Science.gov

Sample records for nicotinic acetylcholine receptor

  1. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  2. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    PubMed

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  3. Neuronal Nicotinic Acetylcholine Receptors and Epilepsy

    PubMed Central

    Bertrand, Daniel

    2002-01-01

    The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the α4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function. PMID:15309115

  4. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  5. Nicotinic acetylcholine receptor from chick optic lobe.

    PubMed Central

    Norman, R I; Mehraban, F; Barnard, E A; Dolly, J O

    1982-01-01

    An alpha-bungarotoxin-sensitive nicotinic cholinergic receptor from chick optic lobe has been completely purified. Its standard sedimentation coefficient is 9.1 S. The value near 12 S reported for the related component from other brain regions can be reproduced when the initial extraction is by Triton X-100 (rather than Lubrol PX), but other protein is then complexed with it. A single subunit of apparent molecular weight 54,000 is detected, and this subunit is specifically labeled by bromo-[3H]acetylcholine, but only after disulfide reduction. The same size subunit likewise is labeled in the protein (purified similarly) from the rest of the chick brain which can also bind alpha-bungarotoxin and nicotinic ligands. Immunological crossreactivity is demonstrated between both of these proteins with an antiserum to pure acetylcholine receptor from skeletal muscle. The acetylcholine receptor from chick optic lobe and the alpha-bungarotoxin-binding protein from the rest of the brain appear similar or identical by a series of criteria and are related to (but with differences from) peripheral acetylcholine receptors. Images PMID:6175967

  6. [Desensitization of the nicotinic acetylcholine receptor].

    PubMed

    Quiñonez, M; Rojas, L

    1994-01-01

    In biological membranes, ionic channels act speeding up ion movements. Each ionic channel is excited by a specific stimulus (i.e. electric, mechanical, chemical, etc.). Chemically activated ionic channels (CAIC), such as the nicotinic acetylcholine receptor (nAChR), suffer desensitization when the receptor site is still occupied by the agonist molecule. The desensitized CAIC is a non functional channel state regarded as a particular case of receptors rundown. CAIC desensitization only involve reduced activity and not their membrane elimination. Desensitization is important to control synaptic transmission and the development of the nervous system. In this review we discuss results related to its production, modulation and some aspects associated to models that consider it. Finally, an approach combining molecular biology and electrophysiology techniques to understand desensitization and its importance in biological systems is presented.

  7. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  8. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  9. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  10. Modulation of nicotinic acetylcholine receptors by strychnine

    PubMed Central

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  11. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  12. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  13. Primary Structure of Nicotinic Acetylcholine Receptor

    DTIC Science & Technology

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  14. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  15. Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses

    PubMed Central

    Miwa, Julie M.; Freedman, Robert; Lester, Henry A.

    2015-01-01

    Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson’s disease, cognitive decline, epilepsy, and schizophrenia. PMID:21482353

  16. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    PubMed

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  17. Neuronal nicotinic acetylcholine receptors are modulated by zinc.

    PubMed

    Vázquez-Gómez, Elizabeth; García-Colunga, Jesús

    2009-01-01

    It is known that zinc modulates nicotinic acetylcholine receptors (nAChRs). Here, we studied the effects of zinc on neuronal alpha4beta4 nAChRs, expressed in Xenopus oocytes and activated by nicotine. Membrane ion currents elicited by nicotine (10 nM to 100 microM) were enhanced by zinc (100 microM). Maximal zinc potentiation of the nicotine-activated current (2530%) occurred at 50 nM nicotine, and potentiation gradually decreased as the nicotine concentration increased. The EC(50) and IC(50) for the nicotine-activated current were 639 nM and 14.7 microM nicotine, respectively. Both parameters decreased in the presence of zinc to 160 nM and 4.6 microM, respectively, probably due to an increase of sensitivity of nAChRs for nicotine. We used different concentrations and durations of exposure to nicotine, due to desensitization of nAChRs directly depends on both these factors. With 500 nM nicotine and 20 min washing periods between nicotine applications, zinc potentiation remained constant, 901% for 2 min and 813% for 20 min of nicotine exposure. With continuous application of nicotine, zinc potentiation decreased as the time of nicotine exposure increased, 721% for 2 min and 254% for 48 min of nicotine exposure. Our results indicate that zinc-potentiating effects on alpha4beta4 nAChRs strongly depend on both concentration and time of exposure to nicotine, suggesting that zinc potentiation depends on the degree of desensitization.

  18. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor

    PubMed Central

    Williamson, P. T. F.; Verhoeven, A.; Miller, K. W.; Meier, B. H.; Watts, A.

    2007-01-01

    The conformation of the neurotransmitter acetylcholine bound to the fully functional nicotinic acetylcholine receptor embedded in its native membrane environment has been characterized by using frequency-selective recoupling solid-state NMR. Six dipolar couplings among five resolved 13C-labeled atoms of acetylcholine were measured. Bound acetylcholine adopts a bent conformation characterized with a quaternary ammonium-to-carbonyl distance of 5.1 Å. In this conformation, and with its orientation constrained to that previously determined by us, the acetylcholine could be docked satisfactorily in the agonist pocket of the agonist-bound, but not the agonist-free, crystal structure of a soluble acetylcholine-binding protein from Lymnaea stagnali. The quaternary ammonium group of the acetylcholine was determined to be within 3.9 Å of five aromatic residues and its acetyl group close to residues C187/188 of the principle and residue L112 of the complementary subunit. The observed >CO chemical shift is consistent with H bonding to the nicotinic acetylcholine receptor residues γY116 and δT119 that are homologous to L112 in the soluble acetylcholine-binding protein. PMID:17989232

  19. Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure.

    PubMed

    Polli, Joseph R; Dobbins, Dorothy L; Kobet, Robert A; Farwell, Mary A; Zhang, Baohong; Lee, Myon-Hee; Pan, Xiaoping

    2015-03-01

    Nicotine, the major psychoactive compound in tobacco, targets nicotinic acetylcholine receptors (nAChRs) and results in drug dependence. The nematode Caenorhabditis elegans' (C. elegans) genome encodes conserved and extensive nicotinic receptor subunits, representing a useful system to investigate nicotine-induced nAChR expressions in the context of drug dependence. However, the in vivo expression pattern of nAChR genes under chronic nicotine exposure has not been fully investigated. To define the role of nAChR genes involved in nicotine-induced locomotion changes and the development of tolerance to these effects, we characterized the locomotion behavior combining the use of two systems: the Worm Tracker hardware and the WormLab software. Our results indicate that the combined system is an advantageous alternative to define drug-dependent locomotion behavior in C. elegans. Chronic (24-h dosing) nicotine exposure at 6.17 and 61.7μM induced nicotine-dependent behaviors, including drug stimulation, tolerance/adaption, and withdrawal responses. Specifically, the movement speed of naïve worms on nicotine-containing environments was significantly higher than on nicotine-free environments, suggesting locomotion stimulation by nicotine. In contrast, the 24-h 6.17μM nicotine-treated worms exhibited significantly higher speeds on nicotine-free plates than on nicotine-containing plates. Furthermore significantly increased locomotion behavior during nicotine cessation was observed in worms treated with a higher nicotine concentration of 61.7μM. The relatively low locomotion speed of nicotine-treated worms on nicotine-containing environments also indicates adaption/tolerance of worms to nicotine following chronic nicotine exposure. In addition, this study provides useful information regarding the comprehensive in vivo expression profile of the 28 "core" nAChRs following different dosages of chronic nicotine treatments. Eleven genes (lev-1, acr-6, acr-7, acr-11, lev-8, acr

  20. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  1. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  2. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  3. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  4. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  5. Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection

    PubMed Central

    Rommel, Frank R.; Raghavan, Badrinarayanan; Paddenberg, Renate; Kummer, Wolfgang; Tumala, Susanne; Lochnit, Günter; Gieler, Uwe

    2015-01-01

    Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. PMID:25673288

  6. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    PubMed

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  7. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors

    PubMed Central

    Tolu, Stefania; Marti, Fabio; Morel, Carole; Perrier, Carole; Torquet, Nicolas; Pons, Stephanie; de Beaurepaire, Renaud; Faure, Philippe

    2017-01-01

    Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2−/− and β4−/− mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2−/− and β4−/− mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs. PMID:28332590

  8. Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex

    PubMed Central

    Beiranvand, F; Zlabinger, C; Orr-Urtreger, A; Ristl, R; Huck, S; Scholze, P

    2014-01-01

    Background and purpose Nicotinic acetylcholine receptors (nACh receptors) play a central role in the habenulo-interpeduncular system. We studied nicotine-induced release of NA and ACh in the habenula and interpeduncular nucleus (IPN). Experimental approach The habenula and IPN were loaded with [3H]-choline or [3H]-NA and placed in superfusion chambers. [3H]-ACh release was also stimulated using nicotinic agonists, electrical pulses and elevated [KCl]o in hippocampal and cortical slices from rats, wild-type mice and mice lacking α5, α7, β2, or β4 nACh receptor subunits. Finally, we analysed nACh receptor subtypes in the IPN using immunoprecipitation. Key results Nicotine induced release of [3H]-ACh in the IPN of rats and mice. This release was calcium-dependent but not blocked by tetrodotoxin (TTX); moreover, [3H]-ACh release was abolished in β4-knockout mice but was unaffected in β2- and α5-knockout mice. In contrast, nicotine-induced release of [3H]-NA in the IPN and habenula was blocked by TTX and reduced in both β2-knockout and β4-knockout mice, and dose–response curves were right-shifted in α5-knockout mice. Although electrical stimuli triggered the release of both transmitters, [3H]-ACh release required more pulses delivered at a higher frequency. Conclusions and implications Our results confirm previous findings that β4-containing nACh receptors are critical for [3H]-ACh release in the mouse IPN. Experiments using α5-knockout mice also revealed that unlike in the hippocampus, nicotine-induced [3H]-NA release in the habenulo-interpeduncular system is altered in this knockout model. As α5-containing nACh receptors play a key role in nicotine intake, our results add NA to the list of transmitters involved in this mechanism. PMID:25041479

  9. Oseltamivir blocks human neuronal nicotinic acetylcholine receptor-mediated currents.

    PubMed

    Muraki, Katsuhiko; Hatano, Noriyuki; Suzuki, Hiroka; Muraki, Yukiko; Iwajima, Yui; Maeda, Yasuhiro; Ono, Hideki

    2015-02-01

    The effects of oseltamivir, a neuraminidase inhibitor, were tested on the function of neuronal nicotinic acetylcholine receptors (nAChRs) in a neuroblastoma cell line IMR32 derived from human peripheral neurons and on recombinant human α3β4 nAChRs expressed in HEK cells. IMR32 cells predominately express α3β4 nAChRs. Nicotine (nic, 30 μm)-evoked currents recorded at -90 mV in IMR32 cells using the whole-cell patch clamp technique were reversibly blocked by oseltamivir in a concentration-dependent manner. In contrast, an active metabolite of oseltamivir, oseltamivir carboxylate (OC) at 30 μm had little effect on the nic-evoked currents. Oseltamivir also blocked nic-evoked currents derived from HEK cells with recombinant α3β4 nAChRs. This blockade was voltage-dependent with 10, 30 and 100 μm oseltamivir inhibiting ~50% at -100, -60 and -40 mV, respectively. Non-inactivating currents in IMR32 cells and in HEK cells with α3β4 nAChRs, which were evoked by an endogenous nicotinic agonist, ACh (5 μm), were reversibly blocked by oseltamivir. These data demonstrate that oseltamivir blocks nAChRs, presumably via binding to a site in the channel pore.

  10. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  11. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  12. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  13. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  14. Nicotinic Acetylcholine Receptors at the Single-Channel Level.

    PubMed

    Bouzat, Cecilia; Sine, Steven M

    2017-03-05

    Over the past four decades, the patch clamp technique and nicotinic acetylcholine (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding nerve-released ACh and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique toward understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets.

  15. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  16. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation.

    PubMed

    Kuryatov, A; Olale, F A; Choi, C; Lindstrom, J

    2000-03-30

    We have shown previously that chronic exposure to submicromolar concentrations of nicotine permanently inactivates alpha4beta2 and alpha7 neuronal nicotinic acetylcholine receptors while alpha3beta2 acetylcholine receptors are resistant to inactivation. Phosphorylation of the large cytoplasmic domain has been proposed to mediate functional inactivation. Chimeric subunits consisting of human alpha4 sequence from their N-terminus to either the beginning of the first transmembrane domain or the large cytoplasmic domain and alpha3 sequences thereafter formed acetylcholine receptors with beta2 subunits which were as susceptible to nicotine-induced inactivation as wild-type alpha4 acetylcholine receptors. The converse chimeras, containing the N-terminal parts of the alpha3 subunit and the C-terminal parts of the alpha4 subunit, formed acetylcholine receptors with beta2 subunits which were as resistant to nicotine-induced inactivation as wild-type alpha3beta2 acetylcholine receptors. Thus, inactivation of acetylcholine receptors produced by chronic exposure to nicotine results primarily from effects of the agonist on the extracellular and transmembrane domains of the alpha subunit.

  17. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  18. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors.

    PubMed

    Kasheverov, Igor E; Utkin, Yuri N; Tsetlin, Victor I

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric membrane-bound proteins belonging to the large family of ligand-gated ion channels. nAChRs possess various binding sites which interact with compounds of different chemical nature, including peptides. Historically first peptides found to act on nAChR were synthetic fragments of snake alpha-neurotoxins, competitive receptor antagonists. Later it was shown that fragments of glycoprotein from rabies virus, having homology to alpha-neurotoxins, and polypeptide neurotoxins waglerins from the venom of Wagler's pit viper Trimeresurus (Tropidolaemus) wagleri bind in a similar way, waglerins being efficient blockers of muscle-type nAChRs. Neuropeptide substance P appears to interact with the channel moiety of nAChR. beta-Amyloid, a peptide forming senile plaques in Alzheimer's disease, also can bind to nAChR, although the mode of binding is still unclear. However, the most well-studied peptides interacting with the ligand-binding sites of nAChRs are so-called alpha-conotoxins, peptide neurotoxins from marine snails of Conus genus. First alpha-conotoxins were discovered in the late 1970s, and now it is a rapidly growing family due to isolation of peptides from multiple Conus species, as well as to cloning, and chemical synthesis of new analogues. Because of their unique selectivity towards distinct nAChR subtypes, alpha-conotoxins became valuable tools in nAChR research. Recent X-ray structures of alpha-conotoxin complexes with acetylcholine-binding protein, a model of nAChR ligand-binding domains, revealed the details of the nAChR ligand-binding sites and provided the basis for design of novel ligands.

  19. Negative allosteric modulation of nicotinic acetylcholine receptors blocks nicotine self-administration in rats.

    PubMed

    Yoshimura, Ryan F; Hogenkamp, Derk J; Li, Wen Y; Tran, Minhtam B; Belluzzi, James D; Whittemore, Edward R; Leslie, Frances M; Gee, Kelvin W

    2007-12-01

    Drugs that antagonize nicotinic acetylcholine receptors (nAChRs) can be used to inhibit nicotine-induced behavior in both humans and animals. The aim of our experiments is to establish a proof-of-principle that antagonism of nAChRs by negative allosteric modulation can alter behavior in a relevant animal model of addiction, nicotine self-administration. We have identified a novel, negative allosteric modulator of nAChRs, UCI-30002 [N-(1,2,3,4-tetrahydro-1-naphthyl)-4-nitroaniline], with selectivity for the major neuronal nAChR subtypes over muscle-type nAChRs. After systemic administration, UCI-30002 significantly reduces nicotine self-administration in rats on both fixed ratio and progressive ratio schedules of reinforcement. The minimum effective dose that significantly alters nicotine self-administration corresponds to brain concentrations of UCI-30002 that produce at least 30% inhibition of the major neuronal nAChR subtypes measured in vitro. UCI-30002 has no effect on responding for food reinforcement in rats on either type of schedule, indicating that there is no effect on general responding or natural reward. UCI-30002 represents validation of the concept that negative allosteric modulators may have significant benefits as a strategy for treating nicotine addiction and encourages the development of subtype-selective modulators.

  20. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.

    PubMed

    Papke, Roger L; Kem, William R; Soti, Ferenc; López-Hernández, Gretchen Y; Horenstein, Nicole A

    2009-05-01

    Nicotinic receptor activation is inextricably linked to desensitization. This duality affects our ability to develop useful therapeutics targeting nicotinic acetylcholine receptor (nAChR). Nicotine and some alpha7-selective experimental partial agonists produce a transient activation of alpha7 receptors followed by a period of prolonged residual inhibition or desensitization (RID). The object of the present study was to determine whether RID was primarily due to prolonged desensitization or due to channel block. To make this determination, we used agents that varied significantly in their production of RID and two alpha7-selective positive allosteric modulators (PAMs): 5-hydroxyindole (5HI), a type 1 PAM that does not prevent desensitization; and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), a type 2 PAM that reactivates desensitized receptors. The RID-producing compounds nicotine and 3-(2,4-dimethoxybenzylidene)anabaseine (diMeOBA) could obscure the potentiating effects of 5HI. However, through the use of nicotine, diMeOBA, and the RID-negative compound 3-(2,4-dihydroxybenzylidene)anabaseine (diOHBA) in combination with PNU-120596, we confirmed that diMeOBA produces short-lived channel block of alpha7 but that RID is because of the induction of a desensitized state that is stable in the absence of PNU-120596 and activated in the presence of PNU-120596. In contrast, diOHBA produced channel block but only readily reversible desensitization, whereas nicotine produced desensitization that could be converted into activation by PNU-120596 but no demonstrable channel block. Steady-state currents through receptors that would otherwise be desensitized could also be produced by the application of PNU-120596 in the presence of a physiologically relevant concentration of choline (60 microM), which may be significant for the therapeutic development of type 2 PAMs.

  1. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  2. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  3. Looking below the surface of nicotinic acetylcholine receptors

    PubMed Central

    Stokes, Clare; Treinin, Millet; Papke, Roger L.

    2015-01-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype possesses a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains may play defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most-well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction. PMID:26067101

  4. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors

    PubMed Central

    Griguoli, Marilena; Cherubini, Enrico

    2012-01-01

    The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions. PMID:22124144

  5. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  6. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake

    PubMed Central

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L.; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E.

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  7. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions

    PubMed Central

    Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.

    2012-01-01

    Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217

  8. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  9. Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse

    PubMed Central

    Souza, Fred G. Oliveira; Bruce, Kady S.; Strang, Christianne E.; Morley, Barbara J.; Keyser, Kent T.

    2014-01-01

    Purpose The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer’s disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. Methods To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. Results In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype

  10. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine.

    PubMed

    Dani, John A

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the "Cys-loop" superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain.

  11. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Zwart, Ruud; Strotton, Merrick; Ching, Jennifer; Astles, Peter C; Sher, Emanuele

    2014-03-05

    α7β2 is a novel type of nicotinic acetylcholine receptor shown to be uniquely expressed in cholinergic neurons of the basal forebrain and in hippocampal interneurons. We have compared the pharmacological properties of recombinant homomeric α7 and heteromeric α7β2 nicotinic acetylcholine receptors in order to reveal the pharmacological consequences of β2 subunit incorporation into the pentamer. The non-selective agonist epibatidine did not distinguish α7β2 from α7 nicotinic acetylcholine receptors, but three other non-selective agonists (nicotine, cytisine and varenicline) were less efficacious on α7β2 than on α7. A more dramatic change in efficacy was seen with eight different selective α7 agonists. Because of their very low intrinsic efficacy, some compounds became very efficacious functional antagonists at α7β2 receptors. Three α4β2 nicotinic receptor selective agonists that were not active on α7, were also inactive on α7β2, and dihydro-β-erythroidine, an α4β2 receptor-preferring antagonist, inhibited α7 and α7β2 in a similar manner. These results reveal significant effects of β2 incorporation in determining the relative efficacy of several non-selective and α7 selective agonists, and also show that incorporation of β2 subunits does not cause a shift to a more “β2-like” pharmacology of α7 nicotinic acetylcholine receptors.

  12. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  13. Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice.

    PubMed

    Stoker, Astrid K; Marks, Michael J; Markou, Athina

    2015-04-15

    The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of β2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using β2 nACh receptor subunit knockout (β2(-/-)) and wildtype (β2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated β2(+/+) mice compared with saline-treated β2(+/+) mice and nicotine-treated β2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing β2(+/+) mice compared with saline-treated β2(+/+) and nicotine-treated β2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in β2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in β2(-/-) mice may have resulted from the lack of neuroadaptations in β2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished

  14. Acetylcholine Promotes Binding of α-Conotoxin MII for α3β2 Nicotinic Acetylcholine Receptors

    PubMed Central

    Sambasivarao, Somisetti V.; Roberts, Jessica; Bharadwaj, Vivek S.; Slingsby, Jason G.; Rohleder, Conrad; Mallory, Chris; Groome, James R.

    2014-01-01

    α-Conotoxin MII (α-CTxMII) is a 16 amino acid peptide with the sequence GCCSNPVCHLEHSNLC containing disulfide bonds between Cys2-Cys8 and Cys3-Cys16. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand binding affinity, homology models of the heteropentameric α3β2-nAChR were constructed. The models were created in MODELLER using crystal structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3 and β2 subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with commensurate binding energies to previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2-nAChR for α-CTxMII with ACh bound to the receptor, which was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs. PMID:24420650

  15. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  16. CHARACTERIZATION OF NICOTINE ACETYLCHOLINE RECEPTOR SUBUNITS IN THE COCKROACH Periplaneta americana MUSHROOM BODIES REVEALS A STRONG EXPRESSION OF β1 SUBUNIT: INVOLVEMENT IN NICOTINE-INDUCED CURRENTS.

    PubMed

    Taillebois, Emiliane; Thany, Steeve H

    2016-09-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 μM α-bungarotoxin completely inhibited nicotine currents whereas 10 μM d-tubocurarine had a partial effect demonstrating that β1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.

  17. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  18. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    PubMed

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties.

  19. Symposium overview: mechanism of action of nicotine on neuronal acetylcholine receptors, from molecule to behavior.

    PubMed

    Narahashi, T; Fenster, C P; Quick, M W; Lester, R A; Marszalec, W; Aistrup, G L; Sattelle, D B; Martin, B R; Levin, E D

    2000-10-01

    Nicotine has long been known to interact with nicotinic acetylcholine (ACh) receptors since Langley used it extensively to chart sympathetic ganglia a century ago. It has also been used as an effective insecticide. However, it was not until the 1990s that the significance of nicotine was increasingly recognized from the toxicological, pharmacological, and environmental points of view. This is partly because studies of neuronal nicotinic ACh receptors are rapidly emerging from orphan status, fueled by several lines of research. Since Alzheimer's disease is known to be associated with down-regulation of cholinergic activity in the brain, a variety of nicotine derivatives are being tested and developed for treatment of the disease. Public awareness of the adverse effects of nicotine has reached the highest level recently. Since insect resistance to insecticides is one of the most serious issues in the pest-control arena, it is an urgent requirement to develop new insecticides that act on target sites not shared by the existing insecticides. The neuronal nicotinic ACh receptor is one of them, and new nicotinoids are being developed. Thus, the time is ripe to discuss the mechanism of action of nicotine from a variety of angles, including the molecular, physiological, and behavioral points of view. This Symposium covered a wide area of nicotine studies: genetic, genomic, and functional aspects of nicotinic ACh receptors were studied, as related to anthelmintics and insecticides; interactions between ethanol and nicotine out the ACh receptor were analyzed, in an attempt to explain the well-known heavy drinker-heavy smoker correlation; the mechanisms that underlie the desensitization of ACh receptors were studied as related to nicotine action; selective pharmacological profiles of nicotine, and descriptions of some derivatives were described; and chronic nicotine infusion effects on memory were examined using animal models.

  20. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    PubMed Central

    de Jonge, W J; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This ‘nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity. PMID:17502850

  1. The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily*

    PubMed Central

    Changeux, Jean-Pierre

    2012-01-01

    A critical event in the history of biological chemistry was the chemical identification of the first neurotransmitter receptor, the nicotinic acetylcholine receptor. Disciplines as diverse as electrophysiology, pharmacology, and biochemistry joined together in a unified and rational manner with the common goal of successfully identifying the molecular device that converts a chemical signal into an electrical one in the nervous system. The nicotinic receptor has become the founding father of a broad family of pentameric membrane receptors, paving the way for their identification, including that of the GABAA receptors. PMID:23038257

  2. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

    PubMed

    Mine, N; Taniguchi, W; Nishio, N; Izumi, N; Miyazaki, N; Yamada, H; Nakatsuka, T; Yoshida, M

    2015-04-02

    Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.

  3. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    PubMed

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation.

  4. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  5. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  6. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  7. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    PubMed

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  8. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  9. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    PubMed

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-05

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies.

  10. Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine.

    PubMed

    Fenster, C P; Rains, M F; Noerager, B; Quick, M W; Lester, R A

    1997-08-01

    The influence of alpha and beta subunits on the properties of nicotine-induced activation and desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes was examined. Receptors containing alpha4 subunits were more sensitive to activation by nicotine than alpha3-containing receptors. At low concentrations of nicotine, nAChRs containing beta2 subunits reached near-maximal desensitization more rapidly than beta4-containing receptors. The concentration of nicotine producing half-maximal desensitization was influenced by the particular alpha subunit expressed; similar to results for activation, alpha4-containing receptors were more sensitive to desensitizing levels of nicotine than alpha3-containing receptors. The alpha subunit also influenced the rate of recovery from desensitization; this rate was approximately inversely proportional to the apparent nicotine affinity for the desensitized state. The homomeric alpha7 receptor showed the lowest sensitivity to nicotine for both activation and desensitization; alpha7 nAChRs also demonstrated the fastest desensitization kinetics. These subunit-dependent properties remained in the presence of external calcium, although subtle, receptor subtype-specific effects on both the apparent affinities for activation and desensitization and the desensitization kinetics were noted. These data imply that the subunit composition of various nAChRs determines the degree to which receptors are desensitized and/or activated by tobacco-related levels of nicotine. The subtype-specific balance between receptor activation and desensitization should be considered important when the cellular and behavioral actions of nicotine are interpreted.

  11. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    SciTech Connect

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  12. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors.

    PubMed

    McClure-Begley, T D; Papke, R L; Stone, K L; Stokes, C; Levy, A D; Gelernter, J; Xie, P; Lindstrom, J; Picciotto, M R

    2014-03-01

    Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.

  13. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  14. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  15. L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway.

    PubMed

    Di, Xiaojing; Yan, Jingqi; Zhao, Yan; Chang, Yanzhong; Zhao, Baolu

    2012-12-01

    In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a conditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DHβE). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly inhibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice. L-theanine treatment also reduced the upregulation of the α(4), β(2) and α(7) nicotine acetylcholine receptor (nAChR) subunits induced by nicotine in mouse brain regions that related to the dopamine reward pathway, thus decreasing the number of cells that could react to nicotine. In addition, L-theanine treatment inhibited nicotine-induced c-Fos expression in the reward circuit related areas of the mouse brain. Knockdown of c-Fos by siRNA inhibited the excitatory status of cells but not the upregulation of TH induced by nicotine in SH-SY5Y cells. Overall, the present study showed that L-theanine reduced the nicotine-induced reward effects via inhibition of the nAChR-dopamine reward pathway. These results may offer new therapeutic strategies for treatment of tobacco addiction.

  16. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides and Fibronectin Expression in Lung

    DTIC Science & Technology

    2006-12-01

    acetylcholine receptors (nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this...interaction triggers the exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the...nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In fibroblasts, this interaction triggers

  17. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides, and Fibronectin Expression in Lung

    DTIC Science & Technology

    2005-12-01

    nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this interaction triggers the...exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the excessive secretion of...acetylcholine receptors (nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In

  18. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    SciTech Connect

    Middleton, R.E.; Cohen, J.B. )

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  19. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Starkov, Vladislav G; Osipov, Alexey V; Andreeva, Tatyana V; Filkin, Sergey Yu; Gorbacheva, Elena V; Astashev, Maxim E; Tsetlin, Victor I; Utkin, Yuri N

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  20. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  1. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor.

  2. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  3. Chronic Exposure to Nicotine Enhances Insulin Sensitivity through α7 Nicotinic Acetylcholine Receptor-STAT3 Pathway

    PubMed Central

    Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance. PMID:23251458

  4. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor.

    PubMed Central

    Marshall, J; Buckingham, S D; Shingai, R; Lunt, G G; Goosey, M W; Darlison, M G; Sattelle, D B; Barnard, E A

    1990-01-01

    We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA. PMID:1702381

  5. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  6. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  7. α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia.

    PubMed

    Freedman, Robert

    2014-01-01

    α7-Nicotinic acetylcholine receptors have emerged as a potential therapeutic target for the treatment of neurocognitive dysfunctions in schizophrenia that are often resistant to existing antipsychotic drugs. Molecular evidence for involvement in schizophrenia of CHRNA7, the gene for the receptor subunit, in the neurobiology of deficits in attention is a critical rationale for the clinical study of α7-nicotinic receptor agonists to improve neurocognition. Initial clinical trials show enhancement of inhibitory neuron function related to sensory gating and increased attention and working memory, as well as improvement in negative symptoms such as anhedonia and alogia. Further development of this therapeutic strategy requires assessment of interactions with patients' heavy cigarette smoking and the relationship of this mechanism to the therapeutic effects of clozapine and olanzapine, both highly effective therapeutics with significant side effects.

  8. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  9. Differential inhibition of nicotine- and acetylcholine-evoked currents through alpha4beta2 neuronal nicotinic receptors by tobacco cembranoids in Xenopus oocytes.

    PubMed

    Eaton, Misty J; Ospina, Claudia A; Rodríguez, Abimael D; Eterović, Vesna A

    2004-08-05

    In tobacco, there are two types of compounds that interact with neuronal nicotinic acetylcholine receptors (nnAChRs) in the brain. The first is the addictive component of tobacco and an agonist of these receptors, nicotine. The second are cyclic diterpenoids called cembranoids that non-competitively inhibit many types of nnAChRs. Nictotinic receptors composed of alpha4beta2 subunits are the predominant type of nicotinic receptors in the brain. These alpha4beta2 receptors are up-regulated upon chronic exposure to nicotine and have been implicated in nicotine addiction. The present study was designed to determine whether the inhibitory effects of two cembranoids from tobacco [(1S, 2E, 4R, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4R) and its diastereoisomer (1S, 2E, 4S, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4S)] were comparable on acetylcholine (ACh) and nicotine-evoked currents through alpha4beta2 nnAChRs. alpha4beta2 nnAChRs from rat brain were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The dose-response curves for acetylcholine and nicotine were hyperbolic and bell-shaped, respectively. Although there was no difference in the potency between cembranoids 4R and 4S, both of these cembranoids more potently inhibited nicotine-induced currents than acetylcholine-induced currents. Furthermore, both cembranoids were more potent inhibitors of this receptor when they were preincubated for 1 min prior to application of agonist. The finding that cembranoids preferentially inhibit nicotine-induced currents over those elicited by the natural neurotransmitter acetylcholine may have important implications when developing strategies to prevent nicotine addiction and tobacco use.

  10. α7 nicotinic acetylcholine receptors: a therapeutic target in the structure era.

    PubMed

    Taly, Antoine; Charon, Sebastien

    2012-05-01

    The nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels involved in cognitive processes and are associated with brain disorders which makes them interesting drug targets. This article presents a general overview of the receptor to introduce the α7 nAChR as a drug target. The advances in understanding of the structure/function properties of the nAChR produced during the last decade are detailed as they are crucial for rational drug design. The allosteric properties of the nAChR will also be described because they also have important consequences for drug design.

  11. A fluorinated quinuclidine benzamide named LMA 10203 acts as an agonist of insect nicotinic acetylcholine receptors.

    PubMed

    Mathé-Allainmat, Monique; Bodereau-Dubois, Béatrice; Lapied, Bruno; Lebreton, Jacques; Thany, Steeve H

    2012-06-01

    In the present study, we take advantage of the fact that cockroach dorsal unpaired median neurons express different nicotinic acetylcholine receptor subtypes to demonstrate that simple quinuclidine benzamides such as the 2-fluorinated benzamide LMA 10203, could act as an agonist of cockroach α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtype, called nAChR2. Indeed, 1 mM LMA 10203 induced ionic currents which were partially blocked by 0.5 μM α-bungarotoxin and methyllycaconitine and completely blocked by 5 μM mecamylamine. Moreover, the current-voltage curve revealed that the ionic current induced by LMA 10203 increased from -30 mV to +20 mV confirming that it acted as an agonist of α-bungarotoxin-insensitive nAChR2. In addition, 1 mM LMA 10203 induced a depolarization of the sixth abdominal ganglion and this neuroexcitatory activity was completely blocked by 5 μM mecamylamine. These data suggest that nAChR2 was also expressed at the postsynaptic level on the synapse between the cercal afferent nerve and the giant interneurons. Interestingly, despite LMA 10203 being an agonist of cockroach nicotinic receptors, it had a poor insecticidal activity. We conclude that LMA 10203 could be used as an interesting compound to identify specific insect nAChR subtypes.

  12. Caffeine and nicotine decrease acetylcholine receptor clustering in C2C12 myotube culture.

    PubMed

    Kordosky-Herrera, Kaia; Grow, Wade A

    2009-02-01

    As motor neurons approach skeletal muscle during development, agrin is released and induces acetylcholine receptor (AChR) clustering. Our laboratory investigates the effect of environmental agents on skeletal muscle development by using C2C12 cell culture. For the current project, we investigated both short-term and long-term exposure to caffeine, nicotine, or both, at physiologically relevant concentrations. Short-term exposure was limited to the last 48 h of myotube formation, whereas a long-term exposure of 2 weeks allowed for several generations of myoblast proliferation followed by myotube formation. Both agrin-induced and spontaneous AChR clustering frequencies were assessed. For agrin-induced AChR clustering, agrin was added for the last 16 h of myotube formation. Caffeine, nicotine, or both significantly decreased agrin-induced AChR clustering during short-term and long-term exposure. Furthermore, caffeine, nicotine, or both significantly decreased spontaneous AChR clustering during long-term, but not short-term exposure. Surprisingly, caffeine and nicotine in combination did not decrease AChR clustering beyond the effect of either treatment alone. We conclude that physiologically relevant concentrations of caffeine or nicotine decrease AChR clustering. Moreover, we predict that fetuses exposed to caffeine or nicotine may be less likely to form appropriate neuromuscular synapses.

  13. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model?

    PubMed Central

    Bock, Kilian; Plaass, Christian; Coger, Vincent; Peck, Claas-Tido; Reimers, Kerstin; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-01-01

    Objectives: Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. Methods: Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. Results: Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. Conclusion: With the present small-scale study, we could not prove a positive effect of nicotinic

  14. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  15. alpha7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus.

    PubMed

    Alkondon, M; Braga, M F; Pereira, E F; Maelicke, A; Albuquerque, E X

    2000-03-30

    The present report provides new findings regarding modulation of gamma-aminobutyric acid (GABA) transmission by alpha7 nicotinic receptor activity in CA1 interneurons of rat hippocampal slices. Recordings were obtained from tight-seal cell-attached patches of the CA1 interneurons, and agonists were delivered to the neurons via a modified U-tube. Application for 6 s of the alpha7 nicotinic receptor-selective agonist choline (> or =1 mM) to all CA1 interneurons tested triggered action potentials that were detected as fast current transients. The activity triggered by choline terminated well before the end of the agonist pulse, was blocked by the alpha7 nicotinic receptor antagonist methyllycaconitine (50 nM) and was concentration dependent; the higher the concentration of choline the higher the frequency of events and the shorter the delay for detection of the first event. In 40% of the neurons tested, choline-triggered action potentials decreased in amplitude progressively until no more events could be detected despite the presence of the agonist. Primarily, this finding could be explained by Na(+)-channel inactivation associated with membrane depolarization induced by alpha7 nicotinic receptor activation. In 60% of the neurons, the amplitude of choline-induced action potentials was sustained at the intial level, but again the activity did not last as long as the agonist pulse, in this case apparently because of agonist-induced receptor desensitization. These results altogether demonstrate that agonists interacting with alpha7 nicotinic receptors, including the natural transmitter acetylcholine and its metabolite choline, influence GABAergic transmission, not only by activating these receptors, but also by controlling the rate of Na(+)-channel inactivation and/or by inducing receptor desensitization.

  16. Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus.

    PubMed

    Alkondon, M; Pereira, E F; Almeida, L E; Randall, W R; Albuquerque, E X

    2000-10-01

    Behavioral effects of cigarette smoking are attributed to the interactions of nicotine with brain nicotinic acetylcholine receptors (nAChRs). However, the mechanisms by which nAChR function in developing and mature brain is affected by a smoker's level of nicotine (50-500 nM) remain unclear. Thus, the objective of this study was to determine the concentration- and time-dependent effects of nicotine on alpha7 and alpha4beta2 nAChRs, the two major brain subtypes, natively expressed in CA1 interneurons of rat hippocampal slices. Only at concentrations > or =5 microM did nicotine (applied for 6-60 s) elicit action potentials or measurable whole-cell currents (EC(50)=158 microM) in stratum radiatum interneurons that express alpha7 nAChRs. Continuous exposure for 10-15 min of the neurons to nicotine (0.5-2.5 microM) inhibited alpha7 nAChR-mediated currents (IC(50)=640 nM) evoked by choline (10 mM). Nicotine (> or =0.125 microM) applied to the neurons for 1-5 min induced slowly desensitizing whole-cell currents (EC(50)=3.2 microM) in stratum lacunosum moleculare interneurons; this effect was mediated by alpha4beta2 nAChRs. Also via activation of alpha4beta2 nAChRs, nicotine (0.125-0.5 microM) increased the frequency and amplitude of GABAergic postsynaptic currents (PSCs) in stratum radiatum interneurons. However, exposure of the neurons for 10-15 min to nicotine (0.25-0.5 microM) resulted in desensitization of alpha4beta2 nAChRs. It is suggested that nanomolar concentrations of nicotine after acute intake suppress inhibitory inputs to pyramidal cells through a disinhibitory mechanism involving activation of alpha4beta2 nAChRs and desensitization of alpha7 nAChRs, and after chronic intake leads to up-regulation of both receptor subtypes via desensitization. These findings have direct implications to the actions of nicotine in cigarette smokers.

  17. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex.

    PubMed

    Parikh, Vinay; Man, Kingson; Decker, Michael W; Sarter, Martin

    2008-04-02

    Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.

  18. The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine.

    PubMed

    Palmatier, Matthew I; Liu, Xiu; Caggiula, Anthony R; Donny, Eric C; Sved, Alan F

    2007-05-01

    The primary reinforcing effects of nicotine are mediated by the drugs action at central nervous system nicotinic acetylcholine receptors (nAChRs). Although previous studies have demonstrated that nicotine potently enhances responding for non-pharmacological stimuli, the role of nAChRs in this reinforcement-enhancing effect is not known. The two reinforcement-related effects of nicotine can be dissociated in a paradigm that provides concurrent access to drug infusions and a non-pharmacological visual stimulus (VS). The present study characterized the role of nAChRs in the primary reinforcing effect of nicotine and the reinforcement-enhancing effect of nicotine. For rats with access to VS (VS-Only), nicotine (NIC-Only), both reinforcers contingent upon one response (NIC+VS) or both reinforcers contingent upon separate responses (2-Lever), unit dose-response relationships (0, 30, 60, or 90 microg/kg/infusion, free base) were determined over a 22-day acquisition period. Expression of the two reinforcement-related effects of nicotine was manipulated by pharmacological antagonism of nAChRs (1 mg/kg mecamylamine, subcutaneous, 5-min before the session) or by substituting saline for nicotine infusions (ie extinction) over a series of seven test sessions. Unit dose manipulations yielded an inverse dose-response relationship for active lever responding in the NIC+VS group. The dose-response relationships for rats with independent access to each reinforcer (2-Lever group) were relatively flat. For the 2-Lever group, acute mecamylamine challenge blocked the reinforcement-enhancing effects of nicotine, VS-lever responding decreased to basal levels on the first day of mecamylamine treatment or saline substitution (to the level of the VS-Only group). In contrast, nicotine-lever responding decreased gradually over the 7-day testing period (similar to saline extinction). The two reinforcement-related effects of nicotine are mediated by nAChRs but can be dissociated by acute and

  19. Use of Monoclonal Antibodies to Study the Structure and Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1988-03-16

    observed when the sections were coincubated in 400 nrL cold mAb 270. Adjacent Nissl -stained sections were used to identify labeled structures...affinity reagent for the acetylcholine receptor binding site. J Biol Chem 259:11662-11665. 7. Whiting PJ, JM Lindstrom. 1986 . Purification and...characterization of a nicotinic acetylcholine receptor from chick brain. Biochemistry 2502082-2093. 8. Whiting PJ, JM Lindstrom. 1986 . Pharmacological

  20. Identification of a novel nicotinic acetylcholine receptor structural subunit expressed in goldfish retina

    PubMed Central

    1989-01-01

    A new non-alpha (n alpha) member of the nicotinic acetylcholine receptor (nAChR) gene family designated GFn alpha-2 has been identified in goldfish retina by cDNA cloning. This cDNA clone encodes a protein with structural features common to all nAChR subunits sequenced to date; however, unlike all known alpha-subunits of the receptor, it lacks the cysteine residues believed to be involved in acetylcholine binding. Northern blot analysis shows multiple transcripts hybridizing to the GFn alpha-2 cDNA in goldfish retina but undetectable levels of hybridizable RNA in brain, muscle, or liver. S1 nuclease protection experiments indicate that multiple mRNAs are expressed in retina with regions identical or very similar to the GFn alpha-2 sequence. In situ hybridization shows that the gene encoding GFn alpha-2 is expressed predominantly in the ganglion cell layer of the retina. PMID:2465296

  1. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function.

    PubMed

    Boffi, Juan Carlos; Marcovich, Irina; Gill-Thind, JasKiran K; Corradi, Jeremías; Collins, Toby; Lipovsek, María Marcela; Moglie, Marcelo; Plazas, Paola V; Craig, Patricio O; Millar, Neil S; Bouzat, Cecilia; Elgoyhen, Ana Belén

    2017-03-01

    Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.

  2. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function

    PubMed Central

    Boffi, Juan Carlos; Marcovich, Irina; Gill-Thind, JasKiran K.; Corradi, Jeremías; Collins, Toby; Lipovsek, María Marcela; Moglie, Marcelo; Plazas, Paola V.; Craig, Patricio O.; Millar, Neil S.; Bouzat, Cecilia

    2017-01-01

    Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits. PMID:28069778

  3. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit.

    PubMed Central

    Sawruk, E; Schloss, P; Betz, H; Schmitt, B

    1990-01-01

    Two genes, ard and als, are known to encode subunits of the nicotinic acetylcholine receptor (nAChR) in Drosophila. Here we describe the isolation of cDNA clones encoding a novel member (SAD, or alpha 2) of this receptor protein family. The deduced amino acid sequence displays high homology to the ALS protein and shares structural features with ligand binding nAChR alpha-subunits. Sad transcripts accumulate during major periods of neuronal differentiation and, in embryos, are localized in the central nervous system. Expression of SAD cRNA in Xenopus oocytes generates cation channels that are gated by nicotine. These data indicate heterogeneity of nAChRs in Drosophila. Images Fig. 3. Fig. 4. PMID:1697262

  4. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    PubMed

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-03-07

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.

  5. The α6 nicotinic acetylcholine receptor subunit influences ethanol-induced sedation.

    PubMed

    Kamens, Helen M; Hoft, Nicole R; Cox, Ryan J; Miyamoto, Jill H; Ehringer, Marissa A

    2012-08-01

    Alcohol and nicotine are often co-used and data from human and animals studies have demonstrated that common genes underlie responses to these two drugs. Recently, the genes that code for the subunits of the nicotinic acetylcholine receptors have been implicated as a common genetic mediator for alcohol and nicotine responses. The mammalian genes that code for the α6 and β3 subunits of the nicotinic acetylcholine receptor (Chrna6 and Chrnb3, respectively) are located adjacent to each other on human and mouse chromosome 8. These subunits have gained attention as potential regulators of drug behaviors because of their expression in the striatum where they have been shown to modulate dopamine release. Human genetic studies have shown that variation in these genes is associated with alcohol phenotypes. In the current experiments, mice lacking the Chrna6 or Chrnb3 gene were tested for three ethanol behaviors: choice ethanol consumption, ataxia, and sedation. Wildtype (WT), heterozygous (HET), and knockout (KO) mice of each strain went through a standard 2-bottle choice drinking paradigm, the balance beam, and the Loss of Righting Reflex (LORR) paradigm. No genotypic effects on any of the 3 behavioral tasks were observed in Chrnb3 animals. While the Chrna6 gene did not significantly influence ethanol consumption (g/kg) or ataxia, mice lacking the α6 subunit took significantly longer to recover their righting reflex than WT animals. These data provide evidence that receptors containing this subunit modulate the sedative effects of ethanol. Further work examining other models of ethanol consumption and behavioral responses to ethanol is needed to fully characterize the role of these receptor subunits in modulating ethanol responses.

  6. Presynaptic α7 Nicotinic Acetylcholine Receptors Enhance Hippocampal Mossy Fiber Glutamatergic Transmission via PKA Activation

    PubMed Central

    Cheng, Qing

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory. However, the mechanism of nicotine's action on cognitive function remains elusive. We performed patch-clamp recordings from hippocampal CA3 pyramidal neurons to determine the effect of nicotine on mossy fiber glutamatergic synaptic transmission. We found that nicotine in combination with NS1738, an α7 nAChR-positive allosteric modulator, strongly potentiated the amplitude of evoked EPSCs (eEPSCs), and reduced the EPSC paired-pulse ratio. The action of nicotine and NS1738 was mimicked by PNU-282987 (an α7 nAChR agonist), and was absent in α7 nAChR knock-out mice. These data indicate that activation of α7 nAChRs was both necessary and sufficient to enhance the amplitude of eEPSCs. BAPTA applied postsynaptically failed to block the action of nicotine and NS1738, suggesting again a presynaptic action of the α7 nAChRs. We also observed α7 nAChR-mediated calcium rises at mossy fiber giant terminals, indicating the presence of functional α7 nAChRs at presynaptic terminals. Furthermore, the addition of PNU-282987 enhanced action potential-dependent calcium transient at these terminals. Last, the potentiating effect of PNU-282987 on eEPSCs was abolished by inhibition of protein kinase A (PKA). Our findings indicate that activation of α7 nAChRs at presynaptic sites, via a mechanism involving PKA, plays a critical role in enhancing synaptic efficiency of hippocampal mossy fiber transmission. PMID:24381273

  7. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo

    PubMed Central

    Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.

    2012-01-01

    Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901

  8. Inhibitory effects of tramadol on nicotinic acetylcholine receptors in adrenal chromaffin cells and in Xenopus oocytes expressing alpha 7 receptors.

    PubMed

    Shiraishi, Munehiro; Minami, Kouichiro; Uezono, Yasuhito; Yanagihara, Nobuyuki; Shigematsu, Akio; Shibuya, Izumi

    2002-05-01

    1. Tramadol has been used clinically as an analgesic; however, the mechanism of its analgesic effects is still unknown. 2. We used bovine adrenal chromaffin cells to investigate effects of tramadol on catecholamine secretion, nicotine-induced cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases and membrane current changes. We also investigated effects of tramadol on alpha7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. 3. Tramadol concentration-dependently suppressed carbachol-induced catecholamine secretion to 60% and 27% of the control at the concentration of 10 and 100 microM, respectively, whereas it had little effect on veratridine- or high K(+)-induced catecholamine secretion. 4. Tramadol also suppressed nicotine-induced ([Ca(2+)](i)) increases in a concentration-dependent manner. Tramadol inhibited nicotine-induced inward currents, and the inhibition was unaffected by the opioid receptor antagonist naloxone. 5. Tramadol inhibited nicotinic currents carried by alpha7 receptors expressed in Xenopus oocytes. 6. Tramadol inhibited both alpha-bungarotoxin-sensitive and -insensitive nicotinic currents in bovine adrenal chromaffin cells. 7. In conclusion, tramadol inhibits catecholamine secretion partly by inhibiting nicotinic AChR functions in a naloxone-insensitive manner and alpha7 receptors are one of those inhibited by tramadol.

  9. Parallel Anxiolytic-Like Effects and Upregulation of Neuronal Nicotinic Acetylcholine Receptors Following Chronic Nicotine and Varenicline

    PubMed Central

    Turner, Jill R.; Castellano, Laura M.

