live rat hippocampal slices is evident. In summation, this work is a fundamental study of 1,2,3-triazole coordination chemistry, with a demonstration of its utility in developing

  1. Syntheses, structural variations and fluorescence studies of two dinuclear zinc(II) complexes of a Schiff base ligand with an extended carboxylate side arm

    NASA Astrophysics Data System (ADS)

    Shit, Shyamapada; Sasmal, Ashok; Dhal, Piu; Rizzoli, Corrado; Mitra, Samiran

    2016-03-01

    A potentially tetradentate Schiff base ligand containing carboxylic acid group, HL, (E)-2-((pyridin-2-yl)methyleneamino)-5-chlorobenzoic acid is synthesized and characterized. Reaction of HL with hydrated zinc(II) trichloroacetate and zinc(II) trifluoroacetate under similar reaction condition yields two discrete dinuclear complexes, [Zn(L)(Cl)]2 (1) and [Zn(L)(CF3COO)]2 (2) and characterized by different physicochemical methods. Single crystal X-ray structural characterization reveals different ligating properties of the coordinated anionic ligand (L-) in its zinc(II) complexes. The side arm carboxylate of L- shows μ1,3-carboxylato-bridging mode in 1 and connects zinc(II) atoms in syn-anti fashion while it exhibits a μ1,1-carboxylato-bridging mode in 2. The metal ions display distorted square pyramidal geometries in both the structures and associated with different degrees of distortions. The fluorescence spectra of HL and its zinc(II) complexes recorded in methanol at room temperature which reveal the enhancement of emission intensity for the complexes compared to that of the free ligand. Thermogravimetric analyses (TGA) reveal high thermal stabilities of the complexes.

  2. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    SciTech Connect

    Wang, G.-F. E-mail: s-shuwen@163.com; Zhang, X.; Sun, S.-W.; Sun, H.; Ma, H.-X.

    2015-12-15

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms from a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.

  3. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    NASA Astrophysics Data System (ADS)

    Wang, G.-F.; Zhang, X.; Sun, S.-W.; Sun, H.; Ma, H.-X.

    2015-12-01

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [ k 3- N, N', N''- Tp t-Bu, Me NiI] ( 1) and [ k 3- N, N', N''- Tp t-Bu, Me NiNO3] ( 2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms from a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.

  4. Spectral studies of copper(II) complexes of 6-(3-thienyl) pyridine-2-thiosemicarbazone

    SciTech Connect

    Mahjoub, Omima Abdalla; Farina, Yang

    2014-09-03

    Two novel copper(II) complexes [Cu(HL)Cl]Cl.H{sub 2}O (1) and [Cu(L)NO{sub 3}]Ðœ‡H{sub 2}O (2) of the three NNS donor thiosemicarbazone ligand 6-(3-thienyl) pyridine-2-thiosemicarbazone have been synthesized. The ligand and its copper(II) complexes were characterized by elemental analysis (C, H, N, and S), FT-IR, UV-visible, magnetic susceptibility and molar conductance. The thiosemicarbazone is present either as the thione form in complex 1 or as thiol form in complex 2 and is coordinated to copper(II) atom via the pyridine nitrogen atom, the azomethine nitrogen atom and the sulfur atom. The physicochemical and spectral data suggest square planar geometry for copper(II) atoms.

  5. Synthesis and reactivity of a conveniently prepared two-coordinate bis(amido) nickel(II) complex.

    PubMed

    Lipschutz, Michael I; Tilley, T Don

    2012-07-21

    A strictly two-coordinate nickel(II) bis(amido) complex has been prepared and its reactivity towards a variety of small molecules is described. Ni[N(SiMe(3))(DIPP)](2) reacts with DMAP and acetonitrile to form T-shaped three-coordinate complexes, and preliminary results show that Ni[N(SiMe(3))(DIPP)](2) is a catalyst for the hydrosilation of olefins with secondary silanes at ambient temperature.

  6. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively.

  7. DNA binding, BSA interaction and SOD activity of two new nickel(II) complexes with glutamine Schiff base ligands.

    PubMed

    Wei, Qiang; Dong, Jianfang; Zhao, Peiran; Li, Manman; Cheng, Fengling; Kong, Jinming; Li, Lianzhi

    2016-08-01

    Two hexacoordinated octahedral nickel(II) complexes, [Ni(o-van-gln)(phen)(H2O)](1) and [Ni(sal-gln)(phen)(H2O)](2) [o-van-gln=a Schiff base derived from o-vanillin and glutamine, sal-gln=a Schiff base derived from salicylaldehyde and glutamine, phen=1,10-phenanthroline], have been synthesized and characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. X-ray studies showed that nickel atoms of both 1 and 2 exhibit distorted NiN3O3 octahedral geometry. In each crystal, intermolecular hydrogen bonds form a two-dimensional network structure. DNA-binding properties of these two nickel(II) complexes were investigated by using UV-Vis absorption, fluorescence, circular dichroism (CD) spectroscopies and viscosity measurements. Results indicated that the two complexes can bind to calf thymus DNA (CT-DNA) via an intercalative mode, and complex 1 exhibits higher interaction with CT-DNA than complex 2. Furthermore, the interactions between the nickel(II) complexes with bovine serum albumin (BSA) have been studied by spectroscopies. The results indicated that both complexes could quench the intrinsic fluorescence of BSA in a static quenching process. The binding constants (Kb) and the numbers of binding sites (n) obtained are 1.10×10(5)M(-1) and 1.05 for complex 1 and 5.05×10(4)M(-1) and 0.997 for complex 2, respectively. Site-selective competitive binding investigation indicated that the binding sites of both the complexes are located in site I of sub-domains IIA of BSA. Assay of superoxide dismutase (SOD) activity of the nickel(II) complexes revealed that they exhibit significant superoxide scavenging activity with IC50=3.4×10(-5)M for complex 1 and 4.3×10(-5)M for complex 2, respectively. PMID:27295415

  8. Sequential coupling approach to the synthesis of nickel(II) complexes with N-aryl-2-amino phenolates.

    PubMed

    Fuse, Shinichiro; Tago, Hiroaki; Maitani, Masato M; Wada, Yuji; Takahashi, Takashi

    2012-10-01

    A sequential multicomponent coupling approach is a powerful method for the construction of combinatorial libraries because structurally complex and diverse molecules can be synthesized from simple materials in short steps. In this paper, an efficient synthesis of nickel(II) complexes with N-aryl-2-amino phenols via a sequential three-step coupling approach is described, for potential use in nonlinear optical materials, bioinspired catalytic systems, and near-infrared absorbing filters. Seventeen N-aryl-2-amino phenolates were successfully synthesized in high yields based on the coupling of 3,5-di-tert-butylbenzene-1,2-diol with a pivotal aromatic scaffold, 4-bromo-2-iodo-aniline, followed by sequential Suzuki-Miyaura coupling with aryl boronates. A total of 16 analytically pure nickel(II) complexes with N-aryl-2-amino phenolates were obtained from 17 complexation trials. The procedure allowed us to assemble 4 components in high yields without protection, deprotection, oxidation or reduction steps. Various building blocks that included electron-donating, electron-withdrawing, and basic were used, and readily available, nontoxic and environmentally benign substrates and reagents were employed with no generation of toxic compounds. No strict anhydrous or degassed conditions were required. Absorption spectroscopic measurement of the synthesized nickel(II) complexes revealed that the ortho-substituent Ar(1) exerted more influence on the absorption wavelength of the complexes than the para-substituent Ar(2). On the other hand, both substituents Ar(1) and Ar(2) influenced the molar absorptivity values. These observations should be useful for the design of new and useful nickel(II) complexes as near-infrared chromophores.

  9. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    PubMed

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. PMID:27400422

  10. Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2](-): structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes.

    PubMed

    Thirumoorthi, Ramalingam; Chivers, Tristram; Häggman, Susanna; Mansikkamäki, Akseli; Morgan, Ian S; Tuononen, Heikki M; Lahtinen, Manu; Konu, Jari

    2016-08-01

    A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctly different Ni-S bond lengths (2.3487(8), 2.4500(9) and 2.5953(10) Å). By contrast, in the red-brown square-planar complex 5b the two ligands are S,S'-chelated to Ni(ii) (d(Ni-S) = 2.165(2) and 2.195(2) Å) with one pendant PPh2S group. DFT calculations revealed that the energetic difference between singlet and triplet state octahedral and square-planar isomers of the Ni(ii) complex is essentially indistinguishable. Consistently, VT and (31)P CP/MAS NMR spectroscopic investigations indicated that a mixture of isomers exists in solution at room temperature, while the singlet state square-planar isomer 5b becomes favoured at -40 °C. PMID:27453403

  11. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream. PMID:27253970

  12. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream.

  13. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.

    PubMed

    Akhtar, N; Iqbal, J; Iqbal, M

    2004-04-30

    The biosorption process for the removal of nickel(II) by loofa sponge-immobilized biomass of Chlorella sorokiniana (LIBCS), a newly developed immobilized biosorbent, was characterized. Effects of environmental factors on metal uptake capacity of LIBCS were studied and compared with free biomass of C. sorokiniana (FBCS). Nickel(II) removal by LIBCS was found to be influenced by pH of the solution, initial metal concentration, and biomass concentration. The biosorption of nickel(II) ions by both LIBCS and FBCS increased as the initial concentration of nickel(II) ions increased in the medium. No loss to biosorption capacity of LIBCS for nickel(II) was found due to the presence of loofa sponge, indeed as compared to FBCS an increase of 25.3% was noted in the biosorption capacity of LIBCS. Maximum biosorption capacities for FBCS and LIBCS were found as 48.08 and 60.38 mg nickel(II)/g, respectively, whereas the amount of nickel(II) ions adsorbed on the plain loofa sponge was 6.1mg/g. During these biosorption studies, LIBCS exhibited excellent physical and chemical stability without any significant release/loss of microalgal biomass from loofa sponge matrix. The kinetics of nickel(II) removal was extremely fast reaching at equilibrium in about 15 min for LIBCS and 20 min for FBCS. The biosorption equilibrium was well described by the Langmuir and Freundlich adsorption isotherms. The biosorption capacities were found to be solution pH dependent and the maximum adsorption was found at a solution pH 4-5. The LIBCS could be regenerated using 75 mM HCl, with up to 98% recovery. The LIBCS were shown to be robust and stable with little decrease in the nickel(II) uptake capacity when used in consecutive seven biosorption-desorption cycles. Continuous removal of nickel(II) from electroplating effluent by LIBCS packed in fixed bed column bioreactor confirm the possibility of developing a biological treatment process for the removal of toxic metals from authentic wastewater. PMID

  14. Coordination compounds of zinc(II) and N-alkylphenothiazines: synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Gowda, Netkal M. Made; Pacquette, H. Lawrence; Kim, Doo-Hyung; Jayaram, Beby

    1996-08-01

    Zinc(II) chloride/acetate complexes of title ligands have been synthesized in {MeOH}/{water} medium. The compounds were characterized by their elemental analyses, molar conductivity, magnetic susceptibility, and spectroscopic data. The molecular formulas of the new complexes were found to be: [(C 17H 20ClN 2S) 4ZnCl 2]Cl 4 where C 17H 20ClN 2S = protonated chlorpromazine; [(C 19H 25N 2S) 2ZnCl 2]Cl 2 where C 19H 25N 2S = protonated ethopropazine; [(C 17H 21N 2S) 2ZnCl]Cl 3 where C 17H 21N 2S = protonated promethazine; [(C 21H 27N 2S 2) 2ZnCl 2]Cl 2 .MeOH and [(C 21H 27N 2S 2)ZnCl](OAc) 2 where C 21H 27N 2S 2 = protonated thioridazine; and [(C 21H 26F 3N 3S)ZnCl 3]Cl where C 21H 26F 3N 3S = diprotonated trifluoperazine. All compounds are diamagnetic and ionic in nature. Structures for the complexes are proposed.

  15. Unprecedented Alkene Complex of Zinc(II): Structures and Bonding of Divinylzinc Complexes

    PubMed Central

    Wooten, Alfred; Carroll, Patrick J.; Maestri, Aaron G.

    2008-01-01

    This report describes the solid state structures of a series of divinylzinc complexes, one of which represents the only structurally characterized zinc(II) π-complex. Vinylzinc reagents, Zn[C(Me)=CH2]2 (1) and Zn[C(H)=CMe2]2 (2), have been synthesized and isolated as white crystalline solids in 66% and 72% yield, respectively. Each compound exhibits an infinite polymeric architecture in the solid state via a series of zinc-π (1) and zinc-σ-bonded (2) bridging interactions. Addition of chelating ligands to these divinylzinc compounds allowed isolation of the monomeric adducts (bipy)Zn[C(Me)=CH2]2 (1·bipy), (tmeda)Zn[C(Me)=CH2]2 (1·tmeda), (bipy)Zn[C(H)=CMe2]2 (2·bipy), and (tmeda)Zn[C(H)=CMe2]2 (2·tmeda), of which (1·bipy), (2·bipy), and (2·tmeda) have been characterized crystallography. PMID:16594699

  16. Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use.

    PubMed

    Ricci-Júnior, Eduardo; Marchetti, Juliana Maldonado

    2006-03-01

    Sophisticated delivery systems, such as nanoparticles, represent a growing area in biomedical research. Nanoparticles (Np) were prepared using a solvent emulsion evaporation method (SEEM) to load zinc(II) phthalocyanine (ZnPc). Np were obtained using poly (D,L latic-co-glycolic acid) (PLGA). ZnPc is a second generation of photoactive agents used in photodynamic therapy. ZnPc loaded PLGA nanoparticles were prepared by SEEM, characterized and available in cellular culture. The process yield and encapsulation efficiency were 80 and 70%, respectively. The nanoparticles have a mean diameter of 285 nm, a narrow size distribution with polydispersive index of 0.12, smooth surface and spherical shape. ZnPc loaded nanoparticles maintains its photophysical behavior after encapsulation. Photosensitizer release from nanoparticles was sustained with a moderate and burst effect of 15% for 3 days. The photocytotoxicity of ZnPc loaded PLGA Np was evaluated on P388-D1 cells what were incubated with ZnPc loaded Np (5 microM) by 6h and exposed to red light (675 nm) for 120 s, and light dose of 30 J/cm(2). After 24h of incubation, the cellular viability was determined, obtaining 61% of cellular death. All the physical-chemical, photophysical and photobiological measurements performed allow us conclude that ZnPc loaded PLGA nanoparticles is a promising drug delivery system for photodynamic therapy.

  17. Polaron activation energy of nano porphyrin nickel(II) thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; El-Denglawey, A.; Elhady, A. F.; Abuelwafa, A. A.

    2014-08-01

    5,10,15,20-Tetraphenyl-21H, 23H-porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160-460 nm) and isochronal annealing in temperature range (300-348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 105 Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott's parameters were determined at low temperature. Seebeck coefficient indicates p-type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.

  18. Polaron activation energy of nano porphyrin nickel(II) thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; El-Denglawey, A.; Elhady, A. F.; Abuelwafa, A. A.

    2015-01-01

    5,10,15,20-Tetraphenyl-21 H, 23 H-porphyrin nickel(II), NiTPP films were prepared by thermal evaporation method of mother powder material. Electrical as well as thermo-electric properties were investigated for the as-deposited and annealed NiTPP films. The effect of NiTPP film thickness (160-460 nm) and isochronal annealing in temperature range (300-348 K) on DC electrical properties were studied. Both bulk resistivity and the mean free path were determined; their values are 1.38 × 105 Ω cm and 0.433 nm, respectively. The electrical conductivity exhibits intrinsic and extrinsic conduction. The values of activation energy in extrinsic and intrinsic regions are 0.204 and 1.12 eV, respectively. Mott's parameters were determined at low temperature. Seebeck coefficient indicates p-type conduction of NiTPP films. Carrier density, mobility and holes concentration were determined. Seebeck coefficient decreases with the increasing of temperature, while the conductivity increases with the increasing of temperature. The difference between the conductivity and the thermoelectric power activation energies was attributed to the potential barrier grain boundaries.

  19. Synthesis, structural and electrochemical properties of nickel(II) sulfamethazine complex with diethylenetriamine ligand.

    PubMed

    Bulut, İclal; Öztürk, Filiz; Bulut, Ahmet

    2015-03-01

    In this study, [Ni(dien)2]⋅smz2⋅(Hsmz: sulfamethazine and dien: diethylenetriamine) complex has been synthesized and its crystal structure has been determined by X-ray diffraction technique. The title complex crystallizes in orthorhombic system with space group Pbnb [a=8.556(5), b=16.228(5), c=28.209(5)Å, V=3917(3)Å(3) and Z=4]. The nickel(II) ion has distorted octahedral coordination geometry. The metal atom, which rides on a crystallographic center of symmetry, is coordinated by six nitrogen atoms of two dien ligands to form a discrete [Ni(dien)2](2+) unit, which captures two sulfamethazine ions, each through intermolecular hydrogen bonds. The powder EPR spectrum of Cu(2+) doped Ni(II) complex was recorded at room temperature. The vibrational investigation has been carried out by considering the characteristic bands related to the functional groups of the complex. The electrochemical behavior of Ni(II) ions in the presence and in the absence of smz and dien were studied by square wave and cyclic voltammetry. A well-defined irreversible peak at -1.112V different from those of the Ni(II)-smz (-0.876V) and the Ni(II)-dien complex (-1.064V) was observed in the solution containing Ni(II) ions, which was attributed to the formation of the new mixed ligand complex of Ni(II) with smz and dien.

  20. Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(II) from groundwater.

    PubMed

    Sang, Yimin; Gu, Qingbao; Sun, Tichang; Li, Fasheng; Liang, Cunzhen

    2008-05-01

    The elevated level of heavy metals in groundwater poses a substantial risk potentially to local resource users and the natural environment. Micellar-enhanced filtration (MEF) and alumina adsorption are considered from the viewpoint of copper(II) removal in groundwater, by taking copper(II) as an example. In MEF, copper(II) cations are collected electrostatically on micelles of sodium dodecyl benzene sulfonate (SDBS) and separated from the mother liquor by filtration using a novel nanofiber membrane prepared from chloridized polyvinyl chloride by high-voltage electrospinning process. After MEF with 10-layer filtration and SDBS concentration of 5 mmol/L, the removal of copper(II) in groundwater is above 70%. However, the final solution contains a large amount of surfactant causing serious second contamination in groundwater. This problem is overcome by alumina adsorption, where negatively charged surfactants are adsorbed on positively charged alumina particles and then recovered by conventional filtration. The hybrid process of MEF and alumina adsorption is successfully applied to removing almost 100% of copper(II) from groundwater. Finally, the characterization of the membrane and filtration mechanism are presented here. PMID:17945414

  1. Electrochemistry of copper(II) induced complexes in mycorrhizal maize plant tissues.

    PubMed

    Zitka, Ondrej; Merlos, Miguel-Angel; Adam, Vojtech; Ferrol, Nuria; Pohanka, Miroslav; Hubalek, Jaromir; Zehnalek, Josef; Trnkova, Libuse; Kizek, Rene

    2012-02-15

    Aim of the present paper was to study the electrochemical behavior of copper(II) induced complexes in extracts obtained from mycorrhizal and non-mycorrhizal maize (Zea mays L.) plants grown at two concentrations of copper(II): physiological (31.7 ng/mL) and toxic (317 μg/mL). Protein content was determined in the plant extracts and, after dilution to proper concentration, various concentrations of copper(II) ions (0, 100, 200 and 400 μg/mL) were added and incubated for 1h at 37°C. Further, the extracts were analyzed using flow injection analysis with electrochemical detection. The hydrodynamic voltammogram (HDV), which was obtained for each sample, indicated the complex creation. Steepness of measured dependencies was as follows: control 317 μg/mL of coppercopper(II) ions to upper parts of a plant by means of adsorbing of copper(II) in roots. Rapid complex formation was determined under applied potentials 300, 500 and 600 mV during the measuring HDVs. It was also verified that mycorrhizal colonization reduced root to shoot translocation of Cu(II) ions.

  2. Complexation of copper(II) with chitosan nanogels: toward control of microbial growth.

    PubMed

    Brunel, Fabrice; El Gueddari, Nour Eddine; Moerschbacher, Bruno M

    2013-02-15

    Pure chitosan nanogels were produced, used to adsorb copper(II), and their antimicrobial activities were assessed. The complexation of copper(II) with chitosan solutions and dispersions was studied using UV-vis spectrometry. The adsorption capacity of chitosan nanogels was comparable to that of chitosan solutions, but copper(II)-loaded nanogels were more stable (i.e. no flocculation was observed while chitosan solutions showed macroscopic gelation at high copper concentration) and were easier to handle (i.e. no increase in viscosity). Adsorption isotherms of copper(II) onto chitosan were established and the impact of the pH on copper(II) release was investigated. The formation of a copper(II)-chitosan complex strongly depended on pH. Hence, release of copper(II) can be triggered by a decrease in pH (i.e. the protonation of chitosan amino groups). Furthermore, chitosan nanohydrogels were shown to be a suitable substrate for chitosan hydrolytic enzymes. Finally, a strong synergistic effect between chitosan and copper in inhibiting Fusarium graminearum growth was observed. The suitability of these copper(II)-chitosan colloids as a new generation of copper-based bio-pesticides, i.e. as a bio-compatible, bio-active and pH-sensitive delivery system, is discussed.

  3. Filtration by a novel nanofiber membrane and alumina adsorption to remove copper(II) from groundwater.

    PubMed

    Sang, Yimin; Gu, Qingbao; Sun, Tichang; Li, Fasheng; Liang, Cunzhen

    2008-05-01

    The elevated level of heavy metals in groundwater poses a substantial risk potentially to local resource users and the natural environment. Micellar-enhanced filtration (MEF) and alumina adsorption are considered from the viewpoint of copper(II) removal in groundwater, by taking copper(II) as an example. In MEF, copper(II) cations are collected electrostatically on micelles of sodium dodecyl benzene sulfonate (SDBS) and separated from the mother liquor by filtration using a novel nanofiber membrane prepared from chloridized polyvinyl chloride by high-voltage electrospinning process. After MEF with 10-layer filtration and SDBS concentration of 5 mmol/L, the removal of copper(II) in groundwater is above 70%. However, the final solution contains a large amount of surfactant causing serious second contamination in groundwater. This problem is overcome by alumina adsorption, where negatively charged surfactants are adsorbed on positively charged alumina particles and then recovered by conventional filtration. The hybrid process of MEF and alumina adsorption is successfully applied to removing almost 100% of copper(II) from groundwater. Finally, the characterization of the membrane and filtration mechanism are presented here.

  4. Electroanalytical investigation on the interaction between 6-mercaptopurine and zinc(II), lead(II), and cadmium(II) ions in nonaqueous solvents.

    PubMed

    Cinquantini, A; Cini, R; Zanello, P

    1980-04-01

    Different electroanalytical techniques have been employed in the study of the interaction between 6-mercaptopurine and zinc(II), lead(II), and cadmium(II) ions in ethanol, dimethylformamide, and dimethylsulfoxide. The stoichiometry of the formed complexes was determined as well as their instability constants. The kinetic parameters of the electrode processes have been also evaluated.

  5. Correlation of infrared spectra of zinc(II) carboxylates with their structures

    NASA Astrophysics Data System (ADS)

    Zeleňák, V.; Vargová, Z.; Györyová, K.

    2007-02-01

    The correlation of the infrared spectra of zinc(II) carboxylates with their structures was investigated in the paper. The complexes with different modes of the carboxylate binding, from chelating, through bridging ( syn-syn, syn-anti, monatomic), ionic to monodentate were used for the study, namely [Zn(C 6H 5CHCHCOO) 2(H 2O) 2] ( I) with chelating carboxylate group (C 6H 5CHCHCOO = cinnamate), [Zn 2(C 6H 5COO) 4(pap) 2] ( II) with syn-syn bridging carboxylate (C 6H 5COO = benzoate; pap = papaverine), [Zn(C 6H 5CHCHCOO) 2(mpcm)] n ( III) with syn-anti carboxylate bridge (mpcm = methyl-3-pyridylcarbamate), [Zn(C 5H 4NCOO) 2(H 2O) 4] ( IV) with ionic carboxylate group (C 5H 4NCOO = nicotinate), [Zn(C 6H 5COO) 2(pcb) 2] n ( V) with monodentate carboxylate coordination (pcb = 3-pyridylcarbinol) and [Zn 3(C 6H 5COO) 6(nia) 2] ( VI) with syn-syn and monatomic carboxylate bridges (nia = nicotinamide). First, the mode of the carboxylate binding was assigned from the infrared spectra using the magnitude of the separation between the carboxylate stretches, Δexp = νas(COO -) - νs(COO -). Then the values Δexp were compared with those calculated from structural data of the carboxylate anion ( Δcalc). The conclusions about the carboxylate binding which resulted from the Δ values, were confronted with the crystal structure of the complexes. The limitations and recommendations were formulated to assign the mode of the carboxylate binding from the infrared spectra. The dependence of the Δexp values on the magnitudes of Zn-O-C angles in bidentate carboxylate coordination was observed.

  6. Zinc(II) complexes with dithiocarbamato derivatives: structural characterisation and biological assays on cancerous cell lines.

    PubMed

    Nagy, Eszter Márta; Sitran, Sergio; Montopoli, Monica; Favaro, Monica; Marchiò, Luciano; Caparrotta, Laura; Fregona, Dolores

    2012-12-01

    Zinc is one of the most important trace elements in the body and it is essential as a cofactor for the structure and function of a number of cellular molecules including enzymes, transcription factors, cellular signalling proteins and DNA repair enzymes. On the other hand, recent studies have shown that zinc could play a role both in the development of various cancers and in the induction of apoptosis in some cell types, however, no established common relationships of zinc with cancer development and progression have been identified. To date, in our research group different metal-dithiocarbamato complexes have been designed that were expected to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. On the basis of the obtained encouraging achievements with other metals (such as gold and copper) we have decided to enlarge the studies to the complexes of zinc(II) using the same ligands. Hereby, we report the results on the synthesis and characterisation of ZnL(2) complexes with five different dithiocarbamato derivatives, such as dimethyl-(DMDT), pyrrolidine-(PyDT), methyl-(MSDT), ethyl-(ESDT) and tert-butyl-(TSDT) sarcosinedithiocarbamate. All the obtained compounds have fully been characterised by means of several spectroscopic techniques. In addition, the crystal structure of [Zn(MSDT)(2)](2) dinuclear complex is also reported. In order to evaluate the in vitro cytotoxic properties, some biological assays have been carried out on a panel of human tumour cell lines sensible and resistant to cisplatin. Some of the tested compounds show cytotoxicity levels comparable or even greater than the reference drug (cisplatin). PMID:23085593

  7. Synthesis and in vitro anticancer activity of zinc(II) phthalocyanines conjugated with coumarin derivatives for dual photodynamic and chemotherapy.

    PubMed

    Zhou, Xiao-Qin; Meng, Lu-Bo; Huang, Qi; Li, Jun; Zheng, Ke; Zhang, Feng-Ling; Liu, Jian-Yong; Xue, Jin-Ping

    2015-02-01

    The combination of photodynamic therapy and chemotherapy is a promising strategy to overcome growing problems in contemporary medicine, such as low therapeutic efficacy and drug resistance. Four zinc(II) phthalocyanine-coumarin conjugates were synthesized and characterized. In these complexes, zinc(II) phthalocyanine was used as the photosensitizing unit, and a coumarin derivative was selected as the cytostatic moiety; the two components were linked via a tri(ethylene glycol) chain. These conjugates exhibit high photocytotoxicity against HepG2 human hepatocarcinoma cells, with low IC50 values in the range of 0.014-0.044 μM. The high photodynamic activities of these conjugates are in accordance with their low aggregation tendency and high cellular uptake. One of these conjugates exhibits high photocytotoxicity and significantly higher chemocytotoxicity. The results clearly show that the two antitumor components in these conjugates work in a cooperative fashion. As shown by confocal microscopy, the conjugates can localize in the mitochondria and lysosomes, and one of the conjugates can also localize in the cell nuclei.

  8. Structural and spectral properties of a zinc(II) coordination polymer: a combined experimental and theoretical study.

    PubMed

    Hao, Jin-Ming; Li, Guang-Yue; Li, Yue-Hua; Cui, Guang Hua

    2014-10-15

    A novel 1D zinc(II) coordination polymer [Zn(bbbm)Cl2]n (where bbbm=1,4-bis(N-benzimidazolyl)butane) was synthetized by ZnCl2 and bbbm ligand under hydrothermal conditions, and its structural and spectral properties were studied by both experimental and theoretical techniques. The center zinc(II) ion displays four-coordinated in a tetrahedral geometry by two chloride anions and two N atoms of distinct bbbm ligands. Adjacent chains are further connected into a 2D layer structure through π-π stacking interactions. Vibrational frequencies of [Zn(bbbm)Cl2]n have been calculated using DFT/B3LYP/TZVP method, and well reproduced IR data. Furthermore, the vertical excitation energies from time-dependent DFT calculation confirmed that the fluorescent peaks at 385nm and 450nm could respectively be assigned to the π→π(*) transition within the bbbm ligands and π→n transition from chloride anion to bbbm ligand.

  9. Metal-based carboxamide-derived compounds endowed with antibacterial and antifungal activity.

    PubMed

    Hanif, Muhammad; Chohan, Zahid H; Winum, Jean-Yves; Akhtar, Javeed

    2014-08-01

    A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L(1)), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L(2)) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L(3)) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)-(12) have been synthesized and characterized by their IR,(1)H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L(1)) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains. PMID:23914928

  10. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  11. Highly cytotoxic DNA-interacting copper(II) coordination compounds.

    PubMed

    Brissos, Rosa F; Torrents, Ester; dos Santos Mello, Francyelli Mariana; Carvalho Pires, Wanessa; Silveira-Lacerda, Elisângela de Paula; Caballero, Ana B; Caubet, Amparo; Massera, Chiara; Roubeau, Olivier; Teat, Simon J; Gamez, Patrick

    2014-10-01

    Four new Schiff-base ligands have been designed and prepared by condensation reaction between hydrazine derivatives (i.e. 2-hydrazinopyridine or 2-hydrazinoquinoline) and mono- or dialdehyde (3-tert-butyl-2-hydroxybenzaldehyde and 5-tert-butyl-2-hydroxyisophthalaldehyde, respectively). Six copper(II) coordination compounds of various nuclearities have been obtained from these ligands, which are formulated as [Cu(L1)Cl](CH3OH) (1), [Cu(L2)NO3] (2), [Cu2(L3)(ClO4)2(CH3O)(CH3OH)](CH3OH) (3), [Cu2(L4)(ClO4)(OH)(CH3OH)](ClO4) (4), [Cu8(L3)4(NO3)4(OH)5](NO3)3(CH3OH)5(H2O)8 (5) and [Cu3(HL2')4Cl6](CH3OH)6 (6), as revealed by single-crystal X-ray studies. Their DNA-interacting abilities have been investigated using different characterization techniques, which suggest that the metal complexes act as efficient DNA binders. Moreover, cytotoxicity assays with several cancer cell lines show that some of them are very active, as evidenced by the sub-micromolar IC50 values achieved in some cases. PMID:25096758

  12. Highly cytotoxic DNA-interacting copper(II) coordination compounds.

    PubMed

    Brissos, Rosa F; Torrents, Ester; dos Santos Mello, Francyelli Mariana; Carvalho Pires, Wanessa; Silveira-Lacerda, Elisângela de Paula; Caballero, Ana B; Caubet, Amparo; Massera, Chiara; Roubeau, Olivier; Teat, Simon J; Gamez, Patrick

    2014-10-01

    Four new Schiff-base ligands have been designed and prepared by condensation reaction between hydrazine derivatives (i.e. 2-hydrazinopyridine or 2-hydrazinoquinoline) and mono- or dialdehyde (3-tert-butyl-2-hydroxybenzaldehyde and 5-tert-butyl-2-hydroxyisophthalaldehyde, respectively). Six copper(II) coordination compounds of various nuclearities have been obtained from these ligands, which are formulated as [Cu(L1)Cl](CH3OH) (1), [Cu(L2)NO3] (2), [Cu2(L3)(ClO4)2(CH3O)(CH3OH)](CH3OH) (3), [Cu2(L4)(ClO4)(OH)(CH3OH)](ClO4) (4), [Cu8(L3)4(NO3)4(OH)5](NO3)3(CH3OH)5(H2O)8 (5) and [Cu3(HL2')4Cl6](CH3OH)6 (6), as revealed by single-crystal X-ray studies. Their DNA-interacting abilities have been investigated using different characterization techniques, which suggest that the metal complexes act as efficient DNA binders. Moreover, cytotoxicity assays with several cancer cell lines show that some of them are very active, as evidenced by the sub-micromolar IC50 values achieved in some cases.

  13. Molecular Recognition and Scavenging of Arsenate from Aqueous Solution Using Dimetallic Receptors

    PubMed Central

    Moffat, Chris D; Weiss, Dominik J; Shivalingam, Arun; White, Andrew J P; Salaün, Pascal; Vilar, Ramon

    2014-01-01

    A series of copper(II), nickel(II) and zinc(II) dimetallic complexes were prepared and their affinities towards arsenate investigated. Indicator displacement assays (IDAs) were carried out to establish the complexes with best affinities towards arsenate. A di-zinc complex (3) was selected and its arsenate-binding abilities investigated by isothermal titration calorimetry (ITC). The X-ray crystal structure of this metallo-receptor bound to arsenate is also reported, which allowed us to establish the binding mode between 3 and this oxyanion. Immobilising 3 onto HypoGel resin yielded a novel adsorbent (Zn–HypoGel) with high affinity for arsenate. Adsorption of arsenate from competitive solutions and natural groundwater was greater than that of the commercially used iron oxide Bayoxide E33. Zn–HypoGel could be efficiently and simply regenerated by washing with sodium acetate solution. PMID:25338508

  14. Application of zone-melting technique to metal chelate systems-XI Refining of tetrakis(di-n-propionylmethanato)zirconium(IV) from hafnium and trace amounts of some other metals.

    PubMed

    Yoshida, I; Kobayashi, H; Ueno, K

    1977-01-01

    The zone-melting method was applied to purification of tetrakis(di-n-propionylmethanato)zirconium(IV) which contained copper(II), nickel(II), cobalt(II and III), iron(III) and hafnium(IV) in the forms of their chelates with the common ligand. All minor components having effective distribution coefficients < 1 in the zirconium(IV) chelate were concentrated toward the terminal end of the refining column. When an aqueous solution of zirconium(IV) containing zinC(II) and manganese(II) in addition to the metal contaminants above was treated with di-n-propionylmethane to precipitate the chelate complexes, only zinc, iron and hafnium were found in the precipitated zirconium chelate. The first two were ettectively removed by zone-melting. Though the separation of hafnium was poorer, the technique was efficient enough for practical purposes. PMID:18962026

  15. Cis-trans isomerism in mononuclear nickel(II). beta. -ketoenamine complexes

    SciTech Connect

    Maverick, A.W.; Fronczek, F.R.; Martone, D.P. ); Bradbury, J.R. )

    1989-07-01

    Solution NMR and x-ray crystallographic structural studies of square-planar nickel(II) Schiff base complexes are reported. In contrast to recently prepared cofacial binuclear complexes derived from bis({beta}-ketoenamines), which have the cis arrangement of O and NH donors about each metal atom, two representative mononuclear complexes, Ni(acim){sub 2} (acimH = 4-amino-3-penten-2-one) and Ni-(bzacim){sub 2} (bzacimH = 3-amino-1-phenyl-2-buten-1-one), are produced as trans isomers. Ni(acim){sub 2} (NiC{sub 10}H{sub 16}N{sub 2}O{sub 2}) is orthorhombic, space group Ccca, a = 16.770(2), b = 15.054(2), c = 13.494(1) {angstrom}, Z = 12, R = 0.055, R{sub w} = 0.042 for 143 parameters and 1,748 reflectons with I > 1{sigma}(I). Ni(bzacim){sub 2} (NiC{sub 20}H{sub 20}n{sub 2}O{sub 2}) is monoclinic, space group P2{sub 1}/c, a = 5.9186(8), b = 13.694(2), c = 11.944(4) {angstrom}, {beta} = 112.18(2){degree}, Z = 2, R = 0.038, R{sub w} = 0.037 for 156 parameters and 1,589 reflections with I > 2{sigma}(I). Crystals of Ni(bzacim){sub 2} contain centrosymmetric, nearly planar trans molecules. The structure of Ni(acim){sub 2} contains independent molecules with 2 and 222 symmetry, but both of these are disordered, so that whether the cis or trans isomer is present cannot be determined. However, solution {sup 1}H NOE and lanthanide shift measurements indicate that the trans isomer predominates for both compounds.

  16. Nickel(ii) radical complexes of thiosemicarbazone ligands appended by salicylidene, aminophenol and aminothiophenol moieties.

    PubMed

    Kochem, Amélie; Gellon, Gisèle; Jarjayes, Olivier; Philouze, Christian; du Moulinet d'Hardemare, Amaury; van Gastel, Maurice; Thomas, Fabrice

    2015-07-28

    The nickel(ii) complexes of three unsymmetrical thiosemicarbazone-based ligands featuring a sterically hindered salicylidene (1), aminophenol (2) or thiophenol (3) moiety were synthesized and structurally characterized. The metal ion lies in an almost square planar geometry in all the complexes. The cyclic voltammetry (CV) curve of 1 shows an irreversible oxidation wave at E = 0.49 V, which is assigned to the phenoxyl/phenolate redox couple. The CV curves of 2 and 3 display a reversible one-electron oxidation wave (E1/2 = 0.26 and 0.22 V vs. Fc(+)/Fc, respectively) and an one-electron reduction wave (E1/2 = -1.55 and -1.46 V, respectively). The cations 2(+) and 3(+) as well as the anions 2(-) and 3(-) were generated. The EPR spectra of the cations in THF show a rhombic signal at g1 = 2.034, g2 = 2.010 and g3 = 1.992 (2(+)) and g1 = 2.069, g2 = 2.018, g3 = 1.986 (3(+)) that is consistent with a main radical character of the complexes. The difference in anisotropy is assigned to the different nature of the radical, iminosemiquinonate vs. iminothiosemiquinonate. The anions display an isotropic EPR signal at giso = 2.003 (2(+)) and 2.006 (3(+)), which is indicative of a main α-diimine radical character of the compounds. Both the anions and cations exhibit charge transfer transitions of low to moderate intensity in their visible spectrum. Quantum chemical calculations (B3LYP) reproduce both the g-values and Vis-NIR spectra of the complexes. The radical anions readily react with dioxygen to give the radical cations. 2(+) catalyzes the aerobic oxidation of benzyl alcohol into benzaldehyde. PMID:26086684

  17. Development of highly sensitive extractive spectrophotometric determination of nickel(II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone.

    PubMed

    Sarma, Loka Subramanyam; Kumar, Jyothi Rajesh; Reddy, Koduru Janardhan; Thriveni, Thenepalli; Reddy, Ammireddy Varada

    2008-01-01

    Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) is proposed as a new sensitive reagent for the extractive spectrophotometric determination of nickel(II). PPT reacts with nickel(II) in the pH range 4.0-6.0 to form a reddish brown colored complex, which was well-extracted into n-butanol. The absorbance value of the Ni(II)-PPT complex was measured at different time intervals at 430nm, to ascertain the stability of the complex. The system obeyed Beer's law up to 0.5-5.0microgmL(-1) of nickel(II), with an excellent linearity in terms of the correlation coefficient value of 0.99. The molar absorptivity and Sandell's sensitivity of the extracted species are 1.92 x 10(4)Lmol(-1)cm(-1) and 0.003057microgcm(-2) respectively at 430nm. The detection limit of the method is 0.069microgmL(-1). To assess precision and accuracy of the developed method, determinations were carried out at different concentrations. The relative standard deviation of all measurements does not exceed 2.62%. The developed method has been satisfactorily applied for the determination of nickel(II), when present alone or in the presence of diverse ions, which are usually associated with nickel(II) in medicinal leaves, soil and industrial effluent samples. Various standard and certified reference materials (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have also been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are compared with those obtained from an atomic absorption spectrometer (AAS).

  18. Development of a highly sensitive extractive spectrophotometric method for the determination of nickel(II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone.

    PubMed

    Ramachandraiah, C; Rajesh Kumar, J; Janardhan Reddy, K; Lakshmi Narayana, S; Varada Reddy, A

    2008-09-01

    Nickel(II) reacts with N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone (ECCT) and forms a yellow colored complex, which was extracted into n-butanol from sodium acetate and acetic acid buffer at pH 6.0. The absorbance value of the Ni(II)-ECCT complex was measured at different intervals of time at 400 nm, to ascertain the time stability of the complex. The extraction of the complex into the solvent was instantaneous and stable for more than 72 h. The system obeyed Beer's law in the concentration range of 1.2-5.6 microg ml(-1) of nickel(II), with an excellent linearity and a correlation coefficient of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species were found to be 1.114 x 10(4)L mol(-1)cm(-1) and 5.29 x 10(-3)microg cm(-2) at 400 nm, respectively. Hence, a detailed study of the extraction of nickel(II) with ECCT has been undertaken with a view to developing a rapid and sensitive extractive spectrophotometric method for the determination of nickel(II) when present alone or in the presence of diverse ions which are usually associated with nickel(II) in environmental matrices like soil and industrial effluents. Various standard alloy samples (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are comparable with those from atomic absorption spectrometry and were found to be in good agreement.

  19. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules.

    PubMed

    Maret, Wolfgang

    2015-02-01

    Essential metal ions are tightly controlled in biological systems. An understanding of metal metabolism and homeostasis is being developed from quantitative information of the sizes, concentrations, and dynamics of cellular and subcellular metal ion pools. In the case of human zinc metabolism, minimally 24 proteins of two zinc transporter families and a dozen metallothioneins participate in cellular uptake, extrusion, and re-distribution among cellular compartments. Significantly, zinc(ii) ions are now considered signaling ions in intra- and intercellular communication. Such functions require transients of free zinc ions. It is experimentally quite challenging to distinguish zinc that is protein-bound from zinc that is not bound to proteins. Measurement of total zinc is relatively straightforward with analytical techniques such as atomic absorption/emission spectroscopy or inductively coupled plasma mass spectrometry. Total zinc concentrations of human cells are 200-300 μM. In contrast, the pool of non-protein bound zinc is mostly examined with fluorescence microscopy/spectroscopy. There are two widely applied fluorescence approaches, one employing low molecular weight chelating agents ("probes") and the other metal-binding proteins ("sensors"). The protein sensors, such as the CALWY, Zap/ZifCY, and carbonic anhydrase-based sensors, can be genetically encoded and have certain advantages in terms of controlling intracellular concentration, localization, and calibration. When employed correctly, both probes and sensors can establish qualitative differences in free zinc ion concentrations. However, when quantitative information is sought, the assumptions underlying the applications of probes and sensors must be carefully examined and even then measured pools of free zinc ions remain methodologically defined. A consensus is building that the steady-state free zinc ion concentrations in the cytosol are in the picomolar range but there is no consensus on their

  20. Copper(II) Carboxylate Promoted Intramolecular Carboamination of Alkenes for the Synthesis of Polycyclic Lactams

    PubMed Central

    Fuller, Peter H.; Chemler, Sherry R.

    2008-01-01

    The copper(II) carboxylate promoted intramolecular carboamination reactions of variously substituted γ-alkenyl amides have been investigated. These oxidative cyclization reactions efficiently provide polycyclic lactams, useful intermediates in nitrogen heterocycle synthesis, in good to excellent yields. The efficiency of the carboamination process is dependent upon the structure of the amide backbone as well as the nitrogen substituent. PMID:18044907

  1. Reversible DNA i-motif to hairpin switching induced by copper(II) cations.

    PubMed

    Day, Henry Albert; Wright, Elisé Patricia; MacDonald, Colin John; Gates, Andrew James; Waller, Zoë Ann Ella

    2015-09-25

    i-Motif DNA structures have previously been utilised for many different nanotechnological applications, but all have used changes in pH to fold the DNA. Herein we describe how copper(II) cations can alter the conformation of i-motif DNA into an alternative hairpin structure which is reversible by chelation with EDTA.

  2. Phosphate effects on copper(II) and lead(II) sorption to ferrihydrite

    NASA Astrophysics Data System (ADS)

    Tiberg, Charlotta; Sjöstedt, Carin; Persson, Ingmar; Gustafsson, Jon Petter

    2013-11-01

    Transport of lead(II) and copper(II) ions in soil is affected by the soil phosphorus status. Part of the explanation may be that phosphate increases the adsorption of copper(II) and lead(II) to iron (hydr)oxides in soil, but the details of these interactions are poorly known. Knowledge about such mechanisms is important, for example, in risk assessments of contaminated sites and development of remediation methods. We used a combination of batch experiments, extended X-ray absorption fine structure (EXAFS) spectroscopy and surface complexation modeling with the three-plane CD-MUSIC model to study the effect of phosphate on sorption of copper(II) and lead(II) to ferrihydrite. The aim was to identify the surface complexes formed and to derive constants for the surface complexation reactions. In the batch experiments phosphate greatly enhanced the adsorption of copper(II) and lead(II) to ferrihydrite at pH < 6. The largest effects were seen for lead(II).

  3. Modeling of copper(II) sites in proteins based on histidyl and glycyl residues.

    PubMed

    Orfei, Marco; Alcaro, Maria Claudia; Marcon, Giordana; Chelli, Mario; Ginanneschi, Mauro; Kozlowski, Henryk; Brasuń, Justyna; Messori, Luigi

    2003-11-01

    The complexes between copper(II) and four synthetic tetrapeptides bearing a single histidine residue within the sequence (AcHGGG, AcGHGG, AcGGHG and AcGGGH, respectively), have been investigated by potentiometric and spectroscopic methods (UV-Vis, circular dichroism and electron paramagnetic resonance). Potentiometric studies in the pH range 4-12 allowed identification and quantitative determination of the species present in solution for each copper-peptide complex. In all cases, upon raising pH, copper(II) coordination starts from the imidazole nitrogen of the His; afterwards three deprotonated amide nitrogens are progressively involved in copper coordination, except in the case of AcGHGG. Based on the potentiometric and spectroscopic results, detailed molecular structures are proposed for the dominant copper(II) tetrapeptide species existing in solution, either at neutral or alkaline pH. The structural consequences of the presence and of the location of a unique histidine residue within the tetrameric sequence are specifically analyzed. Results are discussed in relation to the modeling of copper(II) binding sites in proteins, particular emphasis being devoted to the copper complexes of the prion protein. PMID:14511892

  4. Synthesis, structural and optical properties of 1-alkyl-2-(2'-tosylaminophenyl)-5-nitrobenzimidazoles and their zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Burlov, Anatolii S.; Koshchienko, Yurii V.; Kiskin, Mikhail A.; Nikolaevskii, Stanislav A.; Garnovskii, Dmitrii A.; Lermontov, Anatolii S.; Makarova, Nadegda I.; Metelitsa, Anatolii V.; Eremenko, Igor L.

    2016-01-01

    A series of novel benzimidazole derivatives 1-alkyl-2-(2'-tosylaminophenyl)-5-nitrobenzimidazoles with common formulas HL (1-3) (R = C2H5 (1); R = n-C3H7 (2); R = n-C4H9(3)) and their mononuclear zinc(II) complexes ZnL2 (4-6) have been synthesized in a molar ratio Zn: HL = 1:2 in methanol solutions. Formulation of 1-6 is based upon satisfactory C, H, N, S elemental analyses, IR and 1H, 13C NMR spectroscopies, while the structures of 2, 3, 5, 6 were determined by X-ray single-crystal diffraction. The optical properties of 1-6 were investigated.

  5. The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I)

    PubMed

    Multhaup, G; Schlicksupp, A; Hesse, L; Beher, D; Ruppert, T; Masters, C L; Beyreuther, K

    1996-03-01

    The transition metal ion copper(II) has a critical role in chronic neurologic diseases. The amyloid precursor protein (APP) of Alzheimer's disease or a synthetic peptide representing its copper-binding site reduced bound copper(II) to copper(I). This copper ion-mediated redox reaction led to disulfide bond formation in APP, which indicated that free sulfhydryl groups of APP were involved. Neither superoxide nor hydrogen peroxide had an effect on the kinetics of copper(II) reduction. The reduction of copper(II) to copper(I) by APP involves an electron-transfer reaction and could enhance the production of hydroxyl radicals, which could then attack nearby sites. Thus, copper-mediated toxicity may contribute to neurodegeneration in Alzheimer's disease. PMID:8596911

  6. The Amyloid Precursor Protein of Alzheimer's Disease in the Reduction of Copper(II) to Copper(I)

    NASA Astrophysics Data System (ADS)

    Multhaup, Gerd; Schlicksupp, Andrea; Hesse, Lars; Beher, Dirk; Ruppert, Thomas; Masters, Colin L.; Beyreuther, Konrad

    1996-03-01

    The transition metal ion copper(II) has a critical role in chronic neurologic diseases. The amyloid precursor protein (APP) of Alzheimer's disease or a synthetic peptide representing its copper-binding site reduced bound copper(II) to copper(I). This copper ion-mediated redox reaction led to disulfide bond formation in APP, which indicated that free sulfhydryl groups of APP were involved. Neither superoxide nor hydrogen peroxide had an effect on the kinetics of copper(II) reduction. The reduction of copper(II) to copper(I) by APP involves an electron-transfer reaction and could enhance the production of hydroxyl radicals, which could then attack nearby sites. Thus, copper-mediated toxicity may contribute to neurodegeneration in Alzheimer's disease.

  7. Axial Coordination and Conformational Heterogeneity of Nickel(II) Tetraphenylporphyrin Complexes with Nitrogenous Bases.

    PubMed

    Jia, Song-Ling; Jentzen, Walter; Shang, Mayou; Song, Xing-Zhi; Ma, Jian-Guo; Scheidt, W. Robert; Shelnutt, John A.

    1998-08-24

    Axial ligation of nickel(II) 5,10,15,20-tetraphenylporphyrin (NiTPP) with pyrrolidine or piperidine has been investigated using X-ray crystallography, UV-visible spectroscopy, resonance Raman spectroscopy, and molecular mechanics (MM) calculations. By varying the pyrrolidine concentration in dichloromethane, distinct nu(4) Raman lines are found for the four-, five-, and six-coordinate species of NiTPP. The equilibrium constants for addition of the first and second pyrrolidine axial ligands are 1.1 and 3.8 M(-)(1), respectively. The axial ligands and their orientations influence the type and magnitude of the calculated nonplanar distortion. The differences in the calculated energies of the conformers having different ligand rotational angles are small so they may coexist in solution. Because of the similarity in macrocyclic structural parameters of these conformers and the free rotation of the axial ligands, narrow and symmetric nu(2) and nu(8) Raman lines are observed. Nonetheless, the normal-coordinate structural-decomposition analysis of the nonplanar distortions of the calculated structures and the crystal structure of the bis(piperidine) complex reveals a relationship between the orientations of axial ligand(s) and the macrocyclic distortions. For the five-coordinate complex with the plane of the axial ligand bisecting the Ni-N(pyrrole) bonds, a primarily ruffled deformation results. With the ligand plane eclipsing the Ni-N(pyrrole) bonds, a mainly saddled deformation occurs. With the addition of the second axial ligand, the small doming of the five-coordinate complexes disappears, and ruffling or saddling deformations change depending on the relative orientation of the two axial ligands. The crystal structure of the NiTPP bis(piperidine) complex shows a macrocycle distortion composed of wav(x) and wav(y) symmetric deformations, but no ruffling, saddling, or doming. The difference in the calculated and observed distortions results partly from the phenyl group

  8. Hydroxide-bridged cubane complexes of nickel(II) and cadmium(II): magnetic, EPR, and unusual dynamic properties.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Pellechia, Perry J; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-05-01

    The reactions of M(ClO4)2·xH2O (M = Ni(II) or Cd(II)) and m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) in the presence of triethylamine lead to the formation of hydroxide-bridged cubane compounds of the formula [M4(μ3-OH)4(μ-Lm)2(solvent)4](ClO4)4, where solvent = dimethylformamide, water, acetone. In the solid state the metal centers are in an octahedral coordination environment, two sites are occupied by pyrazolyl nitrogens from Lm, three sites are occupied by bridging hydroxides, and one site contains a weakly coordinated solvent molecule. A series of multinuclear, two-dimensional and variable-temperature NMR experiments showed that the cadmium(II) compound in acetonitrile-d3 has C2 symmetry and undergoes an unusual dynamic process at higher temperatures (ΔGLm‡ = 15.8 ± 0.8 kcal/mol at 25 °C) that equilibrates the pyrazolyl rings, the hydroxide hydrogens, and cadmium(II) centers. The proposed mechanism for this process combines two motions in the semirigid Lm ligand termed the “Columbia Twist and Flip:” twisting of the pyrazolyl rings along the Cpz–Cmethine bond and 180° ring flip of the phenylene spacer along the CPh–Cmethine bond. This dynamic process was also followed using the spin saturation method, as was the exchange of the hydroxide hydrogens with the trace water present in acetonitrile-d3. The nickel(II) analogue, as shown by magnetic susceptibility and electron paramagnetic resonance measurements, has an S = 4 ground state, and the nickel(II) centers are ferromagnetically coupled with strongly nonaxial zero-field splitting parameters. Depending on the Ni–O–Ni angles two types of interactions are observed: J1 = 9.1 cm(–1) (97.9 to 99.5°) and J2 = 2.1 cm(–1) (from 100.3 to 101.5°). “Broken symmetry” density functional theory calculations performed on a model of the nickel(II) compound support these observations.

  9. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  10. Synthesis and characterization of different zinc(II) oxide nano-structures from two new zinc(II)-Quinoxaline coordination polymers

    NASA Astrophysics Data System (ADS)

    Molaei, Fatemeh; Bigdeli, Fahime; Morsali, Ali; Joo, Sang Woo; Bruno, Giuseppe; Rudbari, Hadi Amiri

    2015-09-01

    Two new zinc(II) coordination polymers, [Zn(Quinoxaline)(NO3)2(H2O)2]nṡQuinoxaline·H2O (1) and [Zn(Quinoxaline)2(Br)2]n (2), Quinoxaline = Benzopyrazine, have been synthesized and characterized by IR spectroscopy. Compounds 1 and 2 were structurally characterized by single crystal X-ray diffraction and are one-dimensional coordination polymers with coordination environment of octahedral and tetrahedral respectively. Nanostructures of zinc(II) oxide were obtained by thermolyses of compound 1 in oleic acid, calcination of compound 1 at 500 °C under air atmosphere and sol-gel processes. Also, nanopowders of zinc(II) oxide were obtained by calcination of compound 2 at 450 and 550 °C. The nanomaterials were characterized by scanning electron microscopy and X-ray powder diffraction (XRD). The thermal stability of compounds 1 and 2 both their bulk were studied by thermo-gravimetric (TGA) and differential thermal analyses (DTA). This study demonstrates the coordination polymers may be suitable precursors for the preparation of nanoscale materials.

  11. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum.

    PubMed

    Ozcan, Adnan; Ozcan, A Safa; Tunali, Sibel; Akar, Tamer; Kiran, Ismail

    2005-09-30

    Adsorption of copper ions onto Capsicum annuum (red pepper) seeds was investigated with the variation in the parameters of pH, contact time, adsorbent and copper(II) concentrations and temperature. The nature of the possible adsorbent and metal ion interactions was examined by the FTIR technique. The copper(II) adsorption equilibrium was attained within 60 min. Adsorption of copper(II) ions onto C. annuum seeds followed by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) isotherm models. Maximum adsorption capacity (q(max)) of copper(II) ions onto red pepper seeds was 4.47x10(-4) molg(-1) at 50 degrees C. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of copper(II) ions onto C. annuum seeds could be described by the pseudo-second-order kinetic model and also followed the intraparticle diffusion model up to 60 min, but diffusion is not only the rate controlling step. Thermodynamics parameters such as the change of free energy, enthalpy and entropy were also evaluated for the adsorption of copper(II) ions onto C. annuum seeds.

