Science.gov

Sample records for nicotinic receptor ion

  1. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    PubMed

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  2. A hydrophobic gate in an ion channel: the closed state of the nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Beckstein, Oliver; Sansom, Mark S. P.

    2006-06-01

    The nicotinic acetylcholine receptor (nAChR) is the prototypic member of the 'Cys-loop' superfamily of ligand-gated ion channels which mediate synaptic neurotransmission, and whose other members include receptors for glycine, γ-aminobutyric acid and serotonin. Cryo-electron microscopy has yielded a three-dimensional structure of the nAChR in its closed state. However, the exact nature and location of the channel gate remains uncertain. Although the transmembrane pore is constricted close to its center, it is not completely occluded. Rather, the pore has a central hydrophobic zone of radius about 3 Å. Model calculations suggest that such a constriction may form a hydrophobic gate, preventing movement of ions through a channel. We present a detailed and quantitative simulation study of the hydrophobic gating model of the nicotinic receptor, in order to fully evaluate this hypothesis. We demonstrate that the hydrophobic constriction of the nAChR pore indeed forms a closed gate. Potential of mean force (PMF) calculations reveal that the constriction presents a barrier of height about 10 kT to the permeation of sodium ions, placing an upper bound on the closed channel conductance of 0.3 pS. Thus, a 3 Å radius hydrophobic pore can form a functional barrier to the permeation of a 1 Å radius Na+ ion. Using a united-atom force field for the protein instead of an all-atom one retains the qualitative features but results in differing conductances, showing that the PMF is sensitive to the detailed molecular interactions.

  3. The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily*

    PubMed Central

    Changeux, Jean-Pierre

    2012-01-01

    A critical event in the history of biological chemistry was the chemical identification of the first neurotransmitter receptor, the nicotinic acetylcholine receptor. Disciplines as diverse as electrophysiology, pharmacology, and biochemistry joined together in a unified and rational manner with the common goal of successfully identifying the molecular device that converts a chemical signal into an electrical one in the nervous system. The nicotinic receptor has become the founding father of a broad family of pentameric membrane receptors, paving the way for their identification, including that of the GABAA receptors. PMID:23038257

  4. Allosteric modulation of Torpedo nicotinic acetylcholine receptor ion channel activity by noncompetitive agonists.

    PubMed

    Maelicke, A; Coban, T; Storch, A; Schrattenholz, A; Pereira, E F; Albuquerque, E X

    1997-01-01

    Similar to other neuroreceptors of the vertebrate central nervous system, the nicotinic acetylcholine receptor (nAChR) is subject to modulatory control by allosterically acting ligands. Of particular interest in this regard are allosteric ligands that enhance the sensitivity of the receptor to its natural agonist acetylcholine (ACh), as such ligands could be useful as drugs in diseases associated with impaired nicotinic neurotransmission. Here we discuss the action of a novel class of nAChR ligands which act as allosterically potentiating ligands (APL) on the nicotinic responses induced by ACh and competitive agonists. In addition, APLs also act as noncompetitive agonists of very low efficacy, and as direct blockers of ACh-activated channels. These actions are observed with nAChRs from brain, muscle and electric tissue, and they depend on the structure of the APL and the concentration range applied. We focus here on Torpedo nAChR because (i) the unusual pharmacology of these ligands was first discovered with this system, and (ii) large quantities of this receptor are readily available for biochemical studies.

  5. Cross-reactivity of acid-sensing ion channel and Na+–H+ exchanger antagonists with nicotinic acetylcholine receptors

    PubMed Central

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na+–H+ exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. PMID:21911609

  6. Nicotinic receptors in addiction pathways.

    PubMed

    Leslie, Frances M; Mojica, Celina Y; Reynaga, Daisy D

    2013-04-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that consist of pentameric combinations of α and β subunits. These receptors are widely distributed throughout the brain and are highly expressed in addiction circuitry. The role of nAChRs in regulating neuronal activity and motivated behavior is complex and varies both in and among brain regions. The rich diversity of central nAChRs has hampered the characterization of their structure and function with use of classic pharmacological techniques. However, recent molecular approaches using null mutant mice with specific regional lentiviral re-expression, in combination with neuroanatomical and electrophysiological techniques, have allowed the elucidation of the influence of different nAChR types on neuronal circuit activity and behavior. This review will address the influence of nAChRs on limbic dopamine circuitry and the medial habenula-interpeduncular nucleus complex, which are critical mediators of reinforced behavior. Characterization of the mechanisms underlying regulation of addiction pathways by endogenous cholinergic transmission and by nicotine may lead to the identification of new therapeutic targets for treating tobacco dependence and other addictions.

  7. Nicotinic receptors, memory, and hippocampus.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.

  8. Neuronal Nicotinic Acetylcholine Receptors and Epilepsy

    PubMed Central

    Bertrand, Daniel

    2002-01-01

    The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the α4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function. PMID:15309115

  9. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction.

    PubMed

    Govind, Anitha P; Vezina, Paul; Green, William N

    2009-10-01

    A major hurdle in defining the molecular biology of nicotine addiction has been characterizing the different nicotinic acetylcholine receptor (nAChR) subtypes in the brain and how nicotine alters their function. Mounting evidence suggests that the addictive effects of nicotine, like other drugs of abuse, occur through interactions with its receptors in the mesolimbic dopamine system, particularly ventral tegmental area (VTA) neurons, where nicotinic receptors act to modulate the release of dopamine. The molecular identity of the nicotinic receptors responsible for drug seeking behavior, their cellular and subcellular location and the mechanisms by which these receptors initiate and maintain addiction are poorly defined. In this commentary, we review how nicotinic acetylcholine receptors (nAChRs) are upregulated by nicotine exposure, the potential posttranslational events that appear to cause it and how upregulation is linked to nicotine addiction.

  10. Direct action and modulating effect of (+)- and (-)-nicotine on ion channels expressed in trigeminal sensory neurons.

    PubMed

    Schreiner, Benjamin S P; Lehmann, Ramona; Thiel, Ulrike; Ziemba, Paul M; Beltrán, Leopoldo R; Sherkheli, Muhammad A; Jeanbourquin, Philippe; Hugi, Alain; Werner, Markus; Gisselmann, Günter; Hatt, Hanns

    2014-04-05

    Nicotine sensory perception is generally thought to be mediated by nicotinic acetylcholine (nACh) receptors. However, recent data strongly support the idea that other receptors (e.g., transient receptor potential A1 channel, TRPA1) and other pathways contribute to the detection mechanisms underlying the olfactory and trigeminal cell response to nicotine flavor. This is in accordance with the reported ability of humans to discriminate between (+)- and (-)- nicotine enantiomers. To get a more detailed understanding of the molecular and cellular basis underlying the sensory perception of nicotine, we studied the activity of (+)- and (-)-nicotine on cultured murine trigeminal sensory neurons and on a range of heterologously expressed receptors. The human TRPA1 channel is activated by (-)-nicotine. In this work, we show that (+)-nicotine is also an activator of this channel. Pharmacological experiments using nicotinic acetylcholine receptors and transient receptor potential blockers revealed that trigeminal neurons express one or more unidentified receptors that are sensitive to (+)- and/or (-)-nicotine. Results also indicate that the presence of extracellular calcium ions is required to elicit trigeminal neuron responses to (+)- and (-)-nicotine. Results also show that both (+)-nicotine and (-)-nicotine can block 5-hydroxytryptamine type 3 (5-HT3) receptor-mediated responses in recombinant expression systems and in cultured trigeminal neurons expressing 5-HT3 receptors. Our investigations broaden the spectra of receptors that are targets for nicotine enantiomers and give new insights into the physiological role of nicotine.

  11. Biophysical and ion channel functional characterization of the Torpedo californica nicotinic acetylcholine receptor in varying detergent-lipid environments

    PubMed Central

    Asmar-Rovira, Guillermo A.; Asseo-García, Aloysha M.; Quesada, Orestes; Hanson, Michael A.; Nogueras, Carlos; Lasalde-Dominicci, José A.; Stevens, Raymond C.