    2011-01-01

    Introduction: Clinical and preclinical studies suggest that regulation of nicotinic acetylcholine receptors (nAChR) maybe involved in the etiology of withdrawal symptoms. Methods: We evaluated heteromeric nAChR regulation via [3H]epibatidine binding following cessation of chronic nicotine or varenicline treatment. Animals were concurrently tested in the marble-burying test to evaluate treatment-related effects. Results: We found that both nicotine (18 mg/kg/day, free base) and varenicline (1.8 mg/kg/day) chronically administered for 14 days upregulated nAChRs significantly in the cortex, hippocampus, striatum, and thalamus. The duration of upregulation (up to 72 hr) was both drug and region specific. In addition to nAChR upregulation, chronic administration of both nicotine and varenicline had anxiolytic-like effects in the marble-burying test. This effect was maintained for 48 hr following cessation of varenicline but was absent 24 hr following cessation from nicotine. Additionally, marble-burying behavior positively correlated to the regulation of cortical nAChRs following cessation of either treatment. Conclusions: Varenicline has been shown to be an efficacious smoking cessation aid, with a proposed mechanism of action that includes modulation of dopamine release in reward areas of the brain. Our studies show that varenicline elicits both anxiolytic effects in the marble-burying test as well as region- and time-specific receptor upregulation. These findings suggest receptor upregulation as a mechanism for its efficacy as a smoking cessation therapy. PMID:21097981

  10. Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death.

    PubMed

    Lavezzi, Anna Maria; Cappiello, Achille; Pusiol, Teresa; Corna, Melissa Felicita; Termopoli, Veronica; Matturri, Luigi

    2015-01-15

    This study indicates the impact of nicotine and pesticides (organochlorine and organophosphate insecticides used in agriculture) on neuronal α7-nicotinic acetylcholine receptor expression in brainstem regions receiving cholinergic projections in human perinatal life. An in-depth anatomopathological examination of the autonomic nervous system and immunohistochemistry to analyze the α7-nicotinic acetylcholine receptor expression in the brainstem from 44 fetuses and newborns were performed. In addition, the presence of selected agricultural pesticides in cerebral cortex samples of the victims was determined by specific analytical procedures. Hypodevelopment of brainstem structures checking the vital functions, frequently associated with α7-nicotinic acetylcholine receptor immunopositivity and smoke absorption in pregnancy, was observed in high percentages of victims of sudden unexpected perinatal death. In nearly 30% of cases however the mothers never smoked, but lived in rural areas. The search for pesticides highlighted in many of these cases traces of both organochlorine and organophosphate pesticides. We detain that exposition to pesticides in pregnancy produces homologous actions to those of nicotine on neuronal α7-nicotinic acetylcholine receptor, allowing to developmental alterations of brainstem vital centers in victims of sudden unexplained death.

  11. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    PubMed Central

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  12. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.

    PubMed

    Hogan, Eric M; Casserly, Alison P; Scofield, Michael D; Mou, Zhongming; Zhao-Shea, Rubing; Johnson, Chris W; Tapper, Andrew R; Gardner, Paul D

    2014-12-01

    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.

  13. A method for soluble overexpression of the 7 nicotinic acetylcholine receptor extracellular domain

    NASA Astrophysics Data System (ADS)

    Fischer, Markus; Corringer, Pierre-Jean; Schott, Karin; Bacher, Adelbert; Changeux, Jean-Pierre

    2001-03-01

    We describe the construction of a soluble protein carrying the N-terminal extracellular domain (ECD) of the 7 subunit of the nicotinic acetylcholine receptor. The approach was to fuse the 7 ECD at the C and N termini of several monomeric and pentameric soluble carrier proteins and to investigate the soluble expression of the product in Escherichia coli. An initial screening of six carrier proteins resulted in the selection of a fusion protein comprising, from the N to the C terminus, the maltose binding protein, a 17-aa linker containing an enterokinase binding site, and the α7 ECD. This protein is soluble upon expression in bacteria and is purified by affinity chromatography. It binds the competitive nicotinic antagonist α-bungarotoxin with 2.5 μM affinity and displays a CD spectrum corresponding to a folded protein. The method might be suitable to produce large quantities of protein for crystallization and immunochemical experiments.

  14. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors.

    PubMed

    Singhal, Sachin K; Zhang, Li; Morales, Marisela; Oz, Murat

    2007-02-01

    The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.

  15. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.

    PubMed

    Beene, Darren L; Brandt, Gabriel S; Zhong, Wenge; Zacharias, Niki M; Lester, Henry A; Dougherty, Dennis A

    2002-08-13

    A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.

  16. GLUTAMATERGIC SYNAPSE FORMATION IS PROMOTED BY α7-CONTAINING NICOTINIC ACETYLCHOLINE RECEPTORS

    PubMed Central

    Lozada, Adrian F.; Wang, Xulong; Gounko, Natalia V.; Massey, Kerri A.; Duan, Jingjing; Liu, Zhaoping; Berg, Darwin K.

    2012-01-01

    Glutamate is the primary excitatory transmitter in adult brain, acting through synapses on dendritic spines and shafts. Early in development, however, when glutamatergic synapses are only beginning to form, nicotinic cholinergic excitation is already widespread; it is mediated by acetylcholine activating nicotinic acetylcholine receptors (nAChRs) that generate waves of activity across brain regions. A major class of nAChRs contributing at this time is a species containing α7 subunits (α7-nAChRs). These receptors are highly permeable to calcium, influence a variety of calcium-dependent events, and are diversely distributed throughout the developing CNS. Here we show that α7-nAChRs unexpectedly promote formation of glutamatergic synapses during development. The dependence on α7-nAChRs becomes clear when comparing wild-type mice with mice constitutively lacking the α7-nAChR gene. Ultrastructural analysis, immunostaining, and patch-clamp recording all reveal synaptic deficits when α7-nAChR input is absent. Similarly, nicotinic activation of α7-nAChRs in wild-type organotypic culture, as well as cell culture, increases the number of glutamatergic synapses. RNA interference demonstrates that the α7-nAChRs must be expressed in the neuron being innervated for normal innervation to occur. Moreover the deficits persist throughout the developmental period of major de novo synapse formation and are still fully apparent in the adult. GABAergic synapses, in contrast, are undiminished in number under such conditions. As a result, mice lacking α7-nAChRs have an altered balance in the excitatory/inhibitory input they receive. This ratio represents a fundamental feature of neural networks and shows for the first time that endogenous nicotinic cholinergic signaling plays a key role in network construction. PMID:22649244

  17. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  18. Selective actions of Lynx proteins on different nicotinic acetylcholine receptors in the locust, Locusta migratoria manilensis.

    PubMed

    Wang, Xin; Bao, Haibo; Sun, Huahua; Zhang, Yixi; Fang, Jichao; Liu, Qinghong; Liu, Zewen

    2015-08-01

    Nicotinic acetylcholine receptors (nAChRs) are major neurotransmitter receptors and targets of neonicotinoid insecticides in the insect nervous system. The full function of nAChRs is often dependent on associated proteins, such as chaperones, regulators and modulators. Here, three Lynx (Ly-6/neurotoxin) proteins, Loc-lynx1, Loc-lynx2 and Loc-lynx3, were identified in the locust, Locusta migratoria manilensis. Co-expression with Lynx resulted in a dramatic increase in agonist-evoked macroscopic currents on nAChRs Locα1/β2 and Locα2/β2 in Xenopus oocytes, but no changes in agonist sensitivity. Loc-lynx1 and Loc-lynx3 only modulated nAChRs Locα1/β2 while Loc-lynx2 modulated Locα2/β2 specifically. Meanwhile, Loc-lynx1 induced a more significant increase in currents evoked by imidacloprid and epibatidine than Loc-lynx3, and the effects of Loc-lynx1 on imidacloprid and epibatidine were significantly higher than those on acetylcholine. Among three lynx proteins, only Loc-lynx1 significantly increased [(3) H]epibatidine binding on Locα1/β2. The results indicated that Loc-lynx1 had different modulation patterns in nAChRs compared to Loc-lynx2 and Loc-lynx3. Taken together, these findings indicated that three Lynx proteins were nAChR modulators and had selective activities in different nAChRs. Lynx proteins might display their selectivities from three aspects: nAChR subtypes, various agonists and different modulation patterns. Insect Lynx (Ly-6/neurotoxin) proteins act as the allosteric modulators on insect nicotinic acetylcholine receptors (nAChRs), the important targets of insecticides. We found that insect lynx proteins showed their selectivities from at least three aspects: nAChR subtypes, various agonists and different modulation patterns.

  19. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists.

    PubMed

    Papke, Roger L; Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A

    2011-05-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)(2)(β2)(3), (α4)(3)(β2)(2), and (α4)(2)(β2)(2)α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, "run-up" of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development.

  20. Monkey adrenal chromaffin cells express α6β4* nicotinic acetylcholine receptors.

    PubMed

    Hernández-Vivanco, Alicia; Hone, Arik J; Scadden, Mick L; Carmona-Hidalgo, Beatriz; McIntosh, J Michael; Albillos, Almudena

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) that contain α6 and β4 subunits have been demonstrated functionally in human adrenal chromaffin cells, rat dorsal root ganglion neurons, and on noradrenergic terminals in the hippocampus of adolescent mice. In human adrenal chromaffin cells, α6β4* nAChRs (the asterisk denotes the possible presence of additional subunits) are the predominant subtype whereas in rodents, the predominant nAChR is the α3β4* subtype. Here we present molecular and pharmacological evidence that chromaffin cells from monkey (Macaca mulatta) also express α6β4* receptors. PCR was used to show the presence of transcripts for α6 and β4 subunits and pharmacological characterization was performed using patch-clamp electrophysiology in combination with α-conotoxins that target the α6β4* subtype. Acetylcholine-evoked currents were sensitive to inhibition by BuIA[T5A,P6O] and MII[H9A,L15A]; α-conotoxins that inhibit α6-containing nAChRs. Two additional agonists were used to probe for the expression of α7 and β2-containing nAChRs. Cells with currents evoked by acetylcholine were relatively unresponsive to the α7-selctive agonist choline but responded to the agonist 5-I-A-85380. These studies provide further insights into the properties of natively expressed α6β4* nAChRs.

  1. The β2 nicotinic acetylcholine receptor subunit differentially influences ethanol behavioral effects in the mouse.

    PubMed

    Dawson, Anton; Miles, Micheal F; Damaj, M Imad

    2013-03-01

    The high co-morbidity between alcohol (ethanol) and nicotine abuse suggests that nicotinic acetylcholine receptors (nAChRs), thought to underlie nicotine dependence, may also be involved in alcohol dependence. The β2* nAChR subtype serves as a potential interface for these interactions since they are the principle mediators of nicotine dependence and have recently been shown to modulate some acute responses to ethanol. Therefore, the aim of this study was to more fully characterize the role of β2* nAChRs in ethanol-responsive behaviors in mice after acute exposure to the drug. We conducted a battery of tests in mice lacking the β2* coding gene (Chrnb2) or pretreated with a selective β2* nAChR antagonist for a range of ethanol-induced behaviors including locomotor depression, hypothermia, hypnosis, and anxiolysis. We also tested the effect of deletion on voluntary escalated ethanol consumption in an intermittent access two-bottle choice paradigm to determine the extent of these effects on drinking behavior. Our results showed that antagonism of β2* nAChRs modulated some acute behaviors, namely by reducing recovery time from hypnosis and enhancing the anxiolytic-like response produced by acute ethanol in mice. Chrnb2 deletion had no effect on ethanol drinking behavior, however. We provide further evidence that β2* nAChRs have a measurable role in mediating specific behavioral effects induced by acute ethanol exposure without affecting drinking behavior directly. We conclude that these receptors, along with being key components in nicotine dependence, may also present viable candidates in the discovery of the molecular underpinnings of alcohol dependence.

  2. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    PubMed Central

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets. PMID:27559543

  3. Brain α4β2 nicotinic acetylcholine receptors are involved in the secretion of noradrenaline and adrenaline from adrenal medulla in rats.

    PubMed

    Shimizu, Takahiro; Tanaka, Kenjiro; Hasegawa, Takashi; Yokotani, Kunihiko

    2011-03-11

    Recently, we reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (a non-selective agonist of nicotinic acetylcholine receptors) elevates plasma noradrenaline and adrenaline through brain nicotinic acetylcholine receptor-mediated mechanisms in rats. In the present study, we characterized the receptors involved in these responses using selective agonists and antagonists of nicotinic acetylcholine receptor subtypes in anesthetized rats. (±)-Epibatidine (5 and 10nmol/animal, i.c.v.) and (-)-nicotine (250 and 500nmol/animal, i.c.v.) both elevated plasma noradrenaline and adrenaline (adrenaline>noradrenaline) but the former was more efficient than the latter. The (±)-epibatidine (5nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was reduced by dihydro-β-erythroidine (a selective antagonist of α4β2 nicotinic acetylcholine receptors) (100 and 300nmol/animal, i.c.v.), while methyllycaconitine (a selective antagonist of α7 nicotinic acetylcholine receptors) (100 and 300nmol/animal, i.c.v.) had no effect on the (±)-epibatidine-induced responses. RJR-2403 (a selective agonist of α4β2 nicotinic acetylcholine receptors) (2.5 and 5μmol/animal, i.c.v.) elevated plasma noradrenaline and adrenaline (adrenaline>noradrenaline), while PNU-282987 (a selective agonist of α7 nicotinic acetylcholine receptors) (2.5 and 5μmol/animal, i.c.v.) had no effect. Furthermore, the RJR-2403 (5μmol/animal, i.c.v.)-induced responses were abolished by acute bilateral adrenalectomy. Immunohistochemical procedures demonstrated the expression of α4 and β2 nicotinic acetylcholine receptor subunits on the spinally projecting hypothalamic paraventricular neurons. Taken together, brain α4β2 nicotinic acetylcholine receptors seem to be involved in the secretion of noradrenaline and adrenaline from adrenal medulla in rats.

  4. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  5. Cloning and mapping of the mouse {alpha}7-neuronal nicotinic acetylcholine receptor

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1995-03-20

    We report the isolation of cDNA clones for the mouse {alpha}7 neuronal nicotinic acetylcholine receptor subunit (gene symbol Acra7), the only nicotinic receptor subunit known to bind a-bungarotoxin in mammalian brain. This gene may have relevance to nicotine sensitivity and to some electrophysiologic findings in schizophrenia. The mouse {alpha}7 subunit gene encodes a protein of 502 amino acids with substantial identity to the rat (99.6%), human (92.8%), and chicken (87.5%) amino acid sequences. The {alpha}7 gene was mapped to mouse chromosome 7 near the p locus with the following gene order from proximal to distal: Myod1-3.5 {+-}1.7 cM-Gas2-0.9 cM {+-} 0.9 cM-D7Mit70-1.8 {+-} 1.2 cM- Acra7-4.4 {+-}1.0 cM-Hras1-ps11/Igf1r/Snrp2a. The human gene was confirmed to map to the homologous region of human chromosome 15q13-q14. 26 refs., 3 figs.

  6. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    SciTech Connect

    Miles, K.; Anthony, D.T.; Rubin, L.L.; Greengard, P.; Huganir, R.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximal response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.

  7. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.

    PubMed

    Kim, Sanguk; Chamberlain, Aaron K; Bowie, James U

    2004-08-01

    The nicotinic acetylcholine receptor is a neurotransmitter-gated ion channel in the postsynaptic membrane. It is composed of five homologous subunits, each of which contributes one transmembrane helix--the M2 helix--to create the channel pore. The M2 helix from the delta subunit is capable of forming a channel by itself. Although a model of the receptor was recently proposed based on a low-resolution, cryo-electron microscopy density map, we found that the model does not explain much of the other available experimental data. Here we propose a new model of the M2 channel derived solely from helix packing and symmetry constraints. This model agrees well with experimental results from solid-state NMR, chemical reactivity, and mutagenesis experiments. The model depicts the channel pore, the channel gate, and the residues responsible for cation specificity.

  8. The Protective Effect of Alpha 7 Nicotinic Acetylcholine Receptor Activation on Critical Illness and Its Mechanism

    PubMed Central

    REN, Chao; TONG, Ya-lin; LI, Jun-cong; LU, Zhong-qiu; YAO, Yong-ming

    2017-01-01

    Critical illnesses and injuries are recognized as major threats to human health, and they are usually accompanied by uncontrolled inflammation and dysfunction of immune response. The alpha 7 nicotinic acetylcholine receptor (α7nAchR), which is a primary receptor of cholinergic anti-inflammatory pathway (CAP), exhibits great benefits for critical ill conditions. It is composed of 5 identical α7 subunits that form a central pore with high permeability for calcium. This putative structure is closely associated with its functional states. Activated α7nAChR exhibits extensive anti-inflammatory and immune modulatory reactions, including lowered pro-inflammatory cytokines levels, decreased expressions of chemokines as well as adhesion molecules, and altered differentiation and activation of immune cells, which are important in maintaining immune homeostasis. Well understanding of the effects and mechanisms of α7nAChR will be of great value in exploring effective targets for treating critical diseases. PMID:28123345

  9. Activation and desensitization of peripheral muscle and neuronal nicotinic acetylcholine receptors by selected, naturally-occurring pyridine alkaloids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...

  10. The role of the a7 subunit of the nicotinic acetylcholine receptor in the acute toxicosis of methyllycaconitine in mice.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adverse physiological effects of methyllycaconitine (MLA) have been attributed to its competitive antagonism of nicotinic acetylcholine receptors (nAChRs). Recent research demonstrated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice...

  11. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    PubMed

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity.

  12. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation.

    PubMed

    Mohamed, Tasnim S; Jayakar, Selwyn S; Hamouda, Ayman K

    2015-01-01

    Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.

  13. Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus

    PubMed Central

    Maggi, Laura; Sher, Emanuele; Cherubini, Enrico

    2001-01-01

    The whole-cell configuration of the patch-clamp technique was used to study the modulation of giant depolarizing potentials (GDPs) by nicotinic acetylcholine receptors (nAChRs) in CA3 hippocampal neurons in slices from postnatal day (P) 2–6 rats.Bath application of nicotine increased GDP frequency in a concentration-dependent manner. For example, nicotine (0.5–1 μm) enhanced GDP frequency from 0.05 ± 0.04 to 0.17 ± 0.04 Hz. This effect was prevented by the broad-spectrum nicotinic receptor antagonist dihydro-β-erythtroidine (DHβE, 50 μm) and partially antagonized by methyllycaconitine (MLA, 50 nm) a competitive antagonist of α7 nAChRs. GDP frequency was also enhanced by AR-17779 (100 μm), a selective agonist of α7 nAChRs.The GABAA receptor antagonist bicuculline (10 μm) and the non-NMDA glutamate receptor antagonist DNQX (20 μm) blocked GDPs and prevented the effects of nicotine on GDPs. In the presence of DNQX, nicotine increased GABA-mediated synaptic noise, indicating that this drug may have a direct effect on GABAergic interneurons.Bath application of edrophonium (20 μm), a cholinesterase inhibitor, in the presence of atropine (1 μm), increased GDP frequency, indicating that nAChRs can be activated by ACh released from the septo-hippocampal fibres. This effect was prevented by DHβE (50 μm).In the majority of neurons tested, MLA (50 nm) and DHβE (50 μm) reduced the frequency of GDPs with different efficacy: a reduction of 98 ± 11 and 61 ± 29 % was observed with DHβE and MLA, respectively. In a subset of cells (40 % in the case of MLA and 17 % in the case of DHβE) these drugs induced a twofold increase in GDP frequency.It is suggested that, during development, nAChRs modulate the release of GABA, assessed as GDPs, through distinct nAChRs. The rise of intracellular calcium via nAChRs would further strengthen GABA-mediated oscillatory activity. This can be crucial for consolidation of synaptic contacts and for the fine-tuning of the

  14. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  15. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  16. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.

  17. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP).

    PubMed

    Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella

    2005-04-01

    The crystal structure of Acetylcholine Binding Protein (AChBP), homolog of the ligand binding domain of nAChR, has been used as model for computational investigations on the ligand-receptor interactions of derivatives of 6-chloropyridazine substituted at C3 with 3,8-diazabicyclo[3.2.1]octane, 2,5-diazabicyclo[2.2.1]heptane and with piperazine and homopiperazine, substituted or not at N4. The ligand-receptor complexes have been analyzed by docking techniques using the binding site of HEPES complexed with AChBP as template. The good relationship between the observed binding affinity and the calculated docking energy confirms that this model provides a good starting point for understanding the binding domain of neuronal nicotinic receptors. An analysis of the possible factors significant for the ligand recognition has evidenced, besides the cation-pi interaction, the distance between the chlorine atom of the pyridazinyl group and the carbonylic oxygen of Leu B112 as an important parameter in the modulation of the binding energy.

  18. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors.

    PubMed

    Yu, Li-Fang; Zhang, Han-Kun; Caldarone, Barbara J; Eaton, J Brek; Lukas, Ronald J; Kozikowski, Alan P

    2014-10-23

    Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients.

  19. Recent Developments in Novel Antidepressants Targeting α4β2-Nicotinic Acetylcholine Receptors

    PubMed Central

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients. PMID:24901260

  20. Regulation of phosphorylation of nicotinic acetylcholine receptors in mouse BC3H1 myocytes

    SciTech Connect

    Smith, M.M.; Merlie, J.P.; Lawrence, J.C. Jr.

    1987-09-01

    By using /sup 32/P-labeling methods and performing immunoprecipitations with specific antibodies, the authors have found that three subunits of the nicotinic acetylcholine receptor and phosphorylated in mouse skeletal muscle cells. In nonstimulated cells, the molar ratios of phosphate estimated in ..cap alpha.., ..beta.., and delta subunits were 0.02, 0.05, and 0.5, respectively. All three subunits contained predominantly phosphoserine with some phosphothreonine; the ..beta.., subunit also contained phosphotyrosine. Incubating cells with agents that stimulate cAMP-dependent pathways (isoproterenol, forskolin, 8-Br-cAMP) increased the phosphorylation of the delta subunit by 50%, but phosphate labeling of the ..beta.. subunit was depressed by a third. In contrast, when cells were incubated with the divalent cation ionophores A-23187 or ionomycin, phosphorylation of both the delta and ..beta.. subunits increased. The results indicate that acetylcholine receptors are phosphorylated to significant levels in skeletal muscle cells and that cAMP-dependent and Ca/sup 2 +/-dependent pathways exist for controlling the phosphorylation state of the receptor subunits.

  1. Three austin family compounds from Penicillium brasilianum exhibit selective blocking action on cockroach nicotinic acetylcholine receptors.

    PubMed

    Kataoka, Saori; Furutani, Shogo; Hirata, Koichi; Hayashi, Hideo; Matsuda, Kazuhiko

    2011-01-01

    Austin (AT) and its derivatives (dehydroaustin (DAT) and acetoxydehydroaustin (ADAT)) produced by Penicillium brasilianum MG-11 exhibit toxicity to insects, yet their targets are unknown. Here, we used whole-cell patch-clamp electrophysiology to investigate the action of AT family compounds on cockroach acetylcholine (ACh), γ-aminobutyric acid (GABA) and l-glutamate receptors expressed in the American cockroach (Periplaneta americana) neuron. U-tube application of AT or its derivatives did not induce any current amplitudes, suggesting that they did not act as agonist of these three receptors. In the second step of experiments, they were bath-applied for 1min before co-application with the corresponding ligand. We found that AT and its derivatives had no effect on GABA and l-glutamate-induced currents, whereas they significantly reduced ACh- and epibatidine-induced currents, showing that these compounds acted as selective antagonists of nicotinic acetylcholine receptors (nAChRs) expressed in the cockroach neuron. Of the compounds, DAT showed the highest blocking potency for nAChRs, differentially attenuating the peak and slowly desensitizing current amplitude of ACh-induced responses with pIC(50) (=-logIC(50) (M)) values of 6.11 and 5.91, respectively. DAT reduced the maximum normalized response to ACh without a significant shift in EC(50), suggesting that the blocking action is not competitive with ACh.

  2. Quinuclidine compounds differently act as agonists of Kenyon cell nicotinic acetylcholine receptors and induced distinct effect on insect ganglionic depolarizations.

    PubMed

    Mathé-Allainmat, Monique; Swale, Daniel; Leray, Xavier; Benzidane, Yassine; Lebreton, Jacques; Bloomquist, Jeffrey R; Thany, Steeve H

    2013-12-01

    We have recently demonstrated that a new quinuclidine benzamide compound named LMA10203 acted as an agonist of insect nicotinic acetylcholine receptors. Its specific pharmacological profile on cockroach dorsal unpaired median neurons (DUM) helped to identify alpha-bungarotoxin-insensitive nAChR2 receptors. In the present study, we tested its effect on cockroach Kenyon cells. We found that it induced an inward current demonstrating that it bounds to nicotinic acetylcholine receptors expressed on Kenyon cells. Interestingly, LMA10203-induced currents were completely blocked by the nicotinic antagonist α-bungarotoxin. We suggested that LMA10203 effect occurred through the activation of α-bungarotoxin-sensitive receptors and did not involve α-bungarotoxin-insensitive nAChR2, previously identified in DUM neurons. In addition, we have synthesized two new compounds, LMA10210 and LMA10211, and compared their effects on Kenyon cells. These compounds were members of the 3-quinuclidinyl benzamide or benzoate families. Interestingly, 1 mM LMA10210 was not able to induce an inward current on Kenyon cells compared to LMA10211. Similarly, we did not find any significant effect of LMA10210 on cockroach ganglionic depolarization, whereas these three compounds were able to induce an effect on the central nervous system of the third instar M. domestica larvae. Our data suggested that these three compounds could bind to distinct cockroach nicotinic acetylcholine receptors.

  3. Design and synthesis of isoxazole containing bioisosteres of epibatidine as potent nicotinic acetylcholine receptor agonists.

    PubMed

    Singh, S; Avor, K S; Pouw, B; Seale, T W; Basmadjian, G P

    1999-10-01

    An efficient synthesis of isoxazole containing isosteres of epibatidine is described. The synthesis proceeded from N-tert-butoxycarbonyl (Boc)-exo-2-(methoxycarbonyl)-7-azabicyclo[2.2.1]heptane (9). Compound 9 was reacted with the dilithium salt of an appropriately substituted oxime in tetrahydrofuran (THF). Cyclodehydration of the resultant beta-keto oxime and deprotection of the N-Boc group in 5 N aqueous HCl afforded the isoxazole containing isosteres of epibatidine (6-8). The binding affinities of these compounds were determined at the nicotinic acetylcholine receptor for the displacement of [3H]cystisine. The unsubstituted isoxazole containing isostere (6) showed the lower binding potency compared to the 3'-methylisoxazole isostere (7). Substitution with a phenyl group at the 3'-position of the isoxazole significantly reduced the binding potency. The in vivo toxicological studies of these analogs were also performed. The LD50 of the analogs ranged in the order: Me > H > Ph.

  4. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies.

    PubMed Central

    Ashcom, J D; Stiles, B G

    1997-01-01

    The venoms of predatory marine cone snails, Conus species, contain numerous peptides and proteins with remarkably diverse pharmacological properties. One group of peptides are the alpha-conotoxins, which consist of 13-19 amino acids constrained by two disulphide bonds. A biologically active fluorescein derivative of Conus geographus alpha-conotoxin GI (FGI) was used in novel solution-phase-binding assays with purified Torpedo californica nicotinic acetylcholine receptor (nAchR) and monoclonal antibodies developed against the toxin. The binding of FGI to nAchR or antibody had apparent dissociation constants of 10-100 nM. Structure-function studies with alpha-conotoxin GI analogues composed of a single disulphide loop revealed that different conformational restraints are necessary for effective toxin interactions with nAchR or antibodies. PMID:9359860

  5. Genes expressed in the brain define three distinct neuronal nicotinic acetylcholine receptors.

    PubMed Central

    Nef, P; Oneyser, C; Alliod, C; Couturier, S; Ballivet, M

    1988-01-01

    Four genes encode the related protein subunits that assemble to form the nicotinic acetylcholine receptor (nAChR) at the motor endplate of vertebrates. We have isolated from the chicken genome four additional members of the same gene family whose protein products, termed alpha 2, alpha 3, alpha 4 and n alpha (non-alpha) probably define three distinct neuronal nAChR subtypes. The neuronal nAChR genes have identical structures consisting of six protein-coding exons and specify proteins that are best aligned with the chicken endplate alpha subunit, whose gene we have also characterized. mRNA transcripts encoding alpha 4 and n alpha are abundant in embryonic and in adult avian brain, whereas alpha 2 and alpha 3 transcripts are much scarcer. The same set of neuronal genes probably exists in all vertebrates since their counterparts have also been identified in the rat genome. Images PMID:3267226

  6. Exon-intron structure of the human neuronal nicotinic acetylcholine receptor {alpha}4 subunit (CHRNA4)

    SciTech Connect

    Steinlein, O.; Weiland, S.; Stoodt, J.; Propping, P.

    1996-03-01

    The human neuronal nicotinic acetylcholine receptor {alpha}4 subunit gene (CHRNA4) is located in the candidate region for three different phenotypes: benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, and low-voltage EEG. Recently, a missense mutation in transmembrane domain 2 of CHRNA4 was found to be associated with autosomal dominant nocturnal frontal lobe epilepsy in one extended pedigree. We have determined the genomic organization of CHRNA4, which consists of six exons distributed over approximately 17 kb of genomic DNA. The nucleotide sequence obtained from the genomic regions adjacent to the exon boundaries enabled us to develop a set of primer pairs for PCR amplification of the complete coding region. The sequence analysis provides the basis for a comprehensive mutation screening of CHRNA4 in the above-mentioned phenotypes and possibly in other types of idopathic epilepsies. 29 refs., 3 figs., 1 tab.

  7. Role of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell

    PubMed Central

    2012-01-01

    The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different between avian and mammalian species. Calcium permeation is more effective in nAChRs of mammalian cochlea than avian cochlea, and mammalian calcium permeability of nAChRs is about 3 times more than avian hair cell. Thus, mammalian nAChRs is a main component of efferent inhibition in cochlear hair cell system. PMID:24653883

  8. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle

    PubMed Central

    Robertson, A. P.; Buxton, S. K.; Martin, R. J.

    2013-01-01

    Lymphatic filariasis is a debilitating disease caused by clade III parasites like Brugia malayi and Wuchereria bancrofti. Current recommended treatment regimen for this disease relies on albendazole, ivermectin and diethylcarbamazine, none of which targets the nicotinic acetylcholine receptors in these parasitic nematodes. Our aim therefore has been to develop adult B. malayi for electrophysiological recordings to aid in characterizing the ion channels in this parasite as anthelmintic target sites. In that regard, we recently demonstrated the amenability of adult B. malayi to patch-clamp recordings and presented results on the single-channel properties of nAChR in this nematode. We have built on this by recording whole-cell nAChR currents from adult B. malayi muscle. Acetylcholine, levamisole, pyrantel, bephenium and tribendimidine activated the receptors on B. malayi muscle, producing robust currents ranging from > 200 pA to ~1.5 nA. Levamisole completely inhibited motility of the adult B. malayi within 10 min and after 60 min, motility had recovered back to control values. PMID:23562945

  9. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  10. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    PubMed Central

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  11. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    PubMed

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors.

  12. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    PubMed

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  13. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  14. The physiology of the nicotinic acetylcholine receptor and its importance in the administration of anesthesia.

    PubMed

    Rossman, Amanda C

    2011-10-01

    The nicotinic acetylcholine receptor (nAChR) can be found widely throughout the body. Although the activation of this receptor leads to multiple functions dependent on its location within the body and subunit composition, all nAChRs aid in the communication between the extracellular and intracellular compartments. The nAChR is composed of 3 domains: the extracellular, transmembrane, and intracellular. The receptor functions in response to ligands that act as an agonist or antagonist that binds to the extracellular domain causing activation or inactivation of the receptor. The activation of the nAChR causes a twisting motion of the receptor, which opens a gate allowing for the passage of sodium, potassium, and calcium cations through the cell membrane. The muscle-type nAChR and neuronal-type nAChR have important roles during the administration of anesthesia. The muscle-type nAChR, located in the neuromuscular junction, is the target of neuromuscular blockers and local anesthetics to prevent muscle contraction. General anesthetics affect the neuronal-type nAChR by inhibiting functions of the central nervous system, including memory formation. The importance of the nAChR cannot be underestimated, for it is through the manipulation of this receptor that many anesthetic goals are achieved.

  15. Minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor

    SciTech Connect

    Jones, O.T.; Eubanks, J.H.; Earnest, J.P.; McNamee, M.G.

    1988-05-17

    The detergent sodium cholate was used to both solubilize and partially delipidate the nicotinic acetylcholine receptor from Torpedo californica. Using both native membranes and reconstituted membranes, it is shown that the detergent to lipid molar ratio is the most important parameter in determining the effect of the detergent on the functional properties of the receptor. Receptor-lipid complexes were quantitatively separated from detergent and excess lipids by centrifugation through detergent-free sucrose gradients. The lipid to protein molar ratio of the complexes could be precisely controlled by adjusting the cholate and lipid concentrations of the starting membranes. Analyses of both ion influx activity and ligand binding revealed that a minimum of 45 lipids per receptor was required for stabilization of the receptor in a fully functional state. Progressive irreversible inactivation occurred as the lipid to protein mole ratio was decreased below 45, and complete inactivation occurred below a ratio of 20. The results are consistent with a functional requirement for a single shell of lipids around the perimeter of the receptor.

  16. Alpha-9 Nicotinic Acetylcholine Receptor Immunoreactivity in the Rodent Vestibular Labyrinth

    PubMed Central

    Luebke, Anne E.; Maroni, Paul D.; Guth, Scott M.; Lysakowski, Anna

    2010-01-01

    Vestibular tissues (cristae ampullares, macular otolithic organs, and Scarpa’s ganglia) in chinchilla, rat, and guinea pig were examined for immunoreactivity to the α9 nicotinic acetylcholine receptor (nAChR) subunit. The α9 antibody was generated against a conserved peptide present in the intracellular loop of the predicted protein sequence of the guinea pig α9 nAChR subunit. In the vestibular periphery, staining was observed in calyces around type I hair cells, at the synaptic pole of type II hair cells, and in varying levels in Scarpa’s ganglion cells. Ganglion cells were also triply labeled to detect α9, calretinin, and peripherin. Calretinin labels calyx-only afferents. Peripherin labels bouton-only afferents. Dimorphic afferents, which have both calyx and bouton endings, are not labeled by calretinin or peripherin. In these experiments, α9 was expressed in both calyx and dimorphic afferents. A subpopulation of small ganglion cells did not contain the α9 nAChR but did stain for peripherin. We surmise that these are bouton-only afferents. Bouton (regularly discharging) afferents also show efferent responses, although they are qualitatively different from those in irregularly discharging (calyx and dimorphic) afferents, much slower and longer lasting. Thus, regular afferents are probably more affected via a muscarinic cholinergic or a peptidergic mechanism, with a much smaller superimposed fast nicotinic-type response. This latter response could be due to one of the other nicotinic receptors that have been described in studies from other laboratories. PMID:16217793

  17. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores.

  18. Agonist actions of neonicotinoids on nicotinic acetylcholine receptors expressed by cockroach neurons.

    PubMed

    Tan, Jianguo; Galligan, James J; Hollingworth, Robert M

    2007-07-01

    The agonist actions of seven commercial neonicotinoid insecticides and nicotine were studied on nicotinic acetylcholine receptors (nAChRs) expressed by neurons isolated from the three thoracic ganglia of the American cockroach, Periplaneta americana. Single electrode voltage clamp recording was used to measure agonist-induced inward currents. Acetylcholine, nicotine and all neonicotinoids tested, except thiamethoxam, caused inward currents which were blocked reversibly by methyllycaconitine, a nAChR antagonist. Based on maximum inward currents, neonicotinoids could be divided into two subgroups: (1) those with a heterocyclic ring in their electronegative pharmacophore moiety (i.e. nicotine, imidacloprid and thiacloprid) were relatively weak partial agonists causing only 20-25% of the maximum ACh current and (2) open chain compounds (i.e. acetamiprid, dinotefuran, nitenpyram, and clothiandin) which were much more effective agonists producing 60-100% of the maximum ACh current. These compounds also elicited different symptoms of poisoning in American cockroaches with excitatory responses evident for the low efficacy agonists but depressive and paralytic responses predominating for the most efficacious agonists. No correlation was observed between agonist affinity and efficacy on these nAChRs. Thiamethoxam, even at 100 microM, failed to cause an inward current and showed no competitive interaction with other neonicotinoids on nAChRs, indicating that it is not a direct-acting agonist or antagonist. Despite the probable presence of multiple subtypes of nAChRs on cockroach neurons, competition studies between neonicotinoids did not reveal evidence that separate binding sites exist for the tested compounds. The size of inward currents induced by co-application of neonicotinoid pairs at equal concentration (100 microM) were predominantly determined by the one with higher binding affinity as indicated by EC(50) values, rather than by the one with higher binding efficacy as

  19. Abelson Family Tyrosine Kinases Regulate the Function of Nicotinic Acetylcholine Receptors and Nicotinic Synapses on Autonomic NeuronsS⃞

    PubMed Central

    Jayakar, Selwyn S.

    2011-01-01

    Abelson family kinases (AFKs; Abl1, Abl2) are non-receptor tyrosine kinases (NRTKs) implicated in cancer, but they also have important physiological roles that include regulating synaptic structure and function. Recent studies using Abl-deficient mice and the antileukemia drug STI571 [imatinib mesylate (Gleevec); Novartis], which potently and selectively blocks Abl kinase activity, implicate AFKs in regulating presynaptic neurotransmitter release in hippocampus and postsynaptic clustering of nicotinic acetylcholine receptors (nAChRs) in muscle. Here, we tested whether AFKs are relevant for regulating nAChRs and nAChR-mediated synapses on autonomic neurons. AFK immunoreactivity was detected in ciliary ganglion (CG) lysates and neurons, and STI571 application blocked endogenous Abl tyrosine kinase activity. With similar potency, STI571 specifically reduced whole-cell current responses generated by both nicotinic receptor subtypes present on CG neurons (α3*- and α7-nAChRs) and lowered the frequency and amplitude of α3*-nAChR-mediated excitatory postsynaptic currents. Quantal analysis indicated that the synaptic perturbations were postsynaptic in origin, and confocal imaging experiments revealed they were unaccompanied by changes in nAChR clustering or alignment with presynaptic terminals. The results indicate that in autonomic neurons, Abl kinase activity normally supports postsynaptic nAChR function to sustain nAChR-mediated neurotransmission. Such consequences contrast with the influence of Abl kinase activity on presynaptic function and synaptic structure in hippocampus and muscle, respectively, demonstrating a cell-specific mechanism of action. Finally, because STI571 potently inhibits Abl kinase activity, the autonomic dysfunction side effects associated with its use as a chemotherapeutic agent may result from perturbed α3*- and/or α7-nAChR function. PMID:21502378

  20. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  1. Functional characterisation of a nicotinic acetylcholine receptor α subunit from the brown dog tick, Rhipicephalus sanguineus☆

    PubMed Central

    Lees, Kristin; Jones, Andrew K.; Matsuda, Kazuhiko; Akamatsu, Miki; Sattelle, David B.; Woods, Debra J.; Bowman, Alan S.

    2014-01-01

    Ticks and tick-borne diseases have a major impact on human and animal health worldwide. Current control strategies rely heavily on the use of chemical acaricides, most of which target the CNS and with increasing resistance, new drugs are urgently needed. Nicotinic acetylcholine receptors (nAChRs) are targets of highly successful insecticides. We isolated a full-length nAChR α subunit from a normalised cDNA library from the synganglion (brain) of the brown dog tick, Rhipicephalus sanguineus. Phylogenetic analysis has shown this R. sanguineus nAChR to be most similar to the insect α1 nAChR group and has been named Rsanα1. Rsanα1 is distributed in multiple tick tissues and is present across all life-stages. When expressed in Xenopus laevis oocytes Rsanα1 failed to function as a homomer, with and without the addition of either Caenorhabditis elegans resistance-to-cholinesterase (RIC)-3 or X. laevis RIC-3. When co-expressed with chicken β2 nAChR, Rsanα1 evoked concentration-dependent, inward currents in response to acetylcholine (ACh) and showed sensitivity to nicotine (100 μM) and choline (100 μM). Rsanα1/β2 was insensitive to both imidacloprid (100 μM) and spinosad (100 μM). The unreliable expression of Rsanα1 in vitro suggests that additional subunits or chaperone proteins may be required for more robust expression. This study enhances our understanding of nAChRs in arachnids and may provide a basis for further studies on the interaction of compounds with the tick nAChR as part of a discovery process for novel acaricides. PMID:24291321

  2. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid.

  3. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration

    PubMed Central

    Marks, MJ; Grady, SR; Salminen, O; Paley, MA; Wageman, CR; McIntosh, JM; Whiteaker, P

    2014-01-01

    Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where * indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are downregulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR downregulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than upregulation of α4β2*-nAChR. In contrast, nAChR-mediated [3H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, while dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]-DA release are primarily due to changes in nAChR, rather than in dopaminergic, function. PMID:24661093

  4. Insight into the Binding Mode of Agonists of the Nicotinic Acetylcholine Receptor from Calculated Electron Densities

    PubMed Central

    Beck, Michael E; Gutbrod, Oliver; Matthiesen, Svend

    2015-01-01

    Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands. PMID:26175091

  5. Insight into the Binding Mode of Agonists of the Nicotinic Acetylcholine Receptor from Calculated Electron Densities.

    PubMed

    Beck, Michael E; Gutbrod, Oliver; Matthiesen, Svend

    2015-07-15

    Insect nicotinic acetylcholine receptors (nAChRs) are among the most prominent and most economically important insecticide targets. Thus, an understanding of the modes of binding of respective agonists is important for the design of specific compounds with favorable vertebrate profiles. In the case of nAChRs, the lack of available high-resolution X-ray structures leaves theoretical considerations as the only viable option. Starting from classical homology and docking approaches, binding mode hypotheses are created for five agonists of the nAChR, covering insecticides in the main group 4 of the Insecticide Resistance Action Committee (IRAC) mode of action (MoA) classification, namely, neonicotinoids, nicotine, sulfoxaflor, and butenolides. To better understand these binding modes, the topologies of calculated electron densities of small-model systems are analyzed in the framework of the quantum theory of atoms in molecules. The theoretically obtained modes of binding are very much in line with the biology-driven IRAC MoA classification of the investigated ligands.

  6. Varenicline, a partial agonist at neuronal nicotinic acetylcholine receptors, reduces nicotine-induced increases in 20% ethanol operant self-administration in Sprague-Dawley rats.

    PubMed

    Bito-Onon, Jade J; Simms, Jeffrey A; Chatterjee, Susmita; Holgate, Joan; Bartlett, Selena E

    2011-07-01

    Alcohol and nicotine use disorders are often treated as separate diseases, despite evidence that approximately 80-90% of alcohol dependent individuals are also heavy smokers. Both nicotine and ethanol have been shown to interact with neuronal nicotinic acetylcholine receptors (nAChRs), suggesting these receptors are a common biological target for the effects of nicotine and ethanol in the brain. There are few studies that have examined the effects of co-administered nicotine and ethanol on the activity of nAChRs in rodents. In the present study, we show that Sprague-Dawley rats, a strain often used for nicotine studies but not as often for voluntary ethanol intake studies, will consume 20% ethanol using both the intermittent-access two-bottle-choice and operant self-administration models without the need for sucrose fading. We show that nicotine (0.2 mg/kg and 0.8 mg/kg, s.c.) significantly increases operant 20% ethanol self-administration and varenicline (2 mg/kg, s.c), a partial agonist at nAChRs, significantly decreases operant ethanol self-administration and nicotine-induced increases in ethanol self-administration. This suggests that nAChRs play an important role in increasing ethanol self-administration and that varenicline may be an efficacious treatment for alcohol and nicotine co-dependencies.

  7. Antagonist pharmacology of desensitizing and non-desensitizing nicotinic acetylcholine receptors in cockroach neurons.

    PubMed

    Salgado, Vincent L

    2016-09-01

    Two α-bungarotoxin-sensitive nicotinic acetylcholine (ACh) receptor subtypes in neurons of the American cockroach have been identified as desensitizing (nAChD) and selectively inhibitable with 100nM imidacloprid, and non-desensitizing (nAChN) and selectively inhibitable with 100pM methyllycaconitine. In this paper, the single-electrode voltage-clamp technique was used to measure concentration-response relations for the action of ACh and five antagonists on pharmacologically separated nAChD and nAChN receptors of acutely dissociated neurons from thoracic ganglia of the American cockroach. A dual bath and U-tube perfusion system was used to achieve rapid application of ACh in the continued presence of antagonists, which was essential to accurately measure inhibition by rapidly-reversible antagonists. ACh activated both receptors with an EC50 of 7μM and the antagonist potencies were (nAChD/nAChN in nM): dihydro-β-erythroidine: 1.0/5.6, d-tubocurarine: 1000/34, condelphine: 0.39/0.65, phencyclidine: 74/980 and mecamylamine 47/1150. While each of these antagonists displayed some subtype selectivity, none are selective enough to be used as subtype-selective tools. These results bring to a total of 16 the number of nicotinic compounds that have been measured on nAChD and nAChN currents. Characterization of these receptors is important for understanding the role of nAChRs in the insect nervous system and the mechanism of action of insecticides.

  8. Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors.

    PubMed

    Mahgoub, Mohamed; Keun-Hang, Susan Yang; Sydorenko, Vadym; Ashoor, Abrar; Kabbani, Nadine; Al Kury, Lina; Sadek, Bassem; Howarth, Christopher F; Isaev, Dmytro; Galadari, Sehamuddin; Oz, Murat

    2013-11-15

    The effects of cannabidiol (CBD), a non-psychoactive ingredient of cannabis plant, on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes were tested using the two-electrode voltage-clamp technique. CBD reversibly inhibited ACh (100 μM)-induced currents with an IC50 value of 11.3 µM. Other phytocannabinoids such as cannabinol and Δ(9)-tetrahydrocannabinol did not affect ACh-induced currents. CBD inhibition was not altered by pertussis toxin treatment. In addition, CBD did not change GTP-γ-S binding to the membranes of oocytes injected with α7 nACh receptor cRNA. The effect of CBD was not dependent on the membrane potential. CBD (10 µM) did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels, since the extent of inhibition by CBD was unaltered by intracellular injection of the Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Inhibition by CBD was not reversed by increasing ACh concentrations. Furthermore, specific binding of [(125)I] α-bungarotoxin was not inhibited by CBD (10 µM) in oocytes membranes. Using whole cell patch clamp technique in CA1 stratum radiatum interneurons of rat hippocampal slices, currents induced by choline, a selective-agonist of α7-receptor induced currents were also recoded. Bath application of CBD (10 µM) for 10 min caused a significant inhibition of choline induced currents. Finally, in hippocampal slices, [(3)H] norepinephrine release evoked by nicotine (30 µM) was also inhibited by 10 µM CBD. Our results indicate that CBD inhibits the function of the α7-nACh receptor.

  9. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    PubMed Central

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  10. Azemiopsin from Azemiops feae Viper Venom, a Novel Polypeptide Ligand of Nicotinic Acetylcholine Receptor*

    PubMed Central

    Utkin, Yuri N.; Weise, Christoph; Kasheverov, Igor E.; Andreeva, Tatyana V.; Kryukova, Elena V.; Zhmak, Maxim N.; Starkov, Vladislav G.; Hoang, Ngoc Anh; Bertrand, Daniel; Ramerstorfer, Joachim; Sieghart, Werner; Thompson, Andrew J.; Lummis, Sarah C. R.; Tsetlin, Victor I.

    2012-01-01

    Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a β-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC50 0.18 ± 0.03 μm) and with lower efficiency to human α7 nAChR (IC50 22 ± 2 μm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1β1ϵδ) than the fetal form (α1β1γδ), EC50 being 0.44 ± 0.1 μm and 1.56 ± 0.37 μm, respectively. The peptide had no effect on GABAA (α1β3γ2 or α2β3γ2) receptors at a concentration up to 100 μm or on 5-HT3 receptors at a concentration up to 10 μm. Ala scanning showed that amino acid residues at positions 3–6, 8–11, and 13–14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges. PMID:22613724

  11. Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid.

    PubMed Central

    Bhushan, A; McNamee, M G

    1993-01-01

    Fourier transform infrared spectroscopy is used to characterize specific interactions between negatively charged lipids, such as phosphatidic acid, and the purified nicotinic acetylcholine receptor from Torpedo californica. The specific interaction of phosphatidic acid with acetylcholine receptor is demonstrated by the receptor-induced perturbation of the lipid ionization state, which is monitored using Fourier transform infrared bands arising from the phosphate head group. The acetylcholine receptor shifts the pKa of phosphatidic acid molecules adjacent to the receptor to a lower value by almost 2 pH units from 8.5 to 6.6. Decreased pH also leads to changes in ion channel function and to changes in the secondary structure of the acetylcholine receptor in membranes containing ionizable phospholipids. Phospholipase D restores functional activity of acetylcholine receptor reconstituted in an unfavorable environment containing phosphatidylcholine by generating phosphatidic acid. Lipids such as phosphatidic acid may serve as allosteric effectors for membrane protein function and the lipid-protein interface could be a site for activity-dependent changes that lead to modulation of synaptic efficacy. PMID:8471723

  12. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  13. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway.