  12. Characterization and metal sorptive properties of oxidized active carbon.

    PubMed

    Strelko, Vladimir; Malik, Danish J

    2002-06-01

    A commercial activated carbon Chemviron F 400 has been oxidized using nitric acid in order to introduce a variety of acidic surface functional groups. Both unoxidized and oxidized carbon samples were characterized using nitrogen porosimetry, elemental analysis, pH titration, Boehm's titration, and electrophoretic mobility measurements. Results show that oxidation treatment reduced surface area and pore volume. However, the carbon surface acquires an acidic character with carboxylic groups being the dominant surface functional groups. The modified sample displays cation-exchange properties over a wide range of pH values and exhibits polyfunctional nature. Both carbon samples were challenged for the removal of transition metals such as copper(II), nickel(II), cobalt(II), zinc(II), and manganese(II). The affinity series Mn2+Zn2+ has been found to coincide with the general stability sequence of metal complexes (the Irving-Williams series). The higher preference displayed by carbons toward copper(II) is a consequence of the fact that copper(II) often forms distorted and more stable octahedral complexes. PMID:16290653

  13. Ambient temperature synthesis of β,β'-fused nickel(II) pyrrolo[1,2-a]pyrazinoporphyrins via a DBSA-catalyzed Pictet-Spengler approach.

    PubMed

    Singh, Dileep Kumar; Nath, Mahendra

    2015-02-14

    A facile first synthetic strategy to construct novel π-extended β,β'-fused nickel(II) pyrrolo[1,2-a]pyrazinoporphyrins has been developed via a Pictet-Spengler reaction of newly prepared nickel(II) 2-amino-3-(pyrrol-1-yl)-5,10,15,20-tetraphenylporphyrin with various aromatic, aliphatic or heterocyclic aldehydes in the presence of 10 mol% p-dodecylbenzenesulfonic acid (DBSA) as an efficient Brønsted acid catalyst in 1,4-dioxane at 25 °C. A variety of these π-extended porphyrin analogues were obtained in moderate to good yields under mild conditions and characterized on the basis of spectral data and single crystal X-ray analysis. PMID:25504338

  14. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  15. Preparation of Enteromorpha prolifera-based cetyl trimethyl ammonium bromide-doped activated carbon and its application for nickel(II) removal.

    PubMed

    Wang, Man; Hao, Fang; Li, Gang; Huang, Ji; Bao, Nan; Huang, Lihui

    2014-06-01

    Activated carbon was prepared from Enteromorpha prolifera (EP) by H3PO4 activation in the presence of doped cetyl trimethyl ammonium bromide (CTAB), producing EPAC-CTAB. The thermal decomposition process of the activated carbon substrate was identified by thermo-gravimetric analysis. Scanning electron microscope (SEM), N2 adsorption/desorption, Fourier transform infrared spectroscopy (FTIR), Boehm titration, and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the physicochemical properties of native EPAC and EPAC-CTAB. EPAC-CTAB exhibited smaller surface area (689.0m(2)/g) and lower total pore volume (0.361cm(3)/g) than those of EPAC (1045.8m(2)/g and 1.048cm(3)/g), while the number of acidic groups, oxygen and nitrogen groups on the surface of EPAC-CTAB increased through CTAB doping. The batch kinetics and isotherm adsorption studies of nickel(II) onto the adsorbents were examined and agreed well with the pseudo-second-order model and the Langmuir model. The maximum adsorption capacity determined from the Langmuir model was 16.9mg/g for EPAC and 49.8mg/g for EPAC-CTAB. Under acidic condition, the adsorption of nickel(II) onto EPAC and EPAC-CTAB was hindered due to ion competition and electrostatic repulsion. The results indicated that using CTAB as a dopant for EPAC modification could markedly enhance the nickel(II) removal.

  16. Antiangiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers.

    PubMed

    Nagababu, Penumaka; Barui, Ayan Kumar; Thulasiram, Bathini; Devi, C Shobha; Satyanarayana, S; Patra, Chitta Ranjan; Sreedhar, Bojja

    2015-07-01

    A series of four new mononuclear copper(II) polypyridyl complexes (1-4) have been designed, developed, and thoroughly characterized by several physicochemical techniques. The CT-DNA binding properties of 1-4 have been investigated by absorption, emission spectroscopy, and viscosity measurements. All the complexes especially 1 and 4 exhibit cytotoxicity toward several cancer cell lines, suggesting their anticancer properties as observed by several in vitro assays. Additionally, the complexes show inhibition of endothelial cell (HUVECs) proliferation, indicating their antiangiogenic nature. In vivo chick embryo angiogenesis assay again confirms the antiangiogenic properties of 1 and 4. The formation of excessive intracellular ROS (H2O2 and O2(•-)) and upregulation of BAX induced by copper(II) complexes may be the plausible mechanisms behind their anticancer activities. The present study may offer a basis for the development of new transition metal complexes through suitable choice of ligands for cancer therapeutics by controlling tumor angiogenesis.

  17. Para-Selective Halogenation of Nitrosoarenes with Copper(II) Halides.

    PubMed

    van der Werf, Angela; Selander, Nicklas

    2015-12-18

    The para-selective direct bromination and chlorination of nitrosoarenes with copper(II) bromide and chloride is reported. Under mild reaction conditions, a range of halogenated arylnitroso compounds are obtained in moderate to good yields with high regioselectivity. Additionally, the versatility of the method is demonstrated by the development of a one-pot procedure to obtain the corresponding para-halogenated aniline- and nitrobenzene derivatives. PMID:26606695

  18. Synthesis, characterization and investigation of the photophysical and photochemical properties of highly soluble novel metal-free, zinc(II), and indium(III) phthalocyanines substituted with 2,3,6-trimethylphenoxy moieties.

    PubMed

    Gürel, Ekrem; Pişkin, Mehmet; Altun, Selçuk; Odabaş, Zafer; Durmuş, Mahmut

    2015-04-01

    This work presents the synthesis and characterization of metal-free, zinc(II), and indium(III)acetate phthalocyanines substituted with 2,3,6-trimethylphenoxy groups at the peripheral and non-peripheral positions. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen generation and photodegradation under light irradiation) properties of these novel phthalocyanines and unsubstituted zinc(II) and indium(III)acetate phthalocyanines were investigated in dimethylformamide solution. The effects of the types of substituents and their positions and the variety of central metal ions on the phthalocyanine core on their spectroscopic, photophysical and photochemical properties were also determined. The studied 2,3,6-trimethylphenoxy substituted metal-free, zinc(II) and indium(III)acetate phthalocyanines especially indium(III)acetate derivatives exhibited appropriate photophysical and photochemical properties such as high singlet oxygen generation and these phthalocyanines can be potential Type II photosensitizers for photodynamic therapy in cancer applications.

  19. Variation of the ground spin state in homo- and hetero-octanuclear copper(II) and nickel(II) double-star complexes with a meso-helicate-type metallacryptand core.

    PubMed

    Pardo, Emilio; Dul, Marie-Claire; Lescouëzec, Rodrigue; Chamoreau, Lise-Marie; Journaux, Yves; Pasán, Jorge; Ruiz-Pérez, Catalina; Julve, Miguel; Lloret, Francesc; Ruiz-García, Rafael; Cano, Joan

    2010-05-28

    Homo- and heterometallic octanuclear complexes of formula Na₂{[Cu₂(mpba)₃][Cu(Me₅dien)]₆}-(ClO₄)₆·12H₂O (1), Na₂{[Cu₂(Mempba)₃][Cu(Me₅dien)]₆}(ClO₄)₆·12H₂O (2), Na₂{[Ni₂(mpba)₃]-[Cu(Me₅dien)]₆}(ClO₄)₆·12H₂O (3), Na₂{[Ni₂(Mempba)₃][Cu(Me₅dien)]₆}(ClO₄)₆·9H₂O (4), {[Ni₂(mpba)₃][Ni(dipn)(H₂O)]₆}(ClO₄)₄·12.5H₂O (5), and {[Ni₂(Mempba)₃][Ni(dipn)-(H₂O)]₆}(ClO₄)₄·12H₂O (6) [mpba = 1,3-phenylenebis(oxamate), Mempba = 4-methyl-1,3-phenylenebis(oxamate), Me₅dien = N,N,N',N'',N''-pentamethyldiethylenetriamine, and dipn = dipropylenetriamine] have been synthesized through the "complex-as-ligand/complex-as-metal" strategy. Single-crystal X-ray diffraction analyses of 1, 3, and 5 show cationic M(II)₂M'(II)₆ entities (M, M' = Cu and Ni) with an overall double-star architecture, which is made up of two oxamato-bridged M(II)M'(II)₃ star units connected through three meta-phenylenediamidate bridges between the two central metal atoms leading to a binuclear metallacryptand core of the meso-helicate-type. Dc magnetic susceptibility data for 1-6 in the temperature range 2-300 K have been analyzed through a "dimer-of-tetramers" model [H = - J(S(1A)·S(3A) + S(1A)·S(4A) + S(1A)·S(5A) + S(2B)·S(6B) + S(2B)·S(7B) + S(2B)·S(8B)) - J'S(1A)·S(2B), with S(1A) = S(2B) = S(M) and S(3A) = S(4A) = S(5A) = S(6B) = S(7B) = S(8B) = S(M')]. The moderate to strong antiferromagnetic coupling between the M(II) and M'(II) ions through the oxamate bridge in 1-6 (-J(Cu-Cu) = 52.0-57.0 cm⁻¹, -J(Ni-Cu) = 39.1-44.7 cm⁻¹, and -J(Ni-Ni) = 26.3-26.6 cm⁻¹) leads to a non-compensation of the ground spin state for the tetranuclear M(II)M'(II)₃ star units [S(A) = S(B) = 3S(M') - S(M) = 1 (1 and 2), 1/2 (3 and 4), and 2 (5 and 6)]. Within the binuclear M(II)₂ meso-helicate cores of 1-4, a moderate to weak antiferromagnetic coupling between the M(II) ions (-J'(Cu-Cu) = 28.0-48.0 cm⁻¹ and -J'(Ni-Ni) = 0.16-0.97 cm⁻¹) is mediated by the triple m-phenylenediamidate bridge to give a ground spin singlet (S = S(A) - S(B) = 0) state for the octanuclear M(II)₂Cu(II)₆ molecule. Instead, a weak ferromagnetic coupling between the Ni(II) ions (J'(Ni-Ni) = 2.07-3.06 cm⁻¹) operates in the binuclear Ni(II)₂ meso-helicate core of 5 and 6 leading thus to a ground spin nonet (S = S(A) + S(B) = 4) state for the octanuclear Ni(II)₈ molecule. Dc magnetization data for 5 reveal a small but non-negligible axial magnetic anisotropy (D = -0.23 cm⁻¹) of the S = 4 Ni(II)₈ ground state with an estimated value of the energy barrier for magnetization reversal of 3.7 cm⁻¹ (U = -DS²). Ac magnetic susceptibility data for 5 show an unusual slow magnetic relaxation behaviour at low temperatures which is typical of "cluster glasses". The temperature dependence of the relaxation time for 5 has been interpreted on the basis of the Vogel-Fulcher law for weakly interacting clusters, with values of 2.5 K, 1.4 × 10⁻⁶ s, and 4.0 cm⁻¹ for the intermolecular interaction parameter (T₀), the pre-exponential factor (τ₀), and the effective energy barrier (U(eff)), respectively.

  20. Synthesis, molecular modeling and spectroscopic characterization of nickel(II), copper(II), complexes of new 16-membered mixed-donor macrocyclic schiff base ligand incorporating a pendant alcohol function

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Ruchi; Qanungo, Kushal; Sharma, Saroj K.

    2011-09-01

    Complexes of Cu(II) and Ni(II) of the composition [M(L)X] [where M = Ni(II), Cu(II) and X = Cl -, NO 3-, CH 3COO -] were synthesized with 1,5-dioxo-9,10-diaza-3,ol-tribenzo-(7,6,10,11,14,15) peptadecane, a N 2O 2 macrocyclic ligand. The complexes were characterized by elemental analysis, molar conductance measurements, UV-vis, IR, 1H NMR, 13C NMR, EPR and molecular modeling studies. All the complexes are non-electrolyte in nature. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and a tetragonal geometry for Cu(II) complexes.

  1. Synthesis and Characterization of Cobalt(III), Nickel(II) and Copper(II) Mononuclear Complexes with the Ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol and Their Catalase-Like Activity

    PubMed Central

    Silva, Daniel M.; Visentin, Lorenzo C.; Rodrigues, Bernardo L.

    2015-01-01

    In this work, we present the synthesis and characterization of two new mononuclear complexes with the ligand 1,3-bis[(2-aminoethyl)amino]-2-propanol (HL), [Co(L)(H2O)](ClO4)2 (1), [Ni(HL)](ClO4)2 (2), as well as the known complex [Cu(HL)](ClO4)2 (3) for comparison. Their abilities to catalyze the dismutation of H2O2 and the oxidation of cyclohexane were investigated. The complexes were characterized by X-ray diffraction, elemental analysis, electronic and infrared spectroscopy, cyclic voltammetry, electrospray ionization mass spectrometry (ESI-MS) and conductivity measurements. The X-ray structures showed that the nickel (2) and copper (3) complexes are tetracoordinated, with the metal ion bound to the nitrogen atoms of the ligand. On the other hand, the cobalt complex (1) is hexacoordinated, possessing additional bonds to the alkoxo group of the ligand and to a water molecule. Neither of the complexes was able to catalyze the oxidation of cyclohexane, but all of them exhibited catalase-like activity, following Michaelis-Menten kinetics, which suggest resemblance with the catalase natural enzymes. The catalytic activity followed the order: [Ni(HL)](ClO4)2 (2) > [Cu(HL)](ClO4)2 (3) > [Co(L)(H2O)](ClO4)2 (1). As far as we know, this is the first description of a nickel complex presenting a significant catalase-like activity. PMID:26379038

  2. Redox Activity of Copper(II) Complexes with NSFRY Pentapeptide and Its Analogues

    PubMed Central

    Wiloch, Magdalena Zofia; Wawrzyniak, Urszula Elżbieta; Ufnalska, Iwona; Piotrowski, Grzegorz; Bonna, Arkadiusz; Wróblewski, Wojciech

    2016-01-01

    The influence of cation-π interactions on the electrochemical properties of copper(II) complexes with synthesized pentapeptide C-terminal fragment of Atrial Natriuretic Factor (ANF) hormone was studied in this work. Molecular modeling performed for Cu(II)-NSFRY-NH2 complex indicated that the cation-π interactions between Tyr and Cu(II), and also between Phe-Arg led to specific conformation defined as peptide box, in which the metal cation is isolated from the solvent by peptide ligand. Voltammetry experiments enabled to compare the redox properties and stability of copper(II) complexes with NSFRY-NH2 and its analogues (namely: NSFRA-NH2, NSFRF-NH2, NSAAY-NH2, NSAAA-NH2, AAAAA-NH2) as well as to evaluate the contribution of individual amino acid residues to these properties. The obtained results led to the conclusion, that cation-π interactions play a crucial role in the effective stabilization of copper(II) complexes with the fragments of ANF peptide hormone and therefore could control the redox processes in other metalloproteins. PMID:27517864

  3. An unusual 3D interdigitated architecture assembled from Keggin polyoxometalates and dinuclear copper(II) complexes

    SciTech Connect

    Pang, Haijun; Yang, Ming; Kang, Lu; Ma, Huiyuan; Liu, Bo; Li, Shaobin; Liu, Heng

    2013-02-15

    A novel organic-inorganic hybrid compound, [Cu{sub 2}(bipy){sub 3}({mu}{sub 1}-H{sub 2}O){sub 2}({mu}{sub 2}-H{sub 2}O)({mu}{sub 2}-OH)(H{sub 2}BW{sub 12}O{sub 40})]{center_dot}4 H{sub 2}O (1) (bipy=4,4 Prime -bipy), has been synthesized in hydrothermal condition and characterized by elemental analysis, IR spectrum, TG analysis and single-crystal X-ray diffraction. Compound 1 possesses poly-pendant layered motifs composed of 12-tungstoborates and dinuclear copper(II) complexes, in which the mono-coordinated bipy molecules are orderly appended to both sides of the layer, respectively. Adjacent layers mutually engage in a zipper-like pattern to result in a novel 3D interdigitated architecture. The variable-temperature magnetic susceptibility of 1 showed that there existed weak antiferromagnetic interaction in 1. Toward the reduction of hydrogen peroxide, 1 has good electrocatalytic activity and remarkable stability. - A new compound has been obtained, which represents the first interdigitated architecture assembled by POMs and dinuclear copper(II) complexes. Highlights: Black-Right-Pointing-Pointer The first example of interdigitated architecture assembled by POMs and dinuclear copper(II) complexes is observed. Black-Right-Pointing-Pointer A zipper-like pattern is observed in the structure. Black-Right-Pointing-Pointer The IR, TG, XRPD, magnetism and electrochemical property of the title compound were studied.

  4. Effect of Dioxygen on Copper(II) Binding to α-Synuclein

    PubMed Central

    Lucas, Heather R.; Lee, Jennifer C.

    2010-01-01

    Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W α-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (Kd(app)) changing from 100 nM (anaerobic) to 10 nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-α-syn site, MDV(F/W) and M*DV(F/W), where M*= methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F→W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a CuII-Trp/Phe (cation-π) interaction. PMID:20064662

  5. Effect of dioxygen on copper(II) binding to alpha-synuclein.

    PubMed

    Lucas, Heather R; Lee, Jennifer C

    2010-03-01

    Using the fluorescent amino acid tryptophan (Trp), we have characterized the copper(II) binding of F4W alpha-synuclein in the presence and absence of dioxygen at neutral pH. Variations in Trp fluorescence indicate that copper(II) binding is enhanced by the presence of dioxygen, with the apparent dissociation constant (K(d(app))) changing from 100nM (anaerobic) to 10nM (aerobic). To investigate the possible role of methionine oxidation, complementary work focused on synthetic peptide models of the N-terminal Cu(II)-alpha-syn site, MDV(F/W) and M( *)DV(F/W), where M( *)=methionine sulfoxide. Furthermore, we employed circular dichroism (CD) spectroscopy to demonstrate that the phenyl-to-indole (F-->W) substitution does not alter copper(II) binding properties and to confirm the 1:1 metal-peptide binding stoichiometry. CD comparisons also revealed that Met1 oxidation does not affect the copper-peptide conformation and further suggested the possible existence of a Cu(II)-Trp/Phe (cation-pi) interaction. PMID:20064662

  6. Redox Activity of Copper(II) Complexes with NSFRY Pentapeptide and Its Analogues.

    PubMed

    Wiloch, Magdalena Zofia; Wawrzyniak, Urszula Elżbieta; Ufnalska, Iwona; Piotrowski, Grzegorz; Bonna, Arkadiusz; Wróblewski, Wojciech

    2016-01-01

    The influence of cation-π interactions on the electrochemical properties of copper(II) complexes with synthesized pentapeptide C-terminal fragment of Atrial Natriuretic Factor (ANF) hormone was studied in this work. Molecular modeling performed for Cu(II)-NSFRY-NH2 complex indicated that the cation-π interactions between Tyr and Cu(II), and also between Phe-Arg led to specific conformation defined as peptide box, in which the metal cation is isolated from the solvent by peptide ligand. Voltammetry experiments enabled to compare the redox properties and stability of copper(II) complexes with NSFRY-NH2 and its analogues (namely: NSFRA-NH2, NSFRF-NH2, NSAAY-NH2, NSAAA-NH2, AAAAA-NH2) as well as to evaluate the contribution of individual amino acid residues to these properties. The obtained results led to the conclusion, that cation-π interactions play a crucial role in the effective stabilization of copper(II) complexes with the fragments of ANF peptide hormone and therefore could control the redox processes in other metalloproteins. PMID:27517864

  7. Thermolysis preparation of ZnS nanoparticles from a nano-structure bithiazole zinc(II) coordination compound

    NASA Astrophysics Data System (ADS)

    Hosseinian, Akram; Rahimipour, Hamid Reza; Haddadi, Hedayat; Ashkarran, Ali Akbar; Mahjoub, Ali Reza

    2014-09-01

    Nano-scale and single crystals of a new tris-chelate Zn(II) compound, {[Zn(DADMBTZ)3](SCN)2ṡ4H2O}n, (1), {DADMBTZ = 2,2‧-diamino-5,5‧-dimethyl-4,4‧-bithiazole} have been synthesized by the reaction of zinc(II) sulfate, ammonium thiocyanate and DADMBTZ using sonochemical and branched tube methods, respectively. The new nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and FT-IR spectroscopy. Compound (1) was structurally characterized by single crystal X-ray diffraction. Compound (1) form a tris-chelate complex with nearly C3 symmetry. The coordination number of zinc atom in the compound is six with coordinated environments of distorted octahedral, ZnN6. In reaction with DADMBTZ, the ligand DADMBTZ acts as bidentate in compound to form five-membered chelate rings with the same internal angles in coordination polyhedron. The crystal packing is mainly stabilized by N-H- - - -N hydrogen bonding interactions. The thermal stability of compound (1) was studied by thermal gravimetric (TG) and differential thermal analyses (DTA). ZnS nanostructures were obtained by direct thermolyses of compound (1) at 400 °C under argon atmosphere. The ZnS nanoparticles were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy.

  8. Structure and Dynamics of Solvation Shells of Copper(II) Complexes with N,O-Containing Ligands.

    PubMed

    Bukharov, Mikhail S; Shtyrlin, Valery G; Mamin, Georgy V; Stapf, Siegfried; Mattea, Carlos; Mukhtarov, Anvar Sh; Serov, Nikita Yu; Gilyazetdinov, Edward M

    2015-10-19

    EPR, NMR relaxation methods, and DFT calculations were jointly used to investigate the structural and dynamical characteristics of solvation shells of copper(II) complexes with iminodiacetic acid, glycylglycine, and glycyglycylglycine in comparison with the copper(II) bis-glycinate studied previously. A strong trans influence of deprotonated peptide nitrogen was revealed in EPR spectra parameters of copper(II) complexes with oligopeptides. With models of the experimental NMRD data and literature X-ray structural information, it was suggested that only one water molecule coordinates in axial position of copper(II) complexes with glycine and di- and triglycine (Cu(Gly)2, Cu(GGH(-1)), and Cu(GGGH(-2))(-)), and the copper ion in these complexes is pentacoordinated, while in the iminodiacetate complex, Cu(IDA), both apical positions can be occupied by solute molecules. The obtained structural results were confirmed by DFT calculations of structures of studied compounds using different functionals and basis sets. It was shown that the donor ability of equatorial ligands and trans influence have an effect on the characteristics of the axial water bond. With increasing donor strength of equatorial ligands, pentacoordination of copper(II) complexes in water solutions becomes more preferable. PMID:26440723

  9. Ultraviolet spectrophotometric characterization of copper(II) complexes with imidazole N-methyl derivatives of ?-histidine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Prenesti, Enrico; Berto, Silvia; Daniele, Pier Giuseppe

    2003-01-01

    In this study we considered π-methyl- L-histidine (π-methis) and τ-methyl- L-histidine (τ-methis) as ligands for copper(II) ion, in order to clarify, by means of ultraviolet (UV) spectroscopy in aqueous solution ( T=25 °C, I=0.1 M), some aspects of the co-ordination mode with respect to other ligands of a previous study in which copper(II) complexes of L-histidine, N-acetyl- L-histidine, histamine, L-histidine methyl ester or carnosine were investigated. Particularly, UV spectra (300-400 nm) were recorded on solutions at various pH values, containing each binary system Cu-L; afterwards, an UV absorption spectrum for single complexes was calculated, taking into account the chemical model previously assessed, in order to fulfil a correct spectrum-structure correlation. The problem related to the eventual superimposition of the CT shoulder (≈330 nm) to copper(II) of OH - and imidazole pyridine nitrogen groups were now solved by means of a comparison of the UV spectra of dimer species formed by both π-methis or τ-methis. Finally, copper(II) complex formation with 2,2'-bipyridine was taken into account to compare the behaviour of pyridine (from 2,2'-bipyridine) and pyridine imidazole nitrogens (from π-methis or τ-methis) with respect to the UV charge transfer process to copper(II) ion.

  10. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission

    PubMed Central

    Sreenath, Kesavapillai; Yuan, Zhao; Allen, John R.

    2015-01-01

    We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells. PMID:25382395

  11. The speciation of aqueous zinc(II) bromide solutions to 500 °C and 900 MPa determined using Raman spectroscopy

    USGS Publications Warehouse

    Mibe, Kenji; Chou, I-Ming; Anderson, Alan J.; Mayanovic, Robert A.; Bassett, William A.

    2009-01-01

    A Raman spectral study was carried out on 3 solutions of varying concentration and bromide/zinc ratios. Spectra were collected at 11 different temperature-pressure conditions ranging from ambient to 500????C-0.9??GPa. Raman band assignments for zinc(II) bromide species reported in previous studies were used to determine the relative concentrations of ZnBr42-, ZnBr3-, ZnBr2, and ZnBr+ species at various temperatures and pressures. Our results are in close agreement with X-ray absorption spectroscopic (XAS) data, and confirm that the tetrabromo zinc(II) complex, ZnBr42-, is the predominant species up to 500????C in solutions having high Zn concentrations (1??m) and high bromide/zinc molar ratios ([Br]/[Zn] = 8). In agreement with previous solubility and Raman spectroscopic experiments, our measurements indicate that species with a lower number of halide ligands and charge are favored with increasing temperature in dilute solutions, and solutions with low bromide/zinc ratios ([Br]/[Zn] < 2.5). The Raman technique provides an independent experimental means of evaluating the quality of XAS analyses of data obtained from high temperature disordered systems. The combination of these two techniques provides complementary data on speciation and the structure of zinc(II) bromide complexes. The preponderance of the ZnBr42- species in highly saline brines at high temperature is consistent with the predominance of ZnCl42- in chloride-rich brines reported in previous XAS studies. Knowledge of Zn complexing in metal-rich highly saline brines is important for numerical models of ore deposition in high temperature systems such as skarns and porphyry-type deposits. ?? 2008 Elsevier B.V.

  12. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers

    PubMed Central

    Rückriem, Kai; Grotheer, Sarah; Vieker, Henning; Penner, Paul; Beyer, André; Gölzhäuser, Armin

    2016-01-01

    Summary Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor. PMID:27547602

  13. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II) oxalate precursor layers.

    PubMed

    Rückriem, Kai; Grotheer, Sarah; Vieker, Henning; Penner, Paul; Beyer, André; Gölzhäuser, Armin; Swiderek, Petra

    2016-01-01

    Copper(II) oxalate grown on carboxy-terminated self-assembled monolayers (SAM) using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II) acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II) oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS). Helium ion microscopy (HIM) reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS) confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor. PMID:27547602

  14. Electroanalytical study of the interaction between dsDNA and curcumin in the presence of copper(II).

    PubMed

    Serpi, C; Stanić, Z; Girousi, S

    2010-06-15

    As a result of the reaction between curcumin (CC) and copper(II) the characteristic peak of curcumin at -1.0V significantly increased, and the peak at -1.6V disappeared. Curcumin forms complex with copper(II). The interaction between double stranded (ds) calf-thymus DNA and curcumin in the presence of Cu(II) was studied in solution, by differential pulse adsorptive transfer voltammetry using carbon paste electrode (CPE) and hanging mercury drop electrode (HMDE). Cu(II)-CC complex generated changes in calf-thymus DNA. The characteristic peak of dsDNA, due to the oxidation of guanine residues, decreased. The increased DNA damage by Cu(II)-CC complex was observed in the presence of various concentrations of the transition metal ions, copper(II).

  15. Catenation control in the two-dimensional coordination polymers based on tritopic carboxylate linkers and azamacrocyclic nickel(II) complexes.

    PubMed

    Lampeka, Yaroslaw D; Tsymbal, Liudmyla V; Barna, Andrij V; Shuĺga, Yulija L; Shova, Sergiu; Arion, Vladimir B

    2012-04-14

    Four new coordination polymer frameworks, namely [(NiL(1))(3)(BTB)(2)]·6H(2)O, [(NiL(2))(3)(BTB)(2)]·6H(2)O, [(NiL(3))(3)(BTB)(2)]·6H(2)O and [(NiL(2))(3)(BTC)(2)]·10.25H(2)O (L(1) = 1,4,8,11-tetraazacyclotetradecane, L(2) = 3-methyl-1,3,5,8,12-pentaazacyclotetradecane, L(3) = 3,10-dimethyl-1,3,5,8,10,12-hexaazacyclotetradecane, BTC(3-) = benzene-1,3,5-tricarboxylate, BTB(3-) = 4,4',4''-benzene-1,3,5-triyl-tribenzoate) were prepared in water-N,N-dimethylformamide solutions. The molecular and crystal structures of these compounds are compared to the related coordination polymers formed by nickel(II) macrocyclic cations to examine the effect of carboxylate linker size on the framework architecture. Luminescent properties of the complexes based on the BTB(3-) bridging ligand are also discussed. PMID:22266979

  16. Synthesis, X-ray structure, spectroscopic properties and DFT studies of some dithiocarbazate complexes of nickel(II)

    NASA Astrophysics Data System (ADS)

    Takjoo, Reza; Centore, Roberto

    2013-01-01

    Two nickel(II) complexes with formulae NiL2 (1) and NiL'Im (2) (HL = allyl 2-benzylidene-hydrazinecarbodithioate, H2L' = allyl 2-(2-hydroxybenzylidene)hydrazinecarbodithioate, Im = Imidazole) have been synthesized and characterized by elemental analysis, molar conductivities, FT-IR, 1H NMR and UV/Vis spectroscopy. The crystal structure of the complexes has been determined by single crystal X-ray diffractometry. Both L and L' ligands are coordinated to the metal in the thiolate form. In 1, the square planar coordination of the metal is achieved by coordination of two bidentate ligand units acting through azomethine nitrogen and the thiolato sulfur donor atoms. The complex 2 has a square-planar geometry with the tridentate ligand coordinated to the metal through salicylate oxygen, azomethine nitrogen and the thiolato sulfur atoms, while the fourth coordination position is occupied by one N atom of imidazole. Also natural bond orbitals (NBOs), frontier molecular orbitals (FMOs) and Mulliken charge computational studies on complexes carried out in the ground state with the DFT and theory at B3LYP/6-31G(d,p) level of theory.

  17. Synthesis and characterization of bis nitrato[4-hydroxyacetophenonesemicarbazone) nickel(II) complex as ionophore for thiocyanate-selective electrode.

    PubMed

    Chandra, Sulekh; Hooda, Sunita; Tomar, Praveen Kumar; Malik, Amrita; Kumar, Ankit; Malik, Sakshi; Gautam, Seema

    2016-05-01

    The PVC based-ion selective electrode viz., bis nitrato[4-hydroxyacetophenone semicarbazone] nickel(II) as an ionophore was prepared for the determination of thiocyanate ion. The ionophore was characterized by FT-IR, UV-vis, XRD, magnetic moment and elemental analysis (CHN). On the basis of spectral studies an octahedral geometry has been assigned. The best performance was obtained with a membrane composition of 31% PVC, 63% 2-nitrophenyl octylether, 4.0% ionophore and 2.0% trioctylmethyl ammonium chloride. The electrode exhibited an excellent Nernstian response to SCN(-) ion ranging from 1.0 × 10(-7) to 1.0 × 10(-1)M with a detection limit of 8.6 × 10(-8)M and a slope of -59.4 ± 0.2 mV/decade over a wide pH range (1.8-10.7) with a fast response time (6s) at 25 °C. The proposed electrode showed high selectivity for thiocyanate ion over a number of common inorganic and organic anions. It was successfully applied to direct determination of thiocyanate in biological (urine and saliva) samples in order to distinguish between smokers and non-smokers, environmental samples and as an indicator electrode for titration of thiocyanate ions with AgNO3 solution. PMID:26952393

  18. Potassium nickel(II) gallium phosphate hydrate, K[NiGa(2)(PO(4))(3)(H(2)O)(2)].

    PubMed

    Chippindale, Ann M; Sharma, Arun V; Hibble, Simon J

    2009-01-01

    The title compound, potassium nickel(II) digallium tris-(phosphate) dihydrate, K[NiGa(2)(PO(4))(3)(H(2)O)(2)], was synthesized hydro-thermally. The structure is constructed from distorted trans-NiO(4)(H(2)O)(2) octa-hedra linked through vertices and edges to GaO(5) trigonal bipyramids and PO(4) tetra-hedra, forming a three-dimensional framework of formula [NiGa(2)(PO(4))(3)(H(2)O)(2)](-). The K, Ni and one P atom lie on special positions (Wyckoff position 4e, site symmetry 2). There are two sets of channels within the framework, one running parallel to the [10] direction and the other parallel to [001]. These inter-sect, forming a three-dimensional pore network in which the water mol-ecules coordinated to the Ni atoms and the K(+) ions required to charge balance the framework reside. The K(+) ions lie in a highly distorted environment surrounded by ten O atoms, six of which are closer than 3.1Å. The coordinated water mol-ecules are within hydrogen-bonding distance to O atoms of bridging Ga-O-P groups. PMID:21583729

  19. C- and N-Selective Grignard Addition Reactions of α-Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles.

    PubMed

    Hatano, Manabu; Yamashita, Kenji; Ishihara, Kazuaki

    2015-05-15

    Highly practical synthetic methods were developed for the C- and N-selective Grignard addition reactions of N-4-MeOC6H4-protected α-aldimino esters in the presence or absence of zinc(II) chloride. Diastereoselective C-alkyl addition, tandem C-alkyl addition-N-alkylation, and some transformations to synthetically useful optically active azacycles were demonstrated.

  20. Synthesis, crystal structures and luminescent properties of zinc(II) metal–organic frameworks constructed from terpyridyl derivative ligand

    SciTech Connect

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-08-15

    Five zinc(II) metal–organic frameworks, [Zn{sub 3}(344-pytpy){sub 2}Cl{sub 6}]{sub n}·n(H{sub 2}O) (1), [Zn(344-pytpy)(ox)]{sub n} (2), [Zn{sub 2}(344-pytpy)(bdc){sub 2}]{sub n}·1.5n(H{sub 2}O) (3), [Zn{sub 2}(344-pytpy){sub 2} (sfdb){sub 2}]{sub n}·1.5n(H{sub 2}O) (4) and [Zn{sub 3}(344-pytpy){sub 2}(btc){sub 2}]{sub n}·2n(H{sub 2}O) (5), (344-pytpy=4′-(3-pyridyl)-4,2′:6′,4″-terpyridine, H{sub 2}ox=oxalic acid, H{sub 2}bdc=1,4-benzenedi-carboxylic acid, H{sub 2}sfdb=4,4′-sulfonyldibenzoic acid and H{sub 3}btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three Zn{sup II} centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 6{sup 6}. Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.8{sup 2})(4.8{sup 5})(8{sup 3}). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (4{sup 4}.6{sup 2}). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.8{sup 2}){sub 2}(6{sup 2}.8{sup 2}.10.12)(6{sup 2}.8{sup 3}.10){sub 2}(6{sup 2}.8){sub 2}. The luminescence properties of 1–5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C. - Graphical abstract: Five new Zn(II) metal–organic frameworks based on dicarboxylate and terpyridyl derivative ligands have been synthesized by hydrothermal reactions, giving networks from 1D to 3D structures. The thermal stability and luminescent property have been investigated. - Highlights: • Five zinc(II) metal–organic frameworks have been prepared under hydrothermal conditions. • Their crystal and

  1. Photo- and electroluminescent properties of zinc(II) complexes with tetradentate Schiff bases, derivatives of salicylic aldehyde

    NASA Astrophysics Data System (ADS)

    Vashchenko, A. A.; Lepnev, L. S.; Vitukhnovskii, A. G.; Kotova, O. V.; Eliseeva, S. V.; Kuz'mina, N. P.

    2010-03-01

    It is studied how the introduction of various substituents into the composition of organic ligands affects the photoluminescence spectra of new zinc(II) complexes with tetradentate Schiff bases H2L (derivatives of salicylic aldehyde (H2SAL1, H2SAL2) and o-vanillin (H2MO1, H2MO2) with ethylenediamine and o-phenylenediamine) in the form of bulk solids and thin films. It is demonstrated that the emission spectra of bulk solid complexes without o-phenylenediamine bridges (ZnSAL1 and ZnMO1) contain additional long-wavelength bands compared to the spectra of corresponding thin films. In the case of films obtained from [ZnSAL1]2 dimer complexes, the long-wavelength band is dominant. At the same time, the photoluminescence spectra of ZnSAL2 and ZnMO2 complexes with o-phenylenediamine bridges are similar in the case of solid samples and thin films. The electroluminescent properties of organic light-emitting diodes (OLEDs) with the ITO/α-NPD/ZnL/Ca:Al structure are studied. The bathochromic shift of the electroluminescence peaks of OLEDs with respect to the photoluminescence spectra of bulk solid samples and thin films is probably related to the formation of exciplexes at the α-NPD/ZnL interface. The electroluminescence spectra of OLEDs based on [ZnSAL1]2 show a hypsochromic shift of the emission maximum, which can be caused by a shift of the recombination region into the α-NPD layer.

  2. Spectroscopic studies, cyclic voltammetry and synthesis of nickel(II) complexes with N 4, N 2O 2 and N 4S 2 donor macrocyclic ligands

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Rajiv

    2005-11-01

    Nickel(II) complexes of the general composition Ni(L)X 2 (where X = SCN, NO 3 and 1/2SO 4 and ligands = L 1 L 2 and L 3) have been synthesized and characterized by elemental analyses, magnetic moments, IR, 1H NMR, 13C NMR and electronic spectral studies. Nickel(II) ions, such as nitrates, thiocyantes and sulphates were found to act as templates for the cyclic condensations [1 + 1] and [2 + 2] of NH 2sbnd C 6H 4sbnd O sbnd CH 2sbnd CH 2sbnd O sbnd C 6H 4sbnd NH 2, NH 2sbnd (CH 2) 2sbnd NH 2 and NH 2sbnd CH(CH 3) sbnd CH 2sbnd NH 2 with C 6H 5sbnd CO sbnd CO sbnd C 6H 5, C 6H 5sbnd CO sbnd CH 2sbnd CO sbnd C 6H 5 and (COOH sbnd CH 2sbnd CH 2) 2S. All the complexes show magnetic moments corresponding to two unpaired electrons except [Ni(L 1)](NO 3) 2 and [Ni(L 2)](NO 3) 2 complexes which are diamagnetic. Electronic spectroscopy was used to analyse the differences between the paramagnetic and diamagnetic forms. Electrochemical properties have been studied extensively for Ni(III/II) and Ni(II/I) couples. The equilibrium between the paramagnetic and diamagnetic forms and the nickel(III/II) couple are strongly dependent on the electrolyte. It has been observed that the sulphate group coordinated selectively on the apical position of the nickel(II) centers of the compounds. The structural and electrochemical studies suggest that cooperative effects, involving coordination of sulphate to one nickel center, is responsible for the recognition of this anion. Various ligand field parameters have been calculated and discussed.

  3. Synthesis, molecular orbital, optical and device characterization of mononuclear mixed ligand nickel(II) complex of phthalate with N,N,N',N'-tetramethylethylenediamine for photodiode applications.

    PubMed

    Taha, A; Farag, A A M; Shebl, Magdy; Ammar, A H; Ahmed, H M

    2016-01-01

    In this work, a new synthesized mononuclear mixed ligand nickel(II) complex was characterized by various techniques. Crystalline characteristics of [Ni(Phth)(Me4en)(H2O)2]·4H2O were studied by using transmission electron microscope(TEM). Well crystalline structure corresponds to the hexagonal crystal system and identified by selected area electron diffraction (SAED) were achieved. Coordination of the nickel(II) ion with the functional groups of the ligands was established from the IR spectrum. Molar conductance of the current complex in DMF (10(-3)mol/L) indicated a non-electrolytic nature of the complex. Electronic spectra showed a strong band in the region 661-684nm; MeCN (661nm), CHCl3 (663nm), MeOH (667nm), Me2CO (675nm), DMSO (682nm) and DMF (684nm) which can be assigned to (3)A2g(F)→(3)T1g(F) transition of an octahedral structure around nickel(II). Multiple peaks were easily resolved from the spectral dependence of the absorption coefficient (α) measurements and the analysis near the fundamental absorption edge showed two direct allowed transition with energy gaps of 1.18 and 2.53eV. Dark current-voltage and capacitance-voltage characteristics of [Ni(Phth)(Me4en)(H2O)2]·4H2O/n-Si heterojunctions were studied to extract the main important parameters of the heterojunction device. The electrical characteristics of the heterojunction device under illumination hold the suitability of the device for optoelectronic applications.

  4. Synthesis, molecular orbital, optical and device characterization of mononuclear mixed ligand nickel(II) complex of phthalate with N,N,N‧,N‧-tetramethylethylenediamine for photodiode applications

    NASA Astrophysics Data System (ADS)

    Taha, A.; Farag, A. A. M.; Shebl, Magdy; Ammar, A. H.; Ahmed, H. M.

    2016-01-01

    In this work, a new synthesized mononuclear mixed ligand nickel(II) complex was characterized by various techniques. Crystalline characteristics of [Ni(Phth)(Me4en)(H2O)2]·4H2O were studied by using transmission electron microscope(TEM). Well crystalline structure corresponds to the hexagonal crystal system and identified by selected area electron diffraction (SAED) were achieved. Coordination of the nickel(II) ion with the functional groups of the ligands was established from the IR spectrum. Molar conductance of the current complex in DMF (10-3 mol/L) indicated a non-electrolytic nature of the complex. Electronic spectra showed a strong band in the region 661-684 nm; MeCN (661 nm), CHCl3 (663 nm), MeOH (667 nm), Me2CO (675 nm), DMSO (682 nm) and DMF (684 nm) which can be assigned to 3A2g(F) → 3T1g(F) transition of an octahedral structure around nickel(II). Multiple peaks were easily resolved from the spectral dependence of the absorption coefficient (α) measurements and the analysis near the fundamental absorption edge showed two direct allowed transition with energy gaps of 1.18 and 2.53 eV. Dark current-voltage and capacitance-voltage characteristics of [Ni(Phth)(Me4en)(H2O)2]·4H2O/n-Si heterojunctions were studied to extract the main important parameters of the heterojunction device. The electrical characteristics of the heterojunction device under illumination hold the suitability of the device for optoelectronic applications.

  5. Synthesis, vibrational spectra, and normal mode analysis of nickel(II) 1,5-dihydroxy-1,5-dimethyloctaethylbacteriochlorin. A model for bacteriochlorophylls

    SciTech Connect

    Hu, S.; Mukherjee, A.; Spiro, T.G. )

    1993-12-29

    Resonance Raman (RR) and FT-IR spectra are reported for nickel(II) 1,5-dihydroxy-1,5-dimethyloctaethylbacteriochlorin [Ni(HOEBC)] and its meso-d[sub 4] isotopomer. All the in-plane skeletal RR-active modes and most IR-active modes are assigned with the aid of a normal mode analysis by using a force field developed for nickel(II) octaethylporphyrin and by scaling the bond stretch force constants to bond lengths revealed in the crystal structure of nickel(II) octaethylbacteriochlorin. The calculated eigenvectors provide insight into the essential vibrational characteristics of metallobacteriochlorins. The RR spectra of Ni(HOEBC) were acquired with a variety of excitation wavelengths, near resonance with the B[sub x], Q[sub x], and Q[sub y] transitions. The enhancement pattern of the observed RR intensities reveals that the B[sub x]- and near-Q[sub y]-resonant spectra are dominated by Franck-Condon-active modes while the Q[sub x]-resonant spectrum is dominated by vibronically active modes. The B[sub x]-resonant spectrum also shows significant vibronic scattering, via coupling between the B[sub x]- and B[sub y]-excited states. Frequencies correlate well among Ni(II) complexes of octaethylporphine (OEP) and hydroporphyrins for modes containing similar local mode contributions, when allowance is made for C[sub beta]-C[sub beta] bond order reduction and the effects of symmetry lowering. Assignments are proposed for the existing RR data on bacteriochlorophyll a. 32 refs., 14 figs., 6 tabs.

  6. Characterization of the Copper(II) Binding Sites in Human Carbonic Anhydrase II

    PubMed Central

    Nettles, Whitnee L.; Song, He; Farquhar, Erik R.; Fitzkee, Nicholas C.; Emerson, Joseph P.

    2015-01-01

    Human carbonic anhydrase (CA) is a well-studied, robust, mononuclear Zn-containing metalloprotein that serves as an excellent biological ligand system to study the thermodynamics associated with metal ion coordination chemistry in aqueous solution. The apo-form of human carbonic anhydrase II (CA) binds two equivalents of copper(II) with high affinity. The Cu2+ ions bind independently forming two non-coupled type-II copper centers in CA (CuA and CuB). However, the location and coordination mode of the CuA site in solution is unclear, compared to the CuB site that has been well characterized. Using paramagnetic NMR techniques and X-ray absorption spectroscopy we have identified an N-terminal Cu2+ binding location and collected information on the coordination mode of the CuA site in CA, which is consistent with a four to five coordinate N-terminal Cu2+ binding site reminiscent to a number of N-terminal copper(II) binding sites including the copper(II)-ATCUN and copper(II)-beta-amyloid complexes. Additionally, we report a more detailed analysis of the thermodynamics associated with copper(II) binding to CA. Although we are still unable to fully deconvolute Cu2+ binding data to the high-affinity CuA site, we have derived pH- and buffer-independent values for the thermodynamics parameters K and ΔH associated with Cu2+ binding to the CuB site of CA to be 2 × 109 and −17.4 kcal/mol, respectively. PMID:26010488

  7. Redox noninnocence of the bridge in copper(II) salophen and bis(oxamato) complexes.

    PubMed

    de Bellefeuille, David; Orio, Maylis; Barra, Anne-Laure; Aukauloo, Ally; Journaux, Yves; Philouze, Christian; Ottenwaelder, Xavier; Thomas, Fabrice

    2015-09-21

    Two square-planar copper(II) complexes of 1,2-bis(2-hydroxy-3,5-di-tert-butylbenzimino)-4,5-bis(dimethylamino)benzene (1) and N-[4,5-bis(dimethylamino)-2-(oxalylamino)benzene]oxamate (2(2-)) were prepared. The crystal structures of the proligands H2L(1) and Et2H2L(2), as well as the corresponding complexes, are reported. The proligands each display a one-electron-oxidation wave, which is assigned to oxidation of the bis(dimethylamino)benzene moiety into a π radical. Complexes 1 and 2(2-) exhibit reversible one-electron-oxidation waves in their cyclic voltammograms (E1/2(1) = 0.14 and E1/2(2) = 0.31 V for 1 and E1/2(1) = -0.47 V vs Fc(+)/Fc for 2(2-)). The first process corresponds to oxidation of the bis(dimethylamino)benzene central ring into a π radical, while the second process for 1 is ascribed to oxidation of the π radical into an α-diiminoquinone. The one-electron-oxidized species 1(+) and 2(-) exhibit intense visible-near-IR absorptions, which are diagnostic of π radicals. They display a triplet signal in their electron paramagnetic resonance spectra, which stem from magnetic coupling between the ligand-radical spin and the copper(II) spin. The zero-field-splitting parameters are larger for 2(-) than 1(+) because of greater delocalization of the spin density onto the coordinated amidato N atoms. Density functional theory calculations support a π-radical nature of the one-electron-oxidized complexes, as well as S = 1 ground spin states. The electrogenerated 1(2+) comprises a closed-shell diiminoquinone ligand coordinated to a copper(II) metal center. Both 1 and 2 catalyze the aerobic oxidation of benzyl alcohol, albeit with different yields. PMID:26340100

  8. Bimetallic Gold(I)/Chiral N,N'-Dioxide Nickel(II) Asymmetric Relay Catalysis: Chemo- and Enantioselective Synthesis of Spiroketals and Spiroaminals.

    PubMed

    Li, Jun; Lin, Lili; Hu, Bowen; Lian, Xiangjin; Wang, Gang; Liu, Xiaohua; Feng, Xiaoming

    2016-05-10

    A highly efficient asymmetric cascade reaction between keto esters and alkynyl alcohols and amides is reported. The success of the reaction was attributed to the combination of chiral Lewis acid N,N'-dioxide nickel(II) catalysis with achiral π-acid gold(I) catalysis working as an asymmetric relay catalytic system. The corresponding spiroketals and spiroaminals were synthesized in up to 99 % yield, 19:1 d.r., and more than 99 % ee under mild reaction conditions. Control experiments suggest that the N,N'-dioxide ligand was essential for the formation of the spiro products. PMID:27062196

  9. Reversed-phase high-performance liquid chromatography of the stereoisomers of some sweetener peptides with a helical nickel(II) chelate in the mobile phase.

    PubMed

    Bazylak, G

    1994-05-13

    The use of a chiral mobile phase additive in the form of the helically distorted, square-planar, chiral nickel(II) chelate dl-[4,4'-(1-methyl-2-propylethane-1,2-diyldiimino)bis(pent-3 -en-2- onato)]nickel(II) was investigated for the resolution of optical isomers of dipeptide-type sweeteners, viz., aspartame, alitame and antiaspartame, and some of their decomposition products, e.g., diketopiperazines. The chiral discrimination mechanism for the solutes was elucidated. The proposed chiral RP-HPLC system was applied to the stereoselective determination of aspartame impurities in samples of its commercial dietetic and pharmaceutical formulations.

  10. Efficacy of modified distillation sludge of rose (Rosa centifolia) petals for lead(II) and zinc(II) removal from aqueous solutions.

    PubMed

    Nasir, Mubashir Hussain; Nadeem, Raziya; Akhtar, Kalsoom; Hanif, Muhammad Asif; Khalid, Ahmad M

    2007-08-25

    Removal of lead(II) and zinc(II) from aqueous solutions was studied using chemically modified distillation sludge of rose (Rosa centifolia) petals by pretreatment with NaOH, Ca(OH)(2), Al(OH)(3), C(6)H(6), C(6)H(5)CHO and HgCl(2). The adsorption capacity of biomass was found to be significantly improved. NaOH pretreated biomass showed remarkable increase in sorption capacity. Maximum adsorption of both metal ions was observed at pH 5. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. The overall adsorption process was best described by pseudo second order kinetics. The thermodynamic assessment of the metal ion-Rosa centifolia biomass system indicated the feasibility and spontaneous nature of the process and DeltaG degrees was evaluated as ranging from -26.9501 to -31.652 KJmol(-1) and -24.1905 to -29.8923KJmol(-1) for lead(II) and zinc(II) sorption, respectively, in the concentration range 10-640mgL(-1). Distribution coefficient (D) showed that the concentration of metal ions at the sorbent-water interface is higher than the concentration in the continuous aqueous phase. Maximum adsorption capacity of biomass tends to be in the order Pb(II) (87.74mgg(-1))>Zn(II) (73.8mgg(-1)) by NaOH pretreated biomass.

  11. Preparation and sonodynamic activities of water-soluble tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine and its bovine serum albumin conjugate.

    PubMed

    Xu, He-Nan; Chen, Hai-Jun; Zheng, Bi-Yuan; Zheng, Yun-Quan; Ke, Mei-Rong; Huang, Jian-Dong

    2015-01-01

    Sonodynamic therapy (SDT) is a new approach for cancer treatment, involving the synergistic effect of ultrasound and certain chemical compounds termed as sonosensitizers. A water-soluble phthalocyanine, namely tetra-α-(3-carboxyphenoxyl) zinc(II) phthalocyanine (ZnPcC4), has been prepared and characterized. The interactions between ZnPcC4 and bovine serum albumin (BSA) were also investigated by absorption and fluorescence spectroscopy. It was found that there were strong interactions between ZnPcC4 and BSA with a binding constant of 6.83×10(7)M(-1). A non-covalent BSA conjugate of ZnPcC4 (ZnPcC4-BSA) was prepared. Both ZnPcC4 and ZnPcC4-BSA exhibited efficient sonodynamic activities against HepG2 human hepatocarcinoma cells. Compared with ZnPcC4, conjugate ZnPcC4-BSA showed a higher sonodynamic activity with an IC50 value of 7.5μM. Upon illumination with ultrasound, ZnPcC4-BSA can induce an increase of intracellular reactive oxygen species (ROS) level, resulting in cellular apoptosis. The results suggest that the albumin conjugates of zinc(II) phthalocyanines functionalized with carboxyls can serve as promising sonosensitizers for sonodynamic therapy.

  12. Chelation behavior of various flavonols and transfer of flavonol-chelated zinc(II) to alanylaspartic dipeptide: A PCM/DFT investigation

    NASA Astrophysics Data System (ADS)

    Yasarawan, Nuttawisit; Thipyapong, Khajadpai; Ruangpornvisuti, Vithaya

    2016-03-01

    Alanylaspartic dipeptide (AlaAsp) and zinc(II)-flavonol complex could represent a metal-binding site in proteins and a metal-ion releasing agent, respectively. Chelation of zinc(II) by either AlaAsp or flavonol ligands in aqueous solution has been examined using DFT methods with polarizable continuum model (PCM/DFT). Coordination geometry, complexation stoichiometry, coordination bond strength, preferable metal-binding site on ligands and effect of water coordination on the stability of complexes have been addressed. In several cases, the long-range corrected density functional CAM-B3LYP allows the most accurate prediction of both structural and spectroscopic data. The preferential transfer of flavonol-chelated zinc(II) to AlaAsp under solvation is attainable through the ligand-exchange reaction. The energy barrier of such reaction is significantly dependent on the degree of hydrogen bonding within the transition state. In summary, either hydroxylation or methoxylation at particular positions on the 3-hydroxyflavone backbone significantly affects the reactivity of flavonol chelates in the metal-ion transfer.

  13. The cytotoxic mechanisms of disulfiram and copper(ii) in cancer cells

    PubMed Central

    Tawari, Patricia Erebi; Wang, Zhipeng; Najlah, Mohammad; Tsang, Chi Wai; Kannappan, Vinodh; Liu, Peng; McConville, Christopher; He, Bin; Armesilla, Angel L.

    2015-01-01

    The anticancer activity of disulfiram (DS) is copper(ii) (Cu)-dependent. This study investigated the anticancer mechanisms of DS/Cu using in vitro cytotoxicity and metabolic kinetic analysis. Our study indicates that DS/Cu targets cancer cells by the combination of two types of actions: (1) instant killing executed by DS/Cu reaction generated reactive oxygen species; (2) delayed cytotoxicity introduced by the end product, DDC-Cu. Nanoencapsulation of DS might shed light on repositioning of DS into cancer treatment.

  14. EPR, mass, IR, electronic, and magnetic studies on copper(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-01-01

    Copper(II) complexes having the general composition Cu(L) 2X 2 [where L = isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC), and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-] have been synthesized. All the Cu(II) complexes reported here have been characterized by elemental analyses, molar conductance, magnetic moment susceptibility, EI mass, 1H NMR, IR, EPR, and electronic spectral studies. All the complexes were found to have magnetic moments corresponding to one unpaired electrons. The possible geometries of the complexes were assigned on the basis of EPR, electronic, and infrared spectral studies.

  15. Copper(II) ions and the Alzheimer's amyloid-β peptide: Affinity and stoichiometry of binding

    NASA Astrophysics Data System (ADS)

    Tõugu, Vello; Friedemann, Merlin; Tiiman, Ann; Palumaa, Peep

    2014-10-01

    Deposition of amyloid beta (Aβ) peptides into amyloid plaques is the hallmark of Alzheimer's disease. According to the amyloid cascade hypothesis this deposition is an early event and primary cause of the disease, however, the mechanisms that cause this deposition remain elusive. An increasing amount of evidence shows that the interactions of biometals can contribute to the fibrillization and amyloid formation by amyloidogenic peptides. From different anions the copper ions deserve the most attention since it can contribute not only toamyloid formation but also to its toxicity due to the generation of ROS. In this thesis we focus on the affinity and stoichiometry of copper(II) binding to the Aβ molecule.

  16. The toxicity of copper(II) species to marine algae, with particular reference to macroalgae

    SciTech Connect

    Gledhill, M.; Nimmo, M.; Hill, S.J.; Brown, M.T.

    1997-02-01

    Ambient concentrations of dissolved copper(II) in seawater are very low. However, levels can increase as a result of natural and anthropogenic sources. Such increase can have profound effects on organisms in the vicinity resulting in inhibition of growth, reduced fecundity, and even death. This paper highlights the importance of pecieation when considering the toxic effects of cooper, with particular reference to macroalgae in a marine environment, and to encourage more biologists to take account of this in their studies of metal pollution. 104 refs., 2 figs., 4 tabs.

  17. Effects of terminal dimethylation and metal coordination of proline-2-formylpyridine thiosemicarbazone hybrids on lipophilicity, antiproliferative activity, and hR2 RNR inhibition.