    2009-01-01

    The nicotinic acetylcholine receptor (nAChR) of Torpedo electric rays has been extensively characterized over the last three decades. However, the molecular mechanisms by which detergents influence membrane protein stability and function remain poorly understood, and elucidation of the dynamic detergent-lipid-protein interactions of solubilized membrane proteins is a largely unexplored research field. This study examined nine detergents upon nAChR solubilization and purification, to assess receptor lipid composition using GC (Gas Chromatography)-FID (Flame Ionization) and/or GC-MSD (Mass Selective Detectors), stability and aggregation state using A-SEC (Analytical Size-Exclusion Chromatography) and EM (Electron Microscopy), and planar lipid bilayers to measure ion channel function. Detergent solubilization of nAChR-enriched membranes did not result in significant native lipid depletion or destabilization. Upon purification, native lipid depletion occurred in all detergents, with lipid-analog detergents [CHAPS (3-[(3-Cholamidopropyl)-dimethylammonio]-1-propane sulfonate), FC-12 (n-Dodecylphosphocholine) and sodium cholate (3α,7α,12α-Trihydroxy-5β-cholan-24-oic acid)] maintaining stability and supporting ion channel function, while non-lipid analog detergents [Cymal-6 (6-Cyclohexyl-1-hexyl-β-d-maltoside), DDM (n-Dodecyl-β-d-maltopyranoside), LDAO (Lauryldimethylamine-N-oxide) and OG (n-Octyl-β-d-glucopyranoside)] showed decreased stability and significant reduction or loss of ion channel function. Anapoe-C12E9 (Polyoxyethylene-(9)-dodecyl ether) and BigCHAP (N,N′-bis-(3-d-Gluconamidopropyl) cholamide) retained residual amounts of native lipid, maintaining moderate stability and ion channel function when compared to lipid-analog detergents. Overall, these results show that the nAChR can be stable and functional in lipid-analog detergents or in detergents that retain moderate amounts of residual native lipids, while the opposite is true about non-lipid analog

  12. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  13. Neuronal nicotinic acetylcholine receptors are modulated by zinc.

    PubMed

    Vázquez-Gómez, Elizabeth; García-Colunga, Jesús

    2009-01-01

    It is known that zinc modulates nicotinic acetylcholine receptors (nAChRs). Here, we studied the effects of zinc on neuronal alpha4beta4 nAChRs, expressed in Xenopus oocytes and activated by nicotine. Membrane ion currents elicited by nicotine (10 nM to 100 microM) were enhanced by zinc (100 microM). Maximal zinc potentiation of the nicotine-activated current (2530%) occurred at 50 nM nicotine, and potentiation gradually decreased as the nicotine concentration increased. The EC(50) and IC(50) for the nicotine-activated current were 639 nM and 14.7 microM nicotine, respectively. Both parameters decreased in the presence of zinc to 160 nM and 4.6 microM, respectively, probably due to an increase of sensitivity of nAChRs for nicotine. We used different concentrations and durations of exposure to nicotine, due to desensitization of nAChRs directly depends on both these factors. With 500 nM nicotine and 20 min washing periods between nicotine applications, zinc potentiation remained constant, 901% for 2 min and 813% for 20 min of nicotine exposure. With continuous application of nicotine, zinc potentiation decreased as the time of nicotine exposure increased, 721% for 2 min and 254% for 48 min of nicotine exposure. Our results indicate that zinc-potentiating effects on alpha4beta4 nAChRs strongly depend on both concentration and time of exposure to nicotine, suggesting that zinc potentiation depends on the degree of desensitization.

  14. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking.

    PubMed

    Gamaleddin, Islam; Wertheim, Carrie; Zhu, Andy Z X; Coen, Kathleen M; Vemuri, Kiran; Makryannis, Alex; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence. © 2011 The

  15. Palmitoylation of Nicotinic Acetylcholine Receptors

    PubMed Central

    Alexander, J. K.; Govind, A. P.; Drisdel, R. C.; Blanton, M. P.; Vallejo, Y.; Lam, T. T.

    2012-01-01

    It is well established that nicotinic acetylcholine receptors (nAChRs) undergo a number of different post-translational modifications, such as disulfide bond formation, glycosylation, and phosphorylation. Recently, our laboratory has developed more sensitive assays of protein palmitoylation that have allowed us and others to detect the palmitoylation of relatively low abundant proteins such as ligand-gated ion channels. Here, we present evidence that palmitoylation is prevalent on many subunits of different nAChR subtypes, both muscle-type nAChRs and the neuronal “α4β2” and “α7” subtypes most abundant in brain. The loss of ligand binding sites that occurs when palmitoylation is blocked with the inhibitor bromopalmitate suggests that palmitoylation of α4β2 and α7 subtypes occurs during subunit assembly and regulates the formation of ligand binding sites. However, additional experiments are needed to test whether nAChR subunit palmitoylation is involved in other aspects of nAChR trafficking or whether palmitoylation regulates nAChR function. Further investigation would be aided by identifying the sites of palmitoylation on the subunits, and here we propose a mass spectrometry strategy for identification of these sites. PMID:19693711

  16. Nitrosamines as nicotinic receptor ligands.

    PubMed

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.

  17. Nitrosamines as nicotinic receptor ligands

    PubMed Central

    Schuller, Hildegard M.

    2007-01-01

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (α7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the α7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the a7nAChR and caused influx of Ca2+, activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the α7nAChR was enhanced when cells were maintained in an environment of 10–15% CO2 similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the α7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  18. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  19. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice.

    PubMed

    Changeux, Jean-Pierre

    2010-06-01

    The past decades have seen a revolution in our understanding of brain diseases and in particular of drug addiction. This has been largely due to the identification of neurotransmitter receptors and the development of animal models, which together have enabled the investigation of brain functions from the molecular to the cognitive level. Tobacco smoking, the principal - yet avoidable - cause of lung cancer is associated with nicotine addiction. Recent studies in mice involving deletion and replacement of nicotinic acetylcholine receptor subunits have begun to identify the molecular mechanisms underlying nicotine addiction and might offer new therapeutic strategies to treat this addiction.

  20. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    PubMed

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  1. [Desensitization of the nicotinic acetylcholine receptor].

    PubMed

    Quiñonez, M; Rojas, L

    1994-01-01

    In biological membranes, ionic channels act speeding up ion movements. Each ionic channel is excited by a specific stimulus (i.e. electric, mechanical, chemical, etc.). Chemically activated ionic channels (CAIC), such as the nicotinic acetylcholine receptor (nAChR), suffer desensitization when the receptor site is still occupied by the agonist molecule. The desensitized CAIC is a non functional channel state regarded as a particular case of receptors rundown. CAIC desensitization only involve reduced activity and not their membrane elimination. Desensitization is important to control synaptic transmission and the development of the nervous system. In this review we discuss results related to its production, modulation and some aspects associated to models that consider it. Finally, an approach combining molecular biology and electrophysiology techniques to understand desensitization and its importance in biological systems is presented.

  2. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  3. α7 nicotinic ACh receptors as a ligand-gated source of Ca2+ ions: the search for a Ca2+ optimum

    PubMed Central

    Uteshev, Victor V.

    2013-01-01

    The spatiotemporal distribution of cytosolic Ca2+ ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca2+ ions including ligand- and voltage-gated Ca2+ channels contribute to intracellular Ca2+ homeostasis. Many normal physiological and therapeutic neuronal functions are Ca2+-dependent, however an excess of cytosolic Ca2+ or a lack of the appropriate balance between Ca2+ entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca2+ elevations and thus, optimal activation of ligand- and voltage-gated Ca2+ ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic acetylcholine receptors (nAChRs) are highly permeable to Ca2+ ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca2+ influx and how this source of Ca2+ entry compares to NMDA receptors in supporting cytosolic Ca2+ homeostasis, neuronal function and survival. PMID:22453962

  4. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  5. Cross-reactivity of acid-sensing ion channel and Na⁺-H⁺ exchanger antagonists with nicotinic acetylcholine receptors.

    PubMed

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-11-01

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.

  6. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    PubMed

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  7. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    PubMed

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  8. Nicotine recruits glutamate receptors to postsynaptic sites.