    PubMed

    Trombino, Sonya; Cesario, Alfredo; Margaritora, Stefano; Granone, PierLuigi; Motta, Giovanni; Falugi, Carla; Russo, Patrizia

    2004-01-01

    This study presents data suggesting that both human mesothelioma (cell lines and human mesothelioma biopsies) and human normal mesothelial cells express receptors for acetylcholine and that stimulation of these receptors by nicotine prompted cell growth via activation of nicotinic cholinergic receptors. Thus, these data demonstrate that: (a) human mesothelioma cells and human biopsies of mesothelioma as well as of normal pleural mesothelial cells express functionally alpha-7 nicotinic acethlycholine receptors, evaluated by alpha-bungarotoxin-FITC binding, receptor binding assay, Western blot, and reverse transcription-PCR; (b) choline acetyltransferase immunostaining is present in mesothelioma cells; (c) mesothelioma cell growth is modulated by the cholinergic system in which agonists (i.e., nicotine) has a proliferative effect, and antagonists (i.e., curare) has an inhibitory effect, evaluated by cell cloning, DNA synthesis and cell cycle; (d) nicotine induces Ca(+2) influx, evaluated by [(45)Ca(2+)] uptake, and consequently activation of mitogen-activated protein kinase pathway (extracellular signal-regulated kinase and p90(RSK) phosphorylation), evaluated by Western blot; and (e) apoptosis mechanisms in mesothelioma cells are under the control of the cholinergic system (nicotine antiapoptotic via induction of nuclear factor-kappaB complexes and phosphorylation of Bad at Ser(112); curare proapoptotic via G(0)-G(1) arrest p21(waf-1) dependent but p53 independent). The involvement of the nonneuronal cholinergic system in mesothelioma appears reasonable and open up new therapeutic strategies.

  14. Modulation of nicotinic acetylcholine and N-methyl-d-aspartate receptors by some Hymenopteran venoms.

    PubMed

    Zalat, Samy; Elbana, Shereen; Rizzoli, Silvio; Schmidt, Justin O; Mellor, Ian R

    2005-09-01

    The effect of 19 venoms from solitary wasps, solitary bees, social wasps and ants were investigated for their effects on nicotinic acetylcholine receptors (nAChR) and ionotropic glutamate receptors (IGRs) of both the N-methyl-d-aspartate (NMDAR) and non-NMDAR type. Whole-cell patch clamp of human muscle TE671 cells was used to study nAChR, and of rat cortical and cerebellar granule cells for IGRs. Solitary wasp venoms caused significant voltage-dependent antagonism of nAChR responses to 10 microM ACh and NMDAR responses to 100 microM NMDA (+10 microM glycine) when co-applied at 1 microg/ml with the agonists. At positive holding potentials (V(H)) potentiation of these receptors was observed with some venoms. Solitary bee venoms only affected nAChR by causing either voltage-independent antagonism or potentiation of their responses to 10 microM ACh. Of four social wasp venoms, one acted on nAChR by potentiating responses to 10 ACh, while another generated an ACh-like response when applied alone. They had no effect on IGRs. Of the two ant venoms, one caused voltage-independent inhibition of nAChR. Neither affected IGRs. The data indicate the presence of nAChR agonists and antagonists and NMDAR antagonists in Hymenopteran venoms and warrant further investigation to separate and identify these venom components.

  15. Effects of isoflurane on the actions of neuromuscular blockers on the muscle nicotine acetylcholine receptors.

    PubMed

    Li, Chuanxiang; Yao, Shanglong; Nie, Hui; Lü, Bin

    2004-01-01

    In this study, we tested the hypothesis that volatile anesthetic enhancement of muscle relaxation is the result of combined drug effects on the nicotinic acetylcholine receptors. The poly A m RNA from muscle by isolation were microinjected into Xenopus oocytes for receptor expression. Concentration-effect curves for the inhibition of Ach-induced currents were established for vecuronium, rocuranium, and isoflurane. Subsequently, inhibitory effects of NDMRs were studied in the presence of the isoflurane at a concentration equivalent to half the concentration producing a 50% inhibition alone. All tested drugs produced rapid and readily reversible concentration-dependent inhibition. The 50% inhibitory concentration values were 889 micromol/L (95% CI: 711-1214 micromol). 33.4 micromol (95% CI: 27.1-41.7 nmol) and 9.2 nmol (95% CI: 7.9-12.3 nmol) for isoflurane. rocuranium and vecuronium, respectively. Coapplication of isoflurane significantly enhanced the inhibitory effects of rocuranium and vecuronium, and it was especially so at low concentration of NMDRs. Isoflurane increases the potency of NDMRs, possibly by enhancing antagonist affinity at the receptor site.

  16. Fixation of allosteric states of the nicotinic acetylcholine receptor by chemical cross-linking

    PubMed Central

    Watty, Anke; Methfessel, Christoph; Hucho, Ferdinand

    1997-01-01

    Receptor activity can be described in terms of ligand-induced transitions between functional states. The nicotinic acetylcholine receptor (nAChR), a prototypic ligand-gated ion channel, is an “unconventional allosteric protein” which exists in at least three interconvertible conformations, referred to as resting (low agonist affinity, closed channel), activated (open channel), and desensitized (high agonist affinity, closed channel). Here we show that 3,3′-dimethyl suberimidate (DMS) is an agonistic bifunctional cross-linking reagent, which irreversibly “freezes” the nAChR in a high agonist affinity/closed-channel state. The monofunctional homologue methyl acetoimidate, which is also a weak cholinergic agonist, has no such irreversible effect. Glutardialdehyde, a cross-linker that is not a cholinergic effector, fixes the receptor in a low-affinity state in the absence of carbamoylcholine, but, like DMS, in a high-affinity state in its presence. Covalent cross-linking thus allows us to arrest the nAChR in defined conformational states. PMID:9223339

  17. BDNF up-regulates alpha7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons.

    PubMed

    Massey, Kerri A; Zago, Wagner M; Berg, Darwin K

    2006-12-01

    In the hippocampus, brain-derived neurotrophic factor (BDNF) regulates a number of synaptic components. Among these are nicotinic acetylcholine receptors containing alpha7 subunits (alpha7-nAChRs), which are interesting because of their relative abundance in the hippocampus and their high relative calcium permeability. We show here that BDNF elevates surface and intracellular pools of alpha7-nAChRs on cultured hippocampal neurons and that glutamatergic activity is both necessary and sufficient for the effect. Blocking transmission through NMDA receptors with APV blocked the BDNF effect; increasing spontaneous excitatory activity with the GABA(A) receptor antagonist bicuculline replicated the BDNF effect. BDNF antibodies blocked the BDNF-mediated increase but not the bicuculline one, consistent with enhanced glutamatergic activity acting downstream from BDNF. Increased alpha7-nAChR clusters were most prominent on interneuron subtypes known to directly innervate excitatory neurons. The results suggest that BDNF, acting through glutamatergic transmission, can modulate hippocampal output in part by controlling alpha7-nAChR levels.

  18. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites

    PubMed Central

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.

    2011-01-01

    We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists. PMID:21444659

  19. Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits.

    PubMed

    Criado, Manuel; Valor, Luis M; Mulet, José; Gerber, Susana; Sala, Salvador; Sala, Francisco

    2012-11-01

    Although α7 nicotinic receptors are predominantly homopentamers, previous reports have indicated that α7 and β2 subunits are able to form heteromers. We have studied whether other nicotinic receptor subunits can also assemble with α7 subunits and the effect of this potential association. Coexpression of α7 with α2, α3, or β4 subunits reduced to about half, surface α-bungarotoxin binding sites and acetylcholine-gated currents. This is probably because of inhibition of membrane trafficking, as the total amount of α7 subunits was similar in all cases and a significant proportion of mature α7 receptors was present inside the cell. Only β4 subunits appeared to directly associate with α7 receptors at the membrane and these heteromeric receptors showed some kinetic and pharmacological differences when compared with homomeric α7 receptors. Finally, we emulated the situation of bovine chromaffin cells in Xenopus laevis oocytes by using the same proportion of α3, β4, α5, and α7 mRNAs, finding that α-bungarotoxin binding was similarly reduced in spite of increased currents, apparently mediated by α3β4(α5) receptors.

  20. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  1. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  2. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors.

    PubMed

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-02-06

    Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop superfamily of ligand-gated ion channels (cys-loop LGICs) and mediate fast cholinergic synaptic transmission in the nervous system of insects. The completion of many insect genome projects has greatly enhanced our understanding of the individual subunits that make up nAChR gene families from an insect genetic model organism (Drosophila melanogaster), crop pests, disease vectors and beneficial (pollinator) species. In addition to considerable insect nAChR subunit diversity, individual subunits can be subject to alternative splicing and RNA editing and these post-transcriptional modifications can add significantly to the diversity of nAChR receptor subtypes. The actions of insecticides targeting nAChRs, notably cartap, neonicotinoids, sulfoximines, flupyradifurone, spinosyns and triflumezopyrim are reviewed. Structural studies obtained using an acetylcholine binding protein (AChBP) co-crystallised with neonicotinoids have yielded important new insights into the requirements for neonicotinoid insecticide - nAChR interactions. The persistent application of insecticides to crop pests leads to the onset of resistance and several examples of resistance to insecticides targeting nAChRs have been documented. Understanding the molecular basis of resistance can inform our understanding of the mechanism of insecticide action. It also provides an important driver for the development of new chemistry, diagnostic tests for resistance and the adoption of application strategies designed to attenuate such problems. Finally, we consider toxicity issues relating to nAChR-active insecticides, with particular reference to beneficial insect species (pollinators) as well as mammalian and avian toxicity. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.".

  3. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    PubMed Central

    Kachel, Hamid S.; Patel, Rohit N.; Franzyk, Henrik; Mellor, Ian R.

    2016-01-01

    Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at −80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity. PMID:27901080

  4. Tobacco nitrosamine N-nitrosonornicotine as inhibitor of neuronal nicotinic acetylcholine receptors.

    PubMed

    Nunes-Alves, Ariane; Nery, Arthur A; Ulrich, Henning

    2013-01-01

    Nitrosamines are well known for their carcinogenic potential. Recently, it was found that some of them may also interact with human nicotinic acetylcholine receptor (nAChR) subtypes. This work studied the effects of N-nitrosonornicotine (NNN) on recombinant rat α3β4 nAChR in HEK cells as well as on nAChR endogenously expressed in PC12 pheochromocytoma cells and in BC3H1 muscle-type cells. Whole-cell recording in combination with the cell-flow technique for agonist and inhibitor application in the millisecond time region revealed that NNN inhibits the activity of neuronal nAChR expressed in HEK or PC12, whereas weak inhibitory effects on muscle-type nAChR were observed at NNN concentrations up to 3 mM. Pharmacological actions of NNN and the inhibition mechanism were studied in detail using recombinant α3β4 nAChR expressed in HEK cells as a model. NNN-induced inhibition of nicotine-evoked α3β4 nAChR activity was dose-dependent with an inhibitory constant (IC(50)) of 0.92 ± 0.05 mM. Analysis based on mathematical models indicated a noncompetitive inhibition mechanism of the rat α3β4 nAChR by NNN. NNN's mechanism of action involves acceleration of conversion of the receptor from active to desensitized forms. In summary, this work shows that NNN inhibits rat α3β4 nAChR in a noncompetitive way and interacts weakly with muscular nAChR.

  5. Olfactory discrimination varies in mice with different levels of α7-nicotinic acetylcholine receptor expression

    PubMed Central

    Hellier, Jennifer L.; Arevalo, Nicole L.; Blatner, Megan J.; Dang, An K.; Clevenger, Amy C.; Adams, Catherine E.; Restrepo, Diego

    2010-01-01

    Previous studies have shown that schizophrenics have decreased expression of α7-nicotinic acetylcholine (α7) receptors in the hippocampus and other brain regions, paranoid delusions, disorganized speech, deficits in auditory gating (i.e., inability to inhibit neuronal responses to repetitive auditory stimuli), and difficulties in odor discrimination and detection. Here we use mice with decreased α7 expression that also show a deficit in auditory gating to determine if these mice have similar deficits in olfaction. In the adult mouse olfactory bulb (OB), α7 expression localizes in the glomerular layer; however, the functional role of α7 is unknown. We show that inbred mouse strains (i.e., C3H and C57) with varying α7 expression (e.g., α7 wild-type [α7+/+], α7 heterozygous knock-out [α7+/−] and α7 homozygous knockout mice [α7−/−]) significantly differ in odor discrimination and detection of chemically related odorant pairs. Using [125I] α-bungarotoxin (α-BGT) autoradiography, α7 expression was measured in the OB. As previously demonstrated, α-BGT binding was localized to the glomerular layer. Significantly more expression of α7 was observed in C57 α7+/+ mice compared to C3H α7+/+ mice. Furthermore, C57 α7+/+ mice were able to detect a significantly lower concentration of an odor in a mixture compared to C3H α7+/+ mice. Both C57 and C3H α7+/+ mice discriminated between chemically related odorants sooner than α7+/− or α7−/− mice. These data suggest that α7-nicotinic-receptors contribute strongly to olfactory discrimination and detection in mice and may be one of the mechanisms producing olfactory dysfunction in schizophrenics. PMID:20713028

  6. Alpha7 Nicotinic Acetylcholine Receptors Modulate Motivation to Self-Administer Nicotine: Implications for Smoking and Schizophrenia

    PubMed Central

    Brunzell, Darlene H; McIntosh, J Michael

    2012-01-01

    Individuals diagnosed with schizophrenia have an exceptionally high risk for tobacco dependence. Postmortem studies show that these individuals have significant reductions in α7 nicotinic acetylcholine receptors (nAChRs) in several brain areas. Decreased α7-mediated function might not only be linked to schizophrenia but also to increased tobacco consumption. The purpose of this study was to determine whether pharmacological blockade of α7 nAChRs would increase motivation of rats to intravenously self-administer nicotine (NIC) during a progressive ratio schedule of reinforcement (PR). Before PR, rats received local infusions of 0, 10, or 20 pmol of a selective α7 nAChR antagonist, α-conotoxin ArIB [V11L,V16D] (ArIB) into the nucleus accumbens (NAc) shell or the anterior cingulate cortex, brain areas that contribute to motivation for drug reward. We additionally sought to determine whether local infusion of 0, 10, or 40 nmol of a selective α7 nAChR agonist, PNU 282987, into these brain areas would decrease motivation for NIC use. Infusion of ArIB into the NAc shell and anterior cingulate cortex resulted in a significant increase in active lever pressing, breakpoints, and NIC intake, suggesting that a decrease in α7 nAChR function increases motivation to work for NIC. In contrast, PNU 282987 infusion resulted in reductions in these measures when administered into the NAc shell, but had no effect after administration into the anterior cingulate cortex. These data identify reduction of α7 nAChR function as a potential mechanism for elevated tobacco use in schizophrenia and also identify activation of α7 nAChRs as a potential strategy for tobacco cessation therapy. PMID:22169946

  7. alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity.

    PubMed

    de Fiebre, Nancyellen C; de Fiebre, Christopher M

    2005-01-03

    The alpha7 subtype of nicotinic acetylcholine receptor (nAChR) has been implicated as a potential site of action for two neurotoxins, ethanol and the Alzheimer's disease related peptide, beta-amyloid. Here, we utilized primary neuronal cultures of cerebral cortex from alpha7 nAChR null mutant mice to examine the role of this receptor in modulating the neurotoxic properties of subchronic, "binge" ethanol and beta-amyloid. Knockout of the alpha7 nAChR gene selectively enhanced ethanol-induced neurotoxicity in a gene dosage-related fashion. Susceptibility of cultures to beta-amyloid induced toxicity, however, was unaffected by alpha7 nAChR gene null mutation. Further, beta-amyloid did not inhibit the binding of the highly alpha7-selective radioligand, [(125)I]alpha-bungarotoxin. On the other hand, in studies in Xenopus oocytes ethanol efficaciously inhibited alpha7 nAChR function. These data suggest that alpha7 nAChRs modulate the neurotoxic effects of binge ethanol, but not the neurotoxicity produced by beta-amyloid. It is hypothesized that inhibition of alpha7 nAChRs by ethanol provides partial protection against the neurotoxic properties of subchronic ethanol.

  8. Heteromeric α7β2 Nicotinic Acetylcholine Receptors in the Brain

    PubMed Central

    Wu, Jie; Liu, Qiang; Tang, Pei; Mikkelsen, Jens D.; Shen, Jianxin; Whiteaker, Paul; Yakel, Jerrel L.

    2016-01-01

    The α7 nicotinic acetylcholine receptor (α7 nAChR) is highly expressed in the brain, where it maintains various neuronal functions including (but not limited to) learning and memory. In addition, the protein expression levels of α7 nAChRs are altered in various brain disorders. The classic rule governing α7 nAChR assembly in the mammalian brain was that it was assembled from five α7 subunits to form a homomeric receptor pentamer. However, emerging evidence demonstrates the presence of heteromeric α7 nAChRs in heterologously expressed systems and naturally in brain neurons, where α7 subunits are co-assembled with β2 subunits to form a novel type of α7β2 nAChR. Interestingly, the α7β2 nAChR exhibits distinctive function and pharmacology from traditional homomeric α7 nAChRs. We review recent advances in probing the distribution, function, pharmacology, pathophysiology, and stoichiometry of the heteromeric α7β2 nAChR, which have provided new insights into the understanding of a novel target of cholinergic signaling. PMID:27179601

  9. Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

    PubMed Central

    Prestori, Francesca; Bonardi, Claudia; Mapelli, Lisa; Lombardo, Paola; Goselink, Rianne; De Stefano, Maria Egle; Gandolfi, Daniela; Mapelli, Jonathan; Bertrand, Daniel; Schonewille, Martijn; De Zeeuw, Chris; D’Angelo, Egidio

    2013-01-01

    The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation. PMID:23741401

  10. Subunit Interfaces Contribute Differently to Activation and Allosteric Modulation of Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Short, Caitlin A.; Cao, Angela T.; Wingfield, Molly A.; Doers, Matthew E.; Jobe, Emily M.; Wang, Nan; Levandoski, Mark M.

    2015-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are widely distributed in the nervous system and are implicated in many normal and pathological processes. The structural determinants of allostery in nAChRs are not well understood. One class of nAChR allosteric modulators, including the small molecule morantel (Mor), acts from a site that is structurally homologous to the canonical agonist site but exists in the β(+)/α(–) subunit interface. We hypothesized that all nAChR subunits move with respect to each other during channel activation and allosteric modulation. We therefore studied five pairs of residues predicted to span the interfaces of α3β2 receptors, one at the agonist interface and four at the modulator interface. Substituting cysteines in these positions, we used disulfide trapping to perturb receptor function. The pair α3Y168-β2D190, involving the C loop region of the β2 subunit, mediates modulation and agonist activation, because evoked currents were reduced up to 50% following oxidation (H2O2) treatment. The pair α3S125-β2Q39, below the canonical site, is also involved in channel activation, in accord with previous studies of the muscle-type receptor; however, the pair is differentially sensitive to ACh activation and Mor modulation (currents decreased 60% and 80%, respectively). The pairs α3Q37-β2A127 and α3E173-β2R46, both in the non-canonical interface, showed increased currents following oxidation, suggesting that subunit movements are not symmetrical. Together, our results from disulfide trapping and further mutation analysis indicate that subunit interface movement is important for allosteric modulation of nAChRs, but that the two types of interfaces contribute unequally to receptor activation. PMID:25486620

  11. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine.

    PubMed

    Brunzell, Darlene H; Boschen, Karen E; Hendrick, Elizabeth S; Beardsley, Patrick M; McIntosh, J Michael

    2010-02-01

    Beta2 subunit containing nicotinic acetylcholine receptors (beta2(*)nAChRs; asterisk ((*)) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The alpha6 subunit assembles with beta2 on DA neurons where alpha6beta2(*)nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of alpha-conotoxin MII (alpha-CTX MII), an antagonist with selectivity for alpha6beta2(*)nAChRs, the purpose of these experiments was to determine if alpha6beta2(*)nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of alpha-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. alpha-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of alpha-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion alpha-CTX MII did not affect locomotor activity in an open field. These data suggest that alpha6beta2(*)nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation.

  12. Effects of the nicotinic acetylcholine receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in male rhesus monkeys.

    PubMed

    Banks, Matthew L

    2014-06-01

    Preclinical drug discrimination procedures have been useful in understanding the pharmacological mechanisms of the subjective-like effects of abused drugs. Converging lines of evidence from neurochemical and behavioral studies implicate a potential role of nicotinic acetylcholine (nACh) receptors in the abuse-related effects of cocaine. The aim of the present study was to determine the effects of the nACh receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in nonhuman primates. The effects of mecamylamine on the cocaine-like discriminative stimulus effects of nicotine were also examined. Male rhesus monkeys (n = 5) were trained to discriminate 0.32 mg/kg, IM cocaine from saline in a 2-key, food-reinforced discrimination procedure. Initially, potency and time course of cocaine-like discriminative stimulus effects were determined for nicotine and mecamylamine alone. Test sessions were then conducted examining the effects of mecamylamine on cocaine or the cocaine-like discriminative stimulus effects of nicotine. Curiously, mecamylamine produced partial cocaine-like discriminative stimulus effects. Mecamylamine did not significantly alter the discriminative stimulus effects of cocaine up to doses that significantly decreased rates of operant responding. Mecamylamine and nicotine combinations were not different than saline. These results confirm previous nonhuman primate studies of partial substitution with nicotine and extend these findings with mecamylamine. Furthermore, these results extend previous results in rats suggesting cocaine may have nACh receptor antagonist properties.

  13. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    SciTech Connect

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin . E-mail: chcho@cuhk.edu.hk

    2007-06-15

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.

  14. Molecular-Dynamics Simulations of ELIC a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor

    SciTech Connect

    Cheng, Xiaolin; Ivanov, Ivaylo N; Wang, Hailong; McCammon, Jonathan

    2009-01-01

    The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human ?7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.

  15. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-05

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics.

  16. Plasticity in Brainstem Mechanisms of Pain Modulation by Nicotinic Acetylcholine Receptors in the Rat

    PubMed Central

    White, Stephanie R.

    2017-01-01

    Individuals with chronic pain may be driven to smoke more because the analgesic efficacy of nicotine diminishes. To determine whether persistent pain diminishes the actions of a nicotinic acetylcholine receptor (nAChR) agonist in pain modulatory pathways, we examined the effects of epibatidine in the rostral ventromedial medulla (RVM) of rats with and without inflammatory injury induced by intraplantar injection of complete Freund’s adjuvant (CFA). In uninjured rats, epibatidine produced a dose-dependent antinociception that was completely blocked by dihydro-β-erythroidine (DHβE; α4β2 antagonist) and partially blocked by methyllycaconitine (MLA; α7 antagonist). Epibatidine reversed heat hyperalgesia when microinjected in the RVM 4 h, 4 d, or 2 weeks after CFA treatment. Although DHβE completely blocked epibatidine’s antihyperalgesic effect at 4 h, at 2 weeks it elicited only partial antagonism. Methyllycaconitine was ineffective at both time points. Epibatidine’s antinociceptive efficacy in the uninjured hind paw progressively declined, and it was without effect 2 weeks after CFA. Moreover, as early as 4 h after CFA, the antinociceptive effect of epibatidine was no longer antagonized by DHβE. Neither antagonist alone altered paw withdrawal latency in uninjured or CFA-treated rats, suggesting that neither α4β2 nor α7 nAChRs are tonically active in the RVM. The Bmax and Kd of α4β2 nAChRs in the RVM were unchanged after CFA treatment. These observations provide the first evidence of pharmacological plasticity of the actions of α4β2 nAChR agonists in a critical brainstem pain modulatory pathway and may in part explain why people with chronic pain smoke more than the general population. PMID:28197544

  17. Alpha7 nicotinic acetylcholine receptor agonists and PAMs as adjunctive treatment in schizophrenia. An experimental study.

    PubMed

    Marcus, Monica M; Björkholm, Carl; Malmerfelt, Anna; Möller, Annie; Påhlsson, Ninni; Konradsson-Geuken, Åsa; Feltmann, Kristin; Jardemark, Kent; Schilström, Björn; Svensson, Torgny H

    2016-09-01

    Nicotine has been found to improve cognition and reduce negative symptoms in schizophrenia and a genetic and pathophysiological link between the α7 nicotinic acetylcholine receptors (nAChRs) and schizophrenia has been demonstrated. Therefore, there has been a large interest in developing drugs affecting the α7 nAChRs for schizophrenia. In the present study we investigated, in rats, the effects of a selective α7 agonist (PNU282987) and a α7 positive allosteric modulator (PAM; NS1738) alone and in combination with the atypical antipsychotic drug risperidone for their utility as adjunct treatment in schizophrenia. Moreover we also investigated their utility as adjunct treatment in depression in combination with the SSRI citalopram. We found that NS1738 and to some extent also PNU282987, potentiated a subeffective dose of risperidone in the conditioned avoidance response test. Both drugs also potentiated the effect of a sub-effective concentration of risperidone on NMDA-induced currents in pyramidal cells of the medial prefrontal cortex. Moreover, NS1738 and PNU282987 enhanced recognition memory in the novel object recognition test, when given separately. Both drugs also potentiated accumbal but not prefrontal risperidone-induced dopamine release. Finally, PNU282987 reduced immobility in the forced swim test, indicating an antidepressant-like effect. Taken together, our data support the utility of drugs targeting the α7 nAChRs, perhaps especially α7 PAMs, to potentiate the effect of atypical antipsychotic drugs. Moreover, our data suggest that α7 agonists and PAMs can be used to ameliorate cognitive symptoms in schizophrenia and depression.

  18. [Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor].

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro; Yamamoto, Chizuko

    2014-10-01

    Nicotine (NIC) regulates various cellular functions acting on the nicotinic acetylcholine receptor (nAChR). And nAChR consists of ligand-gated cation channels with pentameric structure and composed of α and β subunits. In the central nervous system, α 4 β 2 and α 7 nAChRs are the most abundantly expressed as nAChR subtypes. There are several lines of evidence indicating that systemic administration of NIC elicits the release of endogenous opioids, such as, endorphins, enkephalins and dynorphins, in the brain. NIC exerts numerous acute effects, for example, antinociceptive effects and the activating effects of the hypothalamic-pituitary-adrenal (HPA) axis. In these effects, NIC-induced antinociception, but not HPA axis activation, was inhibited by opioid receptor antagonist, naloxone (NLX), and was also suppressed in morphine tolerated mice, indicating the participation of the endogenous opioid system in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception was antagonized by both α 4 β 2 and α 7 nAChR antagonists, while NIC-induced HPA axis activation was antagonized by α 4 β 2 nAChR antagonist, but not by α 7 nAChR antagonist. These results suggest that the endogenous opioid system may not be located on the downstream of α 4 β 2 nAChR. On the other hand, NIC has substantial physical dependence liability. NLX elicits NIC withdrawal after repeated NIC administration evaluated by corticosterone increase as a withdrawal sign, and NLX-precipitated NIC withdrawal is inhibited by concomitant administration of other opioid receptor antagonist, naltrexone, indicating the participation of endogenous opioid system in the development of physical dependence on NIC. NLX-precipitated NIC withdrawal was also inhibited by concomitant administration of an α 7 nAChR antagonist, but not an α 4 β 2 nAChR antagonist. Taken together, these findings suggest that the endogenous opioid system may be located on the downstream of α 7

  19. Increased Nicotinic Acetylcholine Receptor Protein Underlies Chronic Nicotine-Induced Up-Regulation of Nicotinic Agonist Binding Sites in Mouse Brain

    PubMed Central

    McClure-Begley, Tristan D.; Whiteaker, Paul; Salminen, Outi; Brown, Robert W. B.; Cooper, John; Collins, Allan C.; Lindstrom, Jon M.

    2011-01-01

    Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [125I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [125I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [125I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [125I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [125I]epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein. PMID:21228066

  20. Molecular Determinants for Competitive Inhibition of α4β2 Nicotinic Acetylcholine Receptors

    PubMed Central

    Carbone, Annalisa; García-Beltrán, Olimpo; Livingstone, Phil D.; Biggin, Philip C.; Cassels, Bruce K.; Wonnacott, Susan; Zapata-Torres, Gerald; Bermudez, Isabel

    2010-01-01

    The Erythrina alkaloids erysodine and dihydro-β-erythroidine (DHβE) are potent and selective competitive inhibitors of α4β2 nicotinic acetylcholine receptors (nAChRs), but little is known about the molecular determinants of the sensitivity of this receptor subtype to inhibition by this class of antagonists. We addressed this issue by examining the effects of DHβE and a range of aromatic Erythrina alkaloids on [3H]cytisine binding and receptor function in conjunction with homology models of the α4β2 nAChR, mutagenesis, and functional assays. The lactone group of DHβE and a hydroxyl group at position C-16 in aromatic Erythrina alkaloids were identified as major determinants of potency, which was decreased when the conserved residue Tyr126 in loop A of the α4 subunit was substituted by alanine. Sensitivity to inhibition was also decreased by substituting the conserved aromatic residues α4Trp182 (loop B), α4Tyr230 (loop C), and β2Trp82 (loop D) and the nonconserved β2Thr84; however, only α4Trp182 was predicted to contact bound antagonist, suggesting α4Tyr230, β2Trp82, and β2Thr84 contribute allosterically to the closed state elicited by bound antagonist. In addition, homology modeling predicted strong ionic interactions between the ammonium center of the Erythrina alkaloids and β2Asp196, leading to the uncapping of loop C. Consistent with this, β2D196A abolished sensitivity to inhibition by DHβE or erysodine but not by epierythratidine, which is not predicted to form ionic bonds with β2Asp196. This residue is not conserved in subunits that comprise nAChRs with low sensitivity to inhibition by DHβE or erysodine, which highlights β2Asp196 as a major determinant of the receptor selectivity of Erythrina alkaloids. PMID:20547737

  1. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  2. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    NASA Astrophysics Data System (ADS)

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-04-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  3. Diacylglycerol levels modulate the cellular distribution of the nicotinic acetylcholine receptor.

    PubMed

    Kamerbeek, Constanza B; Mateos, Melina V; Vallés, Ana S; Pediconi, María F; Barrantes, Francisco J; Borroni, Virginia

    2016-05-01

    Diacylglycerol (DAG), a second messenger involved in different cell signaling cascades, activates protein kinase C (PKC) and D (PKD), among other kinases. The present work analyzes the effects resulting from the alteration of DAG levels on neuronal and muscle nicotinic acetylcholine receptor (AChR) distribution. We employ CHO-K1/A5 cells, expressing adult muscle-type AChR in a stable manner, and hippocampal neurons, which endogenously express various subtypes of neuronal AChR. CHO-K1/A5 cells treated with dioctanoylglycerol (DOG) for different periods showed augmented AChR cell surface levels at short incubation times (30min-4h) whereas at longer times (18h) the AChR was shifted to intracellular compartments. Similarly, in cultured hippocampal neurons surface AChR levels increased as a result of DOG incubation for 4h. Inhibition of endogenous DAG catabolism produced changes in AChR distribution similar to those induced by DOG treatment. Specific enzyme inhibitors and Western blot assays revealed that DAGs exert their effect on AChR distribution through the modulation of the activity of classical PKC (cPKC), novel PKC (nPKC) and PKD activity.

  4. Structure-activity relationships of benzylidene anabaseines in nicotinic acetylcholine receptors of cockroach nerve cords.

    PubMed

    Sultana, Israt; Ikeda, Izumi; Ozoe, Yoshihisa

    2002-09-01

    Ten analogues of 6'-chloro-3-benzylideneanabaseine (CBA) bearing substituents at the ortho- and the para-positions of the phenyl group were synthesized, together with two related compounds. The affinity of the synthesized compounds for nicotinic acetylcholine receptors (nAChRs) in the nerve cord of the American cockroach (Periplaneta americana L.) was examined by the radioligand binding assay using [(3)H]epibatidine (EPI), a nAChR agonist. All 12 tested compounds inhibited [(3)H]EPI binding, showing K(i) values ranging from 14.6 to 6830nM. The potency variation of para-substituted CBA analogues was explained by the steric (Delta B(1)) and electronic (sigma(p)) parameters of the para-substituents, or by the steric parameter and the charge of the N1 nitrogen atom (qN(1)). Among the CBA analogues, only two compounds containing a dimethylamino group and a methoxy group at the para-position showed high insecticidal activity against the German cockroach (Blattella germanica) when injected after pretreatment with metabolic inhibitors. High-affinity analogues of CBA might be suitable probes for use in classifying and characterizing insect nAChR subtypes.

  5. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  6. Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen).

    PubMed

    Bao, Haibo; Sun, Huahua; Xiao, Youxin; Zhang, Yixi; Wang, Xin; Xu, Xiaoyong; Liu, Zewen; Fang, Jichao; Li, Zhong

    2015-03-06

    Associated proteins are important for the correct functioning of nicotinic acetylcholine receptors (nAChRs). In the present study, a neonicotinoid-agarose affinity column was used to isolate related proteins from a solubilized membrane preparation from the nervous system of Locusta migratoria manilensis (Meyen). 1530 peptides were identified and most of them were involved in the membranous structure, molecular interaction and cellular communication. Among these peptides, Na(+)/K(+) ATPase had the highest MASCOT score and were involved in the molecular interaction, which suggested that Na(+)/K(+) ATPase and nAChRs might have strong and stable interactions in insect central nervous system. In the present study, functional interactions between nAChRs and Na(+)/K(+) ATPase were examined by heterologous expression in Xenopus oocytes. The results showed that the activated nAChRs increased pump currents of Na(+)/K(+) ATPase, which did not require current flow through open nAChRs. In turn, Na(+)/K(+) ATPase significantly increased agonist sensitivities of nAChRs in a pump activity-independent manner and reduced the maximum current (Imax) of nAChRs. These findings provide novel insights concerning the functional interactions between insect nAChRs and Na(+)/K(+) ATPase.

  7. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing.

    PubMed

    Eiri, Daren M; Nieh, James C

    2012-06-15

    A nicotinic acetylcholine receptor agonist, imidacloprid, impairs memory formation in honey bees and has general effects on foraging. However, little is known about how this agonist affects two specific aspects of foraging: sucrose responsiveness (SR) and waggle dancing (which recruits nestmates). Using lab and field experiments, we tested the effect of sublethal doses of imidacloprid on (1) bee SR with the proboscis extension response assay, and (2) free-flying foragers visiting and dancing for a sucrose feeder. Bees that ingested imidacloprid (0.21 or 2.16 ng bee(-1)) had higher sucrose response thresholds 1 h after treatment. Foragers that ingested imidacloprid also produced significantly fewer waggle dance circuits (10.5- and 4.5-fold fewer for 50% and 30% sucrose solutions, respectively) 24 h after treatment as compared with controls. However, there was no significant effect of imidacloprid on the sucrose concentrations that foragers collected at a feeder 24 h after treatment. Thus, imidacloprid temporarily increased the minimum sucrose concentration that foragers would accept (short time scale, 1 h after treatment) and reduced waggle dancing (longer time scale, 24 h after treatment). The effect of time suggests different neurological effects of imidacloprid resulting from the parent compound and its metabolites. Waggle dancing can significantly increase colony food intake, and thus a sublethal dose (0.21 ng bee(-1), 24 p.p.b.) of this commonly used pesticide may impair colony fitness.

  8. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees

    PubMed Central

    Moffat, Christopher; Buckland, Stephen T.; Samson, Andrew J.; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A.; Huang, Jeffrey T.-J.; Connolly, Christopher N.

    2016-01-01

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species. PMID:27124107

  9. Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems.

    PubMed Central

    Bossy, B; Ballivet, M; Spierer, P

    1988-01-01

    Nicotinic acetylcholine receptors (nAChR) are found both in vertebrate and insect central nervous systems. We have isolated a Drosophila gene by crosshybridization with a vertebrate probe. Structural conservation of domains of the deduced protein and of intron/exon boundaries indicate that the Drosophila gene encodes an nAChR alpha-like subunit (ALS). That the Drosophila gene product most resembles the neuronal set of vertebrate nAChRs alpha-subunits is also indicated by the failure of an ALS-beta-galactosidase fusion protein to bind alpha-bungarotoxin on blots in contrast to vertebrate endplate alpha-subunit constructions. The ALS encoding gene exceeds 54 kb in length and the transcript has a very long and unusual 5' leader. As we found previously for a gene whose product is also involved in cholinergic synapses, acetylcholinesterase, the leader encodes short open reading frames, which might be involved in translation control. We also note the presence of opa repeats in the gene, as has been found for various Drosophila genes expressed in the nervous system. Images PMID:2840281

  10. Mutations of Cytosolic Loop Residues Impair Assembly and Maturation of α7 Nicotinic Acetylcholine Receptors

    PubMed Central

    Mukherjee, Jayanta; Kuryatov, Alexander; Moss, Stephen J.; Lindstrom, Jon M.; Anand, Rene

    2009-01-01

    Mechanisms that regulate early events in the biogenesis of the α7 nicotinic acetylcholine receptor (α7 AChR) are not well understood. Data presented here show that single amino acid mutations in the cytoplasmic loop of the α7 AChR, between position 335 and 343, abolish or attenuate expression of mature pentameric α7 AChRs in both human embryonic kidney tsA201 (HEK) and neuronal SH-SY5Y cells. Although the number of mature α7 AChRs is increased significantly in the presence of the chaperone protein RIC-3 in HEK cells, sucrose gradient sedimentation reveals that the vast majority of α7 subunits are aggregated or improperly assembled. Transfection of α7 AChRs in SH-SY5Y cells, which endogenously express the α7 AChR, results in a much larger fraction of subunits assembled into mature AChRs. Thus, efficient assembly of α7 AChRs is influenced by several regions of the large cytoplasmic domain, as well perhaps by other parts of its structure, and requires as yet unknown factors not required by other AChR subtypes. PMID:19627445

  11. Retinal waves in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor.

    PubMed

    Sun, Chao; Warland, David K; Ballesteros, Jose M; van der List, Deborah; Chalupa, Leo M

    2008-09-09

    The structural and functional properties of the visual system are disrupted in mutant animals lacking the beta2 subunit of the nicotinic acetylcholine receptor. In particular, eye-specific retinogeniculate projections do not develop normally in these mutants. It is widely thought that the developing retinas of beta2(-/-) mutants do not manifest correlated activity, leading to the notion that retinal waves play an instructional role in the formation of eye-specific retinogeniculate projections. By multielectrode array recordings, we show here that the beta2(-/-) mutants have robust retinal waves during the formation of eye-specific projections. Unlike in WT animals, however, the mutant retinal waves are propagated by gap junctions rather than cholinergic circuitry. These results indicate that lack of retinal waves cannot account for the abnormalities that have been documented in the retinogeniculate pathway of the beta2(-/-) mutants and suggest that other factors must contribute to the deficits in the visual system that have been noted in these animals.

  12. Neonicotinoids target distinct nicotinic acetylcholine receptors and neurons, leading to differential risks to bumblebees.

    PubMed

    Moffat, Christopher; Buckland, Stephen T; Samson, Andrew J; McArthur, Robin; Chamosa Pino, Victor; Bollan, Karen A; Huang, Jeffrey T-J; Connolly, Christopher N

    2016-04-28

    There is growing concern over the risk to bee populations from neonicotinoid insecticides and the long-term consequences of reduced numbers of insect pollinators to essential ecosystem services and food security. Our knowledge of the risk of neonicotinoids to bees is based on studies of imidacloprid and thiamethoxam and these findings are extrapolated to clothianidin based on its higher potency at nicotinic acetylcholine receptors. This study addresses the specificity and consequences of all three neonicotinoids to determine their relative risk to bumblebees at field-relevant levels (2.5 ppb). We find compound-specific effects at all levels (individual cells, bees and whole colonies in semi-field conditions). Imidacloprid and clothianidin display distinct, overlapping, abilities to stimulate Kenyon cells, indicating the potential to differentially influence bumblebee behavior. Bee immobility was induced only by imidacloprid, and an increased vulnerability to clothianidin toxicity only occurred following chronic exposure to clothianidin or thiamethoxam. At the whole colony level, only thiamethoxam altered the sex ratio (more males present) and only clothianidin increased queen production. Finally, both imidacloprid and thiamethoxam caused deficits in colony strength, while no detrimental effects of clothianidin were observed. Given these findings, neonicotinoid risk needs to be considered independently for each compound and target species.

  13. Acetylcholine regulation of nicotinic receptor channels through a putative G protein in chick myotubes.

    PubMed Central

    Eusebi, F; Grassi, F; Molinaro, M; Zani, B M

    1987-01-01

    1. Single-channel currents induced by acetylcholine (ACh) were recorded from unstriated and non-innervated embryonic chick myotubes using the cell-attached patch-clamp technique. 2. ACh applied to the non-patched membrane decreased both channel opening probability and conductance. These ACh-induced effects occurred also when the non-patched membrane was exposed to nominally Ca2+-free extracellular medium, but were absent when it was treated with curare. 3. ACh-induced membrane current recorded under whole-cell patch-clamp conditions decreased in amplitude and time course when myotubes were intracellularly loaded with guanosine-5'-O-(3-thiotriphosphate) GTP gamma S), but not with guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) or cyclic adenosine-5'-monophosphate (cyclic AMP). Internal perfusion of GTP gamma S affected the ACh-induced openings in a similar manner to the non-patch ACh application. 4. These results suggest that ACh, in addition to its direct effect, acts indirectly on the nicotinic receptor channels by delivering an intracellular messenger and through the activation of a putative G protein. PMID:2451747

  14. Molecular characterisation of nicotinic acetylcholine receptor subunits from the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae).

    PubMed

    Bass, Chris; Lansdell, Stuart J; Millar, Neil S; Schroeder, Iris; Turberg, Andreas; Field, Linda M; Williamson, Martin S

    2006-01-01

    As part of a program to monitor the susceptibility of cat flea populations to the insecticide imidacloprid we have examined the cat flea nicotinic acetylcholine receptor, the target site protein of the neonicotinoid group of insecticides. Seven nAChR subunits (six alpha-type and one beta-type) were identified in cat flea using a degenerate PCR-based strategy. Five of these were expressed in vitro by creating chimeras containing the N-terminal ligand-binding domain of the cat flea subunits and the C-terminal region of the Drosophila Dalpha2 (SAD) subunit. Two of the five chimeric subunits, Cfalpha1/Dalpha2 and Cfalpha3/Dalpha2, when co-expressed with rat beta2 in Drosophila S2 cells, showed high-affinity binding of both epibatidine (Kd=1.6+/-0.6 and 0.13+/-0.06nM, respectively), and imidacloprid (Ki=142+/-34 and 28.7+/-2.4nM, respectively). It is likely therefore that Cfalpha1 and Cfalpha3 contribute to nAChR populations in vivo that are sensitive to imidacloprid. The identification of cat flea nAChR subunits that have a high affinity for imidacloprid presents candidate genes in which to look for resistance-associated mutations if target-site resistance to imidacloprid arises in domestic pet flea populations.

  15. Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells

    PubMed Central

    Yang, Xin-Jie; An, Shi-Min; Wang, Hao; Xu, Lu; Zhu, Liang; Chen, Hong-Zhuan

    2016-01-01

    Nicotine via nicotinic acetylcholine receptors (nAChRs) stimulates non-small cell lung cancer (NSCLC) cell invasion and epithelial to mesenchymal transition (EMT) which underpin the cancer metastasis. However, the receptor subtype-dependent effects of nAChRs on NSCLC cell invasion and EMT, and the signaling pathway underlying the effects remain not fully defined. We identified that nicotine induced NSCLC cell invasion, migration, and EMT; the effects were suppressed by pharmacological intervention using α7-nAChR selective antagonists or by genetic intervention using α7-nAChR knockdown via RNA inference. Meanwhile, nicotine induced activation of MEK/ERK signaling in NSCLC cells; α7-nAChR antagonism or MEK/ERK signaling pathway inhibition suppressed NSCLC cell invasion and EMT marker expression. These results indicate that nicotine induces NSCLC cell invasion, migration, and EMT; the effects are mediated by α7-nAChRs and involve MEK/ERK signaling pathway. Delineating the effect of nicotine on the NSCLC cell invasion and EMT at receptor subtype level would improve the understanding of cancer biology and offer potentials for the exploitation of selective ligands for the control of the cancer metastasis. PMID:27409670

  16. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices.

    PubMed

    Alkondon, M; Pereira, E F; Barbosa, C T; Albuquerque, E X

    1997-12-01

    In the present study we investigated electrophysiologically the nicotinic responses of pyramidal neurons and interneurons visualized by infrared-assisted videomicroscopy and fluorescence in the CA1 field of hippocampal slices obtained from 8- to 24-day-old rats. Application of nicotinic agonists to CA1 neurons evoked at least four types of nicotinic responses. Of major interest was the ability of these agonists to induce the release of gamma-aminobutyric acid (GABA) from interneurons. Slowly decaying ACh whole-cell currents and GABA-mediated postsynaptic currents could be recorded from pyramidal neurons and interneurons, whereas fast-decaying nicotinic currents and fast current transients were recorded only from interneurons. Nicotinic responses were sensitive to blockade by d-tubocurarine (10 microM), which indicated that they were mediated by nicotinic acetylcholine receptors (nAChRs). The slowly decaying currents, the postsynaptic currents and the fast current transients were insensitive to blockade by the alpha-7 nAChR-specific antagonist methyllycaconitine (up to 1 microM) or alpha-bungarotoxin (100 nM). On the other hand, the slowly decaying nicotinic currents recorded from the interneurons were blocked by the alpha4beta2 nAChR-specific antagonist dihydro-beta-erythroidine, and the fast-desensitizing nicotinic currents were evoked by the alpha-7 nAChR-specific agonist choline. In experimental conditions similar to those used to record nicotinic responses from neurons in slice (i. e., in the absence of tetrodotoxin), we observed that nicotinic agonists can also induce the release of GABA from hippocampal neurons in culture. In summary, these results provide direct evidence for more than one subtype of functional nAChR in CA1 neurons and suggest that activation of nAChRs present in GABAergic interneurons can evoke inhibitory activity in CA1 pyramidal neurons, thereby modulating processing of information in the hippocampus.

  17. Novel neonicotinoid-agarose affinity column for Drosophila and Musca nicotinic acetylcholine receptors.

    PubMed

    Tomizawa, M; Latli, B; Casida, J E

    1996-10-01

    Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with KD values of 1-2 nM and Bmax values of 560-850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an alpha-bungarotoxin (alpha-BGT)-agarose affinity column are known to be alpha-subunit homooligomers. This study uses 1-[N-(6-chloro-3-pyridylmethyl)-N-ethyl]amino-1-amino-2-nitroethene++ + (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2-3 nM) to develop a neonicotinoid-agarose affinity column. The procedure-introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamicle gel electrophoresis-gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the alpha-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-alpha-BGT-4-azidosalicylic acid gives a labeled derivative of 66-69 kDa. The yield is 2-5 micrograms of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.

  18. Spinal alpha3beta2* nicotinic acetylcholine receptors tonically inhibit the transmission of nociceptive mechanical stimuli.

    PubMed

    Young, Tracey; Wittenauer, Shannon; McIntosh, J Michael; Vincler, Michelle

    2008-09-10

    The presence of non-alpha4beta2, non-alpha7 nicotinic acetylcholine receptors (nAChR) in the rat spinal cord has been suggested previously, but the identity of these nAChRs had not been shown. Intrathecal administration of the alpha3beta2*/alpha6beta2* selective alpha-conotoxin MII (alpha-CTX MII) dose- and time-dependently reduced paw withdrawal thresholds to mechanical pressure in normal rats. The pronociceptive effect of alpha-CTX MII was partially blocked by NMDA receptor antagonism and lost completely following ablation of C-fibers. The effect of spinal nerve ligation on alpha-CTX MII-induced mechanical hypersensitivity was also assessed. Sensitivity was lost in the hind paw ipsilateral to spinal nerve ligation, but maintained in the contralateral hind paw at control levels. Radioligand binding in spinal cord membranes revealed high and low affinity alpha-CTX MII binding sites. Spinal nerve ligation did not significantly alter alpha-CTX MII binding ipsilateral to ligation. Finally, no evidence for the presence of alpha6-containing nAChRs was identified. The results of these studies show the presence of 2 populations of alpha-CTX MII-sensitive nAChRs containing the alpha3 and beta2, but not the alpha6, subunits in the rat spinal cord that function to inhibit the transmission of nociceptive mechanical stimuli via inhibiting the release of glutamate from C-fibers. Spinal nerve ligation produces a unilateral loss of alpha-CTX MII-induced mechanical hypersensitivity without altering alpha-CTX MII binding sites. Our data support a peripheral injury-induced loss of a cholinergic inhibitory tone at spinal alpha3beta2* nAChRs, without the loss of the receptors themselves, which may contribute to mechanical hypersensitivity following spinal nerve ligation.