    PubMed

    Bacher, Felix; Dömötör, Orsolya; Kaltenbrunner, Maria; Mojović, Miloš; Popović-Bijelić, Ana; Gräslund, Astrid; Ozarowski, Andrew; Filipovic, Lana; Radulović, Sinisa; Enyedy, Éva A; Arion, Vladimir B

    2014-12-01

    The nickel(II), copper(II), and zinc(II) complexes of the proline-thiosemicarbazone hybrids 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (L-Pro-FTSC or (S)-H2L(1)) and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone (D-Pro-FTSC or (R)-H2L(1)), as well as 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine 4,4-dimethyl-thiosemicarbazone (dm-L-Pro-FTSC or (S)-H2L(2)), namely, [Ni(L-Pro-FTSC-2H)]2 (1), [Ni(D-Pro-FTSC-2H)]2 (2), [Ni(dm-L-Pro-FTSC-2H)]2 (3), [Cu(dm-L-Pro-FTSC-2H)] (6), [Zn(L-Pro-FTSC-2H)] (7), and [Zn(D-Pro-FTSC-2H)] (8), in addition to two previously reported, [Cu(L-Pro-FTSC-2H)] (4), [Cu(D-Pro-FTSC-2H)] (5), were synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, circular dichroism, UV-vis, and electrospray ionization mass spectrometry. Compounds 1-3, 6, and 7 were also studied by single-crystal X-ray diffraction. Magnetic properties and solid-state high-field electron paramagnetic resonance spectra of 2 over the range of 50-420 GHz were investigated. The complex formation processes of L-Pro-FTSC with nickel(II) and zinc(II) were studied in aqueous solution due to the excellent water solubility of the complexes via pH potentiometry, UV-vis, and (1)H NMR spectroscopy. The results of the antiproliferative activity in vitro showed that dimethylation improves the cytotoxicity and hR2 RNR inhibition. Therefore, introduction of more lipophilic groups into thiosemicarbazone-proline backbone becomes an option for the synthesis of more efficient cytotoxic agents of this family of compounds. PMID:25391085

  18. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    PubMed

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  19. Highly efficient visual detection of trace copper(II) and protein by the quantum photoelectric effect.

    PubMed

    Wang, Peng; Lei, Jianping; Su, Mengqi; Liu, Yueting; Hao, Qing; Ju, Huangxian

    2013-09-17

    This work presented a photocurrent response mechanism of quantum dots (QDs) under illumination with the concept of a quantum photoelectric effect. Upon irradiation, the photoelectron could directly escape from QDs. By using nitro blue tetrazolium (NBT) to capture the photoelectron, a new visual system was proposed due to the formation of an insoluble reduction product, purple formazan, which could be used to visualize the quantum photoelectric effect. The interaction of copper(II) with QDs could form trapping sites to interfere with the quantum confinement and thus blocked the escape of photoelectron, leading to a "signal off" visual method for sensitive copper(II) detection. Meanwhile, by using QDs as a signal tag to label antibody, a "signal on" visual method was also proposed for immunoassay of corresponding protein. With meso-2,3-dimercaptosuccinic-capped CdTe QDs and carcino-embryonic antigen as models, the proposed visual detection methods showed high sensitivity, low detection limit, and wide detectable concentration ranges. The visualization of quantum photoelectric effect could be simply extended for the detection of other targets. This work opens a new visual detection way and provides a highly efficient tool for bioanalysis.

  20. The structure of amorphous bulk and silica-supported copper(II) hydroxides

    SciTech Connect

    Kriventsov, V.V.; Kochubey, D.I.; Elizarova, G.L.; Matvienko, L.G.; Parmon, V.N.

    1999-07-01

    Determination of the structure of surface hydroxocompounds is one of the most delicate areas of environmental chemistry, geochemistry, and catalysis. In nature, these compounds are formed everywhere, mostly by absorption of multicharged metal cations on different soil constitutents from water solutions. The data obtained show that at pH 7 copper(II) ions are adsorbed on a SiO{sub 2} surface as polymeric species of hydroxide nature. The structure of these species is similar to that of the bulk amorphous copper hydroxide. The amorphous state of supported Cu(OH){sub 2} is caused by a small (ca. 11 {angstrom}) size of the surface particles. In contrast, the overstoichiometric water molecules seem to act as ``amorphizers`` of the bulk copper hydroxide. The structures of the bulk and dispersed amorphous copper(II) hydroxide were determined. The amorphous Cu(OH){sub 2} has a layered structure close to the structure of the crystalline hydroxide, but the layers in the amorphous hydroxide are shifted toward one another approximately for {1/4} of the c period of the lattice.

  1. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin.

    PubMed

    Gou, Yi; Zhang, Yao; Qi, Jinxu; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-03-01

    We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for copper(II), resulting in the complexes [CuCl(L)]·H2O (C1), [CuNO3(L)]·H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds' interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA-C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2.

  2. Structural characterization and EPR spectral studies on mononuclear copper(II) complex of saccharin with ethylnicotinate

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Bozkurt, Esat; Kazak, Canan; Bulut, Ahmet

    2009-02-01

    Mononuclear copper(II) saccharinate (sac) complex containing ethylnicotinate (enc), [Cu(enc) 2(sac) 2(H 2O)]·1.4H 2O has been synthesized and characterized by spectroscopic (IR, UV-vis, EPR), X-ray diffraction technique and electrochemical methods. It crystallizes in the tetragonal crystal systems with space group I4 1cd and Z = 8. The copper(II) ion presents a CuN 4O distorted square pyramidal coordination. Based on EPR and optical absorption studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values, calculated for title complex in polycrystalline state at 298 K and in frozen DMF (110 K), indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ and in-plane π-bonding. Some comparisons with related structures are made and the most important features of its IR spectrum were also discussed. The cyclic voltammogram of the title complex investigated in DMF (dimethylformamide) solution exhibits only metal centred electroactivity in the potential range ±1.25 V vs. Ag/AgCl reference electrode.

  3. Synthesis, spectroscopic characterisation, DNA cleavage, superoxidase dismutase activity and antibacterial properties of some transition metal complexes of a novel bidentate Schiff base derived from isatin and 2-aminopyrimidine

    NASA Astrophysics Data System (ADS)

    Nitha, L. P.; Aswathy, R.; Mathews, Niecy Elsa; Sindhu kumari, B.; Mohanan, K.

    2014-01-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a Schiff base, formed by the condensation of isatin with 2-aminopyrimidine have been synthesised and characterised through elemental analysis, molar conductance measurements, magnetic susceptibility, IR, UV-Vis, 1HNMR, FAB mass and EPR spectral studies. The spectral data revealed that the ligand acts as neutral bidentate, coordinating to the metal ion through the carbonyl oxygen and azomethine nitrogen. Molar conductance values adequately support the electrolytic nature of the complexes. On the basis of the above observations the complexes have been formulated as [M(ISAP)2]X2, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl, OAc; ISAP = 2-[N-indole-2-one]aminopyrimidine. The ligand and copper(II) complex were subjected to X-ray diffraction studies. The DNA cleavage study was monitored by gel electrophoresis method. The superoxide dismutase (SOD) mimetic activities of the ligand and the metal complexes were checked using NBT assay. The in vitro antibacterial activity of the synthesized compounds has been tested against gram negative and gram positive bacteria.

  4. Covalent functionalization of multi-wall carbon nanotubes (MWNTs) by nickel(II) Schiff-base complex: Synthesis, characterization and liquid phase oxidation of phenol with hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2008-12-01

    The chemical modification of multi-wall carbon nanotubes (MWNTs) is an emerging area in material science. In the present study, hydroxyl functionalized nickel(II) Schiff-base has been covalently anchored on modified MWNTs. The new modified MWNTs have been characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron (XPS), thermal analysis, UV-vis, diffuse reflectance (DRS), FT-IR spectroscopy and elemental analysis. The results suggest that the symmetrical Schiff-base; N, N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diamine; H 2[(OH) 2-salen]; is a bivalent anion with tetradentate N 2O 2 donors derived from the phenolic oxygen and azomethine nitrogen. The formula was found to be [Ni((OH) 2-salen)] for the 1:1 non-electrolytic complex. Multi-wall carbon nanotubes covalently anchored nickel(II) complex ([Ni((OH) 2-salen)]@MWNTs) catalyze the oxidation of phenol with H 2O 2. Oxidation of phenol catalyzed by this complex gave catechol and hydroquinone as major products. A suitable reaction condition has been optimized for [Ni((OH) 2-salen)]@MWNTs by considering the effect of various parameters such as reaction time and amount of oxidant, different solvents, concentration of substrate, etc. for the maximum transformation of phenol.

  5. Application of Colorimetric Solid Phase Extraction (C-SPE) to Monitoring Nickel(II) and Lead(II) in Spacecraft Water Supplies

    NASA Technical Reports Server (NTRS)

    Diaz, Neil C.; Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.; Rutz, Jeff; Mudgett, Paul; Schultz, John

    2004-01-01

    Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique, we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have determined nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5- dimercapto-1,3,4-thiadiazole (DMTD) and 4-(2- pyridylazo)-resorcinol (PAR). These developments are also extending a new variant of C-SPE in which immobilized reagents are being incorporated into this methodology in order to optimize sample reaction conditions and to introduce the colorimetric reagent. This paper describes the status of our development of these two new methods.

  6. The effects of nickel(II) complexes with imidazole derivatives on pyocyanin and pyoverdine production by Pseudomonas aeruginosa strains isolated from cystic fibrosis.

    PubMed

    Gałczyńska, Katarzyna; Kurdziel, Krystyna; Adamus-Białek, Wioletta; Wąsik, Sławomir; Szary, Karol; Drabik, Marcin; Węgierek-Ciuk, Aneta; Lankoff, Anna; Arabski, Michał

    2015-01-01

    Pseudomonas aeruginosa infection is problematic in patients with cystic fibrosis (CF). P. aeruginosa secretes a diversity of pigments, such as pyocyanin and pyoverdine. The aim of this study was to evaluate the effects of complexes of nickel(II) ([Ni(iaa)2(H2O)2]·H2O (iaa = imidazole-4-acetate anion), [Ni(1-allim)6](NO3)2 (1-allim = 1-allylimidazole) and NiCl2 on pyocyanin and pyoverdine production by 23 strains of P. aeruginosa isolated from cystic fibrosis under growth conditions specific for the CF respiratory system. The antibacterial effects and biophysical properties of the tested substances were measured by spectrofluorometric techniques, as well as by laser interferometry, confocal and atomic force microscopy. The cytotoxic properties of all compounds were measured by Annexin/IP assay against A549 cells. All tested compounds have no effect on pyocyanin production and decrease the pyoverdine secretion in about 40% of tested P. aeruginosa strains at non-cytotoxic range of concentrations. Imidazole-4-acetate anion and 1-allylimidazole have good diffusion properties in the mature P. aeruginosa PAO1 biofilm. In conclusion, the tested nickel(II) complexes do not have clinical implications in P. aeruginosa eradication in cystic fibrosis. The diffusion properties of 1-allylimidazole and imidazole-4-acetate and their lack of effect on A549 cells suggest that they might be considered for chemical synthesis with other transition metals. PMID:26645324

  7. Interactions of α-Factor-1, a Yeast Pheromone, and Its Analogue with Copper(II) Ions and Low-Molecular-Weight Ligands Yield Very Stable Complexes.

    PubMed

    Bossak, Karolina; Mital, Mariusz; Poznański, Jarosław; Bonna, Arkadiusz; Drew, Simon; Bal, Wojciech

    2016-08-15

    α-Factor-1 (WHWLQLKPGQPMY), a peptidic pheromone of Saccharomyces cerevisiae yeast, contains a XHX type copper(II) binding N-terminal site. Using a soluble analogue, WHWSKNR-amide, we demonstrated that the W(1)H(2)W(3) site alone binds copper(II) with a Kd value of 0.18 pM at pH 7.4 and also binds imidazole (Im) in a ternary complex (Kd of 1 mM at pH 7.4). This interaction boosts the ability of the peptide to sequester copper(II) depending on the Im concentration up to a subfemtomolar range, not available for any oligopeptidic system studied before. Therefore, α-factor-1 and other XHX-type peptides are likely copper(II) carriers in biological systems. PMID:27476515

  8. Synthesis, crystal structures and luminescent properties of zinc(II) metal-organic frameworks constructed from terpyridyl derivative ligand

    NASA Astrophysics Data System (ADS)

    Yang, Xiao-Le; Shangguan, Yi-Qing; Hu, Huai-Ming; Xu, Bing; Wang, Bao-Cheng; Xie, Juan; Yuan, Fei; Yang, Meng-Lin; Dong, Fa-Xin; Xue, Gang-Lin

    2014-08-01

    Five zinc(II) metal-organic frameworks, [Zn3(344-pytpy)2Cl6]n·n(H2O) (1), [Zn(344-pytpy)(ox)]n (2), [Zn2(344-pytpy)(bdc)2]n·1.5n(H2O) (3), [Zn2(344-pytpy)2 (sfdb)2]n·1.5n(H2O) (4) and [Zn3(344-pytpy)2(btc)2]n·2n(H2O) (5), (344-pytpy=4‧-(3-pyridyl)-4,2‧:6‧,4″-terpyridine, H2ox=oxalic acid, H2bdc=1,4-benzenedi-carboxylic acid, H2sfdb=4,4‧-sulfonyldibenzoic acid and H3btc=1,3,5-benzene-tricarboxylic acid) have been prepared by hydrothermal reactions. Compound 1 is a 1D chain structure, in which 344-pytpy ligand links three ZnII centers through three of terminal N-donors. Compound 2 is a 4-connected 3D framework with the dia topological net and the Schläfli symbol of 66. Compound 3 displays a unusual 3-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,3,4)-connected topological net with the Schläfli symbol of (4.82)(4.85)(83). Compound 4 features a two-fold interpenetrating 4-connected 2D framework with the sql topological net and the Schläfli symbol of (44.62). Compound 5 is a new self-interpenetrating (3,3,4,4)-connected topological net with the Schläfli symbol of (6.82)2(62.82.10.12)(62.83.10)2(62.8)2. The luminescence properties of 1-5 have been investigated by emission spectra and they possess great thermal stabilities which can be stable up to around 400 °C.

  9. Acid-base interactions and complex formation while recovering copper(II) ions from aqueous solutions using cellulose adsorbent in the presence of polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Nikiforova, T. E.; Kozlov, V. A.; Islyaikin, M. K.

    2012-12-01

    The sorption properties of nontreated cotton cellulose and cellulose modified with polyvinylpyrrolidone with respect to copper(II) ions are investigated. It is established that modified cellulose adsorbents have high sorption capability associated with the formation of new sorption centers during treatment with nitrogen-containing polymer. A mechanism is proposed for acid-base interactions in aqueous solutions of acids, bases, and salts during copper(II) cation recovery using cellulose adsorbent with the participation of polyvinylpyrrolidone.

  10. Synthesis, spectral characterization, molecular modeling and antimicrobial activity studies on 2-aminopyridine-cyclodiphosph(V)azane derivative and its homo-binuclear zinc(II) complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.

    2014-06-01

    Complexes of zinc(II) of general composition [Zn2(L)X2(H2O)4]nH2O have been synthesized [L = 1,3-dipyridyl-2,4-dioxo-2‧,4‧-bis(2-iminopyridine)cyclodi-phosph(V)azane and X = NO3-; n = 2, OAc-; n = 1, SO42-; n = 2 and Cl-; n = 2]. The elemental analysis, molar conductance measurements, mass, IR, UV, NMR (1H and 31P), TGA, DTA, SEM and XRD spectral studies of the compounds led to the conclusion that the cyclodiphosph(V)azane ligand (H2L) acts as a bidentate manner per zinc ion. The cyclodiphosph(V)azane ligand forms hexa-coordinated complexes having octahedral geometry for Zn(II) complexes. The elemental analyses and mass spectral data have justified the [Zn2(L)X2(H2O)4]nH2O composition of complexes. Infrared spectra of the zinc complexes indicate deprotonation and coordination of the imine NH. It also confirms that nitrogen atoms of the pyridine group contribute to the complexation. The X-ray powder diffraction (XRD) was performed of [Zn2L(SO4)2(H2O)4]2H2O complex. The XRD patterns indicate crystalline nature for the [Zn2L(SO4)2(H2O)4]2H2O complex. The measured low molar conductance values in dimethylformamide indicate that the complexes are non-electrolyte nature. The surface morphology (SEM) of the cyclodiphosph(V)azane ligand and the [Zn2L(NO3)2(H2O)4]2H2O complex were studied by SEM. The thermal studies suggested that the complexes are more stable as compared to ligand. In molecular modeling the geometries of cyclodiphosph(V)azane ligand H2L and its zinc(II) complexes were fully optimized with respect to the energy using the 6-31G basis set. The cyclodiphosph(V)azane ligand and the zinc(II) complexes have been measured in vitro to judge their antibacterial (Escherichia coli and Staphylococcus aureus) and antifungal (Aspergillus niger and Pencillium chrysogenum) activities.

  11. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    PubMed

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes.

  12. Mechano-switchable, luminescent gels derived from salts of a long-chained, fatty-acid gelator.

    PubMed

    Zhang, Mohan; Weiss, Richard G

    2016-07-27

    Stimulus-responsive molecular gel systems, based on metal salts of a luminescent gelator, 9,10-dioxooctadecanoic acid (DODA), are reported. These salts are structurally the simplest metallo-gelators of which we are aware that exhibit controllable mechano-responsive and luminescent properties. Aggregation is more favored by the metal salts than for DODA itself. However, gelation ability differs dramatically depending on the metal ion: whereas the salts with zinc(ii) and calcium(ii) are inefficient gelators, those with nickel(ii) and copper(ii) can gelate various aromatic liquids, alkanes, and long-chained alcohols. Unlike the DODA gels, no aggregation-induced shift in the positions of the emission spectra of the metal salts could be observed as the sols were transformed to their gel phases. Gels of both nickel(ii) and copper(ii) salts in benzonitrile are among the few known examples with crystalline networks and exhibiting thixotropic behavior. However, there are significant differences in their abilities to recover the initial viscoelastic properties. Structural data for the solid and gel states lead us to conclude that differences among the gelating abilities can be attributed principally to the specific nature of interactions of the salts at their head groups. They appear to control the mechanical and emissive properties of the gels as well as whether the initial aggregation of the salts in the sol phases will support the growth of 1D objects that are capable of maintaining strong contacts, leading to 3D networks and gel formation. Overall, the results provide a facile strategy for the design of luminescent materials with controllable mechano-responsiveness by modifying the metal ions within fibrillar assemblies. PMID:27400800

  13. Norfloxacin and N-Donor Mixed-Ligand Copper(II) Complexes: Synthesis, Albumin Interaction, and Anti-Trypanosoma cruzi Activity

    PubMed Central

    Martins, Darliane A.; Gouvea, Ligiane R.; Muniz, Gabriel S. Vignoli; Louro, Sonia R. W.; Batista, Denise da Gama Jaen; Soeiro, Maria de Nazaré C.; Teixeira, Letícia R.

    2016-01-01

    Copper(II) complexes with the first-generation quinolone antibacterial agent norfloxacin containing a nitrogen donor heterocyclic ligand 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) were prepared and characterized by IR, EPR spectra, molar conductivity, and elemental analyses. The experimental data suggest that norfloxacin was coordinated to copper(II) through the carboxylato and ketone oxygen atoms. The interaction of the copper(II) complexes with bovine serum albumin (BSA) and human serum albumin (HSA) was investigated using fluorescence quenching of the tryptophan residues and copper(II) EPR spectroscopy. The results of fluorescence titration revealed that copper(II) complexes have a moderate ability to quench the intrinsic fluorescence of the albumins through a static quenching mechanism. EPR experiments showed that BSA and HSA Cu(II) sites compete with NOR for Cu(II)-bipy and Cu(II)-phen to form protein mixed-ligand complexes. Copper(II) complexes, together with the corresponding ligands, were evaluated for their trypanocidal activity in vitro against Trypanosoma cruzi, the causative agent of Chagas disease. The tests performed using bloodstream trypomastigotes showed that the Cu(II)-N-donor precursors and the metal complexes were more active than the free fluoroquinolone. PMID:26924953

  14. A Luminescent Zinc(II) Metal-Organic Framework (MOF) with Conjugated π-Electron Ligand for High Iodine Capture and Nitro-Explosive Detection.

    PubMed

    Yao, Ru-Xin; Cui, Xin; Jia, Xiao-Xia; Zhang, Fu-Qiang; Zhang, Xian-Ming

    2016-09-19

    A porous luminescent zinc(II) metal-organic framework (MOF) with a NbO net [Zn2(tptc)(apy)2-x(H2O)x]·H2O (1) (where x ≈ 1, apy = aminopyridine, H4tptc = terphenyl-3,3″,5,5″-tetracarboxylic acid), constructed using paddlewheel [Zn2(COO)4] clusters and π-electron-rich terphenyl-tetracarboxylic acid, has been solvothermally synthesized and characterized. Interestingly, the material displays efficient, reversible adsorption of radioactive I2 in vapor and in solution (up to 216 wt %). The strong affinity for I2 is mainly due to it having large porosity, a conjugated π-electron aromatic system, halogen bonds, and electron-donating aminos. Furthermore, luminescent study indicated that 1 exhibits high sensitivity to electron-deficient nitrobenzene explosives via fluorescence quenching. PMID:27579492

  15. Synthesis, supramolecular behavior, and in vitro photodynamic activities of novel zinc(II) phthalocyanines "side-strapped" with crown ether bridges.

    PubMed

    Chen, Xing-Wei; Ke, Mei-Rong; Li, Xing-Shu; Lan, Wen-Liang; Zhang, Miao-Fen; Huang, Jian-Dong

    2013-12-01

    Two new tetra- or di-α-substituted zinc(II) phthalocyanines 5 and 6 have been prepared through a "side-strapped" method. In the molecules, the adjacent benzene rings of the phthalocyanine core are linked at α-position through a triethylene glycol bridge to form a hybrid aza-/oxa-crown ether. The tetra-α-substituted phthalocyanine 5 shows an eclipsed self-assembly property in CH2Cl2 and the effect on the di-α-substituted analogue 6 is significantly weakened. Furthermore, the crown ethers of these compounds can selectively complex with Fe(3+) or Cu(2+) ion in DMF, leading to formation of J-aggregated nano-assemblies, which can be disaggregated in the presence of some organic or inorganic ligands, such as triethylamine, tetramethylethylenediamine, CH3COO(-), or OH(-). In addition, both compounds are efficient singlet oxygen generators with the singlet oxygen quantum yields (Φ(Δ)) of 0.54-0.74 in DMF relative to unsubstituted zinc(II) phthalocyanine (Φ(Δ)=0.56). They exhibit photodynamic activities toward HepG2 human hepatocarcinoma cells, but the compound 6, which has more than 40-fold lower IC50 value (0.08 μM) compared to the analogue 5 (IC50=3.31 μM), shows remarkablely higher in vitro photocytotoxicity due to its significantly higher cellular uptake and singlet oxygen generation efficiency. The results suggest that these compounds can serve as promising multifunctional materials both in (opto)electronic field and photodynamic therapy.

  16. Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper(II).

    PubMed

    Zhan, Yanhui; Lin, Jianwei; Li, Jia

    2013-04-01

    A novel composite material, i.e., surfactant-modified hydroxyapatite/zeolite composite, was used as an adsorbent to remove humic acid (HA) and copper(II) from aqueous solution. Hydroxyapatite/zeolite composite (HZC) and surfactant-modified HZC (SMHZC) were prepared and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscope. The adsorption of HA and copper(II) on SMHZC was investigated. For comparison purposes, HA adsorption onto HZC was also investigated. SMHZC exhibited much higher HA adsorption capacity than HZC. The HA adsorption capacity for SMHZC decreased slightly with increasing pH from 3 to 8 but decreased significantly with increasing pH from 8 to 12. The copper(II) adsorption capacity for SMHZC increased with increasing pH from 3 to 6.5. The adsorption kinetic data of HA and copper(II) on SMHZC obeyed a pseudo-second-order kinetic model. The adsorption of HA and copper(II) on SMHZC took place in three different stages: fast external surface adsorption, gradual adsorption controlled by both film and intra-particle diffusions, and final equilibrium stage. The equilibrium adsorption data of HA on SMHZC better fitted to the Langmuir isotherm model than the Freundlich isotherm model. The equilibrium adsorption data of copper(II) on SMHZC could be described by the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The presence of copper(II) in solution enhanced HA adsorption onto SMHZC. The presence of HA in solution enhanced copper(II) adsorption onto SMHZC. The mechanisms for the adsorption of HA on SMHZC at pH 7 may include electrostatic attraction, organic partitioning, hydrogen bonding, and Lewis acid-base interaction. The mechanisms for the adsorption of copper(II) on SMHZC at pH 6 may include surface complexation, ion exchange, and dissolution-precipitation. The obtained results indicate that SMHZC can be used as an effective adsorbent to simultaneously remove HA and

  17. Mono- and dinuclear nickel(II) complexes of resolved Schiff-base ligands with extended quinoline substituents.

    PubMed

    Prema, Dipesh; Oshin, Kayode; Desper, John; Levy, Christopher J

    2012-04-28

    The coordination chemistry of four enantiopure tetradentate bis(iminoquinoline) ligands with nickel(II) salts is reported. The previously reported ligands CBQ, CPQ, BBQ, and BPQ result from the condensation of (1R,2R)-cyclohexyldiamine or (R)-BINAM with two equivalents of 2-formylbenzo[h]quinoline or 8-isopropyl-2-quinolinecarboxaldehyde {CBQ = (1R,2R)-cyclohexanediamine-N,N'-bis(benzo[h]quinoline-2-ylmethylene), CPQ = (1R,2R)-cyclohexanediamine-N,N'-bis[[(8-isopropyl)-2-quinolinyl]methylene], BBQ = [(R)-1,1'-binaphthalene]-2,2'-diamine-N,N'-bis(benzo[h]quinoline-2-ylmethylene), BPQ = [(R)-1,1'-binaphthalene]-2,2'-diamine-N,N'-bis[[(8-isopropyl)-2-quinolinyl]methylene]}. Reaction of NiI(2) with the (1R,2R)-cyclohexyl ligands gives the mononuclear distorted trigonal-bipyramidal (TBP) complexes [Ni(N(3)-CBQ)I(2)] and [Ni(N(3)-CPQ)I(2)]. Incomplete iodide abstraction from [Ni(N(3)-CPQ)I(2)] with AgOTf leads to partial replacement of the iodide with hydroxide from adventitious water to give [Ni(N(3)-CPQ)I(1.6)(OH)(0.4)] (distorted TBP). The corresponding reaction with [Ni(N(3)-CBQ)I(2)] again fails to remove all of the iodide, resulting instead in conversion to the syn dinuclear [Ni(2)(CBQ)(μ-X)(2)I(2)] (X = Cl(0.925)I(0.075)) complex, where chloride abstraction from the solvent (CH(2)Cl(2)) has resulted in a mixed halide system and the metal centers are square-pyramidal. Reaction of Ni(OTf)(2) with CBQ leads to the isolation of the octahedral cation [Ni(CMBQ)(2)](2+), with CMBQ [(1R,2R)-cyclohexanediamine-mono-N-(benzo[h]quinoline-2-ylmethylene)] being the partial hydrolysis product of CBQ. [Ni(CMBQ)(2)][OTf](2) crystallizes as a 1:1 mixture of P and M helical diastereomers. The coordination of NiI(2) with the (R)-BINAM derived ligands yields the anti dinuclear P-helical complexes [Ni(2)(BBQ)(μ-I)(2)I(2)] and [Ni(2)(BPQ)(μ-I)(2)I(2)]: one nickel ion is coordinated in each bidentate iminoquinoline pocket and the geometry at the metal centers is distorted square

  18. Electrochromic and colorimetric properties of nickel(II) oxide thin films prepared by aerosol-assisted chemical vapor deposition.

    PubMed

    Sialvi, Muhammad Z; Mortimer, Roger J; Wilcox, Geoffrey D; Teridi, Asri Mat; Varley, Thomas S; Wijayantha, K G Upul; Kirk, Caroline A

    2013-06-26

    Aerosol-assisted chemical vapor deposition (AACVD) was used for the first time in the preparation of thin-film electrochromic nickel(II) oxide (NiO). The as-deposited films were cubic NiO, with an octahedral-like grain structure, and an optical band gap that decreased from 3.61 to 3.48 eV on increase in film thickness (in the range 500-1000 nm). On oxidative voltammetric cycling in aqueous KOH (0.1 mol dm(-3)) electrolyte, the morphology gradually changed to an open porous NiO structure. The electrochromic properties of the films were investigated as a function of film thickness, following 50, 100, and 500 conditioning oxidative voltammetric cycles in aqueous KOH (0.1 mol dm(-3)). Light modulation of the films increased with the number of conditioning cycles. The maximum coloration efficiency (CE) for the NiO (transmissive light green, the "bleached" state) to NiOOH (deep brown, the colored state) electrochromic process was found to be 56.3 cm(2) C(-1) (at 450 nm) for films prepared by AACVD for 15 min followed by 100 "bleached"-to-colored conditioning oxidative voltammetric cycles. Electrochromic response times were <10 s and generally longer for the coloration than the bleaching process. The films showed good stability when tested for up to 10 000 color/bleach cycles. Using the CIE (Commission Internationale de l'Eclairage) system of colorimetry the color stimuli of the electrochromic NiO films and the changes that take place on reversibly oxidatively switching to the NiOOH form were calculated from in situ visible spectra recorded under electrochemical control. Reversible changes in the hue and saturation occur on oxidation of the NiO (transmissive light green) form to the NiOOH (deep brown) form, as shown by the track of the CIE 1931 xy chromaticity coordinates. As the NiO film is oxidized, a sharp decrease in luminance was observed. CIELAB L*a*b* coordinates were also used to quantify the electrochromic color states. A combination of a low L* and positive a

  19. Characterization and biological activities of two copper(II) complexes with dipropylenetriamine and diamine as ligands

    NASA Astrophysics Data System (ADS)

    AL-Noaimi, Mousa; Choudhary, Mohammad I.; Awwadi, Firas F.; Talib, Wamidh H.; Hadda, Taibi Ben; Yousuf, Sammer; Sawafta, Ashraf; Warad, Ismail

    2014-06-01

    Two new mixed-ligand copper(II) complexes, [Cu(dipn)(Nsbnd N)]Br2(1-2) [dipn = dipropylenetriamine, Nsbnd N = ethylenediamine (en) (1) and propylenediamine (pn) (2)], have been synthesized. These complexes were characterized by spectroscopic and thermal techniques. Crystal structure for 2 shows a distorted trigonal-bipyramidal geometry around Cu(II) ion with one solvate water molecule. Antimicrobial and antiproliferative assays were conducted to evaluate the biological activities of these complexes. The complexes exhibit a promising antimicrobial effect against an array of microbes at 200 μg/mL concentration. The antiproliferative assay shows a high potential of these complexes to target Human keratinocyte cell line with IC50 values of 155 and 152 μM. The absorption spectrum of 2 in water was modeled by time-dependent density functional theory (TD-DFT).

  20. Reconstitution of Formylglycine-generating Enzyme with Copper(II) for Aldehyde Tag Conversion

    PubMed Central

    Holder, Patrick G.; Jones, Lesley C.; Drake, Penelope M.; Barfield, Robyn M.; Bañas, Stefanie; de Hart, Gregory W.; Baker, Jeanne; Rabuka, David

    2015-01-01

    To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity. PMID:25931126

  1. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  2. Quantum transport effects in copper(II) phthalocyanine sandwiched between gold nanoelectrodes.

    PubMed

    Tada, Tomofumi; Hamayama, Shinya; Kondo, Masakazu; Yoshizawa, Kazunari

    2005-06-30

    The electrical transmission of copper(II) phthalocyanine (CuPc) sandwiched between gold nanoelectrodes is studied on the basis of the Green function formalism coupled with the Gaussian-broadening technique. In the Au-CuPc-Au junction, broadened density of states (DOS) of the Au chains is defined as continuous DOS of electrodes to calculate the Green function of the electrodes. Two peaks of the transmission function found in the vicinity of the Fermi level are analyzed in terms of molecular orbitals (MOs). A convenient procedure to analyze MO contribution to a transmission peak is proposed. It is found that (I) symmetry-matched interactions between CuPc and the gold nanoelectrodes are important to the enhancement of the transmission function and (II) the nanoelectrodes have almost no effect on the electronic states of CuPc.

  3. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  4. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst.

    PubMed

    Collado, Sergio; Laca, Adriana; Díaz, Mario

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10(3) and 1.0 x 10(4)kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu(2+) to Cu(+) that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation.

  5. Coordination chemistry, thermodynamics and DFT calculations of copper(II) NNOS Schiff base complexes.

    PubMed

    Esmaielzadeh, Sheida; Azimian, Leila; Shekoohi, Khadijeh; Mohammadi, Khosro

    2014-12-10

    Synthesis, magnetic and spectroscopy techniques are described for five copper(II) containing tetradentate Schiff bases are synthesized from methyl-2-(N-2'-aminoethane), (1-methyl-2'-aminoethane), (3-aminopropylamino)cyclopentenedithiocarboxylate. Molar conductance and infrared spectral evidences indicate that the complexes are four-coordinate in which the Schiff bases are coordinated as NNOS ligands. Room temperature μeff values for the complexes are 1.71-1.80B.M. corresponding to one unpaired electron respectively. The formation constants and free energies were measured spectrophotometrically, at constant ionic strength 0.1M (NaClO4), at 25˚C in DMF solvent. Also, the DFT calculations were carried out to determine the structural and the geometrical properties of the complexes. The DFT results are further supported by the experimental formation constants of these complexes.

  6. Synthesis, characterization and catalytic activities towards epoxidation of olefins of dinuclear copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Halder, Shibashis; Mukherjee, Aparajita; Ghosh, Koushik; Dey, Sudipto; Nandi, Mahasweta; Roy, Partha

    2015-12-01

    Two copper(II) complexes, [Cu2(L1)Cl3].2H2O (1) and [Cu2(L2)(N3)Cl2] (2) where HL1 = 4-methyl-2,6-bis((2-morpholinoethylimino)methyl)phenol and HL2 = 4-methyl-2,6-bis((3-morpholinopropylimino)methyl)phenol have been synthesized and characterized by elemental analysis, various spectroscopic methods, TGA and single crystal X-ray diffraction analysis. Single crystal X-ray diffraction analysis reveals that in both the complexes, two copper atoms are linked by phenoxo oxygen atom and a bridging ligand, namely chloride and azide, respectively. These complexes have been used as catalyst for the epoxidation of cyclohexene, styrene, α-methyl styrene, trans-stilbene and norbornene using tert-butyl hydroperoxide as the oxidant in acetonitrile under mild conditions. All of the substrates undergo conversion to produce respective epoxide as the major product.

  7. Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)

    NASA Astrophysics Data System (ADS)

    Sanchiz, J.; Kremer, C.; Torre, M. H.; Facchin, G.; Kremer, E.; Castellano, E. E.; Ellena, J.

    2006-09-01

    A novel copper(II) complex containing the peptide phe-leu has been prepared and characterized. The crystal structure of [Cu(phe-leu)] ( 1) was determined by X-ray diffraction. The presence of carboxylate and amido bridges allows the formation of an extended 2D arrangement. This structure is similar to those found in [Cu(gly-val)] · 1/2H 2O ( 2), [Cu(val-gly)] ( 3), [Cu(val-phe)] ( 4), and [Cu(phe-phe)] ( 5). The magnetic properties of compounds 1- 5 were studied and analyzed comparatively. The experimental data show that the magnetic interactions are mainly transmitted through μ 2-COO - bridges, being ferromagnetic for 1 and 3, and antiferromagnetic for 2, 4 and 5.

  8. X-ray photoelectron spectroscopy of copper(II), copper(I), and mixed valence systems.

    PubMed

    Rupp, H; Weser, U

    1976-01-01

    X-ray photoelectron spectroscopy using copper(II), copper(I) and the mixed valence Cu(II)/Cu(I) compounds was employed as a means of studying electron transfer reactions in copper proteins. The X-ray photoelectron spectra of copper(II) compounds display characteristic satellites of both variable size and resolution. Some of these satellites could be assigned to specific ligand interactions. Unlike electron paramagnetic resonance spectroscopy, the X-ray photoelectron spectroscopic measurements of copper(I) compounds allowed the unequivocal assignment of this oxidation state. No satellites at all could be detected in the Cu(I) spectra. Furthermore, established mixed valence Cu(II)/Cu(I) complexes including Cu2SO3-CuSO3-2H2O and Cu4Cl5 (ethylenediamine)2 proved essentially a mixture of distinct portions of Cu(I) and Cu(II). This indicates that both oxidation states of copper survive in such complexes. In contrast, all Cu X-ray photoelectron signals of the more tentatively described mixed valence complexes Na2Cu3S3 and the mineral covellite, CuI4CuII2(S2)2S2, could be attributed exclusively to Cu(I). In view of the known binding of copper with sulfur in many copper proteins, it was of utmost importance to study the copper-sulfur interactions. We have demonstrated the absence of Cu(II) in CuS. This indicates strong metal-induced polarization of sulfur resulting in electron transfer to copper to yield Cu(I). PMID:953045

  9. Oxidation of substituted phenols using copper(II) metallatriangles formed through ligand sharing

    NASA Astrophysics Data System (ADS)

    Mahiya, Kuldeep; Kumar, Ravinder; Lloret, Francisco; Mathur, Pavan

    2014-12-01

    Reaction of N2,N2";-bis-[(1-butyl-benzimidazol-2yl)methyl]biphenyl-2,2";-dicarboxamide (L) with CuX2ṡnH2O in methanol leads to the assembly of four trinuclear Cu(II) complexes with the general formula [Cu3(L)3X3]ṡ3XṡnH2OṡmMeCN, where X = Cl-, Br-, NO3- and C6H5COO- and n = 0-5, m = 0-8 (compounds 1-4, respectively). The structure of one of the complex contains three Cu(II) metal ions at the corners of an equilateral triangle. Each of the copper(II) are coordinated through two benzimidazolyl imine N-atoms and two amide carbonyl O-atoms and the apical position is occupied by an anionic nitrate ion, leading to a distorted square pyramidal environment. The magnetic susceptibility data were analyzed through Hamiltonian H = -J (S1S2 + S2S3 + S1S3) obtaining -J = 0.16, 0.12, 0.15 and 0.14 cm-1 for 1-4, respectively. X-Band EPR spectra typically show a broad single line at 120 K with g ∼ 2.11. Oxidation of phenols was studied homogeneously using copper(II) metallatriangles (1-3) as catalyst in acetonitrile. The oxidation of 2,4,6-tri-tert-butyl phenol yields the corresponding quinone after oxidative dealkylation. The oxidation of 2-amino-5-methyl phenol yields the corresponding phenoxazinone while the oxidation of 2-amino-4-tert-butyl phenol yields the phenoxazine instead of phenoxazinone. The products so obtained were analyzed by NMR and X-ray single crystallography.

  10. C- and N-Selective Grignard Addition Reactions of α-Aldimino Esters in the Presence or Absence of Zinc(II) Chloride: Synthetic Applications to Optically Active Azacycles.

    PubMed

    Hatano, Manabu; Yamashita, Kenji; Ishihara, Kazuaki

    2015-05-15

    Highly practical synthetic methods were developed for the C- and N-selective Grignard addition reactions of N-4-MeOC6H4-protected α-aldimino esters in the presence or absence of zinc(II) chloride. Diastereoselective C-alkyl addition, tandem C-alkyl addition-N-alkylation, and some transformations to synthetically useful optically active azacycles were demonstrated. PMID:25918830

  11. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes.

    PubMed

    Patel, Mohan N; Dosi, Promise A; Bhatt, Bhupesh S; Thakkar, Vasudev R

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram(+ve) Staphylococcus aureus, Bacillus subtilis, and three Gram((-ve)) Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3×10(4)-3.7×10(4). The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O2.-) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  12. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  13. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. PMID:25555321

  14. Effect of copper(II) on natural organic matter removal during drinking water coagulation using aluminum-based coagulants.

    PubMed

    Liu, Guojing; Zhang, Xiangru; Talley, Jeffrey W

    2007-06-01

    Coagulation has been proposed as a best available technology for controlling natural organic matter (NOM) during drinking water treatment. The presence of heavy metals such as copper(II) in source water, which may form copper-NOM complexes and/or interact with a coagulant, may pose a potential challenge on the coagulation of NOM. In this work, the effect of copper(II) on NOM removal by coagulation using alum or PAX-18 (a commercial polymerized aluminum chloride from Kemiron Inc., Bartow, Florida) was examined. The results show that the presence of 1 to 10 mg/L of copper(H) in the simulated waters improved the total organic carbon (TOC) removal by up to 25% for alum coagulation and by up to 22% for PAX-18 coagulation. The increased NOM removal with the presence of copper(II) in the waters can most likely be ascribed to the formation copper-NOM complexes that may be more adsorbable on aluminum precipitates and to the formation of copper(II) co-precipitates that may also adsorb NOM. The presence of 1 to 5 mg/L of copper(I) in the waters containing 3 mg/L NOM as carbon was reduced below the maximum contaminant level goal (1.3 mg/L as copper) using either coagulant. The results suggest that the presence of copper(H) in source water may not adversely affect the NOM removal by coagulation. A good linear correlation was observed between the TOC removal efficiency and the log-total moles of the precipitated metals, which include the metal ion from a coagulant and the divalent metal ion(s) in source water. PMID:17605328

  15. Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).

    PubMed

    Majano, Gerardo; Pérez-Ramírez, Javier

    2013-02-20

    Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields.

  16. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    PubMed

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells.

  17. Tunable DNA cleavage activity promoted by copper(ii) ternary complexes with N-donor heterocyclic ligands.

    PubMed

    Bortolotto, T; Silva-Caldeira, P P; Pich, C T; Pereira-Maia, E C; Terenzi, H

    2016-06-01

    Several small molecules have the capacity to cleave DNA promptly at high yields, even under mild conditions. Usually, this activity has no constraints, occurring without external or user control. Here, we demonstrate that UV-light exposure can greatly enhance the DNA cleavage activity promoted by four ternary copper(ii) complexes. A remarkable photocontrolled activity was achieved, which may be interesting for chemical and biochemical applications. PMID:27168172

  18. One-pot synthesis of indenonaphthopyrans catalyzed by copper(II) triflate: a comparative study of reflux and ultrasound methods.

    PubMed

    Turhan, Kadir; Ozturkcan, S Arda; Uluer, Mehmet; Turgut, Zuhal

    2014-01-01

    An effective and environment-friendly protocol for the synthesis of indenonaphthopyrans has been developed by one-pot reaction of 2-naphthol, various aromatic aldehydes and 1,3-indandione, in the presence of copper(II) triflate as the catalyst while using reflux (Method A) and ultrasound (Method B). The Method B approach offers the advantages of a simple reaction method, short reaction time, excellent yield, and showcases the economic importance of the catalysts for such processes. PMID:25286219

  19. New manganese(II) and nickel(II) coordination compounds with N,O-polydentate ligands obtained from pyridoxal and tripodal units

    NASA Astrophysics Data System (ADS)

    Ebani, Patrícia Regina; Fontana, Liniquer Andre; Campos, Patrick Teixeira; Rosso, Eduardo F.; Piquini, Paulo C.; Iglesias, Bernardo Almeida; Back, Davi Fernando

    2016-09-01

    We have reported the synthesis involving the condensation of pyridoxal with tris(2-aminoethyl)amine obtained a tripodal ligand, as well as its subsequent complexation with the manganese(II) and nickel(II) ions. The structural analysis revealed, in the case of complex 1, the formation of a monomeric complex with Mn(II) species. In the complex 2, with Ni(II) metal ion, we describe the probable mechanism for the formation of hemiacetal in these complexes. Only the complex 1 catalyze the dismutation of superoxide efficiently with IC50 equal to 3.38 μM, evaluated through the nitro blue tetrazolium photoreduction inhibition superoxide dismutase assay, in aqueous solution of pH 7.8. Density functional theory calculations are done to characterize and compare the molecular frontier orbitals of the Mn(II) and Ni(II) complexes.

  20. Electrostatic self-assembled design strategy for tetracarboxylic Nickel(II) naphthalocyanine ultrathin film for high-performance nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Song, Weina; Xiao, Xiangwu; He, Chunying; Mao, Guijie; Gao, Yachen; Chen, Zhimin; Dong, Yongli; Wu, Yiqun

    2016-10-01

    The rational design and controllable preparation of the solid film with strong molecular coupled effect represents a long-standing challenge for developing advanced practical nonlinear optical (NLO) materials. Here, we report a general electrostatic self-assembled strategy toward fabricating tetracarboxylic Nickel(II) naphthalocyanine (NiNcC4) ultrathin film on solid substrate with an ordered molecular arrangement based on the controllable deposition of anionic NiNcC4 naphthalocyanine and cationic polydiallydimethyldiallylammonium chloride (PDDA). The 30-bilayer P/NiNcC4 film shows an ordered conformation of face-to-face molecular arrangement, ultrathin thickness (126.6 nm) and a Raman enhancement phenomenon, and exhibits a high second-order molecular hyperpolarizability γ of 7.0 × 10-27 esu, which is three orders larger than that of NiNcC4 aqueous solution, demonstrating the potential of strongly molecular coupling effects for advanced self-assembled systems.

  1. Nickel(I) and nickel(III) complexes of substituted tetraaza macrocycles formed by pulse radiolysis and electrochemistry of nickel(II) precursors

    SciTech Connect

    Bernhardt, P.V.; Lawrance, G.A.; Sangster, D.F.

    1988-11-02

    The square-planar nickel(II) complexes of the ligands 8-methyl-8-nitro-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 8-amino-8-methyl-1,3,6,10,13,15-hexaazatricyclo(13.1.1.1/sup 13,15/)octadecane, 3,7-bis(2-aminoethyl)-1,3,5,7-tetraazabicyclo(3.3.1)nonane, and 9-methyl-9-nitro-1,4,7,11-tetraazacyclotridecane (I-IV) react rapidly with hydroxyl radicals and aquated electrons (e/sub aq/). The initial transient products of these reactions decay via first-order kinetics within a few milliseconds in neutral aqueous solution at 22/degrees/C in all cases. Electronic spectra and decay rate constants, as well as formation rate constants, are reported for all transients. Reaction of the nitro-substituted complexes with e/sub aq/ led to electron addition to the nitro group rather than to the metal center; otherwise, a Ni/sup I/ transient is observed. Following reaction with OH, the product of the initial decay remains a Ni/sup III/ species. This is more long-lived, and stabilization of Ni/sup III/ by axial coordination of the pendant amine in II is indicated. No notable stabilization of Ni/sup I/ or Ni/sup III/ from the presence of the bicyclic azamethylene football in I-III occurs. Cyclic voltammetry in acetonitrile identified both one-electron oxidation and one-electron reduction processes for the nickel(II) complexes, as well as nitro group reduction, where this group was pendant to the macrocycle. 34 references, 3 figures, 3 tables.

  2. Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes.

    PubMed

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Kalilur Rahiman, Aziz

    2016-03-25

    Eight water soluble mixed-ligand nickel(II) complexes of the type [NiL(1-4)(diimine)H2O]·(ClO4)2, (1-8) where L(1-4) = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, and diimine = 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) were synthesized and characterized by elemental analysis and spectroscopic methods. The uncoordinated perchlorate anions was ascertained form IR spectra of the complexes, and the absorption spectra reveal the octahedron geometry around nickel(II) ion with tridentate Schiff base ligand, diimine and a coordinated water molecule. Cyclic voltammograms of the complexes indicate the one-electron irreversible processes in the cathodic and anodic region. In vitro antioxidant activity proved the significant radical scavenging activity of the complexes against DPPH radical. The groove/electrostatic binding nature of complexes with CT-DNA (calf thymus deoxyribonucleic acid) were affirmed by absorption, hydrodynamic and voltammetric titration experiments and docking analysis. All the complexes exhibit significant cleavage activity on plasmid DNA via hydrolytic and oxidatively, in which the oxidative mechanism involves hydroxyl radicals and supports the possibility of minor-groove binding. The complex 4 shows significant topoisomerase I (Topo-I) inhibitory activity. The molecular modeling analysis of complexes with phosphatidylinositol-3-kinase (PI3K) receptor indicate the hydrogen bonding with Met1039, Asp837 and Leu1027, and hydrophobic interactions with Ser488, Asn498, Asp500, Gln662, Lys668, Ile844, Ile847, Ile850, Val941, Leu942, Leu1020, Met1034, Leu1035, Thr1037, Met1039, Gln1041 and Ile1051 of subdomain IIA of BSA. The complexes show σ-π interaction between diimines and amino groups of Leu1030 and Arg839.

  3. Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes.

    PubMed

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Kalilur Rahiman, Aziz

    2016-03-25

    Eight water soluble mixed-ligand nickel(II) complexes of the type [NiL(1-4)(diimine)H2O]·(ClO4)2, (1-8) where L(1-4) = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, and diimine = 2,2'-bipyridyl (bpy) or 1,10-phenanthroline (phen) were synthesized and characterized by elemental analysis and spectroscopic methods. The uncoordinated perchlorate anions was ascertained form IR spectra of the complexes, and the absorption spectra reveal the octahedron geometry around nickel(II) ion with tridentate Schiff base ligand, diimine and a coordinated water molecule. Cyclic voltammograms of the complexes indicate the one-electron irreversible processes in the cathodic and anodic region. In vitro antioxidant activity proved the significant radical scavenging activity of the complexes against DPPH radical. The groove/electrostatic binding nature of complexes with CT-DNA (calf thymus deoxyribonucleic acid) were affirmed by absorption, hydrodynamic and voltammetric titration experiments and docking analysis. All the complexes exhibit significant cleavage activity on plasmid DNA via hydrolytic and oxidatively, in which the oxidative mechanism involves hydroxyl radicals and supports the possibility of minor-groove binding. The complex 4 shows significant topoisomerase I (Topo-I) inhibitory activity. The molecular modeling analysis of complexes with phosphatidylinositol-3-kinase (PI3K) receptor indicate the hydrogen bonding with Met1039, Asp837 and Leu1027, and hydrophobic interactions with Ser488, Asn498, Asp500, Gln662, Lys668, Ile844, Ile847, Ile850, Val941, Leu942, Leu1020, Met1034, Leu1035, Thr1037, Met1039, Gln1041 and Ile1051 of subdomain IIA of BSA. The complexes show σ-π interaction between diimines and amino groups of Leu1030 and Arg839. PMID:26874211

  4. Pyrrolidine and Piperidine Formation Via Copper(II) Carboxylate Promoted Intramolecular Carboamination of Unactivated Olefins: Diastereoselectivity and Mechanism

    PubMed Central

    Sherman, Eric S.; Fuller, Peter H.; Kasi, Dhanalakshmi; Chemler, Sherry R.

    2008-01-01

    An expanded substrate scope and in depth analysis of the reaction mechanism of the copper(II) carboxylate promoted intramolecular carboamination of unactivated alkenes is described. This method provides access to N-functionalized pyrrolidines and piperidines. Both aromatic and aliphatic γ- and δ-alkenyl N-arylsulfonamides undergo the oxidative cyclization reaction efficiently. N-Benzoyl-2-allylaniline also underwent the oxidative cyclization. The terminal olefin substrates examined were more reactive than those with internal olefins, and the latter terminated in elimination rather than carbon-carbon bond formation. The efficiency of the reaction was enhanced by the use of more organic soluble copper(II) carboxylate salts, copper(II) neodecanoate in particular. The reaction times were reduced by the use of microwave heating. High levels of diastereoselectivity were observed in the synthesis of 2,5-disubstituted pyrrolidines, wherein the cis substitution pattern predominates. The mechanism of the reaction is discussed in the context of the observed reactivity and in comparison to analogous reactions promoted by other reagents and conditions. Our evidence supports a mechanism wherein the N-C bond is formed via intramolecular syn aminocupration and the C-C bond is formed via intramolecular addition of a primary carbon radical to an aromatic ring. PMID:17428100

  5. Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants.

    PubMed

    Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping

    2015-12-01

    Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)copper(II) and TC were present in bridging flocculation, including charge attraction, coordination and hydrophobic effect. Based on these pairwise interactions, copper(II) and TC exerted "aid" roles to each other's removal with the existence of CND, and preferable flocculation performance was thus achieved. PMID:26162528

  6. Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations.

    PubMed

    Mereshchenko, Andrey S; Olshin, Pavel K; Karabaeva, Kanykey E; Panov, Maxim S; Wilson, R Marshall; Kochemirovsky, Vladimir A; Skripkin, Mikhail Yu; Tveryanovich, Yury S; Tarnovsky, Alexander N

    2015-07-16

    Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 μs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled. PMID:26079181

  7. Determination of copper(II) in the dairy product by an electrochemical sensor based on click chemistry.

    PubMed

    Qiu, Suyan; Xie, Lidan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-11-30

    Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results.

  8. Flocculation of copper(II) and tetracycline from water using a novel pH- and temperature-responsive flocculants.

    PubMed

    Yang, Zhen; Jia, Shuying; Zhuo, Ning; Yang, Weiben; Wang, Yuping

    2015-12-01

    Insufficient research is available on flocculation of combined pollutants of heavy metals and antibiotics, which widely exist in livestock wastewaters. Aiming at solving difficulties in flocculation of this sort of combined pollution, a novel pH- and temperature-responsive biomass-based flocculant, carboxymethyl chitosan-graft-poly(N-isoproyl acrylamide-co-diallyl dimethyl ammonium chloride) (denoted as CND) with two responsive switches [lower critical solution temperature (LCST) and isoelectric point (IEP)], was designed and synthesized. Its flocculation performance at different temperatures and pHs was evaluated using copper(II) and tetracycline (TC) as model contaminants. CND exhibited high efficiency for coremoval of both contaminants, whereas two commercial flocculants (polyaluminum chloride and polyacrylamide) did not. Especially, flocculation performance of the dual-responsive flocculant under conditions of temperature>LCST and IEP(contaminants)copper(II) and TC were present in bridging flocculation, including charge attraction, coordination and hydrophobic effect. Based on these pairwise interactions, copper(II) and TC exerted "aid" roles to each other's removal with the existence of CND, and preferable flocculation performance was thus achieved.

  9. Determination of copper(II) in the dairy product by an electrochemical sensor based on click chemistry.

    PubMed

    Qiu, Suyan; Xie, Lidan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-11-30

    Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results. PMID:22027119

  10. Two ferromagnetic azido-bridged copper(II) complexes studied by first-principle electronic-structure calculation

    NASA Astrophysics Data System (ADS)

    Zhang, Y. S.; Yao, K. L.; Liu, Z. L.

    2005-09-01

    The electronic structures of two ferromagnetic polynuclear copper(II) complexes, derived from end-to-end azido ligand and tridentate (NNN donor) Schiff base ligand, have been studied using the full-potential linearized augmented plane-wave method based on the density-functional theory. They are [Cu(L1)(μ-1,3-N3)]n(ClO4)n (1) and [Cu(L2)(μ-1,3-N3)]n(ClO4)n (2). The result shows that the spin populations in these two complexes are mainly distributed on the equatorial planes of a square pyramidal that surround the copper(II) ions. There are large and positive spin populations on copper(II) ions, small and positive spin populations on the three nitrogen atoms of tridentate Schiff base ligand, and the two terminal nitrogen atoms of asymmetrical end-to-end azido ligand, while weak and negative spin populations on the central nitrogen atoms of asymmetrical end-to-end azido ligand. Ferromagnetic coupling through the asymmetrical azido ligand in these two complexes has been mainly attributed to the spin delocalization, also with weak spin-polarization effect.

  11. Pyrrolidine and piperidine formation via copper(II) carboxylate-promoted intramolecular carboamination of unactivated olefins: diastereoselectivity and mechanism.

    PubMed

    Sherman, Eric S; Fuller, Peter H; Kasi, Dhanalakshmi; Chemler, Sherry R

    2007-05-11

    An expanded substrate scope and in-depth analysis of the reaction mechanism of the copper(II) carboxylate-promoted intramolecular carboamination of unactivated alkenes is described. This method provides access to N-functionalized pyrrolidines and piperidines. Both aromatic and aliphatic gamma- and delta-alkenyl N-arylsulfonamides undergo the oxidative cyclization reaction efficiently. N-Benzoyl-2-allylaniline also underwent the oxidative cyclization. The terminal olefin substrates examined were more reactive than those with internal olefins, and the latter terminated in elimination rather than carbon-carbon bond formation. The efficiency of the reaction was enhanced by the use of more organic soluble copper(II) carboxylate salts, copper(II) neodecanoate in particular. The reaction times were reduced by the use of microwave heating. High levels of diastereoselectivity were observed in the synthesis of 2,5-disubstituted pyrrolidines, wherein the cis substitution pattern predominates. The mechanism of the reaction is discussed in the context of the observed reactivity and in comparison to analogous reactions promoted by other reagents and conditions. Our evidence supports a mechanism wherein the N-C bond is formed via intramolecular syn aminocupration and the C-C bond is formed via intramolecular addition of a primary carbon radical to an aromatic ring.