    PubMed

    Duan, Jing-Jing; Lozada, Adrian F; Gou, Chen-Yu; Xu, Jing; Chen, Yuan; Berg, Darwin K

    2015-09-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.

  9. Nicotine Recruits Glutamate Receptors to Postsynaptic Sites

    PubMed Central

    Duan, Jing-jing; Lozada, Adrian F.; Gou, Chen-yu; Xu, Jing; Chen, Yuan; Berg, Darwin K.

    2015-01-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors. PMID:26365992

  10. CHARACTERIZATION OF NICOTINE ACETYLCHOLINE RECEPTOR SUBUNITS IN THE COCKROACH Periplaneta americana MUSHROOM BODIES REVEALS A STRONG EXPRESSION OF β1 SUBUNIT: INVOLVEMENT IN NICOTINE-INDUCED CURRENTS.

    PubMed

    Taillebois, Emiliane; Thany, Steeve H

    2016-09-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 μM α-bungarotoxin completely inhibited nicotine currents whereas 10 μM d-tubocurarine had a partial effect demonstrating that β1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.

  11. Nicotinic Receptor Fourth Transmembrane Domain

    PubMed Central

    Bouzat, Cecilia; Barrantes, Francisco; Sine, Steven

    2000-01-01

    The fourth transmembrane domain (M4) of the nicotinic acetylcholine receptor (AChR) contributes to the kinetics of activation, yet its close association with the lipid bilayer makes it the outermost of the transmembrane domains. To investigate mechanistic and structural contributions of M4 to AChR activation, we systematically mutated αT422, a conserved residue that has been labeled by hydrophobic probes, and evaluated changes in rate constants underlying ACh binding and channel gating steps. Aromatic and nonpolar mutations of αT422 selectively affect the channel gating step, slowing the rate of opening two- to sevenfold, and speeding the rate of closing four- to ninefold. Additionally, kinetic modeling shows a second doubly liganded open state for aromatic and nonpolar mutations. In contrast, serine and asparagine mutations of αT422 largely preserve the kinetics of the wild-type AChR. Thus, rapid and efficient gating of the AChR channel depends on a hydrogen bond involving the side chain at position 422 of the M4 transmembrane domain. PMID:10779322

  12. Nicotine effect on cardiovascular system and ion channels.

    PubMed

    Hanna, Salma Toma

    2006-03-01

    Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma.

  13. X-ray structure of the human α4β2 nicotinic receptor

    PubMed Central

    Morales-Perez, Claudio L.; Noviello, Colleen M.; Hibbs, Ryan E.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand gated ion channels that mediate fast chemical neurotransmission at the neuromuscular junction and play diverse signaling roles in the central nervous system. The nicotinic receptor has been a model system for cell surface receptors, and specifically for ligand-gated ion channels, for well over a century1,2. In addition to the receptors’ prominent roles in the development of the fields of pharmacology and neurobiology, nicotinic receptors are important therapeutic targets for neuromuscular disease, addiction, epilepsy, and for neuromuscular blocking agents used during surgery2–4. The overall architecture of the receptor was described in landmark studies of the nicotinic receptor isolated from the electric organ of Torpedo marmorata5. Structures of a soluble ligand binding domain have provided atomic-scale insights into receptor-ligand interactions6, while high-resolution structures of other members of the pentameric receptor superfamily provide touchstones for an emerging allosteric gating mechanism7. All available high-resolution structures are of homopentameric receptors. However, the vast majority of pentameric receptors (called Cys-loop receptors in eukaryotes) present physiologically are heteromeric. Here we present the X-ray crystallographic structure of the human α4β2 nicotinic receptor, the most abundant nicotinic subtype in the brain. This structure provides insights into the architectural principles governing ligand recognition, heteromer assembly, ion permeation and desensitization in this prototypical receptor class. PMID:27698419

  14. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    PubMed

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  15. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    PubMed Central

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  16. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  17. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions

    PubMed Central

    Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.

    2012-01-01

    Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217

  18. A model for the nicotinic acetylcholine receptor ion channel: structure of the transmembrane M2 segments as a pentameric assembly in a lipid bilayer

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Klein, Michael L.

    2003-03-01

    The nicotinic acetylcholine receptor (nAChR) is the neurotransmitter gated ion channel responsible for the fast propagation of electrical signals between cells at the nerve-muscle synapse and neurons. The current model for the pore region of the nAChR consists of a bundle of five M2 alpha helices, which is supported by recent solution and solid-state NMR spectroscopy experiments on micelle samples and oriented (DMPC) bilayers. In order to investigate the structure and properties of pore forming region of a simple model for the nAChR, we have performed a molecular dynamics simulation study of the homo-pentameric bundle of M2 peptides in a DMPC lipid bilayer at similar conditions to those of the NMR experiments. During the nanosecond time scale investigated, the peptide bundle adopts a left-handed supercoil structure and the calculated average tilt of the helices agrees well with the recent NMR data. The water filled bundle displays a funnel-like structure. We focuss on those aspects of the structure and dynamics relevant to the function of the channel.

  19. Nicotinic Receptor Polymorphism in Lung Cancer

    DTIC Science & Technology

    2013-10-01

    bronchial cells to the tobacco nitrosamine -induced carcinogenic transformation of human bronchial cells [1-2]. 15. SUBJECT TERMS nicotinic receptor...cells to the tobacco nitrosamine -induced carcinogenic transformation of human bronchial cells [1-2]. Body According to the Statement of Works

  20. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  1. Enhancement effects of nicotine on neurogenic relaxation responses in the corpus cavernosum in rabbits: the role of nicotinic acetylcholine receptor subtypes.

    PubMed

    Ozturk Fincan, Gokce Sevim; Vural, Ismail Mert; Ercan, Zeynep Sevim; Sarioglu, Yusuf

    2010-02-10

    Nicotine acts as an agonist of nicotinic acetylcholine receptors, which belong to a superfamily of neurotransmitter-gated ion channels. We previously demonstrated that nicotine increases the electrical field stimulation (EFS)-evoked nitrergic relaxation responses via activation of nicotinic acetylcholine receptors. The aim of the present study is to investigate the subtypes of nicotinic acetylcholine receptors in rabbit corpus cavernosum. EFS-evoked relaxation responses were recorded from corpus cavernosum strips obtained from rabbits with an isometric force displacement transducers. Effects of nicotine on EFS-evoked relaxations were examined in pre-contracted tissues. Then the effect of nicotine on the EFS-evoked relaxations was examined in the presence of hexamethonium, dihydro-beta-erythroidine, mecamylamine or alpha-bungarotoxin. In our study, nicotine (3 x 10(-5), 10(-4)) transiently increased nitrergic relaxations induced by EFS in the rabbit isolated corpus cavernosum. While hexamethonium and mecamylamine near totally inhibited or abolished the neurorelaxation response to nicotine (3 x 10(-5)) on EFS, dihydro-beta-erythroidine and alpha-bungarotoxin partially inhibited these responses. These findings demonstrated that the alpha3-beta4, alpha4-beta2 and alpha7 subunits of nicotinic acetylcholine receptors play role on the nicotine-induced augmentation in EFS-evoked relaxation responses in rabbit corpus cavernosum. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine.

    PubMed

    Dani, John A

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the "Cys-loop" superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain.

  3. Nicotinic acid receptor subtypes and their ligands.

    PubMed

    Soudijn, Willem; van Wijngaarden, Ineke; Ijzerman, Adriaan P

    2007-05-01

    Half a century ago, nicotinic acid (niacin) was introduced into the clinic as the first orally available drug to treat high cholesterol levels and to improve the balance between (V)low density lipoproteins (LDL) and high density lipoproteins (HDL). Remarkably, its putative mechanism of action has only been recently elucidated, particularly because of the cloning of a G protein-coupled receptor (HM74A or GPR109A). This receptor responds to both nicotinic acid and the ketone body beta-hydroxybutyrate, the latter thought to be the more probable endogenous ligand for HM74A. In this review, we will discuss the pharmacology and medicinal chemistry of this receptor subtype and a related one (HM74 or GPR109B). Although still in its infancy, the ligand repertoire is developing, and a number of compound classes have now been described, among which are both full and partial agonists. Antagonists, however, are still lacking, thus compromising thorough pharmacological studies. Mutagenesis experiments have provided clues regarding the ligand binding site; in particular, an arginine residue in transmembrane domain 3 of the receptor seems to recognize the acidic moiety present in nicotinic acid and related substances. HM74A has also been linked to one of the major side effects of nicotinic acid, that is, flushing, since this receptor subtype also occurs in skin immune cells. It is not known yet whether HM74 is also present on these cells. Since nicotinic acid is one of the few available medicines that raise HDL ("good cholesterol") levels, HM74A and HM74 appear promising targets for future pharmacotherapy. (c) 2006 Wiley Periodicals, Inc.