  19. Spinal α3β2* nicotinic acetylcholine receptors tonically inhibit the transmission of nociceptive mechanical stimuli

    PubMed Central

    Young, Tracey; Wittenauer, Shannon; McIntosh, J. Michael; Vincler, Michelle

    2008-01-01

    The presence of non-α4β2, non-α7 nicotinic acetylcholine receptors (nAChR) in the rat spinal cord has been suggested previously, but the identity of these nAChRs had not been shown. Intrathecal administration of the α3β2*/α6β2* selective α-conotoxin MII (α-CTX MII) dose- and time-dependently reduced paw withdrawal thresholds to mechanical pressure in normal rats. The pronociceptive effect of α-CTX MII was partially blocked by NMDA receptor antagonism and lost completely following ablation of C-fibers. The effect of spinal nerve ligation on α-CTX MII-induced mechanical hypersensitivity was also assessed. Sensitivity was lost in the hind paw ipsilateral to spinal nerve ligation, but maintained in the contralateral hind paw at control levels.. Radioligand binding in spinal cord membranes revealed high and low affinity α-CTX MII binding sites. Spinal nerve ligation did not significantly alter α-CTX MII binding ipsilateral to ligation. Finally, no evidence for the presence of α6-containing nAChRs was identified. The results of these studies show the presence of 2 populations of α-CTX MII-sensitive nAChRs containing the α3 and β2, but not the α6, subunits in the rat spinal cord that function to inhibit the transmission of nociceptive mechanical stimuli via inhibiting the release of glutamate from C-fibers. Spinal nerve ligation produces a unilateral loss of α-CTX MII-induced mechanical hypersensitivity without altering α-CTX MII binding sites. Our data support a peripheral injury-induced loss of a cholinergic inhibitory tone at spinal α3β2* nAChRs, without the loss of the receptors themselves, which may contribute to mechanical hypersensitivity following spinal nerve ligation. PMID:18634758

  20. Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain

    PubMed Central

    Romero, Haylie K.; Christensen, Sean B.; Gajewiak, Joanna; Ramachandra, Renuka; Elmslie, Keith S.; Vetter, Douglas E.; Ghelardini, Carla; Iadonato, Shawn P.; Mercado, Jose L.; Olivera, Baldomera M.; McIntosh, J. Michael

    2017-01-01

    Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain. PMID:28223528

  1. Brain Nicotinic Acetylcholine Receptor Availability and Response to Smoking Cessation Treatment A Randomized Trial

    PubMed Central

    Brody, Arthur L.; Mukhin, Alexey G.; Mamoun, Michael S.; Luu, Trinh; Neary, Meaghan; Liang, Lidia; Shieh, Jennifer; Sugar, Catherine A.; Rose, Jed E.; Mandelkern, Mark A.

    2015-01-01

    IMPORTANCE Cigarette smoking leads to upregulation of nicotinic acetylcholine receptors (nAChRs) in the human brain, including the common α4β2* nAChR subtype. While subjective aspects of tobacco dependence have been extensively examined as predictors of quitting smoking with treatment, no studies to our knowledge have yet reported the relationship between the extent of pretreatment upregulation of nAChRs and smoking cessation. OBJECTIVE To determine whether the degree of nAChR upregulation in smokers predicts quitting with a standard course of treatment. DESIGN, SETTING, AND PARTICIPANTS Eighty-one tobacco-dependent cigarette smokers (volunteer sample) underwent positron emission tomographic (PET) scanning of the brain with the radiotracer 2-FA followed by 10 weeks of double-blind, placebo-controlled treatment with nicotine patch (random assignment). Pretreatment specific binding volume of distribution (VS/fP) on PET images (a value that is proportional to α4β2* nAChR availability) was determined for 8 brain regions of interest, and participant-reported ratings of nicotine dependence, craving, and self-efficacy were collected. Relationships between these pretreatment measures, treatment type, and outcome were then determined. The study took place at academic PET and clinical research centers. MAIN OUTCOMES AND MEASURES Posttreatment quit status after treatment, defined as a participant report of 7 or more days of continuous abstinence and an exhaled carbon monoxide level of 3 ppm or less. RESULTS Smokers with lower pretreatment VS/fP values (a potential marker of less severe nAChR upregulation) across all brain regions studied were more likely to quit smoking (multivariate analysis of covariance, F8,69 = 4.5; P < .001), regardless of treatment group assignment. Furthermore, pretreatment average VS/fP values provided additional predictive power for likelihood of quitting beyond the self-report measures (stepwise binary logistic regression, likelihood ratio χ12

  2. Synthesis, Nicotinic Acetylcholine Receptor Binding, Antinociceptive and Seizure Properties of Methyllycaconitine Analogs

    PubMed Central

    Carroll, F. Ivy; Ma, Wei; Navarro, Hernán A.; Abraham, Philip; Wolckenhauer, Scott A.; Damaj, M. I.; Martin, Billy R.

    2007-01-01

    A series of methyllycaconitine (1a, MLA) analogs was synthesized where the (S)-2-methylsuccinimidobenzoyl group in MLA was replaced with a (R)-2-methyl, 2,2-dimethyl-, 2,3-dimethyl, 2-phenyl- and 2-cyclohexylsuccinimidobenzoyl (1b–f) group. The analogs 1b–f were evaluated for their inhibition of [125I]iodo MLA binding at rat brain α7 nicotinic acetylcholine receptors (nAChR). In order to determine selectivity, MLA and the analogs 1b–f were evaluated for inhibition of binding to rat brain α, β nAChR using [3H]epibatidine. At the α7 nAChR, MLA showed a Ki value of 0.87 nM, analogs 1b–e possessed Ki values of 1.68–2.16 nM, and 1f showed a Ki value of 26.8 nM. Surprisingly, the analog 1e containing the large phenyl substituent (Ki = 1.68 nM) possessed the highest affinity. None of the compounds possessed appreciable affinity for α, β nAChRs. MLA antagonized nicotine-induced seizures with an AD50 = 2mg/kg. None of the MLA analogs were as potent as MLA in this assay. MLA and all of the MLA analogs, with the exception of 1b, antagonized nicotine’s antinociceptive effects in the tail-flick assay. Compound 1c (Ki = 1.78 nM at α7 nAChR) with an AD50 value of 1.8 mg/kg was 6.7 times more potent than MLA (AD50 = 12 mg/kg) in antagonizing nicotine’s antinociceptive effects but was 5-fold less potent than MLA in blocking nicotine-induced seizures. Since MLA has been reported to show neuroprotection against β-amyloid1–42, these new analogs which have high α7 nAChR affinity and good selectivity relative to α, β nAChRs will be useful biological tools for studying the effects of α7 nAChR antagonist and neuroprotection. PMID:17098430

  3. Optical studies of nicotinic acetylcholine receptor subtypes in the guinea-pig enteric nervous system.

    PubMed

    Obaid, A L; Nelson, M E; Lindstrom, J; Salzberg, B M

    2005-08-01

    Nicotinic transmission in the enteric nervous system (ENS) is extensive, but the role of individual nicotinic acetylcholine receptor (nAChR) subtypes in the functional connectivity of its plexuses has been elusive. Using monoclonal antibodies (mAbs) against neuronal alpha3-, alpha4-, alpha3/alpha5-, beta2-, beta4- and alpha7-subunits, combined with radioimmunoassays and immunocytochemistry, we demonstrate that guinea-pig enteric ganglia contain all of these nAChR-subunits with the exception of alpha4, and so, differ from mammalian brain. This information alone, however, is insufficient to establish the functional role of the identified nAChR-subtypes within the enteric networks and, ultimately, their specific contributions to gastrointestinal physiology. We have used voltage-sensitive dyes and a high-speed CCD camera, in conjunction with specific antagonists to various nAChRs, to elucidate some of the distinct contributions of the individual subtypes to the behaviour of enteric networks. In the guinea-pig, the submucous plexus has the extraordinary advantage that it is virtually two-dimensional, permitting optical recording, with single cell resolution, of the electrical activity of all of its neurones. In this plexus, the block of alpha3beta2-, alpha3beta4- and/or alpha7-nAChRs always results in a decrease in the magnitude of the synaptic response. However, the magnitude of the fast excitatory post-synaptic potentials (epsps) evoked by electrical stimulation of a neighbouring ganglion varies from cell to cell, reflecting the differential expression of subunits already observed using mAbs, as well as the strengths of the activated synaptic inputs. At the same time, we observe that submucous neurones have a substantial mecamylamine (Mec)-insensitive (non-nicotinic) component to their fast epsps, which may point to the presence of purinergic or serotonergic fast epsps in this system. In the myenteric plexus, on the other hand, the antagonist-induced changes in the

  4. Expression of neuronal nicotinic acetylcholine receptor subunit mRNAs in rat hippocampal GABAergic interneurons.

    PubMed

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2008-11-10

    Hippocampal inhibitory interneurons are a diverse population of cells widely scattered in the hippocampus, where they regulate hippocampal circuit activity. The hippocampus receives cholinergic projections from the basal forebrain, and functional studies have suggested the presence of different subtypes of nicotinic acetylcholine receptors (AChRs) on gamma-aminobutyric acid (GABA)ergic interneurons. Single-cell polymerase chain reaction analysis had confirmed that several nAChR subunit mRNAs are co-expressed with glutamate decarboxylase 67 (GAD67), the marker for GABAergic interneurons. In this anatomical study, we systematically investigated the co-expression of GAD67 with different nAChR subunits by using double in situ hybridization with a digoxigenin-labeled GAD67 probe and (35)S-labeled probes for nAChR subunits (alpha2, alpha3, alpha4, alpha5, alpha6, alpha7, beta2, beta3, and beta4). The results revealed that most GAD67-positive interneurons expressed beta2, and 67 % also expressed alpha7 mRNA. In contrast, mRNA expression of other subunits was limited; only 13 % of GAD67-positive neurons co-expressed alpha4, and less than 10% expressed transcripts for alpha2, alpha3, alpha5, or beta4. Most GAD67/alpha2 co-expression was located in CA1/CA3 stratum oriens, and GAD67/alpha5 co-expression was predominantly detected in CA1/CA3 stratum radiatum/lacunosum moleculare and the dentate gyrus. Expression of alpha6 and beta3 mRNAs was rarely detected in the hippocampus, and mRNAs were not co-expressed with GAD67. These findings suggest that the majority of nicotinic responses in GABAergic interneurons should be mediated by a homomeric alpha7 or heteromeric alpha7*-containing nAChRs. Other possible combinations such as alpha2beta2*, alpha4beta2*, or alpha5beta2* heteromeric nAChRs could contribute to functional nicotinic response in subsets of GABAergic interneurons but overall would have a minor role.

  5. Methanandamide allosterically inhibits in vivo the function of peripheral nicotinic acetylcholine receptors containing the alpha 7-subunit.

    PubMed

    Baranowska, Urszula; Göthert, Manfred; Rudz, Radoslaw; Malinowska, Barbara

    2008-09-01

    Methanandamide (MAEA), the stable analog of the endocannabinoid anandamide, has been proven in Xenopus oocytes to allosterically inhibit the function of the alpha7-nicotinic acetylcholine receptors (nAChRs) in a cannabinoid (CB) receptor-independent manner. The present study aimed at demonstrating that this mechanism can be activated in vivo. In anesthetized and vagotomized pithed rats treated with atropine, we determined the tachycardic response to electrical stimulation of preganglionic sympathetic nerves via the pithing rod or to i.v. nicotine (0.7 micromol/kg) activating nAChRs on the cardiac postganglionic sympathetic neurons. MAEA (3 and 10 micromol/kg) inhibited the electrically induced tachycardia (maximally by 15-20%; abolished by the CB(1) receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]; 3 micromol/kg) in pentobarbitone-anesthetized pithed rats, but not in urethane-anesthetized pithed rats, which, thus, are suitable to study the CB(1) receptor-independent inhibition of nicotine-evoked tachycardia. The subunit-nonselective nAChR antagonist hexamethonium (100 micromol/kg) and the selective alpha7-subunit antagonist methyllycaconitine (MLA; 3 and 10 micromol/kg) decreased the nicotine-induced tachycardia by 100 and 40%, respectively (maximal effects), suggesting that nAChRs containing the alpha7-subunit account for 40% of the nicotine-induced tachycardia. MAEA (3 micromol/kg) produced an AM 251-insensitive inhibition (maximum again by 40%) of the nicotine-induced tachycardia. Simultaneous or sequential coadministration of MLA and MAEA inhibited the nicotine-induced tachycardia to the same extent (maximally by 40%) as each of the drugs alone. In conclusion, according to nonadditivity of the effects, MAEA mediates in vivo inhibition by the same receptors as MLA, namely alpha7-subunit-containing nAChRs, although at an allosteric instead of the orthosteric site.

  6. Activation of muscarinic and nicotinic acetylcholine receptors in the nucleus accumbens core is necessary for the acquisition of drug reinforcement.

    PubMed

    Crespo, Jose A; Sturm, Katja; Saria, Alois; Zernig, Gerald

    2006-05-31

    Neurotransmitter release in the nucleus accumbens core (NACore) during the acquisition of remifentanil or cocaine reinforcement was determined in an operant runway procedure by simultaneous tandem mass spectrometric analysis of dopamine, acetylcholine, and remifentanil or cocaine itself. Run times for remifentanil or cocaine continually decreased over the five consecutive runs of the experiment. Intra-NACore dopamine, acetylcholine, and drug peaked with each intravenous remifentanil or cocaine self-administration and decreased to pre-run baseline with half-lives of approximately 10 min. As expected, remifentanil or cocaine peaks did not vary between the five runs. Surprisingly, however, drug-contingent dopamine peaks also did not change over the five runs, whereas acetylcholine peaks did. Thus, the acquisition of drug reinforcement was paralleled by a continuous increase in acetylcholine overflow in the NACore, whereas the overflow of dopamine, the expected prime neurotransmitter candidate for conditioning in drug reinforcement, did not increase. Local intra-accumbens administration by reverse microdialysis of either atropine or mecamylamine completely and reversibly blocked the acquisition of remifentanil reinforcement. Our findings suggest that activation of muscarinic and nicotinic acetylcholine receptors in the NACore by acetylcholine volume transmission is necessary during the acquisition phase of drug reinforcement conditioning.

  7. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    PubMed

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex.

  8. Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo.

    PubMed

    Bruneau, Emile; Sutter, David; Hume, Richard I; Akaaboune, Mohammed

    2005-10-26

    In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel imaging technique, we show here that nicotinic acetylcholine receptors (AChRs) recycle into the postsynaptic membrane of the neuromuscular junction. By sequentially labeling AChRs with biotin-bungarotoxin and streptavidin-fluorophore conjugates, we were able to distinguish recycled, preexisting, and new receptor pools at synapses in living mice. Time-lapse imaging revealed that recycled AChRs were incorporated into the synapse within hours of initial labeling, and their numbers increased with time. At fully functional synapses, AChR recycling was robust and comparable in magnitude with the insertion of newly synthesized receptors, whereas chronic synaptic activity blockade nearly abolished receptor recycling. Finally, using the same sequential labeling method, we found that acetylcholinesterase, another synaptic component, does not recycle. These results identify an activity-dependent AChR-recycling mechanism that enables the regulation of receptor density, which could lead to rapid alterations in synaptic efficacy.

  9. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    PubMed

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  10. Critical Molecular Determinants of α7 Nicotinic Acetylcholine Receptor Allosteric Activation

    PubMed Central

    Horenstein, Nicole A.; Papke, Roger L.; Kulkarni, Abhijit R.; Chaturbhuj, Ganesh U.; Stokes, Clare; Manther, Khan; Thakur, Ganesh A.

    2016-01-01

    The α7 nicotinic acetylcholine receptors (nAChRs) are uniquely sensitive to selective positive allosteric modulators (PAMs), which increase the efficiency of channel activation to a level greater than that of other nAChRs. Although PAMs must work in concert with “orthosteric” agonists, compounds such as GAT107 ((3aR,4S,9bS)-4-(4-bromophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) have the combined properties of agonists and PAMs (ago-PAM) and produce very effective channel activation (direct allosteric activation (DAA)) by operating at two distinct sites in the absence of added agonist. One site is likely to be the same transmembrane site where PAMs like PNU-120596 function. We show that the other site, required for direct activation, is likely to be solvent-accessible at the extracellular domain vestibule. We identify key attributes of molecules in this family that are able to act at the DAA site through variation at the aryl ring substituent of the tetrahydroquinoline ring system and with two different classes of competitive antagonists of DAA. Analyses of molecular features of effective allosteric agonists allow us to propose a binding model for the DAA site, featuring a largely non-polar pocket accessed from the extracellular vestibule with an important role for Asp-101. This hypothesis is supported with data from site-directed mutants. Future refinement of the model and the characterization of specific GAT107 analogs will allow us to define critical structural elements that can be mapped onto the receptor surface for an improved understanding of this novel way to target α7 nAChR therapeutically. PMID:26742843

  11. Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes.

    PubMed

    Alkondon, M; Albuquerque, E X

    1993-06-01

    Nicotinic acetylcholine receptors present on cultured hippocampal neurons from fetal rats were characterized by means of whole-cell patch-clamp technique, using a number of structurally divergent agonists and highly selective antagonists. Based upon the decay kinetics of the currents elicited by 3 mM acetylcholine (ACh) and their sensitivities to agonists and antagonists, the neurons were shown to exhibit four current types, IA, IB, II and III. Rapidly decaying currents (type IA) that were blocked by alpha-bungarotoxin (10 nM), kappa-bungarotoxin (10 nM) and methyllycaconitine (MLA, 1 nM) were the most frequent and were found in 83% of the neurons tested. Type II currents (found in 5% of the neurons) were blocked by dihydro-beta-erythroidine (10 nM), and by high concentrations of MLA and kappa-bungarotoxin (100 nM each) but not by alpha-bungarotoxin (100 nM). Type III currents (elicited in 2% of the neurons) decayed slowly and were blocked by (+/-)-mecamylamine (1 microM) but not by alpha-bungarotoxin, kappa-bungarotoxin or MLA (each at 100 nM). Some of the cells (10% of the neurons) had mixed responses (named type IB), which were only partially blocked by MLA (1 nM) or dihydro-beta-erythroidine (10 nM) alone and were completely blocked by combination of the two agents. The order of potency of agonists in activating the currents was the following: for type IA, (+)-anatoxin-a > 1,1-dimethyl-4-phenyl-piperazinium > (-)-nicotine > cystisine > ACh > carbachol > (+)-nicotine > arecoline > suberyldicholine; for type II, ACh > (+)-anatoxin-a > (-)-nicotine > 1,1-dimethyl-4-phenyl-piperazinium > carbachol > cytisine > (+)-nicotine > suberyldicholine > arecoline. Certain agonists were particularly useful in discriminating among the various types of currents: ACh, carbachol, (-)-nicotine and suberyldicholine for type II, and cytisine for type III currents. The EC50 of ACh was approximately 130 microM for type IA and approximately 2 microM for type II currents. A marked

  12. Antipeptide monoclonal antibodies inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor.

    PubMed

    Bracci, L; Antoni, G; Cusi, M G; Lozzi, L; Niccolai, N; Petreni, S; Rustici, M; Santucci, A; Soldani, P; Valensin, P E

    1988-09-01

    It has been reported that binding to muscle nicotinic acetylcholine receptor at the post-synaptic membrane is an important event of the rabies virus neurotropism. The binding site can be located within the 190-203 region of the virus glycoprotein sharing a high degree of homology with the "toxic loop" of the curare-mimetic snake neurotoxins. We have synthesized a tetradecapeptide corresponding to this glycoprotein region and used it, following conjugation with an immunogenic carrier to raise MAbs. We found that some MAbs raised against the peptide were able to recognize both the virus glycoprotein and the snake neurotoxin alpha-bungarotoxin; moreover, they can inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor extracted from the electric organs of Torpedo marmorata. On the basis of this cross-reactivity, we suggest that rabies virus glycoprotein and curare-mimetic snake neurotoxins share three-dimensionally similar structures in order to bind to the nicotinic cholinergic receptor. The potential use of the immunogenic properties of the peptide for the rational design of a synthetic vaccine against rabies is proposed.

  13. Activation of α7 nicotinic acetylcholine receptors persistently enhances hippocampal synaptic transmission and prevents Aß-mediated inhibition of LTP in the rat hippocampus.

    PubMed

    Ondrejcak, Tomas; Wang, Qinwen; Kew, James N C; Virley, David J; Upton, Neil; Anwyl, Roger; Rowan, Michael J

    2012-02-29

    Nicotinic acetylcholine receptors mediate fast cholinergic modulation of glutamatergic transmission and synaptic plasticity. Here we investigated the effects of subtype selective activation of the α7 nicotinic acetylcholine receptors on hippocampal transmission and the inhibition of synaptic long-term potentiation by the Alzheimer's disease associated amyloid ß-protein (Aß). The α7 nicotinic acetylcholine receptor agonist "compound A" ((R)-N-(1-azabicyclo[2.2.2]oct-3-yl)(5-(2-pyridyl))thiophene-2-carboxamide) induced a rapid-onset persistent enhancement of synaptic transmission in the dentate gyrus in vitro. Consistent with a requirement for activation of α7 nicotinic acetylcholine receptors, the type II α7-selective positive allosteric modulator PheTQS ((3aR, 4S, 9bS)-4-(4-methylphenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide) potentiated, and the antagonist methyllycaconitine (MLA) prevented the persistent enhancement. Systemic injection of the agonist also induced a similar MLA-sensitive persistent enhancement of synaptic transmission in the CA1 area in vivo. Remarkably, although compound A did not affect control long-term potentiation (LTP) in vitro, it prevented the inhibition of LTP by Aß1-42 and this effect was inhibited by MLA. These findings strongly indicate that activation of α7 nicotinic acetylcholine receptors is sufficient to persistently enhance hippocampal synaptic transmission and to overcome the inhibition of LTP by Aß.

  14. Nicotinic acetylcholine receptors in dorsal root ganglion neurons include the α6β4* subtype.

    PubMed

    Hone, Arik J; Meyer, Erin L; McIntyre, Melissa; McIntosh, J Michael

    2012-02-01

    The α6-containing nicotinic acetylcholine receptors (nAChRs) have recently been implicated in diseases of the central nervous system (CNS), including Parkinson's disease and substance abuse. In contrast, little is known about the role of α6* nAChRs in the peripheral nervous system (where the asterisk denotes the possible presence of additional subunits). Dorsal root ganglia (DRG) neurons are known to express nAChRs with a pharmacology consistent with an α7, α3β4*, and α4β2* composition. Here we present evidence that DRG neurons also express α6* nAChRs. We used RT-PCR to show the presence of α6 subunit transcripts and patch-clamp electrophysiology together with subtype-selective α-conotoxins to pharmacologically characterize the nAChRs in rat DRG neurons. α-Conotoxin BuIA (500 nM) blocked acetylcholine-gated currents (I(ACh)) by 90.3 ± 3.0%; the recovery from blockade was very slow, indicating a predominance of α(x)β4* nAChRs. Perfusion with either 300 nM BuIA[T5A;P6O] or 200 nM MII[E11A], α-conotoxins that target the α6β4* subtype, blocked I(ACh) by 49.3 ± 5 and 46.7 ± 8%, respectively. In these neurons, I(ACh) was relatively insensitive to 200 nM ArIB[V11L;V16D] (9.4±2.0% blockade) or 500 nM PnIA (23.0±4% blockade), α-conotoxins that target α7 and α3β2*/α6β2* nAChRs, respectively. We conclude that α6β4* nAChRs are among the subtypes expressed by DRG, and to our knowledge, this is the first demonstration of α6β4* in neurons outside the CNS.

  15. Interaction of dinotefuran and its analogues with nicotinic acetylcholine receptors of cockroach nerve cords.

    PubMed

    Mori, Kazuki; Okumoto, Takashi; Kawahara, Nobuyuki; Ozoe, Yoshihisa

    2002-02-01

    To investigate the action of dinotefuran (MTI-446, 1-methyl-2-nitro-3-(tetrahydro-3-furylmethyl)guanidine), a recently developed insecticide, on insect nicotinic acetylcholine receptors (nAChRs), we determined the potencies of the compound and 15 analogues in inhibiting the specific binding of [3H]epibatidine (EPI), a nAChR agonist, and [3H]alpha-bungarotoxin (alpha-BGT), a competitive nAChR antagonist, to the nerve cord membranes of American cockroaches (Periplaneta americana). Racemic dinotefuran inhibited [3H]EPI binding with an IC50 of 890 nM and [3H]alpha-BGT binding with an IC50 of 36.1 microM. Scatchard analysis indicated that the dinotefuran inhibition of [3H]EPI binding was a competitive one. Slight structural modification caused a drastic reduction in potency; only four analogues were found to be equipotent to or more potent than dinotefuran. Chloropyridinyl and chlorothiazolyl neonicotinoid insecticides displayed two or three orders of magnitude higher potency than dinotefuran. There was a good correlation between the IC50 values of tested compounds obtained with [3H]EPI and those obtained with [3H]alpha-BGT. A better correlation was observed between 3-h knockdown activities (KD50) against German cockroaches (Blattella germanica) and IC50 values obtained from [3H]EPI assays than between 24-h lethal activities (LD50) and IC50 values. While the results indicate that dinotefuran and its analogues interact with the ACh-binding site in cockroach nAChRs, it remains to be elucidated why they displayed lower potencies than those expected based on their insecticidal activities.

  16. The binding site of the nicotinic acetylcholine receptor in animal species resistant to alpha-bungarotoxin.

    PubMed

    Barchan, D; Ovadia, M; Kochva, E; Fuchs, S

    1995-07-18

    The ligand binding site of the nicotinic acetylcholine receptor (AChR) is located in the alpha-subunit, within a small fragment containing the tandem cysteines at positions 192 and 193. We have been analyzing the binding site domain of AChRs from several animal species exhibiting various degrees of resistance to alpha-bungarotoxin (alpha-BTX). Our earlier work on the snake and mongoose AChR, both of which do not bind alpha-BTX, suggested that amino acid substitutions at positions 187, 189, and 194 of the AChR alpha-subunit are important in determining the resistance of these AChRs to alpha-BTX. In the present study, we have examined the correlation between alpha-BTX binding and the structure of the binding site domain of AChR from the hedgehog, shrew, cat, and human. Fragments of the AChR alpha-subunit corresponding to residues 122-205 from these species were cloned, sequenced, and expressed in Escherichia coli. The hedgehog fragment does not bind alpha-BTX, in common with the snake and mongoose AChR, and the human fragment is a partial binder. The shrew and cat fragments bind alpha-BTX to a similar extent as the mouse fragment. The hedgehog and human AChRs have nonaromatic amino acid residues at positions 187 and 189 of the alpha-subunit, as is seen with the "toxin resistant" snake and mongoose, and in contrast with the "toxin binders", which have aromatic residues at these two positions.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: from animal models to human pathophysiology.

    PubMed

    Thomsen, Morten S; Hansen, Henrik H; Timmerman, Daniel B; Mikkelsen, Jens D

    2010-01-01

    Agonists and positive allosteric modulators of the alpha(7) nicotinic acetylcholine receptor (nAChR) are currently being developed for the treatment of cognitive disturbances in patients with schizophrenia or Alzheimer's disease. This review describes the neurobiological properties of the alpha nAChR and the cognitive effects of alpha(7) nAChR activation, focusing on the translational aspects in the development of these drugs. The functional properties and anatomical localization of the alpha(7) nAChR makes it well suited to modulate cognitive function. Accordingly, systemic administration of alpha(7) nAChR agonists improves learning, memory, and attentional function in variety of animal models, and pro-cognitive effects of alpha(7) nAChR agonists have recently been demonstrated in patients with schizophrenia or Alzheimer's disease. The alpha(7) nAChR desensitizes rapidly in vitro, and this has been a major concern in the development of alpha(7) nAChR agonists as putative drugs. Our review of the existing literature shows that development of tolerance to the behavioral effects of alpha(7) nAChR agonists does not occur in animal models or humans. However, the long-term memory-enhancing effects seen in animal models are not mimicked in healthy humans and schizophrenic patients, where attentional improvement predominates. This discrepancy may result from inherent differences in testing methods or from species differences in the level of expression of alpha(7) nAChRs in limbic brain regions, and may hamper preclinical evaluation of alpha(7) nAChR activation. It is therefore important to consider the translational power of the animal models used before entering into a clinical evaluation of the pro-cognitive effects of alpha(7) nAChR activation.

  18. α7 Nicotinic Acetylcholine Receptor Regulates Airway Epithelium Differentiation by Controlling Basal Cell Proliferation

    PubMed Central

    Maouche, Kamel; Polette, Myriam; Jolly, Thomas; Medjber, Kahina; Cloëz-Tayarani, Isabelle; Changeux, Jean-Pierre; Burlet, Henriette; Terryn, Christine; Coraux, Christelle; Zahm, Jean-Marie; Birembaut, Philippe; Tournier, Jean-Marie

    2009-01-01

    Airway epithelial basal cells are known to be critical for regenerating injured epithelium and maintaining tissue homeostasis. Recent evidence suggests that the α7 nicotinic acetylcholine receptor (nAChR), which is highly permeable to Ca2+, is involved in lung morphogenesis. Here, we have investigated the potential role of the α7 nAChR in the regulation of airway epithelial basal cell proliferation and the differentiation of the human airway epithelium. In vivo during fetal development and in vitro during the regeneration of the human airway epithelium, α7 nAChR expression coincides with epithelium differentiation. Inactivating α7 nAChR function in vitro increases cell proliferation during the initial steps of the epithelium regeneration, leading to epithelial alterations such as basal cell hyperplasia and squamous metaplasia, remodeling observed in many bronchopulmonary diseases. The regeneration of the airway epithelium after injury in α7−/− mice is delayed and characterized by a transient hyperplasia of basal cells. Moreover, 1-year-old α7−/− mice more frequently present basal cells hyperplasia. Modulating nAChR function or expression shows that only α7 nAChR, as opposed to heteropentameric αxβy nAChRs, controls the proliferation of human airway epithelial basal cells. These findings suggest that α7 nAChR is a key regulator of the plasticity of the human airway epithelium by controlling basal cell proliferation and differentiation pathway and is involved in airway remodeling during bronchopulmonary diseases. PMID:19808646

  19. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells

    PubMed Central

    Qian, Jie; Mummalaneni, Shobha K.; Alkahtani, Reem M.; Mahavadi, Sunila; Murthy, Karnam S.; Grider, John R.

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells. PMID:27846263

  20. Contribution of NMDA glutamate and nicotinic acetylcholine receptor mechanisms in the discrimination of ethanol-nicotine mixtures.

    PubMed

    Ford, Matthew M; Davis, Natalie L; McCracken, Aubrey D; Grant, Kathleen A

    2013-10-01

    Ethanol and nicotine are commonly coabused drugs, and the incidence of codependence is greater than would be expected on the basis of the summed probability of dependence on each drug alone. Previous findings from our laboratory and others suggest that interactive mechanisms at the level of discriminative stimulus (S(D)) effects may contribute to this coabuse phenomenon. Specifically, ethanol overshadows the nicotine S(D) whereas nicotine potentiates the stimulus salience of ethanol when the two drugs are conditioned as a drug mixture. The goal of the current study was to begin to delineate the pharmacological bases of these ethanol-nicotine interactions. Three groups of C57BL/6J mice were trained to discriminate 0.8 mg/kg nicotine + 0.5 g/kg ethanol (0.8 N + 0.5 E), 0.8 N + 1.0 E, or 0.8 N + 2.0 E. An NMDA receptor antagonist (MK-801) and three nACh receptor ligands were tested for their ability to generalize from or antagonize, respectively, the drug mixtures. MK-801 fully generalized from the 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures and partially generalized from 0.8 N + 0.5 E. In contrast, nACh receptor ligands had minimal influence in blocking the perception of 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures, and only mecamylamine partially blocked 0.8 N+0.5 E. Reduced and enhanced contributions of nACh and NMDA receptors, respectively, in the discrimination of ethanol-nicotine mixtures may contribute to the overshadowing and potentiation phenomena observed previously.

  1. An allosteric modulator of the alpha7 nicotinic acetylcholine receptor possessing cognition-enhancing properties in vivo.

    PubMed

    Timmermann, Daniel B; Grønlien, Jens Halvard; Kohlhaas, Kathy L; Nielsen, Elsebet Ø; Dam, Eva; Jørgensen, Tino D; Ahring, Philip K; Peters, Dan; Holst, Dorte; Christensen, Jeppe K; Chrsitensen, Jeppe K; Malysz, John; Briggs, Clark A; Gopalakrishnan, Murali; Olsen, Gunnar M

    2007-10-01

    Augmentation of nicotinic alpha7 receptor function is considered to be a potential therapeutic strategy aimed at ameliorating cognitive and mnemonic dysfunction in relation to debilitating pathological conditions, such as Alzheimer's disease and schizophrenia. In the present report, a novel positive allosteric modulator of the alpha7 nicotinic acetylcholine receptor (nAChR), 1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-trifluoromethyl-phenyl)-urea (NS1738), is described. NS1738 was unable to displace or affect radioligand binding to the agonist binding site of nicotinic receptors, and it was devoid of effect when applied alone in electrophysiological paradigms. However, when applied in the presence of acetylcholine (ACh), NS1738 produced a marked increase in the current flowing through alpha7 nAChRs, as determined in both oocyte electrophysiology and patch-clamp recordings from mammalian cells. NS1738 acted by increasing the peak amplitude of ACh-evoked currents at all concentrations; thus, it increased the maximal efficacy of ACh. Oocyte experiments indicated an increase in ACh potency as well. NS1738 had only marginal effects on the desensitization kinetics of alpha7 nAChRs, as determined from patch-clamp studies of both transfected cells and cultured hippocampal neurons. NS1738 was modestly brain-penetrant, and it was demonstrated to counteract a (-)-scopolamine-induced deficit in acquisition of a water-maze learning task in rats. Moreover, NS1738 improved performance in the rat social recognition test to the same extent as (-)-nicotine, demonstrating that NS1738 is capable of producing cognitive enhancement in vivo. These data support the notion that alpha7 nAChR allosteric modulation may constitute a novel pharmacological principle for the treatment of cognitive dysfunction.

  2. First and second transmembrane segments of alpha3, alpha4, beta2, and beta4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine.

    PubMed

    Rush, Ray; Kuryatov, Alexander; Nelson, Mark E; Lindstrom, Jon

    2002-06-01

    The first three transmembrane segments (M1-M3) of human nicotinic acetylcholine receptors (nAChRs) have been implicated in determining the efficacy of nicotine by studies of alpha3/alpha4 subunit chimeras. Nicotine has full efficacy on the alpha4beta2 nAChR and partial efficacy on the alpha3beta2 nAChR. Now, we have exchanged individually three amino acids between the alpha4 and the alpha3 subunits at positions 226(M1), 258(M2), and 262(M2). Also, similar exchanges were made in the beta2 and beta4 subunits at positions 224(M1), 226(M1), and 254(M2) (using alpha subunit numbering). Expression of these mutated nAChRs in Xenopus laevis oocytes showed that the mutated M1 amino acids were important in influencing the potency of ACh and nicotine. It is hypothesized that these M1 amino acids affect the stability between the resting and activated states of the nAChR. M2 amino acids altered the efficacy of nicotine, usually without altering its potency. When the residue located at position 258 in the M2 region of the alpha subunit was valine (as in the alpha3 subunit), the resulting nAChR exhibited partial efficacy for nicotine that was voltage-dependent. Therefore, we believe that these M2 amino acids contribute to the formation of a binding site for nicotine in the alpha3beta2 nAChR channel, which results in a low-affinity channel block, causing the lower efficacy of nicotine on this nAChR.

  3. Activation and Desensitization of Peripheral Muscle and Neuronal Nicotinic Acetylcholine Receptors by Selected, Naturally-Occurring Pyridine Alkaloids

    PubMed Central

    Green, Benedict T.; Lee, Stephen T.; Welch, Kevin D.; Cook, Daniel; Kem, William R.

    2016-01-01

    Teratogenic alkaloids can cause developmental defects due to the inhibition of fetal movement that results from desensitization of fetal muscle-type nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiperidinyl analog anabaseine, to activate and desensitize peripheral nAChRs expressed in TE-671 and SH-SY5Y cells. Activation-concentration response curves for each alkaloid were obtained in the same multi-well plate. To measure rapid desensitization, cells were first exposed to five potentially-desensitizing concentrations of each alkaloid in log10 molar increments from 10 nM to 100 µM and then to a fixed concentration of acetylcholine (ACh), which alone produces near-maximal activation. The fifty percent desensitization concentration (DC50) was calculated from the alkaloid concentration-ACh response curve. Agonist fast desensitization potency was predicted by the agonist potency measured in the initial response. Anabaseine was a more potent desensitizer than anabasine. Relative to anabaseine, nicotine was more potent to autonomic nAChRs, but less potent to the fetal neuromuscular nAChRs. Our experiments have demonstrated that anabaseine is more effective at desensitizing fetal muscle-type nAChRs than anabasine or nicotine and, thus, it is predicted to be more teratogenic. PMID:27384586

  4. Ligand-binding properties of an unusual nicotinic acetylcholine receptor subtype on isolated outer hair cells from guinea pig cochlea.

    PubMed

    Lawoko, G; Järlebark, L; Heilbronn, E

    1995-07-28

    Acetylcholine receptors on isolated guinea pig cochlear outer hair cells (OHC) were characterized by radioligand binding. Equilibrium binding of [125I]alpha-bungarotoxin revealed a KD of 62 +/- 2 nM, Bmax = 7.2 +/- 1.8 x 10(7) binding sites/OHC, and a slowly reversible dissociation rate constant, kappa-1 = 2.2 +/- 0.01 x 10(-4) min-1. L-[3H]Nicotine bound reversibly (estimated KD approximately 230 nM and Bmax approximately 5 x 10(7)) with kinetic rate constants of association kappa-1 = 6.2 +/- 0.06 x 10(4) min-1 nM-1 and dissociation kappa-1 = 0.23 +/- 0.003 min-1. [3H]Strychnine bound to OHC with a KD of 35 +/- 6 nM and Bmax = 2.6 +/- 0.5 x 10(7), and binding increased 3-4 fold after membrane depolarization with 56.2 mM [K+], suggesting additional binding sites. Binding, seen only at > nM concentrations, of [3H]3-quinuclidinyl benzilate (KD = 11.5 +/- 5 nM; Bmax = 2.5 +/- 0.6 x 10(6)) was competitively inhibited by the muscarinic antagonists atropine and 4-DAMP (IC50 of 6.1 +/- 0.5 and 6.5 +/- 0.4 nM). The OHC receptor is thus an atypical nicotinic acetylcholine receptor subtype with unusual pharmacological properties.

  5. Synthesis of 2-(substituted phenyl)-3,5,5-trimethylmorpholine analogues and their effects on monoamine uptake, nicotinic acetylcholine receptor function, and behavioral effects of nicotine.

    PubMed

    Carroll, F Ivy; Muresan, Ana Z; Blough, Bruce E; Navarro, Hernán A; Mascarella, S Wayne; Eaton, J Brek; Huang, Xiaodong; Damaj, M Imad; Lukas, Ronald J

    2011-03-10

    Toward development of smoking cessation aids superior to bupropion (2), we describe synthesis of 2-(substituted phenyl)-3,5,5-trimethylmorpholine analogues 5a-5h and their effects on inhibition of dopamine, norepinephrine, and serotonin uptake, nicotinic acetylcholine receptor (nAChR) function, acute actions of nicotine, and nicotine-conditioned place preference (CPP). Several analogues encompassing aryl substitutions, N-alkylation, and alkyl extensions of the morpholine ring 3-methyl group provided analogues more potent in vitro than (S,S)-hydroxybupropion (4a) as inhibitors of dopamine or norepinephrine uptake and antagonists of nAChR function. All of the new (S,S)-5 analogues had better potency than (S,S)-4a as blockers of acute nicotine analgesia in the tail-flick test. Two analogues with highest potency at α3β4*-nAChR and among the most potent transporter inhibitors have better potency than (S,S)-4a in blocking nicotine-CPP. Collectively, these findings illuminate mechanisms of action of 2 analogues and identify deshydroxybupropion analogues 5a-5h as possibly superior candidates as aids to smoking cessation.

  6. NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas.

    PubMed

    Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X; McMillan, Elizabeth A; Minna, John D; Cobb, Melanie H

    2014-06-01

    Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and β4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.

  7. (-)-Spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin-2'-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Mullen, G; Napier, J; Balestra, M; DeCory, T; Hale, G; Macor, J; Mack, R; Loch, J; Wu, E; Kover, A; Verhoest, P; Sampognaro, A; Phillips, E; Zhu, Y; Murray, R; Griffith, R; Blosser, J; Gurley, D; Machulskis, A; Zongrone, J; Rosen, A; Gordon, J

    2000-11-02

    Neuronal nicotinic acetylcholine receptors are members of the ligand-gated ion channel receptor superfamily and may play important roles in modulating neurotransmission, cognition, sensory gating, and anxiety. Because of its distribution and abundance in the CNS, the alpha 7 nicotinic receptor is a strong candidate to be involved in some of these functions. In this paper we describe the synthesis and in vitro profile of AR-R17779, (-)-spiro[1-azabicyclo[2.2. 2]octane-3,5'-oxazolidin-2'-one] (4a), a potent full agonist at the rat alpha 7 nicotinic receptor, which is highly selective for the rat alpha 7 nicotinic receptor over the alpha 4 beta 2 subtype. Preliminary SAR of AR-R17779 presented here indicate that there is little scope for modification of this rigid molecule as even minor changes result in significant loss of the alpha 7 nicotinic receptor affinity.

  8. Methadone is a non-competitive antagonist at the α4β2 and α3* nicotinic acetylcholine receptors and an agonist at the α7 nicotinic acetylcholine receptor.

    PubMed

    Talka, Reeta; Salminen, Outi; Tuominen, Raimo K

    2015-04-01

    Nicotine-methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non-competitive antagonist at rat α3β4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4β2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [(3) H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and (86) Rb(+) efflux and changes in intracellular calcium [Ca(2+) ]i were used to assess changes in the functional activity of the receptors. Methadone displaced [(3) H]epibatidine from nicotinic agonist-binding sites in SH-EP1-hα7 and SH-SY5Y cells, but not in SH-EP1-hα4β2 cells. The Ki values for methadone were 6.3 μM in SH-EP1-hα7 cells and 19.4 μM and 1008 μM in SH-SY5Y cells. Methadone increased [Ca(2+) ]i in all cell lines in a concentration-dependent manner, and in SH-EP1-hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH-EP1-hα4β2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre-treatment abolished the nicotine-induced response in [Ca(2+) ]i in all cell lines expressing nAChRs. In SH-EP1-hα4β2 and SH-SY5Y cells, methadone had no effect on the (86) Rb(+) efflux, but it antagonized the nicotine-induced (86) Rb(+) ion efflux in a non-competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non-competitive antagonist at human α4β2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co

  9. Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons.

    PubMed

    Fernandes, Catarina C; Pinto-Duarte, António; Ribeiro, Joaquim Alexandre; Sebastião, Ana M

    2008-05-21

    Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory and constitute a significant therapeutic target for many neurodegenerative, neurological, and psychiatric disorders. Here, we report that brain-derived neurotrophic factor (BDNF) (1-100 ng/ml), a member of the neurotrophin gene family, rapidly decreases alpha7 nicotinic acetylcholine receptor responses in interneurons of the hippocampal CA1 stratum radiatum. Such effect is dependent on the activation of the TrkB receptor and involves the actin cytoskeleton; noteworthy, it is compromised when the extracellular levels of the endogenous neuromodulator adenosine are reduced with adenosine deaminase (1 U/ml) or when adenosine A(2A) receptors are blocked with SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine) (100 nm). The intracellular application of U73122 (1-[6[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (5 mum), a broad-spectrum inhibitor of phospholipase C, or GF 109203X (bisindolylmaleimide I) (2 mum), a general inhibitor of protein kinase C isoforms, blocks BDNF-induced inhibition of alpha7 nicotinic acetylcholine receptor function. Moreover, in conditions of simultaneous intracellular dialysis of the fast Ca(2+) chelator BAPTA (10 mm) and removal of extracellular Ca(2+) ions, the inhibitory action of BDNF is further prevented. The present findings disclose a novel target for rapid actions of BDNF that might play important roles on synaptic transmission and plasticity in the brain.

  10. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.

    PubMed Central

    Swanson, L W; Lindstrom, J; Tzartos, S; Schmued, L C; O'Leary, D D; Cowan, W M

    1983-01-01

    We used the indirect immunofluorescence method to determine the crossreactivity of a library of 57 monoclonal antibodies (mAbs) against each of the subunits of the nicotinic acetylcholine receptor (nAcChoR) isolated from Torpedo and Electrophorus electric organs or from fetal calf and human muscle, with specific neural elements in the midbrain of the chick. Out of 17 mAbs that recognized motor end plates on chick muscle, 14 produced a similar pattern of labeling in the midbrain: the neuronal perikarya and dendrites in the lateral spiriform nucleus (SpL) were intensely labeled, and there was moderate labeling of fibers in certain of the deeper layers of the optic tectum, which disappeared after the SpL was destroyed electrolytically. Two lines of evidence suggest that the mAbs may be crossreacting with nAcChoRs in the midbrain. First, all of the mAbs that stained the SpL also stained neuromuscular junctions in skeletal muscle, whereas none of the 40 mAbs that failed to stain end plates crossreacted with the SpL; second, in vitro immunological studies and blocking experiments on tissue sections (in which unlabeled mAbs were used to block the staining of a directly fluorescein-treated mAb) indicated the presence of mAbs specific for unique antigenic determinants on all four of the subunits (alpha, beta, gamma, and delta) from Torpedo nAcChoR in chick midbrain and muscle. On the other hand, the distribution of mAb staining in the optic tectum does not closely parallel that of either acetylcholinesterase staining or of 125I-labeled alpha-bungarotoxin binding; no toxin binding has been observed autoradiographically in the SpL, but the nucleus does contain moderately dense acetylcholinesterase staining. Take together, our observations suggest that there may be a cholinergic input to the SpL and that the projection fibers from the SpL to the optic tectum (which are also stained with an antiserum to [Leu]enkephalin) may contain presynaptic nAcChoRs. It is clear, however

  11. Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents

    PubMed Central

    Kewin, Kevin; Jordan, Paivi M.; Cameron, Peter; Klapczynski, Marcin; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.; Lysakowski, Anna

    2015-01-01

    Electrical stimulation of vestibular efferent neurons rapidly excites the resting discharge of calyx/dimorphic (CD) afferents. In turtle, this excitation arises when acetylcholine (ACh), released from efferent terminals, directly depolarizes calyceal endings by activating nicotinic ACh receptors (nAChRs). Although molecular biological data from the peripheral vestibular system implicate most of the known nAChR subunits, specific information about those contributing to efferent-mediated excitation of CD afferents is lacking. We sought to identify the nAChR subunits that underlie the rapid excitation of CD afferents and whether they differ from α9α10 nAChRs on type II hair cells that drive efferent-mediated inhibition in adjacent bouton afferents. We recorded from CD and bouton afferents innervating the turtle posterior crista during electrical stimulation of vestibular efferents while applying several subtype-selective nAChR agonists and antagonists. The α9α10 nAChR antagonists, α-bungarotoxin and α-conotoxin RgIA, blocked efferent-mediated inhibition in bouton afferents while leaving efferent-mediated excitation in CD units largely intact. Conversely, 5-iodo-A-85380, sazetidine-A, varenicline, α-conotoxin MII, and bPiDDB (N,N-dodecane-1,12-diyl-bis-3-picolinium dibromide) blocked efferent-mediated excitation in CD afferents without affecting efferent-mediated inhibition in bouton afferents. This pharmacological profile suggested that calyceal nAChRs contain α6 and β2, but not α9, nAChR subunits. Selective blockade of efferent-mediated excitation in CD afferents distinguished dimorphic from calyx afferents by revealing type II hair cell input. Dimorphic afferents differed in having higher mean discharge rates and a mean efferent-mediated excitation that was smaller in amplitude yet longer in duration. Molecular biological data demonstrated the expression of α9 in turtle hair cells and α4 and β2 in associated vestibular ganglia. PMID:25716861

  12. Effect of administration of the nicotinic acetylcholine receptor antagonist BTMPS, during nicotine self-administration, on lever responding induced by context long after withdrawal.