  12. The electronic structure of the adducts of nickel(II) and cobalt(II) acetylacetonate with 2,2ʹ-dipyridyl by the method of quantum chemical modeling

    NASA Astrophysics Data System (ADS)

    Komissarov, A. A.; Korochentsev, V. V.; Vovna, V. I.

    2016-02-01

    The electronic structure of the nickel(II) and cobalt(II) bis-acetylacetonate with the additional 2,2ʹ-dipyridyl ligand is investigated using density functional theory calculations and X-ray photoelectron spectroscopy. Additional ligand effect on geometry, charges, electronic structure and X-ray photoelectron spectrum is studied. Our calculations show that the electron-donating ability of the 2,2ʹ-dipyridyl ligand is low. The computed data is compared with experimental data.

  13. Interaction with DNA and different effect on the nucleus of cancer cells for copper(II) complexes of N-benzyl di(pyridylmethyl)amine.

    PubMed

    Chen, Qiu-Yun; Fu, Hai-Jian; Zhu, Wei-Hua; Qi, Yan; Ma, Zheng-Ping; Zhao, Kai-Di; Gao, Jing

    2011-05-01

    Three new copper(II) complexes of N-benzyl di(pyridylmethyl)amine (phdpa) were synthesized and characterized by spectroscopic methods. The interaction between CT-DNA and the complexes was studied by UV and fluorescence titration methods. It was found that the complex [(phdpa)Cu(H(2)O)Ac)](Ac), with the non-planar aromatic heterocyclic ring ligand (phdpa), showed good anticancer properties and could cause the fragmentation of the nucleus, although its interaction with CT-DNA was weaker than that of 1,10-phenanthroline (phen)-based copper(II) complexes. The anticancer activities of copper(II) complexes with phdpa and phen based ligands are correlated to their binding constants with DNA, but phen-based copper(II) complexes did not cause the nucleus fragmentation of HeLa cells. [(phdpa)Cu(H(2)O)Ac)](Ac) can noticeably decrease the oxygen content of a culture solution and of HeLa cells, which make it a new nucleus and oxygen related anticancer copper(II) complex. Information obtained here would be helpful in the design of new antitumor complexes in oxidative therapy.

  14. Polymeric networks of copper(II) phenylmalonate with heteroaromatic n-donor ligands: synthesis, crystal structure, and magnetic properties.

    PubMed

    Pasán, Jorge; Sanchiz, Joaquín; Ruiz-Pérez, Catalina; Lloret, Francesc; Julve, Miguel

    2005-10-31

    Two new phenylmalonate-bridged copper(II) complexes with the formulas [Cu(4,4'-bpy)(Phmal)](n).2nH(2)O (1) and [Cu(2,4'-bpy)(Phmal)(H(2)O)](n)() (2) (Phmal = phenylmalonate dianion, 4,4'-bpy = 4,4'-bipyridine, 2,4'-bpy = 2,4'-bipyridine) have been synthesized and characterized by X-ray diffraction. Complex 1 crystallizes in monoclinic space group P2(1), Z = 4, with unit cell parameters of a = 9.0837(6) Angstroms, b = 9.3514(4) Angstroms, c = 11.0831(8) Angstroms, and beta = 107.807(6) degrees , whereas complex 2 crystallizes in orthorhombic space group C2cb, Z = 8, with unit cell parameters of a = 10.1579(7) Angstroms, b = 10.3640(8) Angstroms, and c = 33.313(4) Angstroms. The structures of 1 and 2 consist of layers of copper(II) ions with bridging bis-monodentate phenylmalonate (1 and 2) and 4,4'-bpy (1) ligands and terminal monodentate 2,4'-bpy (2) groups. Each layer in 1 contains rectangles with dimensions of 11.08 x 4.99 Angstroms(2), the edges being defined by the Phmal and 4,4'-bpy ligands. The intralayer copper-copper separations in 1 through the anti-syn equatorial-apical carboxylate-bridge and the 4,4'-bpy molecule are 4.9922(4) and 11.083(1) Angstroms, respectively. The anti-syn equatorial-equatorial carboxylate bridge links the copper(II) atoms in complex 2 within each layer with a mean copper-copper separation of 5.3709(8) Angstroms. The presence of 2,4'-bpy as a terminal ligand accounts for the large interlayer separation of 15.22 Angstroms. The copper(II) environment presents a static pseudo-Jahn-Teller disorder which has been studied by EPR and low-temperature X-ray diffraction. Magnetic susceptibility measurements of both compounds in the temperature range 2-290 K show the occurrence of weak antiferromagnetic [J = -0.59(1) cm(-1) (1)] and ferromagnetic [J = +0.77(1) cm(-1) (2)] interactions between the copper(II) ions. The conformation of the phenylmalonate-carboxylate bridge and other structural factors, such as the planarity of the exchange

  15. Syntheses, characterization, and SOD activity studies of barbital-based nickel(II) complexes with different chelating amines: The X-ray crystal structures of Barb-H and [Ni(Barb)2(en)2] (Barb = 5,5-diethylbarbiturate)

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; Mersal, Gaber A. M.; Al-Juaid, Salih; El-Shazly, Samir A.

    2014-01-01

    Four new mixed ligand nickel(II) complexes, viz., [Ni(Barb)2(H2O)4] 1, [Ni(Barb)2(en)2] 2, [Ni(Barb)2(pn)2] 3, and [Ni(Barb)2(BPA)(H2O)] 4 (Barb = 5,5-diethylbarbiturate, en = ethylenediamine, pn = propylenediamine, and BPA = bis(2-picolyl)amine) have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, Raman, and UV-Vis), and thermal analysis measurements. The spectral techniques suggest that all the nickel(II) complexes (1-4) exhibit octahedral geometry. The very low electrical conductance of the complexes supports their neutral nature. The monomeric nature of the complexes was assessed from their electronic spectra. X-ray diffraction studies were performed for the drug Barb-H and its nickel(II) complex 2. Complex 2 crystallizes in monoclinic space group P21/c with Z = 2. The barbital drug is N-coordinated and the en molecules act as bichelating ligands, leading to an NiN6 octahedral coordination. Molecules of complex 2 are connected via NH⋯O hydrogen bonds, involving hydrogen atoms of both Barb and en ligands. The redox behavior of all complexes was investigated by cyclic voltammetry. Superoxide dismutase activity of these complexes has also been measured.

  16. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    PubMed

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  17. N,N,O and N,O,N Meridional cis Coordination of Two Guanines to Copper(II) by d(CGCGCG)2.

    PubMed

    Rohner, Melanie; Medina-Molner, Alfredo; Spingler, Bernhard

    2016-06-20

    Many research groups study the generation of supramolecular n-dimensional arrays by combining metals with DNA building blocks. Most of the time, the natural nucleobases are modified to obtain higher-affinity metal binding sites. Using unmodified nucleobases avoids a potentially difficult synthesis; however, they have the possible disadvantage of a less defined and/or weaker coordination mode of the metal. Structural studies on the behavior of copper(II) as a linking metal and guanine as the natural ligand for metals in unmodified DNA are reported. Previously, the ability of mono- and dinuclear metal complexes to induce Z-DNA has been explored [Medina-Molner, A.; Spingler, B. Chem. Commun. 2012, 48, 1961; Medina-Molner, A.; Rohner, M.; Pandiarajan, D.; Spingler, B. Dalton Trans. 2015, 44, 3664]. Herein, X-ray crystallographic studies of the structures resulting from the combination of copper(II) ions with DNA hexamers of the general sequence d(CG)3 are presented. Three different packing motifs were observed in three crystal structures with resolutions ranging from 2.15 to 1.45 Å. The motifs are dependent upon other cations being present and/or the crystallization conditions. The first examples of intramolecular O6,N7-chelates of a neutral purine nucleobase to copper(II) were obtained as well as the first meridional N,N,O and N,O,N coordination modes of two guanines to copper(II). The fascinating coordination chemistry of copper(II) complexes generated by the Z-DNA oligonucleotides and the differences to simple nucleobases complexes with copper(II) are discussed in detail.

  18. N,N,O and N,O,N Meridional cis Coordination of Two Guanines to Copper(II) by d(CGCGCG)2.

    PubMed

    Rohner, Melanie; Medina-Molner, Alfredo; Spingler, Bernhard

    2016-06-20

    Many research groups study the generation of supramolecular n-dimensional arrays by combining metals with DNA building blocks. Most of the time, the natural nucleobases are modified to obtain higher-affinity metal binding sites. Using unmodified nucleobases avoids a potentially difficult synthesis; however, they have the possible disadvantage of a less defined and/or weaker coordination mode of the metal. Structural studies on the behavior of copper(II) as a linking metal and guanine as the natural ligand for metals in unmodified DNA are reported. Previously, the ability of mono- and dinuclear metal complexes to induce Z-DNA has been explored [Medina-Molner, A.; Spingler, B. Chem. Commun. 2012, 48, 1961; Medina-Molner, A.; Rohner, M.; Pandiarajan, D.; Spingler, B. Dalton Trans. 2015, 44, 3664]. Herein, X-ray crystallographic studies of the structures resulting from the combination of copper(II) ions with DNA hexamers of the general sequence d(CG)3 are presented. Three different packing motifs were observed in three crystal structures with resolutions ranging from 2.15 to 1.45 Å. The motifs are dependent upon other cations being present and/or the crystallization conditions. The first examples of intramolecular O6,N7-chelates of a neutral purine nucleobase to copper(II) were obtained as well as the first meridional N,N,O and N,O,N coordination modes of two guanines to copper(II). The fascinating coordination chemistry of copper(II) complexes generated by the Z-DNA oligonucleotides and the differences to simple nucleobases complexes with copper(II) are discussed in detail. PMID:27266259

  19. Thermodynamics of the formation of complexes of copper(II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data

    NASA Astrophysics Data System (ADS)

    Kochergina, L. A.; Emel'yanov, A. V.

    2015-04-01

    Heat effects of the interaction between glycylglycine and copper(II) nitrate solutions are measured by direct calorimetry at a [metal] : [ligand] ratio of 1 : 5 and at different pH values of the solution. The measurements are made at a temperature of 298.15 K and ionic strengths of 0.25, 0.50, and 0.75. KNO3 is used as a background electrolyte. The thermodynamic characteristics of complex formation by the peptide and copper(II) ions in aqueous solutions are determined. Standard enthalpies of the formation of complex particles in aqueous solutions are calculated.

  20. Human telomeric G-quadruplex DNA interactions of N-phenanthroline glycosylamine copper(II) complexes.

    PubMed

    Duskova, Katerina; Sierra, Sara; Arias-Pérez, María-Selma; Gude, Lourdes

    2016-01-01

    We report in this article the interactions of five N-(1,10-phenanthrolin-5-yl)-β-glycopyranosylamine copper(II) complexes with G-quadruplex DNA. Specifically, the interactions of these compounds with a human telomeric oligonucleotide have been assessed by fluorescence-based assays (FRET melting and G4-FID), circular dichroism and competitive equilibrium dialysis experiments. The metal complexes bind and stabilize G-quadruplex DNA structures with apparent association constants in the order of 10(4)-10(5)M(-1) and the affinity observed is dependent on the ionic conditions utilized and the specific nature of the carbohydrate moiety tethered to the 1,10-phenanthroline system. The compounds showed only a slight preference to bind G-quadruplex DNA over duplex DNA when the quadruplex DNA was folded in sodium ionic conditions. However, the binding affinity and selectivity, although modest, were notably increased when the G-quadruplex DNA was folded in the presence of potassium metal ions. Moreover, the study points towards a significant contribution of groove and/or loop binding in the recognition mode of quadruplex structures by these non-classical quadruplex ligands. The results reported herein highlight the potential and the versatility of carbohydrate bis-phenanthroline metal-complex conjugates to recognize G-quadruplex DNA structures. PMID:26678174

  1. Human telomeric G-quadruplex DNA interactions of N-phenanthroline glycosylamine copper(II) complexes.

    PubMed

    Duskova, Katerina; Sierra, Sara; Arias-Pérez, María-Selma; Gude, Lourdes

    2016-01-01

    We report in this article the interactions of five N-(1,10-phenanthrolin-5-yl)-β-glycopyranosylamine copper(II) complexes with G-quadruplex DNA. Specifically, the interactions of these compounds with a human telomeric oligonucleotide have been assessed by fluorescence-based assays (FRET melting and G4-FID), circular dichroism and competitive equilibrium dialysis experiments. The metal complexes bind and stabilize G-quadruplex DNA structures with apparent association constants in the order of 10(4)-10(5)M(-1) and the affinity observed is dependent on the ionic conditions utilized and the specific nature of the carbohydrate moiety tethered to the 1,10-phenanthroline system. The compounds showed only a slight preference to bind G-quadruplex DNA over duplex DNA when the quadruplex DNA was folded in sodium ionic conditions. However, the binding affinity and selectivity, although modest, were notably increased when the G-quadruplex DNA was folded in the presence of potassium metal ions. Moreover, the study points towards a significant contribution of groove and/or loop binding in the recognition mode of quadruplex structures by these non-classical quadruplex ligands. The results reported herein highlight the potential and the versatility of carbohydrate bis-phenanthroline metal-complex conjugates to recognize G-quadruplex DNA structures.

  2. Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate

    NASA Astrophysics Data System (ADS)

    Glišić, S.; Nikolić, G.; Cakić, M.; Trutić, N.

    2015-07-01

    The copper(II) ion complexes with carboxymethyl dextran (CMD) and dextran sulfate (DS) were studied by different methods. Content of copper was determined by atomic absorption spectroscopy. It was found that copper : ligand mole ratio (Cu : CMD) is 1 : 2, and Cu : DS is 1 : 1 by mole ratio method. Spectrophotometric parameters of synthesized compounds are characteristic for Cu(II) ion in octahedral ( O h ) coordination. Analyzing of FTIR spectra in ν(C=O) vibration region has showed that -COOH group acts as bidentate ligand, while the compounds of Cu(II) with DS copper ions are in the region of four oxygen atoms of two adjacent sulfo groups. The presence of crystalline water was determined by isotopic substitution of H2O molecules with D2O molecules. Comparison of spectra recorded at room (RT) and liquid nitrogen temperature (LNT) has enabled detection bands of water molecules libration indicating that they are coordinated complementing coordination sphere of Cu(II) ions to six. The complexes are of Cu(II) · (CMD)2 · (H2O)2 or Cu(II) · DS · (H2O)2 type. The similarities of the γ(C-H) range in a part of FTIR spectra indicate that there is no difference in the conformation of the 4 C 1 glucopyranose (Glc) unit CMD and DS synthesized Cu(II) complexes.

  3. Synthesis, structural characterization, cytotoxic properties and DNA binding of a dinuclear copper(II) complex.

    PubMed

    Ferreira, B J M Leite; Brandão, P; Meireles, M; Martel, Fátima; Correia-Branco, Ana; Fernandes, Diana M; Santos, T M; Félix, V

    2016-08-01

    In this study a novel dinuclear copper(II) complex with adenine and phenanthroline has been synthesized and its structure determined by single crystal X-ray diffraction. In the dinuclear complex [Cu₂(μ-adenine)₂(phen)₂(H2O)2](NO3)4·0.5H2O (phen=1,10-phenanthroline) (1) the two Cu(II) centres exhibit a distorted square pyramidal coordination geometry linked by two nitrogen donors from adenine bridges leading to a Cu-Cu distance of 3.242(3)Å. Intramolecular and intermolecular π⋯π interactions as well as an H-bonding network were observed. The antitumor capacity of the complex has been tested in vitro against human cancer cell lines, cervical carcinoma (HeLa) and colorectal adenocarcinoma (Caco-2), by metabolic tests, using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide as reagent. The complex 1 has remarkable low IC50 values of 0.87±0.06μM (HeLa) and 0.44±0.06μM (Caco-2), when compared with values for cisplatin against the same cell lines. The interaction of complex 1 with calf thymus DNA (CT DNA) was further investigated by absorption and fluorescence spectroscopic methods. A binding constant of 5.09×10(5)M(-1) was obtained from UV-vis absorption studies. PMID:27157979

  4. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    NASA Astrophysics Data System (ADS)

    Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.

    2015-06-01

    In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  5. The structures and thermodynamic stability of copper(II) chloride surfaces.

    PubMed

    Altarawneh, Mohammednoor; Jiang, Zhong-Tao; Dlugogorski, Bogdan Z

    2014-11-28

    Using density functional theory calculations of periodic slabs, within the generalised gradient approximation, this study provides optimised structures for all plausible terminations of copper(II) chloride surfaces along the three low-index orientations. The ab initio atomistic thermodynamic approach serves to construct a thermodynamic stability diagram for CuCl2 configurations as a function of the chemical potential of chlorine (ΔμCl(T,P)). We observe a shift in thermodynamic stability ordering at around ΔμCl(T,P) = -1.0 eV between a copper-chlorine terminated (001) surface (i.e., (001)CuCl) and a (001) chlorine-covered surface (i.e., (001)Cl). This conclusion accords with experimental observations that report CuCl-bulk like structures, acting as a prerequisite for the formation of CuCl2-bulk like arrangements in the course of copper chlorination. Profound stabilities and optimised structures of (001)CuCl and (001)Cl configurations are discussed within the context of the functionality of CuCl2 as the chief chlorination and condensation catalyst of aromatic pollutants under conditions relevant to their formation in thermal systems, i.e. 400-1000 K, a total operating pressure of 1.0 atm and PCl2 = 10(-6)-10(-4) atm (1.0-100.0 ppm). PMID:25294121

  6. Glycosidase- and β-lactamase-like activity of dinuclear copper(II) patellamide complexes.

    PubMed

    Comba, Peter; Eisenschmidt, Annika; Kipper, Nora; Schießl, Jasmin

    2016-06-01

    Prochloron, a blue-green algae belonging to ancient prokaryotes, produces, like other cyanobacteria, cyclic pseudo-peptides, which are also found in its obligate symbiont ascidiae (Lissoclinum patellum). Although research has focused for some time on the putative metabolic function of these cyclic peptides, to date it is still not understood. Their role might be connected to the increased concentrations of divalent metal ions, especially Cu(II), found in ascidiae. Dinuclear copper(II) complexes of cyclic pseudo-peptides revealed a broad hydrolytic capacity, including carboanhydrase and phosphatase activity. This study reports their β-lactamase as well as α- and β-glycosidase activity with kcat=(11.34±0.91)ˑ10(-4)s(-1) for β-lactamase, kcat=(1.55±0.13)ˑ10(-4)s(-1) for α-glycosidase and kcat=(1.22±0.09)ˑ10(-4)s(-1) for β-glycosidase activity. PMID:26921720

  7. Spectral and photophysical properties of zinc(II) complexes with alkylsubstituted derivatives of dipyrrolylmethene and their resistance to protolytic dissociation and photochemical destruction

    NASA Astrophysics Data System (ADS)

    Rumyantsev, E. V.; Aleshin, S. N.; Marfin, Yu. S.

    2013-02-01

    The spectral and photophysical properties of zinc(II) complexes with alkylsubstituted derivatives of dipyrrolylmethene, along with the kinetics of their protolytic dissociation and photochemical degradation in organic solvents of different natures, are studied by means of electronic absorption and fluorescence spectroscopy. It is found that protic solvents have the strongest effect on absorption spectra, while electron donors affect fluorescence spectra due to differences in the mechanisms of solvation for the ground and excited states of molecules. It is shown that the reaction product of the protolytic dissociation of complexes in benzene solutions of acetic acid is a protonated form of ligand. The observable and genuine rate constants of dissociation reactions are determined and activation parameters are calculated. A kinetic model of the process is proposed, and the regularities of the effect the nature of ligand has on the kinetics of dissociation are established. The photochemical degradation of compounds proceeds on monopyrrole products, the photolysis rate falls as the a degree of alkylation increases, and the nature of the substituent in the β-position of the ligand's pyrrole ring has a greater effect on the stability of a compound.

  8. A threefold interpenetrated two-dimensional zinc(II) supramolecular architecture based on 3-nitrobenzoic acid and 4,4'-bipyridine.

    PubMed

    Tang, Long; Wang, Ji-Jiang; Fu, Feng; Wang, Sheng-Wen; Liu, Qi-Rui

    2016-02-01

    With regard to crystal engineering, building block or modular assembly methodologies have shown great success in the design and construction of metal-organic coordination polymers. The critical factor for the construction of coordination polymers is the rational choice of the organic building blocks and the metal centre. The reaction of Zn(OAc)2·2H2O (OAc is acetate) with 3-nitrobenzoic acid (HNBA) and 4,4'-bipyridine (4,4'-bipy) under hydrothermal conditions produced a two-dimensional zinc(II) supramolecular architecture, catena-poly[[bis(3-nitrobenzoato-κ(2)O,O')zinc(II)]-μ-4,4'-bipyridine-κ(2)N:N'], [Zn(C7H4NO4)2(C10H8N2)]n or [Zn(NBA)2(4,4'-bipy)]n, which was characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and single-crystal X-ray diffraction analysis. The Zn(II) ions are connected by the 4,4'-bipy ligands to form a one-dimensional zigzag chain and the chains are decorated with anionic NBA ligands which interact further through aromatic π-π stacking interactions, expanding the structure into a threefold interpenetrated two-dimensional supramolecular architecture. The solid-state fluorescence analysis indicates a slight blue shift compared with pure 4,4'-bipyridine and HNBA. PMID:26846497

  9. Fundamental insights into conformational stability and orbital interactions of antioxidant (+)-catechin species and complexation of (+)-catechin with zinc(II) and oxovanadium(IV)

    NASA Astrophysics Data System (ADS)

    Yasarawan, Nuttawisit; Thipyapong, Khajadpai; Sirichai, Somsak; Ruangpornvisuti, Vithaya

    2013-09-01

    Conformational stability of (+)-catechin species in water has been examined with density functional theory, associated with the polarizable continuum model (PCM) of solvation. Factors such as electron delocalization, lone-pair electron donation and intramolecular hydrogen bonding substantially contribute to the conformational stabilization. Upon deprotonation, the HOMO and LUMO energies for (+)-catechin are both elevated; the energy gaps for the deprotonated species are narrower than the energy gap for the neutral species. The preferential deprotonation occurs at the C3'-, C5-, C7- and C4'-OH groups successively. The pKa value at 9.3 predicted for the most acidic OH group agrees well with previous experimental data; however the values are overestimated for the less acidic OH groups due to limitations of the PCM for charged solutes and/or complex nature of true deprotonation pathways. Formation of hydrogen radicals should be promoted at high pH values following the bond dissociation enthalpies. Complexation of (+)-catechin with either zinc(II) or oxovanadium(IV) is favored at the 1:1 metal-to-ligand (M:L) mole ratio, with the oxovanadium(IV) complex showing higher reaction preference. At M:L = 1:2, formation of two isomeric complexes are plausible for each type of metal ion. Effects of stoichiometry and isomerism on the computational spectral features of the possibly formed metal complexes have been described.

  10. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between νas(COO) and νs(COO), Δ ν ( νas(COO) - νs(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  11. Selective transport of copper(I, II), cadmium(II), and zinc(II) ions through a supported liquid membrane containing bathocuproine, neocuproine, or bathophenanthroline

    SciTech Connect

    Saito, Takashi )

    1994-06-01

    Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2[prime]-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1, 10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthroline (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu[sup +,2+], Zn[sup 2+], Cd[sup 2+] [much gt] Pb[sup 2+], Co[sup 2+]. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu[sup +] ions was higher than those of Cd[sup 2+] and Zn[sup 2+] ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu[sup 2+] ion decreased whereas that of the Cd[sup 2+] ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species. 18 refs., 9 figs.

  12. Use of 8-hydroxyquinoline-chitosan chelating resin in an automated on-line preconcentration system for determination of zinc(II) by F AAS.

    PubMed

    Carletto, Jeferson Schneider; Roux, Kalya Cravo Di Pietro; Maltez, Heloisa França; Martendal, Edmar; Carasek, Eduardo

    2008-08-30

    This study presents the development of an on-line preconcentration system for zinc(II) determination in aqueous samples. The analyte was trapped in a mini-column filled with a chelating resin based on a chitosan biopolymer modified with 8-hydroxyquinoline obtained by the diazotization reaction. Flow and chemical variables of the system, as well as the potential interference ions, were optimized through a multivariate procedure. The factors selected were sample pH, eluent concentration (HNO(3)), and sample and eluent flow rates. It was verified through a full factorial design that the sample pH and eluent flow rate factors were statistically significant at the 95% confidence level. A final optimization of the significant factors was carried out using a Doehlert matrix. The preconcentration system was linear between 2.5 and 75 microgL(-1), with a regression coefficient of 0.9995. The enrichment factor was 17.6. The limits of detection and quantification were 0.8 and 2.5 microgL(-1), respectively. The repeatability and the analytical frequency were, respectively, 2.7 (25.0 microgL(-1), n=8) and 18 samples per hour. Results for recovery tests using mineral water samples were between 85 and 93%. Certified reference materials were analyzed in order to check the accuracy of the proposed method.

  13. Probing the Protonation State and the Redox-Active Sites of Pendant Base Iron(II) and Zinc(II) Pyridinediimine Complexes.

    PubMed

    Delgado, Mayra; Sommer, Samantha K; Swanson, Seth P; Berger, Robert F; Seda, Takele; Zakharov, Lev N; Gilbertson, John D

    2015-08-01

    Utilizing the pyridinediimine ligand [(2,6-(i)PrC6H3)N═CMe)(N((i)Pr)2C2H4)N═CMe)C5H3N] (didpa), the zinc(II) and iron(II) complexes Zn(didpa)Cl2 (1), Fe(didpa)Cl2 (2), [Zn(Hdidpa)Cl2][PF6] (3), [Fe(Hdidpa)Cl2][PF6] (4), Zn(didpa)Br2 (5), and [Zn(Hdidpa)Br2][PF6] (6), Fe(didpa)(CO)2 (7), and [Fe(Hdidpa)(CO)2][PF6] (8) were synthesized and characterized. These complexes allowed for the study of the secondary coordination sphere pendant base and the redox-activity of the didpa ligand scaffold. The protonated didpa ligand is capable of forming metal halogen hydrogen bonds (MHHBs) in complexes 3, 4, and 6. The solution behavior of the MHHBs was probed via pKa measurements and (1)H NMR titrations of 3 and 6 with solvents of varying H-bond accepting strength. The H-bond strength in 3 and 6 was calculated in silico to be 5.9 and 4.9 kcal/mol, respectively. The relationship between the protonation state and the ligand-based redox activity was probed utilizing 7 and 8, where the reduction potential of the didpa scaffold was found to shift by 105 mV upon protonation of the reduced ligand in Fe(didpa)(CO)2.

  14. Synthesis, spectral characterization and biological activity of zinc(II) complexes with 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Pandey, O. P.; Sengupta, S. K.

    New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H 2O) 2], [ZnL'(OAc) 2(H 2O) 2] (L = dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L' = neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, 1H NMR, 13C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.

  15. Photodynamic Action Mechanism Mediated by Zinc(II) 2,9,16,23-Tetrakis[4-(N-methylpyridyloxy)]phthalocyanine in Candida albicans Cells.

    PubMed

    Di Palma, María Albana; Alvarez, María Gabriela; Durantini, Edgardo N

    2015-01-01

    The photoreaction type I/type II pathways mediated by zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine (ZnPPc(4+) ) was studied in Candida albicans cells. This photosensitizer was strongly bound to C. albicans cells at short times. After 30 min irradiation, 5 μM ZnPPc(4+) produced ~5 log decrease in cell viability. Different probes were used to detect reactive oxygen species (ROS) in cell suspensions (~10(6) CFU mL(-1) ). Singlet molecular oxygen, O2 ((1) Δg ), was observed by the reaction with 9,10-dimethylanthracene (DMA) and tetrasodium 2,2-(anthracene-9,10-diyl)bis(methylmalonate) (ABMM), whereas the nitro blue tetrazolium (NBT) method was used to sense superoxide anion radical (O2·-). Moreover, the effects produced by an anoxic atmosphere and cell suspensions in D2 O, as well as the addition of sodium azide and mannitol as ROS trapping were evaluated in the PDI of C. albicans. These investigation indicates that O2 ((1) Δg ) is generated in the cells, although a minor extension other radical species can also be involved in the PDI of C. albicans mediated by ZnPPc(4+) . PMID:26108811

  16. Mono- and tetra-substituted zinc(II) phthalocyanines containing morpholinyl moieties: Synthesis, antifungal photodynamic activities, and structure-activity relationships.

    PubMed

    Zheng, Bi-Yuan; Ke, Mei-Rong; Lan, Wen-Liang; Hou, Lu; Guo, Jun; Wan, Dong-Hua; Cheong, Ling-Zhi; Huang, Jian-Dong

    2016-05-23

    A series of zinc(II) phthalocyanines (ZnPcs) mono-substituted and tetra-substituted with morpholinyl moieties and their quaternized derivatives have been synthesized and evaluated for their antifungal photodynamic activities toward Candida albicans. The α-substituted, quaternized, and mono-substituted ZnPcs are found to have higher antifungal photoactivity than β-substituted, neutral, and tetra-substituted counterparts. The cationic α-mono-substituted ZnPc (6a) exhibits the highest photocytotoxicity. Moreover, it is more potent than axially di-substituted analogue. The different photocytotoxicities of these compounds have also been rationalized by investigating their spectroscopic and photochemical properties, aggregation trend, partition coefficients, and cellular uptake. The IC90 value of 6a against C. albicans cells is as low as 3.3 μM with a light dose of 27 J cm(-2), meaning that 6a is a promising candidate as the antifungal photosensitizer for future investigations.

  17. Novel Zinc(II) Complexes [Zn(atc-Et)₂] and [Zn(atc-Ph)₂]: In Vitro and in Vivo Antiproliferative Studies.

    PubMed

    Lopes, Erica de O; Oliveira, Carolina G de; Silva, Patricia B da; Eismann, Carlos E; Suárez, Carlos A; Menegário, Amauri A; Leite, Clarice Q F; Deflon, Victor M; Pavan, Fernando R

    2016-01-01

    Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II) (Zn(II)) thiosemicarbazone complexes [Zn(atc-Et)₂] (1) and [Zn(atc-Ph)₂] (2) (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone) were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) and proton nuclear magnetic resonance (¹H NMR) spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively) compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L.) to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice). Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research. PMID:27213368

  18. Novel Zinc(II) Complexes [Zn(atc-Et)2] and [Zn(atc-Ph)2]: In Vitro and in Vivo Antiproliferative Studies

    PubMed Central

    Lopes, Erica de O.; de Oliveira, Carolina G.; da Silva, Patricia B.; Eismann, Carlos E.; Suárez, Carlos A.; Menegário, Amauri A.; Leite, Clarice Q. F.; Deflon, Victor M.; Pavan, Fernando R.

    2016-01-01

    Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II) (ZnII) thiosemicarbazone complexes [Zn(atc-Et)2] (1) and [Zn(atc-Ph)2] (2) (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone) were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) and proton nuclear magnetic resonance (1H NMR) spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively) compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L.) to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice). Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research. PMID:27213368

  19. Strong effect of copper(II) coordination on antiproliferative activity of thiosemicarbazone-piperazine and thiosemicarbazone-morpholine hybrids.

    PubMed

    Bacher, Felix; Dömötör, Orsolya; Chugunova, Anastasia; Nagy, Nóra V; Filipović, Lana; Radulović, Siniša; Enyedy, Éva A; Arion, Vladimir B

    2015-05-21

    In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index. In addition, the effect of structural alterations with organic hybrids on aqueous solubility and copper(II) coordination ability was investigated. Complexation of ligands HL2 and HL4 with copper(II) was studied in aqueous solution by pH-potentiometry, UV–vis spectrophotometry and EPR spectroscopy. Proton dissociation processes of HL2 and HL4 were also characterized in detail and microscopic constants for the Z/E isomers were determined. While the hybrids HL5, HL6 and their copper(II) complexes 5 and 6 proved to be insoluble in aqueous solution, precluding antiproliferative activity studies, the thiosemicarbazone–piperazine and thiosemicarbazone–morpholine hybrids HL1–HL4, as well as copper(II) complexes 1–4 were soluble in water enabling cytotoxicity assays. Interestingly, the metal-free hybrids showed very low or even a lack of cytotoxicity (IC50 values > 300 μM) in two human cancer cell lines HeLa (cervical carcinoma) and A549 (alveolar basal adenocarcinoma), whereas their copper(II) complexes were cytotoxic showing IC50 values from 25.5 to 65.1

  20. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO2 into methanol under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin

    2013-07-01

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO2 into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO2 into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min-1, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO2, and even water splitting into hydrogen and oxygen under visible light.

  1. Synthesis and ligand non-innocence of thiolate-ligated (N4S) Iron(II) and nickel(II) bis(imino)pyridine complexes.

    PubMed

    Widger, Leland R; Jiang, Yunbo; Siegler, Maxime A; Kumar, Devesh; Latifi, Reza; de Visser, Sam P; Jameson, Guy N L; Goldberg, David P

    2013-09-16

    The known iron(II) complex [Fe(II)(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [Fe(II)(LN3S)(py)](OTf) (2) and [Fe(II)(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, ultraviolet-visible (UV-vis) spectroscopic analysis, (1)H nuclear magnetic resonance (NMR), and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [Ni(II)(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1-3 and 5 undergo a single reduction process with E(1/2) between -0.9 V to -1.2 V versus Fc(+)/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the monoreduced complex [Fe(LN3S)(DMAP)](0) (4), which was characterized by X-ray crystallography, UV-vis spectroscopic analysis, electron paramagnetic resonance (EPR) spectroscopy (g = [2.155, 2.057, 2.038]), and Mössbauer (δ = 0.33 mm s(-1); ΔE(Q) = 2.04 mm s(-1)) spectroscopy. Computational methods (DFT) were employed to model complexes 3-5. The combined experimental and computational studies show that 1-3 are 5-coordinate, high-spin (S = 2) Fe(II) complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) Fe(II) complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (S(total) = 1/2) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the monoreduced 4 appears to react with O2 to give a mixture of sulfur oxygenates and iron oxygenates. The nickel(II) complex 5 does not react with O2, and even when the monoreduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2.

  2. Di-, tri-, and tetranuclear nickel(II) complexes with oximato bridges: magnetism and catecholase-like activity of two tetranuclear complexes possessing rhombic topology.

    PubMed

    Das, Lakshmi Kanta; Biswas, Apurba; Kinyon, Jared S; Dalal, Naresh S; Zhou, Haidong; Ghosh, Ashutosh

    2013-10-21

    Oxime-based tridentate Schiff base ligands 3-[2-(diethylamino)ethylimino]butan-2-one oxime (HL(1)) and 3-[3-(dimethylamino)propylimino]butan-2-one oxime (HL(2)) produced the dinuclear complex [Ni2L(1)2](ClO4)2 (1) and trinuclear complex [Ni3(HL(2))3(μ3-O)](ClO4)4·CH3CN (2), respectively, upon reaction with Ni(ClO4)2·6H2O. However, in a slightly alkaline medium, both of the ligands underwent hydrolysis and resulted in tetranuclear complexes [{Ni(deen)(H2O)}2(μ3-OH)2{Ni2(moda)4}](ClO4)2·2CH3CN (3) and [{Ni(dmpn)(CH3CN)2}2(μ3-OH)2{Ni2(moda)4}](ClO4)2·CH3CN (4), where deen = 2-(diethylamino)ethylamine, dmpn = 3-(dimethylamino)-1-propylamine, and modaH = diacetyl monoxime. All four complexes have been structurally characterized. Complex 1 is a centrosymmetric dimer where the square planar nickel(II) atoms are joined solely by the oximato bridges. In complex 2, three square planar nickel atoms form a triangular core through a central oxido (μ3-O) and peripheral oximato bridges. Tetranuclear complexes 3 and 4 consist of four distorted octahedral nickel(II) ions held together in a rhombic chair arrangement by two central μ3-OH and four peripheral oximato bridges. Magnetic susceptibility measurements indicated that dinuclear 1 and trinuclear 2 exhibited diamagnetic behavior, while tetranuclear complexes 3 and 4 were found to have dominant antiferromagnetic intramolecular coupling with concomitant ferromagnetic interactions. Despite its singlet ground state, both 3 and 4 serve as useful examples of Kahn's model for competing spin interactions. High-frequency EPR studies were also attempted, but no signal was detected, likely due to the large energy gap between the ground and first excited state. Complexes 3 and 4 exhibited excellent catecholase-like activity in the aerial oxidation of 3,5-di-tert-butylcatechol to the corresponding o-quinone, whereas 1 and 2 did not show such catalytic activity. Kinetic data analyses of this oxidation reaction in acetonitrile

  3. Synthesis and ligand non-innocence of thiolate-ligated (N4S) Iron(II) and nickel(II) bis(imino)pyridine complexes.

    PubMed

    Widger, Leland R; Jiang, Yunbo; Siegler, Maxime A; Kumar, Devesh; Latifi, Reza; de Visser, Sam P; Jameson, Guy N L; Goldberg, David P

    2013-09-16

    The known iron(II) complex [Fe(II)(LN3S)(OTf)] (1) was used as starting material to prepare the new biomimetic (N4S(thiolate)) iron(II) complexes [Fe(II)(LN3S)(py)](OTf) (2) and [Fe(II)(LN3S)(DMAP)](OTf) (3), where LN3S is a tetradentate bis(imino)pyridine (BIP) derivative with a covalently tethered phenylthiolate donor. These complexes were characterized by X-ray crystallography, ultraviolet-visible (UV-vis) spectroscopic analysis, (1)H nuclear magnetic resonance (NMR), and Mössbauer spectroscopy, as well as electrochemistry. A nickel(II) analogue, [Ni(II)(LN3S)](BF4) (5), was also synthesized and characterized by structural and spectroscopic methods. Cyclic voltammetric studies showed 1-3 and 5 undergo a single reduction process with E(1/2) between -0.9 V to -1.2 V versus Fc(+)/Fc. Treatment of 3 with 0.5% Na/Hg amalgam gave the monoreduced complex [Fe(LN3S)(DMAP)](0) (4), which was characterized by X-ray crystallography, UV-vis spectroscopic analysis, electron paramagnetic resonance (EPR) spectroscopy (g = [2.155, 2.057, 2.038]), and Mössbauer (δ = 0.33 mm s(-1); ΔE(Q) = 2.04 mm s(-1)) spectroscopy. Computational methods (DFT) were employed to model complexes 3-5. The combined experimental and computational studies show that 1-3 are 5-coordinate, high-spin (S = 2) Fe(II) complexes, whereas 4 is best described as a 5-coordinate, intermediate-spin (S = 1) Fe(II) complex antiferromagnetically coupled to a ligand radical. This unique electronic configuration leads to an overall doublet spin (S(total) = 1/2) ground state. Complexes 2 and 3 are shown to react with O2 to give S-oxygenated products, as previously reported for 1. In contrast, the monoreduced 4 appears to react with O2 to give a mixture of sulfur oxygenates and iron oxygenates. The nickel(II) complex 5 does not react with O2, and even when the monoreduced nickel complex is produced, it appears to undergo only outer-sphere oxidation with O2. PMID:23992096

  4. Melamine-formaldehyde-NTA chelating gel resin: Synthesis, characterization and application for copper(II) ion removal from synthetic wastewater.

    PubMed

    Baraka, Ahmad; Hall, P J; Heslop, M J

    2007-02-01

    A new chelating resin was synthesised by anchoring nitrilotriacetic acid (NTA) to melamine during the melamine-formaldehyde gelling reaction in the presence of water, using acetone and guaiacol as a porogen mixture. This technique gives a porous chelating gel resin capable of removing heavy metals from wastewater. FT-IR, XRD, elemental analysis, surface area and water regain measurements were conducted for characterization of the new chelating gel resin. A comprehensive adsorption study (kinetics isotherm, and thermodynamics) of Cu(II) removal from synthetic acidic aqueous solutions by adsorption on this resin was conducted regarding the effects of time, temperature, initial pH and copper(II) initial concentration.

  5. Thermodynamics of the complex formation of copper(II) with L-phenylalanine in aqueous ethanol solutions

    NASA Astrophysics Data System (ADS)

    Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.

    2013-05-01

    Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.

  6. Structural characterization of a metal-based perfusion tracer: copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone).

    PubMed

    John, E; Fanwick, P E; McKenzie, A T; Stowell, J G; Green, M A

    1989-01-01

    Copper(II) pyruvaldehyde bis(N4-methylthiosemicarbazone), Cu(PTSM), has been obtained as a dark red crystalline solid from EtOH-DMSO solvent mixture and structurally characterized by x-ray crystallography. The molecule possesses the expected pseudo-square planar N2S2 metal coordination sphere; however, the copper center also interacts through its axial coordination site with the sulfur atom of an adjacent Cu(PTSM) molecule in the crystal lattice. The structure of this compound is compared with the structures of other metal complexes that have been proposed in the nuclear medicine literature as perfusion tracers. PMID:2621114

  7. Spectrophotometric determination of copper(II) in pharmaceutical, biological and water samples by 4-(2'-benzothiazolylazo)-salicylic acid

    NASA Astrophysics Data System (ADS)

    Hashem, E. Y.; Seleim, M. M.; El-Zohry, A. M.

    2011-09-01

    A highly sensitive method is proposed to determine copper(II) ions by forming a stable complex through their interaction with 4-(2'-benzothiazolylazo)-salicylic acid (BTAS) at room temperature and pH of about 5.0. The complex gave a maximum absorption at λ = 485 nm with a molar absorptivity coefficient of 2.35·104 l/(mol·cm). The linear range for the copper determination is 0.63-5.04 mg/l. The method can be applied to determine copper ions in different biological specimens like some drugs and water samples.

  8. A three-dimensional metal-organic framework with a pcu net constructed by zinc(II)/3-amino-1,2,4-triazole layer and an inorganic sulfate pillar

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Di; Huang, Zhi-Jian; Xie, Yong-Ping; Li, Qing-Lu

    2015-03-01

    Hydrothermal reaction of ZnSO4·7H2O and 3-amino-1H-1,2,4-triazole (HATRZ) led to a three-dimensional zinc(II) coordination polymer, Zn2(ATRZ)2SO4·3H2O (1). Compound 1 has been fully characterized by single crystal and powder X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and elemental analysis. Single crystal X-ray diffraction reveals that 1 is a pcu-like network metal-organic framework which is constructed by a zinc(II)/ATRZ layer and a rarely reported inorganic sulfate pillar. Moreover, 1 shows characteristic ligand-centered fluorescence property.

  9. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N4-methyl-3-thiosemicarbazone: Crystal structure of a novel sulfur bridged copper(II) box-dimer

    NASA Astrophysics Data System (ADS)

    Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra

    2015-03-01

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.

  10. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  11. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    PubMed

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines.

  12. Aqueous aerobic oxidation of alkyl arenes and alcohols catalyzed by copper(II) phthalocyanine supported on three-dimensional nitrogen-doped graphene at room temperature.

    PubMed

    Mahyari, Mojtaba; Laeini, Mohammad Sadegh; Shaabani, Ahmad

    2014-07-25

    Copper(ii) tetrasulfophthalocyanine supported on three-dimensional nitrogen-doped graphene-based frameworks was synthesized and introduced as a bifunctional catalyst for selective aerobic oxidation of alkyl arenes and alcohols to the corresponding carbonyl compounds. The ease of catalyst separation, high turnover, low catalyst loading and recyclability could potentially render it applicable in industrial setting. PMID:24912023

  13. Self-assembly of a chiral carbonate- and cytidine-containing dodecanuclear copper(II) complex: a multiarm-supplied globular capsule.

    PubMed

    Armentano, Donatella; Marino, Nadia; Mastropietro, Teresa F; Martínez-Lillo, José; Cano, Joan; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni

    2008-11-17

    A dodecanuclear copper(II) globular-shaped structure has been obtained with the cytidine nucleoside and the templating carbonate anion. It shows receptor properties through anion-cation and multiple anion-pi interactions toward ClO 4 (-) as well as an overall antiferromagnetic coupling.

  14. Synthesis and Structure of a New Copper(II) Coordination Polymer Alternately Bridged by Oxamido and Carboxylate Groups: Evaluation of DNA/BSA Binding and Cytotoxic Activities.

    PubMed

    Jin, Xiao-Ting; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-08-01

    A new one-dimensional (1D) copper(II) coordination polymer {[Cu2 (dmaepox)(dabt)](NO3) · 0.5 H2 O}n , where H3 dmaepox and dabt denote N-benzoato-N'-(3-methylaminopropyl)oxamide and 2,2'-diamino-4,4'-bithiazole, respectively, was synthesized and characterized by single-crystal X-ray diffraction and other methods. The crystal structure analysis revealed that the two copper(II) ions are bridged alternately by cis-oxamido and carboxylato groups to form a 1-D coordination polymer with the corresponding Cu · · · Cu separations of 5.1946(19) and 5.038(2) Å. There is a three-dimensional supramolecular structure constructed by hydrogen bonding and π-π stacking interactions in the crystal. The reactivity towards herring sperm DNA (HS-DNA) and bovine serum albumin (BSA) indicated that the copper(II) polymer can interact with the DNA in the mode of intercalation, and bind to BSA responsible for quenching of tryptophan fluorescence by the static quenching mechanism. The in vitro cytotoxicity suggested that the copper(II) polymer exhibits cytotoxic effects against the selected tumor cell lines.

  15. Ultrafast Photochemistry of Copper(II) Monochlorocomplexes in Methanol and Acetonitrile by Broadband Deep-UV-to-Near-IR Femtosecond Transient Absorption Spectroscopy.

    PubMed

    Mereshchenko, Andrey S; Olshin, Pavel K; Myasnikova, Olesya S; Panov, Maxim S; Kochemirovsky, Vladimir A; Skripkin, Mikhail Yu; Moroz, Pavel N; Zamkov, Mikhail; Tarnovsky, Alexander N

    2016-03-24

    Photochemistry of copper(II) monochlorocomplexes in methanol and acetonitrile solutions is studied by UV-pump/broadband deep-UV-to-near-IR probe femtosecond transient absorption spectroscopy. Upon 255 and 266 nm excitation, the complexes in acetonitrile and methanol, respectively, are promoted to the excited ligand-to-metal charge transfer (LMCT) state, which has a short (sub-250 fs) lifetime. From the LMCT state, the complexes decay via internal conversion to lower-lying ligand field (LF) d-d excited states or the vibrationally hot ground electronic state. A minor fraction of the excited complexes relaxes to the LF electronic excited states, which are relatively long-lived with lifetimes >1 ns. Also, in methanol solutions, about 3% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming copper(I) solvatocomplexes and chlorine atoms, which then further react forming long-lived photoproducts. In acetonitrile, about 50% of the LMCT-excited copper(II) monochlorocomplexes dissociate forming radical and ionic products in a ratio of 3:2. Another minor process observed following excitation only in methanol solutions is the re-equilibration between several forms of the copper(II) ground-state complexes present in solutions. This re-equilibration occurs on a time scale from sub-nanoseconds to nanoseconds.

  16. Versatility of azide in serendipitous assembly of copper(II) magnetic polyclusters.

    PubMed

    Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-11-19

    Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same

  17. Versatility of azide in serendipitous assembly of copper(II) magnetic polyclusters.

    PubMed

    Mukherjee, Sandip; Mukherjee, Partha Sarathi

    2013-11-19

    Engineering at the molecular level is one of the most exciting new developments for the generation of functional materials. However, the concept of designing polynuclear extended structures from bottom up is still not mature. Although progress has been made with secondary building units (SBUs) in metal organic frameworks (MOFs), the control seems to be just an illusion when it comes to bridging ligands such as the azide ion. When we say that the azido ligand is versatile in its bridging capabilities, what we mean is that it would be difficult to predict or control its bridging properties. However, this kind of serendipity is not always bad news. For example, scientists have shown that the azido ligand can mediate magnetic exchanges between paramagnetic metals in a predictable fashion (usually depending upon the bonding geometries). Therefore, it is a well-respected ligand in polynuclear assemblies. Serendipitous assemblies offer new magnetic structures that we may not otherwise even think about synthesizing. The azido ligand forms a variety of complexes with copper(II) using different blocking amines or pyridine based ligands. Its structural nature changes upon changing the substitution on amine, as well as the amount of blocking ligand. In principle, if we take any of these complexes and provide more coordination sites to the bridging azido ligands by removing a fraction of the blocking ligands, we can get new complexes with intricate structural networks and therefore different magnetic properties with the same components as used for the parent complex. In this Account, we mainly discuss the development of a number of new topological and magnetic exchange systems synthesized using this concept. Not all of these new complexes can be grouped according to their basic building structures or even by the ratio of the metal to blocking ligand. Therefore, we divided the discussion by the nuclearity of the basic building structures. Some of the complexes with the same

  18. Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(II) complexes.

    PubMed

    Yuste, Consuelo; Bentama, Abdeslem; Stiriba, Salah-Eddine; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Julve, Miguel

    2007-11-28

    The preparation, crystal structure and magnetic properties of four heteroleptic copper(II) complexes with the tricyanomethanide (tcm(-)) and the heterocyclic nitrogen donors 3,6-bis(2-pyridyl)pyridazine (dppn), 2,5-bis(2-pyridyl)pyrazine (2,5-dpp), 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) and 2,3-bis(2-pyridyl)quinoxaline (2,3-dpq) are reported, {[Cu(2)(dppn)(OH)(tcm)(2)] x tcm}(n) (1), {[Cu(2,5-dpp)(tcm)] x tcm}(n) (2), {[Cu(2)(2,3-dpp)(2)(tcm)(3)(H(2)O)(0.5)] x tcm x 0.5H(2)O}(n) (3) and [Cu(2,3-dpq)(tcm)(2)](n) (4). 1 has a ladder-like structure with single mu-1,5-tcm ligands forming the sides and a bis-bidentate dppn and a single mu-hydroxo providing the rung. Each copper atom in 1 exhibits a distorted square pyramidal CuN(4)O surrounding: the basal plane is built by the hydroxo-oxygen, a nitrile-nitrogen atom from a tcm group and one pyrazine and a pyridyl nitrogen atoms from the dppn whereas the apical position is filled by a nitrile-nitrogen atom from a symmetry-related tcm ligand. The structures of 2-4 consists of zig-zag (2 and 3)/linear (4) chains of copper(II) ions which are bridged by either bis-bidentate 2,5-dpp (2) and 2,3-dpp (3) molecules or single mu-1,5-tcm (4) groups. The copper atoms in 2 and 4 are five coordinated with distorted trigonal bipyramidal (2) and square pyramidal (4) CuN(5) surroundings. The axial positions in 2 are occupied by two pyridyl-nitrogen atoms from two 2,5-dpp ligands whereas the trigonal plane is built by a nitrile-nitrogen from a terminally bound tcm group and two pyrazine nitrogen atoms from two 2,5-dpp molecules. The basal plane in 4 is defined by a pyridyl and a pyrazine nitrogen atoms from the bidentate 2,3-dpq ligand and two nitrile nitrogen atoms from two tcm groups (one terminal and the other bridging) whereas the apical position is filled by a nitrile nitrogen from another tcm ligand. The crystallographically independent copper atoms in 3 [Cu(1) and Cu(2)] exhibit elongated octahedral geometries being defined by four

  19. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands.

    PubMed

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s(-1) scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  20. Nickel(II) Complexation with Nitrate in Dry [C4mim][Tf2N] Ionic Liquid: A Spectroscopic, Microcalorimetric, and Molecular Dynamics Study.

    PubMed

    Melchior, Andrea; Gaillard, Clotilde; Gràcia Lanas, Sara; Tolazzi, Marilena; Billard, Isabelle; Georg, Sylvia; Sarrasin, Lola; Boltoeva, Maria

    2016-04-01

    The complex formation of nitrate ions with nickel(II) in dry [C4mim][Tf2N] ionic liquid (IL) was investigated by means of UV-visible spectrophotometry, isothermal titration calorimetry (ITC), extended X-ray absorption fine structure spectroscopy (EXAFS), and molecular dynamics (MD) simulations. EXAFS spectroscopy and MD simulations show that the solvated Ni(II) cation is initially coordinated by the oxygens of the [Tf2N](-) anion of IL, which can behave either as mono- or bidentate. Spectroscopic and thermodynamic data show that Ni(II) is able to form up to three stable mononuclear complexes with nitrate in this solvent. The stability constants for Ni(NO3)j complexes (j = 1-3) calculated from spectrophotometry and ITC experiments decrease in the order log K1 > log K2 > log K3. The formation of the first two species is enthalpy-driven, while the third species is entropy-stabilized. The UV-vis spectra of solutions containing different nitrate/Ni(II) ratios show that the metal ion retains the six-coordinate geometry. Furthermore, the EXAFS evidences that nitrate is always bidentate. Molecular dynamics simulations show that the [Tf2N](-) anions bind Ni(II) through the sulfonyl oxygen atoms and can coordinate either as monodentate or chelate. The analysis of the MD data shows that introduction of nitrates in the first coordination sphere of the metal ion results in remarkable structural rearrangement of the ionic liquid. PMID:26999457

  1. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  2. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes.

    PubMed

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-15

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s(-1) scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, (1)H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  3. Mechanism of Action of the Novel Nickel(II) Complex in Simultaneous Reactivation of the Apoptotic Signaling Networks Against Human Colon Cancer Cells

    PubMed Central

    Samie, Nima; Haerian, Batoul Sadat; Muniandy, Sekaran; Marlina, Anita; Kanthimathi, M. S.; Abdullah, Norbani B.; Ahmadian, Gholamreza; Aziddin, Raja E. R.

    2016-01-01

    The aim of this study was to evaluate the cytotoxic potential of a novel nickel(II) complex (NTC) against WiDr and HT-29 human colon cancer cells by determining the IC50 using the standard MTT assay. The NTC displayed a strong suppressive effect on colon cancer cells with an IC50 value of 6.07 ± 0.22 μM and 6.26 ± 0.13 μM against WiDr and HT-29 respectively, after 24 h of treatment. Substantial reduction in the mitochondrial membrane potential and increase in the release of cytochrome c from the mitochondria directed the induction of the intrinsic apoptosis pathway by the NTC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. The NTC was also shown to activate the extrinsic pathway of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of the current work indicates that NTC possess a potent cancer cell abolishing activity by simultaneous induction of intrinsic and extrinsic pathways of apoptosis in colon cancer cell lines. PMID:26858642

  4. New topology of CN-bridged clusters: dodecanuclear face-sharing defective cubes based on octacyanometallates(iv) and nickel(ii) with diimine ligands.