  4. Modulators of nicotinic acetylcholine receptors as analgesics.

    PubMed

    Jain, Kewal K

    2004-01-01

    The analgesic properties of nicotine have prompted attempts to develop compounds that specifically target nicotinic acetylcholine receptors (nAChRs) in the nervous system, with the beneficial effects of nicotine but without its side effects. Thus far, only nAChR agonists have been reported as being in development for pain, although nAChR antagonists could also have a potentially analgesic action. Various problems associated with the use of nAChR agonists as analgesics have been identified and measures suggested to overcome some of them. This review describes the nAChR agonists A-85380, tebanicline, ABT-366833, ABT-202, ABT-894, epibatidine analogs and SIB-1663, of which ABT-366833, ABT-202 and ABT-894 are currently undergoing development as pain therapeutics. In vivo studies of the pathomechanism of neuropathic pain indicate that targeting alpha3beta4 does not have a specific action on neuropathic pain, and that alpha3beta4 ligands cause side effects. On the other hand, alpha4beta2 receptors are specific for neuropathic pain, and ligands that bind preferentially to these receptors both effectively relieve pain and do not cause many adverse effects. This is the basis of the difference between the action of tebanicline, which binds with greater specificity to alpha3beta4 receptors, and ABT-366833, which binds more specifically to alpha4beta2 receptors.

  5. Trypanosoma evansi: pharmacological evidence of a nicotinic acetylcholine receptor.

    PubMed

    Portillo, R; Bruges, G; Delgado, D; Betancourt, M; Mijares, A

    2010-06-01

    The role of calcium and its relevance have been deeply revised with respect to trypanosomatids, as the mechanism by which calcium enters trypanosomes was, until now, not well understood. There is evidence supporting the presence of a nAChR in another member of the trypanosomatidae family, Trypanosoma cruzi, these receptors being one entry path to calcium ions. The aims of this work were to determine if there was a nicotinic acetylcholine receptor (nAChR) in Trypanosoma evansi, and to subsequently perform a partial pharmacological characterization of this receptor. After being loaded with FURA-2AM, individual cells of T. evansi, were exposed to cholinergic compounds, and the cells displayed a dose-dependent response to carbachol. This observation indicated that a cholinergic receptor may be present in T. evansi. Although a dose-dependent response to muscarine could not be demonstrated, nicotine could promote an incremental dose-dependent response. The relative potency of this specific agonist of nAChR is in agreement with previous reports. The estimated affinity values were a Kd1 value of 29.6+/-5.72 nM and a Kd2 value of 315.9+/-26.6 nM, which is similar to the Kd value reported for the alpha4 nicotinic receptor. The Hill coefficients were determined to be an n1 of 1.2+/-0.3 and an n2 of 4.2+/-1.3. Finally, our calculations indicated that there are about 1020 receptors in each T. evansi parasite, which is approximately 15-fold lower than the number reported in Torpedo californica electric cells. These results suggest the presence of a nAChR in T. evansi, which is able to bind nicotinic ligands and induce calcium signals. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. New quinoline derivatives as nicotinic receptor modulators.

    PubMed

    Manetti, Dina; Bellucci, Cristina; Dei, Silvia; Teodori, Elisabetta; Varani, Katia; Spirova, Ekaterina; Kudryavtsev, Denis; Shelukhina, Irina; Tsetlin, Victor; Romanelli, Maria Novella

    2016-03-03

    As a continuation of previous work on quinoline derivatives, which showed some preference (2-3 times) for the α7 with respect to α4β2 acetylcholine nicotinic receptors (nAChRs), we synthesized a series of novel azabicyclic or diazabicyclic compounds carrying a quinoline or isoquinoline ring, with the aim of searching for more selective α7 nAChR compounds. Radioligand binding studies on α7* and α4β2* nAChRs (rat brain homogenate) revealed one compound (7) with a 2-fold higher affinity for the α4β2*-subtype, and four compounds (11, 13, 14 and 16) with at least 3-fold higher affinity for α7* nAChR. The most promising was 11, showing Ki∼100 nM and over 10-fold selectivity for α7* nAChR. Compounds 7, 11, 13 and 16 at 50 μM suppressed ion currents induced in the rat α4β2 nAChR and the chimeric nAChR composed of the ligand-binding domain of the chick α7 and transmembrane domain of the α1 glycine receptor, expressed in Xenopus oocytes. Calcium imaging experiments on the human α7 nAChR expressed in the Neuro2a cells and potentiated by PNU-120596 confirmed the antagonistic activity for 7; on the contrary, 11, 13 and 16 were agonists with the EC50 values in the range of 1.0-1.6 μM. Thus, the introduced modifications allowed us to enhance the selectivity of quinolines towards α7 nAChR and to get novel compounds with agonistic activity.

  7. Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure.

    PubMed

    Polli, Joseph R; Dobbins, Dorothy L; Kobet, Robert A; Farwell, Mary A; Zhang, Baohong; Lee, Myon-Hee; Pan, Xiaoping

    2015-03-01

    Nicotine, the major psychoactive compound in tobacco, targets nicotinic acetylcholine receptors (nAChRs) and results in drug dependence. The nematode Caenorhabditis elegans' (C. elegans) genome encodes conserved and extensive nicotinic receptor subunits, representing a useful system to investigate nicotine-induced nAChR expressions in the context of drug dependence. However, the in vivo expression pattern of nAChR genes under chronic nicotine exposure has not been fully investigated. To define the role of nAChR genes involved in nicotine-induced locomotion changes and the development of tolerance to these effects, we characterized the locomotion behavior combining the use of two systems: the Worm Tracker hardware and the WormLab software. Our results indicate that the combined system is an advantageous alternative to define drug-dependent locomotion behavior in C. elegans. Chronic (24-h dosing) nicotine exposure at 6.17 and 61.7μM induced nicotine-dependent behaviors, including drug stimulation, tolerance/adaption, and withdrawal responses. Specifically, the movement speed of naïve worms on nicotine-containing environments was significantly higher than on nicotine-free environments, suggesting locomotion stimulation by nicotine. In contrast, the 24-h 6.17μM nicotine-treated worms exhibited significantly higher speeds on nicotine-free plates than on nicotine-containing plates. Furthermore significantly increased locomotion behavior during nicotine cessation was observed in worms treated with a higher nicotine concentration of 61.7μM. The relatively low locomotion speed of nicotine-treated worms on nicotine-containing environments also indicates adaption/tolerance of worms to nicotine following chronic nicotine exposure. In addition, this study provides useful information regarding the comprehensive in vivo expression profile of the 28 "core" nAChRs following different dosages of chronic nicotine treatments. Eleven genes (lev-1, acr-6, acr-7, acr-11, lev-8, acr

  8. Structure-activity relationship of reversible cholinesterase inhibitors: activation, channel blockade and stereospecificity of the nicotinic acetylcholine receptor-ion channel complex.