    PubMed

    Hall, Brandon J; Pearson, Laura S; Buccafusco, Jerry J

    2010-02-01

    The use-dependent, nicotinic acetylcholine receptor antagonist bis-(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was studied for its potential to reduce the self-administration of nicotine in rats, as well as to reduce context-induced recidivistic-like behavior after a six-week period of cessation. Rats were allowed to self-administer nicotine (FR1 schedule) inside an operant chamber with a response lever active on a 24 h basis for 14 days. After the self-administration phase, the rats were returned to standard maintenance cages for a period of six weeks. At the end of six weeks the rats were returned to the operant chambers for 7 days and lever responses were recorded under conditions identical to the original self-administration phase, except that lever responses were not rewarded. Daily administration (s.c.) of BTMPS produced a dose-dependent decrease in the self-administration of nicotine 55-80% compared to control animals, and significantly decreased context-induced lever responding initiated six weeks after cessation (35-78% reduction vs. controls). Decreasing the BTMPS regimen to administration once every 3 days was not effective in reducing nicotine self-administration, but lever responding induced during the return to the operant chambers 6 weeks later was significantly decreased (40% reduction vs. controls). Therefore BTMPS can selectively reduce both self-administration of nicotine and long-term recidivistic-like behavior depending upon the dose regimen. Since BTMPS does not evoke anti-nicotinic effects under normal physiological conditions, these data support a proof of concept for the safe use of such compounds in the treatment of tobacco abuse.

  13. Early postnatal nicotine exposure disrupts the α2* nicotinic acetylcholine receptor-mediated control of oriens-lacunosum moleculare cells during adolescence in rats.

    PubMed

    Chen, Kang; Nakauchi, Sakura; Su, Hailing; Tanimoto, Saki; Sumikawa, Katumi

    2016-02-01

    Maternal cigarette smoking during pregnancy and maternal nicotine exposure in animal models are associated with cognitive impairments in offspring. However, the underlying mechanism remains unknown. Oriens-lacunosum moleculare (OLM) cells expressing α2* nicotinic acetylcholine receptors (nAChRs) are an important component of hippocampal circuitry, gating information flow and long-term potentiation (LTP) in the CA1 region. Here we investigated whether early postnatal nicotine exposure alters the normal role of α2*-nAChR-expressing OLM cells during adolescence in rats. We found that early postnatal nicotine exposure significantly decreased not only the number of α2-mRNA-expressing interneurons in the stratum oriens/alveus, but also α2*-nAChR-mediated responses in OLM cells. These effects of nicotine were prevented by co-administration with the nonselective nAChR antagonist mecamylamine, suggesting that nicotine-induced activation, but not desensitization, of nAChRs mediates the effects. α2*-nAChR-mediated depolarization of OLM cells normally triggers action potentials, causing an increase in spontaneous inhibitory postsynaptic currents in synaptically connected pyramidal cells. However, these α2*-nAChR-mediated effects were profoundly reduced after early postnatal nicotine exposure, suggesting altered control of CA1 circuits by α2*-nAChR-expressing OLM cells. Furthermore, these effects were associated with altered excitatory neural activity and LTP as well as the loss of normal α2*-nAChR-mediated control of excitatory neural activity and LTP. These findings suggest the altered function of α2*-nAChR-expressing OLM cells as an important target of further study for identifying the mechanisms underlying the cognitive impairment induced by maternal smoking during pregnancy.

  14. Heterologous expression and nonsense suppression provide insights into agonist behavior at α6β2 nicotinic acetylcholine receptors.

    PubMed

    Post, Michael R; Limapichat, Walrati; Lester, Henry A; Dougherty, Dennis A

    2015-10-01

    The α6-containing subtypes of the nicotinic acetylcholine receptor (nAChR) are localized to presynaptic terminals of the dopaminergic pathways of the central nervous system. Selective ligands for these nAChRs are potentially useful in both Parkinson's disease and addiction. For these and other goals, it is important to distinguish the binding behavior of agonists at the α6-β2 binding site versus other subtypes. To study this problem, we apply nonsense suppression-based non-canonical amino acid mutagenesis. We report a combination of four mutations in α6β2 that yield high-level heterologous expression in Xenopus oocytes. By varying mRNA injection ratios, two populations were observed with unique characteristics, likely due to differing stoichiometries. Responses to nine known nAChR agonists were analyzed at the receptor, and their corresponding EC50 values and efficacies are reported. The system is compatible with nonsense suppression, allowing structure-function studies between Trp149 - a conserved residue on loop B found to make a cation-π interaction at several nAChR subtypes - and several agonists. These studies reveal that acetylcholine forms a strong cation-π interaction with the conserved tryptophan, while nicotine and TC299423 do not, suggesting a unique pharmacology for the α6β2 nAChR.

  15. Acetylcholine sensitivity of biphasic Ca2+ mobilization induced by nicotinic receptor activation at the mouse skeletal muscle endplate

    PubMed Central

    Dezaki, Katsuya; Kimura, Ikuko

    1998-01-01

    Acetylcholine (ACh) was locally applied onto the endplate region in a mouse phrenic nerve-diaphragm muscle preparation to measure intracellular free calcium ([Ca2+]i) entry through nicotinic ACh receptors (AChRs) by use of Ca2+-aequorin luminescence.ACh (0.1–3 mM, 20 μl) elicited biphasic elevation of [Ca2+]i (fast and slow Ca2+ mobilization) in muscle cells. The peak amplitude of the slow Ca2+ mobilization (not accompanied by twitch tension) was concentration-dependently increased by ACh, whereas that of the fast component (accompanied by twitch tension) reached a maximum response at a lower concentration (0.1 mM) of applied ACh.A pulse of nicotinic agonists, (−)-nicotine (10 mM) and 1,1-dimethyl-4-phenyl-piperazinium (10 mM), but not a muscarinic agonist pilocarpine (10 mM), also elicited a biphasic Ca2+ signal.Even though ACh release from motor nerve endings was blocked by botulinum toxin (5 μg, bolus i.p. before isolation of the tissue), the generation of both a fast and slow Ca2+ component caused by ACh application was observed.These results strongly suggest that ACh locally applied onto the endplate region of skeletal muscle induces a slow Ca2+ signal reflecting Ca2+ entry through a postsynaptic nicotinic AChR, which has a low sensitivity to transmitter ACh. PMID:9579738

  16. Agonist and antagonist effects of tobacco-related nitrosamines on human α4β2 nicotinic acetylcholine receptors

    PubMed Central

    Brusco, Simone; Ambrosi, Paola; Meneghini, Simone; Becchetti, Andrea

    2015-01-01

    Regulation of the “neuronal” nicotinic acetylcholine receptors (nAChRs) is implicated in both tobacco addiction and smoking-dependent tumor promotion. Some of these effects are caused by the tobacco-derived N-nitrosamines, which are carcinogenic compounds that avidly bind to nAChRs. However, the functional effects of these drugs on specific nAChR subtypes are largely unknown. By using patch-clamp methods, we tested 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) on human α4β2 nAChRs. These latter are widely distributed in the mammalian brain and are also frequently expressed outside the nervous system. NNK behaved as a partial agonist, with an apparent EC50 of 16.7 μM. At 100 μM, it activated 16% of the maximal current activated by nicotine. When NNK was co-applied with nicotine, it potentiated the currents elicited by nicotine concentrations ≤ 100 nM. At higher concentrations of nicotine, NNK always inhibited the α4β2 nAChR. In contrast, NNN was a pure inhibitor of this nAChR subtype, with IC50 of approximately 1 nM in the presence of 10 μM nicotine. The effects of both NNK and NNN were mainly competitive and largely independent of Vm. The different actions of NNN and NNK must be taken into account when interpreting their biological effects in vitro and in vivo. PMID:26441658

  17. alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine.

    PubMed

    Moroni, Mirko; Zwart, Ruud; Sher, Emanuele; Cassels, Bruce K; Bermudez, Isabel

    2006-08-01

    alpha4 and beta2 nicotinic acetylcholine receptor (nAChR) subunits expressed heterologously assemble into receptors with high (HS) and low (LS) sensitivity to acetylcholine (ACh); their relative proportions depend on the alpha4to beta2 ratio. In this study, injection of oocytes with 1:10 alpha4/beta2 subunit cDNA ratios favored expression of HS alpha4beta2 nAChRs, as evidenced by monophasic ACh concentration-response curves, whereas injections with 10:1 cDNA ratios favored expression of LS alpha4beta2 receptors. The stoichiometry was inferred from the shifts in the ACh EC(50) values caused by Leu to Thr mutations at position 9' of the second transmembrane domain of alpha4 and beta2. The 1:10 injection ratio produced the (alpha4)(2)(beta2)(3) stoichiometry, whereas 10:1 injections produced the (alpha4)(3)(beta2)(2) stoichiometry. The agonists epibatidine, 3-[2(S)-azetidinylmethoxy]pyridine (A-85380), 5-ethoxy-metanicotine (TC-2559), cytisine, and 3-Br-cytisine and the antagonists dihydro-beta-erythroidine and d-tubocurarine were more potent at HS receptors. TC-2559 was more efficacious than ACh at HS receptors but was a partial agonist at LS receptors. Epibatidine was more efficacious than ACh at LS receptors and a partial agonist at HS receptors. Cytisine and 5-halogenated cytisines had moderate efficacy at LS receptors but had almost no efficacy at HS receptors. By exploiting the differential effects of ACh, TC-2559 and 5-I-cytisine we evaluated the effects of long-term exposure to nicotine on HS and LS receptors expressed in Xenopus laevis oocytes after cDNA injections or microtransplantation of alpha4beta2 receptors assembled in human embryonic kidney 293 cells. We conclude that nicotine up-regulates HS alpha4beta2 receptors, probably by influencing the assembly of receptors rather than by altering the functional state of LS alpha4beta2 nAChRs.

  18. The prototoxin LYPD6B modulates heteromeric α3β4-containing nicotinic acetylcholine receptors, but not α7 homomers

    PubMed Central

    Ochoa, Vanessa; George, Andrew A.; Nishi, Rae; Whiteaker, Paul

    2015-01-01

    Prototoxins are a diverse family of membrane-tethered molecules expressed in the nervous system that modulate nicotinic cholinergic signaling, but their functions and specificity have yet to be completely explored. We tested the selectivity and efficacy of leukocyte antigen, PLAUR (plasminogen activator, urokinase receptor) domain-containing (LYPD)-6B on α3β4-, α3α5β4-, and α7-containing nicotinic acetylcholine receptors (nAChRs). To constrain stoichiometry, fusion proteins encoding concatemers of human α3, β4, and α5 (D and N variants) subunits were expressed in Xenopus laevis oocytes and tested with or without LYPD6B. We used the 2-electrode voltage-clamp method to quantify responses to acetylcholine (ACh): agonist sensitivity (EC50), maximal agonist-induced current (Imax), and time constant (τ) of desensitization. For β4–α3–α3–β4–α3 and β4–α3–β4–α3–α3, LYPD6B decreased EC50 from 631 to 79 μM, reduced Imax by at least 59%, and decreased τ. For β4–α3–α5D–β4–α3 and β4–α3–β4–α–α5D, LYPD6B decreased Imax by 63 and 32%, respectively. Thus, LYPD6B acted only on (α3)3(β4)2 and (α3)2(α5D)(β4)2 and did not affect the properties of (α3)2(β4)3, α7, or (α3)2(α5N)(β4)2 nAChRs. Therefore, LYPD6B acts as a mixed modulator that enhances the sensitivity of (α3)3(β4)2 nAChRs to ACh while reducing ACh-induced whole-cell currents. LYPD6B also negatively modulates α3β4 nAChRs that include the α5D common human variant, but not the N variant associated with nicotine dependence.—Ochoa, V., George, A. A., Nishi, R., Whiteaker, P. The prototoxin LYPD6B modulates heteromeric α3β4-containing nicotinic acetylcholine receptors, but not α7 homomers. PMID:26586467

  19. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    PubMed

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-04-07

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca(2+)-dependent Cl(-) channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [(125)I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca(2+) transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.

  20. Probing the non-canonical interface for agonist interaction with an α5 containing nicotinic acetylcholine receptor.

    PubMed

    Marotta, Christopher B; Dilworth, Crystal N; Lester, Henry A; Dougherty, Dennis A

    2014-02-01

    Nicotinic acetylcholine receptors (nAChRs) containing the α5 subunit are of interest because genome-wide association studies and candidate gene studies have identified polymorphisms in the α5 gene that are linked to an increased risk for nicotine dependence, lung cancer, and/or alcohol addiction. To probe the functional impact of an α5 subunit on nAChRs, a method to prepare a homogeneous population of α5-containing receptors must be developed. Here we use a gain of function (9') mutation to isolate populations of α5-containing nAChRs for characterization by electrophysiology. We find that the α5 subunit modulates nAChR rectification when co-assembled with α4 and β2 subunits. We also probe the α5-α4 interface for possible ligand-binding interactions. We find that mutations expected to ablate an agonist-binding site involving the α5 subunit have no impact on receptor function. The most straightforward interpretation of this observation is that agonists do not bind at the α5-α4 interface, in contrast to what has recently been demonstrated for the α4-α4 interface in related receptors. In addition, our mutational results suggest that the α5 subunit does not replace the α4 or β2 subunits and is relegated to occupying only the auxiliary position of the pentameric receptor.

  1. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    USGS Publications Warehouse

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  2. Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist.

    PubMed

    Kompella, Shiva N; Hung, Andrew; Clark, Richard J; Marí, Frank; Adams, David J

    2015-01-09

    Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nM) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr(92), Ser(149), Tyr(189), Cys(192), and Tyr(196); β2-Trp(57), Arg(81), and Phe(119)) may form the molecular basis for the selectivity shift.

  3. Inflammation-induced increase in nicotinic acetylcholine receptor current in cutaneous nociceptive DRG neurons from the adult rat.

    PubMed

    Zhang, X-L; Albers, K M; Gold, M S

    2015-01-22

    The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery.

  4. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease?

    PubMed Central

    2013-01-01

    Objectives The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. Introduction Acetylcholine can influence the immune system via the ‘cholinergic anti-inflammatory pathway’. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. Methods A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the ‘cholinergic anti-inflammatory pathway’ in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. Conclusion The evidence suggests a functional nonneuronal ‘cholinergic anti-inflammatory pathway’ may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease. PMID:22777144

  5. Varenicline is a potent partial agonist at α6β2* nicotinic acetylcholine receptors in rat and monkey striatum.

    PubMed

    Bordia, Tanuja; Hrachova, Maya; Chin, Matthew; McIntosh, J Michael; Quik, Maryka

    2012-08-01

    Extensive evidence indicates that varenicline reduces nicotine craving and withdrawal symptoms by modulating dopaminergic function at α4β2* nicotinic acetylcholine receptors (nAChRs) (the asterisk indicates the possible presence of other nicotinic subunits in the receptor complex). More recent data suggest that α6β2* nAChRs also regulate dopamine release and mediate nicotine reinforcement. The present experiments were therefore done to test the effect of varenicline on α6β2* nAChRs and their function, because its interaction with this subtype is currently unclear. Receptor competition studies showed that varenicline inhibited α6β2* nAChR binding (K(i) = 0.12 nM) as potently as α4β2* nAChR binding (K(i) = 0.14 nM) in rat striatal sections and with ∼20-fold greater affinity than nicotine. Functionally, varenicline was more potent in stimulating α6β2* versus α4β2* nAChR-mediated [(3)H]dopamine release from rat striatal synaptosomes with EC(50) values of 0.007 and 0.086 μM, respectively. However, it acted as a partial agonist on α6β2* and α4β2* nAChR-mediated [(3)H]dopamine release with maximal efficacies of 49 and 24%, respectively, compared with nicotine. We also evaluated varenicline's action in striatum of monkeys, a useful animal model for comparison with humans. Varenicline again potently inhibited monkey striatal α6β2* (K(i) = 0.13 nM) and α4β2* (K(i) = 0.19 nM) nAChRs in competition studies. Functionally, it potently stimulated both α6β2* (EC(50) = 0.014 μM) and α4β2* (EC(50) = 0.029 μM) nAChR-mediated [(3)H]dopamine release from monkey striatal synaptosomes, again acting as a partial agonist relative to nicotine at both subtypes. These data suggest that the ability of varenicline to interact at α6β2* nAChRs may contribute to its efficacy as a smoking cessation aid.

  6. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    PubMed Central

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  7. Characterization of the retina in the alpha7 nicotinic acetylcholine receptor knockout mouse

    NASA Astrophysics Data System (ADS)

    Smith, Marci L.

    Acetylcholine receptors (AChRs) are involved in visual processing and are expressed by inner retinal neurons in all species studied to date (Keyser et al., 2000; Dmitrieva et al., 2007; Liu et al., 2009), but their distribution in the mouse retina remains unknown. Reductions in alpha7 nicotinic AChRs (nAChRs) are thought to contribute to memory and visual deficits observed in Alzheimer's and schizophrenia (Coyle et al., 1983; Nordberg et al., 1999; Leonard et al., 2006). However, the alpha7 nAChR knockout (KO) mouse has a mild phenotype (Paylor et al., 1998; Fernandes et al., 2006; Young et al., 2007; Origlia et al., 2012). The purpose of this study was to determine the expression of AChRs in wildtype (WT) mouse retina and to assess whether up-regulation of other AChRs in the alpha7 nAChR KO retina may explain the minimal deficits described in the KO mouse. Reverse-transcriptase PCR (RT-PCR) showed that mRNA transcripts for alpha2-7, alpha 9, alpha10, beta2-4 nAChR subunits and m1-m5 muscarinic AChR (mAChR) subtypes were present in WT murine retina. Western blot analysis confirmed the presence of alpha3-5, alpha9, and m1-m5 AChR proteins and immunohistochemical analysis demonstrated nAChR and mAChR proteins expressed by subsets of bipolar, amacrine and ganglion cells. This is the first reported expression of alpha9 and alpha10 nAChR transcripts and alpha9 nAChR proteins in the retina of any species. Quantitative RT-PCR (qPCR) showed changes in AChR transcript expression in the alpha7 nAChR KO mouse retina relative to WT. Within whole retina alpha2, alpha9, alpha10, beta4, m1 and m4 AChR transcripts were up-regulated, while alpha5 nAChR transcripts were down-regulated. However, cell populations showed subtle differences; m4 mAChR transcripts were up-regulated in the ganglion cell layer and outer portion of the inner nuclear layer (oINL),while beta4 nAChR transcript up-regulation was limited to the oINL. Surprisingly, alpha2, alpha9, beta4, m2 and m4 transcripts were

  8. Computational analysis of the binding ability of heterocyclic and conformationally constrained epibatidine analogs in the neuronal nicotinic acetylcholine receptor.

    PubMed

    Soriano, Elena; Marco-Contelles, José; Colmena, Inés; Gandía, Luis

    2010-05-01

    One of the most critical issues on the study of ligand-receptor interactions in drug design is the knowledge of the bioactive conformation of the ligand. In this study, we describe a computational approach aimed at estimating the binding ability of epibatidine analogs to interact with the neuronal nicotinic acetylcholine receptor (nAChR) and get insights into the bioactive conformation. The protocol followed consists of a docking analysis and evaluation of pharmacophore parameters of the docked structures. On the basis of the biological data, the results have revealed that the docking analysis is able to predict active ligands, whereas further efforts are needed to develop a suitable and solid pharmacophore model.

  9. The reaction site of a non-competitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor.

    PubMed Central

    Oberthür, W; Muhn, P; Baumann, H; Lottspeich, F; Wittmann-Liebold, B; Hucho, F

    1986-01-01

    A site in the primary structure of the nicotinic acetylcholine receptor from Torpedo marmorata covalently labeled with the non-competitive antagonist [3H]triphenylmethylphosphonium (TPMP+) was localized. The label was found in position 262 of the delta-polypeptide chain. This site is specifically labeled in the presence of the agonist carbamoylcholine. Labeling is prevented by the non-competitive antagonist histrionicotoxin. Position 262, probably a serine, is located in the highly conserved membrane-spanning helix M2 (according to the predicted folding scheme of Finer-Moore and Stroud (1984). The relationship of this site to the receptor's ion channel and its regulation is discussed. Images Fig. 2. PMID:3758027

  10. The role of the a7 subunit of the nicotinic acetylcholine receptor on motor coordination in mice treated with methyllcaconitine and anabasine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The adverse effects of methyllycaconitine (MLA) have been attributed to competitive antagonism of nicotinic acetylcholine receptors (nAChR). Research has indicated a correlation between the LD50 of MLA and the amount of a7 nAChR in various mouse strains, suggesting that mice with more a7 nAChR requi...

  11. Nicotine facilitates long-term potentiation induction in oriens-lacunosum moleculare cells via Ca2+ entry through non-alpha7 nicotinic acetylcholine receptors.

    PubMed

    Jia, Yousheng; Yamazaki, Yoshihiko; Nakauchi, Sakura; Ito, Ken-Ichi; Sumikawa, Katumi

    2010-02-01

    Hippocampal inhibitory interneurons have a central role in the control of network activity, and excitatory synapses that they receive express Hebbian and anti-Hebbian long-term potentiation (LTP). Because many interneurons in the hippocampus express nicotinic acetylcholine receptors (nAChRs), we explored whether exposure to nicotine promotes LTP induction in these interneurons. We focussed on a subset of interneurons in the stratum oriens/alveus that were continuously activated in the presence of nicotine due to the expression of non-desensitizing non-alpha7 nAChRs. We found that, in addition to alpha2 subunit mRNAs, these interneurons were consistently positive for somatostatin and neuropeptide Y mRNAs, and showed morphological characteristics of oriens-lacunosum moleculare cells. Activation of non-alpha7 nAChRs increased intracellular Ca(2+) levels at least in part via Ca(2+) entry through their channels. Presynaptic tetanic stimulation induced N-methyl-D-aspartate receptor-independent LTP in voltage-clamped interneurons at -70 mV when in the presence, but not absence, of nicotine. Intracellular application of a Ca(2+) chelator blocked LTP induction, suggesting the requirement of Ca(2+) signal for LTP induction. The induction of LTP was still observed in the presence of ryanodine, which inhibits Ca(2+) -induced Ca(2+) release from ryanodine-sensitive intracellular stores, and the L-type Ca(2+) channel blocker nifedipine. These results suggest that Ca(2+) entry through non-alpha7 nAChR channels is critical for LTP induction. Thus, nicotine affects hippocampal network activity by promoting LTP induction in oriens-lacunosum moleculare cells via continuous activation of non-alpha7 nAChRs.

  12. Pharmacokinetics and pharmacodynamics of oral mecamylamine - development of a nicotinic acetylcholine receptor antagonist cognitive challenge test using modelling and simulation.

    PubMed

    Alvarez-Jimenez, Ricardo; Baakman, Anne Catrien; Stevens, Jasper; Goulooze, Sebastiaan C; Hart, Ellen P; Rissmann, Robert; van Gerven, Joop Ma; Groeneveld, Geert Jan

    2017-02-01

    A pharmacologic challenge model with a nicotinic antagonist could be an important tool not only to understand the complex role of the nicotinic cholinergic system in cognition, but also to develop novel compounds acting on the nicotinic acetylcholine receptor. The objective was to develop a pharmacokinetic-pharmacodynamic (PKPD) model using nonlinear mixed effects (NLME) methods to quantitate the pharmacokinetics of three oral mecamylamine doses (10, 20 and 30 mg) and correlate the plasma concentrations to the pharmacodynamic effects on a cognitive and neurophysiologic battery of tests in healthy subjects. A one-compartment linear kinetic model best described the plasma concentrations of mecamylamine. Mecamylamine's estimated clearance was 0.28 ± 0.015 L min(-1). The peripheral volume of distribution (291 ± 5.15 L) was directly related to total body weight. Mecamylamine impaired the accuracy and increased the reaction time in tests evaluating short term working memory with a steep increase in the concentration-effect relationship at plasma concentrations below 100 μg L(-1). On the other hand, mecamylamine induced a decrease in performance of tests evaluating visual and fine motor coordination at higher plasma concentrations (EC50 97 μg L(-1)). Systolic and diastolic blood pressure decreased exponentially after a plasma mecamylamine concentration of 80 μg L(-1), a known effect previously poorly studied in healthy subjects. The developed mecamylamine PKPD model was used to quantify the effects of nicotinic blockade in a set of neurophysiological tests in humans with the goal to provide insight into the physiology and pharmacology of the nicotinic system in humans and the possibility to optimize future trials that use mecamylamine as a pharmacological challenge.

  13. Potentiation of alpha7-containing nicotinic acetylcholine receptors by select albumins.

    PubMed

    Conroy, William G; Liu, Qing-Song; Nai, Qiang; Margiotta, Joseph F; Berg, Darwin K

    2003-02-01

    Nicotinic receptors containing alpha7 subunits are ligand-gated ion channels widely distributed in the nervous system; they influence a diverse array of events because of their high relative calcium permeability. We show here that nicotine-induced whole-cell responses generated by such receptors can be dramatically potentiated in a rapidly reversible manner by some but not all albumins. The potentiation involves increases both in potency and efficacy with no obvious differences in rise and fall times of the response. The potentiation is not reduced by removing absorbed components; it is abolished by proteolysis, suggesting that the albumin protein backbone is essential. The fact that some albumins are ineffective indicates that minor differences in amino acid sequence may be critical. Experiments with open channel blockers indicate that the potentiation involves increased responses from active receptors rather than recruitment of receptors from a previously silent pool. Single channel recordings reveal that the potentiation correlates with increased single channel opening probability, reflected in increased frequency of channel opening and increased mean channel open time. The potentiation can be exploited to overcome blockade by noncompetitive inhibitors such as beta-amyloid peptide. The results raise the possibility that endogenous compounds use the site to modulate receptor function in vivo, and suggest that the receptors may represent useful targets for therapeutic intervention in cases where they have been implicated in neuropathologies such as Alzheimer's disease.

  14. AT-1001: a high affinity and selective α3β4 nicotinic acetylcholine receptor antagonist blocks nicotine self-administration in rats.

    PubMed

    Toll, Lawrence; Zaveri, Nurulain T; Polgar, Willma E; Jiang, Faming; Khroyan, Taline V; Zhou, Wei; Xie, Xinmin Simon; Stauber, Gregory B; Costello, Matthew R; Leslie, Frances M

    2012-05-01

    Genomic and pharmacologic data have suggested the involvement of the α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) in drug seeking to nicotine and other drugs of abuse. In order to better examine this receptor subtype, we have identified and characterized the first high affinity and selective α3β4 nAChR antagonist, AT-1001, both in vitro and in vivo. This is the first reported compound with a Ki below 10 nM at α3β4 nAChR and >90-fold selectivity over the other major subtypes, the α4β2 and α7 nAChR. AT-1001 competes with epibatidine, allowing for [³H]epibatidine binding to be used for structure-activity studies, however, both receptor binding and ligand-induced Ca²⁺ flux are not strictly competitive because increasing ligand concentration produces an apparent decrease in receptor number and maximal Ca²⁺ fluorescence. AT-1001 also potently and reversibly blocks epibatidine-induced inward currents in HEK cells transfected with α3β4 nAChR. Importantly, AT-1001 potently and dose-dependently blocks nicotine self-administration in rats, without affecting food responding. When tested in a nucleus accumbens (NAcs) synaptosomal preparation, AT-1001 inhibits nicotine-induced [³H]dopamine release poorly and at significantly higher concentrations compared with mecamylamine and conotoxin MII. These results suggest that its inhibition of nicotine self-administration in rats is not directly due to a decrease in dopamine release from the NAc, and most likely involves an indirect pathway requiring α3β4 nAChR. In conclusion, our studies provide further evidence for the involvement of α3β4 nAChR in nicotine self-administration. These findings suggest the utility of this receptor as a target for smoking cessation medications, and highlight the potential of AT-1001 and congeners as clinically useful compounds.

  15. Effects of nicotinic acetylcholine receptor agonists on cognition in rhesus monkeys with a chronic cocaine self-administration history.

    PubMed

    Gould, Robert W; Garg, Pradeep K; Garg, Sudha; Nader, Michael A

    2013-01-01

    Cocaine use is associated with impaired cognitive function, which may negatively impact treatment outcomes. One pharmacological strategy to improve cognition involves nicotinic acetylcholine receptor (nAChR) stimulation. However, the effects of chronic cocaine exposure on nAChR distribution and function have not been characterized. Thus, one goal of this study was to examine nAChR availability in rhesus monkeys with an extensive cocaine self-administration history (n = 4; ~6 years, mean intake, 1463 mg/kg) compared to age-matched cocaine-naive control monkeys (n = 5). Using [¹¹C]-nicotine and positron emission tomography (PET) imaging, cocaine-experienced monkeys showed significantly higher receptor availability in the hippocampus compared to cocaine-naive monkeys. A second goal was to examine the effects of nAChR agonists on multiple domains of cognitive performance in these same monkeys. For these studies, working memory was assessed using a delayed match-to-sample (DMS) task, associative learning and behavioral flexibility using stimulus discrimination and reversal learning tasks. When administered acutely, the nonselective high-efficacy agonist nicotine, the low-efficacy α4β2* subtype-selective agonist varenicline and the high-efficacy α7 subtype-selective agonist, PNU-282987 significantly improved DMS performance in both cocaine-naive and cocaine-experienced monkeys. Individual doses of nicotine and varenicline that engendered maximum cognitive enhancing effects on working memory did not affect discrimination or reversal learning, while PNU-282987 disrupted reversal learning in the cocaine-naive monkeys. These findings indicate that a cocaine self-administration history influenced nAChR distribution and the effects of nAChR agonists on cognitive performance, including a reduced sensitivity to the disrupting effects on reversal learning. The cognitive enhancing effects of nAChR agonists may be beneficial in combination with behavioral treatments for

  16. Nicotinic Acetylcholine Receptors as Targets for Tobacco Cessation Therapeutics: Cutting-Edge Methodologies to Understand Receptor Assembly and Trafficking.

    PubMed

    Fox-Loe, Ashley M; Dwoskin, Linda P; Richards, Christopher I

    2016-01-01

    Tobacco dependence is a chronic relapsing disorder and nicotine, the primary alkaloid in tobacco, acts at nicotinic receptors to stimulate dopamine release in brain, which is responsible for the reinforcing properties of nicotine, leading to addiction. Although the majority of tobacco users express the desire to quit, only a small percentage of those attempting to quit are successful using the currently available pharmacotherapies. Nicotine upregulates the number of specific nicotinic receptors on the neuronal cell surface. An increase in receptor trafficking or preferential stoichiometric assembly of receptor subunits involves changes in assembly, endoplasmic reticulum export, vesicle transport, decreased degradation, desensitization, enhanced maturation of functional pentamers, and pharmacological chaperoning. Understanding these changes on a mechanistic level is important to the development of nicotinic receptors as drug targets. For this reason, cutting-edge methodologies are being developed and employed to pinpoint distinct changes in localization, assembly, export, vesicle trafficking, and stoichiometry in order to further understand the physiology of these receptors and to evaluate the action of novel therapeutics for smoking cessation.

  17. The influence of allosteric modulators and transmembrane mutations on desensitisation and activation of α7 nicotinic acetylcholine receptors.

    PubMed

    Chatzidaki, Anna; D'Oyley, Jarryl M; Gill-Thind, JasKiran K; Sheppard, Tom D; Millar, Neil S

    2015-10-01

    Acetylcholine activates nicotinic acetylcholine receptors (nAChRs) by binding at an extracellular orthosteric site. Previous studies have described several positive allosteric modulators (PAMs) that are selective for homomeric α7 nAChRs. These include type I PAMs, which exert little or no effect on the rate of receptor desensitisation, and type II PAMs, which cause a dramatic loss of agonist-induced desensitisation. Here we report evidence that transmembrane mutations in α7 nAChRs have diverse effects on receptor activation and desensitisation by allosteric ligands. It has been reported previously that the L247T mutation, located toward the middle of the second transmembrane domain (at the 9' position), confers reduced levels of desensitisation. In contrast, the M260L mutation, located higher up in the TM2 domain (at the 22' position), does not show any difference in desensitisation compared to wild-type receptors. We have found that in receptors containing the L247T mutation, both type I PAMs and type II PAMs are converted into non-desensitising agonists. In contrast, in receptors containing the M260L mutation, this effect is seen only with type II PAMs. These findings, indicating that the M260L mutation has a selective effect on type II PAMs, have been confirmed both with previously described PAMs and also with a series of novel α7-selective PAMs. The novel PAMs examined in this study have close chemical similarity but diverse pharmacological properties. For example, they include compounds displaying effects on receptor desensitisation that are typical of classical type I and type II PAMs but, in addition, they include compounds with intermediate properties.

  18. α4β2 Nicotinic Acetylcholine Receptors: RELATIONSHIPS BETWEEN SUBUNIT STOICHIOMETRY AND FUNCTION AT THE SINGLE CHANNEL LEVEL.

    PubMed

    Mazzaferro, Simone; Bermudez, Isabel; Sine, Steven M

    2017-02-17

    Acetylcholine receptors comprising α4 and β2 subunits are the most abundant class of nicotinic acetylcholine receptor in the brain. They contribute to cognition, reward, mood, and nociception and are implicated in a range of neurological disorders. Previous measurements of whole-cell macroscopic currents showed that α4 and β2 subunits assemble in two predominant pentameric stoichiometries, which differ in their sensitivity to agonists, antagonists, and allosteric modulators. Here we compare agonist-elicited single channel currents from receptors assembled with an excess of either the α4 or β2 subunit, forming receptor populations biased toward one or the other stoichiometry, with currents from receptors composed of five concatemeric subunits in which the subunit stoichiometry is predetermined. Our results associate each subunit stoichiometry with a unique single channel conductance, mean open channel lifetime, and sensitivity to the allosteric potentiator 3-[3-(3-pyridinyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS-9283). Receptors with the composition (α4β2)2α4 exhibit high single channel conductance, brief mean open lifetime, and strong potentiation by NS-9283, whereas receptors with the composition (α4β2)2β2 exhibit low single channel conductance and long mean open lifetime and are not potentiated by NS-9283. Thus single channel current measurements reveal bases for the distinct functional and pharmacological properties endowed by different stoichiometries of α4 and β2 subunits and establish pentameric concatemers as a means to delineate interactions between subunits that confer these properties.

  19. Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Wilson, P T

    1987-01-01

    Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha

  20. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    SciTech Connect

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan; Li, Ruisheng; Jia, Ying; Zhao, Yun; Xiao, Dongjie; Dang, Ningning; Wang, Yunshan

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  1. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

    PubMed

    Hung, Rayjean J; McKay, James D; Gaborieau, Valerie; Boffetta, Paolo; Hashibe, Mia; Zaridze, David; Mukeria, Anush; Szeszenia-Dabrowska, Neonilia; Lissowska, Jolanta; Rudnai, Peter; Fabianova, Eleonora; Mates, Dana; Bencko, Vladimir; Foretova, Lenka; Janout, Vladimir; Chen, Chu; Goodman, Gary; Field, John K; Liloglou, Triantafillos; Xinarianos, George; Cassidy, Adrian; McLaughlin, John; Liu, Geoffrey; Narod, Steven; Krokan, Hans E; Skorpen, Frank; Elvestad, Maiken Bratt; Hveem, Kristian; Vatten, Lars; Linseisen, Jakob; Clavel-Chapelon, Françoise; Vineis, Paolo; Bueno-de-Mesquita, H Bas; Lund, Eiliv; Martinez, Carmen; Bingham, Sheila; Rasmuson, Torgny; Hainaut, Pierre; Riboli, Elio; Ahrens, Wolfgang; Benhamou, Simone; Lagiou, Pagona; Trichopoulos, Dimitrios; Holcátová, Ivana; Merletti, Franco; Kjaerheim, Kristina; Agudo, Antonio; Macfarlane, Gary; Talamini, Renato; Simonato, Lorenzo; Lowry, Ray; Conway, David I; Znaor, Ariana; Healy, Claire; Zelenika, Diana; Boland, Anne; Delepine, Marc; Foglio, Mario; Lechner, Doris; Matsuda, Fumihiko; Blanche, Helene; Gut, Ivo; Heath, Simon; Lathrop, Mark; Brennan, Paul

    2008-04-03

    Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.

  2. Unmasking the functions of the chromaffin cell α7 nicotinic receptor by using short pulses of acetylcholine and selective blockers

    PubMed Central

    López, Manuela G.; Montiel, Carmen; Herrero, Carlos J.; García-Palomero, Esther; Mayorgas, Inés; Hernández-Guijo, Jesús M.; Villarroya, M.; Olivares, Román; Gandía, Luis; McIntosh, J. Michael; Olivera, Baldomero M.; García, Antonio G.

    1998-01-01

    Methyllycaconitine (MLA), α-conotoxin ImI, and α-bungarotoxin inhibited the release of catecholamines triggered by brief pulses of acetylcholine (ACh) (100 μM, 5 s) applied to fast-superfused bovine adrenal chromaffin cells, with IC50s of 100 nM for MLA and 300 nM for α-conotoxin ImI and α-bungarotoxin. MLA (100 nM), α-conotoxin ImI (1 μM), and α-bungarotoxin (1 μM) halved the entry of 45Ca2+ stimulated by 5-s pulses of 300 μM ACh applied to incubated cells. These supramaximal concentrations of α7 nicotinic receptor blockers depressed by 30% (MLA), 25% (α-bungarotoxin), and 50% (α-conotoxin ImI) the inward current generated by 1-s pulses of 100 μM ACh, applied to voltage-clamped chromaffin cells. In Xenopus oocytes expressing rat brain α7 neuronal nicotinic receptor for acetylcholine nAChR, the current generated by 1-s pulses of ACh was blocked by MLA, α-conotoxin ImI, and α-bungarotoxin with IC50s of 0.1 nM, 100 nM, and 1.6 nM, respectively; the current through α3β4 nAChR was unaffected by α-conotoxin ImI and α-bungarotoxin, and weakly blocked by MLA (IC50 = 1 μM). The functions of controlling the electrical activity, the entry of Ca2+, and the ensuing exocytotic response of chromaffin cells were until now exclusively attributed to α3β4 nAChR; the present results constitute the first evidence to support a prominent role of α7 nAChR in controlling such functions, specially under the more physiological conditions used here to stimulate chromaffin cells with brief pulses of ACh. PMID:9826675

  3. The Role of α7 Nicotinic Acetylcholine Receptor in Modulation of Heart Rate Dynamics in Endotoxemic Rats

    PubMed Central

    Mazloom, Roham; Eftekhari, Golnar; Rahimi, Maryam; Khori, Vahid; Hajizadeh, Sohrab; Dehpour, Ahmad R.; Mani, Ali R.

    2013-01-01

    Previous reports have indicated that artificial stimulation of the vagus nerve reduces systemic inflammation in experimental models of sepsis. This phenomenon is a part of a broader cholinergic anti-inflammatory pathway which activates the vagus nerve to modulate inflammation through activation of alpha7 nicotinic acetylcholine receptors (α7nACHR). Heart rate variability represents the complex interplay between autonomic nervous system and cardiac pacemaker cells. Reduced heart rate variability and increased cardiac cycle regularity is a hallmark of clinical conditions that are associated with systemic inflammation (e.g. endotoxemia and sepsis). The present study was aimed to assess the role of α7nACHR in modulation of heart rate dynamics during systemic inflammation. Systemic inflammation was induced by injection of endotoxin (lipopolysaccharide) in rats. Electrocardiogram and body temperature were recorded in conscious animals using a telemetric system. Linear and non-linear indices of heart rate variability (e.g. sample entropy and fractal-like temporal structure) were assessed. RT-PCR and immunohistochemistry studies showed that α7nACHR is expressed in rat atrium and is mainly localized at the endothelial layer. Systemic administration of an α7nACHR antagonist (methyllycaconitine) did not show a significant effect on body temperature or heart rate dynamics in naïve rats. However, α7nACHR blockade could further reduce heart rate variability and elicit a febrile response in endotoxemic rats. Pre-treatment of endotoxemic animals with an α7nACHR agonist (PHA-543613) was unable to modulate heart rate dynamics in endotoxemic rats but could prevent the effect of endotoxin on body temperature within 24 h experiment. Neither methyllycaconitine nor PHA-543613 could affect cardiac beating variability of isolated perfused hearts taken from control or endotoxemic rats. Based on our observations we suggest a tonic role for nicotinic acetylcholine receptors in

  4. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors.

    PubMed

    Chernyavsky, Alexander I; Arredondo, Juan; Skok, Maryna; Grando, Sergei A

    2010-03-01

    Although acetylcholine (ACh) is well known for its neurotransmitter function, recent studies have indicated that it also functions as an immune cytokine that prevents macrophage activation through a 'cholinergic (nicotinic) anti-inflammatory pathway'. In this study, we used the macrophage-like U937 cells to elucidate the mechanisms of the physiologic control of cytokine production by auto/paracrine ACh through the nicotinic class of ACh receptors (nAChRs) expressed in these cells. Stimulation of cells with lipopolysaccharide up-regulated expression of alpha1, alpha4, alpha5, alpha7, alpha10, beta1 and beta3 subunits, down-regulated alpha6 and beta2 subunits, and did not alter the relative quantity of alpha9 and beta4 mRNAs. Distinct nAChR subtypes showed differential regulation of the production of pro- and anti-inflammatory cytokines. While inhibition of the expression of the TNF-alpha gene was mediated predominantly by the alpha-bungarotoxin sensitive nAChRs, that of the IL-6 and IL-18 genes-by the mecamylamine-sensitive nAChRs. Both the Mec- and alphaBtx-sensitive nAChRs regulated expression of the IL-1beta gene equally efficiently. Upregulation of IL-10 production by auto/paracrine ACh was mediated predominantly through alpha7 nAChR. These findings offer a new insight on how nicotinic agonists control inflammation, thus laying a groundwork for the development of novel immunomodulatory therapies based on the nAChR subtype selectivity of nicotinic agonists.

  5. Role of the large cytoplasmic loop of the alpha 7 neuronal nicotinic acetylcholine receptor subunit in receptor expression and function.

    PubMed

    Valor, Luis M; Mulet, José; Sala, Francisco; Sala, Salvador; Ballesta, Juan J; Criado, Manuel

    2002-06-25

    The role of the large intracellular loop of the nicotinic acetylcholine receptor (nAChR) alpha7 subunit in the expression of functional channels was studied. For this purpose, systematic deletions and substitutions were made throughout the loop and the ability of the mutated alpha7 subunits to support expression of functional nAChRs at the Xenopus oocyte membrane was tested. Surface nAChR expression was abolished upon removal of sequences at two regions, a 29-amino acid segment close to the N-terminus of the loop (amino acids 297-325) and adjacent to the third transmembrane region and an 11-amino acid segment near the fourth transmembrane region. Some residues (amino acids 317-322) within the 29 amino acids N-terminal segment could be substituted by others but not deleted without loss of expression, suggesting that a certain structure, determined by the number of amino acids rather than by their identity, has to be maintained in this region. The contiguous sequence M323 K324 R325 did not tolerate deletions and substitutions. Removal of the rest of the cytoplasmic loop was not deleterious; even higher expression levels (2-4-fold) were obtained upon large deletions of the loop (Delta399-432 and Delta339-370). High expression levels were observed provided that a minimal sequence of three amino acids (E371, G372, and M373) was present. In addition, some electrophysiological properties of mutant nAChRs were modified. Substitution of the EGM sequence by other protein segments produced a variety of effects, but, in general, insertions were not well tolerated, suggesting the existence of tight structural restrictions in the large cytoplasmic region of the rat alpha7 subunit.

  6. Immunological studies on the structure and function of the nicotinic acetylcholine receptor in mammalian muscle

    SciTech Connect

    Gu, Y.

    1989-01-01

    The specificity of the antibodies in the serum of a patient with myasthenia gravis for a the {alpha}-bungarotoxin binding sites of the acetylcholine receptor (AChR) was examined using AChRs in the C2 mouse muscle cell line as a model. The antibodies were shown to be specific for one of the two toxin-binding sites. The effect of the antibodies in this myasthenic serum on the functional response of the receptor to cholinergic agonists was also examined using carbamylcholine-induced {sup 22}Na uptake into C2 myotubes as a measured of the receptor function. Antibodies specific for the {gamma}, {delta}, and {epsilon} subunit, respectively, of mammalian muscle AChRs were developed using subunit-specific synthetic peptides as antigens. Using these antibodies and monoclonal antibodies for other subunits as probes, I have identified four ({alpha}, {beta}, {gamma}, and {delta}) subunits of mammalian muscle AChRs on immunoblots. When AChRs from embryonic, neonatal, normal and denervated adult muscles were compared on immunoblots, the {alpha}, {beta}, and {delta} subunits were identical in all four receptor preparations, with or without endoglycosidase digestion. The spatial and temporal distribution of the {gamma}- and {epsilon}- AChRs in developing and in denervated muscles corresponds to the distribution of AChRs with slow and fast channels, respectively, and that the development changes in the channel properties of the receptor arise from a change in the subunit composition of the receptor, in which the {gamma} is replaced by {epsilon}.

  7. PMCA2 VIA PSD-95 CONTROLS CALCIUM SIGNALING BY α7-CONTAINING NICOTINIC ACETYLCHOLINE RECEPTORS ON ASPINY INTERNEURONS

    PubMed Central

    Gomez-Varela, David; Schmidt, Manuela; Schoellerman, Jeff; Peters, Eric C.; Berg, Darwin K.

    2012-01-01

    Local control of calcium concentration within neurons is critical for signaling and regulation of synaptic communication in neural circuits. How local control can be achieved in the absence of physical compartmentalization is poorly understood. Challenging examples are provided by nicotinic acetylcholine receptors that contain α7 nicotinic receptor subunits (α7-nAChRs). These receptors are highly permeable to calcium and are concentrated on aspiny dendrites of interneurons which lack obvious physical compartments for constraining calcium diffusion. Using functional proteomics on rat brain, we show that α7-nAChRs are associated with the membrane calcium pump PMCA2. Analysis of α7-nAChR function in hippocampal interneurons in culture shows that PMCA2 activity limits the duration of calcium elevations produced by the receptors. Unexpectedly, PMCA2 inhibition triggers rapid calcium-dependent loss of α7-nAChR clusters. This extreme regulatory response is mediated by CaMKII, involves proteasome activity, depends on the second intracellular loop of α7-nAChR subunits, and is specific in that it does not alter two other classes of calcium-permeable ionotropic receptors on the same neurons. A critical link is provided by the scaffold protein PSD-95, which is associated with α7-nAChRs and constrains their mobility as revealed by single-particle tracking on neurons. The PSD-95 link is required for PMCA2-mediated removal of α7-nAChR clusters. This three-component combination of PMCA2/PSD-95/α7-nAChR offers a novel mechanism for tight control of calcium dynamics in neurons. PMID:22593058

  8. Role of autophagy, SQSTM1, SH3GLB1, and TRIM63 in the turnover of nicotinic acetylcholine receptors.

    PubMed

    Khan, Muzamil Majid; Strack, Siegfried; Wild, Franziska; Hanashima, Akira; Gasch, Alexander; Brohm, Kathrin; Reischl, Markus; Carnio, Silvia; Labeit, Dittmar; Sandri, Marco; Labeit, Siegfried; Rudolf, Rüdiger

    2014-01-01

    Removal of ubiquitinated targets by autophagosomes can be mediated by receptor molecules, like SQSTM1, in a mechanism referred to as selective autophagy. While cytoplasmic protein aggregates, mitochondria, and bacteria are the best-known targets of selective autophagy, their role in the turnover of membrane receptors is scarce. We here showed that fasting-induced wasting of skeletal muscle involves remodeling of the neuromuscular junction (NMJ) by increasing the turnover of muscle-type CHRN (cholinergic receptor, nicotinic/nicotinic acetylcholine receptor) in a TRIM63-dependent manner. Notably, this process implied enhanced production of endo/lysosomal carriers of CHRN, which also contained the membrane remodeler SH3GLB1, the E3 ubiquitin ligase, TRIM63, and the selective autophagy receptor SQSTM1. Furthermore, these vesicles were surrounded by the autophagic marker MAP1LC3A in an ATG7-dependent fashion, and some of them were also positive for the lysosomal marker, LAMP1. While the amount of vesicles containing endocytosed CHRN strongly augmented in the absence of ATG7 as well as upon denervation as a model for long-term atrophy, denervation-induced increase in autophagic CHRN vesicles was completely blunted in the absence of TRIM63. On a similar note, in trim63(-/-) mice denervation-induced upregulation of SQSTM1 and LC3-II was abolished and endogenous SQSTM1 did not colocalize with CHRN vesicles as it did in the wild type. SQSTM1 and LC3-II coprecipitated with surface-labeled/endocytosed CHRN and SQSTM1 overexpression significantly induced CHRN vesicle formation. Taken together, our data suggested that selective autophagy regulates the basal and atrophy-induced turnover of the pentameric transmembrane protein, CHRN, and that TRIM63, together with SH3GLB1 and SQSTM1 regulate this process.