    PubMed

    Nowicka, Beata; Näther, Christian; Halemba, Alexandra; Reczyński, Mateusz; Sieklucka, Barbara

    2015-07-28

    New dodecanuclear bimetallic Ni8M4 clusters were obtained in the reaction between octacyanometallates(IV), nickel(II) cations and diimine ligands. {[Ni(LL)(H2O)]2[Ni(LL)(H2O)2]6[M(CN)8]4} assemblies, where LL = 1,10-phenanthroline M = Mo, (1) or LL = 2,2′-bipyridine M = W (2) or Mo (3), are among the largest octacyanometallate-based clusters. They show the same compact topology of the cluster core, which can be described as defective face-sharing cubes with corners defined by alternating metal centres. The structures are stabilised by π–π interactions between aromatic rings of diimine ligands and hydrogen bonds connecting terminal CN groups and coordinated H2O molecules through a crystallisation solvent. Different decorating ligands cause different arrangements of clusters in the crystal structure. 1 crystallises in the triclinic system space group P, while 2 and 3 crystallise in the monoclinic system space group P21/n. The clusters show paramagnetic behaviour with weak antiferromagnetic interactions between the NiII centres through diamagnetic NC-MIV-CN linkages. PMID:26091544

  5. Di- versus Trinuclear Copper(II) Cryptate for the Uptake of Dicarboxylate Anions.

    PubMed

    Esteves, Catarina V; Mateus, Pedro; André, Vânia; Bandeira, Nuno A G; Calhorda, Maria José; Ferreira, Liliana P; Delgado, Rita

    2016-07-18

    Searching for receptors selective for the binding of dicarboxylate anions, the copper(II) complexes of the known ditopic octaazacryptand (t2pN8), derived from bistren [tren = tris(2-aminoethyl)amine] linked by p-xylyl spacers, were re-examined, with the expectation of observing a selective binding of oxalate or malonate by bridging the two copper centers of the [Cu2(t2pN8)(H2O)2](4+) receptor. Solution studies involving the supramolecular species formed by the receptor and oxalate (oxa(2-)), malonate (mal(2-)), and succinate (suc(2-)) anions are reported. The determined association constants revealed the unexpected formation of a 3:1:1 Cu/t2pN8/anion stoichiometry for the cascade species with oxa(2-) and mal(2-), and the single crystal X-ray structural characterization confirmed the presence of tricopper(II) complexes, with an unusual binding mode for the dicarboxylate anions. Each of the two copper atoms binds four nitrogen donor atoms of the t2pN8 cryptand and one additional hydroxide group, which bridges to the third copper. The square planar environment of this one is complete with two oxygen atoms from the oxalate (or the malonate). The two copper centers bound to the tren heads are ∼6.5 Å apart, each one at about 3.5 Å from the third Cu center. These studies were complemented by SQUID magnetization measurements and DFT calculations. The magnetic susceptibility measurements of the oxalate cascade complex showed a strong magnetic coupling (J = - 210 cm(-1)) between the Cu centers at a short distance (3.5 Å), while the coupling between the two equivalent Cu atoms (∼6.5 Å) was only -70 cm(-1). This result was well reproduced by DFT calculations. PMID:27355987

  6. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  7. Spectroscopic, structural and theoretical studies of copper(II) complexes of tridentate NOS Schiff bases

    NASA Astrophysics Data System (ADS)

    Olalekan, Temitope E.; Ogunlaja, Adeniyi S.; VanBrecht, Bernardus; Watkins, Gareth M.

    2016-10-01

    Two newly synthesized Schiff bases (L4 and L5) were derived from the condensation reaction of 2-(methylthiomethyl)anilines and 4-methoxysalicylaldehyde. Coordination complexes of these and four previously reported NOS Schiff bases, Cu(L1)2-Cu(L6)2, were synthesized via the reflux reaction of the various Schiff base ligands with CuCl2·2H2O. The compounds were characterized by means of elemental analysis, FTIR and UV-Vis. The crystal structures of Cu(L1)2 and Cu(L2)2 were obtained by X-ray diffraction. The Schiff bases were coordinated to copper ion as monobasic tridentate ligands through the phenolic oxygen, azomethine nitrogen and thioether sulfur. The microanalyses of the coordination complexes were agreeable with bimolar binding of the ligands to the copper metal ion. The crystal structures of the copper complexes confirmed an octahedral geometry around the metal centre and showed they are mononuclear. The magnetic moment values indicated the presence of a lone electron in each copper(II) orbital and confirmed the mononuclearity of the complexes. The electronic spectra of the coordination compounds consist of the intraligand, charge transfer and d→d bands. Molecular modeling studies on the complexes (Cu(L1)2-Cu(L6)2) by employing DFT revealed that complex Cu(L5)2 possessed the smallest optimization energy as well as a small HOMO-LUMO energy gap which may best explain its higher polarizability as well as reactivity in comparison to the other complexes.

  8. Copper(II) binding by free and kaolinite-sorbed humic substances

    NASA Astrophysics Data System (ADS)

    Kholodov, V. A.; Kiryushin, A. V.; Yaroslavtseva, N. V.; Frid, A. S.

    2014-07-01

    Humic preparations isolated from different sources—soils (a soddy-podzolic soil and a typical chernozem), high-moor peat, and brown coal—have been used. To analyze the binding of copper ions by humic substances (HSs), the preparations were obtained in two forms: solutions and humic-clay complexes (HSs irreversibly sorbed on kaolinite). With this approach, the binding of copper(II) ions by HSs has been studied in different systems: (1) Cu(II)-HSs irreversibly sorbed on kaolinite, (2) Cu(II)-dissolved HSs, and (3) Cu(II)-dissolved HSs-HSs irreversibly sorbed on kaolinite. In the systems containing both dissolved HSs and humic-clay complexes, HSs of similar structure isolated from the same source were used. The quantitative estimation of the copper binding was based on the constant of sorption ( K) for HSs in humic-kaolinite complexes and the stability constant (β) of complexes for free (dissolved) substances. Both parameters were expressed in similar units: L/kg. The values of log K = 3.31—3.33 are independent of the quantity and quality of the HSs in the sorption complexes but reliably exceed the K value for pure kaolinite (2.92). The value of β is not affected by the presence of insoluble HSs together with their soluble forms, but it depends on the source of HSs. The value of logβ varies in the range from 5.62 to 6.93, which significantly exceeds K and indicates a significantly higher affinity of dissolved HSs for copper ions than that of irreversibly sorbed HSs. The revealed regularities have shown that the content of HSs in the soil solution can significantly affect the mobility of a heavy metal bound to the soil organic matter.

  9. Targeted photocytotoxicity by copper(II) complexes having vitamin B6 and photoactive acridine moieties.

    PubMed

    Mukherjee, Nandini; Podder, Santosh; Banerjee, Samya; Majumdar, Shamik; Nandi, Dipankar; Chakravarty, Akhil R

    2016-10-21

    Copper(II) pyridoxal Schiff base complexes [Cu(L(1)/L(2))(B)]ClO4 (1-4), where HL(1) is 4-(((2-(1H-imidazol-4-yl)ethyl)imino)methyl)-5-(hydroxymethyl)-2-methylpyridin-3-ol (in 1 and 2), HL(2) is 2-(((2-(1H-imidazol-4-yl)ethyl)imino)methyl)phenol (in 3, 4), B is 11-(9-acridinyl)dipyrido[3,2-a:2',3'-c]phenazine (acdppz in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (in 2) and 1,10-phenanthroline (in 4), were synthesized, characterized and their photocytotoxicity in visible light, intracellular localization, cellular uptake and DNA photocleavage activity were studied. Complex 4 was characterized by X-ray crystallography. Complexes 1 and 3 having acdppz as photosensitizer showed significant photocytotoxicity in visible light in HeLa and MCF7 cells giving IC50 value of <0.6 μM, while being relatively non-toxic in dark. The complexes were non-toxic to non-tumorigenic HPL1D cells both in light and dark conditions. Complex 1 showed significant localization in the cytoplasm of HeLa cells within 4 h of treatment, as evidenced from confocal microscopy. DCFDA assay on 1 suggested generation of intracellular reactive oxygen species in HeLa cells upon photo-exposure. Importantly, Annexin-V-FITC/PI assay indicated photo-induced apoptotic cell death. PMID:27423638

  10. New tridentate azo-azomethines and their copper(II) complexes: Synthesis, solvent effect on tautomerism, electrochemical and biological studies

    NASA Astrophysics Data System (ADS)

    Sarigul, Munire; Deveci, Pervin; Kose, Muhammet; Arslan, Ugur; Türk Dagi, Hatice; Kurtoglu, Mukerrem

    2015-09-01

    In this study, three azo-azomethines and their copper(II) complexes were prepared and characterized by analytical and spectroscopic methods. The complexes prepared were found to be mononuclear and the chelation of the ligands to the copper(II) ions occurs through two phenolic oxygens and a nitrogen atom of the azomethine group of the ligand. The tautomeric behaviors of the azo-azomethines in solution were studied by UV-Vis. spectra in three organic solvents with different polarity (CHCl3, DMSO and DMF) at room temperature. The redox behaviors of the azo-azomethines and their Cu(II) complexes were investigated by cyclic voltammetry (CV) in DMSO solution containing 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) as supporting electrolyte. Additionally, the antibacterial activity was also evaluated by the broth microdilution methods against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The compounds were found to be less effective against all bacteria tested than two reference antibiotics (ampicillin and gentamicin).

  11. Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity

    PubMed Central

    Gáliková, Jana; Trávníček, Zdeněk

    2015-01-01

    Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively. PMID:26184182

  12. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring.

    PubMed

    Gökçe, Cansu; Gup, Ramazan

    2013-05-01

    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage. PMID:23562627

  13. Synthesis, immobilization and catalytic activity of a copper(II) complex with a chiral bis(oxazoline).

    PubMed

    Carneiro, Liliana; Silva, Ana R; Shuttleworth, Peter S; Budarin, Vitaly; Clark, James H

    2014-08-11

    A chiral bis(oxazoline) bearing CH2OH groups was synthesized from a commercial bis(oxazoline) and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry and FTIR. The corresponding copper(II) complex was immobilized onto the surface of a mesoporous carbonaceous material (Starbon® 700) in which the double bonds had been activated via conventional bromination. The materials were characterized by elemental analysis, ICP-OES, XPS, thermogravimetry and nitrogen adsorption at 77 K. The new copper(II) bis(oxazoline) was tested both in the homogeneous phase and once immobilized onto a carbonaceous support for the kinetic resolution of hydrobenzoin. Both were active, enantioselective and selective in the mono-benzoylation of hydrobenzoin, but better enantioselectivities were obtained in the homogeneous phase. The heterogeneous catalyst could be separated from the reaction media at the end of the reaction and reused in another catalytic cycle, but with loss of product yield and enantioselectivity.

  14. Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity.

    PubMed

    Gáliková, Jana; Trávníček, Zdeněk

    2015-01-01

    Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively.

  15. Structural Diversity of Copper(II) Complexes with 9-Deazahypoxanthine and Their in Vitro SOD-Like Activity.

    PubMed

    Gáliková, Jana; Trávníček, Zdeněk

    2015-01-01

    Two structurally different copper(II) complexes of the compositions [{Cu(9dhx)(H2O)3}2(µ-SO4)2] (1) and [Cu(9dhx)2(H2O)2(NO3)2]·H2O (2), involving 9-deazahypoxanthine (9dhx; 6-oxo-9-deazapurine; 9-deazahypoxanthine), have been prepared and characterized by elemental analysis, infrared and electronic spectroscopy, electrospray ionisation (ESI) mass spectrometry, thermogravimetric (TG) and differential thermal (DTA) analyses, and cyclic voltammetry. The X-ray structures of complexes 1 and [Cu(9dhx)2(H2O)2(NO3)2] (2a) revealed the distorted octahedral geometry in the vicinity of the copper(II) atoms, with the NO5 and N2O4 donor set, respectively. In the dimeric compound 1, the {Cu(9dhx)(H2O)3}2 units are bridged by sulfate groups with the Cu···Cu separation being 5.3446(2) Å. In both structures the 9dhx ligands are coordinated through the N3 atoms of the pyrimidine moieties. The SOD-like activity of complexes 1 and 2 was evaluated in vitro showing moderate effect, with the IC50 values equal to 18.20, and 53.33 μM, respectively. PMID:26184182

  16. Synthesis, superoxide dismutase, nuclease, and anticancer activities of copper(II) complexes incorporating bis(2-picolyl)amine with different counter anions

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; Ramadan, Abdel-Motaleb M.; Mersal, Gaber A. M.; El-Shazly, Samir A.

    2011-07-01

    Interaction of the tridentate ligand bis(2-picolyl)amine L with copper(II) salts gave a series of copper(II) complexes with the formula types: [ LCu(X) 2] (X = Cl -1, = Br -2), [( LCu (H 2O)(μ-SO 4)( LCu(H 2O)]SO 43, [ LCu(OAc)](OAc )H 2O 4, [ LCu(H 2O) 2](Y) 2 (Y = NO3-5, = ClO4-6). Their structures and properties were characterized by elemental analysis, thermal analysis (TGA), IR, UV-vis and ESR spectroscopy, electrochemical measurements including cyclic voltammetry and electrical molar conductivity, and magnetic moment measurements. A square pyramidal geometry is proposed for the halogeno complexes 1 and 2 in monomeric structures. For sulfate complex, the sulfate group bridged two copper(II) ions of the two [N 3O] donor units to give the dimeric complex molecule 3 in square pyramidal environment around the copper(II) ions. In the case of complexes 4- 6, square planar stereochemistries in monomeric structures are suggested. The SOD biomimetic catalytic activity of the obtained complexes was assessed for their ability to inhibit the reduction of nitroblue tetrazolium (NBT). The catalytic efficiency of O2- scavenging by complexes depends on the nature of the particular acidic anion radical incorporated in the complex molecule and follows the order: NO3- > ClO4- > Br - ⩾ Cl - > SO4- > AcO -. A probable mechanistic implications for the catalytic dismutation of O2- by copper(II) complexes are proposed. Furthermore, complex 1 exhibits significant hydrolytic cleavage of the genomic DNA in the absence of any external additives. In addition, the in vitro study of cytotoxicity of complex 1 on colon cancer cell line (Caco-2) indicates that the complex has the potential to act as an effective anticancer drug with IC 50 value of 156 ± 0.35 μM.

  17. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.

    PubMed

    Mansur, Marcelo Borges; Rocha, Sônia Denise Ferreira; Magalhães, Fernando Silva; Benedetto, Jeaneth dos Santos

    2008-02-11

    The selective removal of zinc(II) over iron(II) by liquid-liquid extraction from spent hydrochloric acid pickling effluents produced by the zinc hot-dip galvanizing industry was studied at room temperature. Two distinct effluents were investigated: effluent 1 containing 70.2g/L of Zn, 92.2g/L of Fe and pH 0.6, and effluent 2 containing 33.9 g/L of Zn, 203.9g/L of Fe and 2M HCl. The following extractants were compared: TBP (tri-n-butyl phosphate), Cyanex 272 [bis(2,4,4-trimethylpentyl)phosphinic acid], Cyanex 301 [bis(2,4,4-trimethylpentyl) dithiophosphinic acid] and Cyanex 302 [bis(2,4,4-trimethylpentyl) monothiophosphinic acid]. The best separation results were obtained for extractants TBP and Cyanex 301. Around 92.5% of zinc and 11.2% of iron were extracted from effluent 1 in one single contact using 100% (v/v) of TBP. With Cyanex 301, around 80-95% of zinc and less than 10% of iron were extracted from effluent 2 at pH 0.3-1.0. For Cyanex 272, the highest extraction yield for zinc (70% of zinc with 20% of iron extraction) was found at pH 2.4. Cyanex 302 presented low metal extraction levels (below 10%) and slow phase disengagement characteristics. Reactions for the extraction of zinc with TBP and Cyanex 301 from hydrochloric acid solution were proposed.

  18. A zinc(II) quinolinone complex (Et3NH)[Zn(qui)Cl2]: Synthesis, X-ray structure, spectral properties and in vitro cytotoxicity

    NASA Astrophysics Data System (ADS)

    Buchtík, Roman; Nemec, Ivan; Trávníček, Zdeněk

    2014-02-01

    A new zinc(II) complex with 2-phenyl-3-hydroxy-4(1H)-quinolinone (Hqui) of the composition (Et3NH)[Zn(qui)Cl2] was prepared and characterized by elemental analysis, FT IR, 1D and 2D NMR, and fluorescence spectroscopy, mass spectrometry and single crystal X-ray analysis. The molecular structure is composed of the triethylammonium (Et3NH+) cations and tetrahedral [ZnII(qui)Cl2]- complex anions, in which the Zn(II) atoms are bidentate coordinated by one qui ligand through keto (OK) and phenolate (OP) oxygen atoms and by two chlorido ligands, thus forming the {O2Cl2} donor set, with Zn-OK = 1.9860(14) Å, Zn-OP 1.9961(14) Å and Zn-Cl = 2.2509(6) Å and 2.2266(6) Å. The complex cations are aligned into 1D supramolecular chains through the NH⋯Cl hydrogen bonding between the amine group of the quinolinone ligand and the chlorido ligand of the adjacent complex anion. The amine group from the Et3NH+ cations provides the NH⋯OP hydrogen bond with the phenolate oxygen atoms from the complex anion. Screening of in vitro cytotoxicity of the compound was studied on human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cell lines, with IC50 > 50 μM. The fluorescence study showed that the complex exhibits a relatively high integral intensity (29%) as compared to the standard quinine sulfate, and 1.6-fold enhancement of emission with respect to free Hqui.

  19. Synthesis, X-ray, and Spectroscopic Study of Dissymmetric Tetrahedral Zinc(II) Complexes from Chiral Schiff Base Naphthaldiminate Ligands with Apparent Exception to the ECD Exciton Chirality.

    PubMed

    Enamullah, Mohammed; Makhloufi, Gamall; Ahmed, Rifat; Joy, Baitul Alif; Islam, Mohammad Ariful; Padula, Daniele; Hunter, Howard; Pescitelli, Gennaro; Janiak, Christoph

    2016-07-01

    Bidentate enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminate (R- or S-N^O), diastereoselectively provide Λ- or Δ-chiral-at-metal four-coordinated Zn(R- or S-N^O)2 {Ar = C6H5; Zn-1R or Zn-1S and p-C6H4OMe; Zn-2R or Zn-2S}. Two R- or S-N^O-chelate ligands coordinate to the zinc(II) in a tetrahedral mode and induce Λ- or Δ-configuration at the zinc metal center. In the solid state, the R- or S-ligand diastereoselectively gives Λ- or Δ-Zn configuration, respectively, and forms enantiopure crystals. Single crystal structure determinations show two symmetry-independent molecules (A and B) in each asymmetric unit to give Z' = 2 structures. Electronic circular dichroism (ECD) spectra show the expected mirror image relationship resulting from diastereomeric excess toward the Λ-Zn for R-ligands and Δ-Zn for S-ligands in solution. ECD spectra are well reproduced by TDDFT calculations, while the application of the exciton chirality method, in the common point-dipole approximation, predicts the wrong sign for the long-wavelength couplet. A dynamic diastereomeric equilibrium (Λ vs Δ) prevails for both R- and S-ligand-metal complexes in solution, respectively, evidenced by (1)H NMR spectroscopy. Variable temperature (1)H NMR spectra show a temperature-dependent shift of the diastereomeric equilibrium and confirm Δ-Zn configuration (for S-ligand) to be the most stable one and favored at low temperature. DSC analyses provide quantitative diastereomeric excess in the solid state for Zn-2R and Zn-2S, which is comparable to the results of solution studies.

  20. Synthesis, X-ray, and Spectroscopic Study of Dissymmetric Tetrahedral Zinc(II) Complexes from Chiral Schiff Base Naphthaldiminate Ligands with Apparent Exception to the ECD Exciton Chirality.

    PubMed

    Enamullah, Mohammed; Makhloufi, Gamall; Ahmed, Rifat; Joy, Baitul Alif; Islam, Mohammad Ariful; Padula, Daniele; Hunter, Howard; Pescitelli, Gennaro; Janiak, Christoph

    2016-07-01

    Bidentate enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminate (R- or S-N^O), diastereoselectively provide Λ- or Δ-chiral-at-metal four-coordinated Zn(R- or S-N^O)2 {Ar = C6H5; Zn-1R or Zn-1S and p-C6H4OMe; Zn-2R or Zn-2S}. Two R- or S-N^O-chelate ligands coordinate to the zinc(II) in a tetrahedral mode and induce Λ- or Δ-configuration at the zinc metal center. In the solid state, the R- or S-ligand diastereoselectively gives Λ- or Δ-Zn configuration, respectively, and forms enantiopure crystals. Single crystal structure determinations show two symmetry-independent molecules (A and B) in each asymmetric unit to give Z' = 2 structures. Electronic circular dichroism (ECD) spectra show the expected mirror image relationship resulting from diastereomeric excess toward the Λ-Zn for R-ligands and Δ-Zn for S-ligands in solution. ECD spectra are well reproduced by TDDFT calculations, while the application of the exciton chirality method, in the common point-dipole approximation, predicts the wrong sign for the long-wavelength couplet. A dynamic diastereomeric equilibrium (Λ vs Δ) prevails for both R- and S-ligand-metal complexes in solution, respectively, evidenced by (1)H NMR spectroscopy. Variable temperature (1)H NMR spectra show a temperature-dependent shift of the diastereomeric equilibrium and confirm Δ-Zn configuration (for S-ligand) to be the most stable one and favored at low temperature. DSC analyses provide quantitative diastereomeric excess in the solid state for Zn-2R and Zn-2S, which is comparable to the results of solution studies. PMID:27295327

  1. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.

    PubMed

    Mansur, Marcelo Borges; Rocha, Sônia Denise Ferreira; Magalhães, Fernando Silva; Benedetto, Jeaneth dos Santos

    2008-02-11

    The selective removal of zinc(II) over iron(II) by liquid-liquid extraction from spent hydrochloric acid pickling effluents produced by the zinc hot-dip galvanizing industry was studied at room temperature. Two distinct effluents were investigated: effluent 1 containing 70.2g/L of Zn, 92.2g/L of Fe and pH 0.6, and effluent 2 containing 33.9 g/L of Zn, 203.9g/L of Fe and 2M HCl. The following extractants were compared: TBP (tri-n-butyl phosphate), Cyanex 272 [bis(2,4,4-trimethylpentyl)phosphinic acid], Cyanex 301 [bis(2,4,4-trimethylpentyl) dithiophosphinic acid] and Cyanex 302 [bis(2,4,4-trimethylpentyl) monothiophosphinic acid]. The best separation results were obtained for extractants TBP and Cyanex 301. Around 92.5% of zinc and 11.2% of iron were extracted from effluent 1 in one single contact using 100% (v/v) of TBP. With Cyanex 301, around 80-95% of zinc and less than 10% of iron were extracted from effluent 2 at pH 0.3-1.0. For Cyanex 272, the highest extraction yield for zinc (70% of zinc with 20% of iron extraction) was found at pH 2.4. Cyanex 302 presented low metal extraction levels (below 10%) and slow phase disengagement characteristics. Reactions for the extraction of zinc with TBP and Cyanex 301 from hydrochloric acid solution were proposed. PMID:17570579

  2. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    PubMed

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  3. Versatile coordination behaviour of an asymmetric half-salen ligand bearing a dansyl fluorophore.

    PubMed

    Romero, María J; Pedrido, Rosa; González-Noya, Ana M; Maneiro, Marcelino; Fernández-García, M Isabel; Zaragoza, Guillermo; Bermejo, Manuel R

    2012-09-21

    The coordinative chemistry of the tridentate half-salen ligand 5-(dimethylamino)-N-(2-((2-hydroxybenzylidene)amino)phenyl)naphthalene-1-sulfonamide (H(2)L, 1) has been studied by means of an electrochemical method. All of the complexes have been characterised using analytical and spectroscopic techniques. Ligand 1 and two nickel (6 and 7), copper (9), zinc (12) and cadmium (14) metal complexes have been studied by crystallography. Complexes 6 and 7 are octahedral and tetrahedral nickel(II) complexes, respectively, and both contain an [L](2-) molecule that behaves in an [N(2)O] tridentate manner. Nickel(II) completes its coordination kernel with three water molecules in complex 6, whereas in complex 7 the nickel ion is further bound to a molecule of dansylamine arising from a hydrolysis process. The copper(II) complex 9 is a monomeric compound that contains a bideprotonated ligand thread and a dimethylsulfoxide molecule coordinated through the sulfur atom. The zinc complex 12 is an unusual pentanuclear cluster compound whose structure consists of four anionic ligand units and two hydroxo anions bound to five zinc(II) centres. The appearance of the hydroxo anions in this complex provides new evidence for water reduction electrochemically promoted by zinc metal under mild conditions. The cadmium complex 14 is a dimeric compound that comprises two molecules of the anionic ligand and two dimethylsulfoxide molecules. The great structural variety exhibited by all these complexes demonstrates that the introduction of asymmetry in a salen skeleton by incorporating a dansyl pendant increases the versatility of the resulting ligand on coordination. All complexes are luminescent in solution at room temperature in acetonitrile solutions.

  4. Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand.

    PubMed

    Abou-Hussein, A A; Linert, Wolfgang

    2015-04-15

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, (1)H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, (1)H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  5. Syntheses, spectroscopic characterization and thermal behavior on novel binuclear transition metal complexes of hydrazones derived from 4,6-diacetylresorcinol and oxalyldihydrazine.

    PubMed

    Emara, Adel A A; El-Sayed, Badr A; Ahmed, El-Sayed A E

    2008-03-01

    4,6-Diacetylresorcinol (DAR) serves as precursor for the formation of different hydrazone ligands, which are di-, tetra- or hexa-basic with two symmetrical sets of O(2)N tridentate, O(2)N(2) tetradentate or O(4)N(2) hexadentate chelating sites. The condensation of 4,6-diacetylresorcinol (DAR) with oxalyldihydrazine (ODH), in the molar ratio 1:1 and 1:2, yields the corresponding hydrazone, H(6)L(a) and H(4)L(b), ligands, respectively. The structures of these ligands were elucidated by elemental analyses and IR, mass, (1)H NMR and UV-vis spectra. Reactions of the hydrazone ligands with cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), iron(III) and chromium(III) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear transition metal complexes were obtained in its di-, tetra- or hexa-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses and IR, UV-vis, mass, (1)H NMR and ESR spectra, as well as, magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and CO oxygen atoms in either keto or enol forms and amino nitrogen atoms, and phenolic oxygen atoms. The metal complexes exhibit different geometrical structures such as tetrahedral and octahedral arrangements. PMID:17627871

  6. Syntheses, spectroscopic characterization and thermal behavior on novel binuclear transition metal complexes of hydrazones derived from 4,6-diacetylresorcinol and oxalyldihydrazine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.; El-Sayed, Badr A.; Ahmed, El-Sayed A. E.

    2008-03-01

    4,6-Diacetylresorcinol (DAR) serves as precursor for the formation of different hydrazone ligands, which are di-, tetra- or hexa-basic with two symmetrical sets of O 2N tridentate, O 2N 2 tetradentate or O 4N 2 hexadentate chelating sites. The condensation of 4,6-diacetylresorcinol (DAR) with oxalyldihydrazine (ODH), in the molar ratio 1:1 and 1:2, yields the corresponding hydrazone, H 6L a and H 4L b, ligands, respectively. The structures of these ligands were elucidated by elemental analyses and IR, mass, 1H NMR and UV-vis spectra. Reactions of the hydrazone ligands with cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), iron(III) and chromium(III) ions in 1:2 molar ratio afforded the corresponding transition metal complexes. A variety of binuclear transition metal complexes were obtained in its di-, tetra- or hexa-deprotonated forms. The structures of the newly prepared complexes were identified by elemental analyses and IR, UV-vis, mass, 1H NMR and ESR spectra, as well as, magnetic susceptibility measurements and thermal gravimetric analysis (TGA). The bonding sites are the azomethine and C dbnd O oxygen atoms in either keto or enol forms and amino nitrogen atoms, and phenolic oxygen atoms. The metal complexes exhibit different geometrical structures such as tetrahedral and octahedral arrangements.

  7. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands

    PubMed Central

    Hubin, Timothy J.; Amoyaw, Prince N. -A.; Roewe, Kimberly D.; Simpson, Natalie C.; Maples, Randall D.; Carder Freeman, TaRynn N.; Cain, Amy N.; Le, Justin G.; Archibald, Stephen J.; Khan, Shabana I.; Tekwani, Babu L.; Khan, M. O. Faruk

    2014-01-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn2+ complex of this ligand was the most potent with IC50s of 0.127 and 0.157 µM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better antimalarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn2+. Few of the Cu2+ and Fe2+ complexes also showed improvement in activity but Ni2+, Co2+ and Zn2+ complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. PMID:24857776

  8. Spectroscopic and biological studies of new binuclear metal complexes of a tridentate ONS hydrazone ligand derived from 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one and 4,6-diacetylresorcinol.

    PubMed

    Adly, Omima M I; Emara, Adel A A

    2014-11-11

    The binuclear hydrazone, H2L, ligand derived from 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one and 4,6-diacetylresorcinol, in the molar ratio 2:1, and its copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), cerium(III), iron(III), oxovanadium(IV) and dioxouranium(VI) complexes have been synthesized. Structures of the ligand and its metal complexes were characterized by elemental analyses, spectral (infrared, electronic, mass, 1H NMR and ESR) data, magnetic susceptibility, molar conductivity measurements and thermal gravimetric analysis (TGA). The ligand acts as dibasic with two ONS tridentate sites. The bonding sites are the azomethine nitrogen, phenolate oxygen and sulfur atoms. The metal complexes exhibit different geometrical arrangements such as square planer, tetrahedral and octahedral. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. The ligand and its metal complexes showed antimicrobial activity towards Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). Structural parameters of the ligand and its metal complexes were theoretically computed on the basis of semiempirical PM3 level, and the results were correlated with their experimental data.

  9. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.

    2016-01-01

    A new tridentate acyclic pincer ligand, [bi(pyridin-2-methyl)amine] (bpma, HL), was synthesized and reacted to form complexes with copper(II), nickel(II), iron(II), cobalt(II) and zinc(II) ions. Both the ligand and its complexes were characterized using elemental analysis, molar conductance, infrared, 1H-NMR-spectroscopy, mass and thermal analyses. According to the spectroscopic data, all of the complexes share the same coordination environment around the metal atoms, consisting two nitrogen-pyridine entities, one nitrogen-methylamine entity, one/two water molecules and/or one/two chloride or bromide ions. Complexes also showed molar conductivity according to the presence of two halide anions outer the coordination sphere except Co(II) and Zn(II) complexes are non electrolytes. Analysis indicates that the metal ions have trigonal bipyramidal structure. Cu(II), Ni(II), Fe(II), Co(II), and Zn(II) metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (G+) and Escherichia coli, and Pseudomonas aeruginosa (G-) bacteria. They showed remarkable antimicrobial activity.

  10. New 1,2,4-triazole-based azo-azomethine dye. Part III: Synthesis, characterization, thermal property, spectrophotometric and computational studies.

    PubMed

    Erfantalab, Malihe; Khanmohammadi, Hamid

    2014-05-01

    A new 1,2,4-triazole-based azo-azomethine compound, H2L, has been prepared by condensation reaction of 1-(3-formyl-4-hydroxyphenylazo)-4-ethylbenzene with prepared triazole-based diamine. The structure of H2L was characterized by using FT-IR, UV-Vis and (1)H NMR spectroscopic methods as well as elemental analysis. Hard model chemometrics method has been used to determine the formation constants of zinc(II), copper(II), nickel(II) and cobalt(II) complexes of H2L in DMSO by UV-Vis spectrophotometric method. Solvatochromic behavior of the dye has been also investigated in some organic solvents with different polarities. Thermal properties of the prepared dye was examined by thermogravimetric analysis. Results indicated that the framework of the dye was stable up to 245 °C. Furthermore,(1)H chemical shifts and UV-Vis of H2L were studied by the gauge independent atomic orbital (GIAO), continuous set of gauge transformations (CSGT) and time-dependent density functional theory (TD-DFT) methods respectively at the level of density functional theory using B3LYP/6-311+G(d) basis sets in DMSO. The computational data are in reasonably good agreement with the experimental data. PMID:24577255

  11. Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes

    NASA Astrophysics Data System (ADS)

    Al-Saeedi, Sameerah I.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A.

    2016-05-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been. The elemental analyses, molar conductance, spectral, magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (OON). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.10-10.18 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using different equations. The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. The cyclic voltammograms of the Cu(II)/Co(II)/Ni(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions.

  12. Template engineered biopotent macrocyclic complexes involving furan moiety: Molecular modeling and molecular docking

    NASA Astrophysics Data System (ADS)

    Rathi, Parveen; Singh, D. P.

    2015-08-01

    Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.

  13. Spectroscopic and biological studies of new binuclear metal complexes of a tridentate ONS hydrazone ligand derived from 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one and 4,6-diacetylresorcinol

    NASA Astrophysics Data System (ADS)

    Adly, Omima M. I.; Emara, Adel A. A.

    2014-11-01

    The binuclear hydrazone, H2L, ligand derived from 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one and 4,6-diacetylresorcinol, in the molar ratio 2:1, and its copper(II), nickel(II), cobalt(II), zinc(II), cadmium(II), cerium(III), iron(III), oxovanadium(IV) and dioxouranium(VI) complexes have been synthesized. Structures of the ligand and its metal complexes were characterized by elemental analyses, spectral (infrared, electronic, mass, 1H NMR and ESR) data, magnetic susceptibility, molar conductivity measurements and thermal gravimetric analysis (TGA). The ligand acts as dibasic with two ONS tridentate sites. The bonding sites are the azomethine nitrogen, phenolate oxygen and sulfur atoms. The metal complexes exhibit different geometrical arrangements such as square planer, tetrahedral and octahedral. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition steps of some complexes. The ligand and its metal complexes showed antimicrobial activity towards Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). Structural parameters of the ligand and its metal complexes were theoretically computed on the basis of semiempirical PM3 level, and the results were correlated with their experimental data.

  14. Synthesis, spectroscopic studies and inhibitory activity against bactria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, A. A.; Linert, Wolfgang

    2015-04-01

    Two series of new mono and binuclear complexes with a Schiff base ligand derived from the condensation of 3-acetylcoumarine and diethylenetriamine, in the molar ratio 2:1 have been prepared. The ligand was characterized by elemental analysis, IR, UV-visible, 1H-NMR and mass spectra. The reaction of the Schiff base ligand with cobalt(II), nickel(II), copper(II), zinc(II) and oxovanadium(IV) lead to mono or binuclear species of cyclic or macrocyclic complexes, depending on the mole ratio of metal to ligand and as well as on the method of preparation. The Schiff base ligand behaves as a cyclic bidentate, tetradendate or pentaentadentae ligand. The formation of macrocyclic complexes depends significantly on the dimension of the internal cavity, the rigidity of the macrocycles, the nature of its donor atoms and on the complexing properties of the anion involved in the coordination. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either square pyramidal or octahedral for acyclic or macro-cyclic complexes. The structures are consistent with the IR, UV-visible, ESR, 1H-NMR, mass spectra as well as conductivity and magnetic moment measurements. The Schiff base ligand and its metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.

  15. Modifications of boronic ester pro-chelators triggered by hydrogen peroxide tune reactivity to inhibit metal-promoted oxidative stress.

    PubMed

    Charkoudian, Louise K; Pham, David M; Kwon, Ashley M; Vangeloff, Abbey D; Franz, Katherine J

    2007-11-21

    Several new analogs of salicylaldehyde isonicotinoyl hydrazone (SIH) and salicylaldehyde benzoyl hydrazone (SBH) that contain an aryl boronic ester (BSIH, BSBH) or acid (BASIH) in place of an aryl hydroxide have been synthesized and characterized as masked metal ion chelators. These pro-chelators show negligible interaction with iron(III), although the boronic acid versions exhibit some interaction with copper(II), zinc(II) and nickel(II). Hydrogen peroxide oxidizes the aryl boronate to phenol, thus converting the pro-chelators to tridentate ligands with high affinity metal binding properties. An X-ray crystal structure of a bis-ligated iron(III) complex, [Fe(SBH(m-OMe)(3))(2)]NO(3), confirms the meridonal binding mode of these ligands. Modifications of the aroyl ring of the chelators tune their iron affinity, whereas modifications on the boron-containing ring of the pro-chelators attenuate their reaction rates with hydrogen peroxide. Thus, the methoxy derivative pro-chelator (p-OMe)BASIH reacts with hydrogen peroxide nearly 5 times faster than the chloro derivative (m-Cl)BASIH. Both the rate of pro-chelator to chelator conversion as well as the metal binding affinity of the chelator influence the overall ability of these molecules to inhibit hydroxyl radical formation catalyzed by iron or copper in the presence of hydrogen peroxide and ascorbic acid. This pro-chelator strategy has the potential to improve the efficacy of medicinal chelators for inhibiting metal-promoted oxidative stress. PMID:17992288

  16. Preparation, spectral and biological investigation of formaldehyde-based ligand containing piperazine moiety and its various polymer metal complexes.

    PubMed

    Khan, Shamim Ahmad; Nishat, Nahid; Parveen, Shadma; Rasool, Raza

    2011-10-15

    A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, (1)H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand. PMID:21757398

  17. Preparation, spectral and biological investigation of formaldehyde-based ligand containing piperazine moiety and its various polymer metal complexes

    NASA Astrophysics Data System (ADS)

    Khan, Shamim Ahmad; Nishat, Nahid; Parveen, Shadma; Rasool, Raza

    2011-10-01

    A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, 1H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand.

  18. In vitro Solubility of Copper(II) Sulfate and Dicopper Chloride Trihydroxide for Pigs

    PubMed Central

    Park, C. S.; Kim, B. G.

    2016-01-01

    This study was conducted to determine the solubility of copper (Cu) in two sources of copper(II) sulfate (CuSO4) including monohydrate and pentahydrate and three sources of dicopper chloride trihydroxide (dCCTH) including α-form (dCCTH-α), β-form (dCCTH-β), and a mixture of α- and β-form (dCCTH-αβ) at different pH and a 3-step in vitro digestion assay for pigs. In Exp. 1, Cu sources were incubated in water-based buffers at pH 2.0, 3.0, 4.8, and 6.8 for 4 h using a shaking incubator at 39°C. The CuSO4 sources were completely dissolved within 15 min except at pH 6.8. The solubility of Cu in dCCTH-α was greater (p<0.05) than dCCTH-β but was not different from dCCTH-αβ during 3-h incubation at pH 2.0 and during 2-h incubation at pH 3.0. At pH 4.8, there were no significant differences in solubility of Cu in dCCTH sources. Copper in dCCTH sources were non-soluble at pH 6.8. In Exp. 2, the solubility of Cu was determined during the 3-step in vitro digestion assay for pigs. All sources of Cu were completely dissolved in step 1 which simulated digestion in the stomach. In Exp. 3, the solubility of Cu in experimental diets including a control diet and diets containing 250 mg/kg of additional Cu from five Cu sources was determined during the in vitro digestion assay. The solubility of Cu in diets containing additional Cu sources were greater (p<0.05) than the control diet in step 1. In conclusion, the solubility of Cu was influenced by pH of digesta but was not different among sources based on the in vitro digestion assay. PMID:27456425

  19. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    PubMed

    Silva, Patricia B da; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-01-01

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij® 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC® CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the Vero

  20. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    PubMed

    da Silva, Patricia B; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-01-01

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij(®) 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC(®) 25923 and Escherichia coli ATCC(®) 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC(®) CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the

  1. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    PubMed

    da Silva, Patricia B; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-12-16

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij(®) 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC(®) 25923 and Escherichia coli ATCC(®) 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC(®) CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the

  2. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    PubMed

    Silva, Patricia B da; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-12-16

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij® 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC® CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the Vero

  3. Nickel(II) complexes of pentadentate N5 ligands as catalysts for alkane hydroxylation by using m-CPBA as oxidant: a combined experimental and computational study.

    PubMed

    Sankaralingam, Muniyandi; Balamurugan, Mani; Palaniandavar, Mallayan; Vadivelu, Prabha; Suresh, Cherumuttathu H

    2014-09-01

    A new family of nickel(II) complexes of the type [Ni(L)(CH(3)CN)](BPh(4))(2), where L=N-methyl-N,N',N'-tris(pyrid-2-ylmethyl)-ethylenediamine (L1, 1), N-benzyl-N,N',N'-tris(pyrid-2-yl-methyl)-ethylenediamine (L2, 2), N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-(6-methyl-pyrid-2-yl-methyl)-ethylenediamine (L3, 3), N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-(quinolin-2-ylmethyl)-ethylenediamine (L4, 4), and N-methyl-N,N'-bis(pyrid-2-ylmethyl)-N'-imidazole-2-ylmethyl)-ethylenediamine (L5, 5), has been isolated and characterized by means of elemental analysis, mass spectrometry, UV/Vis spectroscopy, and electrochemistry. The single-crystal X-ray structure of [Ni(L(3))(CH(3)CN)](BPh(4))(2) reveals that the nickel(II) center is located in a distorted octahedral coordination geometry constituted by all the five nitrogen atoms of the pentadentate ligand and an acetonitrile molecule. In a dichloromethane/acetonitrile solvent mixture, all the complexes show ligand field bands in the visible region characteristic of an octahedral coordination geometry. They exhibit a one-electron oxidation corresponding to the Ni(II) /Ni(III) redox couple the potential of which depends upon the ligand donor functionalities. The new complexes catalyze the oxidation of cyclohexane in the presence of m-CPBA as oxidant up to a turnover number of 530 with good alcohol selectivity (A/K, 7.1-10.6, A=alcohol, K=ketone). Upon replacing the pyridylmethyl arm in [Ni(L1)(CH(3)CN)](BPh(4))(2) by the strongly σ-bonding but weakly π-bonding imidazolylmethyl arm as in [Ni(L5)(CH(3)CN)](BPh(4))(2) or the sterically demanding 6-methylpyridylmethyl ([Ni(L3)(CH(3)CN)](BPh(4))(2) and the quinolylmethyl arms ([Ni(L4)(CH(3)CN)](BPh(4))(2), both the catalytic activity and the selectivity decrease. DFT studies performed on cyclohexane oxidation by complexes 1 and 5 demonstrate the two spin-state reactivity for the high-spin [(N5)Ni(II)-O(.)] intermediate (ts1(hs), ts2(doublet)), which has a low-spin state located closely in

  4. Surface directed reversible imidazole ligation to nickel(ii) octaethylporphyrin at the solution/solid interface: a single molecule level study.

    PubMed

    Nandi, Goutam; Chilukuri, Bhaskar; Hipps, K W; Mazur, Ursula

    2016-07-27

    Scanning tunneling microscopy (STM) is used to study for the first time the reversible binding of imidazole (Im) and nickel(ii) octaethylporphyrin (NiOEP) supported on highly oriented pyrolytic graphite (HOPG) at the phenyloctane/NiOEP/HOPG interface at 25 °C. The ligation of Im to the NiOEP receptor while not observed in fluid solution is readily realized at the solution/HOPG interface. The coordination process scales with increasing Im concentration and can be effectively modeled by the Langmuir isotherm. At room temperature it is determined that the standard free energy of adsorption is ΔGc = -15.8 kJ mol(-1) and the standard enthalpy of adsorption is estimated to be ΔHc ≈ -80 kJ mol(-1). The reactivity of imidazole toward NiOEP adsorbed on HOPG is attributed to charge donation from the graphite stabilizing the Im-Ni bond. This charge transfer pathway is supported by molecular and periodic modeling calculations which indicate that the Im ligand behaves as a π-acceptor. DFT calculations also show that the nickel ion in the Im-NiOEP/HOPG complex is in a singlet ground state. This is surprising since both our calculations and previous experimental studies find a triplet ground state for the five and six coordinated Im-nickel(ii) porphyrins in the gas-phase or in solution. Both the experimental and the theoretical findings provide information that is useful for better understanding of chemical sensing/recognition and catalytic processes that utilize metal-organic complexes adsorbed on surfaces where the reactivity of the metal is moderated by the substrate.

  5. Synthesis, structure, DNA/BSA interaction and in vitro cytotoxic activity of nickel(II) complexes derived from S-allyldithiocarbazate.

    PubMed

    Nanjundan, Nanjan; Selvakumar, Ponnusamy; Narayanasamy, Ramaswamy; Haque, Rosenani A; Velmurugan, Krishnaswamy; Nandhakumar, Raju; Silambarasan, Tamilselvan; Dhandapani, Ramamurthy

    2014-12-01

    Two nickel(II) complexes with formula NiL1 and NiL2 (HL1 = S-allyl-4-methoxybenzylidene hydrazinecarbodithioate, HL2 = S-allyl-1-napthylidenehydrazinecarbodithioate) have been synthesized and characterized by elemental analysis, FT-IR, NMR, UV-vis spectroscopy and ESI mass spectrometry. The crystal structure of complex 1 has been determined by single crystal X-ray diffractometry. Both HL1 and HL2 ligands are coordinated to the metal in thiolate form. In complexes, squareplanar geometry of the nickel is coordinated with two bidentate ligand units acting through azomethine nitrogen and thiolato sulfur atoms. To explore the potential medicinal value of the complexes with calf thymus DNA and bovine serum albumin (BSA) were studied at normal physiological conditions using fluorescence spectral techniques. The DNA binding constant values of the complexes were found in the range from 5.02 × 10(4), 3.54 × 10(4), and the binding affinities are in the following order 1 > 2. In addition, nickel complexes 1 and 2 shows better binding propensity to the bovine serum albumin (BSA) protein, giving a Ksv value 5.8 × 10(4), 4.47 × 10(4) respectively. From the oxidative cleavage of the complexes with pBR322 DNA, it is inferred that the effects of cleavage are dose-dependent. In addition, in vitro cytotoxicity of the complexes assayed against Vero and HeLa cell lines have shown higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing cancer cells even at various concentrations. PMID:25463665

  6. Nickel(II) complexes of N‧-(2-thienylcarbonyl)thiocarbamates O-alkyl-esters: Structural and spectroscopic characterization and evaluation of their microbiological activities

    NASA Astrophysics Data System (ADS)

    Gomes, Lígia R.; Low, John Nicolson; Rocha, Marisa A. A.; Santos, Luís M. N. B. F.; Schröder, Bernd; Brandão, Paula; Matos, Carla; Neves, José

    2011-03-01

    In the present work a set of five Ni(II) complexes with general formula [Ni(L) 2] and with HL = N-thenoylthiocarbamic- O- n-alkylylesters ( n = 2-6) has been prepared and characterized in solution by UV-vis and NMR spectroscopies. Three of them were also characterized in the solid state by X-ray diffractometry. The energy rotation of the thiophene ring of ligand was evaluated theoretically. Liposomes of complexes were prepared in order to evaluate their ability to interact with the membrane. Furthermore, their biological activities were evaluated in a set of bacteria (gram+ and gram-) and yeasts. The X-ray structure determination confirms that bidentate ligand forms a tetra co-ordinated complex with an S 2O 2 co-ordination sphere around the nickel(II) ion in a cis configuration. The metal centre is coordinated in a square planar fashion. NMR spectra taken in solution show a diamagnetic signal compatible with a square-planar geometry around the metal centre. The values obtained for the liposome/water partition coefficients ( Kp) show that [Ni(ttete) 2] and [Ni(ttpre) 2] have a similar membrane partition ability, whilst the [Ni(ttbue) 2] derivative presents a significantly higher Kp, describing a stronger interaction within the membrane. For all the compounds, [Ni(ttpre) 2] has a higher efficacy against Gram negative bacteria and yeasts nevertheless, the anti-yeast and anti-bacterial activity values of all tested compounds are lower than ones of the reference compounds.

  7. Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column.

    PubMed

    Vijayaraghavan, K; Jegan, J; Palanivelu, K; Velan, M

    2004-09-10

    This paper investigates the ability of crab shell to remove nickel(II) ions from aqueous solution in a packed bed up-flow column with an internal diameter of 2 cm. The experiments were performed with different bed heights (15-25 cm) and using different flow rates (5-20 ml/min) in order to obtain experimental breakthrough curves. The bed depth service time (BDST) model was used to analyze the experimental data and the model parameters were evaluated. The column regeneration studies were carried out for seven sorption-desorption cycles. The elutant used for the regeneration of the sorbent was 0.01 M EDTA (disodium) solution at pH 9.8 adjusted using NH4OH. Due to continuous usage of crab shell, a performance loss was observed as the breakthrough curves become more flattened also indicated by the broadened mass transfer zone. The breakthrough time decreased uniformly from 28.1 to 9.5 h as the cycles progressed from one to seven, whereas nickel uptake remained approximately constant throughout the seven cycles. The life-factors for crab shell in terms of critical bed length and breakthrough time were found to be 1.1 cm/cycle and 0.17 per cycle, respectively. The elution efficiency was greater than 99.1% in all the seven cycles. The pH profiles during both sorption and desorption process were also reported. In sorption cycles, there was a sudden raise in pH in the early part of the process and then the pH decreased as the time progressed. In desorption cycles, pH decreased in initial stages and followed by gradual increase in pH, which eventually reached the pH of the inlet elutant. PMID:15363535

  8. Rapid Assessment of Human Amylin Aggregation and Its Inhibition by Copper(II) Ions by Laser Ablation Electrospray Ionization Mass Spectrometry with Ion Mobility Separation

    PubMed Central

    Donaldson, Robert P.; Jeremic, Aleksandar M.; Vertes, Akos

    2015-01-01

    Native electrospray ionization (ESI) mass spectrometry (MS) is often used to monitor noncovalent complex formation between peptides and ligands. The relatively low throughput of this technique, however, is not compatible with extensive screening. Laser ablation electrospray ionization (LAESI) MS combined with ion mobility separation (IMS) can analyze complex formation and provide conformation information within a matter of seconds. Islet amyloid polypeptide (IAPP) or amylin, a 37-amino acid residue peptide, is produced in pancreatic beta-cells through proteolytic cleavage of its prohormone. Both amylin and its precursor can aggregate and produce toxic oligomers and fibrils leading to cell death in the pancreas that can eventually contribute to the development of type 2 diabetes mellitus. The inhibitory effect of the copper(II) ion on amylin aggregation has been recently discovered, but details of the interaction remain unknown. Finding other more physiologically tolerated approaches requires large scale screening of potential inhibitors. Here, we demonstrate that LAESI-IMS-MS can reveal the binding stoichiometry, copper oxidation state, and the dissociation constant of human amylin–copper(II) complex. The conformations of hIAPP in the presence of copper(II) ions were also analyzed by IMS, and preferential association between the β-hairpin amylin monomer and the metal ion was found. The copper(II) ion exhibited strong association with the –HSSNN– residues of the amylin. In the absence of copper(II), amylin dimers were detected with collision cross sections consistent with monomers of β-hairpin conformation. When copper(II) was present in the solution, no dimers were detected. Thus, the copper(II) ions disrupt the association pathway to the formation of β-sheet rich amylin fibrils. Using LAESI-IMS-MS for the assessment of amylin–copper(II) interactions demonstrates the utility of this technique for the high-throughput screening of potential inhibitors of

  9. Spectroscopic, solvent influence and thermal studies of ternary copper(II) complexes of diester and dinitrogen base ligands

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.; Abu-Hussein, Azza A. A.; Taha, Ahmed A.; Mahmoud, Nelly H.

    2010-10-01

    New mixed-ligand copper(II) complexes containing the bidentate dinitrogen ligands [ N,N,N',N'-tetramethylethylenediamine (tmen), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)] and the bidentate dioxygen ligands [diethylmalonate (DEM), ethylacetoacetate (EAA) and ethylbenzoylacetate (EBA)] were prepared. The complexes were characterized by elemental analysis, infrared, mass and ESR spectral data, magnetic and molar conductance measurements and thermal gravimetric analysis. From the investigation, the geometries of the complexes are square planar for perchlorate complexes and a square pyramid or octahedral for the nitrate complexes. Solvatochromic behavior of the Cu(II) complexes indicates strong solvatochromism of their solutions in polar and non-polar solvents. The observed solvatochromism is due to the solute-solvent interaction between the chelate cation and the solvent molecules.

  10. Extraction of copper(II) from acid chloride solutions by N-dodecyl- and N,N-dihexylpyridinecarboxamides

    SciTech Connect

    Borowiak-Resterna, A.

    1999-01-01

    N-dodecyl- and N,N-dihexylpyridinecarboxamides with amide group at 2, 3 or 4 position were synthesized. Model individual amides were used to recover copper(II) from chloride solutions at constant water activity and constant total concentration of dissolved species in aqueous solution. It was found, that pyridine-2-carboxamide forms with copper complexes (CuCl{sub 2}){sub x}(Ext){sub 2}. Remaining amides form with copper complexes CuCl{sub 2}(Ext){sub 2}. Monoalkylamides are not suitable for extraction because they and their complexes are slightly soluble in the hydrocarbon diluents. N,N-dialkylpyridinecarboxamides and their copper complexes are sufficiently soluble in the hydrocarbon phase to carry out extraction. However, they are strong extractants and extract efficiently copper already from dilute chloride solutions ([Cl{sup {minus}}] = 0.1 M). They extract also significant amounts of copper from concentrated (3--4 M) nitrate solutions.

  11. Adlayer structure of octa-alkoxy-substituted copper(II) phthalocyanine on Au(111) by electrochemical scanning tunneling microscopy.

    PubMed

    Wang, Li; Ou-Yang, Liangyue; Yau, Shueh-Lin

    2008-01-01

    Electrochemical scanning tunneling microscopy (ECSTM) has been used to examine the adlayer of octa-alkoxy-substituted copper(II) phthalocyanines (CuPc(OC(8)H(17))(8)) on Au(111) in 0.1 M HClO(4), where the molecular adlayer was prepared by spontaneous adsorption from a benzene solution containing this molecule. Topography STM scans revealed long-range ordered, interweaved arrays of CuPc(OC(8)H(17))(8) with coexistent rectangular and hexagonal symmetries. High-quality STM molecular resolution yielded the internal molecular structure and the orientation of CuPc(OC(8)H(17))(8) admolecules. These STM results could shed insight into the method of generating ordered molecular assemblies of phthalocyanine molecules with long-chained substitutes on metal surface.

  12. Spectroscopic, solvent influence and thermal studies of ternary copper(II) complexes of diester and dinitrogen base ligands.

    PubMed

    Emara, Adel A A; Abu-Hussein, Azza A A; Taha, Ahmed A; Mahmoud, Nelly H

    2010-10-15

    New mixed-ligand copper(II) complexes containing the bidentate dinitrogen ligands [N,N,N',N'-tetramethylethylenediamine (tmen), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)] and the bidentate dioxygen ligands [diethylmalonate (DEM), ethylacetoacetate (EAA) and ethylbenzoylacetate (EBA)] were prepared. The complexes were characterized by elemental analysis, infrared, mass and ESR spectral data, magnetic and molar conductance measurements and thermal gravimetric analysis. From the investigation, the geometries of the complexes are square planar for perchlorate complexes and a square pyramid or octahedral for the nitrate complexes. Solvatochromic behavior of the Cu(II) complexes indicates strong solvatochromism of their solutions in polar and non-polar solvents. The observed solvatochromism is due to the solute-solvent interaction between the chelate cation and the solvent molecules. PMID:20688561

  13. A fluorescence turn-on detection of copper(II) based on the template-dependent click ligation of oligonucleotides.

    PubMed

    Wang, Fangyuan; Li, Yongxin; Li, Wenying; Chen, Jian; Zhang, Qingfeng; Anjum Shahzad, Sohail; Yu, Cong

    2015-01-01

    In this work, a fluorescence turn-on method for copper(II) detection is reported. A molecular beacon (MB) was designed as a template. Cu(2+) was reduced to Cu(+) in the presence of a reductant (ascorbic acid). Two short single-stranded oligonucleotides one was labeled with a 5'-alkyne and the other with 3'-azide group, proceeded a template-dependent chemical ligation through the Cu(I)-catalyzed azide-alkyne cycloaddition. The newly generated click-ligated long chain oligonucleotide, which was complementary to the MB, opened the MB hairpin structure and resulted in a turn on fluorescence. The increase in fluorescence intensity is directly proportional to the amount of Cu(2+) added to the assay solution. The present assay is quite sensitive and allows the detection of 2 nM Cu(2+). The described assay also exhibits high selectivity over other metal ions.

  14. Copper(II) complexes derived from di-2-pyridyl ketone- N4-phenyl-3-semicarbazone: Synthesis and spectral studies

    NASA Astrophysics Data System (ADS)

    Reena, T. A.; Kurup, M. R. Prathapachandra

    2010-08-01

    Five copper(II) complexes [CuLCl] 2·CuCl 2·4H 2O ( 1), [CuLOAc] ( 2), [CuLNO 3] 2 ( 3), [CuLN 3] ( 4) and [CuLNCS]·3/2H 2O ( 5) of di-2-pyridyl ketone- N4-phenyl-3-semicarbazone (HL) were synthesized and characterized by elemental analyses and electronic, infrared and EPR spectral techniques. In all these complexes the semicarbazone undergoes deprotonation and coordinates through enolate oxygen, azomethine and pyridyl nitrogen atoms. All the complexes are EPR active due to the presence of an unpaired electron. EPR spectra of all the complexes in DMF at 77 K suggest axial symmetry and the presence of half field signals for the complexes 1 and 3 indicates dimeric structures.