    PubMed

    Albuquerque, E X; Aracava, Y; Cintra, W M; Brossi, A; Schönenberger, B; Deshpande, S S

    1988-01-01

    1. We have shown that all cholinesterase (ChE) inhibitors, in addition to their well-known anti-ChE activity, have multiple effects on the nicotinic acetylcholine receptor-ion channel (AChR) macromolecule resulting from interactions with the agonist recognition site and with sites located at the ion channel component. Activation, competitive antagonism and different types of noncompetitive blockade occurring at similar concentration ranges and contributing in different proportions result in complex and somewhat unpredictable alterations in AChR function. The question is now raised as to how each effect of these compounds contributes to their antidotal property against organophosphorus (OP) poisoning, and what set of actions makes one reversible ChE inhibitor a better antidote. Many lines of evidence support the importance of direct interactions with various sites on the AChR: 1) morphological and toxicological studies with (+) physostigmine showed that anti-ChE activity is not essential to protect animals against toxicity by irreversible ChE inhibitors; 2) (-)physostigmine is far more effective against OP poisoning; 3) open channel blockers such as mecamylamine with no significant anti-ChE activity enhance the protective action of (-)physostigmine; 4) neostigmine, pyridostigmine, (-)physostigmine and (+)physostigmine showed qualitatively and quantitatively distinct toxicity and damage to endplate morphology and function. 2. In prophylaxis and during the very early phase of OP poisoning, carbamates, especially (-)physostigmine combined with mecamylamine and atropine, could protect almost 100% of the animals exposed to multiple lethal doses of OPs. Electrophysiological data showed that (-)physostigmine, among several reversible ChE inhibitors, showed greater potency in depressing both endplate current (EPC) peak amplitude and tau EPC. Therefore, concerning neuromuscular transmission, it seems that the higher the potency of a drug in reducing endplate permeability

  9. Nicotine trapping causes the persistent desensitization of alpha4beta2 nicotinic receptors expressed in oocytes.

    PubMed

    Jia, Li; Flotildes, Karen; Li, Maureen; Cohen, Bruce N

    2003-02-01

    To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.

  10. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  11. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  12. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  13. Nicotinic acetylcholine receptor from chick optic lobe.

    PubMed Central

    Norman, R I; Mehraban, F; Barnard, E A; Dolly, J O

    1982-01-01

    An alpha-bungarotoxin-sensitive nicotinic cholinergic receptor from chick optic lobe has been completely purified. Its standard sedimentation coefficient is 9.1 S. The value near 12 S reported for the related component from other brain regions can be reproduced when the initial extraction is by Triton X-100 (rather than Lubrol PX), but other protein is then complexed with it. A single subunit of apparent molecular weight 54,000 is detected, and this subunit is specifically labeled by bromo-[3H]acetylcholine, but only after disulfide reduction. The same size subunit likewise is labeled in the protein (purified similarly) from the rest of the chick brain which can also bind alpha-bungarotoxin and nicotinic ligands. Immunological crossreactivity is demonstrated between both of these proteins with an antiserum to pure acetylcholine receptor from skeletal muscle. The acetylcholine receptor from chick optic lobe and the alpha-bungarotoxin-binding protein from the rest of the brain appear similar or identical by a series of criteria and are related to (but with differences from) peripheral acetylcholine receptors. Images PMID:6175967

  14. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  15. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  16. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  17. Nicotine and Nicotinic Receptor Drugs: Potential for Parkinson's Disease and Drug-Induced Movement Disorders.

    PubMed

    Quik, Maryka; Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A

    2015-01-01

    Parkinson's disease is a progressive neurodegenerative disorder associated with tremor, rigidity, and bradykinesia, as well as nonmotor symptoms including autonomic impairments, olfactory dysfunction, sleep disturbances, depression, and dementia. Although the major neurological deficit is a loss of nigrostriatal dopaminergic neurons, multiple neurotransmitters systems are compromised in Parkinson's disease. Consistent with this observation, dopamine replacement therapy dramatically improves Parkinson's disease motor symptoms. Additionally, drugs targeting the serotonergic, glutamatergic, adenosine, and other neurotransmitter systems may be beneficial. Recent evidence also indicates that nicotinic cholinergic drugs may be useful for the management of Parkinson's disease. This possibility initially arose from the results of epidemiological studies, which showed that smoking was associated with a decreased incidence of Parkinson's disease, an effect mediated in part by the nicotine in smoke. Further evidence for this idea stemmed from preclinical studies which showed that nicotine administration reduced nigrostriatal damage in parkinsonian rodents and monkeys. In addition to a potential neuroprotective role, emerging work indicates that nicotinic receptor drugs improve the abnormal involuntary movements or dyskinesias that arise as a side effect of l-dopa treatment, the gold standard therapy for Parkinson's disease. Both nicotine and nicotinic receptor drugs reduced l-dopa-induced dyskinesias by over 50% in parkinsonian rodent and monkey models. Notably, nicotine also attenuated the abnormal involuntary movements or tardive dyskinesias that arise with antipsychotic treatment. These observations, coupled with reports that nicotinic receptor drugs have procognitive and antidepressant effects, suggest that central nervous system (CNS) nicotinic receptors may represent useful targets for the treatment of movement disorders.

  18. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  19. Nicotine Dependence Reveals Distinct Responses from Neurons and Their Resident Nicotinic Receptors in Medial Habenula

    PubMed Central

    Shih, Pei-Yu; McIntosh, J. Michael

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are the molecular target of nicotine. nAChRs in the medial habenula (MHb) have recently been shown to play a role in nicotine dependence, but it is not clear which nAChR subtypes or MHb neuron types are most important. To identify MHb nAChRs and/or cell types that play a role in nicotine dependence, we studied these receptors and cells with brain slice electrophysiology using both acute and chronic nicotine application. Cells in the ventroinferior (MHbVI) and ventrolateral MHb (MHbVL) subregions expressed functional nAChRs with different pharmacology. Further, application of nicotine to cells in these subregions led to different action potential firing patterns. The latter result was correlated with a differing ability of nicotine to induce nAChR desensitization. Chronic nicotine caused functional upregulation of nAChRs selectively in MHbVI cells, but did not change nAChR function in MHbVL. Importantly, firing responses were also differentially altered in these subregions following chronic nicotine. MHbVI neurons treated chronically with nicotine exhibited enhanced basal pacemaker firing but a blunted nicotine-induced firing response. MHbVL neurons did not change their firing properties in response to chronic nicotine. Together, these results suggest that acute and chronic nicotine differentially affect nAChR function and output of cells in MHb subregions. Because the MHb extensively innervates the interpeduncular nucleus, an area critical for both affective and somatic signs of withdrawal, these results could reflect some of the neurophysiological changes thought to occur in the MHb to the interpeduncular nucleus circuit in human smokers. PMID:26429939

  20. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    PubMed

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Deletion of α5 nicotine receptor subunits abolishes nicotinic aversive motivational effects in a manner that phenocopies dopamine receptor antagonism.

    PubMed

    Grieder, Taryn E; George, Olivier; Yee, Mandy; Bergamini, Michael A; Chwalek, Michal; Maal-Bared, Geith; Vargas-Perez, Hector; van der Kooy, Derek

    2017-07-01

    Nicotine addiction is a worldwide epidemic that claims millions of lives each year. Genetic deletion of α5 nicotinic acetylcholine receptor (nAChR) subunits has been associated with increased nicotine intake, however, it remains unclear whether acute nicotine is less aversive or more rewarding, and whether mice lacking the α5 nAChR subunit can experience withdrawal from chronic nicotine. We used place conditioning and conditioned taste avoidance paradigms to examine the effect of α5 subunit-containing nAChR deletion (α5 -/-) on conditioned approach and avoidance behaviour in nondependent and nicotine-dependent and -withdrawn mice, and compared these motivational effects with those elicited after dopamine receptor antagonism. We show that nondependent α5 -/- mice find low, non-motivational doses of nicotine rewarding, and do not show an aversive conditioned response or taste avoidance to higher aversive doses of nicotine. Furthermore, nicotine-dependent α5 -/- mice do not show a conditioned aversive motivational response to withdrawal from chronic nicotine, although they continue to exhibit a somatic withdrawal syndrome. These effects phenocopy those observed after dopamine receptor antagonism, but are not additive, suggesting that α5 nAChR subunits act in the same pathway as dopamine and are critical for the experience of nicotine's aversive, but not rewarding motivational effects in both a nondependent and nicotine-dependent and -withdrawn motivational state. Genetic deletion of α5 nAChR subunits leads to a behavioural phenotype that exactly matches that observed after antagonizing dopamine receptors, thus we suggest that modulation of nicotinic receptors containing α5 subunits may modify dopaminergic signalling, suggesting novel therapeutic treatments for smoking cessation. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function