  9. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  10. Cross-reactivity of acid-sensing ion channel and Na+–H+ exchanger antagonists with nicotinic acetylcholine receptors

    PubMed Central

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na+–H+ exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. PMID:21911609

  11. Multiple Nicotinic Acetylcholine Receptor Subtypes in the Mouse Amygdala Regulate Affective Behaviors and Response to Social Stress.

    PubMed

    Mineur, Yann S; Fote, Gianna M; Blakeman, Sam; Cahuzac, Emma L M; Newbold, Sylvia A; Picciotto, Marina R

    2016-05-01

    Electrophysiological and neurochemical studies implicate cholinergic signaling in the basolateral amygdala (BLA) in behaviors related to stress. Both animal studies and human clinical trials suggest that drugs that alter nicotinic acetylcholine receptor (nAChR) activity can affect behaviors related to mood and anxiety. Clinical studies also suggest that abnormalities in cholinergic signaling are associated with major depressive disorder, whereas pre-clinical studies have implicated both β2 subunit-containing (β2*) and α7 nAChRs in the effects of nicotine in models of anxiety- and depression-like behaviors. We therefore investigated whether nAChR signaling in the amygdala contributes to stress-mediated behaviors in mice. Local infusion of the non-competitive non-selective nAChR antagonist mecamylamine or viral-mediated downregulation of the β2 or α7 nAChR subunit in the amygdala all induced robust anxiolytic- and antidepressant-like effects in several mouse behavioral models. Further, whereas α7 nAChR subunit knockdown was somewhat more effective at decreasing anxiety-like behavior, only β2 subunit knockdown decreased resilience to social defeat stress and c-fos immunoreactivity in the BLA. In contrast, α7, but not β2, subunit knockdown effectively reversed the effect of increased ACh signaling in a mouse model of depression. These results suggest that signaling through β2* nAChRs is essential for baseline excitability of the BLA, and a decrease in signaling through β2 nAChRs alters anxiety- and depression-like behaviors even in unstressed animals. In contrast, stimulation of α7 nAChRs by acetylcholine may mediate the increased depression-like behaviors observed during the hypercholinergic state observed in depressed individuals.

  12. Structural mechanisms for α-conotoxin activity at the human α3β4 nicotinic acetylcholine receptor

    PubMed Central

    Abraham, Nikita; Healy, Michael; Ragnarsson, Lotten; Brust, Andreas; Alewood, Paul F.; Lewis, Richard J.

    2017-01-01

    Nicotinic acetylcholine receptors (nAChR) are therapeutic targets for a range of human diseases. α-Conotoxins are naturally occurring peptide antagonists of nAChRs that have been used as pharmacological probes and investigated as drug leads for nAChR related disorders. However, α-conotoxin interactions have been mostly characterised at the α7 and α3β2 nAChRs, with interactions at other subtypes poorly understood. This study provides novel structural insights into the molecular basis for α-conotoxin activity at α3β4 nAChR, a therapeutic target where subtype specific antagonists have potential to treat nicotine addiction and lung cancer. A co-crystal structure of α-conotoxin LsIA with Lymnaea stagnalis acetylcholine binding protein guided the design and functional characterisations of LsIA analogues that identified the minimum pharmacophore regulating α3β4 antagonism. Interactions of the LsIA R10F with β4 K57 and the conserved –NN– α-conotoxin motif with β4 I77 and I109 conferred α3β4 activity to the otherwise inactive LsIA. Using these structural insights, we designed LsIA analogues with α3β4 activity. This new understanding of the structural basis of protein-protein interactions between α-conotoxins and α3β4 may help rationally guide the development of α3β4 selective antagonists with therapeutic potential. PMID:28361878

  13. A nicotinic acetylcholine receptor transmembrane point mutation (G275E) associated with resistance to spinosad in Frankliniella occidentalis

    PubMed Central

    Puinean, Alin M; Lansdell, Stuart J; Collins, Toby; Bielza, Pablo; Millar, Neil S

    2013-01-01

    High levels of resistance to spinosad, a macrocyclic lactone insecticide, have been reported previously in western flower thrips, Frankliniella occidentalis, an economically important insect pest of vegetables, fruit and ornamental crops. We have cloned the nicotinic acetylcholine receptor (nAChR) α6 subunit from F. occidentalis (Foα6) and compared the nucleotide sequence of Foα6 from susceptible and spinosad-resistant insect populations (MLFOM and R1S respectively). A single nucleotide change has been identified in Foα6, resulting in the replacement of a glycine (G) residue in susceptible insects with a glutamic acid (E) in resistant insects. The resistance-associated mutation (G275E) is predicted to lie at the top of the third α-helical transmembrane domain of Foα6. Although there is no direct evidence identifying the location of the spinosad binding site, the analogous amino acid in the C. elegans glutamate-gated chloride channel lies in close proximity (4.4 Å) to the known binding site of ivermectin, another macrocyclic lactone pesticide. The functional consequences of the resistance-associated mutation have been examined in the human nAChR α7 subunit. Introduction of an analogous (A272E) mutation in α7 abolishes the modulatory effects of spinosad whilst having no significant effect upon activation by acetylcholine, consistent with spinosad having an allosteric mechanism of action. PMID:23016960

  14. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice.

    PubMed

    Jackson, Kia J; Imad Damaj, M

    2013-02-15

    Nicotinic acetylcholine receptors are calcium-permeable and the initial targets for nicotine. Studies suggest that calcium-dependent mechanisms mediate some behavioral responses to nicotine; however, the post-receptor calcium-dependent mechanisms associated with chronic nicotine and nicotine withdrawal remain unclear. The proteins calcium/calmodulin-dependent protein kinase II (CaMKII) and synapsin I are essential for neurotransmitter release and were shown to be involved in drug dependence. In the current study, using pharmacological techniques, we sought to (a) complement previously published behavioral findings from our lab indicating a role for calcium-dependent signaling in nicotine dependence and (b) expand on previously published acute biochemical and pharmacological findings indicating the relevance of calcium-dependent mechanisms in acute nicotine responses by evaluating the function of CaMKII and synapsin I after chronic nicotine and withdrawal in the nucleus accumbens, a brain region implicated in drug dependence. Male mice were chronically infused with nicotine for 14 days, and treated with the β2-selective antagonist dihydro-β-erythroidine (DHβE), or the α7 antagonist, methyllycaconitine citrate (MLA) 20min prior to dissection of the nucleus accumbens. Results show that phosphorylated and total CaMKII and synapsin I protein levels were significantly increased in the nucleus accumbens after chronic nicotine infusion, and reduced after treatment with DHβE, but not MLA. A spontaneous nicotine withdrawal assessment also revealed significant reductions in phosphorylated CaMKII and synapsin I levels 24h after cessation of nicotine treatment. Our findings suggest that post-receptor calcium-dependent mechanisms associated with nicotine withdrawal are mediated through β2-containing nicotinic receptors.

  15. Muscarinic, but not nicotinic, acetylcholine receptor blockade in the ventral tegmental area attenuates cue-induced sucrose-seeking

    PubMed Central

    Addy, Nii A.; Nunes, Eric J.; Wickham, Robert J.

    2015-01-01

    The mesolimbic dopamine (DA) system is known to play a role in cue-mediated reward-seeking for natural rewards and drugs of abuse. Specifically, cholinergic and glutamatergic receptors in the ventral tegmental area (VTA) have been shown to regulate cue-induced drug-seeking. However, the potential role of these VTA receptors in regulating cue-induced reward seeking for natural rewards is unknown. Here, we examined whether blockade of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) would alter cue-induced sucrose seeking in male Sprague-Dawley rats. Subjects underwent 10 days of sucrose self-administration training (fixed ratio 1 schedule) followed by 7 days of forced abstinence. On withdrawal day 7, rats received bilateral VTA infusion of vehicle, the muscarinic AChR antagonist scopolamine (2.4 or 24 μg/side), the nicotinic AChR antagonist mecamylamine (3 or 30 μg/side), or the NMDAR antagonist AP-5 (0.1 or 1 μg/side) immediately prior to examination of cue-induced sucrose-seeking. Scopolamine infusion led to robust attenuation, but did not completely block, sucrose-seeking behavior. In contrast, VTA administration of mecamylamine or AP-5 did not alter cue-induced sucrose-seeking. Together, the data suggest that VTA muscarinic AChRs, but not nicotinic AChRs nor NMDARs, facilitate the ability of food-associated cues to drive seeking behavior for a food reward. PMID:26026787

  16. The ligand binding domain of the nicotinic acetylcholine receptor. Immunological analysis.

    PubMed

    Kachalsky, S G; Aladjem, M; Barchan, D; Fuchs, S

    1993-03-08

    The interaction of the acetylcholine receptor (AChR) binding site domain with specific antibodies and with alpha-bungarotoxin (alpha-BTX) has been compared. The cloned and expressed ligand binding domain of the mouse AChR alpha-subunit binds alpha-BTX, whereas the mongoose-expressed domain is not recognized by alpha-BTX. On the other hand, both the mouse and mongoose domains bind to the site-specific monoclonal antibody 5.5. These results demonstrate that the structural requirements for binding of alpha-BTX and mcAb 5.5, both of which interact with the AChR binding site, are distinct from each other.

  17. Minimal RNA aptamer sequences that can inhibit or alleviate noncompetitive inhibition of the muscle-type nicotinic acetylcholine receptor.

    PubMed

    Sivaprakasam, Kannan; Pagán, Oné R; Hess, George P

    2010-02-01

    Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~10(11) neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition.

  18. Mutations in Dalpha1 or Dbeta2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster.

    PubMed

    Perry, Trent; Heckel, David G; McKenzie, John A; Batterham, Philip

    2008-05-01

    Resistance to insecticides by modification of their molecular targets is a serious problem in chemical control of many arthropod pests. Neonicotinoids target the nicotinic acetylcholine receptor (nAChR) of arthropods. The spectrum of possible resistance-conferring mutations of this receptor is poorly understood. Prediction of resistance is complicated by the existence of multiple genes encoding the different subunits of this essential component of neurotransmission. We focused on the cluster of three Drosophila melanogaster nAChR subunit genes at cytological region 96A. EMS mutagenesis and selection for resistance to nitenpyram was performed on hybrids carrying a deficiency for this chromosomal region. Two complementation groups were defined for the four strains isolated. Molecular characterisation of the mutations found lesions in two nAChR subunit genes, Dalpha1 (encoding an alpha-type subunit) and Dbeta2 (beta-type). Mutations conferring resistance in beta-type receptors have not previously been reported, but we found several lesions in the Dbeta2 sequence, including locations distant from the predicted neonicotinoid-binding site. This study illustrates that mutations in a single-receptor subunit can confer nitenpyram resistance. Moreover, some of the mutations may protect the insect against nitenpyram by interfering with subunit assembly or channel activation, rather than affecting binding affinities of neonicotinoids to the channel.

  19. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass.

    PubMed

    Mito, Kazuaki; Sato, Yuiko; Kobayashi, Tami; Miyamoto, Kana; Nitta, Eriko; Iwama, Atsushi; Matsumoto, Morio; Nakamura, Masaya; Sato, Kazuki; Miyamoto, Takeshi

    2017-03-28

    The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7(-/-) mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7(-/-) mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7(-/-) mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation.

  20. The nicotinic acetylcholine receptor α7 subunit is an essential negative regulator of bone mass

    PubMed Central

    Mito, Kazuaki; Sato, Yuiko; Kobayashi, Tami; Miyamoto, Kana; Nitta, Eriko; Iwama, Atsushi; Matsumoto, Morio; Nakamura, Masaya; Sato, Kazuki; Miyamoto, Takeshi

    2017-01-01

    The nicotinic receptor α7nAchR reportedly regulates vagal nerve targets in brain and cardiac tissue. Here we show that nAchR7−/− mice exhibit increased bone mass due to decreased osteoclast formation, accompanied by elevated osteoprotegerin/RANKL ratios in serum. Vagotomy in wild-type mice also significantly increased the serum osteoprotegerin/RANKL ratio, and elevated bone mass seen in nAchR7−/− mice was reversed in α7nAchR/osteoprotegerin-doubly-deficient mice. α7nAchR loss significantly increased TNFα expression in Mac1-positive macrophages, and TNFα increased the osteoprotegerin/RANKL ratio in osteoblasts. Targeting TNFα in nAchR7−/− mice normalized both serum osteoprotegerin/RANKL ratios and bone mass. Administration of nicotine, an α7nAchR ligand, to wild-type mice increased serum RANKL levels. Thus, vagal nerve stimulation of macrophages via α7nAchR regulates bone mass by modulating osteoclast formation. PMID:28349965

  1. The prototoxin LYPD6B modulates heteromeric α3β4-containing nicotinic acetylcholine receptors, but not α7 homomers.

    PubMed

    Ochoa, Vanessa; George, Andrew A; Nishi, Rae; Whiteaker, Paul

    2016-03-01

    Prototoxins are a diverse family of membrane-tethered molecules expressed in the nervous system that modulate nicotinic cholinergic signaling, but their functions and specificity have yet to be completely explored. We tested the selectivity and efficacy of leukocyte antigen, PLAUR (plasminogen activator, urokinase receptor) domain-containing (LYPD)-6B on α3β4-, α3α5β4-, and α7-containing nicotinic acetylcholine receptors (nAChRs). To constrain stoichiometry, fusion proteins encoding concatemers of human α3, β4, and α5 (D and N variants) subunits were expressed in Xenopus laevis oocytes and tested with or without LYPD6B. We used the 2-electrode voltage-clamp method to quantify responses to acetylcholine (ACh): agonist sensitivity (EC50), maximal agonist-induced current (Imax), and time constant (τ) of desensitization. For β4-α3-α3-β4-α3 and β4-α3-β4-α3-α3, LYPD6B decreased EC50 from 631 to 79 μM, reduced Imax by at least 59%, and decreased τ. For β4-α3-α5D-β4-α3 and β4-α3-β4-α-α5D, LYPD6B decreased Imax by 63 and 32%, respectively. Thus, LYPD6B acted only on (α3)3(β4)2 and (α3)2(α5D)(β4)2 and did not affect the properties of (α3)2(β4)3, α7, or (α3)2(α5N)(β4)2 nAChRs. Therefore, LYPD6B acts as a mixed modulator that enhances the sensitivity of (α3)3(β4)2 nAChRs to ACh while reducing ACh-induced whole-cell currents. LYPD6B also negatively modulates α3β4 nAChRs that include the α5D common human variant, but not the N variant associated with nicotine dependence.

  2. alpha-conotoxin AuIB selectively blocks alpha3 beta4 nicotinic acetylcholine receptors and nicotine-evoked norepinephrine release.

    PubMed

    Luo, S; Kulak, J M; Cartier, G E; Jacobsen, R B; Yoshikami, D; Olivera, B M; McIntosh, J M

    1998-11-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) with putative alpha3 beta4-subunits have been implicated in the mediation of signaling in various systems, including ganglionic transmission peripherally and nicotine-evoked neurotransmitter release centrally. However, progress in the characterization of these receptors has been hampered by a lack of alpha3 beta4-selective ligands. In this report, we describe the purification and characterization of an alpha3 beta4 nAChR antagonist, alpha-conotoxin AuIB, from the venom of the "court cone," Conus aulicus. We also describe the total chemical synthesis of this and two related peptides that were also isolated from the venom. alpha-Conotoxin AuIB blocks alpha3 beta4 nAChRs expressed in Xenopus oocytes with an IC50 of 0.75 microM, a kon of 1.4 x 10(6) min-1 M-1, a koff of 0.48 min-1, and a Kd of 0.5 microM. Furthermore, alpha-conotoxin AuIB blocks the alpha3 beta4 receptor with >100-fold higher potency than other receptor subunit combinations, including alpha2 beta2, alpha2 beta4, alpha3 beta2, alpha4 beta2, alpha4 beta4, and alpha1 beta1 gamma delta. Thus, AuIB is a novel, selective probe for alpha3 beta4 nAChRs. AuIB (1-5 microM) blocks 20-35% of the nicotine-stimulated norepinephrine release from rat hippocampal synaptosomes, whereas nicotine-evoked dopamine release from striatal synaptosomes is not affected. Conversely, the alpha3 beta2-specific alpha-conotoxin MII (100 nM) blocks 33% of striatal dopamine release but not hippocampal norepinephrine release. This suggests that in the respective systems, alpha3 beta4-containing nAChRs mediate norepinephrine release, whereas alpha3 beta2-containing receptors mediate dopamine release.

  3. Differential sensitivity of Ctenocephalides felis and Drosophila melanogaster nicotinic acetylcholine receptor α1 and α2 subunits in recombinant hybrid receptors to nicotinoids and neonicotinoid insecticides.

    PubMed

    Dederer, Helene; Werr, Margaret; Ilg, Thomas

    2011-01-01

    Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC₅₀s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.

  4. Prenatal cigarette smoke exposure effects on apoptotic and nicotinic acetylcholine receptor expression in the infant mouse brainstem.

    PubMed

    Vivekanandarajah, Arunnjah; Chan, Yik Lung; Chen, Hui; Machaalani, Rita

    2016-03-01

    Infants exposed to cigarette smoked during pregnancy into infancy have increased respiratory and cardiac abnormalities. Nicotine, the major neurotoxic component of cigarette smoke, induces its actions by binding to nicotinic acetylcholine receptors (nAChR), with one downstream effect being increased apoptosis. Using a pre- into post- natal cigarette smoke exposure mouse model (SE), we studied the immunohistochemical expression of nAChR subunits α2, α3, α4, α5, α7, α9, β1 and β2 and two markers of apoptosis, active caspase-3 and TUNEL, in seven nuclei of the medulla and facial nucleus of the pons in male mice. Pups of dams exposed to two cigarettes (nicotine ≤1.2mg, CO ≤15mg) twice daily for six weeks prior to mating, during gestation and lactation (n=5; SE), were compared to pups exposed to air under the same condition (n=5; SHAM) at P20. Results showed that the hypoglossal nucleus had increased α3, α4, α7, α9, Casp-3 and TUNEL, dorsal motor nucleus of the vagus had increased α3, α5, α7, β1 and Casp-3, nucleus of the solitary tract had increased α3 but decreased α4, α5, β1 and apoptosis, cuneate nucleus had increased α3, β2 and Casp- 3, but decreased α5, nucleus of the spinal trigeminal tract had increased α3, α7, β1, lateral reticular nucleus had decreased β1, inferior olivary nucleus had increased β1 but decreased apoptosis, and the facial had increased α2, α3 and α7. This is the first study to demonstrate that nAChR subunits are affected following pre- into post-natal SE and that they simultaneously coincided with changes in apoptotic expression.

  5. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    PubMed Central

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds. PMID:26008231

  6. Competition, Selectivity and Efficacy of Analogs of A-84543 for Nicotinic Acetylcholine Receptors with Repositioning of Pyridine Nitrogen

    PubMed Central

    Ogunjirin, Adebowale E.; Fortunak, Joseph M.; Brown, LaVerne L.; Xiao, Yingxian; Dávila-García, Martha I.

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) play a crucial role in a number of clinically relevant mental and neurological pathways, as well as autonomic and immune functions. The development of subtype-selective ligands for nAChRs therefore is potentially useful for targeted therapeutic management of conditions where nAChRs are involved. We tested if selectivity for a particular nAChR subtype can be achieved through small structural modifications of a lead compound containing the nicotinic pharmacophore by changing the distance between the electronegative elements. For this purpose, analogs of A-84543 were designed, synthesized and characterized as potentially new nAChR subtype-selective ligands. Compounds were tested for their binding properties in rat cerebral cortical tissue homogenates, and subtype-selectivity was determined using stably transfected HEK cells expressing different nAChR subtypes. All compounds synthesized were found to competitively displace [3H]-epibatidine ([3H]EB) from the nAChR binding site. Of all the analogues, H-11MNH showed highest affinity for nAChRs compared to a ~ 5 to10-fold lower affinity of A-84543. All other compounds had affinities > 10,000 nM. Both A-84543 and H-11MNH have highest affinity for α2β2 and α4β2 nAChRs and show moderate affinity for β4- and α7-containing receptors. H-11MNH was found to be a full agonist with high potency at α3β4, while A-84543 is a partial agonist with low potency. Based on their unique pharmacological binding properties we suggest that A-84543 and its desmethylpyrrolidine analog can be useful as pharmacological ligands for studying nAChRs if selective pharmacological and/or genetic tools are used to mask the function of other receptors subtypes. PMID:26508288

  7. Alpha7 nicotinic acetylcholine receptor is required for amyloid pathology in brain endothelial cells induced by Glycoprotein 120, methamphetamine and nicotine

    PubMed Central

    Liu, Liqun; Yu, Jingyi; Li, Li; Zhang, Bao; Liu, Lingjuan; Wu, Chun-Hua; Jong, Ambrose; Mao, Ding-An; Huang, Sheng-He

    2017-01-01

    One of the most challenging issues in HIV-associated neurocognitive disorders (HAND) caused by HIV-1 virotoxins and drug abuse is the lack of understanding the underlying mechanisms that are commonly associated with disorders of the blood-brain barrier (BBB), which mainly consists of brain microvascular endothelial cells (BMEC). Here, we hypothesized that Glycoprotein 120 (gp120), methamphetamine (METH) and nicotine (NT) can enhance amyloid-beta (Aβ) accumulation in BMEC through Alpha7 nicotinic acetylcholine receptor (α7 nAChR). Both in vitro (human BMEC) (HBMEC) and in vivo (mice) models of BBB were used to dissect the role of α7 nAChR in up-regulation of Aβ induced by gp120, METH and NT. Aβ release from and transport across HBMEC were significantly increased by these factors. Methyllycaconitine (MLA), an antagonist of α7 nAChR, could efficiently block these pathogenic effects. Furthermore, our animal data showed that these factors could significantly increase the levels of Aβ, Tau and Ubiquitin C-Terminal Hydrolase L1 (UCHL1) in mouse cerebrospinal fluid (CSF) and Aβ in the mouse brains. These pathogenicities were significantly reduced by MLA, suggesting that α7 nAChR may play an important role in neuropathology caused by gp120, METH and NT, which are the major pathogenic factors contributing to the pathogenesis of HAND. PMID:28074940

  8. Nicotinic acetylcholine receptors containing the α4 subunit are critical for the nicotine-induced reduction of acute voluntary ethanol consumption.

    PubMed

    Hendrickson, Linzy M; Gardner, Paul; Tapper, Andrew R

    2011-01-01

    Recently, we investigated the molecular mechanisms of the smoking cessation drug varenicline, a nicotinic acetylcholine receptor (nAChR) partial agonist, in its ability to decrease voluntary ethanol intake in mice. Previous to our study, other labs had shown that this drug can decrease ethanol consumption and seeking in rat models of ethanol intake. Although varenicline was designed to be a high affinity partial agonist of nAChRs containing the α4 and β2 subunits (designated as α4β2*), at higher concentrations it can also act upon α3β2*, α6*, α3β4* and α7 nAChRs. Therefore, to further elucidate the nAChR subtype responsible for varenicline-induced reduction of ethanol consumption, we utilized a pharmacological approach in combination with two complimentary nAChR genetic mouse models, a knock-out line that does not express the α4 subunit (α4 KO) and another line that expresses α4* nAChRs hypersensitive to agonist (the Leu9'Ala line). We found that activation of α4* nAChRs was necessary and sufficient for varenicline-induced reduction of alcohol consumption. Consistent with this result, here we show that a more efficacious nAChR agonist, nicotine, also decreased voluntary ethanol intake, and that α4* nAChRs are critical for this reduction.

  9. Anticonvulsants Based on the α-Substituted Amide Group Pharmacophore Bind to and Inhibit Function of Neuronal Nicotinic Acetylcholine Receptors.

    PubMed

    Krivoshein, Arcadius V

    2016-03-16

    Although the antiepileptic properties of α-substituted lactams, acetamides, and cyclic imides have been known for over 60 years, the mechanism by which they act remains unclear. I report here that these compounds bind to the nicotinic acetylcholine receptor (nAChR) and inhibit its function. Using transient kinetic measurements with functionally active, nondesensitized receptors, I have discovered that (i) α-substituted lactams and cyclic imides are noncompetitive inhibitors of heteromeric subtypes (such as α4β2 and α3β4) of neuronal nAChRs and (ii) the binding affinity of these compounds toward the nAChR correlates with their potency in preventing maximal electroshock (MES)-induced convulsions in mice. Based on the hypothesis that α-substituted amide group is the essential pharmacophore of these drugs, I found and tested a simple compound, 2-phenylbutyramide. This compound indeed inhibits nAChR and shows good anticonvulsant activity in mice. Molecular docking simulations suggest that α-substituted lactams, acetamides, and cyclic imides bind to the same sites on the extracellular domain of the receptor. These new findings indicate that inhibition of brain nAChRs may play an important role in the action of these antiepileptic drugs, a role that has not been previously recognized.

  10. Conformational analysis of a toxic peptide from Trimeresurus wagleri which blocks the nicotinic acetylcholine receptor.

    PubMed Central

    Sellin, L C; Mattila, K; Annila, A; Schmidt, J J; McArdle, J J; Hyvönen, M; Rantala, T T; Kivistö, T

    1996-01-01

    The 22-residue toxic peptide (WTX1) from the venom of the Southeast Asian snake Trimeresurus wagleri has multiple sites of action, but its lethal effect has been attributed to blocking the postsynaptic acetylcholine receptor at the neuromuscular junction. The 3-dimensional structure of WTX1 was studied using 2-dimensional nuclear magnetic resonance spectroscopy, circular dichroism, and computer simulations. In aqueous solution, WTX1 was shown to have extended and flexible "tails" defined by a short, rigid disulfide-bonded loop. The flexible regions can undergo structural rearrangement when moved from an aqueous to a less polar environment and may contribute to its effectiveness at different receptor sites. By substituting Gly or Phe for His at position 10, significant effects on the disulfide bond formation and, thereby, the activity of the peptide were observed. These results suggest that even subtle differences in single residues can have profound effects on the dynamics of folding, disulfide bond formation, and activity of this toxic peptide. Images FIGURE 10 FIGURE 12 PMID:8770182

  11. Morphine-induced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors.

    PubMed

    Rezayof, Ameneh; Assadpour, Sara; Alijanpour, Sakineh

    2013-01-01

    In the present study, the effects of repeated intra-ventral hippocampal (intra-VH) microinjections of nicotinic acetylcholine receptor agonist or antagonist on morphine-induced anxiolytic-like behavior were investigated in morphine-sensitized mice using elevated plus-maze. Intraperitoneal (i.p.) administration of different doses of morphine (5, 7.5 and 10mg/kg) increased the percentage of open arm time (%OAT), open arm entries (%OAE), but not locomotor activity, indicating an anxiolytic-like response to morphine. The maximum response was obtained by 7.5mg/kg of the opioid. The anxiety-like behavior which was induced by a lower dose of morphine (5mg/kg) was significantly increased in mice that had previously received once daily injections of morphine (10 and 20mg/kg, i.p.) for 3 days. It should be considered that this treatment also increased locomotor activity in morphine-sensitized mice. Furthermore, the response to an ineffective dose of morphine (5mg/kg, i.p.) in the EPM was significantly increased in the animals that had previously received nicotine for 3 days (0.1, 0.3, 0.5 and 0.7 μg/mouse; intra-VH), 5 min prior to the injections of morphine (5mg/kg/day × 3 days; i.p.). On the other hand, the increase of morphine-induced anxiolytic-like effect in animals that had previously received the 3-day morphine (20mg/kg) was dose dependently suppressed by once daily injections of mecamylamine (0.5, 1 and 2 μg/mouse/day × 3 days; intra-VH). It is important to note that repeated intra-VH administrations of the same doses of nicotine or mecamylamine alone caused no significant change in morphine (5mg/kg)-induced anxiety-like parameters in the EPM. In conclusion, it seems that morphine sensitization affects the anxiety-like behavior in the EPM and the cholinergic system in the ventral hippocampus, via nicotinic receptors, may play an important role in this effect.

  12. New ligands with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors. Synthesis, receptor binding, and 3D-QSAR modeling.

    PubMed

    Audouze, Karine; Nielsen, Elsebet Østergaard; Olsen, Gunnar M; Ahring, Philip; Jørgensen, Tino Dyhring; Peters, Dan; Liljefors, Tommy; Balle, Thomas

    2006-06-01

    A new series of piperazines, diazepanes, diazocanes, diazabicyclononanes, and diazabicyclodecanes with affinity for the alpha4beta2 subtype of nicotinic acetylcholine receptors were synthesized on the basis of results from a previous computational study. A predictive 3D-QSAR model was developed using the GRID/GOLPE approach (R2 = 0.94, Q2 = 0.83, SDEP = 0.34). The SAR was interpreted in terms of contour maps of the PLS coefficients and in terms of a homology model of the alpha4beta2 subtype of the nicotinic acetylcholine receptors. The results reveal that hydrogen bonding from both hydrogens on the protonated amine and from the pyridine nitrogen to a water molecule as well as van der Waals interactions between the substituent bearing the protonated amine and the receptor is of importance for ligand affinity. The combination of 3D-QSAR and homology modeling proved successful for the interpretation of structure-affinity relationships as well as the validation of the individual modeling approaches.

  13. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor.

    PubMed

    Ulrich, H; Ippolito, J E; Pagán, O R; Eterović, V A; Hann, R M; Shi, H; Lis, J T; Eldefrawi, M E; Hess, G P

    1998-11-24

    The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443-473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.

  14. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.

    PubMed

    Kichko, Tatjana I; Lennerz, Jochen; Eberhardt, Mirjam; Babes, Ramona M; Neuhuber, Winfried; Kobal, Gerd; Reeh, Peter W

    2013-11-01

    High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.

  15. Lipophilicity as a determinant of binding of procaine analogs to rat α3β4 nicotinic acetylcholine receptor.

    PubMed

    Cheffer, Arquimedes; Mustafa, Elba Vieira; T-do Amaral, Antonia; Ulrich, Henning

    2012-08-01

    Nicotinic acetylcholine receptors (nAChRs) have been studied in detail with regard to their interaction with therapeutic and drug addiction-related compounds. Using a structure-activity approach, we have examined the relationship among the molecular features of a set of eight para-R-substituted N,N-[(dimethylamino)ethyl] benzoate hydrochlorides, structurally related to procaine and their affinity for the α(3)β(4) nAChR heterologously expressed in KXα3β4R2 cells. Affinity values (log[1/IC50]) of these compounds for the α(3)β(4) nAChR were determined by their competition with [(3)H]TCP binding. Log(1/IC50) values were analyzed considering different hydrophobic and electronic parameters and those related to molar refractivity. These have been experimentally determined or were taken from published literature. In accordance with literature observations, the generated cross-validated quantitative structure-activity relationship (QSAR) equations indicated a significant contribution of hydrophobic term to binding affinity of procaine analogs to the receptor and predicted affinity values for several local anesthetics (LAs) sets taken from the literature. The predicted values by using the QSAR model correlated well with the published values both for neuronal and for electroplaque nAChRs. Our work also reveals the general structure features of LAs that are important for interaction with nAChRs as well as the structural modifications that could be made to enhance binding affinity.

  16. Solution structure of {alpha}-conotoxin PIA, a novel antagonist of {alpha}6 subunit containing nicotinic acetylcholine receptors

    SciTech Connect

    Chi, Seung-Wook; Lee, Si-Hyung; Kim, Do-Hyoung; Kim, Jae-Sung; Olivera, Baldomero M.; McIntosh, J. Michael; Han, Kyou-Hoon . E-mail: khhan600@kribb.re.kr

    2005-12-30

    {alpha}-Conotoxin PIA is a novel nicotinic acetylcholine receptor (nAChR) antagonist isolated from Conus purpurascens that targets nAChR subtypes containing {alpha}6 and {alpha}3 subunits. {alpha}-conotoxin PIA displays 75-fold higher affinity for rat {alpha}6/{alpha}3{beta}2{beta}3 nAChRs than for rat {alpha}3{beta}2 nAChRs. We have determined the three-dimensional structure of {alpha}-conotoxin PIA by nuclear magnetic resonance spectroscopy. The {alpha}-conotoxin PIA has an '{omega}-shaped' overall topology as other {alpha}4/7 subfamily conotoxins. Yet, unlike other neuronally targeted {alpha}4/7-conotoxins, its N-terminal tail Arg{sup 1}-Asp{sup 2}-Pro{sup 3} protrudes out of its main molecular body because Asp{sup 2}-Pro{sup 3}-Cys{sup 4}-Cys{sup 5} forms a stable type I {beta}-turn. In addition, a kink introduced by Pro{sup 15} in the second loop of this toxin provides a distinct steric and electrostatic environment from those in {alpha}-conotoxins MII and GIC. By comparing the structure of {alpha}-conotoxin PIA with other functionally related {alpha}-conotoxins we suggest structural features in {alpha}-conotoxin PIA that may be associated with its unique receptor recognition profile.

  17. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    SciTech Connect

    Blanton, M.P.; Wang, H.H. )

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.

  18. Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor.

    PubMed Central

    Papadouli, I; Potamianos, S; Hadjidakis, I; Bairaktari, E; Tsikaris, V; Sakarellos, C; Cung, M T; Marraud, M; Tzartos, S J

    1990-01-01

    The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible. PMID:1695844

  19. Multiple conductance classes of mouse nicotinic acetylcholine receptors expressed in Xenopus oocytes.

    PubMed Central

    Kullberg, R; Owens, J L; Camacho, P; Mandel, G; Brehm, P

    1990-01-01

    Acetylcholine receptor (AcChoR) subunit mRNAs transcribed from mouse BC3H-1 cDNAs were injected into Xenopus oocytes and the expressed AcChoR channels were examined by single channel recording. Injection of alpha-, beta-, gamma-, and delta-subunit mRNAs produced two predominant channel classes with conductances of approximately 50 and approximately 12 pS, while infrequent openings of approximately 25-pS channels were also observed. Injection of alpha-, beta-, and gamma-subunit mRNAs produced a single class of approximately 12-pS AcChoR channels, which resembled the smallest conductance channels present in alpha beta gamma omega-injected oocytes. Assembly of delta-less channels may thus explain the lowest conductance AcChoR channels in alpha beta gamma delta-injected oocytes and might also account for similar channels that have been observed in vertebrate skeletal muscle. Images PMID:2315303

  20. Effect of α{sub 7} nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    SciTech Connect

    Welch, Kevin D.; Green, Benedict T.; Gardner, Dale R.

    2013-02-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  1. Functional expression of α7-nicotinic acetylcholine receptors by muscle afferent neurons

    PubMed Central

    Baxter, James C.; Ramachandra, Renuka; Mayne, Dustin R.

    2014-01-01

    The exercise pressor reflex (EPR) is generated by group III and IV muscle afferents during exercise to increase cardiovascular function. Muscle contraction is triggered by ACh, which is metabolized into choline that could serve as a signal of exercise-induced activity. We demonstrate that ACh can induce current in muscle afferents neurons isolated from male Sprague-Dawley rats. The nicotinic ACh receptors (nAChRs) appear to be expressed by some group III-IV neurons since capsaicin (TRPV1) and/or ATP (P2X) induced current in 56% of ACh-responsive neurons. α7- And α4β2-nAChRs have been shown to be expressed in sensory neurons. An α7-nAChR antibody stained 83% of muscle afferent neurons. Functional expression was demonstrated by using the specific α7-nAChR blockers α-conotoxin ImI (IMI) and methyllycaconitine (MLA). MLA inhibited ACh responses in 100% of muscle afferent neurons, whereas IMI inhibited ACh responses in 54% of neurons. Dihydro-β-erythroidine, an α4β2-nAChR blocker, inhibited ACh responses in 50% of muscle afferent neurons, but recovery from block was not observed. Choline, an α7-nAChR agonist, elicited a response in 60% of ACh-responsive neurons. Finally, we demonstrated the expression of α7-nAChR by peripherin labeled (group IV) afferent fibers within gastrocnemius muscles. Some of these α7-nAChR-positive fibers were also positive for P2X3 receptors. Thus choline could serve as an activator of the EPR by opening α7-nAChR expressed by group IV (and possible group III) afferents. nAChRs could become pharmacological targets for suppressing the excessive EPR activation in patients with peripheral vascular disease. PMID:24966300

  2. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy.

    PubMed

    Becchetti, Andrea; Aracri, Patrizia; Meneghini, Simone; Brusco, Simone; Amadeo, Alida

    2015-01-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2(*) subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na(+)-dependent K(+) channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex.

  3. The role of nicotinic acetylcholine receptors in autosomal dominant nocturnal frontal lobe epilepsy

    PubMed Central

    Becchetti, Andrea; Aracri, Patrizia; Meneghini, Simone; Brusco, Simone; Amadeo, Alida

    2015-01-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal epilepsy with attacks typically arising in the frontal lobe during non-rapid eye movement (NREM) sleep. It is characterized by clusters of complex and stereotyped hypermotor seizures, frequently accompanied by sudden arousals. Cognitive and psychiatric symptoms may be also observed. Approximately 12% of the ADNFLE families carry mutations on genes coding for subunits of the heteromeric neuronal nicotinic receptors (nAChRs). This is consistent with the widespread expression of these receptors, particularly the α4β2* subtype, in the neocortex and thalamus. However, understanding how mutant nAChRs lead to partial frontal epilepsy is far from being straightforward because of the complexity of the cholinergic regulation in both developing and mature brains. The relation with the sleep-waking cycle must be also explained. We discuss some possible pathogenetic mechanisms in the light of recent advances about the nAChR role in prefrontal regions as well as the studies carried out in murine models of ADNFLE. Functional evidence points to alterations in prefrontal GABA release, and the synaptic unbalance probably arises during the cortical circuit maturation. Although most of the available functional evidence concerns mutations on nAChR subunit genes, other genes have been recently implicated in the disease, such as KCNT1 (coding for a Na+-dependent K+ channel), DEPD5 (Disheveled, Egl-10 and Pleckstrin Domain-containing protein 5), and CRH (Corticotropin-Releasing Hormone). Overall, the uncertainties about both the etiology and the pathogenesis of ADNFLE point to the current gaps in our knowledge the regulation of neuronal networks in the cerebral cortex. PMID:25717303

  4. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  5. The α-bungarotoxin binding site on the nicotinic acetylcholine receptor: Analysis using a phage–epitope library

    PubMed Central

    Balass, Moshe; Katchalski-Katzir, Ephraim; Fuchs, Sara

    1997-01-01

    The nicotinic acetylcholine receptor (AcChoR) is a ligand-gated ion channel that is activated upon binding of acetylcholine. α-Neurotoxins, in particular α-bungarotoxin (α-BTX), bind specifically and with high affinity to the AcChoR and compete with binding of the natural ligand. We employed a 15-mer phage-display peptide library to select epitopes reacting with α-BTX. Phages bearing the motif YYXSSL as a consensus sequence were found to bind with high affinity to α-BTX. The library-derived peptide (MRYYESSLKSYPD) bears amino acid sequence similarities to a region of the α-subunit of the Torpedo muscle AcChoR, as well as of other muscle and neuronal AcChoRs that bind α-BTX. The library-derived peptide and the corresponding peptides containing residues 187–199 of the Torpedo AcChoR α-subunit (WVYYTCCPDTPYL), as well as peptides analogous to the above region in the neuronal AcChoR (e.g., human α7; ERFYECCKEPYPD) that binds α-BTX, inhibit the binding of α-BTX to the intact Torpedo AcChoR with IC50 values of 10−6 M. A synthetic peptide from a neuronal AcChoR that does not bind α-BTX (e.g., human α2; ERKYECCKEPYPD) which differs by just one amino acid from the homologous peptide from the α-BTX-binding protein (α7)—i.e., Lys in α2 and Tyr in α7—does not inhibit the binding of α-BTX to Torpedo AcChoR. These results indicate the requirement for two adjacent aromatic amino acid residues for binding to α-BTX. PMID:9177167

  6. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors.

  7. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay.

    PubMed

    Gastka, M; Horvath, J; Lentz, T L

    1996-10-01

    A virus overlay protein binding assay was used to study binding of 125I-labelled rabies virus to the acetylcholine receptor (AChR) from Torpedo californica electric organ membranes. After gel electrophoresis of electric organ membranes and transfer of proteins to nitrocellulose, 125I-labelled alpha-bungarotoxin, a curaremimetic neurotoxin, bound to a 40 kDa band and 125I-labelled rabies virus bound to 51 kDa and 40 kDa bands. Binding of rabies virus to the 40 kDa band was inhibited by unlabelled alpha-bungarotoxin. In blots of affinity-purified AChR, labelled virus bound to the 40 kDa alpha subunit and was competed by alpha-bungarotoxin. Based on binding of rabies virus to the alpha subunit and the ability of alpha-bungarotoxin to compete for binding, rabies virus appears to bind to the neurotoxin-binding site of the nicotinic AChR alpha subunit.

  8. α7 Nicotinic Acetylcholine Receptor is a Novel Mediator of Sinomenine Anti-Inflammation Effect in Macrophages Stimulated by Lipopolysaccharide.

    PubMed

    Yi, Lang; Luo, Jin-Fang; Xie, Bing-Bing; Liu, Jian-Xin; Wang, Jun-Yue; Liu, Liang; Wang, Pei-Xun; Zhou, Hua; Dong, Yan

    2015-08-01

    Sinomenine (SIN), an alkaloid derived from the plant Sinomenium acutum, has anti-inflammatory and analgesic effects and has been used for rheumatoid arthritis treatment in China. This study aims to verify the hypothesis that SIN acts on α7 nicotinic acetylcholine receptor (α7nAChR) to inhibit the activation of macrophages stimulated by lipopolysaccharide. The prototypical α7nAChR antagonist α-bungarotoxin and mecamylamine attenuated the effect of SIN on tumor necrosis factor-α and interleukin-6 in RAW264.7 murine macrophage-like cells and primary peritoneal macrophages of mouse induced by lipopolysaccharide. With the knockdown of α7nAChR expression in RAW264.7 cells by small interfering RNA, the inhibitory effect of SIN on tumor necrosis factor-α and interleukin-6 was reversed. Sinomenine decreased p65 expression in nuclear and increased IκBα expression in cytoplasm, and these effects were reversed by the α7nAChR small interfering RNA as well. These results indicate that the anti-inflammatory effects of SIN on macrophages in vitro depend on α7nAChR.

  9. The neuronal nicotinic acetylcholine receptors alpha 4* and alpha 6* differentially modulate dopamine release in mouse striatal slices.

    PubMed

    Meyer, Erin L; Yoshikami, Doju; McIntosh, J Michael

    2008-06-01

    Striatal dopamine (DA) plays a major role in the regulation of motor coordination and in the processing of salient information. We used voltammetry to monitor DA-release evoked by electrical stimulation in striatal slices, where interneurons continuously release acetylcholine. Use of the alpha6-selective antagonist alpha-conotoxin MII[E11A] and alpha4 knockout mice enabled identification of two populations of DA-ergic fibers. The first population had a low action potential threshold, and action potential-evoked DA-release from these fibers was modulated by alpha6. The second population had a higher action potential threshold, and only alpha4(non-alpha6) modulated action potential-evoked DA-release. Striatal DA-ergic neurons fire in both tonic and phasic patterns. When stimuli were applied in a train to mimic phasic firing, more DA-release was observed in alpha4 knockout versus wild-type mice. Furthermore, block of alpha4(non-alpha6), but not of alpha6, increased DA release evoked by a train. These results indicate that there are different classes of striatal DA-ergic fibers that express different subtypes of nicotinic receptors.

  10. Nicotinic Acetylcholine Receptor Density in Cognitively Intact Subjects at an Early Stage of Parkinson’s Disease

    PubMed Central

    Isaias, Ioannis Ugo; Spiegel, Jörg; Brumberg, Joachim; Cosgrove, Kelly P.; Marotta, Giorgio; Oishi, Naoya; Higuchi, Takahiro; Küsters, Sebastian; Schiller, Markus; Dillmann, Ulrich; van Dyck, Christopher H.; Buck, Andreas; Herrmann, Ken; Schloegl, Susanne; Volkmann, Jens; Lassmann, Michael; Fassbender, Klaus; Lorenz, Reinhard; Samnick, Samuel

    2014-01-01

    We investigated in vivo brain nicotinic acetylcholine receptor (nAChR) distribution in cognitively intact subjects with Parkinson’s disease (PD) at an early stage of the disease. Fourteen patients and 13 healthy subjects were imaged with single photon emission computed tomography and the radiotracer 5-[123I]iodo-3-[2(S)-2-azetidinylmethoxy]pyridine ([123I]5IA). Patients were selected according to several criteria, including short duration of motor signs (<7 years) and normal scores at an extensive neuropsychological evaluation. In PD patients, nAChR density was significantly higher in the putamen, the insular cortex and the supplementary motor area and lower in the caudate nucleus, the orbitofrontal cortex, and the middle temporal gyrus. Disease duration positively correlated with nAChR density in the putamen ipsilateral (ρ = 0.56, p < 0.05) but not contralateral (ρ = 0.49, p = 0.07) to the clinically most affected hemibody. We observed, for the first time in vivo, higher nAChR density in brain regions of the motor and limbic basal ganglia circuits of subjects with PD. Our findings support the notion of an up-regulated cholinergic activity at the striatal and possibly cortical level in cognitively intact PD patients at an early stage of disease. PMID:25177294

  11. Central Insulin Action Activates Kupffer Cells by Suppressing Hepatic Vagal Activation via the Nicotinic Alpha 7 Acetylcholine Receptor.

    PubMed

    Kimura, Kumi; Tanida, Mamoru; Nagata, Naoto; Inaba, Yuka; Watanabe, Hitoshi; Nagashimada, Mayumi; Ota, Tsuguhito; Asahara, Shun-ichiro; Kido, Yoshiaki; Matsumoto, Michihiro; Toshinai, Koji; Nakazato, Masamitsu; Shibamoto, Toshishige; Kaneko, Shuichi; Kasuga, Masato; Inoue, Hiroshi

    2016-03-15

    Central insulin action activates hepatic IL-6/STAT3 signaling, which suppresses the gene expression of hepatic gluconeogenic enzymes. The vagus nerve plays an important role in this centrally mediated hepatic response; however, the precise mechanism underlying this brain-liver interaction is unclear. Here, we present our findings that the vagus nerve suppresses hepatic IL-6/STAT3 signaling via α7-nicotinic acetylcholine receptors (α7-nAchR) on Kupffer cells, and that central insulin action activates hepatic IL-6/STAT3 signaling by suppressing vagal activity. Indeed, central insulin-mediated hepatic IL-6/STAT3 activation and gluconeogenic gene suppression were impeded in mice with hepatic vagotomy, pharmacological cholinergic blockade, or α7-nAchR deficiency. In high-fat diet-induced obese and insulin-resistant mice, control of the vagus nerve by central insulin action was disturbed, inducing a persistent increase of inflammatory cytokines. These findings suggest that dysregulation of the α7-nAchR-mediated control of Kupffer cells by central insulin action may affect the pathogenesis of chronic hepatic inflammation in obesity.

  12. Mouse mutants for the nicotinic acetylcholine receptor ß2 subunit display changes in cell adhesion and neurodegeneration response genes.

    PubMed

    Rubin, Carol M; van der List, Deborah A; Ballesteros, Jose M; Goloshchapov, Andrey V; Chalupa, Leo M; Chapman, Barbara

    2011-04-25

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2-/- mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2-/- mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2-/- mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2-/- mutant strains reveals the effects of genetic background upon gene expression.

  13. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor.

    PubMed Central

    Schaeffer, L; Duclert, N; Huchet-Dymanus, M; Changeux, J P

    1998-01-01

    In adult muscle, transcription of the nicotinic acetylcholine receptor (AChR) is restricted to the nuclei located at the neuromuscular junction. The N-box, a new promoter element, was identified recently and shown to contribute to this compartmentalized synaptic expression of the AChR delta- and epsilon-subunits. We demonstrate that the N-box mediates transcriptional activation in cultured myotubes and identify the transcription factor that binds to the N-box as a heterooligomer in myotubes and adult muscle. The GABP (GA-binding protein) alpha-subunit belongs to the Ets family of transcription factors, whereas the beta-subunit shares homology with IkappaB and Drosophila Notch protein. GABP binding specificity to mutated N-box in vitro strictly parallels the sequence requirement for beta-galactosidase targeting to the endplate in vivo. In situ hybridization studies reveal that the mRNAs of both GABP subunits are abundant in mouse diaphragm, with preferential expression of the alpha-subunit at motor endplates. In addition, heregulin increases GABPalpha protein levels and regulates phosphorylation of both subunits in cultured chick myotubes. Finally, dominant-negative mutants of either GABPalpha or GABPbeta block heregulin-elicited transcriptional activation of the AChR delta and epsilon genes. These findings establish the expected connection with a presynaptic trophic factor whose release contributes to the accumulation of AChR subunit mRNAs at the motor endplate. PMID:9606190

  14. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions.

    PubMed

    Hung, Andrew; Tai, Kaihsu; Sansom, Mark S P

    2005-05-01

    Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.