  15. Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Prabhu, Durai; Arulvasu, Chinnasamy; Rahiman, Aziz Kalilur

    2015-01-01

    A series of phenol-based mixed-ligand copper(II) complexes of the type [CuL1-4(diimine)] (1-8), where L1-4 = N1,N2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylenediimine and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been isolated and fully characterized by analytical and spectral techniques. Electronic spectra of complexes suggest Cu(II) cation has a d9 electronic configuration, adopting distorted octahedral geometry with axial elongation, due to Jahn-Teller effect. Electrochemical studies of complexes evidenced one-electron irreversible reduction wave in the cathodic region. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate (4-NPP) are in the range of 0.25-3.82 × 10-2 min-1. The obtained room temperature magnetic moment values (1.79-1.90 BM) lies within the range observed for octahedral copper(II) complexes. Antioxidant studies revealed that these complexes possess considerable radical scavenging potency against DPPH. The binding studies of complexes with calf thymus DNA (CT-DNA) revealed intercalation with minor-groove binding, and the complex 4 exhibits highest binding activity than the other complexes. The cleavage activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species, and complexes encourage binding to minor-groove. Further, the cytotoxicity of complex 4 on human hepatocellular liver carcinoma HepG2 cell line implies the cell death through apoptosis.

  16. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells.

    PubMed

    Duff, Brian; Thangella, Venkat Reddy; Creaven, Bernadette S; Walsh, Maureen; Egan, Denise A

    2012-08-15

    This study determined the cytotoxic, cyto-selective and mutagenic potential of novel quinolinone Schiff base ligands and their corresponding copper(II) complexes in human-derived hepatic carcinoma cells (Hep-G2) and non-malignant human-derived hepatic cells (Chang). Results indicated that complexation of quinolinone Schiff bases with copper served to significantly enhance cytotoxicity. Here, the complex of (7E)-7-(3-ethoxy-2-hydroxybenzylideamino)-4-methylquinolin-2(1H)-one (TV117-FM) exhibited the lowest IC(50) value (17.9 μM) following 96 h continuous exposure, which was comparable to cisplatin (15.0 μM). However, results revealed that TV117-FM lacked cytoselectivity over non-malignant cells. Additionally, the complex was minimally effluxed from cells via Pglycoprotein (P-gp) and was shown to be non-mutagenic in the Standard Ames test. Furthermore, BrdU incorporation assays showed that it was capable of inhibiting DNA synthesis in a concentrationand time-dependent manner. However, inhibition was not as a consequence of DNA intercalation, as illustrated in electrophoretic mobility shift assays. Interestingly, it was shown that the ligand was capable of inhibiting the action of topoisomerase II, but this was lost following complexation. This indicated that the mechanism of action of the novel copper(II) complex was different from that of the parent ligand and suggests that TV117-FM may have a therapeutic role to play in the treatment of hepatocellular carcinoma. Studies are currently underway to elucidate the exact in vitro mechanism of action of this novel, metal-based anti-cancer agent.

  17. Comparison of availability of copper(II) complexes with organic ligands to bacterial cells and to chitin

    SciTech Connect

    Vasconcelos, M.T.S.D.; Azenha, M.A.O.; Cabral, J.P.S.

    1997-10-01

    Bacterial cells or chitin were exposed to solutions with 100 {micro}M total but only 5 {micro}M free copper, due to the presence of a proper concentration of proline, lysine, cysteine, or ethylenediamine tetraacetate (EDTA). The influence of the nature and concentration of the particles and soluble ligands, on the sorption and on the desorption of the copper, at pH 6.50 and 25.0 C, was investigated. The metal sorbed by the particles and that left in the solution were measured by atomic absorption spectrometry, after different periods of contact between particles and solution. The interpretation of the results was based on the copper(II) speciation calculated through equilibrium approaches applied to homogeneous or heterogeneous systems. A significant fraction of copper bound to the organic ligands was displaced to the bacteria or chitin, and the extent of chemical reaction depended on the nature of both the soluble (or leaving) ligands and sites on the particle surface (or entering ligands), as expected by the equilibrium theory. But with chitin, the uptake of copper in the presence of cysteine or EDTA was higher than expected, which may be due to the adsorption of the soluble copper complexes on the particle surface. In consequence of a competition between soluble and particulate ligands (cells or chitin), the free copper(II) concentration decreased in the solution, even in the presence of very strong chelators. The results indicate that copper availability is not a simple function of the initial free copper concentration in the solution. Desorption of the previously fixed copper, originated by free soluble ligands indicated that the sorption of copper was quasireversible for both particles, though a larger dismissal of the equilibrium position occurred for the cells, probably due to their biological activity.

  18. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    NASA Astrophysics Data System (ADS)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  19. New mixed ligand zinc(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties.

    PubMed

    Darawsheh, Mohanad; Abu Ali, Hijazi; Abuhijleh, A Latif; Rappocciolo, Emilia; Akkawi, Mutaz; Jaber, Suhair; Maloul, Salam; Hussein, Yasmeen

    2014-07-23

    Starting from the precursor [Zinc Valproate complex] (1), new mixed ligand zinc(II) complexes of valproic acid and nitrogen-based ligands, formulating as, [Zn(valp)22,9-dmphen] (2), [Zn2(valp)4(quin)2] (3), [Zn(valp)2(2-ampy)2] (4), and [Zn(valp)2(2-ampic)2] (5) (valp = valproate, 2,9-dmphen = 2,9-dimethyl-1,10-phenanthroline, quin = quinoline, 2-ampy = 2-aminopyridine, 2-ampic = 2-amino-6-picoline) were synthesized and characterized using IR, (1)H NMR, (13)C{(1)H} NMR and UV-Vis spectrometry. The crystal structures of complexes 2, 3 and 4 were determined using single-crystal X-ray diffraction. The complexes were also evaluated for their anti-bacterial activity using in-vitro agar diffusion method against three Gram-positive (Micrococcus luteus, Staphylococcus aureus, and Bacillus subtilis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis) species. Complex 2 showed considerable activity against all tested microorganisms and the effect of complexation on the anti-bacterial activity of the parent ligand of 2 was also investigated. The anti-bacterial activity of 2,9-dmphen against Gram-negative bacteria was enhanced upon complexation with zinc valproate. On the other hand, complexes 1 and 3 showed weak inhibition activity against the tested species and complexes 4 and 5 didn't show any activity at all. Two methods were used for testing the inhibition of ferriprotoporphyrinIX bio-mineralization: a semi-quantitative micro-assay and a previously self-developed quantitative in-vitro method. Both were used to study the efficiency of these complexes in inhibiting the formation of the Malaria pigment which considered being the target of many known anti-malarial drugs such as Chloroquine and Amodiaquine. Results showed that the efficiency of complex 2 in preventing the formation of β-Hematin was 80%. The efficiency of Amodiaquine as a standard drug was reported to give 91%.

  20. Some new nano-structure zinc(II) coordination compounds of an imidazolidine Schiff base: Spectral, thermal, antimicrobial properties and DNA interaction

    NASA Astrophysics Data System (ADS)

    Montazerozohori, Morteza; Musavi, Sayed Alireza; Naghiha, Asghar; Zohour, Mostafa Montazer

    2014-08-01

    Some novel nano-sized structure zinc complexes of a new Schiff base ligand entitled as (3-nitro-benzylidene)-{2-[2-(3-nitro-phenyl)-imidazolidine-1-yl]-ethyl}-amine(L) with general formula of ZnLX2 wherein X = Cl-, Br-, I-, SCN- and N3- have been synthesized under ultrasonic conditions. The ligand and its complexes have been characterized by elemental analysis, molar conductance measurements, FT-IR, 1H and 13C NMR and UV-Visible spectroscopy. The resulting data from spectral investigation especially 1H and 13C NMR well confirmed formation of an imidazolidine ring in the ligand structure. Transmission electron microscopy (TEM) showed nano-size structures with average particle sizes of 21.80-78.10 nm for the zinc(II) Schiff base complexes. The free Schiff base and its Zn(II) complexes have been screened in vitro both for antibacterial activity against some gram-positive and gram-negative bacteria and also for antifungal activity. The metal complexes were found to be more active than the free Schiff base ligand. The results showed that ZnL(N3)2 is the most effective inhibitor against Escherichia coli, Pseudomonas aereuguinosa, Staphylococcus aureus and Candida albicans while ZnLBr2 was found to be more effective against Bacillus subtillis than other compounds. Moreover, DNA cleavage potential of all compounds with plasmid DNA was investigated. The results showed that the ligand and ZnLCl2 complex cleave DNA more efficiently than others. In final, thermal analysis of ligand and its complexes revealed that they are decomposed via 2-3 thermal steps in the range of room temperature to 1000 °C. Furthermore some activation kinetic parameters such as A, E*, ΔH*, ΔS* and ΔG* were calculated based on TG/DTA plots by use of coats - Redfern relation. Positive values of activation energy evaluated for the compounds confirmed the thermal stability of them. In addition to, the positive ΔH*, and ΔG* values suggested endothermic character for the thermal decomposition steps.

  1. Determination of Zinc(II) Ions Released into Artificial Digestive Juices from Culinary-Medicinal Button Mushroom, Agaricus bisporus (Agaricomycetidae), Biomass of In Vitro Cultures Using an Anodic Stripping Voltammetry Method.

    PubMed

    Kala, Katarzyna; Muszynska, Bozena; Zajac, Magdalena; Krezalek, Remigiusz; Opoka, Wlodzimierz

    2016-01-01

    Zinc is one of those microelements that are essential for the proper functioning of the human body and must be supplemented in our food at a daily dose of 15 mg. It is well known that mushrooms accumulate elements; thus, in order to determine the extent of accumulation and the level of zinc released from mushrooms, in vitro cultures of Agaricus bisporus were established. The cultures were run on a modified Oddoux medium (a control culture) as well as on the same medium with the addition of zinc hydroaspartate (100 and 200 mg/L) and zinc sulfate (87.23 and 174.47 mg/L). These compounds were chosen to help estimate which form, organic or inorganic, results in a better assimilation of zinc(II) ions by biomass. As the next step, the level of zinc(II) ions released from the lyophilized biomass of in vitro cultures to the digestive juices, under thermal conditions of the human body (37°C), was determined. For this purpose, artificial digestive juices, imitating the composition of human digestive juices, were used. For determination of zinc(II) ions in the digestive tract, an anodic stripping voltammetry method was employed. The amount of zinc released into artificial saliva over 1 minute varied from 0.15 mg/100 g d.w. in the control culture to 2.35 mg/100 g d.w. in the biomass in the medium to which 200 mg/L zinc hydroaspartate had been added. Values were higher in gastric juice and depended on incubation time (2.66 to 30.63 mg/100 g d.w.). In intestinal juice, the highest value of the released zinc grew to 24.20 mg/100 g d.w. (biomass of A. bisporus in vitro cultures in medium with the addition of 200 mg/L zinc hydroaspartate). Total average amount of zinc released into artificial digestive juices was the highest (56.26 mg/100 g d.w.) from A. bisporus biomass of in vitro cultures in the medium to which 200 mg/L zinc hydroaspartate had been added. PMID:27279537

  2. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    NASA Astrophysics Data System (ADS)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  3. Indirect spectrophotometric determination of vanadium(IV) by flow injection analysis based on the redox reaction with copper(II) in the presence of neocuproine

    SciTech Connect

    Itabashi, Hideyuki; Umetsu, Kazuyuki; Satoh, Keiichi; Kawashima, Takujui )

    1991-07-01

    An indirect photometric method with a continuous-flow analysis is presented for the determination of trace amounts of vanadium(IV). It is based on the redox reaction of copper(II) with vanadium(IV) in the presence of neocuproine. In the presence of neocuproine, copper(II) is reduced easily by vanadium(IV) to a copper(I)-neocuproine complex, which shows an absorption maximum at 454 nm. By measuring the absorbance of the complex at this wavelength, vanadium(IV) in the range 2{times}10{sup {minus}6} - 8 {times} 10{sup {minus}5} mol dm{sup {minus}3} can be determined at a rate of 120 samples h{sup {minus}1}. The fractional determination of vanadium(IV) and iron(II) is also studied.

  4. Chemical speciation and bioavailability of Cu(II). Study of the ionic copper(II) and bis(glycinate)-copper(II) accumulation by Lemna species

    SciTech Connect

    Benda, F.; Kouba, J. )

    1991-03-01

    In this paper, the authors examined the accumulation of copper(II) in, and its toxic effect on, duckweed, a plant which exhibits extremely high concentration factors. The effect of copper(II) was investigated by adding it to the minimal medium in two forms: CuSO{sub 4} and (Cu(Gly){sub 2}). The neutral (2:1) tetracoordinated bis(glycinate)-copper(II) complex is constituted by two five-membered rings bonded to the central copper atom with the cis configuration. This complex was chosen to model the function of a neutral species (eliminating the charge effect) involving a nontoxic ligand, for which - in contrast to the hydrated Cu{sup 2+} species - direct permeation through the cell wall is conceivable.

  5. Ternary complexes of copper(II) and cobalt(II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran

    2015-12-01

    Five new mononuclear mixed ligand complexes of the type [Cu(NCCH3)(dbdmp)](ClO4)2, [M(ONO)(dbdmp)]ClO4, [M(pz) (dbdmp)](ClO4)2 where M = Cu(II) and Co(II), pz = 3,5-dimethylpyrazole and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine have been synthesized and characterized by physico-chemical and spectroscopy studies. The crystal structures of three copper(II) complexes [Cu(NCCH3)(dbdmp)](ClO4)2, [Cu(ONO)(dbdmp)]ClO4 and [Cu(pz)(dbdmp)](ClO4)2 have been determined by single crystal X-ray diffraction studies. Structural analyses reveal the geometry of [Cu(pz)(dbdmp)](ClO4)2 is distorted square pyramidal and other two copper(II) complexes have distorted trigonal bipyramidal geometry. Molecular composition of cobalt(II) complexes have been determined by mass spectral data. The EPR spectra of copper(II) complexes in frozen acetonitrile solution exhibit axial spectra, characteristic of dx2-y2 ground state. Electrochemical studies of copper(II) complexes using glassy carbon as working electrode in acetonitrile solution show Cu(II)/Cu(I) couple with quasi reversible electron transfer versus Ag/Ag+ reference electrode. Antimicrobial activity of all the synthesized complexes were investigated against two Gram positive and two Gram negative bacterial strains.

  6. Structural diversity of copper(II) complexes with N-(2-pyridyl)imidazolidin-2-ones(thiones) and their in vitro antitumor activity.

    PubMed

    Balewski, Łukasz; Sączewski, Franciszek; Bednarski, Patrick J; Gdaniec, Maria; Borys, Ewa; Makowska, Anna

    2014-10-23

    Six series of structurally different mono- and binuclear copper(II) complexes 5-10 were obtained by reacting N-(2-pyridyl)imidazolidin-2-ones (1a-l), N,N'-bis(2-pyridyl)imidazolidin-2-ones (2a,b), N-acyl-N'(2-pyridyl)imidazolodin-2-ones (3a-j) and N-(2-pyridyl)imidazolidine-2-thiones (4a-g) with copper(II) chloride at an ambient temperature. The coordination modes of the complexes obtained were established by elemental analysis, IR spectroscopic data and single crystal X-ray diffraction studies. The in vitro cytotoxic activities of both the free ligands and copper(II) complexes were evaluated using a crystal violet microtiter plate assay on five human tumor cell lines: LCLC-103H, A-427, SISO, RT-4 and DAN-G. The free ligands 1-4 at concentration attainable in cancer cells of 20 μM showed no meaningful cytotoxic effect with cell viability in the range of 88%-100%. The most potent copper(II) complex of 1-(6-ethoxy-2-pyridyl)imidazolidin-2-one (6b) exhibited selective cytotoxicity against A-427 lung cancer cell line, while the complexes of 1-(5-methyl-2-pyridyl)imidazolidine-2-thione (5h) and 1-(4-tert-butyl-2-pyridyl)imidazolidine-2-thione (5j) showed cytostatic effect against a whole panel of five human tumor cell lines. In conclusion, the only complexes that showed remarkably increased activity in comparison to the free ligands were those obtained from N-(2-pyridyl)imidazolidine-2-thiones 4c and 4e substituted with alkyl group at position 4 or 5 of pyridine ring.

  7. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    PubMed

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-01

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  8. Self-Assembly, Structures, and Magnetic Properties of Ladder-Like Copper(II) Coordination Polymers

    NASA Astrophysics Data System (ADS)

    Min, Kil Sik; Suh, Myunghyun Paik

    2000-06-01

    Two novel ladder-like copper(II) compounds, [Cu2(histamine)2(C2O4)(ClO4)2] (1) and [Cu2(histamine)2(C2O4)(H2O)2(NO3)2] (2), are prepared. Compound 1 crystallizes in the triclinic space group Poverline1, with a=7.450(4) Å, b=7.519(7) Å, c=9.646(5) Å, α=85.78(7)°, β=88.60(4)°, γ=76.78(7)°, V=524.5(6) Å3, and Z=1 with R=0.0789 (all data). In 1, the dinuclear units of [Cu2(histamine)2(C2O4)]2+ are linked together by the perchlorate anions to form a ladder-like chain. The chains interact each other by the π-π stacking interactions via the imidazole groups. Compound 2 crystallizes in the triclinic space group Poverline1, with a=7.579(2) Å, b=8.133(1) Å, c=9.161(3) Å, α=77.06(2)°, β=89.23(2)°, γ=82.54(1)°, V=545.6(2) Å3, and Z=1 with R=0.0751 (all data). In 2, each dinuclear unit [Cu2(histamine)2(C2O4)]2+ is coordinated with a nitrate anion and a water molecule, and they are held together by the hydrogen bonding interactions to form a ladder-like chain. The magnetic susceptibility data of 1 and 2 measured in 2-300 K provide the magnetic parameters, g=2.08, J=-166 cm-1, J‧=6.46 cm-1, ρ=0.0026, Nα=155×10-6 cm3 mol-1, and R=1.03×10-3 (g=2.05, J=-162 cm-1, J‧=10.5 cm-1, ρ=0.0029, and R=2.95×10-3 with the fixed value of Nα=120×10-6 cm3 mol-1) for 1 and g=2.00, J=-158 cm-1, J‧=26.5 cm-1, ρ=0.0020, Nα=136×10-6 cm3 mol-1, and R=7.31×10-4 (g=2.01, J=-157 cm-1, J‧=25.0 cm-1, ρ=0.0021, and R=1.32×10-3 with the fixed value of Nα=120×10-6 cm3 mol-1) for 2. These indicate that very strong antiferromagnetic interactions occur along the rungs of the ladder via the oxalate bridge and weak ferromagnetic interactions along the chains.

  9. Interaction of copper(II) complex of compartmental Schiff base ligand N, N'-bis(3-hydroxysalicylidene)ethylenediamine with bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Farvid, Shokouh S.; Gharagozlou, Mehrnaz

    2007-03-01

    Circular dichroism (CD) spectroscopy, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the interaction between copper(II) complex of compartmental Schiff base ligand (L), N, N'-bis(3-hydroxysalicylidene)ethylenediamine, and bovine serum albumin (BSA) in 0.1 mol dm -3 phosphate buffer solution adjusted to physiological pH 7.0 containing 20% (w/w) dimethylsulfoxide at room temperature. CD spectra show that the interaction of the copper(II) complex with BSA leads to changes in the α-helical content of BSA and therefore changes in secondary structure of the protein with the slight red shift (2 nm) in CD spectra. From the voltammetric data, i.e. changes in limiting current with addition of BSA, the binding constant ( K) of the interaction of copper(II) complex with BSA was found to be 1.96 × 10 4 dm 3 mol -1. From the shifts in potential with the addition of BSA, the equilibrium constant ratio ( K2/ K1) for the binding of the oxidized Cu IIL ( K1) and reduced Cu IL ( K2) species to BSA was found to be 3.77, which shows that the reduced form Cu IL is bound more strongly to BSA than the oxidized form Cu IIL.

  10. Antioxidant, DNA binding and nuclease activities of heteroleptic copper(II) complexes derived from 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols and diimines

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Imran Musthafa, M. A.; Kalilur Rahiman, A.

    2014-12-01

    A series of heteroleptic copper(II) complexes of the type [CuL1-4(diimine)](ClO4)2 (1-8) [L1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen)], have been synthesized and characterized by spectroscopic methods. The IR spectra of complexes indicate the presence of uncoordinated perchlorate anions and the electronic spectra revealed the square pyramidal geometry with N4O coordination environment around copper(II) nuclei. Electrochemical studies of the mononuclear complexes evidenced one-electron irreversible reduction wave in the cathodic region. The EPR spectra of complexes with g|| (2.206-2.214) and A|| (154-172 × 10-4 cm-1) values support the square-based CuN3O coordination chromophore and the presence of unpaired electron localized in dx-y ground state. Antioxidant studies against DPPH revealed effective radical scavenging properties of the synthesized complexes. Binding studies suggest that the heteroleptic copper(II) complexes interact with calf thymus DNA (CT-DNA) through minor-groove and electrostatic interaction, and all the complexes display pronounced nuclease activity against supercoiled pBR322 DNA.

  11. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-01

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  12. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  13. Geometrical and optical benchmarking of copper(II) guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory (part II).

    PubMed

    Hoffmann, Alexander; Rohrmüller, Martin; Jesser, Anton; dos Santos Vieira, Ines; Schmidt, Wolf Gero; Herres-Pawlis, Sonja

    2014-11-01

    Ground- and excited-state properties of copper(II) charge-transfer systems have been investigated starting from density-functional calculations with particular emphasis on the role of (i) the exchange and correlation functional, (ii) the basis set, (iii) solvent effects, and (iv) the treatment of dispersive interactions. Furthermore (v), the applicability of TD-DFT to excitations of copper(II) bis(chelate) charge-transfer systems is explored by performing many-body perturbation theory (GW + BSE), independent-particle approximation and ΔSCF calculations for a small model system that contains simple guanidine and imine groups. These results show that DFT and TD-DFT in particular in combination with hybrid functionals are well suited for the description of the structural and optical properties, respectively, of copper(II) bis(chelate) complexes. Furthermore, it is found an accurate theoretical geometrical description requires the use of dispersion correction with Becke-Johnson damping and triple-zeta basis sets while solvent effects are small. The hybrid functionals B3LYP and TPSSh yielded best performance. The optical description is best with B3LYP, whereby heavily mixed molecular transitions of MLCT and LLCT character are obtained which can be more easily understood using natural transition orbitals. An natural bond orbital analysis sheds light on the donor properties of the different donor functions and the intraguanidine stabilization during coordination to copper(I) and (II).

  14. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges

    NASA Astrophysics Data System (ADS)

    Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.

    2012-08-01

    A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.

  15. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    PubMed

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B

    2013-08-01

    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay. PMID:23829568

  16. Nickel(II) Complex of Polyhydroxybenzaldehyde N4-Thiosemicarbazone Exhibits Anti-Inflammatory Activity by Inhibiting NF-κB Transactivation

    PubMed Central

    Loh, Sheng Wei; Looi, Chung Yeng; Hassandarvish, Pouya; Phan, Alicia Yi Ling; Wong, Won Fen; Wang, Hao; Paterson, Ian C.; Ea, Chee Kwee; Mustafa, Mohd Rais; Maah, Mohd Jamil

    2014-01-01

    Background The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity. Methodology/Principal Findings Four ligands (1–4) and their respective nickel-containing complexes (5–8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis. Conclusions/Significance Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects. PMID:24977407

  17. Synthesis, characterization, and tyrosinase biomimetic catalytic activity of copper(II) complexes with schiff base ligands derived from α-diketones with 2-methyl-3-amino-(3 H)-quinazolin-4-one

    NASA Astrophysics Data System (ADS)

    Ramadan, Abd El-Motaleb M.; Ibrahim, Mohamed M.; Shaban, Shaban Y.

    2011-12-01

    A template condensation of α-diketones (biacetyl, benzile and 2,3-pentanedione) with 2-methyl-3-amino-(3 H)-quinazolin-4-one (AMQ) in the presence of CuX 2 (X = Cl -, Br -, NO3- or ClO4-) resulted in the formation of tetradentate Schiff base copper(II) complexes of the type [CuLX]X and [CuL]X 2. Structural characterization of the complex species was achieved by several physicochemical methods, namely elemental analysis, electronic spectra, IR, ESR, molar conductivity, thermal analysis (TAG & DTG), and magnetic moment measurements. The stereochemistry, the nature of the metal chelates, and the catalytic reactivity are markedly dependent upon the type of counter anions and the ligand substituent within the carbonyl moiety. A square planar monomeric structure is proposed for the perchlorate, nitrate, and bromide complexes, in which the counter anions are loosely bonded to copper(II) ion. For the chloride complexes, the molar conductivities and the spectral data indicated that they have square-pyramidal environments around copper(II) center. The reported copper(II) complexes exhibit promising tyrosinase catalytic activity towards the hydroxylation of phenol followed by the aerobic oxidation of the resulting catechol. A linear correlation almost exists between the catalytic reactivity and the Lewis-acidity of the central copper(II) ion created by the donating properties of the parent ligand. The steric considerations could be accounted to clarify the difference in the catalytic activity of these functional models.

  18. Three tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole and different aromatic carboxylates: Assembly, structures, electrochemical and magnetic properties

    SciTech Connect

    Wang, Xiu-Li; Zhao, Wei; Zhang, Ju-Wen; Lu, Qi-Lin

    2013-02-15

    Three new tetranuclear copper(II) cluster-based complexes constructed from 4-amino-1,2,4-triazole (atrz) and three types of aromatic carboxylates, [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(DNBA){sub 6}] (1), [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(1,3-BDC){sub 3}]{center_dot}2H{sub 2}O (2) and [Cu{sub 4}({mu}{sub 3}-OH){sub 2}(atrz){sub 2}(SIP){sub 2}]{center_dot}4H{sub 2}O (3) (HDNBA=3,5-dinitrobenzoic acid, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid and NaH{sub 2}SIP=sodium 5-sulfoisophthalate), have been hydrothermally synthesized and structurally characterized. Complex 1 displays a single-molecular Cu{sup II}{sub 4} cluster structure, which is further connected by the intermolecular hydrogen-bonding interactions to form a 2D supramolecular layer. In 2, there also exist tetranuclear Cu{sup II}{sub 4} clusters, which are linked by the 1,3-BDC anions to give a 3D NaCl-type framework. In 3, the Cu{sup II}{sub 4} clusters are connected by the carboxyl and sulfo groups of SIP anions to generate 3D (4,8)-connected framework with a (4{sup 10}{center_dot}6{sup 14}{center_dot}8{sup 4})(4{sup 5}{center_dot}6){sub 2} topology. The atrz ligand conduces to the construction of tetranuclear copper(II) clusters and the carboxylates with different non-carboxyl substituent show important effects on the final structures of the title complexes. The electrochemical and magnetic properties of 1-3 have been investigated. - Graphical abstract: Three tetranuclear copper(II) cluster-based complexes based on different carboxylates have been synthesized under hydrothermal conditions. The carboxylate anions play a key role in the formation of three different structures. Highlights: Black-Right-Pointing-Pointer Three new tetranuclear copper(II) cluster-based complexes have been obtained. Black-Right-Pointing-Pointer The atrz conduces to the construction of tetranuclear copper(II) clusters. Black-Right-Pointing-Pointer Carboxylates show important effect on the structures of

  19. Copper(II) imidazolate frameworks as highly efficient photocatalysts for reduction of CO{sub 2} into methanol under visible light irradiation

    SciTech Connect

    Li, Jingtian; Luo, Deliang; Yang, Chengju; He, Shiman; Chen, Shangchao; Lin, Jiawei; Zhu, Li; Li, Xin

    2013-07-15

    Three copper(II) imidazolate frameworks were synthesized by a hydrothermal (or precipitation) reaction. The catalysts were characterized by X-ray diffraction (XRD), nitrogen adsorption, transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared spectra (FTIR), thermogravimetry (TG). Meanwhile, the photocatalytic activities of the samples for reduction of CO{sub 2} into methanol and degradation of methylene blue (MB) under visible light irradiation were also investigated. The results show that the as-prepared samples exhibit better photocatalytic activities for the reduction of carbon dioxide into methanol with water and degradation of MB under visible light irradiation. The orthorhombic copper(II) imidazolate frameworks with a band gap of 2.49 eV and green (G) color has the best photocatalytic activity for reduction of CO{sub 2} into methanol, 1712.7 μmol/g over 5 h, which is about three times as large as that of monoclinic copper(II) imidazolate frameworks with a band gap 2.70 eV and blue (J) color. The degradation kinetics of MB over three photocatalysts fitted well to the apparent first-order rate equation and the apparent rate constants for the degradation of MB over G, J and P (with pink color) are 0.0038, 0.0013 and 0.0016 min{sup −1}, respectively. The synergistic effects of smallest band gap and orthorhombic crystal phase structure are the critical factors for the better photocatalytic activities of G. Moreover, three frameworks can also be stable up to 250 °C. The investigation of Cu-based zeolitic imidazolate frameworks maybe provide a design strategy for a new class of photocatalysts applied in degradation of contaminations, reduction of CO{sub 2}, and even water splitting into hydrogen and oxygen under visible light. - Graphical abstract: Carbon dioxide was reduced into methanol with water over copper(II) imidazolate frameworks under visible light irradiation. - Highlights: • Three copper(II

  20. Coordination diversity in mono- and oligonuclear copper(II) complexes of pyridine-2-hydroxamic and pyridine-2,6-dihydroxamic acids.

    PubMed

    Gumienna-Kontecka, Elzbieta; Golenya, Irina A; Szebesczyk, Agnieszka; Haukka, Matti; Krämer, Roland; Fritsky, Igor O

    2013-07-01

    Solution and solid state studies on Cu(II) complexes of pyridine-2-hydroxamic acid (HPicHA) and pyridine-2,6-dihydroxamic acid (H2PyDHA) were carried out. The use of methanol/water solvent allowed us to investigate the Cu(II)-HPicHA equilibria under homogeneous conditions between pH 1 and 11. In agreement with ESI-MS indication, the potentiometric data fitted very well with the model usually reported for copper(II) complexes of α-aminohydroxamate complexes ([CuL](+), [Cu5(LH-1)4](2+), [CuL2], [CuL2H-1](-)), however with much higher stability of the 12-MC-4 species. A series of copper(II) complexes has been isolated in the solid state and characterized by a variety of spectroscopic methods, X-ray structure analysis, and magnetic susceptibility measurements. The ligands show the tendency to form bi- and trinuclear species with copper(II) ions due to the {(N,N'); (O,O')} bis-(bidentate) chelating-and-bridging mode involving (O,O')-hydroxamate chelate formation combined with (N,N') chelating with participation of the pyridine and hydroxamic nitrogen atoms, so that the hydroxamate groups play a μ2-(N,O)-bridging role. Molecular and crystal structures of three synthesized complexes [Cu3(PicHA-H)2(dipy)2](ClO4)2·4/3DMSO·2/3H2O (1), [Cu2(PyDHA)(dipy)2(ClO4)2]·DMF·H2O (4), and [Cu3(PyDHA-2H)(tmeda)3](ClO4)2 (5) (dipy, 2,2'-dipyridyl; tmeda, N,N,N',N'-tetramethyl-1,2-diaminoethane) have been determined by single crystal X-ray analysis. In 1, two trans-situated doubly deprotonated hydroxamic ligands play a {(O,O')(N,N')}-(bis)bidentate-bridging function forming bridges between the medial, Cu(2) (CuN4), and the terminal, Cu(1) and Cu(3) (CuN2O2), copper(II) ions; the chelating dipy ligands are coordinated to the latter. In 4, the ligand is coordinated in a classical (O,O')-hydroxamate chelating mode with the help of two separate hydroxamic groups while the central tridentate donor compartment remains vacant. In 5, the hydroxamate ligand is coordinated by the {(O

  1. Magneto-structural versatility of copper(II)-3-phenylpropionate coordination polymers with N-donor coligands.

    PubMed

    de Campos, Nathália R; Ribeiro, Marcos A; Oliveira, Willian X C; Reis, Daniella O; Stumpf, Humberto O; Doriguetto, Antônio C; Machado, Flávia C; Pinheiro, Carlos B; Lloret, Francesc; Julve, Miguel; Cano, Joan; Marinho, Maria V

    2016-01-01

    A novel series of copper(II) coordination polymers [Cu2(O2CC8H9)4(pyz)]n (1), [Cu2(O2CC8H9)4(dps)]n (2), {[Cu(O2CC8H9)2(dps)(H2O)]·H2O}n (3), {[NaCu(O2CC8H9)2(bpm)(NO3)]·H2O}n (4), and [Cu4(O2CC8H9)6(OH)2(bpp)2]n (5) [O2CC8H9− = 3-phenylpropionate anion, pyz = pyrazine, dps = di(4-pyridyl)sulfide, bpm = 2,2′-bipyrimidine, and bpp = 1,3-bis(4-pyridyl)propane] have been synthesized and magneto-structurally investigated. Compounds 1 and 2 belong to a large group of copper(II) carboxylates where bis-monodentate pyz (1) and dps (2) ligands connect the paddle-wheel [CuII2(μ-O2CC8H9)4] units leading to alternating copper(II) chains. The structure of 3 consists of uniform chains of trans-[CuII(O2CC8H9)2] units linked by the bis-monodentate dps ligand. Compound 4 consists of heterobimetallic chains where [NaI2CuII2(μ-O2CC8H9)4(NO3)2] units are doubly bridged by bis-bidentate bpm ligands. Compound 5 is also a chain compound whose structure is made up by tetranuclear [CuII4(μ3-OH)2(μ-O2CC8H9)4(O2CC8H9)2] units which are doubly bridged by bis-monodentate bpp ligands. The magnetic properties were investigated in the temperature range 1.8–300 K. Strong antiferromagnetic interactions across the quadruple syn–syn carboxylate are observed in 1 and 2 [J = −378 (1) and −348 cm−1 (2)] whereas a weak ferromagnetic coupling through the double out-of-plane oxo(carboxylate) bridge occurs in 4 [J = +2.66 cm−1], the spin Hamiltonian being defined as H = −JS1·S2 with S1 = S2 = SCu = 1/2. A quasi Curie law is observed for 3 (θ = −0.36 cm−1), the bis-monodentate dps ligand being a very poor mediator of magnetic interactions. The analysis of the magnetic properties of 5 is quite complex because of the presence of two crystallographically independent tetracopper(II) units with single-μ-hydroxo, di-μ-hydroxo, μ3-hydroxo and single-μ-hydroxo plus double syn,syn carboxylate bridges in each one. The nature and values of the magnetic couplings for 5 obtained by

  2. Syntheses, crystal structures and spectroscopic characterization of two new octahedral nickel(II) complexes of a Schiff base ligand derived from pyridoxal and 2-(pyrid-2-yl)ethylamine

    NASA Astrophysics Data System (ADS)

    Mandal, Senjuti; Modak, Ritwik; Sikdar, Yeasin; Naskar, Barnali; Goswami, Sanchita

    2014-09-01

    Two new coordination compounds based on ONN donor Schiff base ligand derived from pyridoxal and 2-(pyrid-2-yl)ethylamine, namely {[Ni(HL)(H2O)2](ClO4)2}∞ (1) and [Ni(HL)(H2O)(SCN)2] (2) have been synthesized and structurally characterized by single-crystal X-ray diffraction along with other physical techniques, including elemental analysis, IR spectra and UV-Vis studies. X-ray studies suggest that both 1 and 2 are mononuclear nickel(II) complexes and exhibit distorted octahedral geometry. In these compounds the pyridoxal based Schiff base ligand displays different coordination modes constructing various architectures.

  3. Crystal structures and catalytic performance of three new methoxy substituted salen type nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    NASA Astrophysics Data System (ADS)

    Ghaffari, Abolfazl; Behzad, Mahdi; Pooyan, Mahsa; Amiri Rudbari, Hadi; Bruno, Giuseppe

    2014-04-01

    Three new nickel(II) complexes of a series of methoxy substituted salen type Schiff base ligands were synthesized and characterized by IR, UV-Vis and 1H NMR spectroscopy and elemental analysis. The ligands were synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with n-methoxysalicylaldehyde (n = 3, 4 and 5). Crystal structures of these complexes were determined. Electrochemical behavior of the complexes was studied by means of cyclic voltammetry in DMSO solutions. Catalytic performance of the complexes was studied in the epoxidation of cyclooctene using tert-butylhydroperoxide (TBHP) as oxidant under various conditions to find the optimum operating parameters. Low catalytic activity with moderate epoxide selectivity was observed in in-solvent conditions but in the solvent-free conditions, enhanced catalytic activity with high epoxide selectivity was achieved.

  4. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.

    PubMed

    Kuang, Gui-Chao; Guha, Pampa M; Brotherton, Wendy S; Simmons, J Tyler; Stankee, Lisa A; Nguyen, Brian T; Clark, Ronald J; Zhu, Lei

    2011-09-01

    A mechanistic model is formulated to account for the high reactivity of chelating azides (organic azides capable of chelation-assisted metal coordination at the alkylated azido nitrogen position) and copper(II) acetate (Cu(OAc)(2)) in copper(II)-mediated azide-alkyne cycloaddition (AAC) reactions. Fluorescence and (1)H NMR assays are developed for monitoring the reaction progress in two different solvents, methanol and acetonitrile. Solvent kinetic isotopic effect and premixing experiments give credence to the proposed different induction reactions for converting copper(II) to catalytic copper(I) species in methanol (methanol oxidation) and acetonitrile (alkyne oxidative homocoupling), respectively. The kinetic orders of individual components in a chelation-assisted, copper(II)-accelerated AAC reaction are determined in both methanol and acetonitrile. Key conclusions resulting from the kinetic studies include (1) the interaction between copper ion (either in +1 or +2 oxidation state) and a chelating azide occurs in a fast, pre-equilibrium step prior to the formation of the in-cycle copper(I)-acetylide, (2) alkyne deprotonation is involved in several kinetically significant steps, and (3) consistent with prior experimental and computational results by other groups, two copper centers are involved in the catalysis. The X-ray crystal structures of chelating azides with Cu(OAc)(2) suggest a mechanistic synergy between alkyne oxidative homocoupling and copper(II)-accelerated AAC reactions, in which both a bimetallic catalytic pathway and a base are involved. The different roles of the two copper centers (a Lewis acid to enhance the electrophilicity of the azido group and a two-electron reducing agent in oxidative metallacycle formation, respectively) in the proposed catalytic cycle suggest that a mixed valency (+2 and +1) dinuclear copper species be a highly efficient catalyst. This proposition is supported by the higher activity of the partially reduced Cu(OAc)(2) in

  5. Crystal structure of a binuclear nickel(II) complex constructed of 1H-imidazo[4,5-f][1,10]phenanthroline and doubly deprotonated benzene-1,3,5-tri­carb­oxy­lic acid

    PubMed Central

    Lv, Ying; Hao, Xiang-Rong

    2015-01-01

    The title complex, [Ni2(C9H4O6)2(C13H8N4)2(H2O)4]·2H2O, bis­(μ-5-carb­oxy­benzene-1,3-di­carboxyl­ato-κ2 O 1:O 1′)bis­[di­aqua(1H-imidazo[4,5-f][1,10]phenanthroline-κ2 N 7,N 8)nickel(II)] di­hydrate, was obtained under solvothermal conditions by the reaction of benzene-1,3,5-tricarboxylic acid (H3BTC) with Ni(NO3)2 in the presence of 1H-imidazo[4,5-f][1,10]phenanthroline (IP). The crystal has triclinic (P-1) symmetry with a centrosymmetric binuclear nickel(II) cluster. The NiII atom is coordinated by two N atoms from a chelating 1H-imidazo[4,5-f][1,10]phenanthroline ligand, two carboxyl­ate O atoms from two 5-carb­oxy­benzene-1,3-di­carboxyl­ate ligands and two water mol­ecules in a slightly distorted octa­hedral geometry. Two carboxyl­ate groups bridge two NiII cations, forming the binuclear complex. Extensive N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure, forming a three-dimensional supermolecular framework. Weak π–π stacking is observed between parallel HBTC2− and IP ring systems, the face-to-face separation being 3.695 (2) Å. PMID:26029419

  6. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame. PMID:24481880

  7. Spectroscopy: The study of DNA cleavage by newly synthesized polydentate macrocyclic ligand and its copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gupta, Lokesh Kumar; Chandra, Sulekh

    2008-11-01

    A novel hexadentate nitrogen donor [N 6] macrocyclic ligand, i.e. 2,6,12,16,21,22-hexaaza-3,5,13,15-tetramethyl-4,14-diethyl-tricyclo-[15.3.1.1(7-11)]docosane-1(21),2,5,7(22),8,10,12,15,17,19-decaene ( L), has been synthesized. Copper(II) complexes with this ligand have been prepared and subjected to elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR (ligand), IR, electronic, and EPR spectral studies. On the basis of molar conductance the complexes may be formulated as [Cu(L)X 2] [X = Cl -, Br -, NO 3- and CH 3COO -] due to their nonelectrolytic nature in N, N'-dimethylformamide (DMF). All the complexes are of the high spin type and are six coordinated. On the basis of IR, electronic and EPR spectral studies tetragonal geometry has been assigned to the Cu(II) complexes. The interaction of these complexes with calf thymus DNA has been explored by using absorption, emission, viscosity measurements, electrochemical studies and DNA cleavage. All the experimental results suggest that the complexes bind to DNA and also promote the cleavage plasmid pBR 322, in the presence of H 2O 2 and ascorbic acid.

  8. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: spectroscopic and quantum chemical studies.

    PubMed

    Mansour, Ahmed M; Shehab, Ola R

    2014-07-15

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, (1)H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80°C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO(-)], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]⋅4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional. PMID:24674917

  9. Study of SOD mimic and nucleic acid interaction activity exerted by enrofloxacin-based copper(II) complexes.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2012-12-01

    Five new copper(II) complexes of type [Cu(erx)(L)Cl] (erx, enrofloxacin; thiophene-2-carbaldehyde (L(1) ); pyridine-2-carbaldehyde (L(2) ); 2,2'-dipyridylamine (L(3) ); 4,5-diazafluoren-9-one (L(4) ); bis(3,5-dimethyl-1-pyrazolyl)methane (L(5) )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB-MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption-titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC(50) values of 0.35-1.25 μM. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria.

  10. Synthesis, structure and electrochemical behavior of a 3D crystalline copper(II) metal-organic framework

    NASA Astrophysics Data System (ADS)

    Bai, Hong-Ye; Fan, Wei-Qiang; Liu, Chun-Bo; Shi, Wei-Dong; Yan, Yong-Sheng

    2014-05-01

    Using an flexible amide-type tripodal ligand N,N‧,N″-tris(3-pyridyl)-1,3,5-benzenetricarboxamide (L) and 1,4-benzenedicarboxylic acid (H2bdc), a three-dimensional copper(II) metal-organic framework (MOF) formulated as [Cu(bdc)(L)]n has been hydrothermally synthesized and structurally characterized by IR, elemental, X-ray single-crystal diffraction and thermal analysis. The complex crystallizes in the triclinic, space group P - 1, a = 8.891(2) Å, b = 11.760(2) Å, c = 15.348(3) Å, α = 96.73(3)°, β = 105.96(3)°, γ = 106.47(3)°, V = 1446.2(5) Å3, Mr = 666.10, Dc = 1.530 g/cm3, Z = 2, F(000) = 682, GOOF = 1.0560, μ(MoKα) = 0.817 mm-1, R = 0.0366 and wR = 0.0885. The structural analyses reveal that the title compound consists of one Cu(II) atom, two halves of bdc, and one L ligand. Each Cu(II) atom is linked by two bdc ligands and three L ligands to form a three-dimensional network. In addition, the electrochemical behavior of title compound has been studied. CCDC No. 990526.

  11. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    PubMed

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  12. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: Spectroscopic and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Mansour, Ahmed M.; Shehab, Ola R.

    2014-07-01

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.

  13. Binary adsorption of copper(II) and cadmium(II) from aqueous solutions by biomass of marine alga Durvillaea potatorum

    SciTech Connect

    Yu, Q.; Kaewsarn, P.

    1999-06-01

    Much work on the biosorption of heavy metals by low-cost, natural biomass has been on the uptake of single metals. In practice, wastewaters often contain multiple heavy metal ions. In this paper the binary adsorption of copper(II) and cadmium(II) by a pretreated biomass of the marine alga Durvillaea potatorum from aqueous solutions was studied. The results showed that the uptake capacities for each heavy metal of the binary system were lower when compared with the single metal biosorption for copper and cadmium, respectively, but the total capacities for the binary system were similar to those obtained for single metal biosorption. The uptake capacities for copper and cadmium increased as the equilibrium pH increased and reached a plateau at a pH around 5.0. The uptake process was relatively fast, with 90% of the adsorption completed within 10 minutes for copper and 30 minutes for cadmium, and equilibrium reached after about 60 minutes of stirring. The biosorption isotherms of binary systems were not significantly affected by equilibrium temperature. The presence of light metal ions in solution also did not affect adsorption significantly. The binary adsorption was successfully predicted by the extended Langmuir model, using parameters and capacities obtained from single component systems.

  14. Study of SOD mimic and nucleic acid interaction activity exerted by enrofloxacin-based copper(II) complexes.

    PubMed

    Patel, Mohan N; Bhatt, Bhupesh S; Dosi, Promise A

    2012-12-01

    Five new copper(II) complexes of type [Cu(erx)(L)Cl] (erx, enrofloxacin; thiophene-2-carbaldehyde (L(1) ); pyridine-2-carbaldehyde (L(2) ); 2,2'-dipyridylamine (L(3) ); 4,5-diazafluoren-9-one (L(4) ); bis(3,5-dimethyl-1-pyrazolyl)methane (L(5) )) have been synthesized and characterized by elemental analysis, reflectance, IR, and FAB-MS. Complexes have been investigated for their interaction with calf thymus (CT) DNA utilizing the absorption-titration method, viscometric and DNA thermal denaturation studies. The cleavage reaction on pUC19 DNA has been monitored by agarose gel electrophoresis. The results indicated that the Cu(II) complexes can more effectively promote the cleavage of plasmid DNA at physiological pH and superoxide dismutase. The (SOD) activity of the complexes has been evaluated by the nitroblue tetrazolium assay, and the complexes catalyzed the dismutation of superoxide at pH 7.8 with IC(50) values of 0.35-1.25 μM. The complexes have also been screened for their antibacterial activity against five pathogenic bacteria. PMID:23255450

  15. Antimicrobial effects of copper(II) bis(thiosemicarbazonato) complexes provide new insight into their biochemical mode of action.

    PubMed

    Djoko, Karrera Y; Paterson, Brett M; Donnelly, Paul S; McEwan, Alastair G

    2014-04-01

    The copper(II) complexes of bis-thiosemicarbazones (Cu(btsc)) such as Cu(atsm) and Cu(gtsm) are neutral, lipophilic compounds that show promise as therapeutics for the treatment of certain neurological diseases and cancers. Although the effects of these compounds have been described at the cellular level, there is almost no information about their biochemical mode of action. In this work, we showed that Cu(atsm) and Cu(gtsm) displayed antimicrobial activities against the human obligate pathogen Neisseria gonorrhoeae that were more than 100 times more potent than Cu(NO3)2 salt alone. Treatment with Cu(btsc) also produced phenotypes that were consistent with copper poisoning, but the levels of intracellular copper were undetectable by ICP MS. We observed that Cu(btsc) interacted with proteins in the cell membrane. Systematic measurements of O2 uptake further demonstrated that treatment with both Cu(atsm) and Cu(gtsm) led to dose-dependent inhibition of respiratory electron transfer processes via succinate and NADH dehydrogenases. These dehydrogenases were not inhibited by a non-btsc source of Cu(II). The results led us to conclude that the biochemical mechanism of Cu(btsc) action is likely more complex than the present, simplistic model of copper release into the cytoplasm. PMID:24435165

  16. Selective adsorption of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan.

    PubMed

    Petrova, Yulia S; Pestov, Alexandr V; Usoltseva, Maria K; Neudachina, Ludmila K

    2015-12-15

    This study presents a simple and effective method of preparation of N-(2-sulfoethyl) chitosan (NSE-chitosan) that allows obtaining a product with a degree of modification up to 1.0. The chemical structure of the obtained polymers was confirmed by FT-IR and 1H NMR spectroscopies. Cross-linking of N-(2-sulfoethyl) chitosans by glutaraldehyde allows preparation of sorbents for removal and concentration of metal ions. Capacity of sorbents towards hydroxide ions was determined depending on the degree of sulfoethylation under static and dynamic conditions. Dissociation constants of functional amino groups of the analyzed sorbents were determined by potentiometric titration. It was shown that basicity of the amino groups decreased (wherein pKa decreased from 6.53 to 5.67) with increase in degree of sulfoethylation. It explains the significant influence of sulfo groups on selectivity of sorption of metal ions on N-(2-sulfoethyl) chitosan-based sorbents. The investigated substances selectively remove copper(II) and silver(I) ions from solutions of complex composition. Wherein the selectivity coefficient KAg/Cu increased to 20 (pH 6.5, ammonium acetate buffer solution) with increase in degree of sulfoethylation of the sorbent up to 1.0. PMID:26282087

  17. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    PubMed

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  18. Copper(II) complexes with 2-pyridineformamide-derived thiosemicarbazones: Spectral studies and toxicity against Artemia salina

    NASA Astrophysics Data System (ADS)

    Ferraz, Karina O.; Wardell, Solange M. S. V.; Wardell, James L.; Louro, Sonia R. W.; Beraldo, Heloisa

    2009-07-01

    The copper(II) complexes [Cu(H2Am4DH)Cl 2] ( 1), [Cu(H2Am4Me)Cl 2] ( 2), [Cu(H2Am4Et)Cl 2] ( 3) and [Cu(2Am4Ph)Cl] ( 4) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied by means of infrared and EPR spectral techniques. The crystal structure of 4 was determined. The studied compounds proved to be toxic to Artemia salina, suggesting that they could present cytotoxic activity against solid tumors. Among the free thiosemicarbazones H2Am4Ph presented higher toxicity than all other compounds, which showed comparable effects. In the case of complexes 2 and 3 toxicity is probably attributable to the complex as an entity or to a synergistic effect involving the thiosemicarbazone and copper. H2Am4Ph and complexes 2 and 3 revealed to be the most promising compounds as potential antineoplasic agents.

  19. Bismuth(III) and copper(II) oxides as catalysts for the electro-oxidation of organic compounds

    SciTech Connect

    Franklin, T.C.; Lee, K.H.; Manlangit, E.; Nnodimele, R.

    1996-11-01

    It was shown that copper(II) oxide bound to the anode with polystyrene containing a cationic surfactant acted as a catalyst for the oxidation of organic compounds in aqueous systems in a manner similar to powdered copper oxide suspended in aqueous systems containing the organic compounds and the cationic surfactant. Voltammetric measurements made with these electrodes were reproducible over an extended period of time, and it was possible to reproducibly use the polystyrene bound copper oxide as a catalyst for anodic destruction of several organic compounds. On the other hand, while bismuth(III) oxide bound to platinum with polystyrene was a catalyst for the oxidation of organic compounds in cationic surfactant suspensions, the results were not reproducible. The rate of renewal of the reactant adsorbed on the anode after oxidation was extremely slow. In addition, the Bi{sub 2}O{sub 3} gradually changed during the catalytic reaction to BiO(OH). Both of the bismuth compounds acted as catalysts for the oxidation reaction, but the potential for oxidation of Bi{sub 2}O{sub 3} was less anodic than the potential for BiO(OH). Previous coulometric experiments have indicated clearly that the catalytic intermediate for the copper oxidations is copper(III); however, the coulometric oxidations of bismuth indicate that the intermediate has a bismuth oxidation state slightly over 4. Most probably the intermediate is bismuth (V) and some of the bismuth had agglomerated so that not all of it has been oxidized.

  20. Can copper(II) mediate Hoogsteen base-pairing in a left-handed DNA duplex? A pulse EPR study.

    PubMed

    Santangelo, Maria Grazia; Antoni, Philipp M; Spingler, Bernhard; Jeschke, Gunnar

    2010-02-22

    Pulse EPR spectroscopy is used to investigate possible structural features of the copper(II) ion coordinated to poly(dG-dC).poly(dG-dC) in a frozen aqueous solution, and the structural changes of the polynucleotide induced by the presence of the metal ion. Two different copper species were identified and their geometry explained by a molecular model. According to this model, one species is exclusively coordinated to a single guanine with the N7 nitrogen atom forming a coordinative bond with the copper. In the other species, a guanine and a cytosine form a ternary complex together with the copper ion. A copper crosslink between the N7 of guanine and N3 of cytosine is proposed as the most probable coordination site. Moreover, no evidence was found for an interaction of either copper species with a phosphate group or equatorial water molecules. In addition, circular dichroism (CD) spectroscopy showed that the DNA of the Cu(II)-poly(dG-dC).poly(dG-dC) adducts resembles the left-handed Z-form. These results suggest that metal-mediated Hoogsteen base pairing, as previously proposed for a right-handed DNA duplex, can also occur in a double-stranded left-handed DNA.

  1. The first salen-type ligands derived from 3',5'-diamino-3',5'-dideoxythymidine and -dideoxyxylothymidine and their corresponding copper(II) complexes

    PubMed Central

    Koth, Daniel; Gottschaldt, Michael; Görls, Helmar; Pohle, Karolin

    2006-01-01

    Background There are many nucleoside metal complexes known. According to observations made, only very few of them reveal their central ion to be co-ordinated by the sugar part of their molecules. The regio- and stereospecific exchange of the hydroxyl groups at the sugar moiety by chelating units improves its complexation ability and should give access to a new class of chiral ligands. Results In this paper we present the synthesis of 3',5'-diamino substituted thymidines with ribo- as well as xylo-configuration and the preparation of copper(II) complexes derived from their corresponding Schiff bases. Starting from thymidine, the amino derivatives were prepared in a three and four step reaction sequence respectively. The absolute configuration of the ligands was proved by the three-bond 1H-1H spin spin coupling constants 3J obtained by NMR-studies. Condensation of the amino derivatives with salicylic aldehydes resulted in the corresponding diimines, which represent a new class of chiral salen-type ligands. All ligands formed uncharged stable copper(II) complexes. The structure of 3',5'-bis(3,5-di-tert-butylsalicylaldiminato)-3',5'-dideoxyxylothymidine-copper(II) could be determined by single crystal X-ray structure analysis. The copper centre in this complex has distorted tetrahedral coordination geometry. Conclusion For the synthesis of 3',5'-diamino-3',5'-dideoxy thymidines with xylo- as well as ribo-configuration an effective synthesis pathway has been developed. Their corresponding salicylidene imines form stable coordination compounds with copper(II) ions. They represent the first salen type complexes of nucleosides with this substitution pattern. PMID:16934149

  2. Synthesis, structure and characterization of two copper(II) supramolecular coordination polymers based on a multifunctional ligand 2-amino-4-sulfobenzoic acid.

    PubMed

    Wei, Yan; Zhang, Lei; Wang, Meng-Jie; Chen, Si-Chun; Wang, Zi-Hao; Zhang, Kou-Lin

    2015-07-01

    Copper(II) coordination polymers have attracted considerable interest due to their catalytic, adsorption, luminescence and magnetic properties. The reactions of copper(II) with 2-amino-4-sulfobenzoic acid (H(2)asba) in the presence/absence of the auxiliary chelating ligand 1,10-phenanthroline (phen) under ambient conditions yielded two supramolecular coordination polymers, namely (3-amino-4-carboxybenzene-1-sulfonato-κO(1))bis(1,10-phenanthroline-κ(2)N,N')copper(II) 3-amino-4-carboxybenzene-1-sulfonate monohydrate, [Cu(C7H6N2O5S)(C12H8N2)2](C7H6N2O5S)·H2O, (1), and catena-poly[[diaquacopper(II)]-μ-3-amino-4-carboxylatobenzene-1-sulfonato-κ(2)O(4):O(4')], [Cu(C7H6N2O5S)(H2O)2]n, (2). The products were characterized by FT-IR spectroscopy, thermogravimetric analysis (TGA), solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction analysis, as well as by variable-temperature powder X-ray diffraction analysis (VT-PXRD). Intermolecular π-π stacking interactions in (1) link the mononuclear copper(II) cation units into a supramolecular polymeric chain, which is further extended into a supramolecular double chain through interchain hydrogen bonds. Supramolecular double chains are then extended into a two-dimensional supramolecular double layer through hydrogen bonds between the lattice Hasba(-) anions, H2O molecules and double chains. Left- and right-handed 21 helices formed by the Hasba(-) anions are arranged alternately within the two-dimensional supramolecular double layers. Complex (2) exhibits a polymeric chain which is further extended into a three-dimensional supramolecular network through interchain hydrogen bonds. Complex (1) shows a reversible dehydration-rehydration behaviour, while complex (2) shows an irreversible dehydration-rehydration behaviour.

  3. Copper(II) and gallium(III) complexes of trans-bis(2-hydroxybenzyl) cyclen derivatives: absence of a cross-bridge proves surprisingly more favorable.