    PubMed Central

    Cohen, Gary; Roux, Jean-Christophe; Grailhe, Régis; Malcolm, Girvan; Changeux, Jean-Pierre; Lagercrantz, Hugo

    2005-01-01

    We investigated the role played by β2-containing neuronal nicotinic receptors [nicotinic acetylcholine receptors (nAChRs)] in mediating nicotine's side effects in the fetus and newborn. Pregnant WT and mutant mice lacking the β2 nAChR subunit were implanted with osmotic minipumps that delivered either water or a controlled dose of nicotine. Subsequently, we compared the development of the sympathoadrenal system and breathing and arousal reflexes of offspring shortly after birth, a period of increased vulnerability to nicotine exposure. Newborn WT pups exposed to nicotine exhibited all of the deficits associated with maternal tobacco and nicotine use, and linked to poor neonatal outcome: growth restriction, unstable breathing, and impaired arousal and catecholamine biosynthesis. Remarkably similar deficits were detected in pups lacking β2-containing nAChRs. Loss-of-function of these nAChRs consequently reproduces with astonishing fidelity many of the abnormalities caused by perinatal nicotine exposure. We propose that the underlying mechanisms of nicotine's detrimental side effects on a range of crucial defensive reflexes involve loss of function of nAChR subtypes, possibly via activity-dependent desensitization. PMID:15738419

  3. The therapeutic promise of positive allosteric modulation of nicotinic receptors

    PubMed Central

    Uteshev, Victor V.

    2014-01-01

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, the nicotinic-PAM-based treatments are expected to be highly efficacious with fewer side effects as compared to a more indiscriminate action of exogenous orthosteric agonists. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs. PMID:24530419

  4. Nicotinic acetylcholine receptors at the single-channel level.

    PubMed

    Bouzat, Cecilia; Sine, Steven M

    2017-03-05

    Over the past four decades, the patch clamp technique and nicotinic ACh (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding ACh released from nerves and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique towards understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets. © 2017 The British Pharmacological Society.

  5. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  6. The therapeutic promise of positive allosteric modulation of nicotinic receptors.

    PubMed

    Uteshev, Victor V

    2014-03-15

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, nicotinic-PAM-based treatments are expected to augment the endogenous cholinergic tone in a spatially and temporally restricted manner creating the potential for differential efficacy and improved safety as compared to exogenous orthosteric nicotinic agonists that activate nicotinic receptors indiscriminately. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs.

  7. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  8. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine.

    PubMed

    Fenster, C P; Whitworth, T L; Sheffield, E B; Quick, M W; Lester, R A

    1999-06-15

    It is hypothesized that desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) induced by chronic exposure to nicotine initiates upregulation of nAChR number. To test this hypothesis directly, oocytes expressing alpha4beta2 receptors were chronically incubated (24-48 hr) in nicotine, and the resulting changes in specific [3H]nicotine binding to surface receptors on intact oocytes were compared with functional receptor desensitization. Four lines of evidence strongly support the hypothesis. (1) The half-maximal nicotine concentration necessary to produce desensitization (9.7 nM) was the same as that needed to induce upregulation (9.9 nM). (2) The concentration of [3H]nicotine for half-maximal binding to surface nAChRs on intact oocytes was also similar (11.1 nM), as predicted from cyclical desensitization models. (3) Functional desensitization of alpha3beta4 receptors required 10-fold higher nicotine concentrations, and this was mirrored by a 10-fold shift in concentrations necessary for upregulation. (4) Mutant alpha4beta2 receptors that do not recover fully from desensitization, but not wild-type channels, were upregulated after acute (1 hr) applications of nicotine. Interestingly, the nicotine concentration required for half-maximal binding of alpha4beta2 receptors in total cell membrane homogenates was 20-fold lower than that measured for surface nAChRs in intact oocytes. These data suggest that cell homogenate binding assays may not accurately reflect the in vivo desensitization affinity of surface nAChRs and may account for some of the previously reported differences in the efficacy of nicotine for inducing nAChR desensitization and upregulation.

  9. Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses

    PubMed Central

    Miwa, Julie M.; Freedman, Robert; Lester, Henry A.

    2015-01-01

    Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson’s disease, cognitive decline, epilepsy, and schizophrenia. PMID:21482353

  10. Nicotine promotes cell migration through alpha7 nicotinic acetylcholine receptor in gastric cancer cells.

    PubMed

    Lien, Yung-Chang; Wang, Weu; Kuo, Li-Jen; Liu, Jun-Jen; Wei, Po-Li; Ho, Yuan-Soon; Ting, Wen-Chien; Wu, Chih-Hsiung; Chang, Yu-Jia

    2011-09-01

    The objective was to study the mechanism of nicotine-enhanced migration of gastric cancer cells. Long-term cigarette smoking increases the risk of gastric cancer mortality. Tobacco-specific mitogen, nicotine, was reported to correlate with cancer progression on gastric cancer. Since metastasis is the major cause of cancer death, the influence of nicotine on the migration of gastric cancer cells remains to be determined. The influence of nicotine on migration of gastric cancer cells was evaluated by transwell assay and wound-healing migration assay. Receptor-mediated migration was studied by both inhibitor and small interfering RNA. Alpha7 nicotinic acetylcholine receptor, alpha7-nAChR, was identified in gastric cancer cell lines, AGS cells. Nicotine enhanced AGS cell migration in transwell assay and wound-healing migration assay in a dose-dependent manner. We used inhibitor and siRNA to demonstrate that alpha7-nAChR mediated nicotine-enhanced gastric cancer cell migration through downregulation E-cadherin and upregulation ZEB-1 and snail. Tobacco-specific mitogen, nicotine, enhanced gastric cancer metastasis through alpha7-nAChR and suppression of E-cadherin level-one of the hallmarks of epithelial to mesenchymal transition. Therefore, patients with gastric cancer should avoid smoking.

  11. Modulation of nicotinic acetylcholine receptors by strychnine

    PubMed Central

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  12. Cellular nicotinic receptor desensitization correlates with nicotine-induced acute behavioral tolerance in rats.

    PubMed

    Robinson, Susan E; Vann, Robert E; Britton, Angela F; O'Connell, Mary M; James, John R; Rosecrans, John A

    2007-05-01

    Individuals vary in their susceptibility to nicotine addiction. However, there is little evidence that behavioral sensitivity to nicotine is dependent upon the functional state of nicotinic cholinergic receptors (nAChRs). This study aims to determine the relationship between in vivo behavioral desensitization and in vitro desensitization of nAChR function. Male Sprague-Dawley rats trained to discriminate nicotine were tested for development of acute behavioral tolerance. The rats were injected with nicotine (0.4 mg/kg free base, s.c.), tested for nicotine discrimination for 2 min, then injected with the same dose of nicotine 90, 180, and 270 min after the first injection and tested for nicotine discrimination after each injection. Susceptibility of nAChRs of individual rats to desensitization was assessed by use of the (86)Rb(+) efflux assay using synaptosomes prepared from the "thalamus," which included the hypothalamus and midbrain as well as the thalamic nuclei. To desensitize nAChRs, synaptsosomes were superfused with low concentrations of nicotine (5, 10, 20, and 30 nM) before stimulation of (86)Rb(+) efflux with nicotine (10 muM). The slopes of the behavioral desensitization were plotted as a function of the decline of nicotine-stimulated (86)Rb(+) efflux after in vitro desensitization. A significant correlation was observed between the in vitro desensitization of thalamic (86)Rb(+) efflux and the extent of behavioral desensitization of individual rats. These findings are consistent with the idea that production of acute behavioral tolerance by nicotine is related to its ability to induce nAChR desensitization at the cellular level.

  13. Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors.