  15. Negative regulatory elements upstream of a novel exon of the neuronal nicotinic acetylcholine receptor alpha 2 subunit gene.

    PubMed Central

    Bessis, A; Savatier, N; Devillers-Thiéry, A; Bejanin, S; Changeux, J P

    1993-01-01

    The expression of the nicotinic acetylcholine receptor alpha 2 subunit gene is highly restricted to the Spiriform lateralis nucleus of the Chick diencephalon. As a first step toward understanding the molecular mechanism underlying this regulation, we have investigated the structural and regulatory properties of the 5' sequence of this gene. A strategy based on the ligation of an oligonucleotide to the first strand of the cDNA (SLIC) followed by PCR amplification was used. A new exon was found approximately 3kb upstream from the first coding exon, and multiple transcription start sites of the gene were mapped. Analysis of the flanking region shows many consensus sequences for the binding of nuclear proteins, suggesting that the 1 kb flanking region contains at least a portion of the promoter of the gene. We have analysed the negative regulatory elements present within this region and found that a silencer region located between nucleotide -144 and +76 is active in fibroblasts as well as in neurons. This silencer is composed of six tandem repeat Oct-like motifs (CCCCATGCAAT), but does not bind any member of the Oct family. Moreover these motifs were found to act as a silencer only when they were tandemly repeated. When two, four or five motifs were deleted, the silencer activity of the motifs unexpectedly became an enhancer activity in all cells we have tested. Images PMID:8502560

  16. Virtual screening studies of Chinese medicine Coptidis Rhizoma as alpha7 nicotinic acetylcholine receptor agonists for treatment of Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Xiang, Li; Xu, Youdong; Zhang, Yan; Meng, Xianli; Wang, Ping

    2015-04-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Extensive in vitro and in vivo experiments have proved that the decreased activity of the cholinergic neuron is responsible for the memory and cognition deterioration. The alpha7 nicotinic acetylcholine receptor (α7-nAChR) is proposed to a drug target of AD, and compounds which acting as α7-nAChR agonists are considered as candidates in AD treatment. Chinese medicine CoptidisRhizoma and its compounds are reported in various anti-AD effects. In this study, virtual screening, docking approaches and hydrogen bond analyses were applied to screen potential α7-nAChR agonists from CoptidisRhizome. The 3D structure of the protein was obtained from PDB database. 87 reported compounds were included in this research and their structures were accessed by NCBI Pubchem. Docking analysis of the compounds was performed using AutoDock 4.2 and AutoDock Vina. The images of the binding modes hydrogen bonds and the hydrophobic interaction were rendered with PyMOL1.5.0.4. and LigPlot+ respectively. Finally, N-tran-feruloyltyramine, isolariciresinol, flavanone, secoisolariciresinol, (+)-lariciresinol and dihydrochalcone, exhibited the lowest docking energy of protein-ligand complex. The results indicate these 6 compounds are potential α7 nAChR agonists, and expected to be effective in AD treatment.

  17. Subunit-selective role of the M3 transmembrane domain of the nicotinic acetylcholine receptor in channel gating.

    PubMed

    De Rosa, María José; Corradi, Jeremías; Bouzat, Cecilia

    2008-02-01

    The nicotinic acetylcholine receptor (AChR) can be either hetero-pentameric, composed of alpha and non-alpha subunits, or homo-pentameric, composed of alpha7 subunits. To explore the subunit-selective contributions of transmembrane domains to channel gating we analyzed single-channel activity of chimeric muscle AChRs. We exchanged M3 between alpha1 and epsilon or alpha7 subunits. The replacement of M3 in alpha1 by epsilonM3 significantly alters activation properties. Channel activity appears as bursts of openings whose durations are 20-fold longer than those of wild-type AChRs. In contrast, 7-fold briefer openings are observed in AChRs containing the reverse epsilon chimeric subunit. The duration of the open state decreases with the increase in the number of alpha1M3 segments, indicating additive contributions of M3 of all subunits to channel closing. Each alpha1M3 segment decreases the energy barrier of the closing process by approximately 0.8 kcal/mol. Partial chimeric subunits show that small stretches of the M3 segment contribute additively to the open duration. The replacement of alpha1 sequence by alpha7 in M3 leads to 3-fold briefer openings whereas in M1 it leads to 10-fold prolonged openings, revealing that the subunit-selective role is unique to each transmembrane segment.

  18. Competitive inhibition of the nondepolarizing muscle relaxant rocuronium on nicotinic acetylcholine receptor channels in the rat superior cervical ganglia.

    PubMed

    Zhang, Chengmi; Wang, Zhenmeng; Zhang, Jinmin; Qiu, Haibo; Sun, Yuming; Yang, Liqun; Wu, Feixiang; Zheng, Jijian; Yu, Weifeng

    2014-05-01

    A number of case reports now indicate that rocuronium can induce a number of serious side effects. We hypothesized that these side effects might be mediated by the inhibition of nicotinic acetylcholine receptors (nAChRs) at superior cervical ganglion (SCG) neurons. Conventional patch clamp recordings were used to study the effects of rocuronium on nAChR currents from enzymatically dissociated rat SCG neurons. We found that ACh induced a peak transient inward current in rat SCG neurons. Additionally, rocuronium suppressed the peak ACh-evoked currents in rat SCG neurons in a concentration-dependent and competitive manner, and it increased the extent of desensitization of nAChRs. The inhibitory rate of rocuronium on nAChR currents did not change significantly at membrane potentials between -70 and -20 mV, suggesting that this inhibition was voltage independent. Lastly, rocuronium preapplication enhanced its inhibitory effect, indicating that this drug might prefer to act on the closed state of nAChR channels. In conclusion, rocuronium, at clinically relevant concentrations, directly inhibits nAChRs at the SCG by interacting with both opened and closed states. This inhibition is competitive, dose dependent, and voltage independent. Blockade of synaptic transmission in the sympathetic ganglia by rocuronium might have potentially inhibitory effects on the cardiovascular system.

  19. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides and Fibronectin Expression in Lung

    DTIC Science & Technology

    2008-12-01

    the exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the excessive...pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In fibroblasts, this interaction triggers an intracellular signaling cascade...formation and the development of an increased number of primitive airway tubules with small caliber in the setting of increased cell proliferation. In PNECs

  20. Use of an α3β4 nicotinic acetylcholine receptor subunit concatamer to characterize ganglionic receptor subtypes with specific subunit composition reveals species-specific pharmacologic properties.

    PubMed

    Stokes, Clare; Papke, Roger L

    2012-09-01

    Drug development for nicotinic acetylcholine receptors (nAChR) is challenged by subtype diversity arising from variations in subunit composition. On-target activity for neuronal heteromeric receptors is typically associated with CNS receptors that contain α4 and other subunits, while off-target activity could be associated with ganglionic-type receptors containing α3β4 binding sites and other subunits, including β4, β2, α5, or α3 as a structural subunit in the pentamer. Additional interest in α3 β4 α5-containing receptors arises from genome-wide association studies linking these genes, and a single nucleotide polymorphism (SNP) in α5 in particular, to lung cancer and heavy smoking. While α3 and β4 readily form receptors in expression system such as the Xenopus oocyte, since α5 is not required for function, simple co-expression approaches may under-represent α5-containing receptors. We used a concatamer of human α3 and β4 subunits to form ligand-binding domains, and show that we can force the insertions of alternative structural subunits into the functional pentamers. These α3β4 variants differ in sensitivity to ACh, nicotine, varenicline, and cytisine. Our data indicated lower efficacy for varenicline and cytisine than expected for β4-containing receptors, based on previous studies of rodent receptors. We confirm that these therapeutically important α4 receptor partial agonists may present different autonomic-based side-effect profiles in humans than will be seen in rodent models, with varenicline being more potent for human than rat receptors and cytisine less potent. Our initial characterizations failed to find functional effects of the α5 SNP. However, our data validate this approach for further investigations.

  1. In hippocampal oriens interneurons anti-Hebbian long-term potentiation requires cholinergic signaling via α7 nicotinic acetylcholine receptors.

    PubMed

    Griguoli, Marilena; Cellot, Giada; Cherubini, Enrico

    2013-01-16

    In the hippocampus, at excitatory synapses between principal cell and oriens/alveus (O/A) interneurons, a particular form of NMDA-independent long-term synaptic plasticity (LTP) has been described (Lamsa et al., 2007). This type of LTP occurs when presynaptic activation coincides with postsynaptic hyperpolarization. For this reason it has been named "anti-Hebbian" to distinguish from the classical Hebbian type of associative learning where presynaptic glutamate release coincides with postsynaptic depolarization. The different voltage dependency of LTP induction is thought to be mediated by calcium-permeable (CP) AMPA receptors that, due to polyamine-mediated rectification, favor calcium entry at hyperpolarized potentials. Here, we report that the induction of this form of LTP needs CP-α7 nicotinic acetylcholine receptors (nAChRs) that, like CP-AMPARs, exhibit a strong inward rectification because of polyamine block at depolarizing potentials. We found that high-frequency stimulation of afferent fibers elicits synaptic currents mediated by α7 nAChRs. Hence, LTP was prevented by α7 nAChR antagonists dihydro-β-erythroidine and methyllycaconitine (MLA) and was absent in α7(-/-) mice. In addition, in agreement with previous observations (Le Duigou and Kullmann, 2011), in a minority of O/A interneurons in MLA-treated hippocampal slices from WT animals and α7(-/-) mice, a form of LTP probably dependent on the activation of group I metabotropic glutamate receptors was observed. These data indicate that, in O/A interneurons, anti-Hebbian LTP critically depends on cholinergic signaling via α7 nAChR. This may influence network oscillations and information processing.

  2. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors

    PubMed Central

    Mnatsakanyan, Nelli; Jansen, Michaela

    2013-01-01

    Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two α, and one each of β, γ, and δ subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four α-helical segments (M1–M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently-solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel α (GluClα)showed the same overall architecture . However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluClα structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2–M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel (GLIC) and GluClα are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes. PMID:23565737

  3. Acetylcholine induces GABA release onto rod bipolar cells through heteromeric nicotinic receptors expressed in A17 amacrine cells

    PubMed Central

    Elgueta, Claudio; Vielma, Alex H.; Palacios, Adrian G.; Schmachtenberg, Oliver

    2015-01-01

    Acetylcholine (ACh) is a major retinal neurotransmitter that modulates visual processing through a large repertoire of cholinergic receptors expressed on different retinal cell types. ACh is released from starburst amacrine cells (SACs) under scotopic conditions, but its effects on cells of the rod pathway have not been investigated. Using whole-cell patch clamp recordings in slices of rat retina, we found that ACh application triggers GABA release onto rod bipolar (RB) cells. GABA was released from A17 amacrine cells and activated postsynaptic GABAA and GABAC receptors in RB cells. The sensitivity of ACh-induced currents to nicotinic ACh receptor (nAChR) antagonists (TMPH ~ mecamylamine > erysodine > DhβE > MLA) together with the differential potency of specific agonists to mimic ACh responses (cytisine >> RJR2403 ~ choline), suggest that A17 cells express heteromeric nAChRs containing the β4 subunit. Activation of nAChRs induced GABA release after Ca2+ accumulation in A17 cell dendrites and varicosities mediated by L-type voltage-gated calcium channels (VGCCs) and intracellular Ca2+ stores. Inhibition of acetylcholinesterase depolarized A17 cells and increased spontaneous inhibitory postsynaptic currents in RB cells, indicating that endogenous ACh enhances GABAergic inhibition of RB cells. Moreover, injection of neostigmine or cytisine reduced the b-wave of the scotopic flash electroretinogram (ERG), suggesting that cholinergic modulation of GABA release controls RB cell activity in vivo. These results describe a novel regulatory mechanism of RB cell inhibition and complement our understanding of the neuromodulatory control of retinal signal processing. PMID:25709566

  4. Pre-clinical properties of the α4β2 nicotinic acetylcholine receptor partial agonists varenicline, cytisine and dianicline translate to clinical efficacy for nicotine dependence

    PubMed Central

    Rollema, H; Shrikhande, A; Ward, KM; Tingley, FD; Coe, JW; O'Neill, BT; Tseng, E; Wang, EQ; Mather, RJ; Hurst, RS; Williams, KE; de Vries, M; Cremers, T; Bertrand, S; Bertrand, D

    2010-01-01

    Background and purpose: Smoking cessation trials with three high-affinity partial agonists of α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) have demonstrated differences in their clinical efficacy. This work examines the origin of the differences by taking into account brain exposure and pharmacological effects at human α4β2 nAChRs. Experimental approach: Rat plasma and brain pharmacokinetics were characterized and used to predict human steady-state plasma and brain concentrations following recommended doses of each of the three compounds. The pharmacological characterization included in vitro affinities at different nAChR subtypes, functional efficacies and potencies at the human α4β2 nAChR, as well as in vivo effects on rat mesolimbic dopamine turn-over. Key results: A comparison of predicted human brain concentrations following therapeutic doses demonstrated that varenicline and nicotine, but not dianicline and cytisine, can extensively desensitize and, to a lesser extent, activate α4β2 nAChRs. The limited clinical efficacy of dianicline may be accounted for by a combination of weak functional potency at α4β2 nAChRs and moderate brain penetration, while recommended doses of cytisine, despite its high in vitro potency, are predicted to result in brain concentrations that are insufficient to affect α4β2 nAChRs. Conclusions and implications: The data provide a plausible explanation for the higher abstinence rate in smoking cessation trials following treatment with varenicline than with the two other α4β2 nAChR partial agonists. In addition, this retrospective analysis demonstrates the usefulness of combining in vitro and in vivo parameters with estimated therapeutic human brain concentrations for translation to clinical efficacy. PMID:20331614

  5. Use of Monoclonal Antibodies to Study the Structural Basis of the Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1989-09-30

    of chicken neurona .4receptor subunits. Sequences of al and a2 are from Net .Ot al. -l Sequences of a3 and a4 were determintl from clones described...Sucrose gradient analysis of neurona & nicotinic receptors was conducted as follows. Chicken ind rat brain receptors were extracted from crude

  6. Activation of nicotinic acetylcholine receptors enhances a slow calcium-dependent potassium conductance and reduces the firing of stratum oriens interneurons.

    PubMed

    Griguoli, Marilena; Scuri, Rossana; Ragozzino, Davide; Cherubini, Enrico

    2009-09-01

    A large variety of distinct locally connected GABAergic cells are present in the hippocampus. By releasing GABA into principal cells and interneurons, they exert a powerful control on neuronal excitability and are responsible for network oscillations crucial for information processing in the brain. Here, whole-cell patch clamp recordings in current and voltage clamp mode were used to study the functional role of nicotinic acetylcholine receptors (nAChRs) on the firing properties of stratum oriens interneurons in hippocampal slices from transgenic mice expressing enhanced green fluorescent protein in a subpopulation of GABAergic cells containing somatostatin (GIN mice). Unexpectedly, activation of nAChRs by nicotine or endogenously released acetylcholine strongly enhanced spike frequency adaptation. This effect was blocked by apamin, suggesting the involvement of small calcium-dependent potassium channels (SK channels). Nicotine-induced reduction in firing frequency was dependent on intracellular calcium rise through calcium-permeable nAChRs and voltage-dependent calcium channels activated by the depolarizing action of nicotine. Calcium imaging experiments directly showed that nicotine effects on firing rate were correlated with large increases in intracellular calcium. Furthermore, blocking ryanodine receptors with ryanodine or sarcoplasmic-endoplasmic reticulum calcium ATPase with thapsygargin or cyclopiazonic acid fully prevented the effects of nicotine, suggesting that mobilization of calcium from the internal stores contributed to the observed effects. By regulating cell firing, cholinergic signalling through nAChRs would be instrumental for fine-tuning the output of stratum oriens interneurons and correlated activity at the network level.

  7. Molecular characterization and expression profiles of nicotinic acetylcholine receptors in the rice striped stem borer, Chilo suppressalis (Lepidoptera: Crambidae).

    PubMed

    Xu, Gang; Wu, Shun-Fan; Teng, Zi-Wen; Yao, Hong-Wei; Fang, Qi; Huang, Jia; Ye, Gong-Yin

    2016-02-05

    Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop ligand-gated ion channel (cysLGIC) superfamily, mediating fast synaptic cholinergic transmission in the central nervous system in insects. Insect nAChRs are the molecular targets of economically important insecticides, such as neonicotinoids and spinosad. Identification and characterization of the nAChR gene family in the rice striped stem borer, Chilo suppressalis, could provide beneficial information about this important receptor gene family and contribute to the investigation of the molecular modes of insecticide action and resistance for current and future chemical control strategies. We searched our C. suppressalis transcriptome database using B. mori nAChR sequences in local BLAST searches and obtained the putative nAChR subunit cDNAs via RT-PCR and RACE methods. Similar to B. mori, C. suppressalis possesses 12 nAChR subunits, including nine α-type and three β-type subunits. qRT-PCR analysis revealed the expression profiles of the nAChR subunits in various tissues, including the brain, suboesophageal ganglion, thoracic ganglion, abdominal ganglion, hemocytes, fat body, foregut, midgut, hindgut, and Malpighian tubules. Developmental expression analyses showed clear differential expression of nAChR subunits throughout the C. suppressalis life cycle. The identification of nAChR subunits in this study will provide a foundation for investigating the diverse roles played by nAChRs in the C. suppressalis and for exploring specific target sites for chemicals that control agricultural pests while sparing beneficial species. This article is protected by copyright. All rights reserved.

  8. Wnt-7a induces presynaptic colocalization of alpha 7-nicotinic acetylcholine receptors and adenomatous polyposis coli in hippocampal neurons.

    PubMed

    Farías, Ginny G; Vallés, Ana S; Colombres, Marcela; Godoy, Juan A; Toledo, Enrique M; Lukas, Ronald J; Barrantes, Francisco J; Inestrosa, Nibaldo C

    2007-05-16

    Nicotinic acetylcholine receptors (nAChRs) contribute significantly to hippocampal function. Alpha7-nAChRs are present in presynaptic sites in hippocampal neurons and may influence transmitter release, but the factors that determine their presynaptic localization are unknown. We report here that Wnt-7a, a ligand active in the canonical Wnt signaling pathway, induces dissociation of the adenomatous polyposis coli (APC) protein from the beta-catenin cytoplasmic complex and the interaction of APC with alpha7-nAChRs in hippocampal neurons. Interestingly, Wnt-7a induces the relocalization of APC to membranes, clustering of APC in neurites, and coclustering of APC with different, presynaptic protein markers. Wnt-7a also increases the number and size of coclusters of alpha7-nAChRs and APC in presynaptic terminals. These short-term changes in alpha7-nAChRs occur in the few minutes after ligand exposure and involve translocation to the plasma membrane without affecting total receptor levels. Longer-term exposure to Wnt-7a increases nAChR alpha7 subunit levels in an APC-independent manner and increases clusters of alpha7-nAChRs in neurites via an APC-dependent process. Together, these results demonstrate that stimulation through the canonical Wnt pathway regulates the presynaptic localization of APC and alpha7-nAChRs with APC serving as an intermediary in the alpha7-nAChR relocalization process. Modulation by Wnt signaling may be essential for alpha7-nAChR expression and function in synapses.

  9. Ca(2+)-sensitive inhibition by Pb(2+) of alpha7-containing nicotinic acetylcholine receptors in hippocampal neurons.

    PubMed

    Mike, A; Pereira, E F; Albuquerque, E X

    2000-08-04

    In the present study the patch-clamp technique was applied to cultured hippocampal neurons to determine the kinetics as well as the agonist concentration- and Ca(2+)-dependence of Pb(2+)-induced inhibition of alpha7 nicotinic receptors (nAChRs). Evidence is provided that more than two-thirds of the inhibition by Pb(2+) (3-30 microM) of alpha7 nAChR-mediated whole-cell currents (referred to as type IA currents) develops rapidly and is fully reversible upon washing. The estimated values for tau(onset) and tau(recovery) were 165 and 240 ms, respectively. The magnitude of the effect of Pb(2+) was the same regardless of whether acetylcholine or choline was the agonist. Pre-exposure of the neurons for 800 ms to Pb(2+) (30 microM) decreased the amplitude and accelerated the decay phase of currents evoked by moderate to high agonist concentrations. In contrast, only the amplitude of currents evoked by low agonist concentrations was reduced when the neurons were exposed simultaneously to Pb(2+) and the agonists. Taken together with the findings that Pb(2+) reduces the frequency of opening and the mean open time of alpha7 nAChR channels, these data suggest that Pb(2+) accelerates the rate of receptor desensitization. An additional reduction of type IA current amplitudes occurred after 2-min exposure of the neurons to Pb(2+). This effect was not reversible upon washing of the neurons and was most likely due to an intracellular action of Pb(2+). Pb(2+)-induced inhibition of alpha7 nAChRs, which was hindered by the enhancement of extracellular Ca(2+) concentrations, may contribute to the neurotoxicity of the heavy metal.

  10. In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad.

    PubMed

    Somers, Jason; Nguyen, Joseph; Lumb, Chris; Batterham, Phil; Perry, Trent

    2015-09-01

    The vinegar fly, Drosophila melanogaster, has been used to identify and manipulate insecticide resistance genes. The advancement of genome engineering technology and the increasing availability of pest genome sequences has increased the predictive and diagnostic capacity of the Drosophila model. The Drosophila model can be extended to investigate the basic biology of the interaction between insecticides and the proteins they target. Recently we have developed an in vivo system that permits the expression and study of key insecticide targets, the nicotinic acetylcholine receptors (nAChRs), in controlled genetic backgrounds. Here this system is used to study the interaction between the insecticide spinosad and a nAChR subunit, Dα6. Reciprocal chimeric subunits were created from Dα6 and Dα7, a subunit that does not respond to spinosad. Using the in vivo system, the Dα6/Dα7 chimeric subunits were tested for their capacity to respond to spinosad. Only the subunits containing the C-terminal region of Dα6 were able to respond to spinosad, thus confirming the importance this region for spinosad binding. A new incompletely dominant, spinosad resistance mechanism that may evolve in pest species is also examined. First generated using chemical mutagenesis, the Dα6(P146S) mutation was recreated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, the first use of this technology to introduce a resistant mutation into a controlled genetic background. Both alleles present with the same incompletely dominant, spinosad resistance phenotype, proving the P146S replacement to be the causal mutation. The proximity of the P146S mutation to the conserved Cys-loop indicates that it may impair the gating of the receptor. The results of this study enhance the understanding of nAChR structure:function relationships.

  11. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor.

    PubMed

    Kasheverov, Igor E; Shelukhina, Irina V; Kudryavtsev, Denis S; Makarieva, Tatyana N; Spirova, Ekaterina N; Guzii, Alla G; Stonik, Valentin A; Tsetlin, Victor I

    2015-03-12

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.

  12. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Kasheverov, Igor E.; Shelukhina, Irina V.; Kudryavtsev, Denis S.; Makarieva, Tatyana N.; Spirova, Ekaterina N.; Guzii, Alla G.; Stonik, Valentin A.; Tsetlin, Victor I.

    2015-01-01

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes. PMID:25775422

  13. Effects of nonylphenol on the calcium signal and catecholamine secretion coupled with nicotinic acetylcholine receptors in bovine adrenal chromaffin cells.

    PubMed

    Liu, Pei-Shan; Liu, Ging-Hui; Chao, Wei-Liang

    2008-02-03

    Nonylphenol (NP) is the most critical metabolite of alkylphenol polyethoxylate detergents. NP is known as an endocrine disruptor with estrogenic activities and as an inhibitor of endoplasmic reticulum Ca(2+)-ATPase. Estrogen has modulatory roles on ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). Ca(2+)-ATPase inhibitors can modulate the cytosolic calcium concentration ([Ca(2+)](c)]) and thus can affect the calcium signaling coupled with nAChRs. Therefore, NP is predicted to have complex effects on the Ca(2+) signaling and secretion coupled with nAChRs. This study investigated these effects using bovine adrenal chromaffin cells. The results show that NP suppressed the Ca(2+) signaling coupled with nAChRs and voltage-operated Ca(2+) channels in a dose-dependent manner, with IC(50)s of 1 and 5.9 microM, respectively. Estradiol exhibits similar suppression but much lower inhibitory potencies. NP alone induced a transient rise in [Ca(2+)](c) in the presence or absence of extracellular calcium. Thapsigargin, an endoplasmic reticulum Ca(2+)-ATPase inhibitor, partially suppressed the [Ca(2+)](c) rise induced by NP, but NP totally blocked the [Ca(2+)](c) rise induced by thapsigargin. This illustrates that NP can cause Ca(2+) release from thapsigargin-insensitive pools. Thapsigargin suppressed the Ca(2+) signaling coupled with nAChRs but increased that coupled with voltage-operated Ca(2+) channels. We propose that three routes are responsible for the effects of NP on nAChRs: named receptor channels, voltage-gated Ca(2+) channels, and Ca(2+)-induced Ca(2+) release. Three routes are related to the characteristics of NP as steroid-like compounds and Ca(2+)-ATPase inhibitor.

  14. Synthesis and biological activity of a novel class nicotinic acetylcholine receptors (nAChRs) ligands structurally related to anatoxin-a.

    PubMed

    Simoni, Daniele; Rondanin, Riccardo; Marchetti, Paolo; Rullo, Cinzia; Baruchello, Riccardo; Grisolia, Giuseppina; Barbato, Giuseppina; Giovannini, Riccardo; Marchioro, Carla; Capelli, Anna Maria; Virginio, Caterina; Bozzoli, Andrea; Borea, Pier Andrea; Merighi, Stefania; Donati, Daniele

    2011-09-15

    The introduction of the isoxazole ring as bioisosteric replacement of the acetyl group of anatoxin-a led to a new series of derivatives binding to nicotinic acetylcholine receptors. Bulkier substitutions than methyl at the 3 position of isoxazole were shown to be detrimental for the activity. The binding potency of the most interesting compounds with α1, α7 and α3β4 receptor subtypes, was, anyway, only at micromolar level. Moreover, differently from known derivatives with pyridine, isoxazole condensed to azabicyclo ring led to no activity.

  15. Attenuation of Compulsive-Like Behavior Through Positive Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors in Non-Induced Compulsive-Like Mice

    PubMed Central

    Mitra, Swarup; Mucha, Mckenzie; Khatri, Shailesh N.; Glenon, Richard; Schulte, Marvin K.; Bult-Ito, Abel

    2017-01-01

    Nicotinic α4β2 receptors are the most abundant subtypes of nicotinic acetylcholine receptors (nAChRs) expressed in brain regions implicated in obsessive compulsive disorder (OCD). These receptors are known to modify normal and addictive behaviors by modulating neuronal excitability. Desformylflustrabromine (dFBr) is a novel, positive allosteric modulator (PAM) of high acetylcholine sensitivity (HS) and low acetylcholine sensitivity (LS) α4β2 nAChRs. The present study tested the hypothesis that positive allosteric modulation of α4β2 receptors by dFBr will attenuate compulsive-like behavior in a non-induced compulsive-like mouse model. Male mice (Mus musculus) selected for compulsive-like nesting behavior (NB; 48 animals; 12 per group) received acute (once) and chronic (every day for 32 days) subcutaneous injection of dFBr at 2, 4 and 6 mg/kg doses. Saline was used as a control (0 mg/kg). Compulsive-like NB was assessed after 1, 2, 3, 4, 5 and 24 h, while compulsive-like marble burying (MB) and anxiety-like open field (OF) behaviors were performed 2 h after dFBr administration. In the acute administration protocol, dFBr dose dependently attenuated NB and MB. Rapid effects (1–2 h after drug administration) of dFBr on MB and NB were observed for the chronic administration which was in congruence with the acute study. Chronic administration also revealed sustained suppression of NB by dFBr following 5 weeks of treatment. In both the acute and chronic regimen dFBr did not modulate OF behaviors. This research demonstrates the novel role of positive allosteric modulation of α4β2 nicotinic receptors by dFBr as a translational potential for OCD. PMID:28105008

  16. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    SciTech Connect

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  17. Cognitive improvements in a mouse model with substituted 1,2,3-triazole agonists for nicotinic acetylcholine receptors.

    PubMed

    Arunrungvichian, Kuntarat; Boonyarat, Chantana; Fokin, Valery V; Taylor, Palmer; Vajragupta, Opa

    2015-08-19

    The α7 nicotinic acetylcholine receptor (nAChR) is a recognized drug target for dementias of aging and certain developmental disorders. Two selective and potent α7-nAChR agonists, winnowed from a list of 43 compounds characterized in a companion article (DOI: 10.1021/acschemneuro.5b00058), 5-((quinuclid-3-yl)-1H-1,2,3-triazol-4-yl)-1H-indole (IND8) and 3-(4-hydroxyphenyl-1,2,3-triazol-1-yl) quinuclidine (QND8), were evaluated for cognitive improvement in both short- and long-term memory. Tacrine, a centrally active acetylcholinesterase inhibitor, and PNU-282987, a congeneric α7 nAChR agonist, were employed as reference standards. Three behavioral tests, modified Y-maze, object recognition test (ORT), and water maze, were performed in scopolamine-induced amnesic mice. Intraperitoneal injection of these two compounds significantly improved the cognitive impairment in a modified Y-maze test (5 μmol/kg for IND8 and 10 μmol/kg for QND8), ORT (10 μmol/kg), and water maze test (25 μmol/kg). For delay induced memory deficit or natural memory loss in mice, IND8 and QND8 at 10 μmol/kg were able to enhance memory comparable to PNU-282987 when evaluated using ORT time delay model. Cognitive enhancement of IND8 and QND8 was mediated through α7-nAChRs as evidenced by its complete abolition after pretreatment with a selective α7-nAChR antagonist, methyllycaconitine. These data demonstrate that IND8 and QND8 and their congeners are potential candidates for treatment of cognitive disorders, and the substituted triazole series formed by cycloaddition of alkynes and azides warrant further preclinical optimization.

  18. Mouse Mutants for the Nicotinic Acetylcholine Receptor ß2 Subunit Display Changes in Cell Adhesion and Neurodegeneration Response Genes

    PubMed Central

    Rubin, Carol M.; van der List, Deborah A.; Ballesteros, Jose M.; Goloshchapov, Andrey V.; Chalupa, Leo M.; Chapman, Barbara

    2011-01-01

    Mice lacking expression of the ß2 subunit of the neuronal nicotinic acetylcholine receptor (CHRNB2) display abnormal retinal waves and a dispersed projection of retinal ganglion cell (RGC) axons to their dorsal lateral geniculate nuclei (dLGNs). Transcriptomes of LGN tissue from two independently generated Chrnb2−/− mutants and from wildtype mice were obtained at postnatal day 4 (P4), during the normal period of segregation of eye-specific afferents to the LGN. Microarray analysis reveals reduced expression of genes located on the cell membrane or in extracellular space, and of genes active in cell adhesion and calcium signaling. In particular, mRNA for cadherin 1 (Cdh1), a known axon growth regulator, is reduced to nearly undetectable levels in the LGN of P4 mutant mice and Lypd2 mRNA is similarly suppressed. Similar analysis of retinal tissue shows increased expression of crumbs 1 (Crb1) and chemokine (C-C motif) ligand 21 (Ccl21) mRNAs in Chrnb2−/− mutant animals. Mutations in these genes are associated with retinal neuronal degeneration. The retinas of Chrnb2−/− mutants are normal in appearance, but the increased expression of these genes may also be involved in the abnormal projection patterns of RGC to the LGN. These data may provide the tools to distinguish the interplay between neural activity and molecular expression. Finally, comparison of the transcriptomes of the two different Chrnb2−/− mutant strains reveals the effects of genetic background upon gene expression. PMID:21547082

  19. Positive allosteric modulation of alpha 7 nicotinic acetylcholine receptors enhances recognition memory and cognitive flexibility in rats.

    PubMed

    Nikiforuk, Agnieszka; Kos, Tomasz; Potasiewicz, Agnieszka; Popik, Piotr

    2015-08-01

    A wide body of preclinical and clinical data suggests that alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) may represent useful targets for cognitive improvement in schizophrenia and Alzheimer׳s disease. A promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs due to their several advantages over the direct agonists. Nevertheless, the behavioural effects of this class of compounds, particularly with regard to higher-order cognitive functions, have not been broadly characterised. The aim of the present study was to evaluate the procognitive efficacies of type I and type II α7-nAChRs PAMs, N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI) and N-(5-Chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) in the novel object recognition task (NORT), attentional set-shifting task (ASST) and five-choice serial reaction time task (5-CSRTT) in rats. Additionally, the effects of galantamine, an acetylcholinesterase inhibitor that also allosterically modulates nAChRs, were assessed. We report that CCMI (0.3-3mg/kg), PNU-120596 (0.3-3mg/kg) and galantamine (1-3mg/kg) attenuated the delay-induced impairment in NORT performance and facilitated cognitive flexibility in the ASST. Methyllycaconitine (3mg/kg) blocked the actions of CCMI, PNU-120596 and galantamine in the NORT and ASST, suggesting that the procognitive effects of these compounds are α7-nAChRs-dependent. However, none of the compounds tested affected the rats' attentional performance in the 5-CSRTT. The present findings confirm and extend the observations indicating that the positive allosteric modulation of α7-nAChRs enhances recognition memory and cognitive flexibility in preclinical tasks. Therefore, the present study supports the utility of α7-nAChRs PAMs as a potential cognitive enhancing therapy.

  20. Positive allosteric modulators of alpha 7 nicotinic acetylcholine receptors reverse ketamine-induced schizophrenia-like deficits in rats.

    PubMed

    Nikiforuk, Agnieszka; Kos, Tomasz; Hołuj, Małgorzata; Potasiewicz, Agnieszka; Popik, Piotr

    2016-02-01

    Alpha 7 nicotinic acetylcholine receptors (α7-nAChRs) have generated great interest as targets of new pharmacological treatments for cognitive dysfunction in schizophrenia. One promising recent approach is based on the use of positive allosteric modulators (PAMs) of α7-nAChRs, which demonstrate several advantages over direct agonists. Nevertheless, the efficacy of these newly introduced α7-nAChR agents has not been extensively characterised in animal models of schizophrenia. The aim of the present study was to evaluate the efficacy of type I and II PAMs, N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)urea (PNU-120596) and N-(4-chlorophenyl)-[[(4-chlorophenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide (CCMI), respectively, and galantamine, an acetylcholinesterase inhibitor (AChE) that also allosterically modulates nAChRs, against ketamine-induced cognitive deficits and social withdrawal in rats. The orthosteric α7-nAChR agonist octahydro-2-methyl-5-(6-phenyl-3-pyridazinyl)-pyrrolo[3,4-c]pyrrole (A-582941) was used as a positive control. Additionally, the antipsychotic activities of the tested compounds were assessed using the conditioned avoidance response (CAR) test. PNU-120596, CCMI, galantamine and A-582941 reversed ketamine-induced cognitive inflexibility, as assessed in the attentional set-shifting task (ASST). The tested compounds were also effective against ketamine-induced impairment in the novel object recognition task (NORT). PNU-120596, CCMI, and A-582941 ameliorated ketamine-induced social interaction deficits, whereas galantamine was ineffective. Moreover, all tested compounds selectively suppressed the CAR. The positive allosteric modulation of α7-nAChRs demonstrates preclinical efficacy not only against schizophrenia-like cognition impairments but also positive and negative symptoms. Therefore, the use of α7-nAChR PAMs as a potential treatment strategy in schizophrenia is supported.

  1. The interaction between maternal immune activation and alpha 7 nicotinic acetylcholine receptor in regulating behaviors in the offspring

    PubMed Central

    Wu, Wei-Li; Adams, Catherine E.; Stevens, Karen E.; Chow, Ke-Huan; Freedman, Robert; Patterson, Paul H.

    2015-01-01

    Mutation of human chromosome 15q13.3 increases the risk for autism and schizophrenia. One of the noteworthy genes in 15q13.3 is CHRNA7, which encodes the nicotinic acetylcholine receptor alpha 7 subunit (α7nAChR) associated with schizophrenia in clinical studies and rodent models. This study investigates the role of α7nAChR in maternal immune activation (MIA) mice model, a murine model of environmental risk factor for autism and schizophrenia. We provided choline, a selective α7nAChR agonist among its several developmental roles, in the diet of C57BL/6N wild-type dams throughout the gestation and lactation period and induced MIA at mid-gestation. The adult offspring behavior and gene expression profile in the maternal spleen-placenta-fetal brain axis at mid-gestation were investigated. We found that choline supplementation prevented several MIA-induced behavioral abnormalities in the wild-type offspring. Pro-inflammatory cytokine interleukin-6 (IL-6) and Chrna7 gene expression in the wild-type fetal brain were elevated by poly(I:C) injection and were suppressed by gestational choline supplementation. We further investigated the gene expression level of IL-6 in Chrna7 mutant mice. We found that the basal level of IL-6 was higher in Chrna7 mutant fetal brain, which suggests that α7nAChR may serve an anti-inflammatory role in the fetal brain during development. Lastly, we induced MIA in Chrna7+/− offspring. The Chrna7+/− offspring were more vulnerable to MIA, with increased behavioral abnormalities. Our study shows that α7nAChR modulates inflammatory response affecting the fetal brain and demonstrates its effects on offspring behavior development after MIA. PMID:25683697

  2. Selective activation of α7 nicotinic acetylcholine receptor (nAChRα7) inhibits muscular degeneration in mdx dystrophic mice.

    PubMed

    Leite, Paulo Emílio Correa; Gandía, Luís; de Pascual, Ricardo; Nanclares, Carmen; Colmena, Inés; Santos, Wilson C; Lagrota-Candido, Jussara; Quirico-Santos, Thereza

    2014-07-21

    Amount evidence indicates that α7 nicotinic acetylcholine receptor (nAChRα7) activation reduces production of inflammatory mediators. This work aimed to verify the influence of endogenous nAChRα7 activation on the regulation of full-blown muscular inflammation in mdx mouse with Duchenne muscular dystrophy. We used mdx mice with 3 weeks-old at the height myonecrosis, and C57 nAChRα7(+/+) wild-type and nAChRα7(-/-) knockout mice with muscular injury induced with 60µL 0.5% bupivacaine (bp) in the gastrocnemius muscle. Pharmacological treatment included selective nAChRα7 agonist PNU282987 (0.3mg/kg and 1.0mg/kg) and the antagonist methyllycaconitine (MLA at 1.0mg/kg) injected intraperitoneally for 7 days. Selective nAChRα7 activation of mdx mice with PNU282987 reduced circulating levels of lactate dehydrogenase (LDH, a marker of cell death by necrosis) and the area of perivascular inflammatory infiltrate, and production of inflammatory mediators TNFα and metalloprotease MMP-9 activity. Conversely, PNU282987 treatment increased MMP-2 activity, an indication of muscular tissue remodeling associated with regeneration, in both mdx mice and WTα7 mice with bp-induced muscular lesion. Treatment with PNU282987 had no effect on α7KO, and MLA abolished the nAChRα7 agonist-induced anti-inflammatory effect in both mdx and WT. In conclusion, nAChRα7 activation inhibits muscular inflammation and activates tissue remodeling by increasing muscular regeneration. These effects were not accompanied with fibrosis and/or deposition of non-functional collagen. The nAChRα7 activation may be considered as a potential target for pharmacological strategies to reduce inflammation and activate mechanisms of muscular regeneration.

  3. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Martin, Jessica A; Garczynski, Stephen F

    2016-04-01

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.

  4. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    PubMed

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry.

  5. Alpha 7 nicotinic acetylcholine receptor-mediated protection against ethanol-induced neurotoxicity.

    PubMed

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-11-01

    The alpha(7)-selective nicotinic partial agonist 3-[2,4-dimethoxybenzylidene]anabaseine (DMXB) was examined for its ability to modulate ethanol-induced neurotoxicity in primary cultures of rat neurons. Primary cultures of hippocampal neurons were established from Long-Evans, embryonic day (E)-18 rat fetuses and maintained for 7 days. Ethanol (0-150 mM), DMXB (0-56 microM), or both were subsequently co-applied to cultures. Ethanol was added two additional times to the cultures to compensate for evaporation. After 5 days, neuronal viability was assessed with the MTT cell proliferation assay. Results demonstrated that ethanol reduces neuronal viability in a concentration-dependent fashion and that DMXB protects against this ethanol-induced neurotoxicity, also in a concentration-dependent fashion. These results support the suggestion that nicotinic partial agonists may be useful in treating binge drinking-induced neurotoxicity and may provide clues as to why heavy drinkers are usually smokers.

  6. Polyethylene glycol-based homologated ligands for nicotinic acetylcholine receptors☆

    PubMed Central

    Scates, Bradley A.; Lashbrook, Bethany L.; Chastain, Benjamin C.; Tominaga, Kaoru; Elliott, Brandon T.; Theising, Nicholas J.; Baker, Thomas A.; Fitch, Richard W.

    2010-01-01

    A homologous series of polyethylene glycol (PEG) monomethyl ethers were conjugated with three ligand series for nicotinic acetylcholine receptors. Conjugates of acetylaminocholine, the cyclic analog 1-acetyl-4,4-dimethylpiperazinium, and pyridyl ether A-84543 were prepared. Each series was found to retain significant affinity at nicotinic receptors in rat cerebral cortex with tethers of up to six PEG units. Such compounds are hydrophilic ligands which may serve as models for fluorescent/affinity probes and multivalent ligands for nAChR. PMID:19006672

  7. Lack of modulation of nicotinic acetylcholine alpha-7 receptor currents by kynurenic acid in adult hippocampal interneurons.

    PubMed

    Dobelis, Peter; Staley, Kevin J; Cooper, Donald C

    2012-01-01

    Kynurenic acid (KYNA), a classical ionotropic glutamate receptor antagonist is also purported to block the α7-subtype nicotinic acetylcholine receptor (α7* nAChR). Although many published studies cite this potential effect, few have studied it directly. In this study, the α7*-selective agonist, choline, was pressure-applied to interneurons in hippocampal subregions, CA1 stratum radiatum and hilus of acute brain hippocampal slices from adolescent to adult mice and adolescent rats. Stable α7* mediated whole-cell currents were measured using voltage-clamp at physiological temperatures. The effects of bath applied KYNA on spontaneous glutamatergic excitatory postsynaptic potentials (sEPSC) as well as choline-evoked α7* currents were determined. In mouse hilar interneurons, KYNA totally blocked sEPSC whole-cell currents in a rapid and reversible manner, but had no effect on choline-evoked α7* whole-cell currents. To determine if this lack of KYNA effect on α7* function was due to regional and/or species differences in α7* nAChRs, the effects of KYNA on choline-evoked α7* whole-cell currents in mouse and rat stratum radiatum interneurons were tested. KYNA had no effect on either mouse or rat stratum radiatum interneuron choline-evoked α7* whole-cell currents. Finally, to test whether the lack of effect of KYNA was due to unlikely slow kinetics of KYNA interactions with α7* nAChRs, recordings of a7*-mediated currents were made from slices that were prepared and stored in the presence of 1 mM KYNA (>90 minutes exposure). Under these conditions, KYNA had no measurable effect on α7* nAChR function. The results show that despite KYNA-mediated blockade of glutamatergic sEPSCs, two types of hippocampal interneurons that express choline-evoked α7* nAChR currents fail to show any degree of modulation by KYNA. Our results indicate that under our experimental conditions, which produced complete KYNA-mediated blockade of sEPSCs, claims of KYNA effects on choline

  8. Loop 2 of Ophiophagus hannah toxin b binds with neuronal nicotinic acetylcholine receptors and enhances intracranial drug delivery.

    PubMed

    Zhan, Changyou; Yan, Zhiqiang; Xie, Cao; Lu, Weiyue

    2010-12-06

    Three-finger snake neurotoxins have been widely investigated for their high binding affinities with nicotinic acetylcholine receptors (nAChRs), which are widely expressed in the central nervous system including the blood-brain barrier and thus mediate intracranial drug delivery. The loop 2 segments of three-finger snake neurotoxins are considered as the binding domain with nAChRs, and thus, they may have the potential to enhance drug or drug delivery system intracranial transport. In the present work, binding of the synthetic peptides to the neuronal nAChRs was assessed by measuring their ability to inhibit the binding of (125)I-α-bungarotoxin to the receptor. The loop 2 segment of Ophiophagus hannah toxin b (KC2S) showed high binding affinity, and the competitive binding IC(50) value was 32.51 nM. Furthermore, the brain targeting efficiency of KC2S had been investigated in vitro and in vivo. The specific uptake by brain capillary endothelial cells (BCECs) demonstrated that KC2S could be endocytosized after binding with nAChRs. In vivo, the qualitative and quantitative biodistribution results of fluorescent dyes (DiR or coumarin-6) indicated that KC2S modified poly(ethylene glycol)-poly(lactic acid) micelles (KC2S-PEG-PLA micelles) could enhance intracranial drug delivery. Furthermore, intravenous treatment with paclitaxel-encapsulated KC2S-PEG-PLA micelles (KC2S-PEG-PLA-PTX micelles) afforded robust inhibition of intracranial glioblastoma. The median survival time of KC2S-PEG-PLA-PTX-micelle-treated mice (47.5 days) was significantly longer than that of mice treated by mPEG-PLA-PTX micelles (41.5 days), Taxol (38.5 days), or saline (34 days). Compared with the short peptide derived from rabies virus glycoprotein (RVG29) that has been previously reported as an excellent brain targeting ligand, KC2S has a similar binding affinity with neuronal nAChRs but fewer amino acid residues. Thus, we concluded that the loop 2 segment of Ophiophagus hannah toxin b could bind

  9. Chemistry, Pharmacology, and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2- Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile. Part II

    PubMed Central

    Zhang, Han-Kun; Yu, Li-Fang; Eaton, J. Brek; Whiteaker, Paul; Onajole, Oluseye K.; Hanania, Taleen; Brunner, Daniela; Lukas, Ronald J.; Kozikowski, Alan P.

    2013-01-01

    A 3-pyridyl ether scaffold bearing a cyclopropane-containing side chain was recently identified in our efforts to create novel antidepressants that act as partial agonists at α4β2-nicotinic acetylcholine receptors. In this study, a systematic structure-activity relationship investigation was carried out on both the azetidine moiety present in compound 3 and its right-hand side chain, thereby discovering a variety of novel nicotinic ligands that retain bioactivity and feature improved chemical stability. The most promising compounds 24, 26, and 30 demonstrated comparable or enhanced pharmacological profiles compared to the parent compound 4, and the N-methylpyrrolidine analogue 26 also exhibited robust antidepressant-like efficacy in the mouse forced swim test. The favorable ADMET profile and chemical stability of 26 further indicate this compound to be a promising lead as a drug candidate warranting further advancement down the drug discovery pipeline. PMID:23734673

  10. Chemistry, pharmacology, and behavioral studies identify chiral cyclopropanes as selective α4β2-nicotinic acetylcholine receptor partial agonists exhibiting an antidepressant profile. Part II.

    PubMed

    Zhang, Han-Kun; Yu, Li-Fang; Eaton, J Brek; Whiteaker, Paul; Onajole, Oluseye K; Hanania, Taleen; Brunner, Daniela; Lukas, Ronald J; Kozikowski, Alan P

    2013-07-11

    A 3-pyridyl ether scaffold bearing a cyclopropane-containing side chain was recently identified in our efforts to create novel antidepressants that act as partial agonists at α4β2-nicotinic acetylcholine receptors. In this study, a systematic structure-activity relationship investigation was carried out on both the azetidine moiety present in compound 3 and its right-hand side chain, thereby discovering a variety of novel nicotinic ligands that retain bioactivity and feature improved chemical stability. The most promising compounds, 24, 26, and 30, demonstrated comparable or enhanced pharmacological profiles compared to the parent compound 4, and the N-methylpyrrolidine analogue 26 also exhibited robust antidepressant-like efficacy in the mouse forced swim test. The favorable ADMET profile and chemical stability of 26 further indicate this compound to be a promising lead as a drug candidate warranting further advancement down the drug discovery pipeline.

  11. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface.

    PubMed

    Ahring, Philip K; Olsen, Jeppe A; Nielsen, Elsebet Ø; Peters, Dan; Pedersen, Martin H F; Rohde, Line A; Kastrup, Jette S; Shahsavar, Azadeh; Indurthi, Dinesh C; Chebib, Mary; Gajhede, Michael; Balle, Thomas

    2015-05-01

    The nicotinic acetylcholine receptor α4β2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (α4)2(β2)3 and (α4)3(β2)2. While these are similar in many aspects, the (α4)3(β2)2 stoichiometry differs by harboring a third orthosteric acetylcholine binding site located at the α4-α4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known. The present study was therefore aimed at determining binding affinities of nicotinic ligands to the α4-α4 interface. Given that epibatidine shows large functional potency differences at α4-β2 vs. α4-α4 interfaces, biphasic binding properties would be expected at (α4)3(β2)2 receptors. However, standard saturation binding experiments with [(3)H]epibatidine did not reveal biphasic binding under the conditions utilized. Therefore, an engineered β2 construct (β2(HQT)), which converts the β(-) face to resemble that of an α4(-) face, was utilized to create (α4)3(β2(HQT))2 receptors harboring three α4-α4 interfaces. With this receptor, low affinity binding of epibatidine with a Kd of ∼5 nM was observed in sharp contrast to a Kd value of ∼10 pM observed for wild-type receptors. A strong correlation between binding affinities at the (α4)3(β2(HQT))2 receptor and functional potencies at the wild-type receptor of a range of nicotinic ligands highlighted the validity of using the mutational approach. Finally, large differences in activities at α4-β2 vs. α4-α4 interfaces were observed for structurally related agonists underscoring the need for establishing all binding parameters of compounds at α4β2 receptors.