    PubMed

    Esteves, Catarina V; Madureira, Joana; Lima, Luís M P; Mateus, Pedro; Bento, Isabel; Delgado, Rita

    2014-05-01

    Two cyclen (1,4,7,10-tetraazacyclododecane) derivatives bearing trans-bis(2-hydroxybenzyl) arms, the 1,7-(2-hydroxybenzyl)-1,4,7,10-tetraazacyclododecane (H2do2ph) and its cross-bridged counterpart (H2cb-do2ph), have been synthesized, aiming toward the possible use of their copper(II) and gallium(III) complexes in nuclear medicine. The protonation of both compounds was studied in aqueous solution as well as their complexes with Cu(2+) and Ga(3+) cations. The complexes of both ligands with Ca(2+) and Zn(2+) metal ions were also studied due to the abundance of these cations in biological media. In mild conditions the complexes of Ca(2+) and Ga(3+) with H2cb-do2ph did not form. The behavior of the two ligands and their complexes was compared by the values of the equilibrium constants, the data of varied spectroscopic techniques, the values of redox potentials of their copper(II) complexes, and the resistance of the complexes to acid dissociation. It was expected that, as found for related pairs of cyclen and cyclam (1,4,8,11-tetraazacyclotetradecane) derivatives, the cross-bridged macrocyclic derivative could be an excellent ligand for the complexation of copper(II). Additionally, the N-2-hydroxybenzyl groups were chosen due to their known ability to coordinate the gallium(III) cation. Due to the small size of the latter cation and its particular propensity to form hexacoordinate complexes, it was also expected that there would be a good ability of both ligands for the uptake of Ga(3+). Surprisingly, the results revealed that the cyclen derivative H2do2ph is the best ligand for the coordination of Cu(2+) and Ga(3+) cations, not only from their thermodynamic stability as expected but also from their kinetic inertness, when compared with its cross-bridged counterpart.

  4. Synthesis and explosive properties of copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole bridging ligand.

    PubMed

    Cudziło, Stanisław; Nita, Marcin

    2010-05-15

    Copper(II) chlorate(VII) coordination polymer with 4-amino-1,2,4-triazole as bridging ligand was prepared and characterized by elemental analysis, IR spectra and TG/DTA analyses. Sensitivity and detonator tests were also preformed. The compound has a 1D chain structure in which Cu(II) ions are linked by triple triazole N1,N2 bridges. It is a detonat with performance close to that of lead azide, but at the same time it shows moderate sensitivity to thermal (explosively decomposes above 250 degrees C) and mechanical stimuli (sensitivity to friction 10N).

  5. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine.

    PubMed

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1×10(4)M(-1), indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97×10(5)M(-1), indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔH(o), ΔS(o) and ΔG(o)) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔH(o) and ΔS(o) values indicate that

  6. Triple-stranded helicates of zinc(II) and cadmium(II) involving a new redox-active multiring nitrogenous heterocyclic ligand: synthesis, structure, and electrochemical and photophysical properties.

    PubMed

    Kundu, Nabanita; Abtab, Sk Md Towsif; Kundu, Sanchita; Endo, Akira; Teat, Simon J; Chaudhury, Muktimoy

    2012-02-20

    The protonated form [H(2)(L)](CF(3)SO(3))(2) (1) of a new redox-active bis-bidentate nitrogenous heterocyclic ligand, viz., 3,3'-dipyridin-2-yl[1,1']bi[imidazo[1,5-a]pyridinyl] (L), and its zinc(II) and cadmium(II) complexes (2 and 3) have been synthesized and characterized by single-crystal X-ray diffraction analysis. In the solid state, both 2 and 3 have triple-stranded helical structures involving ligands that experience twisting and bending to the extent needed by the stereoelectronic demand of the central metal ion. The metal centers in the zinc(II) complex [Zn(2)(L)(3)](ClO(4))(4) (2) are equivalent, each having a distorted octahedral geometry, flattened along the C(3) axis with a Zn1···Zn1# separation of 4.8655(13) Å. The cadmium complex [Cd(2)(L)(3)(H(2)O)](ClO(4))(4) (3), on the other hand, has a rare type of helical structure, showing coordination asymmetry around the metal centers with a drastically reduced Cd1···Cd2 separation of 4.070 Å. The coordination environment around Cd1 is a distorted pentagonal bipyramid involving a N(6)O donor set with the oxygen atom coming from a coordinated water, leaving the remaining metal center Cd2 with a distorted octahedral geometry. The structures of 2 and 3 also involve anion-π- and CH-π-type noncovalent interactions that play dominant roles in shaping the extended structures of these molecules in the solid state. In solution, these compounds exhibit strong fluxional behavior, making the individual ligand strands indistinguishable from one another, as revealed from their (1)H NMR spectra, which also provide indications about these molecules retaining their helical structures in solution. Electrochemically, these compounds are quite interesting, undergoing ligand-based oxidations in two successive one-electron steps at E(1/2) of ca. 0.65 and 0.90 V versus a Ag/AgCl (3 M NaCl) reference. These molecules are all efficient emitters in the red and blue regions because of ligand-based π*-π fluorescent

  7. DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine

    NASA Astrophysics Data System (ADS)

    Anjomshoa, Marzieh; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud; Hadadzadeh, Hassan

    2014-06-01

    Binding studies of a mononuclear zinc(II) complex, [Zn(dppt)2Cl2] (dppt is 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), with DNA and bovine serum albumin (BSA) have been investigated under physiological conditions. The binding properties of the complex with fish sperm DNA (FS-DNA) have been investigated by UV-Vis absorption, thermal denaturation, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis techniques. The competitive study with (EB) shows that the complex can displace EB from the DNA-EB system and compete for the DNA-binding sites with EB, which is usually characteristic of the intercalative interaction of compounds with DNA. The value of the fluorescence quenching constant (Ksv) was obtained as 3.1 × 104 M-1, indicating that this complex shows a high quenching efficiency and a significant degree of binding to DNA. Moreover, the intercalative binding mode has also been verified by the results of UV-Vis absorption, thermal denaturation and gel electrophoresis. The value of Kb at room temperature was calculated to be 1.97 × 105 M-1, indicating that the complex possesses strong tendency to bind with DNA. This value is very greater than to the values obtained for other zinc(II) complexes. The interaction of the complex with BSA has been studied by UV-Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques. The results indicate that the complex has a quite strong ability to quench the fluorescence of BSA and the binding reaction is mainly a static quenching process. The quenching constants (KSV), the binding constants (Kb), the number of binding sites at different temperatures, the binding distance between BSA and the complex (r), and the thermodynamic parameters (ΔHo, ΔSo and ΔGo) between BSA and the complex were calculated. The complex exhibits good binding propensity to BSA showing relatively high binding constant values. The positive ΔHo and ΔSo values indicate that the

  8. Synthesis and crystal structure of a new copper(II) complex with N,N‧-(4,4‧-bithiazole-2,2‧-diyl)diacetimidamide as ligand: Molecular docking, DNA-binding and cytotoxicity activity studies

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Dong; Zheng, Kang; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2013-04-01

    A new mononuclear copper(II) complex with formula of [Cu2H(DABTA)2](pic)ṡ6H2O, where H2DABTA and pic- stand for N,N'-(4,4'-bithiazole-2,2'-diyl)diacetimidamide and picrate ion, respectively, has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectra studies, and single-crystal X-ray diffraction. The crystal structure reveals that the copper(II) ion has a {CuN4} square-planar coordination environment. The solvent water molecules form a column parallel to c axis by hydrogen bonds. Then the mononuclear copper complexes link to the water columns to make a three-dimensional hydrogen bonding grid with the cavities filled by pic- anions. Besides, there are offset π-π stacking interactions between thiazole rings in the supramolecular system. The interactions between the copper(II) complex and herring sperm DNA (HS-DNA) have been investigated by using electronic absorption titration, fluorescence titration and viscometry. The molecular docking of the complex with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 demonstrates that the complex is stabilized by additional electrostatic and hydrogen bonding interaction with the DNA. The copper(II) complex exhibits potent anticancer activities against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549.

  9. Investigation and Control of "Sphere-Like" Buckminsterfullerene C60 and "Disk-Like" Copper(II) Phthalocyanine

    NASA Astrophysics Data System (ADS)

    McAfee, Terry Richard

    Due to the growing global need for cheap, flexible, and portable electronics, numerous research groups from mechanical and electrical engineering, material science, chemistry, and physics have increasingly turned to organic electronics research over the last ˜5--10 years. Largely, the focus of researchers in this growing field have sought to obtain the next record holding device, allowing a heuristic approach of trial and error to become dominant focus of research rather than a fundamental understanding. Rather than working with the latest high performance organic semiconducting materials and film processing techniques, I have chosen to investigate and control the fundamental self-assembly interactions of organic photovoltaic thin films using simplified systems. Specifically, I focus on organic photovoltaic research using two of the oldest and well studies semiconducting materials, namely "sphere-like" electron donor material Buckminsterfullerene C60 and "disklike" electron acceptor material Copper(II) Phthalocyanine. I manufactured samples using the well-known technique of physical vapor deposition using a high vacuum chamber that I designed and built to accommodate my need of precise material deposition control, with codeposition capability. Films were characterized using microscopy and spectroscopy techniques locally at NCSU, including Atomic Force Microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Ultraviolet-visible spectroscopy, as well as at National Laboratory based synchrotron x-ray techniques, including Carbon and Nitrogen k-edge Total Electron Yield and Transmission Near Edge X-ray absorption fine structure spectroscopy, Carbon k-edge Resonant Soft x-ray Microscopy, Resonant Soft x-ray reflectivity, and Grazing Incidence Wide-Angle X-ray scattering.

  10. Halochromism, ionochromism, solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand

    NASA Astrophysics Data System (ADS)

    Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda

    2015-03-01

    This study investigates chromotropism of newly synthesized 3,3‧-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the Cusbnd O to Cusbnd N bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the Cusbnd N/Cusbnd O isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the Cusbnd O isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution.

  11. Copper(II) Complexes of Cyclams Containing Nitrophenyl Substituents: Push-Pull Behavior and Scorpionate Coordination of the Nitro Group.

    PubMed

    Boiocchi, Massimo; Ciarrocchi, Carlo; Fabbrizzi, Luigi; Licchelli, Maurizio; Mangano, Carlo; Poggi, Antonio; Vázquez López, Miguel

    2015-11-01

    The three nitrophenyl-cyclam derivatives (nitrocyclams): 1-(4-nitrophenyl)-1,4,8,11-tetraazacyclotetradecane (2), 1-(2-nitrophenyl)-1,4,8,11-tetraazacyclotetradecane (3), and 1-(2,4-dinitrophenyl)-1,4,8,11-tetraazacyclotetradecane (4), in an MeCN solution, specifically incorporate the Cu(II) ion according to an irreversible process signaled by disappearance of the yellow color for a concentration c < 1 × 10(-4) M and by a yellow-to-red color change for c ≥ 1 × 10(-3), and must be considered efficient and specific dosimeters of copper(II) salts. When present in the ortho position of the nitrophenyl substituent, the -NO2 group coordinates the Cu(II) according to a scorpionate mode, while the metallocyclam system exhibits a trans-I configuration. In an MeCN solution the red trans-I-[Cu(II)(3)](2+) and trans-I-[Cu(II)(4)](2+) scorpionate complexes slowly convert into the violet trans-III scorpionate complexes. Kinetic aspects of the trans-I-to-trans-III configurational rearrangement were investigated in detail for the [Cu(II)(4)](2+) system. In particular, the conversion is spectacularly accelerated by catalytic amounts of Cl(-), NCO(-), and F(-). While for Cl(-) and NCO(-) the effect can be associated with the capability of the anion to stabilize through coordination a possible dissociative intermediate, the amazingly powerful effect of F(-) must be related to the preliminary deprotonation of one N-H fragment of the macrocycle, driven by the formation of the HF2(-) ion. Most of the metal complex species studied in solution were isolated in a crystalline form, and their molecular structures were elucidated through X-ray diffraction studies. This study documents the first examples of effective metal coordination by the nitro group. PMID:26468764

  12. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    NASA Astrophysics Data System (ADS)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  13. In vitro cytotoxicity, DNA cleavage and SOD-mimic activity of copper(II) mixed-ligand quinolinonato complexes.

    PubMed

    Buchtík, Roman; Trávníček, Zdeněk; Vančo, Ján

    2012-11-01

    Six mixed-ligand copper(II) complexes with the composition [Cu(qui)(L)]BF(4)·xH(2)O (1-6), where Hqui=2-phenyl-3-hydroxy-4(1H)-quinolinone, L=2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), bis(2-pyridyl)amine (ambpy) (3), 5-methyl-1,10-phenanthroline (mphen) (4), 5-nitro-1,10-phenanthroline (nphen) (5) and bathophenanthroline (bphen) (6), were prepared, fully characterized and studied for their in vitro cytotoxicity on human osteosarcoma (HOS) and human breast adenocarcinoma (MCF7) cancer cell lines. The overall promising results of the cytotoxicity were found for all the complexes, while the best results were achieved for complex 6, with IC(50)=2.6 ± 0.8 μM (HOS), and 1.3 ± 0.5 μM (MCF7). The interactions of the Cu(II) complexes 1-6 with calf thymus DNA were investigated by the UV-visible spectral titration. An agarose-gel electrophoretic method of oxidative damage determination to circular plasmid pUC19 was used to assess the ability of the complexes to act as chemical nucleases. A high effectiveness of DNA cleavage was observed for 2, 4 and 5. In vitro antioxidative activity of the complexes was studied by the superoxide dismutase-mimic (SOD-mimic) method. The best result was afforded by complex 1 with IC(50)=4.7 ± 1.0 μM, which corresponds to 10.2% of the native Cu,Zn-SOD enzyme activity. The ability of the tested complexes to interact with sulfur-containing biomolecules (cysteine and reduced glutathione) at physiological levels was proved by electrospray-ionization mass spectrometry (ESI-MS). PMID:23022693

  14. Potentiometric and spectroscopic study of the complexation of copper(II) ions by tripeptides containing aromatic side-chains

    NASA Astrophysics Data System (ADS)

    Ghalem, S.; Fan, B.-T.; Xiao, L.

    1998-01-01

    The complexation of copper(II) ions with L,L-Gly-Phe-Phe, L,L-Phe-Gly-Phe and L,L-Phe-Phe-Gly was studied by potentiometric and spectroscopic measurements. Only four complexes have been found for each copper(II)-tripeptide system, and no species with two ligand molecules was observed. The results show influences of aromatic side-chains. These influences are dependent upon the location of two aromatic rings in studied tripeptides. The stabilization or destabilization of a given complex is probably the result of several different effects, including steric hindrance, hydrophobic effect, electrodonor effect and π-d interaction. The spectroscopic measurements, e.s.r and electronic absorption, are useful to determine the complex structures. La complexation du cuivre(II) par Gly-Phe-Phe-L,L, Phe-Gly-Phe-L,L et Phe-Phe-Gly-L,L a été étudiée par potentiométrie et par spectroscopies. Seulement quatre espèces ont été mises en évidence pour chaque système Cu(II)-tripeptide. Aucun complexe contenant deux molécules de ligand n'a été observé. Les résultats obtenus montrent des influences évidentes liées aux chaînes latérales aromatiques. Ces influences dépendent des positions des résidus phénylalanines. La stabilisation ou déstabilisation d'un complexe est probablement le résultat d'un ensemble de différents effets : effet stérique, effet hydrophobe, électrodonneur et l'interaction π-d. Les spectroscopies RPE et visible ont été utilisées pour la détermination structurale des complexes.

  15. Synthesis and spectroscopic characterization of copper(II) complexes with the polydentate chelating ligand 4,4'-[1,4-phenylenedi(nitrilo)dipente-2-one

    NASA Astrophysics Data System (ADS)

    Shauib, Nadia M.; Elassar, Abdel-Zaher A.; El-Dissouky, Ali

    2006-03-01

    A new series of complexes of 4,4'-[1,4-phenylenenedi(nitilo)]dipenten-2-one, (H 2L) with CuX 2· nH 2O, X = Cl, Br, ClO 4, NO 3 and OAc; n = 1-6 as well as their ethylenediamine adducts have been synthesized and characterized by different physical techniques. The formulation of the complexes is assumed based on their elemental analysis and the molar conductivity. The products are found to be pH-dependent. The IR data showed that the ligand acts as dibasic tetradentate coordinated to copper(II) ions through the enolato-oxygen and the azomethine nitrogen atoms. Electronic, ESR spectra and room temperature magnetic moments indicate that complexes 1- 9 are square planar while complexes 10 and 11 are square based pyramidal. The different electronic spectral and ESR parameters are calculated and used to describe the nature of ligand-metal bonding ( σ and π) as well as to estimate the extent of distortion. A macrocyclic containing copper(II) complex, 12 have been isolated by the reaction of Schiff-base with copper(II)-ethylenediamine mixture. The ligand (H 2L) is designed as a building block for larger molecules and superamolecular assemblies.

  16. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    NASA Astrophysics Data System (ADS)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  17. Synthesis and Characterisation of Copper(II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application.

    PubMed

    Hazra, Madhumita; Dolai, Tanushree; Pandey, Akhil; Dey, Subrata Kumar; Patra, Animesh

    2014-01-01

    The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2) HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.

  18. Novel oxygen chirality induced by asymmetric coordination of an ether oxygen atom to a metal center in a series of sugar-pendant dipicolylamine copperII complexes.

    PubMed

    Mikata, Yuji; Sugai, Yuko; Obata, Makoto; Harada, Masafumi; Yano, Shigenobu

    2006-02-20

    Six sugar-pendant 2,2'-dipicolylamine (DPA) ligands (L1-3 and L'1-3) have been prepared. OH-protected and unprotected D-glucose, D-mannose, and D-xylose were attached to a DPA moiety via an O-glycoside linkage. X-ray crystallography of the copper(II) complexes (1-5) with these ligands revealed that the anomeric oxygen atom is coordinated to the metal center in the solid state, generating a chiral center at the oxygen atom. The CD spectra of these copper complexes in methanol or aqueous solution exhibit Cotton effects in the d-d transition region, which indicates that the ether oxygen atoms remain coordinated to the metal center and the oxygen-atom chirality is preserved even in solution. For complexes 1 and 2, the inverted oxygen-atom chirality and chelate-ring conformation in the solid state are well correlated with the mirror-image CD spectra in methanol solution. The concomitant inversion of the asymmetric configuration around the copper center was also observed in a methanol solution of complex 3 and a pyridine solution of complex 2. The square-pyramidal/octahedral copper(II) centers also exhibited characteristic absorption and CD spectra.

  19. Rational design of a novel azoimine appended maleonitrile-based Salen chemosensor for rapid naked-eye detection of copper(II) ion in aqueous media.

    PubMed

    Rezaeian, Khatereh; Khanmohammadi, Hamid; Arab, Vajihe

    2015-12-01

    Achieving specific selectivity and high sensitivity for the colorimetric recognition of copper(II) ions in aqueous media over a complex background of potentially competing metal ions is inherently challenging in sensor development. Thus, a novel azo-azomethine receptor (L) based on the combination of 2-amino-3-(5-bromo-2-hydroxybenzylamino)maleonitrile and azo-coupled salicylaldehyde scaffold has been designed and synthesized for the naked-eye and rapid detection of Cu(2+) ion at trace level in a wide pH range. Accordingly, the devised chemosensor distinguished Cu(2+) from other metal ions by distinct color change from light yellow to light brown without any expensive equipment. The binding stoichiometry between Cu(2+) and L has been investigated using Job's plot and MALDI-TOF mass analysis. Remarkably, the current sensor can detect Cu(2+) ions even at 1.07 μM level, which is lower than the World Health Organization (WHO) permissible level (30 μM) in drinking water. Furthermore, sensor L was successfully utilized in the preparation of test strips for the detection of copper(II) ions from aqueous environment. PMID:26184468

  20. Role of the Copper(II) Complex Cu[15]pyN5 in Intracellular ROS and Breast Cancer Cell Motility and Invasion.

    PubMed

    Fernandes, Ana S; Flórido, Ana; Saraiva, Nuno; Cerqueira, Sara; Ramalhete, Sérgio; Cipriano, Madalena; Cabral, Maria Fátima; Miranda, Joana P; Castro, Matilde; Costa, Judite; Oliveira, Nuno G

    2015-10-01

    Multiple mechanisms related to metastases undergo redox regulation. Cu[15]pyN5 is a redox-active copper(II) complex previously studied as a chemotherapy sensitizer in mammary cells. The effects of a cotreatment with Cu[15]pyN5 and doxorubicin (dox) were evaluated in two human breast cancer cell lines: MCF7 (low aggressiveness) and MDA-MB-231 (highly aggressive). Cu[15]pyN5 decreased MCF7-directed cell migration. In addition, a cotreatment with dox and Cu[15]pyN5 reduced the proteolytic invasion of MDA-MB-231 cells. Cell detachment was not affected by exposure to these agents. Cu[15]pyN5 and dox significantly increased intracellular ROS in both cell lines. This increase could be at least partially due to H2 O2 accumulation. The combination of Cu[15]pyN5 with dox may be beneficial in breast cancer treatment as it could help reduce cancer cell migration and invasion. Moreover, the ligand [15]pyN5 has a high affinity for copper(II) and displays potential anti-angiogenic properties. Overall, we present a potential drug that might arrest the progression of breast cancer by different and complementary mechanisms.

  1. Copper(I) nitrosyls from reaction of copper(II) thiolates with S-nitrosothiols: mechanism of NO release from RSNOs at Cu.

    PubMed

    Zhang, Shiyu; Çelebi-Ölçüm, Nihan; Melzer, Marie M; Houk, K N; Warren, Timothy H

    2013-11-13

    S-nitrosothiols (RSNOs) serve as ready sources of biological nitric oxide activity, especially in conjunction with copper centers. We report a novel pathway for the generation of NO within the coordination sphere of copper model complexes from reaction of copper(II) thiolates with S-nitrosothiols. Reaction of tris(pyrazolyl)borate copper(II) thiolates (iPr2)TpCu-SR (R = C6F5 or CPh3) with (t)BuSNO leads to formation of (iPr2)TpCu(NO) and the unsymmetrical disulfide RS-S(t)Bu. Quantum mechanical investigations with B3LYP-D3/6-311G(d) suggest formation of a κ(1)-N-RSNO adduct (iPr2)TpCu(SR)(R'SNO) that precedes release of RSSR' to deliver (iPr2)TpCu(NO). This process is reversible; reaction of (iPr2)TpCu(NO) (but not (iPr2)TpCu(NCMe)) with C6F5S-SC6F5 forms (iPr2)TpCu-SC6F5. Coupled with the facile, reversible reaction between (iPr2)TpCu(NO) and C6F5SNO to give (iPr2)TpCu-SC6F5 and 2 equiv NO, we outline a new, detailed catalytic cycle for NO generation from RSNOs at Cu.

  2. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole.

    PubMed

    Li, Mei; Kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-15

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  3. Light-induced copper(II) coordination by a bicyclic tetraaza chelator through a ligand-to-metal charge-transfer reaction.

    PubMed

    Holm-Jørgensen, Jacob R; Jensen, Mikael; Bjerrum, Morten J

    2011-12-19

    To enable utilization of the broad potential of copper isotopes in nuclear medicine, rapid and robust chelation of the copper is required. Bowl adamanzanes (bicyclic tetraaza ligands) can form kinetically stable copper complexes, but they are usually formed at low rates unless high pH values and high temperatures are applied. We have investigated the effects of the variation in the pH, different anions, and UV irradiation on the chelation rate. UV spectra of mixtures of Cu(2+) and [2(4).3(1)]adz in water show the existence of a long-lived two-coordinated copper(II) intermediate (only counting coordinated amine groups) at pH above 6. These findings are supported by pH titrations of mixtures of Cu(2+) and [2(4).3(1)]adz in water. Irradiation of this complex in the ligand-to-metal charge-transfer (LMCT) band by a diode-array spectrophotometer leads to photodeprotonation and subsequently to formation of the four-coordinated copper(II) complex at a rate up to 7800-fold higher at 25 °C than in the dark. Anions in the solution were found to have three major effects: competitive inhibition due to Cu(II) binding anions, inhibition of the photoinduced transchelation from UV-absorbing anions, and photoredox inhibition from acido ligands capable of acting as electron donors in LMCT reactions. Dissolved O(2) was also found to result in photoredox inhibition.

  4. Structural studies of copper(II) complexes with 2-(2-aminoethyl)pyridine derived Schiff bases and application as precursors of thin organic-inorganic layers.

    PubMed

    Barwiolek, Magdalena; Szlyk, Edward; Berg, Andrzej; Wojtczak, Andrzej; Muziol, Tadeusz; Jezierska, Julia

    2014-07-14

    Cu(ii) complexes with Schiff bases derived from 2-pyridin-2-ylethanamine were obtained and characterized by UV-Vis, fluorescence, and IR spectra. The X-ray crystal structures determined for [Cu(ii)(epy(di-t-Buba))Cl] × 0.042H2O and [Cu(ii)(epy(di-t-Buba))O2CCH3] revealed tetrahedral distortion of the Cu(ii) coordination sphere in the solid phase. For both molecules the Cu(ii) ions were found in tetragonal environments, as was confirmed by the values of EPR g-matrix diagonal components. The thermal properties of the complexes and the gas phase composition were studied by TG/IR techniques. Thin layers of the studied copper(ii) complexes were deposited on Si(111) by a spin coating method and characterized by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectra. For copper(ii) layers the most intensive fluorescence band from intra-ligand transition was observed between 498 and 588 nm. The layers' fluorescence intensity was related to the rotation speed and deposition time.

  5. Mono- and binuclear copper(II) complexes of new hydrazone ligands derived from 4,6-diacetylresorcinol: Synthesis, spectral studies and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; El-ghamry, Mosad A.; Khalil, Saied M. E.; Kishk, Mona A. A.

    Two new hydrazone ligands, H2L1 and H2L2, were synthesized by the condensation of 4,6-diacetylresorcinol with 3-hydrazino-5,6-diphenyl-1,2,4-triazine and isatin monohydrazone, respectively. The structures of the ligands were elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reactions of the ligands with several copper(II) salts, including AcO-, NO3-, SO42-, Cl- and Br- afforded mono- and binuclear metal complexes. Also, the ligands were allowed to react with Cu(II) ion in the presence of a secondary ligand (L‧) [N,O-donor; 8-hydroxyquinoline, N,N-donor; 1,10-phenanthroline or O,O-donor; benzoylacetone]. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, electronic, mass and ESR spectra as well as conductivity and magnetic susceptibility measurements. The ESR spin Hamiltonian parameters of some complexes were calculated. The spectroscopic data showed that the H2L1 ligand acts as a neutral or monobasic tridentate ligand while the H2L2 ligand acts as a bis(monobasic tridentate) ligand. The coordination sites with the copper(II) ion are phenolic oxygen, azomethine nitrogen and triazinic nitrogen (H2L1 ligand) or isatinic oxygen (H2L2 ligand). The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. The ligands and some metal complexes showed antimicrobial activity.

  6. Synthesis and Characterisation of Copper(II) Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    PubMed Central

    Hazra, Madhumita; Dolai, Tanushree; Pandey, Akhil; Dey, Subrata Kumar; Patra, Animesh

    2014-01-01

    The photo physical properties of two mononuclear pentacoordinated copper(II) complexes formulated as [Cu(L)(Cl)(H2O)] (1) and [Cu(L)(Br)(H2O)] (2) HL = (1-[(3-methyl-pyridine-2-ylimino)-methyl]-naphthalen-2-ol) were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II) complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand. PMID:25386109

  7. Synergistic extraction and spectrophotometric determination of copper(II) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: analysis of alloys, pharmaceuticals and biological samples.

    PubMed

    Kamble, Ganesh S; Kolekar, Sanjay S; Anuse, Mansing A

    2011-05-01

    A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L(-1) pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL(-1) of copper(II) and optimum range of 20-70 μg mL(-1) the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87×10(3) L mol(-1)c m(-1) and 0.072 μg cm(-2), respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method. PMID:21330190

  8. Synergistic extraction and spectrophotometric determination of copper(II) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol: Analysis of alloys, pharmaceuticals and biological samples

    NASA Astrophysics Data System (ADS)

    Kamble, Ganesh S.; Kolekar, Sanjay S.; Anuse, Mansing A.

    2011-05-01

    A simple and selective spectrophotometric method was developed for the determination of copper(II) with 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydropyrimidine-2-thiol [2',4'-dinitro APTPT] as a chromogenic reagent. The procedure was based on the synergistic extraction of copper(II) with 2',4'-dinitro APTPT in the presence of 0.5 mol L -1 pyridine to give green colored ternary complex of a molar ratio 1:2:2 (M:L:Py) in the pH range 8.7-10.5. It exhibits a maximum absorption of colored complex at 445 nm and 645 nm in chloroform against the reagent blank. Beer's law was followed in the concentration range 10-80 μg mL -1 of copper(II) and optimum range of 20-70 μg mL -1 the metal as evaluated from Ringbom's plot. The molar absorptivity and Sandell's sensitivity of copper(II)-2',4'-dinitro APTPT-pyridine complex in chloroform are 0.87 × 10 3 L mol -1 cm -1 and 0.072 μg cm -2, respectively. The interfering effects of various cations and anions were also studied, and use of suitable masking agents enhances the selectivity of the method. The proposed method is rapid, reproducible and successfully applied for the determination of copper(II) in binary and synthetic mixtures, alloys, pharmaceutical formulations, environmental and fertilizer samples. Comparison of the results with those obtained using an atomic absorption spectrophotometer also tested the validity of the method.

  9. Powder X-ray diffraction, infrared and 13C NMR spectroscopic studies of the homologous series of some solid-state zinc(II) and sodium(I) n-alkanoates

    NASA Astrophysics Data System (ADS)

    Nelson, Peter N.; Taylor, Richard A.

    2015-03-01

    A comparative study of the room temperature molecular packing and lattice structures for the homologous series of zinc(II) and sodium(I) n-alkanoates adduced from Fourier transform infrared and solid-state 13C NMR spectroscopic data in conjunction with X-ray powder diffraction measurements is carried out. For zinc carboxylates, metal-carboxyl bonding is via asymmetric bridging bidentate coordination whilst for the sodium adducts, coordination is via asymmetric chelating bidentate bonding. All compounds are packed in a monoclinic crystal system. Furthermore, the fully extended all-trans hydrocarbon chains are arranged as lamellar bilayers. For zinc compounds, there is bilayer overlap, for long chain adducts (nc > 8) but not for sodium compounds where methyl groups from opposing layers in the lamellar are only closely packed. Additionally, the hydrocarbon chains are extended along the a-axis of the unit cell for zinc compounds whilst for sodium carboxylates they are extended along the c-axis. These packing differences are responsible for different levels of Van der Waals effects in the lattices of these two series of compounds, hence, observed odd-even alternation is different. The significant difference in lattice packing observed for these two series of compounds is proposed to be due to the difference in metal-carboxyl coordination mode, arising from the different electronic structure of the central metal ions.

  10. Zinc(II) and lead(II) metal-organic networks driven by a multifunctional pyridine-carboxylate building block: Hydrothermal synthesis, structural and topological features, and luminescence properties

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Li, Yu; You, Ao; Jiang, Juan; Zou, Xun-Zhong; Chen, Jin-Wei; Gu, Jin-Zhong; Kirillov, Alexander M.

    2016-09-01

    4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a flexible, multifunctional N,O-building block for the hydrothermal self-assembly synthesis of two novel coordination compounds, namely 2D [Zn(μ3-HL)(H2O)]n·nH2O (1) and 3D [Pb2(μ5-HL)(μ6-HL)]n (2) coordination polymers (CPs). These compounds were obtained in aqueous medium from a mixture containing zinc(II) or lead(II) nitrate, H3L, and sodium hydroxide. The products were isolated as stable crystalline solids and were characterized by IR spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a 2D metal-organic layer with the fes topology, which is further extended into a 3D supramolecular framework via hydrogen bonds. In contrast, compound 2 features a very complex network structure, which was topologically classified as a binodal 5,6-connected net with the unique topology defined by the point symbol of (47.63)(49.66). Compounds 1 and 2 disclose an intense blue or green luminescent emission at room temperature.

  11. Ligand effects on the structure and magnetic properties of alternating copper(II) chains with 2,2'-bipyrimidine- and polymethyl-substituted pyrazolates as bridging ligands.

    PubMed

    Castro, Isabel; Calatayud, M Luisa; Barros, Wdeson P; Carranza, José; Julve, Miguel; Lloret, Francesc; Marino, Nadia; De Munno, Giovanni

    2014-06-01

    A novel series of heteroleptic copper(II) compounds of formulas {[Cu2(μ-H2O)(μ-pz)2(μ-bpm)(ClO4)(H2O)]ClO4·2H2O}n (1), {[Cu2(μ-H2O)(μ-3-Mepz)2(μ-bpm)](ClO4)2·2H2O}n (2), and {[Cu2(μ-OH)(μ-3,5-Me2pz)(μ-bpm)(H-3,5-Me2pz)2](ClO4)2}n (3) [bpm = 2,2'-bipyrimidine, Hpz = pyrazole, H-3-Mepz = 3-methylpyrazole, and H-3,5-Me2pz = 3,5-dimethylpyrazole] have been synthesized and structurally characterized by X-ray diffraction methods. The crystal structures of 1 and 2 consist of copper(II) chains with regular alternating bpm and bis(pyrazolate)(aqua) bridges, whereas that of 3 is made up of copper(II) chains with regular alternating bpm and (pyrazolate)(hydroxo) bridges. The copper centers are six- (1) or five-coordinate (2) in axially elongated, octahedral (1) or square-pyramidal (2) environments in 1 and 2, whereas they are five-coordinate in distorted trigonal-bipyramidal surroundings in 3. The values of the copper-copper separations across the bpm/pyrazolate bridges are 5.5442(7)/3.3131(6) (1), 5.538(1)/3.235(1) (2), and 5.7673(7)/3.3220(6) Å (3). The magnetic properties of 1-3 have been investigated in the temperature range of 25-300 K. The analysis of their magnetic susceptibility data through the isotropic Hamiltonian for an alternating antiferromagnetic copper(II) chain model [H = -J∑i=1-n/2 (S2i·S2i-1 + αS2i·S2i+1), with α = J'/J and Si = SCu = 1/2] reveals the presence of a strong to moderate antiferromagnetic coupling through the bis(pyrazolate)(aqua) [-J = 217 (1) and 215 cm(-1) (2)] and (pyrazolate)(hydroxo) bridges [-J = 153 cm(-1) (3)], respectively, whereas a strong to weak antiferromagnetic coupling occurs through the bis-bidentate bpm [-J' = 211 (1), 213 (2), and 44 cm(-1) (3)]. A simple orbital analysis of the magnetic exchange interaction within the bpm- and pyrazolate-bridged dicopper(II) fragments of 1-3 visualizes the σ-type pathways involving the (dx(2)-y(2)) (1 and 2) or d(z(2)) (3) magnetic orbitals on each metal ion, which account

  12. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  13. Copper(II) complexes with 2NO and 3N donor ligands: synthesis, structures and chemical nuclease and anticancer activities.

    PubMed

    Rajarajeswari, Chandrasekaran; Loganathan, Rangasamy; Palaniandavar, Mallayan; Suresh, Eringathodi; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2013-06-21

    A series of water soluble copper(II) complexes of the types [Cu(L)Cl] 1-2, where LH is 2-(2-(1H-benzimidazol-2-yl)ethyliminomethyl)phenol (H(L1)), and 2-(2-(1H-benzimidazol-2-yl)-ethyliminomethyl)-4-methylphenol (H(L2)), and [Cu(L)Cl2] 3-6, where L is (2-pyridin-2-yl-ethyl)pyridin-2-ylmethyleneamine (L3), 2-(1H-benzimidazol-2-yl)ethylpyridin-2-yl-methyleneamine (L4), 2-(1H-benzimidazol-2-yl)ethyl(1H-imidazol-2-ylmethylene)amine (L5), and 2-(1H-benzimidazol-2-yl)ethyl-(4,4a-dihydroquinolin-2-ylmethylene)amine (L6), have been isolated and characterized by elemental analysis, electronic absorption, ESI-MS and EPR spectral techniques and the electrochemical method. The single crystal X-ray structures of [Cu(L1)Cl] 1 and [Cu(L2)Cl] 2 possess a distorted square-based coordination geometry while [Cu(L4)Cl2] 4 and [Cu(L6)Cl2] 6 possess a distorted trigonal bipyramidal coordination geometry. Both absorption spectral titration and an EthBr displacement assay reveal that all the complexes bind with calf thymus (CT) DNA through covalent mode of DNA interaction involving the replacement of an easily removable chloride ion with DNA nucleobases. All the complexes exhibit oxidative cleavage of supercoiled (SC) plasmid DNA in the presence of hydrogen peroxide as an activator. It is remarkable that at 50 μM concentration 5 and 6 completely degrade SC DNA into undetectable minor fragments and thus they act as efficient chemical nucleases. All the complexes are remarkable in displaying cytotoxicity against the HBL-100 human breast cancer cell line with potency more than that of the widely used drug cisplatin and hence they have the potential to act as promising anticancer drugs. Interestingly, they are non-toxic to normal cell lymphocytes isolated from human blood samples, revealing that they are selective in killing only the cancer cells. PMID:23612925

  14. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    PubMed Central

    da Silva, Patricia B.; de Souza, Paula C.; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O.; Frem, Regina C. G.; Netto, Adelino V. G.; Mauro, Antonio E.; Pavan, Fernando R.; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC® CCL-81), J774A.1 (ATCC® TIB-67), and MRC-5 (ATCC® CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  15. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis.

    PubMed

    Silva, Patricia B da; Souza, Paula C de; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O; Frem, Regina C G; Netto, Adelino V G; Mauro, Antonio E; Pavan, Fernando R; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin(®) HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl₂(INH)₂]·H₂O (1), [Cu(NCS)₂(INH)₂]·5H₂O (2) and [Cu(NCO)₂(INH)₂]·4H₂O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from -0.00690 ± 0.0896 to -8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC(®) CCL-81), J774A.1 (ATCC(®) TIB-67), and MRC-5 (ATCC(®) CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  16. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    PubMed

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  17. A novel bis tridentate bipyridine carboxamide ligand and its complexation to copper(II): synthesis, structure, and magnetism.

    PubMed

    Wang, Jian; Djukic, Brandon; Cao, Jingyi; Alberola, Antonio; Razavi, Fereidoon S; Pilkington, Melanie

    2007-10-15

    A new bis tridentate ligand 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] H(2)L(1) which can bind transition metal ions has been synthesized via the condensation of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride. Two copper(II) coordination compounds have been prepared and characterized: [Cu(2)(L(1))(hfac)(2)].3CH(3)CN.H(2)O (1) and [Cu(2)(L(1))Cl(2)].CH(3)CN (2). The single-crystal X-ray structures reveal that complex 1 crystallizes in the triclinic space group P1, with the unit cell parameters a = 12.7185(6) A, b = 17.3792(9) A, c = 19.4696(8) A, alpha = 110.827(2) degrees, beta = 99.890(3) degrees, gamma = 97.966(3) degrees, V = 3868.3(3) A3, Z = 4, R = 0.0321 and R(w) = 0.0826. Complex 2 crystallizes in the monoclinic space group P2(1)/n with the unit cell parameters a = 12.8622(12) A, b = 9.6100(10) A, c = 19.897(2) A, beta = 102.027(3) degrees, V = 2405.3(4) A(3), Z = 4, R = 0.0409 and R(w) = 0.1005. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In 1, the coordination geometry around both Cu(II) ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hexafluoroacetylacetonate counterions. In 2 both Cu(II )ions adopt a (4 + 1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford a mu-Cl-bridged dimerized [Cu(2)(L(1))Cl(2)](2) complex. The magnetic susceptibility data for 1 (2 -270 K), reveal the occurrence of weak antiferromagnetic interactions between the Cu(II) ions. In contrast, variable-temperature magnetic susceptibility measurements for 2 reveal more complex magnetic properties, with the presence of a weak antiferromagnetic exchange (J = -10.1 K) between the copper ions in each dinuclear copper complex and a stronger ferromagnetic

  18. Antimalarial evaluation of copper(II) nanohybrid solids: inhibition of plasmepsin II, a hemoglobin-degrading malarial aspartic protease from Plasmodium falciparum.

    PubMed

    Mohapatra, Subash Chandra; Tiwari, Hemandra Kumar; Singla, Manisha; Rathi, Brijesh; Sharma, Arun; Mahiya, Kuldeep; Kumar, Mukesh; Sinha, Saket; Chauhan, Shyam Singh

    2010-03-01

    A new class of copper(II) nanohybrid solids, LCu(CH(3)COO)(2) and LCuCl(2), have been synthesized and characterized by transmission electron microscopy, dynamic light scattering, and IR spectroscopy, and have been found to be capped by a bis(benzimidazole) diamide ligand (L). The particle sizes of these nanohybrid solids were found to be in the ranges 5-10 and 60-70 nm, respectively. These nanohybrid solids were evaluated for their in vitro antimalarial activity against a chloroquine-sensitive isolate of Plasmodium falciparum (MRC 2). The interactions between these nanohybrid solids and plasmepsin II (an aspartic protease and a plausible novel target for antimalarial drug development), which is believed to be essential for hemoglobin degradation by the parasite, have been assayed by UV-vis spectroscopy and inhibition kinetics using Lineweaver-Burk plots. Our results suggest that these two compounds have antimalarial activities, and the IC(50) values (0.025-0.032 microg/ml) are similar to the IC(50) value of the standard drug chloroquine used in the bioassay. Lineweaver-Burk plots for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) show that the inhibition is competitive with respect to the substrate. The inhibition constants of LCu(CH(3)COO)(2) and LCuCl(2) were found to be 10 and 13 microM, respectively. The IC(50) values for inhibition of plasmepsin II by LCu(CH(3)COO)(2) and LCuCl(2) were found to be 14 and 17 microM, respectively. Copper(II) metal capped by a benzimidazole group, which resembles the histidine group of copper proteins (galactose oxidase, beta-hydroxylase), could provide a suitable anchoring site on the nanosurface and thus could be useful for inhibition of target enzymes via binding to the S1/S3 pocket of the enzyme hydrophobically. Both copper(II) nanohybrid solids were found to be nontoxic against human hepatocellular carcinoma cells and were highly selective for plasmepsin II versus human cathepsin D. The pivotal mechanism of

  19. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    PubMed

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. PMID:24935092

  20. Synthesis, structure, magnetism and nuclease activity of tetranuclear copper(II) phosphonates contatining ancillary 2,2'-bipyridine or 1,10-phenanthroline ligands

    SciTech Connect

    Chandrasekhar, V.; Azhakar, R.; Senapati, T.; Thilagar, P.; Gosh, S.; Verma, S.; Boomishankar, R.; Steiner, A.; Kogerler, P.

    2008-01-07

    The reaction of cyclohexylphosphonic acid (C{sub 6}H{sub 11}PO{sub 3}H{sub 2}), anhydrous CuCl{sub 2} and 2,2{prime}-bipyridine (bpy) in the presence of triethylamine followed by a metathesis reaction with KNO{sub 3} afforded [Cu{sub 4}({micro}-Cl){sub 2}({micro}{sub 3}-C{sub 6}H{sub 11}PO{sub 3}){sub 2}(bpy){sub 4}](NO{sub 3}){sub 2} (1). In an analogous reaction involving Cu(OAc){sub 2} {center_dot} H{sub 2}O, the complex [Cu{sub 4}({micro}-CH{sub 3}COO){sub 2}({micro}{sub 3}-C{sub 6}H{sub 11}PO{sub 3}){sub 2}(2,2-bpy){sub 4}](CH{sub 3}COO){sub 2} (2) has been isolated. The three-component reaction involving Cu(NO{sub 3}){sub 2} {center_dot} 3H{sub 2}O, cyclohexylphosphonic acid and 2,2{prime}-bipyridine in the presence of triethylamine afforded the tetranuclear assembly [Cu{sub 4}({micro}-OH)({micro}{sub 3}-C{sub 6}H{sub 11}PO{sub 3}){sub 2}(2,2{prime}-bpy){sub 4} (H{sub 2}O){sub 2}](NO{sub 3}){sub 3} (3). Replacing 2,2{prime}-bipyridine with 1,10-phenanthroline (phen) in the above reaction resulted in [Cu{sub 4}({micro}-OH)({micro}{sub 3}-C{sub 6}H{sub 11}PO{sub 3}){sub 2}(phen){sub 4}(H{sub 2}O){sub 2}](NO{sub 3}){sub 3} (4). In all the copper(II) phosphonates (1-4) the two phosphonate ions bridge the four copper(II) ions in a capping coordination action. Each phosphonate ion bridges four copper(II) ions in a {micro}{sub 4}, coordination mode or 4.211 of the Harris notation. Variable-temperature magnetic studies on 1-4 reveal that all four complexes exhibit moderately strong intramolecular antiferromagnetic coupling. The DNA cleavage activity of complexes 1-4 is also described. Compounds 1 and 3 were able to completely convert the supercoiled pBR322 DNA form I to nick form II without any co-oxidant. In contrast, 50% conversion occurred with 2 and 40% with 4. In the presence of magnesium monoperoxyphthalate all four compounds achieved rapid conversion of form I to form II.

  1. The crystal structure of paramagnetic copper(II) oxalate (CuC₂O₄): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites.

    PubMed

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel; Grivel, Jean-Claude

    2014-11-28

    Synthetic copper(II) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(II) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(II) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar-gas reveals that the material contains no crystal water and reduces to pure Cu at 295 °C. Magnetic susceptibility measurements in the temperature range from 2 K to 300 K show intriguing paramagnetic behaviour with no sign of magnetic order down to 2 K. A crystal structure investigation is made based on powder diffraction data using one neutron diffraction pattern obtained at 5 K (λ = 1.5949(1) Å) combined with one conventional and two synchrotron X-ray diffraction patterns obtained at ambient temperature using λ = 1.54056, 1.0981 and λ = 0.50483(1) Å, respectively. Based on the X-ray synchrotron data the resulting crystal structure is described in the monoclinic space group P2₁/c (#14) in the P12₁/n1 setting with unit cell parameters a = 5.9598(1) Å, b = 5.6089(1) Å, c = 5.1138 (1) Å, β = 115.320(1)°. The composition is CuC2O4 with atomic coordinates determined by FullProf refinement of the neutron diffraction data. The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns obtained for both kinds of radiation show considerable broadening of several Bragg peaks caused by highly anisotropic microstructural size and strain

  2. Syntheses, structures, and properties of copper(II) complexes of bis(2-pyridylmethyl) derivatives of o-, m-, and p-phenylenediamine and aniline.

    PubMed

    Turba, Sabrina; Walter, Olaf; Schindler, Siegfried; Nielsen, Lars Preuss; Hazell, Alan; J McKenzie, Christine; Lloret, Francesc; Cano, Joan; Julve, Miguel

    2008-10-20

    Copper(II) complexes of the ligand 1,n-bis[bis(2-pyridylmethyl)amino]benzene with n = 2-4 (1,n-tpbd) and its mononuclear derivative bis(2-pyridylmethyl)aniline (phbpa) were synthesized and structurally characterized. Magnetic measurements and DFT calculations were performed on [CuCl2(phbpa)], [Cu2Cl4(1,3-tpbd)], [(Cu2Cl2(ClO4)(1,3-tpbd))Cl(Cu2Cl2(OH2)(1,3-tpbd))](ClO4)2, and [Cu2(OH2)2(S2O6)(1,3-tpbd)]S2O6, and the exchange-polarization mechanism was successfully demonstrated. PMID:18798612

  3. Two new copper(II) complexes with the shortest (N N) diazine based rigid ligand: Example of unusual tridentate coordination mode

    NASA Astrophysics Data System (ADS)

    Karmakar, Ruma; Choudhury, Chirantan Roy; Batten, Stuart R.; Mitra, Samiran

    2007-01-01

    Two new five coordinated Cu(II) complexes, Cu(L)Cl 2,CH 3OH ( 1) and Cu(L)Br 2 ( 2) derived from the flexidentate ligand (L), 2-pyridinealdazine, have been synthesised and characterised by spectroscopic and electrochemical studies. Single crystal structures of the complexes were determined. Crystal structures of both the complexes contain monomeric entities of five coordinated copper(II) ions where the Schiff base ligand, 2-pyridinealdazine, acts in a tridentate fashion. The central part of the ligand in complex 2 is disordered over two positions: N8 sbnd N9 make up the major position and N8A sbnd N9A make up the minor position.

  4. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  5. Investigation of copper(II) binding to the protein precursor of Non-Amyloid-Beta Component of Alzheimer Disease Amyloid Plaque

    NASA Astrophysics Data System (ADS)

    Rose, Francis; Hodak, Miroslav; Bernholc, Jerry

    2007-03-01

    The Non-Amyloid-Beta Component Precursor (NACP) is a natively unfolded synaptic protein that is implicated in Alzheimers and Parkinsons diseases. Its aggregation into fibrillar structures is accelerated by the binding of copper(II). Experimental studies suggest that the dominant copper binding site is located at the histidine residue in NACP. Based on this evidence we assembled a model fragment of the binding site and used DFT to analyze the conformational details of the most probable binding motifs. We investigated the overall conformational effects with classical MD by constraining the copper binding site to the most energetically favorable geometry obtained from the DFT calculations. These results are compared and contrasted with those of the unbound NACP.

  6. Synthesis, characterisation and adsorption properties of a porous copper(II) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide.

    PubMed

    Eckold, Pierre; Gee, William J; Hill, Matthew R; Batten, Stuart R

    2012-11-21

    The synthesis and characterisation of microporous coordination polymers containing copper(II) or cobalt(II) and 2-(pyridin-4-yl)malonaldehyde (Hpma) is described and the gas adsorption properties evaluated. Single-crystal X-ray structure determinations identified the structures as [M(pma)(2)]·2X (M = Cu, 1; Co, 2; X = MeOH, MeCN), which contain 3D networks with rutile topology and continuous 1D rectangular channels with diameters ranging from 3 to 4 Å. The materials exhibit low BET surface areas of 143 m(2) g(-1), but possess large capacities for carbon dioxide capture of 14.1 wt%. The small pore channels are shown to account for this, delivering a particularly strong binding enthalpy to adsorbed CO(2) of 38 kJ mol(-1), and a very large adsorption capacity relative to the low surface area.

  7. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  8. Cytotoxic, pro-apoptotic, pro-oxidant, and non-genotoxic activities of a novel copper(II) complex against human cervical cancer.

    PubMed

    Frías González, Susana E; Angeles Anguiano, Enrique; Mendoza Herrera, Alberto; Escutia Calzada, Daniel; Ordaz Pichardo, Cynthia

    2013-12-01

    Cisplatin remains one of the most effective current chemotherapeutic agents; however, metal complexes synthesis has increased in order to produce new anti-neoplastic drugs with DNA binding and apoptotic activities in tumor cells and less toxicity for patients. In this study, we evaluated the cytotoxic activity of a novel copper(II) complex (LQM402) against cervical cancer cell lines and found that LQM402 exhibited selective cytotoxicity against HeLa and Ca Ski cells. FITC-annexin assay and DNA fragmentation indicated that apoptosis could be involved in HeLa cell death. Caspase 3/7 and cytochrome c analysis by immunoblotting suggest the intrinsic pathway. LQM402 is a lipid peroxidation inductor according to TBARS production. Additionally, the Ames and micronucleus tests demonstrated non-genotoxic activity for this compound in Salmonella typhimurium and CD1 mice, respectively. Therefore, LQM402 may be a promising and safe anti-cervical cancer compound.

  9. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: Effect of acid/base, oxidant, surfactant and morphology

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Mathur, Pavan

    2015-02-01

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the α-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3- bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency.

  10. Bis[(E)-4-bromo-2-(ethoxy­imino­meth­yl)phenolato-κ2 N,O 1]copper(II)

    PubMed Central

    Gong, Shang-Sheng; Dong, Wen-Kui; Tong, Jun-Feng; Li, Li; Wu, Jian-Chao

    2009-01-01

    The title compound, [Cu(C9H9BrNO2)2], is a centrosymmetric mononuclear copper(II) complex. The Cu atom is four-coordinated in a trans-CuN2O2 square-planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate (E)-4-bromo-2-(ethoxy­imino­meth­yl)phenolate oxime-type ligands. An inter­esting feature of the crystal structure is the centrosymmetric inter­molecular Cu⋯O inter­action [3.382 (1) Å], which establishes an infinite chain structure along the b axis. PMID:21578195

  11. Evaluation of A MBER force field parameters for copper(II) with pyridylmethyl-amine and benzimidazolylmethyl-amine ligands: A quantum chemical study

    NASA Astrophysics Data System (ADS)

    Zhu, Yanyan; Su, Yanwei; Li, Xichen; Wang, Yan; Chen, Guangju

    2008-04-01

    We present the theoretical evaluations on the two new sets of A MBER force field parameters for the two copper(II) nucleases, Cu(BPA)Cl 2 (BPA = bis(2-pyridylmethyl)amine) and Cu(IDB)Cl 2 (IDB = N, N-bis(2-benzimidazolylmethyl)amine) based on the DFT/B3LYP level of theory, incorporating with atomic charges calculated by the RESP method. The new force field parameters have been successfully applied in the testing molecular dynamic simulations for the nuclease-DNA combining systems. The developed force field parameters in this work can be applied in DNA-binding modeling for other artificial copper nucleases with same Cu-N type environments.

  12. Photochemistry of transition-metal phthalocyanines. Monophotonic and sequential biphotonic photochemical processes of copper(II) tetrakis(N-octadecylsulfamoyl)phthalocyanine in nonaqueous media

    SciTech Connect

    Prasad, D.R.; Ferraudi, G.

    1982-08-01

    The photochemistry of dimeric and monomeric copper(II) tetrakis(N-octadecylsulfamoyl)phthalocyanine in chloroform has been investigated by steady-state, flash and laser flash photolysis. The decay of a low-lying ..pi pi..* triplet-doublet with k approx. = 2 x 10/sup 7/ s/sup -1/ was observed in laser flash photolysis. Similar observations were carried out with related complexes. Moreover, long-lived transformations were assigned to the formation of a copper(III) phthalocyanine. Product yields were determined as a function of the excitation wavelength and light intensity. Excitations on the Q band, lambda approx. = 600 nm, with high intensities from a focused dye laser induce a photochemistry otherwise observed for excitations at lambda less than or equal to 350 nm. Mechanisms involving short-lived n..pi..* states and two-photon photochemistry involving a low-lying and long-lived ..pi pi..* triplet-doublet are discussed. 6 figures, 2 tables.

  13. Cyclization of homopropargyl chalcogenides by copper(II) salts: selective synthesis of 2,3-dihydroselenophenes, 3-arylselenophenes, and 3-haloselenophenes/thiophenes.

    PubMed

    Schumacher, Ricardo F; Rosário, Alisson R; Leite, Marlon R; Zeni, Gilson

    2013-09-23

    Copper(II) halide mediated cyclization of homopropargyl chalcogenides gave three types of chalcogenophene derivatives. Selective product formation was achieved by controlling solvent, temperature, and atmosphere. By using CuBr2 and 1,2-dichloroethane at room temperature under ambient atmosphere, 4-bromo dihydroselenophene derivatives were obtained, whereas CuBr2 and 1,2-dichloroethane at reflux gave selectively 2-substituted selenophenes. When 1,2-dichloroethane was replaced by dimethylacetamide, 3-halo-selenophenes were obtained exclusively. The versatility of chalcogenophenes was also studied by reaction of 3-haloselenophenes with terminal alkynes under Sonogashira conditions affording the cross-coupled products. In addition, the reaction of 3-haloselenophenes with boronic acids gave the corresponding Suzuki-type products in good yields. PMID:24038325

  14. Synthesis, structure, and magnetic properties of regular alternating μ-bpm/di-μ-X copper(II) chains (bpm = 2,2'-bipyrimidine; X = OH, F).