    PubMed

    Pang, Xueyan; Liu, Liwang; Ngolab, Jennifer; Zhao-Shea, Rubing; McIntosh, J Michael; Gardner, Paul D; Tapper, Andrew R

    2016-08-01

    Cholinergic neurons in the medial habenula (MHb) modulate anxiety during nicotine withdrawal although the molecular neuroadaptation(s) within the MHb that induce affective behaviors during nicotine cessation is largely unknown. MHb cholinergic neurons are unique in that they robustly express neuronal nicotinic acetylcholine receptors (nAChRs), although their behavioral role as autoreceptors in these neurons has not been described. To test the hypothesis that nAChR signaling in MHb cholinergic neurons could modulate anxiety, we expressed novel "gain of function" nAChR subunits selectively in MHb cholinergic neurons of adult mice. Mice expressing these mutant nAChRs exhibited increased anxiety-like behavior that was alleviated by blockade with a nAChR antagonist. To test the hypothesis that anxiety induced by nicotine withdrawal may be mediated by increased MHb nicotinic receptor signaling, we infused nAChR subtype selective antagonists into the MHb of nicotine naïve and withdrawn mice. While antagonists had little effect on nicotine naïve mice, blocking α4β2 or α6β2, but not α3β4 nAChRs in the MHb alleviated anxiety in mice undergoing nicotine withdrawal. Consistent with behavioral results, there was increased functional expression of nAChRs containing the α6 subunit in MHb neurons that also expressed the α4 subunit. Together, these data indicate that MHb cholinergic neurons regulate nicotine withdrawal-induced anxiety via increased signaling through nicotinic receptors containing the α6 subunit and point toward nAChRs in MHb cholinergic neurons as molecular targets for smoking cessation therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  15. Mixed nicotinic-muscarinic properties of the alpha9 nicotinic cholinergic receptor.

    PubMed

    Verbitsky, M; Rothlin, C V; Katz, E; Elgoyhen, A B

    2000-10-01

    The rat alpha9 nicotinic acetylcholine receptor (nAChR) was expressed in Xenopus laevis oocytes and tested for its sensitivity to a wide variety of cholinergic compounds. Acetylcholine (ACh), carbachol, choline and methylcarbachol elicited agonist-evoked currents, giving maximal or near maximal responses. Both the nicotinic agonist suberyldicholine as well as the muscarinic agonists McN-A-343 and methylfurtrethonium behaved as weak partial agonists of the receptor. Most classical cholinergic compounds tested, being either nicotinic (nicotine, epibatidine, cytisine, methyllycaconitine, mecamylamine, dihydro-beta-erythroidine), or muscarinic (muscarine, atropine, gallamine, pilocarpine, bethanechol) agonists and antagonists, blocked the recombinant alpha9 receptor. Block by nicotine, epibatidine, cytisine, methyllycaconitine and atropine was overcome at high ACh concentrations, suggesting a competitive type of block. The present results indicate that alpha9 displays mixed nicotinic-muscarinic features that resemble the ones described for the cholinergic receptor of cochlear outer hair cells (OHCs). We suggest that alpha9 contains the structural determinants responsible for the pharmacological properties of the native receptor.

  16. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  17. Neuronal nicotinic receptors as targets for novel analgesics.

    PubMed

    Vincler, Michelle

    2005-10-01

    The potential use of nicotinic acetylcholine receptor agonists has been the subject of a number of recent reviews. Despite the promises of better things to come, few new compounds have been identified that circumvent the issues hindering the widespread use of the previously described nicotinic analgesics, mainly a narrow therapeutic window between analgesic efficacy and toxicity, and a lack of knowledge of native nicotinic acetylcholine receptor expression. However, several recent developments have potentially opened new windows of opportunity in the use of nicotinic agents for analgesia. A small number of laboratories have reported that peripheral nerve injury alters the pharmacology of nicotinic receptors, resulting in a leftward shift of analgesic potency but not of toxicity. Another important development in the pathophysiology of neuropathic pain is the reliance of nerve injury-induced behavioural hypersensitivity on both peripheral and central neural immune interactions. Finally, the reported neuroprotective effects of nicotine following spinal cord injury may provide an opportunity for the development of selective nicotinic agonists that are capable of attenuating chronic pain. The current review will attempt to highlight these recent developments and outline key findings that demonstrate further opportunity for the development of nicotinic agonists as novel analgesics.

  18. Roles of nicotinic acetylcholine receptor β subunits in function of human α4-containing nicotinic receptors

    PubMed Central

    Wu, Jie; Liu, Qiang; Yu, Kewei; Hu, Jun; Kuo, Yen-Ping; Segerberg, Marsha; St John, Paul A; Lukas, Ronald J

    2006-01-01

    Naturally expressed nicotinic acetylcholine receptors (nAChR) containing α4 subunits (α4*-nAChR) in combination with β2 subunits (α4β2-nAChR) are among the most abundant, high-affinity nicotine binding sites in the mammalian brain. β4 subunits are also richly expressed and colocalize with α4 subunits in several brain regions implicated in behavioural responses to nicotine and nicotine dependence. Thus, α4β4-nAChR also may exist and play important functional roles. In this study, properties were determined of human α4β2- and α4β4-nAChR heterologously expressed de novo in human SH-EP1 epithelial cells. Whole-cell currents mediated via human α4β4-nAChR have ∼4-fold higher amplitude than those mediated via human α4β2-nAChR and exhibit much slower acute desensitization and functional rundown. Nicotinic agonists induce peak whole-cell current responses typically with higher functional potency at α4β4-nAChR than at α4β2-nAChR. Cytisine and lobeline serve as full agonists at α4β4-nAChR but are only partial agonists at α4β2-nAChR. However, nicotinic antagonists, except hexamethonium, have comparable affinities for functional α4β2- and α4β4-nAChR. Whole-cell current responses show stronger inward rectification for α4β2-nAChR than for α4β4-nAChR at a positive holding potential. Collectively, these findings demonstrate that human nAChR β2 or β4 subunits can combine with α4 subunits to generate two forms of α4*-nAChR with distinctive physiological and pharmacological features. Diversity in α4*-nAChR is of potential relevance to nervous system function, disease, and nicotine dependence. PMID:16825297

  19. Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice.

    PubMed

    Stoker, Astrid K; Marks, Michael J; Markou, Athina

    2015-04-15

    The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of β2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using β2 nACh receptor subunit knockout (β2(-/-)) and wildtype (β2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated β2(+/+) mice compared with saline-treated β2(+/+) mice and nicotine-treated β2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing β2(+/+) mice compared with saline-treated β2(+/+) and nicotine-treated β2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in β2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in β2(-/-) mice may have resulted from the lack of neuroadaptations in β2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished

  20. Binding of HIV-1 gp120 to the nicotinic receptor.

    PubMed

    Bracci, L; Lozzi, L; Rustici, M; Neri, P

    1992-10-19

    We previously described a significant sequence homology between HIV-1 gp120 and the functional sites responsible for the specific binding of snake curare-mimetic neurotoxins and rabies virus glycoprotein to the nicotinic acetylcholine receptor. Here we report findings about the existence of a mechanism of functional molecular mimicry which could enable the binding of HIV-1 gp120 to nicotinic acetylcholine receptors in muscle cells and neurons.

  1. Nicotine is highly effective at producing desensitization of rat α4β2 neuronal nicotinic receptors

    PubMed Central

    Paradiso, K G; Steinbach, Joe Henry

    2003-01-01

    We examined desensitization by acetylcholine (ACh) and nicotine at the rat α4β2 neuronal nicotinic receptor stably expressed in HEK cells. For both agonists, the decay in response due to desensitization (‘onset’) was best fitted by the sum of two exponentials with the fast component dominant at concentrations > 1 μm. The time constants for onset were similar for both agonists, and showed little concentration dependence over the range of 0.1–100 μm. Recovery from desensitization also showed two exponential components. In contrast to the similarity in onset, nicotine produced longer lasting desensitization, resulting from an increase in the proportion of receptors in the slowly recovering population and from an increase in the time constant for the slow recovery process. The proportion of receptors in the slowly recovering population increased as the duration of the desensitizing pulse increased. Desensitization was also induced by low concentrations of agonist, with no apparent macroscopic response. A 100 s application of 10 nm nicotine desensitized 70 % of the peak response, while 100 s of 10 nm ACh desensitized only 15 %. At higher concentrations of agonist, which result in a macroscopic response, desensitization in the absence of activation also can occur. Nicotine is a very potent and efficacious desensitizing agent at this neuronal nicotinic receptor. PMID:14555718

  2. Schizophrenia and the alpha7 nicotinic acetylcholine receptor.

    PubMed

    Martin, Laura F; Freedman, Robert

    2007-01-01

    In addition to the devastating symptoms of psychosis, many people with schizophrenia also suffer from cognitive impairment. These cognitive symptoms lead to marked dysfunction and can impact employability, treatment adherence, and social skills. Deficits in P50 auditory gating are associated with attentional impairment and may contribute to cognitive symptoms and perceptual disturbances. This nicotinic cholinergic-mediated inhibitory process represents a potential new target for therapeutic intervention in schizophrenia. This chapter will review evidence implicating the nicotinic cholinergic, and specifically, the alpha7 nicotinic receptor system in the pathology of schizophrenia. Impaired auditory sensory gating has been linked to the alpha7 nicotinic receptor gene on the chromosome 15q14 locus. A majority of persons with schizophrenia are heavy smokers. Although nicotine can acutely reverse diminished auditory sensory gating in people with schizophrenia, this effect is lost on a chronic basis due to receptor desensitization. The alpha7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can also enhance auditory sensory gating in animal models. DMXBA is well tolerated in humans and a new study in persons with schizophrenia has found that DMXBA enhances both P50 auditory gating and cognition. alpha7 Nicotinic acetylcholine receptor agonists appear to be viable candidates for the treatment of cognitive disturbances in schizophrenia.