  12. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    SciTech Connect

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  13. Mecamylamine-precipitated nicotine withdrawal syndrome and its prevention with baclofen: an autoradiographic study of α4β2 nicotinic acetylcholine receptors in mice.

    PubMed

    Varani, Andrés P; Antonelli, Marta C; Balerio, Graciela N

    2013-07-01

    A previous study from our laboratory showed that baclofen (BAC, GABAB receptor agonist) was able to prevent the behavioral expression of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying this effect, we conducted this study, with the aims of analyzing α4β2 nicotinic receptor density during NIC withdrawal and, in case we found any changes, of determining whether they could be prevented by pretreatment with BAC. Swiss Webster albino mice received NIC (2.5 mg/kg, s.c.) 4 times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and brain autoradiography with [(3)H]epibatidine was carried out at five different anatomical levels. Autoradiographic mapping showed a significant increase of α4β2 nicotinic receptor labeling during NIC withdrawal in the nucleus accumbens shell (AcbSh), medial habenular nucleus (HbM), thalamic nuclei, dorsal lateral geniculate (DLG) nucleus, fasciculus retroflexus (fr), ventral tegmental area, interpeduncular nucleus and superior colliculus. BAC pretreatment prevented the increased α4β2 nicotinic receptor binding sites in the AcbSh, MHb, thalamic nuclei, DLG nucleus and fr. The present results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in α4β2 nicotinic receptor labeling, evidenced in specific brain areas in NIC withdrawn animals.

  14. α-Conotoxin OmIA Is a Potent Ligand for the Acetylcholine-binding Protein as Well as α3β2 and α7 Nicotinic Acetylcholine Receptors*

    PubMed Central

    Talley, Todd T.; Olivera, Baldomero M.; Han, Kyou-Hoon; Christensen, Sean B.; Dowell, Cheryl; Tsigelny, Igor; Ho, Kwok-Yiu; Taylor, Palmer; McIntosh, J. Michael

    2016-01-01

    The molluskan acetylcholine-binding protein (AChBP) is a homolog of the extracellular binding domain of the pentameric ligand-gated ion channel family. AChBP most closely resembles the α-subunit of nicotinic acetylcholine receptors and in particular the homomeric α7 nicotinic receptor. We report the isolation and characterization of an α-conotoxin that has the highest known affinity for the Lymnaea AChBP and also potently blocks the α7 nAChR subtype when expressed in Xenopus oocytes. Remarkably, the peptide also has high affinity for the α3β2 nAChR indicating that α-conotoxin OmIA in combination with the AChBP may serve as a model system for understanding the binding determinants of α3β2 nAChRs. α-Conotoxin OmIA was purified from the venom of Conus omaria. It is a 17-amino-acid, two-disulfide bridge peptide. The ligand is the first α-conotoxin with higher affinity for the closely related receptor subtypes, α3β2 versus α6β2, and selectively blocks these two subtypes when compared with α2β2, α4β2, and α1β1δε nAChRs. PMID:16803900

  15. Nanomolar concentrations of nicotine and cotinine alter the development of cultured hippocampal neurons via non-acetylcholine receptor-mediated mechanisms.

    PubMed

    Audesirk, T; Cabell, L

    1999-08-01

    We investigated the effects of nicotine and its metabolic byproduct cotinine on survival, differentiation and intracellular Ca2+ levels of cultured E18 rat hippocampal neurons. We used a range of concentrations from 1 nM to 10 microM, most of which are within the likely range of human fetal exposure from maternal smoking. Nicotine did not influence neuron survival or neurite production. However, at all concentrations tested, nicotine significantly increased branching of both axons and dendrites, an effect which was not reversed by co-culturing with alpha-bungarotoxin, which blocks the nicotinic acetylcholine receptors that predominate in hippocampal cultures (Alkondon and Albuquerque, 1993; Barrantes et al., 1995b). Cotinine at 100 nM and 1 microM significantly reduced neuron survival and neurite production of surviving neurons, but did not significantly alter axon or dendrite branching. These membrane-permeable compounds may work synergistically in the developing embryo to impair the survival and differentiation of hippocampal neurons via intracellular mechanisms.

  16. The nicotinic acetylcholine receptors of the parasitic nematode Ascaris suum: formation of two distinct drug targets by varying the relative expression levels of two subunits.

    PubMed

    Williamson, Sally M; Robertson, Alan P; Brown, Laurence; Williams, Tracey; Woods, Debra J; Martin, Richard J; Sattelle, David B; Wolstenholme, Adrian J

    2009-07-01

    Parasitic nematodes are of medical and veterinary importance, adversely affecting human health and animal welfare. Ascaris suum is a gastrointestinal parasite of pigs; in addition to its veterinary significance it is a good model of the human parasite Ascaris lumbricoides, estimated to infect approximately 1.4 billion people globally. Anthelmintic drugs are essential to control nematode parasites, and nicotinic acetylcholine receptors (nAChRs) on nerve and muscle are the targets of cholinergic anthelmintics such as levamisole and pyrantel. Previous genetic analyses of nematode nAChRs have been confined to Caenorhabditis elegans, which is phylogenetically distinct from Ascaris spp. and many other important parasites. Here we report the cloning and expression of two nAChR subunit cDNAs from A. suum. The subunits are very similar in sequence to C. elegans UNC-29 and UNC-38, are expressed on muscle cells and can be expressed robustly in Xenopus oocytes to form acetylcholine-, nicotine-, levamisole- and pyrantel-sensitive channels. We also demonstrate that changing the stoichiometry of the receptor by injecting different ratios of the subunit cRNAs can reproduce two of the three pharmacological subtypes of nAChR present in A. suum muscle cells. When the ratio was 5:1 (Asu-unc-38ratioAsu-unc-29), nicotine was a full agonist and levamisole was a partial agonist, and oocytes responded to oxantel, but not pyrantel. At the reverse ratio (1:5 Asu-unc-38ratioAsu-unc-29), levamisole was a full agonist and nicotine was a partial agonist, and the oocytes responded to pyrantel, but not oxantel. These results represent the first in vitro expression of any parasitic nicotinic receptor and show that their properties are substantially different from those of C. elegans. The results also show that changing the expression level of a single receptor subunit dramatically altered the efficacy of some anthelmintic drugs. In vitro expression of these subunits may permit the development of

  17. Anxiolytic-like and anxiogenic-like effects of nicotine are regulated via diverse action at β2*nicotinic acetylcholine receptors

    PubMed Central

    Anderson, S M; Brunzell, D H

    2015-01-01

    Background and Purpose Nicotine dose-dependently activates or preferentially desensitizes β2 subunit containing nicotinic ACh receptors (β2*nAChRs). Genetic and pharmacological manipulations assessed effects of stimulation versus inhibition of β2*nAChRs on nicotine-associated anxiety-like phenotype. Experimental Approach Using a range of doses of nicotine in β2*nAChR subunit null mutant mice (β2KO; backcrossed to C57BL/6J) and their wild-type (WT) littermates, administration of the selective β2*nAChR agonist, 5I-A85380, and the selective β2*nAChR antagonist dihydro-β-erythroidine (DHβE), we determined the behavioural effects of stimulation and inhibition of β2*nAChRs in the light–dark and elevated plus maze (EPM) assays. Key Results Low-dose i.p. nicotine (0.05 mg·kg−1) supported anxiolysis-like behaviour independent of genotype whereas the highest dose (0.5 mg·kg−1) promoted anxiogenic-like phenotype in WT mice, but was blunted in β2KO mice for the measure of latency. Administration of 5I-A85380 had similar dose-dependent effects in C57BL/6J WT mice; 0.001 mg·kg−1 5I-A85380 reduced anxiety on an EPM, whereas 0.032 mg·kg−1 5I-A85380 promoted anxiogenic-like behaviour in both the light–dark and EPM assays. DHβE pretreatment blocked anxiogenic-like effects of 0.5 mg·kg−1 nicotine. Similarly to DHβE, pretreatment with low-dose 0.05 mg·kg−1 nicotine did not accumulate with 0.5 mg·kg−1 nicotine, but rather blocked anxiogenic-like effects of high-dose nicotine in the light–dark and EPM assays. Conclusions and Implications These studies provide direct evidence that low-dose nicotine inhibits nAChRs and demonstrate that inhibition or stimulation of β2*nAChRs supports the corresponding anxiolytic-like or anxiogenic-like effects of nicotine. Inhibition of β2*nAChRs may relieve anxiety in smokers and non-smokers alike. PMID:25625469

  18. Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Pavlovicz, Ryan E.; Henderson, Brandon J.; Bonnell, Andrew B.; Boyd, R. Thomas; McKay, Dennis B.; Li, Chenglong

    2011-01-01

    Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and

  19. Expression of insect α6-like nicotinic acetylcholine receptors in Drosophila melanogaster highlights a high level of conservation of the receptor:spinosyn interaction.

    PubMed

    Perry, Trent; Somers, Jason; Yang, Ying Ting; Batterham, Philip

    2015-09-01

    Insecticide research has often relied on model species for elucidating the resistance mechanisms present in the targeted pests. The accuracy and applicability of extrapolations of these laboratory findings to field conditions varies but, for target site resistance, conserved mechanisms are generally the rule rather than the exception (Perry et al., 2011). The spinosyn class of insecticides appear to fit this paradigm and are a pest control option with many uses in both crop and animal protection. Resistance to spinosyns has been identified in both laboratory-selected and field-collected pest insects. Studies using the model insect, Drosophila melanogaster, have identified the nicotinic acetylcholine receptor subunit, Dα6 as an important target of the insecticide spinosad (Perry et al., 2007; Watson et al., 2010). Field-isolated resistant strains of several agricultural pest insects provide evidence that resistance cases are often associated with mutations in orthologues to Dα6 (Baxter et al., 2010; Puinean et al., 2013). The expression of these receptors is difficult in heterologous systems. In order to examine the biology of the Dα6 receptor subunit further, we used Drosophila as a model and developed an in vivo rescue system. This allowed us to express four different isoforms of Dα6 and show that each is able to rescue the response to spinosad. Regulatory sequences upstream of the Dα6 gene able to rescue the resistance phenotype were identified. Expression of other D. melanogaster subunits revealed that the rescue phenotype appears to be Dα6 specific. We also demonstrate that expression of pest insect orthologues of Dα6 from a variety of species are capable of rescuing the spinosad response phenotype, verifying the relevance of this receptor to resistance monitoring in the field. In the absence of a robust heterologous expression system, this study presents an in vivo model that will be useful in analysing many other aspects of these receptors and

  20. Primary cultures of rat cortical microglia treated with nicotine increases in the expression of excitatory amino acid transporter 1 (GLAST) via the activation of the α7 nicotinic acetylcholine receptor.

    PubMed

    Morioka, N; Tokuhara, M; Nakamura, Y; Idenoshita, Y; Harano, S; Zhang, F F; Hisaoka-Nakashima, K; Nakata, Y

    2014-01-31

    Although the clearance of glutamate from the synapse under physiological conditions is performed by astrocytic glutamate transporters, their expression might be diminished under pathological conditions. Microglia glutamate transporters, however, might serve as a back-up system when astrocytic glutamate uptake is impaired, and could have a prominent neuroprotective function under pathological conditions. In the current study, the effect of nicotine, well known as a neuroprotective molecule, on the function of glutamate transporters in cultured rat cortical microglia was examined. Reverse transcription polymerase chain reaction and pharmacological approaches demonstrated that, glutamate/aspartate transporter (GLAST), not glutamate transporter 1 (GLT-1), is the major functional glutamate transporter in cultured cortical microglia. Furthermore, the α7 subunit was demonstrated to be the key subunit comprising nicotinic acetylcholine (nACh) receptors in these cells. Treatment of cortical microglia with nicotine led to a significant increase of GLAST mRNA expression and (14)C-glutamate uptake in a concentration- and time-dependent manner, which were markedly inhibited by pretreatment with methyllycaconitine, a selective α7 nACh receptor antagonist. The nicotine-induced expression of GLAST mRNA and protein is mediated through an inositol trisphosphate (IP3) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) depend intracellular pathway, since pretreatment with either xestospongin C, an IP3 receptor antagonist, or KN-93, a CaMKII inhibitor, blocked GLAST expression. Together, these findings indicate that activation of nACh receptors, specifically those expressing the α7 subunit, on cortical microglia could be a key mechanism of the neuroprotective effect of nACh receptor ligands such as nicotine.

  1. Research tool: Validation of floxed α7 nicotinic acetylcholine receptor conditional knockout mice using in vitro and in vivo approaches.

    PubMed

    Hernandez, Caterina M; Cortez, Ibdanelo; Gu, Zhenglin; Colón-Sáez, José O; Lamb, Patricia W; Wakamiya, Maki; Yakel, Jerrel L; Dineley, Kelly T

    2014-08-01

    There is much interest in α7 nicotinic acetylcholine receptors (nAChRs) in CNS function since they are found throughout peripheral tissues as well as being highly expressed in brain regions implicated in attention, learning and memory. As such, the role of these receptors in many aspects of CNS function and disease is being actively investigated. To date, only one null mouse model (A7KO) is available which is non-conditional and constitutive. Since α7 nAChRs are present on neurons and glia (including astrocytes), as well as being developmentally regulated, there is an unmet need for the technical capability to control α7 nAChR gene expression. Therefore we have generated mice in which the fourth exon of the α7 nAChR gene (Chrna7) is flanked by loxP sites (B6-Chrna7(LBDEx4007Ehs)) which we refer to as floxed α7 nAChR conditional knockout or α7nAChR(flox). We validated the chosen approach by mating α7nAChR(flox) with mice expressing Cre recombinase driven by the glial acidic fibrillary protein (GFAP)-Cre promoter (GFAP-A7KO) to test whether α7nAChR(flox), GFAP-A7KO and appropriate littermate controls performed equally in our standard Rodent In Vivo Assessment Core battery to assess general health, locomotion, emotional and cognitive behaviours. Neither α7nAChR(flox) nor GFAP-A7KO exhibited significant differences from littermate controls in any of the baseline behavioural assessments we conducted, similar to the 'first generation' non-conditional A7KO mice. We also determined that α7 nAChR binding sites were absent on GFAP-positive astrocytes in hippocampal slices obtained from GFAP-A7KO offspring from α7nAChR(flox) and GFAP-Cre crosses. Finally, we validated that Cre recombinase (Cre)-mediated excision led to functional, cell- and tissue-specific loss of α7 nAChRs by demonstrating that choline-induced α7 nAChR currents were present in Cre-negative, but not synapsin promoter-driven Cre-positive, CA1 pyramidal neurons. Additionally, electrophysiological

  2. Transcripts of the nicotinic acetylcholine receptor subunit gene Pxylα6 with premature stop codons are associated with spinosad resistance in diamondback moth, Plutella xylostella.

    PubMed

    Rinkevich, Frank D; Chen, Mao; Shelton, Anthony M; Scott, Jeffrey G

    2010-11-01

    The cDNA sequence of the α6 nicotinic acetylcholine receptor subunit of diamondback moth (Plutella xylostella) was cloned and sequenced. Transcripts were similar between the spinosad-susceptible G88 and Wapio strains. All transcripts from the spinosad-resistant Pearl-Sel strain contained premature stop codons, and most transcripts have not been previously reported. None of these truncated transcripts were seen in the spinosad-susceptible strains. Proteins made from these transcripts would likely have no, or greatly altered, receptor function. An F(2) backcross and spinosad bioassay showed that all spinosad bioassay survivors produced truncated α6 transcripts. Thus, it appears that spinosad resistance in diamondback moth is due to a mutation(s) that results in no functional Pxylα6 being produced.

  3. Preliminary synthetic studies of methyllycaconitine, a potent nicotinic acetylcholine receptor antagonist: rapid syntheses of AE-bicyclic analogues.

    PubMed

    Coates, P A; Blagbrough, I S; Rowan, M G; Pearson, D P; Lewis, T; Potter, B V

    1996-02-01

    A series of bicyclic analogues incorporating the homocholine motif of methyllycaconitine has been prepared to test the hypothesis that this is the essential pharmacophore of this potent, selective nicotinic receptor antagonist. A double Mannich reaction has been employed to construct the 3-azabicyclo[3.3.1]-nonane ring system, containing an N-ethylpiperidine moiety. The neopentyl-like alcohol was then esterified, using isatoic anhydride under basic conditions, to afford the corresponding anthranilate.

  4. Non-charged amino acids from three different domains contribute to link agonist binding to channel gating in alpha7 nicotinic acetylcholine receptors.

    PubMed

    Aldea, Marcos; Mulet, José; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2007-10-01

    Binding of agonists to nicotinic acetylcholine receptors results in channel opening. Previously, we have shown that several charged residues at three different domains of the alpha7 nicotinic receptor are involved in coupling binding and gating, probably through a network of electrostatic interactions. This network, however, could also be integrated by other residues. To test this hypothesis, non-charged amino acids were mutated and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Asn47 and Gln48 (loop 2), Ile130, Trp134, and Gln140 (loop 7), and Thr264 (M2-M3 linker) showed poor or null functional responses, despite significant membrane expression. By contrast, mutants F137A and S265A exhibited a gain of function effect. In all cases, changes in dose-response relationships were small, EC(50) values being between threefold smaller and fivefold larger, arguing against large modifications of agonist binding. Peak currents decayed at the same rate in all receptors except two, excluding large effects on desensitization. Thus, the observed changes could be mostly caused by alterations of the gating characteristics. Moreover, analysis of double mutants showed an interconnection between some residues in these domains, especially Gln48 with Ile130, suggesting a potential coupling between agonist binding and channel gating through these amino acids.

  5. Structural and functional studies of the modulator NS9283 reveal agonist-like mechanism of action at α4β2 nicotinic acetylcholine receptors.

    PubMed

    Olsen, Jeppe A; Ahring, Philip K; Kastrup, Jette S; Gajhede, Michael; Balle, Thomas

    2014-09-05

    Modulation of Cys loop receptor ion channels is a proven drug discovery strategy, but many underlying mechanisms of the mode of action are poorly understood. We report the x-ray structure of the acetylcholine-binding protein from Lymnaea stagnalis with NS9283, a stoichiometry selective positive modulator that targets the α4-α4 interface of α4β2 nicotinic acetylcholine receptors (nAChRs). Together with homology modeling, mutational data, quantum mechanical calculations, and pharmacological studies on α4β2 nAChRs, the structure reveals a modulator binding mode that overlaps the α4-α4 interface agonist (acetylcholine)-binding site. Analysis of contacts to residues known to govern agonist binding and function suggests that modulation occurs by an agonist-like mechanism. Selectivity for α4-α4 over α4-β2 interfaces is determined mainly by steric restrictions from Val-136 on the β2-subunit and favorable interactions between NS9283 and His-142 at the complementary side of α4. In the concentration ranges where modulation is observed, its selectivity prevents NS9283 from directly activating nAChRs because activation requires coordinated action from more than one interface. However, we demonstrate that in a mutant receptor with one natural and two engineered α4-α4 interfaces, NS9283 is an agonist. Modulation via extracellular binding sites is well known for benzodiazepines acting at γ-aminobutyric acid type A receptors. Like NS9283, benzodiazepines increase the apparent agonist potency with a minimal effect on efficacy. The shared modulatory profile along with a binding site located in an extracellular subunit interface suggest that modulation via an agonist-like mechanism may be a common mechanism of action that potentially could apply to Cys loop receptors beyond the α4β2 nAChRs.

  6. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens.

    PubMed

    Zhang, Yixi; Wang, Xin; Yang, Baojun; Hu, Yuanyuan; Huang, Lixin; Bass, Chris; Liu, Zewen

    2015-11-01

    Target-site resistance is commonly caused by qualitative changes in insecticide target-receptors and few studies have implicated quantitative changes in insecticide targets in resistance. Here we show that resistance to imidacloprid in a selected strain of Nilaparvata lugens is associated with a reduction in expression levels of the nicotinic acetylcholine receptor (nAChR) subunit Nlα8. Synergism bioassays of the selected strain suggested resistance was conferred, in part, by a target-site mechanism. Sequencing of N. lugens nAChR subunit genes identified no mutations associated with resistance, however, a decrease in mRNA and protein levels of Nlα8 was observed during selection. RNA interference knockdown of Nlα8 decreased the sensitivity of N. lugens to imidacloprid, demonstrating that a decrease in Nlα8 expression is sufficient to confer resistance in vivo. Radioligand binding assays revealed that the affinity of the high-affinity imidacloprid-binding site of native nAChRs was reduced by selection, and reducing the amount of Nlα8 cRNA injected into Xenopus oocytes significantly decreased imidacloprid potency on recombinant receptors. Taken together, these results provide strong evidence that a decrease in Nlα8 levels confers resistance to imidacloprid in N. lugens, and thus provides a rare example of target-site resistance associated with a quantitative rather than qualitative change. In insects, target-site mutations often cause high resistance to insecticides, such as neonicotinoids acting on nicotinic acetylcholine receptors (nAChRs). Here we found that a quantitative change in target-protein level, decrease in mRNA and protein levels of Nlα8, contributed importantly to imidacloprid resistance in Nilaparvata lugens. This finding provides a new target-site mechanism of insecticide resistance.

  7. Curiouser and Curiouser: The Macrocyclic Lactone, Abamectin, Is also a Potent Inhibitor of Pyrantel/Tribendimidine Nicotinic Acetylcholine Receptors of Gastro-Intestinal Worms.

    PubMed

    Abongwa, Melanie; Buxton, Samuel K; Robertson, Alan P; Martin, Richard J

    2016-01-01

    Nematode parasites may be controlled with drugs, but their regular application has given rise to concerns about the development of resistance. Drug combinations may be more effective than single drugs and delay the onset of resistance. A combination of the nicotinic antagonist, derquantel, and the macrocyclic lactone, abamectin, has been found to have synergistic anthelmintic effects against gastro-intestinal nematode parasites. We have observed in previous contraction and electrophysiological experiments that derquantel is a potent selective antagonist of nematode parasite muscle nicotinic receptors; and that abamectin is an inhibitor of the same nicotinic receptors. To explore these inhibitory effects further, we expressed muscle nicotinic receptors of the nodular worm, Oesophagostomum dentatum (Ode-UNC-29:Ode-UNC-63:Ode-UNC-38), in Xenopus oocytes under voltage-clamp and tested effects of abamectin on pyrantel and acetylcholine responses. The receptors were antagonized by 0.03 μM abamectin in a non-competitive manner (reduced Rmax, no change in EC50). This antagonism increased when abamectin was increased to 0.1 μM. However, when we increased the concentration of abamectin further to 0.3 μM, 1 μM or 10 μM, we found that the antagonism decreased and was less than with 0.1 μM abamectin. The bi-phasic effects of abamectin suggest that abamectin acts at two allosteric sites: one high affinity negative allosteric (NAM) site causing antagonism, and another lower affinity positive allosteric (PAM) site causing a reduction in antagonism. We also tested the effects of 0.1 μM derquantel alone and in combination with 0.3 μM abamectin. We found that derquantel on these receptors, like abamectin, acted as a non-competitive antagonist, and that the combination of derquantel and abamectin produced greater inhibition. These observations confirm the antagonistic effects of abamectin on nematode nicotinic receptors in addition to GluCl effects, and illustrate more complex

  8. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    PubMed

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD.

  9. Identification of novel α4β2-nicotinic acetylcholine receptor (nAChR) agonists based on an isoxazole ether scaffold that demonstrate antidepressant-like activity.

    PubMed

    Yu, Li-Fang; Tückmantel, Werner; Eaton, J Brek; Caldarone, Barbara; Fedolak, Allison; Hanania, Taleen; Brunner, Dani; Lukas, Ronald J; Kozikowski, Alan P

    2012-01-26

    There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening toward other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.

  10. Nicotinic receptors, memory, and hippocampus.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.

  11. Pharmacological profile of Ascaris suum ACR‐16, a new homomeric nicotinic acetylcholine receptor widely distributed in Ascaris tissues

    PubMed Central

    Abongwa, Melanie; Buxton, Samuel K; Courtot, Elise; Charvet, Claude L; Neveu, Cédric; McCoy, Ciaran J; Verma, Saurabh; Robertson, Alan P

    2016-01-01

    Summary Background and Purpose Control of nematode parasite infections relies largely on anthelmintic drugs, several of which act on nicotinic ACh receptors (nAChRs), and there are concerns about the development of resistance. There is an urgent need for development of new compounds to overcome resistance and novel anthelmintic drug targets. We describe the functional expression and pharmacological characterization of a homomeric nAChR, ACR‐16, from a nematode parasite. Experimental Approach Using RT‐PCR, molecular cloning and two‐electrode voltage clamp electrophysiology, we localized acr‐16 mRNA in Ascaris suum (Asu) and then cloned and expressed acr‐16 cRNA in Xenopus oocytes. Sensitivity of these receptors to cholinergic anthelmintics and a range of nicotinic agonists was tested. Key Results Amino acid sequence comparison with vertebrate nAChR subunits revealed ACR‐16 to be most closely related to α7 receptors, but with some striking distinctions. acr‐16 mRNA was recovered from Asu somatic muscle, pharynx, ovijector, head and intestine. In electrophysiological experiments, the existing cholinergic anthelmintic agonists (morantel, levamisole, methyridine, thenium, bephenium, tribendimidine and pyrantel) did not activate Asu‐ACR‐16 (except for a small response to oxantel). Other nAChR agonists: nicotine, ACh, cytisine, 3‐bromocytisine and epibatidine, produced robust current responses which desensitized at a rate varying with the agonists. Unlike α7, Asu‐ACR‐16 was insensitive to α‐bungarotoxin and did not respond to genistein or other α7 positive allosteric modulators. Asu‐ACR‐16 had lower calcium permeability than α7 receptors. Conclusions and Implications We suggest that ACR‐16 has diverse tissue‐dependent functions in nematode parasites and is a suitable drug target for development of novel anthelmintic compounds. PMID:27238203

  12. Expression of the alpha-bungarotoxin binding site of the nicotinic acetylcholine receptor by Escherichia coli transformants.

    PubMed Central

    Gershoni, J M

    1987-01-01

    Restriction fragments of DNA derived from a cDNA clone of the alpha subunit of the acetylcholine receptor were subcloned in Escherichia coli by using the trpE fusion vector, pATH2. Transformants expressing the amino acid sequences 166-315 or 166-200 are shown to produce a chimeric protein that bound alpha-bungarotoxin. Moreover, it is shown that sufficient amounts of toxin-binding proteins can be generated by individual colonies of bacteria. This provides a new approach for gene selection via functional expression--i.e., ligand overlays of colony blots. Images PMID:3295881

  13. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist {alpha}-conotoxin OmIA that discriminates {alpha}3 vs. {alpha}6 nAChR subtypes

    SciTech Connect

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.; McIntosh, J. Michael; Han, Kyou-Hoon . E-mail: khhan600@kribb.re.kr

    2006-06-23

    {alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.

  14. Type I and II positive allosteric modulators differentially modulate agonist-induced up-regulation of α7 nicotinic acetylcholine receptors.

    PubMed

    Thomsen, Morten S; Mikkelsen, Jens D

    2012-10-01

    Long-term treatment with nicotine or selective α7 nicotinic acetylcholine receptor (nAChR) agonists increases the number of α7 nAChRs and this up-regulation may be involved in the mechanism underlying the sustained procognitive effect of these compounds. Here, we investigate the influence of type I and II α7 nAChR positive allosteric modulators (PAMs) on agonist-induced α7 nAChR up-regulation. We show that the type II PAMs, PNU-120596 (10 μM) or TQS (1 and 10 μM), inhibit up-regulation, as measured by protein levels, induced by the α7 nAChR agonist A-582941 (10 nM or 10 μM), in SH-EP1 cells stably expressing human α7 nAChR, whereas the type I PAMs AVL-3288 or NS1738 do not. Contrarily, neither type I nor II PAMs affect 10 μM nicotine-induced receptor up-regulation, suggesting that nicotine and A-582941 induce up-regulation through different mechanisms. We further show in vivo that 3 mg/kg PNU-120596 inhibits up-regulation of the α7 nAChR induced by 10 mg/kg A-582941, as measured by [(125)I]-bungarotoxin autoradiography, whereas 1 mg/kg AVL-3288 does not. Given that type II PAMs decrease desensitization of the receptor, whereas type I PAMs do not, these results suggest that receptor desensitization is involved in A-582941-induced up-regulation. Our results are the first to show an in vivo difference between type I and II α7 nAChR PAMs, and demonstrate an agonist-dependent effect of type II PAMs occurring on a much longer time scale than previously appreciated. Furthermore, our data suggest that nicotine and A-582941 induce up-regulation through different mechanisms, and that this confers differential sensitivity to the effects of α7 nAChR PAMs. These results may have implications for the clinical development of α7 nAChR PAMs.

  15. Selective blockade of nicotinic acetylcholine receptors by pimobendan, a drug for the treatment of heart failure: reduction of catecholamine secretion and synthesis in adrenal medullary cells.

    PubMed

    Toyohira, Yumiko; Kubo, Tatsuhiko; Watanabe, Miyabi; Uezono, Yasuhito; Ueno, Susumu; Shinkai, Koji; Tsutsui, Masato; Izumi, Futoshi; Yanagihara, Nobuyuki

    2005-02-01

    Pimobendan, a Ca(2+) sensitizer, is used clinically in the treatment of chronic heart failure. Although chronic heart failure is associated with activation of the sympathetic nervous system, it remains unknown whether pimobendan affects the function of sympathetic neurons and the adrenal medulla. Here, we report the inhibitory effects of pimobendan on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. Pimobendan decreased the catecholamine secretion (IC(50)=29.5 microM) elicited by carbachol, an agonist at nicotinic acetylcholine receptors, but not that elicited by veratridine, an activator of voltage-dependent Na(+) channels, or by high K(+), an activator of voltage-dependent Ca(2+) channels. Pimobendan also inhibited carbachol-induced influx of (22)Na(+) (IC(50)=25.9 microM) and (45)Ca(2+) (IC(50)=26.0 microM), but not veratridine-induced (22)Na(+) influx or high K(+)-induced (45)Ca(2+) influx. The reduction of catecholamine secretion caused by pimobendan was not overcome by increasing the concentration of carbachol. UD-CG 212, an active metabolite of pimobendan, lowered carbachol-induced catecholamine secretion with a concentration/inhibition curve similar to that of pimobendan. In experiments in situ, pimobendan suppressed both basal and carbachol-stimulated (14)C-catecholamine synthesis (IC(50)=5.3 and 4.9 microM) from [(14)C] tyrosine [but not from L: -3, 4-dihydroxyphenyl [3-(14)C] alanine ([(14)C]DOPA)], as well as tyrosine hydroxylase activity (IC(50)=3.8 and 4.3 microM). These findings suggest that pimobendan inhibits carbachol-induced catecholamines secretion and synthesis through suppression of nicotinic acetylcholine receptors.

  16. The Antinociceptive and Antiinflammatory Properties of 3-furan-2-yl-N-p-tolyl-acrylamide, a Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptors in Mice

    PubMed Central

    Bagdas, Deniz; Targowska-Duda, Katarzyna M.; López, Jhon J.; Perez, Edwin G.; Arias, Hugo R.; Damaj, M. Imad

    2016-01-01

    BACKGROUND Positive allosteric modulators (PAMs) facilitate endogenous neurotransmission and/or enhance the efficacy of agonists without directly acting on the orthosteric binding sites. In this regard, selective α7 nicotinic acetylcholine receptor type II PAMs display antinociceptive activity in rodent chronic inflammatory and neuropathic pain models. This study investigates whether 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), a new putative α7-selective type II PAM, attenuates experimental inflammatory and neuropathic pains in mice. METHODS We tested the activity of PAM-2 after intraperitoneal administration in 3 pain assays: the carrageenan-induced inflammatory pain, the complete Freund adjuvant induced inflammatory pain, and the chronic constriction injury–induced neuropathic pain in mice. We also tested whether PAM-2 enhanced the effects of the selective α7 agonist choline in the mouse carrageenan test given intrathecally. Because the experience of pain has both sensory and affective dimensions, we also evaluated the effects of PAM-2 on acetic acid–induced aversion by using the conditioned place aversion test. RESULTS We observed that systemic administration of PAM-2 significantly reversed mechanical allodynia and thermal hyperalgesia in inflammatory and neuropathic pain models in a dose- and time-dependent manner without motor impairment. In addition, by attenuating the paw edema in inflammatory models, PAM-2 showed antiinflammatory properties. The antinociceptive effect of PAM-2 was inhibited by the selective competitive antagonist methyllycaconitine, indicating that the effect is mediated by α7 nicotinic acetylcholine receptors. Furthermore, PAM-2 enhanced the antiallodynic and antiinflammatory effects of choline, a selective α7 agonist, in the mouse carrageenan test. PAM-2 was also effective in reducing acetic acid induced aversion in the conditioned place aversion assay. CONCLUSIONS These findings suggest that the administration of PAM-2, a new α7

  17. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    SciTech Connect

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The results are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.

  18. Synthesis of imidacloprid derivatives with a chiral alkylated imidazolidine ring and evaluation of their insecticidal activity and affinity to the nicotinic acetylcholine receptor.

    PubMed

    Nishiwaki, Hisashi; Kuriyama, Mituhiro; Nagaoka, Hikaru; Kato, Akira; Akamatsu, Miki; Yamauchi, Satoshi; Shuto, Yoshihiro

    2012-11-01

    A series of imidacloprid (IMI) derivatives with an alkylated imidazolidine ring were asymmetrically synthesized to evaluate their insecticidal activity against adult female housefly, Musca domestica, and affinity to the nicotinic acetylcholine receptor of the flies. The bulkier the alkyl group, the lower was the receptor affinity, but the derivatives methylated and ethylated at the R-5-position of the imidazolidine ring were equipotent to the unsubstituted compound. Quantitative structure-activity relationship (QSAR) analysis of the receptor affinity demonstrated that the introduction of a substituent into the imidazolidine ring was fundamentally disadvantageous, but the introduction of a substituent at the R-5-position was permissible in the case of its small size. The binding model of the synthesized derivatives with the receptor supported the QSAR analysis, indicating the existence of space for a short alkyl group around the R-5-position in the ligand-binding site. In addition, positive correlation was observed between the insecticidal activity and receptor affinity, suggesting that the receptor affinity was the primary factor in influencing the insecticidal activity even if the imidazolidine ring was modified.

  19. Association of polymorphisms in nicotinic acetylcholine receptor alpha 4 subunit gene (CHRNA4), mu-opioid receptor gene (OPRM1), and ethanol-metabolizing enzyme genes with alcoholism in Korean patients.

    PubMed

    Kim, Soon Ae; Kim, Jong-Woo; Song, Ji-Young; Park, Sunny; Lee, Hee Jae; Chung, Joo-Ho

    2004-01-01

    Findings obtained from several studies indicate that ethanol enhances the activity of alpha4beta2 neuronal nicotinic acetylcholine receptor and support the possibility that a polymorphism of the nicotinic acetylcholine receptor alpha4 subunit gene (CHRNA4) modulates enhancement of nicotinic receptor function by ethanol. To identify the association between the CfoI polymorphism of the CHRNA4 and alcoholism, we examined distribution of genotypes and allele frequencies in Korean patients diagnosed with alcoholism (n = 127) and Korean control subjects without alcoholism (n = 185) with polymerase chain reaction-restriction fragment length polymorphism methods. We were able to detect the association between the CfoI polymorphism of the CHRNA4 and alcoholism in Korean patients (genotype P = .023; allele frequency P = .047). The genotypes and allele frequencies of known polymorphisms in other alcoholism candidate genes, such as alcohol metabolism-related genes [alcohol dehydrogenase 2 (ADH2), aldehyde dehydrogenase 2 (ALDH2), alcohol dehydrogenase 3 (ADH3), and cytochrome P450 2E1 (CYP2E1)] and mu-opioid receptor gene (OPRM1), were studied. The polymorphisms of ADH2, ALDH2, and CYP2E1 were significantly different in Korean patients with alcoholism and Korean control subjects without alcoholism, but ADH3 and OPRM1 did not differ between the two groups.

  20. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site.

    PubMed

    Shimomura, Masaru; Yokota, Maiko; Ihara, Makoto; Akamatsu, Miki; Sattelle, David B; Matsuda, Kazuhiko

    2006-10-01

    The insecticide imidacloprid and structurally related neonicotinoids act selectively on insect nicotinic acetylcholine receptors (nAChRs). To investigate the mechanism of neonicotinoid selectivity, we have examined the effects of mutations to basic amino acid residues in loop D of the nAChR acetylcholine (ACh) binding site on the interactions with imidacloprid. The receptors investigated are the recombinant chicken alpha4beta2 nAChR and Drosophila melanogaster Dalpha2/chicken beta2 hybrid nAChR expressed in Xenopus laevis oocytes. Although mutations of Thr77 in loop D of the beta2 subunit resulted in a barely detectable effect on the imidacloprid concentration-response curve for the alpha4beta2 nAChR, T77R;E79V double mutations shifted the curve dramatically to higher affinity binding of imidacloprid. Likewise, T77K;E79R and T77N;E79R double mutations in the Dalpha2beta2 nAChR also resulted in a shift to a higher affinity for imidacloprid, which exceeded that observed for a single mutation of Thr77 to basic residues. By contrast, these double mutations scarcely influenced the ACh concentration-response curve, suggesting selective interactions with imidacloprid of the newly introduced basic residues. Computational, homology models of the agonist binding domain of the wild-type and mutant alpha4beta2 and Dalpha2beta2 nAChRs with imidacloprid bound were generated based on the crystal structures of acetylcholine binding proteins of Lymnaea stagnalis and Aplysia californica. The models indicate that the nitro group of imidacloprid interacts directly with the introduced basic residues at position 77, whereas those at position 79 either prevent or permit such interactions depending on their electrostatic properties, thereby explaining the observed functional changes resulting from site-directed mutagenesis.

  1. Dorsal raphe nucleus acetylcholine-mediated neurotransmission modulates post-ictal antinociception: The role of muscarinic and nicotinic cholinergic receptors.

    PubMed

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Francisco; Falconi-Sobrinho, Luiz Luciano; Coimbra, Norberto Cysne

    2016-01-15

    The dorsal raphe nucleus (DRN) is a key structure of the endogenous pain inhibitory system. Although the DRN is rich in serotoninergic neurons, cholinergic neurons are also found in that nucleus. Both ictal and inter-ictal states are followed by post-ictal analgesia. The present study investigated the role of cholinergic mechanisms in postictal antinociceptive processes using microinjections of atropine and mecamylamine, muscarinic and nicotinic cholinergic receptor antagonists, respectively, in the DRN of rats. Intraperitoneal injection of pentylenetetrazole (PTZ) (at 64mg/kg) caused tonic and tonic-clonic seizures. The convulsive motor reactions were followed by an increase in pain thresholds, a phenomenon known as post-ictal analgesia. Pre-treatment of the DRN with atropine or mecamylamine at 1µg, 3µg and 5µg/0.2µL decreased the post-ictal antinociceptive phenomenon. The present results showed that the post-ictal analgesia was mediated by muscarinic and nicotinic cholinergic receptors in the DRN, a structure crucially involved in the neural network that organises post-ictal hypoalgesia.

  2. Untranslated region-dependent exclusive expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nicotinic acetylcholine receptors.

    PubMed

    Briggs, Clark A; Gubbins, Earl J; Marks, Michael J; Putman, C Brent; Thimmapaya, Rama; Meyer, Michael D; Surowy, Carol S

    2006-07-01

    alpha4beta2 nicotinic acetylcholine receptors (nAChRs) are recognized as the principal nicotine binding site in brain. Recombinant alpha4beta2 nAChR demonstrate biphasic concentration-response relationships with low- and high-EC50 components. This study shows that untranslated regions (UTR) can influence expression of high-sensitivity subforms of alpha4beta2 and alpha3beta2 nAChR. Oocytes injected with alpha4 and beta2 RNA lacking UTR expressed biphasic concentration-response relationships for acetylcholine with high-sensitivity EC50 values of 0.5 to 2.5 microM (14-24% of the population) and low-sensitivity EC50 values of 110 to 180 microM (76-86%). In contrast, message with UTR expressed exclusively the high-sensitivity alpha4beta2 nAChR subform with an acetylcholine EC50 value of 2.2 microM. Additional studies revealed pharmacological differences between high- and low-sensitivity alpha4beta2 subforms. Whereas the antagonists dihydro-beta-erythroidine (IC50 of 3-6 nM) and methyllycaconitine (IC50 of 40-135 nM) were not selective between high- and low-sensitivity alpha4beta2, chlorisondamine, mecamylamine, and d-tubocurarine were, respectively, 100-, 8-, and 5-fold selective for the alpha4beta2 subform with low sensitivity to acetylcholine. Conversely, agonists that selectively activated the high-sensitivity alpha4beta2 subform with respect to efficacy as well as potency were identified. Furthermore, two of these agonists were shown to activate mouse brain alpha4beta2 as well as the ferret high-sensitivity alpha4beta2 expressed in Xenopus laevis oocytes. With the use of UTR-containing RNA, exclusive expression of a novel high-sensitivity alpha3beta2 nAChR was also achieved. These studies 1) provide further evidence for the existence of multiple subforms of alpha4beta2 nAChR, 2) extend that to alpha3beta2 nAChR, 3) demonstrate UTR influence on beta2-containing nAChR properties, and 4) reveal compounds that interact with alpha4beta2 in a subform-selective manner.

  3. Effects of lipid-analog detergent solubilization on the functionality and lipidic cubic phase mobility of the Torpedo californica nicotinic acetylcholine receptor.

    PubMed

    Padilla-Morales, Luis F; Morales-Pérez, Claudio L; De La Cruz-Rivera, Pamela C; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A; Quesada, Orestes; Lasalde-Dominicci, José A

    2011-10-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β(2)-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.

  4. Nicotinic Acetylcholine Receptors Containing the α7-Like Subunit Mediate Contractions of Muscles Responsible for Space Positioning of the Snail, Helix pomatia L. Tentacle

    PubMed Central

    Kiss, Tibor; Krajcs, Nóra; Pirger, Zsolt; Hernádi, László

    2014-01-01

    Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh) responses in muscles to determine the properties of the ACh receptor (AChR), the functional availability of which was assessed using isotonic contraction measurement. Using broad spectrum of nicotinic and muscarinic ligands, we provide the evidence that contractions in the muscles are attributable to the activation of nAChRs that contain the α7-like subunit. Contractions could be evoked by nicotine, carbachol, succinylchloride, TMA, the selective α7-nAChR agonist choline chloride, 3-Bromocytisine and PNU-282987, and blocked by nAChR selective antagonists such as mytolon, hexamethonium, succinylchloride, d-tubocurarine, hemicholinium, DMDA (decamethonium), methyllycaconitine, α-Bungarotoxin (αBgTx) and α-Conotoxin IMI. The specific muscarinic agonist oxotremorine and arecoline failed to elicit contractions. Based on these pharmacological properties we conclude that the Na+ and Ca2+ permeable AChRs of the flexor muscle are nicotinic receptors that contain the α7-like subunit. Immunodetection experiments confirmed the presence of α7- or α7-like AChRs in muscle cells, and α4-AChRs in nerves innervating the muscle. These results support the conclusion that the slowly desensitizing αBgTx-sensitive responses obtained from flexor muscles are produced by activation of α7- like AChRs. This is the first demonstration of postsynaptic expression and an obligatory role for a functional α7-like nAChR in the molluscan periphery. PMID:25303328

  5. Cross-reactivity of acid-sensing ion channel and Na⁺-H⁺ exchanger antagonists with nicotinic acetylcholine receptors.

    PubMed

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-11-01

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.

  6. Nicotinic acetylcholine receptors containing the α7-like subunit mediate contractions of muscles responsible for space positioning of the snail, Helix pomatia L. tentacle.

    PubMed

    Kiss, Tibor; Krajcs, Nóra; Pirger, Zsolt; Hernádi, László

    2014-01-01

    Three recently discovered tentacle muscles are crucial to perform patterned movements of upper tentacles of the terrestrial snail, Helix pomatia. The muscles receive central and peripheral excitatory cholinergic innervation lacking inhibitory innervation. Here, we investigate the pharmacology of acetylcholine (ACh) responses in muscles to determine the properties of the ACh receptor (AChR), the functional availability of which was assessed using isotonic contraction measurement. Using broad spectrum of nicotinic and muscarinic ligands, we provide the evidence that contractions in the muscles are attributable to the activation of nAChRs that contain the α7-like subunit. Contractions could be evoked by nicotine, carbachol, succinylchloride, TMA, the selective α7-nAChR agonist choline chloride, 3-Bromocytisine and PNU-282987, and blocked by nAChR selective antagonists such as mytolon, hexamethonium, succinylchloride, d-tubocurarine, hemicholinium, DMDA (decamethonium), methyllycaconitine, α-Bungarotoxin (αBgTx) and α-Conotoxin IMI. The specific muscarinic agonist oxotremorine and arecoline failed to elicit contractions. Based on these pharmacological properties we conclude that the Na+ and Ca2+ permeable AChRs of the flexor muscle are nicotinic receptors that contain the α7-like subunit. Immunodetection experiments confirmed the presence of α7- or α7-like AChRs in muscle cells, and α4-AChRs in nerves innervating the muscle. These results support the conclusion that the slowly desensitizing αBgTx-sensitive responses obtained from flexor muscles are produced by activation of α7- like AChRs. This is the first demonstration of postsynaptic expression and an obligatory role for a functional α7-like nAChR in the molluscan periphery.

  7. Discovery of a potent and selective α3β4 nicotinic acetylcholine receptor antagonist from an α-conotoxin synthetic combinatorial library.

    PubMed

    Chang, Yi-Pin; Banerjee, Jayati; Dowell, Cheryl; Wu, Jinhua; Gyanda, Reena; Houghten, Richard A; Toll, Lawrence; McIntosh, J Michael; Armishaw, Christopher J

    2014-04-24

    α-Conotoxins are disulfide-rich peptide neurotoxins that selectively inhibit neuronal nicotinic acetylcholine receptors (nAChRs). The α3β4 nAChR subtype has been identified as a novel target for managing nicotine addiction. Using a mixture-based positional-scanning synthetic combinatorial library (PS-SCL) with the α4/4-conotoxin BuIA framework, we discovered a highly potent and selective α3β4 nAChR antagonist. The initial PS-SCL consisted of a total of 113 379 904 sequences that were screened for α3β4 nAChR inhibition, which facilitated the design and synthesis of a second generation library of 64 individual α-conotoxin derivatives. Eleven analogues were identified as α3β4 nAChR antagonists, with TP-2212-59 exhibiting the most potent antagonistic activity and selectivity over the α3β2 and α4β2 nAChR subtypes. Final electrophysiological characterization demonstrated that TP-2212-59 inhibited acetylcholine evoked currents in α3β4 nAChRs heterogeneously expressed in Xenopus laevis oocytes with a calculated IC50 of 2.3 nM and exhibited more than 1000-fold selectivity over the α3β2 and α7 nAChR subtypes. As such, TP-2212-59 is among the most potent α3β4 nAChRs antagonists identified to date and further demonstrates the utility of mixture-based combinatorial libraries in the discovery of novel α-conotoxin derivatives with refined pharmacological activity.

  8. Expression of Nicotinic Acetylcholine Receptor α4 and β2 Subunits on Direction-Selective Retinal Ganglion Cells in the Rabbit

    PubMed Central

    Lee, Jun-Seok; Kim, Hyun-Jin; Ahn, Chang-Hyun; Jeon, Chang-Jin

    2017-01-01

    The direction selectivity of the retina is a distinct mechanism that is critical function of eyes for survival. The direction-selective retinal ganglion cells (DS RGCs) strongly respond to a preferred direction, but rarely respond to opposite direction or null directional visual stimuli. The DS RGCs are sensitive to acetylcholine, which is secreted from starburst amacrine cells (SACs) to the DS RGCs. Here, we investigated the existence and distribution of the nicotinic acetylcholine receptor (nAChR) α4 and β2 subunits on the dendritic arbors of the DS RGCs in adult rabbit retina using immunocytochemistry. The DS RGCs were injected with Lucifer yellow to identify their dendritic morphology. The double-labeled