    PubMed

    Marino, Nadia; Armentano, Donatella; De Munno, Giovanni; Cano, Joan; Lloret, Francesc; Julve, Miguel

    2012-04-01

    The preparation and X-ray crystal structure of four 2,2'-bipyrimidine (bpm)-containing copper(II) complexes of formula {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)][Mn(H(2)O)(6)](SO(4))(2)}(n) (1), {[Cu(2)(μ-bpm)(H(2)O)(4)(μ-OH)(2)]SiF(6)}(n) (2), {Cu(2)(μ-bpm)(H(2)O)(2)(μ-F)(2)F(2)}(n) (3), and [Cu(bpm)(H(2)O)(2)F(NO(3))][Cu(bpm)(H(2)O)(3)F]NO(3)·2H(2)O (4) are reported. The structures of 1-3 consist of chains of copper(II) ions with regular alternation of bis-bidentate bpm and di-μ-hydroxo (1 and 2) or di-μ-fluoro (3) groups, the electroneutrality being achieved by either hexaaqua manganese(II) cations plus uncoordinated sulfate anions (1), uncoordinated hexafluorosilicate anions (2), or terminally bound fluoride ligands (3). Each copper(II) ion in 1-4 is six-coordinated in elongated octahedral surroundings. 1 and 2 show identical, linear chain motifs with two bpm-nitrogen atoms and two hydroxo groups building the equatorial plane at each copper(II) ion and the axial position being filled by water molecules. In the case of 3, the axial sites at the copper atom are occupied by a bpm-nitrogen atom and a bis-monodentate fluoride anion, producing a "step-like" chain motif. The values of the angle at the hydroxo and fluoro bridges are 94.11(6) (1), 94.75(4) (2), and 101.43(4)° (3). In each case, the copper-copper separation through the bis-bidentate bpm [5.428(1) (1), 5.449(1) (2), and 5.9250(4) Å (3)] is considerably longer than that through the di-μ-hydroxo [2.8320(4) (1) and 2.824(1) Å (2)] or di-μ-fluoro [3.3027(4) Å (3)] bridges. Compound 4 is a mononuclear species whose structure is made up of neutral [Cu(bpm)(H(2)O)(2)F(NO(3))] units, [Cu(bpm)(H(2)O)(3)F](+) cations, uncoordinated nitrate anions, and crystallization water molecules, giving rise to a pseudo-helical, one-dimensional (1D) supramolecular motif. The magnetic properties of 1-3 have been investigated in the temperature range 1.9-300 K. Relatively large, alternating antiferro- [J = -149 (1) and

  15. Facile "living" radical polymerization of methyl methacrylate in the presence of iniferter agents: homogeneous and highly efficient catalysis from copper(II) acetate.

    PubMed

    Jiang, Hongjuan; Zhang, Lifen; Jiang, Xiaowu; Bao, Xiaoguang; Cheng, Zhenping; Zhu, Xiulin

    2014-08-01

    A facile homogeneous polymerization system involving the iniferter agent 1-cyano-1-methylethyl diethyldithiocarbamate (MANDC) and copper(II) acetate (Cu(OAc)2 ) is successfully developed in bulk using methyl methacylate (MMA) as a model monomer. The detailed polymerization kinetics with different molar ratios (e.g., [MMA]0 /[MANDC]0 /[Cu(OAc)2 ]0 = 500/1/x (x = 0.1, 0.2, 0.5, 1.0)) demonstrate that this system has the typical "living"/controlled features of "living" radical polymerization, even with ppm level catalyst Cu(OAc)2 , first order polymerization kinetics, a linear increase in molecular weight with monomer conversion and narrow molecular weight distributions for the resultant PMMA. (1) H NMR spectra and chain-extension experiments further confirm the "living" characteristics of this process. A plausible mechanism is discussed.

  16. Synthesis, Characterization and DFT-Based Investigation of a Novel Trinuclear Singly-Chloro-Bridged Copper(II)-1-Vinylimidazole Complex.

    PubMed

    Yolcu, Zuhal; Demir, Serkan; Andaç, Ömer; Büyükgüngör, Orhan

    2016-01-01

    A novel trinuclear copper(II) complex [Cu3(μ-Cl)2Cl4(1-Vim)6] with monodentate 1-vinylimidazole (1-Vim) and chloro ligands has been prepared and experimentally characterized by elemental analysis, thermogravimetry (TGA, DTG, DTA), X-ray single crystal diffractometry, TOF-MS and FT-IR spectroscopies. The electronic and structural properties of the complex were further investigated by DFT/TD-DFT methods. Density functional hybrid method (B3LYP) was applied throughout the calculations. The calculated UV-Vis results based on TD-DFT approach were simulated and compared with experimental spectrum. Based on the data obtained, DFT calculations have been found in reasonable accordance with experimental data. PMID:27640392

  17. Oxidation of phenyl propyne catalyzed by copper(II) complexes of a benzimidazolyl schiff base ligand: effect of acid/base, oxidant, surfactant and morphology.

    PubMed

    Kumar, Ravinder; Mathur, Pavan

    2015-02-01

    Copper(II) complexes with a new N-Substituted benzimidazolyl schiff base ligand are used as catalyst for the oxidation of 1-phenyl propyne. The oxidation is carried out under mild conditions using stoichiometric amounts of oxidant and catalytic amounts of Cu(II) complex as catalyst. Effect of acid/base, oxidant, morphology and surfactant has been studied. Two major products of phenyl propyne oxidation are the α-diketonic product and a terminal aldehyde. Diketone is the major product under acidic conditions while aldehyde formation is highest under basic conditions. The maximum conversion is found with the NO3(-) bound complex. GC-MS is used to find the percentage yields of products. SEM and PXRD of the reused complexes as catalyst suggest that morphology affects the catalytic efficiency. PMID:25448979

  18. Enhanced intersystem crossing due to long-range exchange interaction in copper(II) porphyrin-free base porphyrin dimers: HOMO and spacer dependence

    NASA Astrophysics Data System (ADS)

    Asano, Motoko S.; Okamura, Kazuma; Jin-mon, Akihoro; Takahashi, Sadaharu; Kaizu, Youkoh

    2013-06-01

    Photodynamics induced by long-range exchange interaction was studied in two series of copper(II) porphyrin - free base porphyrin dimers linked via an aromatic spacer: one has a2u orbital as HOMO in the porphyrin π-system and the other has a1u orbital. Dependence on the HOMO as well as that on the spacer is presented for enhanced intersystem crossing (EISC) occurring in the free base half due to long-range coupling with the copper unpaired electron. Semilogarithmic plots of EISC rates vs. number of bonds show a linear correlation in each series of dimers. It was found that the two correlation lines show the same slope but different intercepts. This clearly indicates that electronic communication within the linkage does not depend on the terminal chromophore, while the terminal π-system affects the magnitude of EISC rates. Separately, a general expression for EISC rate, involving coupling between the terminal and linkage, was derived theoretically.

  19. Synthesis, molecular modeling, thermal and spectral studies of metal complexes of hydrazone derived from 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione and thiosemicarbazide.

    PubMed

    Adly, Omima M I

    2011-09-01

    Metal complexes with the general formula [ML(H2O)(CH3OH)x]·nH2O·(CH3OH)y(NO3)z [M=Cu(II), Ni(II), Co(II), VO(IV), Cr(III), Cd(II), Zn(II) or UO2(VI); x=0-2; y=0,1; z=0,1; n=0-2, 6 and L=hydrazone (H2L) derived from condensation of thiosemicarbazide with 5-acetyl-4-hydroxy-2H-1,3-thiazine-2,6(3H)-dione. The synthesized ligand and its metal complexes have been characterized on the basis of elemental analyses, spectral and magnetic studies as well as thermal gravimetric analysis (TGA). The deprotonated ligand acts as a dibasic tridentate (ONS) via phenolate oxygen, azomethine (CN), and thiolate (C-S) groups. Copper(II) complex exhibits square planar geometry. Nickel(II), chromium(III) and dioxouranium(VI) complexes exhibit octahedral geometry. Cobalt(II), cadmium(II) and zinc(II) complexes showed tetrahedral geometry, whereas oxovanadium(IV) reveals square pyramidal geometry. Thermal analysis are investigated and showed either three or four thermal decomposition steps. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The molecular parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data such as IR and TGA results.

  20. Synthesis, spectroscopic identification, thermal, potentiometric and antibacterial activity studies of 4-amino-5-mercapto-S-triazole Schiff's base complexes

    NASA Astrophysics Data System (ADS)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.; Ammar, Reda A. A.; Chinnathambi, Arunachalam

    2015-05-01

    Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been synthesized [L = 4-pyridin-2-yl-methylene amino-4H-1,2,4-triazole-3-thiol]. The elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (SNN). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.34-10.46 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The Schiff base acts as tridentate ligand coordinated through deprotonated thiolic sulfur, azomethine nitrogen and pyridine nitrogen atoms. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coast-Redfern, Horowitz-Metzger (HM), Piloyan-Novikova (PN) and Broido's equations. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. Both the Schiff's base ligand and its complexes have been screened for antibacterial activities.

  1. Synthesis, spectroscopic, molecular orbital calculation, cytotoxic, molecular docking of DNA binding and DNA cleavage studies of transition metal complexes with N-benzylidene-N'-salicylidene-1,1-diaminopropane

    NASA Astrophysics Data System (ADS)

    Al-Mogren, Muneerah M.; Alaghaz, Abdel-Nasser M. A.; Elbohy, Salwa A. H.

    2013-10-01

    Eight mononuclear chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes of Schiff's base ligand were synthesized and determined by different physical techniques. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the eight metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff base is found to act as tridentate ligand using N2O donor set of atoms leading to an octahedral geometry for the complexes around all the metal ions. Quantum chemical calculations were performed with semi-empirical method to find the optimum geometry of the ligand and its complexes. Additionally in silico, the docking studies and the calculated pharmacokinetic parameters show promising futures for application of the ligand and complexes as high potency agents for DNA binding activity. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption method, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. The Schiff base and their complexes have been screened for their antibacterial activity against bacterial strains [Staphylococcus aureus (RCMB010027), Staphylococcus epidermidis (RCMB010024), Bacillis subtilis (RCMB010063), Proteous vulgaris (RCMB 010085), Klebsiella pneumonia (RCMB 010093) and Shigella flexneri (RCMB 0100542)] and fungi [(Aspergillus fumigates (RCMB 02564), Aspergillus clavatus (RCMB 02593) and Candida albicans (RCMB05035)] by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligand.

  2. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  3. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. PMID:23333690

  4. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Lian, Wen-Jing; Wang, Xin-Tian; Xie, Cheng-Zhi; Tian, He; Song, Xue-Qing; Pan, He-Ting; Qiao, Xin; Xu, Jing-Yuan

    2016-05-31

    Four novel mononuclear Schiff base copper(ii) complexes, namely, [Cu(L)(OAc)]·H2O (), [Cu(HL)(C2O4)(EtOH)]·EtOH (), [Cu(L)(Bza)] () and [Cu(L)(Sal)] () (HL = 1-(((2-((2-hydroxypropyl)amino)ethyl)imino)methyl)naphthalene-2-ol), Bza = benzoic acid, Sal = salicylic acid), were synthesized and characterized by X-ray crystallography, elemental analysis and infrared spectroscopy. Single-crystal diffraction analysis revealed that all the complexes were mononuclear molecules, in which the Schiff base ligand exhibited different coordination modes and conformations. The N-HO and O-HO inter- and intramolecular hydrogen bonding interactions linked these molecules into multidimensional networks. Their interactions with calf thymus DNA (CT-DNA) were investigated by UV-visible and fluorescence spectrometry, as well as by viscosity measurements. The magnitude of the Kapp values of the four complexes was 10(5), indicating a moderate intercalative binding mode between the complexes and DNA. Electrophoresis results showed that all these complexes induced double strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. In addition, the fluorescence spectrum of human serum albumin (HSA) with the complexes suggested that the quenching mechanism of HSA by the complexes was a static process. Moreover, the antiproliferative activity of the four complexes against HeLa (human cervical carcinoma) and HepG-2 (human liver hepatocellular carcinoma) cells evaluated by colorimetric cell proliferation assay and clonogenic assay revealed that all four complexes had improved cytotoxicity against cancer cells. Inspiringly, complex , with salicylic acid as the auxiliary ligand, displayed a stronger anticancer activity, suggesting that a synergistic effect of the Schiff base complex and the nonsteroidal anti-inflammatory drug may be involved in the cell killing process. The biological features of mixed-ligand copper(ii) Schiff base complexes and how acetic auxiliary

  5. Rapid, synergistic extractive spectrophotometric determination of copper(II) by using sensitive chromogenic reagent N″,N″'-bis[(E)-(4-fluorophenyl) methylidene]thiocarbonohydrazide.

    PubMed

    Nalawade, Rekha A; Nalawade, Avinash M; Kamble, Ganesh S; Anuse, Mansing A

    2015-07-01

    A rapid and simple spectrophotometric method was developed for the determination of copper(II) by using newly synthesized chromogenic reagent, N″,N″'-bis[(E)-(4-fluorophenyl)methylidene]thiocarbonohydrazide [bis(4-fluoroPM)TCH]. The reagent is highly sensitive and it forms yellow colored ternary complex with copper(II) in presence pyridine having composition 1:1:2 (M:L:Py) in the acidic pH range. Absorption of colored complex in amyl acetate is measured with reagent as a blank at λmax 375 nm. The synergistic effect is observed due to pyridine forming adduct with reagent in the organic phase. Beer's law was obeyed in the concentration range from 2.0 to 14 μg mL(-1) for copper(II)-[bis(4-fluoroPM)TCH]-Py complex. Molar absorptivity and Sandell's sensitivity values for Cu(II)-bis(4-fluoroPM)TCH]-Py complex are 0.42545×10(5) and 0.0014 μg/cm(2), respectively. The selectivity of the developed method was checked in the presence of various foreign ions. The developed method showed relative standard deviation (R.S.D.) of 0.13% for n=10. The composition of Cu(II)-[bis(4-fluoroPM)TCH]-Py complex was determined by known methods such as Job's method of continuous variation, mole ratio method and slope ratio method. It is found that the ternary complex is stable for more than 24h. Various factors influencing on the degree of complexation, such as, effect of pH, reagent concentration, synergent concentration, solvent etc. were studied. The accuracy and reliability of method was verified by AAS. This method is found to be simple, rapid and reproducible.

  6. Rapid, synergistic extractive spectrophotometric determination of copper(II) by using sensitive chromogenic reagent N″,N″‧-bis[(E)-(4-fluorophenyl) methylidene]thiocarbonohydrazide

    NASA Astrophysics Data System (ADS)

    Nalawade, Rekha A.; Nalawade, Avinash M.; Kamble, Ganesh S.; Anuse, Mansing A.

    2015-07-01

    A rapid and simple spectrophotometric method was developed for the determination of copper(II) by using newly synthesized chromogenic reagent, N″,N″‧-bis[(E)-(4-fluorophenyl)methylidene]thiocarbonohydrazide [bis(4-fluoroPM)TCH]. The reagent is highly sensitive and it forms yellow colored ternary complex with copper(II) in presence pyridine having composition 1:1:2 (M:L:Py) in the acidic pH range. Absorption of colored complex in amyl acetate is measured with reagent as a blank at λmax 375 nm. The synergistic effect is observed due to pyridine forming adduct with reagent in the organic phase. Beer's law was obeyed in the concentration range from 2.0 to 14 μg mL-1 for copper(II)-[bis(4-fluoroPM)TCH]-Py complex. Molar absorptivity and Sandell's sensitivity values for Cu(II)-bis(4-fluoroPM)TCH]-Py complex are 0.42545 × 105 and 0.0014 μg/cm2, respectively. The selectivity of the developed method was checked in the presence of various foreign ions. The developed method showed relative standard deviation (R.S.D.) of 0.13% for n = 10. The composition of Cu(II)-[bis(4-fluoroPM)TCH]-Py complex was determined by known methods such as Job's method of continuous variation, mole ratio method and slope ratio method. It is found that the ternary complex is stable for more than 24 h. Various factors influencing on the degree of complexation, such as, effect of pH, reagent concentration, synergent concentration, solvent etc. were studied. The accuracy and reliability of method was verified by AAS. This method is found to be simple, rapid and reproducible.

  7. Extraction of silver(I) from aqueous solutions in the absence and presence of copper(II) with a methimazole-based ionic liquid.

    PubMed

    Reyna-González, Juan M; Torriero, Angel A J; Siriwardana, Amal I; Burgar, Iko M; Bond, Alan M

    2011-08-21

    The ionic liquid (IL) 2-butylthiolonium bis(trifluoromethanesulfonyl)amide, [mimSBu][NTf(2)], facilitates the efficient extraction of silver(I) from aqueous media via interaction with both the cation and anion components of the IL. Studies with a conventional aqueous-IL two phase system as well as microextraction of silver(I) by a thick IL film adhered to an electrode monitored in situ by cyclic voltammetry, established that [mimSBu][NTf(2)] can extract electroactive silver(I) ions from an aqueous solution. The pH of the aqueous phase decreases upon addition of [mimSBu](+), which is attributed to partial release of the hydrogen attached to the N(3) nitrogen atom of the imidazolium ring. The presence of silver(I) further increase the acidity of the aqueous phase as a consequence of coordination with the IL cation component. Voltammetric and (1)H and (13)C NMR techniques have been used to establish the nature of the silver(I) complexes extracted, and show that the form of interaction with the IL differs from that outlined previously for the extraction of copper(II). Insights on the competition established when silver(I) is extracted in the presence of copper(II) are provided. Finally, it is noted that metallic silver can be directly electrodeposited at the electrode surface after extraction of silver(I) into [mimSBu][NTf(2)] and that back extraction of silver(I) into aqueous media is achieved by addition of an acidic aqueous solution. PMID:21727953

  8. Acid-base properties and copper(II) complexes of dipeptides containing histidine and additional chelating bis(imidazol-2-yl) residues.

    PubMed

    Osz, Katalin; Várnagy, Katalin; Süli-Vargha, Helga; Csámpay, Antal; Sanna, Daniele; Micera, Giovanni; Sóvágó, Imre

    2004-01-01

    Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10. PMID:14659629

  9. Mono- and binuclear copper(II) complexes of new hydrazone ligands derived from 4,6-diacetylresorcinol: Synthesis, spectral studies and antimicrobial activity.

    PubMed

    Shebl, Magdy; El-ghamry, Mosad A; Khalil, Saied M E; Kishk, Mona A A

    2014-05-21

    Two new hydrazone ligands, H2L(1) and H2L(2), were synthesized by the condensation of 4,6-diacetylresorcinol with 3-hydrazino-5,6-diphenyl-1,2,4-triazine and isatin monohydrazone, respectively. The structures of the ligands were elucidated by elemental analyses, IR, (1)H NMR, electronic and mass spectra. Reactions of the ligands with several copper(II) salts, including AcO(-), NO3(-), SO4(2-), Cl(-) and Br(-) afforded mono- and binuclear metal complexes. Also, the ligands were allowed to react with Cu(II) ion in the presence of a secondary ligand (L') [N,O-donor; 8-hydroxyquinoline, N,N-donor; 1,10-phenanthroline or O,O-donor; benzoylacetone]. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, electronic, mass and ESR spectra as well as conductivity and magnetic susceptibility measurements. The ESR spin Hamiltonian parameters of some complexes were calculated. The spectroscopic data showed that the H2L(1) ligand acts as a neutral or monobasic tridentate ligand while the H2L(2) ligand acts as a bis(monobasic tridentate) ligand. The coordination sites with the copper(II) ion are phenolic oxygen, azomethine nitrogen and triazinic nitrogen (H2L(1) ligand) or isatinic oxygen (H2L(2) ligand). The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. The ligands and some metal complexes showed antimicrobial activity. PMID:24607473

  10. Study of structural and dynamic characteristics of copper(II) amino acid complexes in solutions by combined EPR and NMR relaxation methods.

    PubMed

    Bukharov, Mikhail S; Shtyrlin, Valery G; Mukhtarov, Anvar Sh; Mamin, Georgy V; Stapf, Siegfried; Mattea, Carlos; Krutikov, Alexander A; Il'in, Alexander N; Serov, Nikita Yu

    2014-05-28

    Structural features and dynamical behaviour of the copper(ii) bis-complexes with glycine, d-alanine, d-valine, l-serine, l-aspartic acid, l-glutamic acid, l-lysine, l-proline, and sarcosine were studied by combined EPR and NMR relaxation methods. The cis and trans isomers were unambiguously assigned and characterized by EPR data. It was found that addition of a salt background has an influence on the cis-trans isomer equilibrium in favour of the formation of the cis isomer. By comparison of NMRD, DFT computations, and structural data it was shown that only one water molecule is coordinated in the axial position of these complexes. The increased exchange rates of this molecule found for Cu(l-Asp)2(2-), Cu(l-Glu)2(2-), Cu(l-LysH)2(2+), and Cu(l-Pro)2 were attributed to its pushing out by side chain groups of the ligands. By simulation of NMRD profiles an increase of lifetimes of the copper(ii) 2nd coordination sphere water molecules was revealed in the presence of additional carboxylic, alcoholic, or ammonium groups of the ligands, as well as the pyrrolidine ring of proline. The very short lifetimes of the 2nd coordination sphere water molecules (4-13 ps at 298 K) were explained in terms of the Frank-Wen structural model by the existence of cavities which draw in quickly enough water molecules from the 2nd coordination sphere.

  11. Study of structural and dynamic characteristics of copper(II) amino acid complexes in solutions by combined EPR and NMR relaxation methods.

    PubMed

    Bukharov, Mikhail S; Shtyrlin, Valery G; Mukhtarov, Anvar Sh; Mamin, Georgy V; Stapf, Siegfried; Mattea, Carlos; Krutikov, Alexander A; Il'in, Alexander N; Serov, Nikita Yu

    2014-05-28

    Structural features and dynamical behaviour of the copper(ii) bis-complexes with glycine, d-alanine, d-valine, l-serine, l-aspartic acid, l-glutamic acid, l-lysine, l-proline, and sarcosine were studied by combined EPR and NMR relaxation methods. The cis and trans isomers were unambiguously assigned and characterized by EPR data. It was found that addition of a salt background has an influence on the cis-trans isomer equilibrium in favour of the formation of the cis isomer. By comparison of NMRD, DFT computations, and structural data it was shown that only one water molecule is coordinated in the axial position of these complexes. The increased exchange rates of this molecule found for Cu(l-Asp)2(2-), Cu(l-Glu)2(2-), Cu(l-LysH)2(2+), and Cu(l-Pro)2 were attributed to its pushing out by side chain groups of the ligands. By simulation of NMRD profiles an increase of lifetimes of the copper(ii) 2nd coordination sphere water molecules was revealed in the presence of additional carboxylic, alcoholic, or ammonium groups of the ligands, as well as the pyrrolidine ring of proline. The very short lifetimes of the 2nd coordination sphere water molecules (4-13 ps at 298 K) were explained in terms of the Frank-Wen structural model by the existence of cavities which draw in quickly enough water molecules from the 2nd coordination sphere. PMID:24722622

  12. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, {sup 57}Fe Moessbauer spectroscopy and thermal studies

    SciTech Connect

    Travnicek, Zdenek; Herchel, Radovan; Mikulik, Jiri; Zboril, Radek

    2010-05-15

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN){sub 5}NO].H{sub 2}O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN){sub 5}NO].2H{sub 2}O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]octadecane and [Cu(nme){sub 2}Fe(CN){sub 5}NO].H{sub 2}O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, {sup 57}Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, {sup 57}Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe{sub 2}O{sub 4} and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN){sub 5}NO].xH{sub 2}O, where L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1{sup 6,9}]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and {sup 57}Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.

  13. Cross-talk between the octarepeat domain and the fifth binding site of prion protein driven by the interaction of copper(II) with the N-terminus.

    PubMed

    Di Natale, Giuseppe; Turi, Ildikó; Pappalardo, Giuseppe; Sóvágó, Imre; Rizzarelli, Enrico

    2015-03-01

    Prion diseases are a group of neurodegenerative diseases based on the conformational conversion of the normal form of the prion protein (PrP(C)) to the disease-related scrapie isoform (PrP(Sc)). Copper(II) coordination to PrP(C) has attracted considerable interest for almost 20 years, mainly due to the possibility that such an interaction would be an important event for the physiological function of PrP(C). In this work, we report the copper(II) coordination features of the peptide fragment Ac(PEG11)3PrP(60-114) [Ac = acetyl] as a model for the whole N-terminus of the PrP(C) metal-binding domain. We studied the complexation properties of the peptide by means of potentiometric, UV/Vis, circular dichroism and electrospray ionisation mass spectrometry techniques. The results revealed that the preferred histidyl binding sites largely depend on the pH and copper(II)/peptide ratio. Formation of macrochelate species occurs up to a 2:1 metal/peptide ratio in the physiological pH range and simultaneously involves the histidyl residues present both inside and outside the octarepeat domain. However, at increased copper(II)/peptide ratios amide-bound species form, especially within the octarepeat domain. On the contrary, at basic pH the amide-bound species predominate at any copper/peptide ratio and are formed preferably with the binding sites of His96 and His111, which is similar to the metal-binding-affinity order observed in our previous studies. PMID:25649151

  14. Synthesis and antitumor mechanisms of a copper(II) complex of anthracene-9-imidazoline hydrazone (9-AIH).

    PubMed

    Qin, Qi-Pin; Liu, Yan-Cheng; Wang, Hai-Lu; Qin, Jiao-Lan; Cheng, Feng-Jie; Tang, Shang-Feng; Liang, Hong

    2015-07-01

    A new anthracycline derivative, anthracene-9-imidazoline hydrazone (9-AIH), was synthesized and selected as an antitumor ligand to afford a copper(II) complex of 9-AIH, cis-[Cu(II)Cl2(9-AIH)] (1). Complex 1 was structurally characterized by IR, elemental analysis, ESI-MS and single crystal X-ray diffraction analysis. By MTT assay, it was revealed that 1 showed overall a higher in vitro cytotoxicity than 9-AIH towards a panel of human tumour cell lines, with IC50 values from 0.94–3.68 μM, in which the BEL-7404 cell line was the most sensitive to 1. By spectral analyses and gel electrophoresis, the DNA binding affinity of 9-AIH and 1 was determined. 9-AIH was suggested to bind with DNA in an intercalative mode, with a quenching constant of 1.04 × 10(4) M(−1) on the EB–DNA complex. While for 1, both intercalative and covalent binding modes were suggested. By flow cytometry, 1 was found to block the cell cycle of BEL-7404 cells in a dose-dependent mode, in which it induced the G2/M phase arrest at 0.5 μM and induced the S phase arrest at higher concentrations of 1.0 or 2.0 μM. From the cellular morphological observations under different fluorescence probe staining, a dose-dependent manner of 1 to induce cell apoptosis in the late stage was suggested. Comparatively, equivalent apoptotic cells, respectively, in the early and late stages were found when incubated with 2.0 μM of 9-AIH. The mitochondrial membrane potential measured by JC-1 staining and the ROS generation in cells detected using a DCFH-DA probe suggested that the cell apoptosis induced by 1 might undergo the ROS-related mitochondrial pathway. Accordingly, the mutant p53 expression was found to be suppressed and the caspase cascade (caspase-9/3) was consequently activated by 1. This action mechanism for 1 in the BEL-7404 cells was unique and was not found in the presence of 9-AIH under the same conditions, indicating their different antitumor mechanism. Furthermore, the in vivo acute toxicity of 1

  15. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones

    NASA Astrophysics Data System (ADS)

    Kasumov, Veli T.; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X = H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X = H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, 1H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μB per CuII) and 6 (2.79 μB per CuII) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed.

  16. High adsorptive γ-AlOOH(boehmite)@SiO2/Fe3O4 porous magnetic microspheres for detection of toxic metal ions in drinking water.

    PubMed

    Wei, Yan; Yang, Ran; Zhang, Yong-Xing; Wang, Lun; Liu, Jin-Huai; Huang, Xing-Jiu

    2011-10-21

    γ-AlOOH(boehmite)@SiO(2)/Fe(3)O(4) porous magnetic microspheres with high adsorption capacity toward heavy metal ions were found to be useful for the simultaneous and selective electrochemical detection of five metal ions, such as ultratrace zinc(II), cadmium(II), lead(II), copper(II), and mercury(II), in drinking water.

  17. Membrane interactions and conformational preferences of human and avian prion N-terminal tandem repeats: the role of copper(II) ions, pH, and membrane mimicking environments.

    PubMed

    Di Natale, Giuseppe; Pappalardo, Giuseppe; Milardi, Danilo; Sciacca, Michele F M; Attanasio, Francesco; La Mendola, Diego; Rizzarelli, Enrico

    2010-11-01

    The flexible N-terminal domain of the prion protein (PrP(c)) is believed to play a pivotal role in both trafficking of the protein through the cell membrane and its pathogenic conversion into the β sheet-rich scrapie isoform (PrP(sc)). Unlike mammalian PrP(c), avian prion proteins are not known to undergo any pathogenic conformational conversions. Consequently, some critical advances in our understanding of the molecular mechanisms underlying prion pathogenesis are expected from comparative studies of the biophysical properties of the N-terminal domains of the two proteins. The present study addresses the role played by different environmental factors, i.e., copper(II), pH, and membrane-mimicking environments, in assisting the conformational preferences of huPrP60-91 and chPrP53-76, two soluble peptides encompassing the N-terminal copper(II) binding domains of the human and chicken prion proteins, respectively. Moreover, the membrane interactions of huPrP60-91, chPrP53-76, and their copper(II) complexes were evaluated by Trp fluorescence in conjunction with measurements of the variation in thermotropic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) unilamellar vesicles. Circular dichroism experiments revealed that huPrP60-91 adopts a predominant polyproline II conformation in aqueous solution that is destabilized at basic pH or in the presence of trifluoroethanol (TFE). Unlike anionic sodium dodecyl sulfate (SDS), which seems to stabilize the polyproline II conformation further, zwitterionic dodecylphosphocholine (DPC) micelles do not affect the peptide structure. On the contrary, copper(II) promptly promotes an increase in β-turn-rich structures. Differential scanning calorimetry (DSC) and Trp fluorescence assays carried out on DPPC model membranes after incubation with huPrP60-91 showed a marked tendency of the peptide to slowly penetrate the lipid bilayer with a concomitant conformational transition toward an extended β-sheet-like structure

  18. Application of mechanosynthesized azine-decorated zinc(II) metal-organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: a comparative study.

    PubMed

    Tahmasebi, Elham; Masoomi, Mohammad Yaser; Yamini, Yadollah; Morsali, Ali

    2015-01-20

    The three zinc(II) metal-organic frameworks [Zn2(oba)2(4-bpdb)]·(DMF)x (TMU-4), [Zn(oba)(4-bpdh)0.5]n·(DMF)y (TMU-5), and [Zn(oba)(4-bpmb)0.5]n·(DMF)z (TMU-6) [DMF = dimethylformamide, H2oba = 4,4'-oxybisbenzoic acid, 4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene, 4-bpdh = 2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene, and 4-bpmb = N(1),N(4)-bis((pyridin-4-yl)methylene)benzene-1,4-diamine], which contain azine-functionalized pores, have been successfully synthesized by mechanosynthesis as a convenient, rapid, low-cost, solventless, and green process. These MOFs were studied for the removal and extraction of some heavy-metal ions from aqueous samples, and the effects of the basicity and void space of these MOFs on adsorption efficiency were evaluated. The results showed that, for trace amounts of metal ions, the basicity of the N-donor ligands in the MOFs determines the adsorption efficiency of the MOFs for the metal ions. In contrast, at high concentrations of metal ions, the void space of the MOFs plays a main role in the adsorption process. The studies conducted revealed that, among the three MOFs, TMU-6 had a lower adsorption efficiency for metal ions than the other two MOFs. This result can be attributed to the greater basicity of the azine groups on the TMU-4 and TMU-5 pore walls as compared to the imine groups on the N-donor ligands on the TMU-6 pore walls. Subsequently, TMU-5 was chosen as an efficient sorbent for the extraction and preconcentration of trace amounts of some heavy-metal ions including Cd(II), Co(II), Cr(III), Cu(II), and Pb(II), followed by their determination by flow injection inductively coupled plasma optical emission spectrometry. Several variables affecting the extraction efficiency of the analytes were investigated and optimized. The optimized methodology exhibits a good linearity between 0.05 and 100 μg L(-1) (R(2) > 0.9935) and detection limits in the range of 0.01-1.0 μg L(-1). The method has enhancement factors between 42

  19. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  20. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    NASA Astrophysics Data System (ADS)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  1. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    SciTech Connect

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin; Luan, Jian; Qu, Yun; Wang, Xiu-Li

    2014-04-01

    Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D framework with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.

  2. The X-ray absorption spectroscopic model of the copper(II) imidazole complex ion in liquid aqueous solution: a strongly solvated square pyramid.

    PubMed

    Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O

    2012-02-20

    Cu K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near-edge structure (MXAN) analyses were combined to evaluate the structure of the copper(II) imidazole complex ion in liquid aqueous solution. Both methods converged to the same square-pyramidal inner coordination sphere [Cu(Im)(4)L(ax)](2+) (L(ax) indeterminate) with four equatorial nitrogen atoms at EXAFS, 2.02 ± 0.01 Å, and MXAN, 1.99 ± 0.03 Å. A short-axial N/O scatterer (L(ax)) was found at 2.12 ± 0.02 Å (EXAFS) or 2.14 ± 0.06 Å (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9 ± 0.1 Å (EXAFS) or 3.0 ± 0.1 Å (MXAN). In the MXAN fits, only a square-pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge X-ray absorption spectrum, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2 ± 0.3 Å that contributed significant intensity over the entire spectral energy range. Two prominent rising K-edge shoulders at 8987.1 and 8990.5 eV were found to reflect multiple scattering from the 3.0 Å axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric imidazole complex ion in liquid aqueous solution is an axially elongated square-pyramidal core, with a weak nonbonded interaction at the second axial coordination position and a solvation shell of eight nearest-neighbor water molecules. This core square-pyramidal motif has persisted through [Cu(H(2)O)(5)](2+), [Cu(NH(3))(4)(NH(3),H(2)O)](2+), (1, 2) and now [Cu(Im)(4)L(ax))](2+) and appears to be the geometry preferred by unconstrained aqueous-phase copper(II) complex ions. PMID:22316238

  3. Copper(II) Coordination Polymers Self-Assembled from Aminoalcohols and Pyromellitic Acid: Highly Active Precatalysts for the Mild Water-Promoted Oxidation of Alkanes.

    PubMed

    Fernandes, Tiago A; Santos, Carla I M; André, Vânia; Kłak, Julia; Kirillova, Marina V; Kirillov, Alexander M

    2016-01-01

    Three novel water-soluble 2D copper(II) coordination polymers-[{Cu2(μ2-dmea)2(H2O)}2(μ4-pma)]n·4nH2O (1), [{Cu2(μ2-Hedea)2}2(μ4-pma)]n·4nH2O (2), and [{Cu(bea)(Hbea)}4(μ4-pma)]n·2nH2O (3)-were generated by an aqueous medium self-assembly method from copper(II) nitrate, pyromellitic acid (H4pma), and different aminoalcohols [N,N-dimethylethanolamine (Hdmea), N-ethyldiethanolamine (H2edea), and N-benzylethanolamine (Hbea)]. Compounds 2 and 3 represent the first coordination polymers derived from H2edea and Hbea. All the products were characterized by infrared (IR), electron paramagnetic resonance (EPR), and ultraviolet-visible light (UV-vis) spectroscopy, electrospray ionization-mass spectroscopy (ESI-MS(±)), thermogravimetric and elemental analysis, and single-crystal X-ray diffraction (XRD), which revealed that their two-dimensional (2D) metal-organic networks are composed of distinct dicopper(II) or monocopper(II) aminoalcoholate units and μ4-pyromellitate spacers. From the topological viewpoint, the underlying 2D nets of 1-3 can be classified as uninodal 4-connected layers with the sql topology. The structures of 1 and 2 are further extended by multiple intermolecular hydrogen bonds, resulting in three-dimensional (3D) hydrogen-bonded networks with rare or unique topologies. The obtained compounds also act as highly efficient precatalysts for the mild homogeneous oxidation, by aqueous H2O2 in acidic MeCN/H2O medium, of various cycloalkanes to the corresponding alcohols and ketones. Overall product yields up to 45% (based on cycloalkane) were attained and the effects of various reaction parameters were investigated, including the type of precatalyst and acid promoter, influence of water, and substrate scope. Although water usually strongly inhibits the alkane oxidations, a very pronounced promoting behavior of H2O was detected when using the precatalyst 1, resulting in a 15-fold growth of an initial reaction rate in the cyclohexane oxidation on

  4. Copper(II) complexes of neuropeptide gamma with point mutations (S8,16A) products of metal-catalyzed oxidation.

    PubMed

    Błaszak, Marta; Jankowska, Elżbieta; Kowalik-Jankowska, Teresa

    2013-12-01

    To obtain the information about the influence of the serine residues (S8,S16) on the acid-base properties of the neuropeptide gamma, the peptide with point mutations (S8,16A) and its N-acetyl derivative were synthesized. Any additional deprotonations were not observed. It means that the presence of serine residues is necessary in the amino acid sequence of the neuropeptide gamma to have its acid-base properties. The stability constants, stoichiometry and solution structures of copper(II) complexes of the neuropeptide gamma mutants D(1)AGH(4)GQIA(8)H(9)KRH(12)KTDA(16)FVGLM(21)-NH2 (S8,16A) 2ANPG and its N-acetyl derivative Ac-2ANPG were determined in aqueous solution. The equilibrium and structural properties of copper(II) complexes have been characterized by pH-metric, spectroscopic (UV-visible, CD, EPR) and mass spectrometric (MS) methods. At physiological pH7.4 the 2ANPG forms the CuH2L and CuHL complexes in equilibrium with 3N {NH2,βCOO(-)-D(1),2NIm} and 4N {NH2,N(-),2NIm} binding sites, respectively. The exchange Ser on Ala residues does not alter the coordination mode of the peptide. To elucidate the products of the copper(II)-catalyzed oxidation of 2ANPG and Ac-2ANPG the liquid chromatography-mass spectrometry method (LC-MS) and the Cu(II)/H2O2 as a model oxidizing system were employed. For solutions containing a 1:4 peptide-hydrogen peroxide molar ratio oxidation of the methionine residue to methionine sulphoxide was observed. For the 1:1:4 Cu(II)-2ANPG-H2O2 system oxidation of two His residues and cleavage of the G(3)H(4) peptide bond was observed, while for the 1:1:4 Cu(II)-Ac-2ANPG-H2O2 system oxidation of three histidine residues to 2-oxohistidines was also observed.

  5. Solvent-controlled synthesis of tetranuclear cage-like copper(II) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides.

    PubMed

    Dronova, Marina S; Bilyachenko, Alexey N; Yalymov, Alexey I; Kozlov, Yuriy N; Shul'pina, Lidia S; Korlyukov, Alexander A; Arkhipov, Dmitry E; Levitsky, Mikhail M; Shubina, Elena S; Shul'pin, Georgiy B

    2014-01-14

    Two principally different in their molecular architecture isomeric tetranuclear copper(ii) silsesquioxanes, "Globule"-like compound [(PhSiO1.5)12(CuO)4(NaO0.5)4] (1) and "Sandwich"-like derivative [(PhSiO1.5)6(CuO)4(NaO0.5)4(PhSiO1.5)6] (2), were synthesized by the partial cleavage of polymeric copper(ii) silsesquioxane [(PhSiO1.5)2(CuO)]n by tetraphenylcyclotetrasiloxanolate. The route leading to the formation of either 1 or 2 entirely depends on the nature and composition of the solvent used for this reaction. Thus, the process in an ethanol-1-butanol solution gives compound 1. When a 1,4-dioxane-methanol mixture was used, compound 2 was prepared. The structures and unusual crystal packing of the cages were confirmed by the X-ray studies. It has been found that the reaction of benzene with H2O2 in acetonitrile solution at 50 °C catalyzed by 1 requires addition of trifluoroacetic acid (TFA) in low concentration and gives phenol with a turnover number (TON) of 250 after 3 h. The initial reaction rate W0 linearly depends on the concentration of catalyst 2. The oxidation of 1-phenylethanol to acetophenone with hydrogen peroxide catalyzed by complex 1 in the presence of TFA is not efficient. In contrast, 1 exhibited excellent activity in the oxidation with tert-butyl hydroperoxide (TBHP) in the absence of any acid (the yield of acetophenone was close to the quantitative, TON attained 475 after 2 h). A kinetic study of this reaction led to the conclusion that the process occurs with the participation of radicals tert-BuO˙ produced in the Cu-promoted decomposition of TBHP. The mode of dependence of W0 on the initial concentration of TBHP indicates the formation of an intermediate adduct between the catalyst 1 and TBHP (characterized by the equilibrium constant K1≈ 2 M(-1) for the conditions of conducted experiments) followed by subsequent decomposition of the adduct (k2≈ 0.2 s(-1)) to generate an intermediate species tert-BuO˙ which induces the alcohol oxidation.

  6. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    PubMed

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  7. Solvent-controlled synthesis of tetranuclear cage-like copper(II) silsesquioxanes. Remarkable features of the cage structures and their high catalytic activity in oxidation with peroxides.

    PubMed

    Dronova, Marina S; Bilyachenko, Alexey N; Yalymov, Alexey I; Kozlov, Yuriy N; Shul'pina, Lidia S; Korlyukov, Alexander A; Arkhipov, Dmitry E; Levitsky, Mikhail M; Shubina, Elena S; Shul'pin, Georgiy B

    2014-01-14

    Two principally different in their molecular architecture isomeric tetranuclear copper(ii) silsesquioxanes, "Globule"-like compound [(PhSiO1.5)12(CuO)4(NaO0.5)4] (1) and "Sandwich"-like derivative [(PhSiO1.5)6(CuO)4(NaO0.5)4(PhSiO1.5)6] (2), were synthesized by the partial cleavage of polymeric copper(ii) silsesquioxane [(PhSiO1.5)2(CuO)]n by tetraphenylcyclotetrasiloxanolate. The route leading to the formation of either 1 or 2 entirely depends on the nature and composition of the solvent used for this reaction. Thus, the process in an ethanol-1-butanol solution gives compound 1. When a 1,4-dioxane-methanol mixture was used, compound 2 was prepared. The structures and unusual crystal packing of the cages were confirmed by the X-ray studies. It has been found that the reaction of benzene with H2O2 in acetonitrile solution at 50 °C catalyzed by 1 requires addition of trifluoroacetic acid (TFA) in low concentration and gives phenol with a turnover number (TON) of 250 after 3 h. The initial reaction rate W0 linearly depends on the concentration of catalyst 2. The oxidation of 1-phenylethanol to acetophenone with hydrogen peroxide catalyzed by complex 1 in the presence of TFA is not efficient. In contrast, 1 exhibited excellent activity in the oxidation with tert-butyl hydroperoxide (TBHP) in the absence of any acid (the yield of acetophenone was close to the quantitative, TON attained 475 after 2 h). A kinetic study of this reaction led to the conclusion that the process occurs with the participation of radicals tert-BuO˙ produced in the Cu-promoted decomposition of TBHP. The mode of dependence of W0 on the initial concentration of TBHP indicates the formation of an intermediate adduct between the catalyst 1 and TBHP (characterized by the equilibrium constant K1≈ 2 M(-1) for the conditions of conducted experiments) followed by subsequent decomposition of the adduct (k2≈ 0.2 s(-1)) to generate an intermediate species tert-BuO˙ which induces the alcohol oxidation

  8. Determination of magnetic and structural properties in solids containing antiferromagnetically coupled metal centers using NMR methods. Magneto-structural correlations in anhydrous copper(II) n-butyrate

    SciTech Connect

    Campbell, G.C.; Haw, J.F.

    1988-10-19

    A new approach to the investigation of magneto-structural correlations in solids containing antiferromagnetically coupled transition-metal centers is described that illustrates the potential of NMR spectroscopy in such work. The results of a variable-temperature (VT) /sup 13/C cross-polarization magic-angle-spinning (CP/MAS) NMR investigation of anhydrous copper(II) n-butyrate, (Cu(C/sub 3/H/sub 7/COO)/sub 2/)/sub 2/ are reported. Isotropic shifts are found to be primarily contact in origin, and a statistical analysis of their temperature dependence allows the calculation of singlet-triplet energy level separations (-2J), diamagnetic shifts (delta/sub dia/), and electron-nucleus hyperfine coupling constants (A), which are shown to give insight into the mechanisms of electron delocalization along the superexchange pathway. Signal multiplicity can be related to compound structure, which was determined by using x-ray crystallography. The title compound is triclinic and has a space group of P/anti 1/ with a = 9.035 (2) /angstrom/, b = 5.192 (2) /angstrom/, c = 11.695 (3) /angstrom/, ..cap alpha.. = 85.88 (2)/degrees/, ..gamma.. = 109.32 (2)/degrees/, Z = 1, and V = 515.2 (3) /angstrom//sup 3/; the final weighted R value for 2169 reflections was 0.048. 21 references, 4 figures, 4 tables.

  9. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  10. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively. PMID:22749139

  11. Cocrystallization of photosensitive energetic copper(II) perchlorate complexes with the nitrogen-rich ligand 1,2-Di(1H-tetrazol-5-yl)ethane.

    PubMed

    Evers, Jürgen; Gospodinov, Ivan; Joas, Manuel; Klapötke, Thomas M; Stierstorfer, Jörg

    2014-11-01

    Two recently introduced concepts in the design of new energetic materials, namely complexation and cocrystallization, have been applied in the synthesis and characterization of the energetic copper(II) compound "[Cu(dt-5-e)2(H2O)](ClO4)2," which consists of two different complex cations and can be described as a model energetic ionic cocrystal. The presence of both the N-rich 1,2-di(1H-tetrazol-5-yl)ethane ligand and oxidizing perchlorate counterion results in a new type of energetic material. The ionic complex cocrystal consists of a mononuclear and a trinuclear complex unit. It can be obtained by precipitation from perchloric acid or by dehydration of the related mononuclear coordination compound [Cu(dt-5-e)2(H2O)2](ClO4)2·2H2O at 70 °C in the solid state. The transformation starting at 60 °C was monitored by X-ray powder diffraction and thermal analysis. The energetic ionic cocrystal was shown to be a new primary explosive suitable for laser ignition. The different coordination spheres within the ionic cocrystal (octahedral and square pyramidal) were shown by UV/vis/NIR spectroscopy to result in excellent light absorption. PMID:25310513

  12. Hydrolysis mechanisms of BNPP mediated by facial copper(II) complexes bearing single alkyl guanidine pendants: cooperation between the metal centers and the guanidine pendants.

    PubMed

    Zhang, Xuepeng; Liu, Xueping; Phillips, David Lee; Zhao, Cunyuan

    2016-01-28

    The hydrolysis mechanisms of DNA dinucleotide analogue BNPP(-) (bis(p-nitrophenyl) phosphate) catalyzed by mononuclear/dinuclear facial copper(ii) complexes bearing single alkyl guanidine pendants were investigated using density functional theory (DFT) calculations. Active catalyst forms have been investigated and four different reaction modes are proposed accordingly. The [Cu2(L(1))2(μ-OH)](3+) (L(1) is 1-(2-guanidinoethyl)-1,4,7-triazacyclononane) complex features a strong μ-hydroxo mediated antiferromagnetic coupling between the bimetallic centers and the corresponding more stable open-shell singlet state. Three different reaction modes involving two catalysts and a substrate were proposed for L(1) entries and the mode 1 in which an inter-complex nucleophilic attack by a metal bound hydroxide was found to be more favorable. In the L(3)-involved reactions (L(3) is 1-(4-guanidinobutyl)-1,4,7-triazacyclononane), the reaction mode in which an in-plane intracomplex scissoring-like nucleophilic attack by a Cu(ii)-bound hydroxide was found to be more competitive. The protonated guanidine pendants in each proposed mechanism were found to play crucial roles in stabilizing the reaction structures via hydrogen bonds and in facilitating the departure of the leaving group via electrostatic attraction. The calculated results are consistent with the experimental observations that the Cu(ii)-L(3) complexes are hydrolytically more favorable than their L(1)-involved counterparts. PMID:26688285

  13. Biological evaluation of a cytotoxic 2-substituted benzimidazole copper(II) complex: DNA damage, antiproliferation and apoptotic induction activity in human cervical cancer cells.

    PubMed

    Qiao, Xin; Ma, Zhong-Ying; Shao, Jia; Bao, Wei-Guo; Xu, Jing-Yuan; Qiang, Zhao-Yan; Lou, Jian-Shi

    2014-02-01

    Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N'-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10(4 )M(-1)) and the apparent binding constant (K app = 6.67 × 10(6 )M(-1)) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.

  14. Developing Anticancer Copper(II) Pro-drugs Based on the Nature of Cancer Cells and the Human Serum Albumin Carrier IIA Subdomain.

    PubMed

    Gou, Yi; Qi, Jinxu; Ajayi, Joshua-Paul; Zhang, Yao; Zhou, Zuping; Wu, Xiaoyang; Yang, Feng; Liang, Hong

    2015-10-01

    To synergistically enhance the selectivity and efficiency of anticancer copper drugs, we proposed and built a model to develop anticancer copper pro-drugs based on the nature of human serum albumin (HSA) IIA subdomain and cancer cells. Three copper(II) compounds of a 2-hydroxy-1-naphthaldehyde benzoyl hydrazone Schiff-base ligand in the presence pyridine, imidazole, or indazole ligands were synthesized (C1-C3). The structures of three HSA complexes revealed that the Cu compounds bind to the hydrophobic cavity in the HSA IIA subdomain. Among them, the pyridine and imidazole ligands of C1 and C2 are replaced by Lys199, and His242 directly coordinates with Cu(II). The indazole and Br ligands of C3 are replaced by Lys199 and His242, respectively. Compared with the Cu(II) compounds alone, the HSA complexes enhance cytotoxicity in MCF-7 cells approximately 3-5-fold, but do not raise cytotoxicity levels in normal cells in vitro through selectively accumulating in cancer cells to some extent. We find that the HSA complex has a stronger capacity for cell cycle arrest in the G2/M phase of MCF-7 by targeting cyclin-dependent kinase 1 (CDK1) and down-regulating the expression of CDK1 and cyclin B1. Moreover, the HSA complex promotes MCF-7 cell apoptosis possibly through the intrinsic reactive oxygen species (ROS) mediated mitochondrial pathway, accompanied by the regulation of Bcl-2 family proteins.

  15. Influence of pH on the speciation of copper(II) in reactions with the green tea polyphenols, epigallocatechin gallate and gallic acid.

    PubMed

    Pirker, Katharina F; Baratto, Maria Camilla; Basosi, Riccardo; Goodman, Bernard A

    2012-07-01

    Changes in speciation of copper(II) in reactions with epigallocatechin gallate (EGCG) and gallic acid (GA) as a function of pH have been investigated by multifrequency (X- and S-band) EPR spectroscopy in the fluid and frozen states. The EPR spectra show the formation of three distinct mononuclear species with each of the polyphenols, and these are interpreted in terms of one mono- and two bis-complexes. However, di- or polymeric complexes dominate the Cu(II) speciation in the pH range 4-8, and it is only at alkaline pH values that these mononuclear complexes make appreciable contributions to the metal speciation. Each mononuclear complex displays linewidth anisotropy in fluid solution as a consequence of incomplete averaging of the spin Hamiltonian parameters through molecular motion. Rotational correlation times for the individual complexes have been estimated by analysing the lineshape anisotropy of the fluid solution spectra using parameters determined by simulation of the rigid limit spectra. These show that the molecular masses increase with increasing pH, indicating either coordination of increasing numbers of polyphenol molecules as ligands to the copper or the increasing involvement of polyphenol dimers as ligands in the copper coordination sphere.

  16. Binary and ternary copper(II) complexes of a tridentate ONS ligand derived from 2-aminochromone-3 carboxaldehyde and thiosemicarbazide: Synthesis, spectral studies and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Ibrahim, M. A.; Khalil, Saied M. E.; Stefan, S. L.; Habib, H.

    2013-11-01

    A tridentate ONS donor ligand, HL, was synthesized by the condensation of 2-aminochromone-3-carboxaldehyde with thiosemicarbazide. The structure of the ligand was elucidated by elemental analyses, IR, 1H and 13C NMR, electronic and mass spectra. Reaction of the ligand with several copper(II) salts, including AcO-, NO3-, SO42-, Cl-, Br- and ClO4- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO4- and Br- anions as compared to the strongly coordinating power of AcO-, SO42-, Cl- and NO3- anions. Also, the ligand was allowed to react with Cu(II) ion in the presence of a secondary ligand (L‧) [N,O-donor; 8-hydroxyquinoline or N,N-donor; 1,10-phenanthroline]. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, electronic, mass and EPR spectra as well as conductivity and magnetic susceptibility measurements. The EPR spin Hamiltonian parameters of some complexes were calculated. The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. The ligand and most of its metal complexes showed antibacterial activity towards Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  17. Cocrystallization of photosensitive energetic copper(II) perchlorate complexes with the nitrogen-rich ligand 1,2-Di(1H-tetrazol-5-yl)ethane.

    PubMed

    Evers, Jürgen; Gospodinov, Ivan; Joas, Manuel; Klapötke, Thomas M; Stierstorfer, Jörg

    2014-11-01

    Two recently introduced concepts in the design of new energetic materials, namely complexation and cocrystallization, have been applied in the synthesis and characterization of the energetic copper(II) compound "[Cu(dt-5-e)2(H2O)](ClO4)2," which consists of two different complex cations and can be described as a model energetic ionic cocrystal. The presence of both the N-rich 1,2-di(1H-tetrazol-5-yl)ethane ligand and oxidizing perchlorate counterion results in a new type of energetic material. The ionic complex cocrystal consists of a mononuclear and a trinuclear complex unit. It can be obtained by precipitation from perchloric acid or by dehydration of the related mononuclear coordination compound [Cu(dt-5-e)2(H2O)2](ClO4)2·2H2O at 70 °C in the solid state. The transformation starting at 60 °C was monitored by X-ray powder diffraction and thermal analysis. The energetic ionic cocrystal was shown to be a new primary explosive suitable for laser ignition. The different coordination spheres within the ionic cocrystal (octahedral and square pyramidal) were shown by UV/vis/NIR spectroscopy to result in excellent light absorption.

  18. Two polymorphs of 4-(4-hexyloxyphenyl)-2,6-di(pyrazin-2-yl)pyridine and the crystal structure of its copper(II) complex

    NASA Astrophysics Data System (ADS)

    Li, Li; Zhang, Yuan Zhuo; Yang, Chengxiong; Liu, E.; Fettinger, James C.; Zhang, Guoqi

    2016-04-01

    4-(4-Hexyloxyphenyl)-2,6-di(pyrazin-2-yl)pyridine (1), an analogue of the archetypal ligand, 2,2‧:6‧,2″-terpyridine containing additional outer N-donating sets is synthesized through the facile one-step Kröhnke condensation reaction. It is observed that different crystallization conditions affect the molecular packing in 1 and as a result two crystal polymorphs are resolved via single-crystal X-ray diffraction analysis. Distinct intermolecular π…π interactions were found to play a crucial role in driving the formation of polymorphism. The complexation of this ligand with copper(II) dichloride resulted in the formation of a mononuclear complex with CuII being in the chelating cavity of 1. X-ray structural analysis confirms that this is the only product even though the synthesis was conducted under various conditions, remarkably different from the known structure with three CuII cores.

  19. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies

    NASA Astrophysics Data System (ADS)

    Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan

    2016-09-01

    Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.

  20. Enhanced photocatalytic degradation activity over TiO2 nanotubes co-sensitized by reduced graphene oxide and copper(II) meso-tetra(4-carboxyphenyl)porphyrin

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Wan, Junmin; Hu, Zhiwen; Peng, Zhiqin; Wang, Bing

    2016-07-01

    In this paper, TiO2 nanotubes (TNT) co-sensitized with copper(II) meso-tetra(4-carboxyphenyl)porphyrin (CuTCPP) and reduced graphene oxide nanosheets (rGO), which was fabricated through two-step improved hydrothermal method and heating reflux process. The effect of rGO and CuTCPP on the co-photocatalytic behavior of TNT for the degradation of Methylene Blue (MB) were measured under visible light irradiation. The photocatalysts have been characterized and analyzed by high-resolution transmission electron microscopy (TEM), selected area electronic diffraction (SAED), elemental mapping by energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) and electron paramagnetic resonance (EPR). The results provide a deeper insight into the co-photocatalytic mechanism of CuTCPP/rGO-TNT nanocomposites. The degradation results showed a purification of more than 95% MB in wastewater, which is about 5 times higher than that of the pure TNT. The results also confirm the prepared CuTCPP/rGO-TNT nanocomposites possess superior co-photocatalytic activities.