  3. Cholinergic Axons Modulate GABAergic Signaling among Hippocampal Interneurons via Postsynaptic α7 Nicotinic Receptors

    PubMed Central

    Wanaverbecq, Nicolas; Semyanov, Alexey; Pavlov, Ivan; Walker, Matthew C.; Kullmann, Dimitri M.

    2010-01-01

    Homopentameric α7 nicotinic receptors have a high affinity for acetylcholine (ACh), are permeable to Ca2+ ions, and are abundant in hippocampal interneurons. Although nicotinic agonists evoke inward currents and Ca2+ transients in stratum radiatum interneurons, the role of endogenous ACh in modulating synaptic integration by interneurons is incompletely understood. Many cholinergic axonal varicosities do not have postsynaptic specializations, but α7 receptors frequently occur close to synaptic GABAA receptors. These observations raise the possibility that α7 nicotinic receptors activated by ACh released from cholinergic axons modulate GABAergic transmission in interneurons. We show that agonists of α7 receptors profoundly depress GABAergic IPSCs recorded in stratum radiatum interneurons in the CA1 region of the hippocampus. This depression is accompanied by a small increase in GABA release. α7 nicotinic receptor agonists also depress GABA- or muscimol-evoked currents in interneurons, indicating that the major effect is a postsynaptic modulation of GABAA receptors. The depression of GABA-evoked currents is abolished by chelating Ca2+ in the recorded interneuron and attenuated by inhibitors of PKC. We also show that stimuli designed to release endogenous ACh from cholinergic axons evoke an α7 receptor-dependent heterosynaptic depression of GABAergic IPSCs in interneurons. This heterosynaptic modulation is amplified by blocking cholinesterases. These results reveal a novel mechanism by which cholinergic neurons modulate information processing in the hippocampus. PMID:17522313

  4. Acetylcholine nicotinic receptor subtypes in chromaffin cells.

    PubMed

    Criado, Manuel

    2017-08-08

    In the adrenal gland, acetylcholine released on stimulation of the sympathetic splanchnic nerve activates neuronal-type nicotinic receptors (nAChRs) in chromaffin cells and triggers catecholamine secretion. At least two subtypes of nAChRs have been described in bovine chromaffin cells. The main subtype, a heteromeric assembly of α3, β4 and perhaps α5 subunits, is involved in the activation step of the catecholamine secretion process and is not blocked by the snake toxin α-bungarotoxin. The other is α-bungarotoxin-sensitive, and its functional role has not yet been well defined. The α7 subunit conforms the homomeric structure of this subtype. All nAChR subunits share the same molecular organization and structural data at atomic resolution level are now available for some homomeric and heteromeric ensembles. The α3, β4 and α5 subunits are clustered in genomes of different species, with the transcription factor Sp1 playing a co-ordinating role in the transcriptional regulation of these three subunits. The transcription factor Egr-1 controls the differential expression of α7 nAChR in adrenergic chromaffin cells, as happens with the enzyme phenylethanolamine N-methyl transferase. For unknown reasons, whole cell currents observed in bovine chromaffin cells clearly differ of the ones observed when different combinations of subunit RNAs are injected in oocytes. In addition to the typical nicotinic ligands, a variety of unrelated substances with clinical relevance can target nAChRs in chromaffin cells and, therefore, affect catecholamine secretion. They can act as agonists, antagonists or allosteric modulators.

  5. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.

    PubMed

    Beene, Darren L; Brandt, Gabriel S; Zhong, Wenge; Zacharias, Niki M; Lester, Henry A; Dougherty, Dennis A

    2002-08-13

    A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.

  6. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors

    PubMed Central

    Tolu, Stefania; Marti, Fabio; Morel, Carole; Perrier, Carole; Torquet, Nicolas; Pons, Stephanie; de Beaurepaire, Renaud; Faure, Philippe

    2017-01-01

    Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2−/− and β4−/− mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2−/− and β4−/− mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs. PMID:28332590

  7. Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine.

    PubMed

    Grottick, A J; Trube, G; Corrigall, W A; Huwyler, J; Malherbe, P; Wyler, R; Higgins, G A

    2000-09-01

    Neuronal nicotinic receptors are comprised of combinations of alpha(2-9) and beta(2-4) subunits arranged to form a pentameric receptor. Currently, the principal central nervous system (CNS) subtypes are believed to be alpha(4)beta(2) and a homomeric alpha(7) receptor, although other combinations almost certainly exist. The identity of the nicotinic receptor subtype(s) involved in the rewarding effects of nicotine are unknown. In the present study, using some recently described subtype selective nicotinic agonists and antagonists, we investigated the role of the alpha(7) nicotinic receptor in the mediation of nicotine-induced hyperactivity and self-administration in rats. The alpha(7) receptor agonists AR-R 17779 and DMAC failed to stimulate locomotor activity in both nicotine-nontolerant and -sensitized rats. In contrast, nicotine and the putative alpha(4)beta(2) subtype selective agonist SIB1765F increased activity in both experimental conditions. In nicotine-sensitized rats, the high affinity (including the alpha(4)beta(2) subtype) nicotinic antagonist dihydro-beta-erythroidine (DHbetaE), but not the selective alpha(7) antagonist methyllycaconitine (MLA), antagonized a nicotine-induced hyperactivity. Similarly, DHbetaE, but not MLA, pretreatment reduced nicotine self-administration. Electrophysiology experiments using Xenopus oocytes expressing the human alpha(7) receptor confirmed AR-R 17779 and DMAC to be potent agonists at this site, and further studies demonstrated the ability of systemically administered AR-R 17779 to penetrate into the CNS. Taken together, these results indicate a negligible role of alpha(7) receptors in nicotine-induced hyperlocomotion and reward in the rat, and support the view for an involvement of a member from the high-affinity nicotinic receptor subclass, possibly alpha(4)beta(2). Issues such as drug potency, CNS penetration, and desensitization of the alpha(7) receptor are discussed.

  8. Baclofen-induced antinociception and nicotinic receptor mechanism(s).

    PubMed

    Sabetkasai, M; Ahang, S; Shafaghi, B; Zarrindast, M R

    1999-11-01

    In this study, the influences of nicotinic receptor agents on baclofen-induced antinociception in the tail-flick test have been studied. Intraperitoneal administration of baclofen (2.5, 5 and 10 mg/kg) to mice induced a dose-dependent antinociception in the tail-flick test. Subcutaneous injection of nicotine (0.5-2.5 mg/kg) also caused a dose-dependent antinociceptive response. Intracerebral (10 and 20 microg/mouse) but not intraperitoneal administration of hexamethonium (5 and 10 mg/kg) to mice decreased the response of both nicotine and baclofen. However, administration of the GABA(B) antagonist CGP 35348 (100 and 200 mg/kg) decreased the response induced by baclofen but not by nicotine. It is concluded that at least part of the baclofen-induced antinociception may be mediated through a nicotinic mechanism.

  9. Nicotinic alpha5 subunit deletion locally reduces high-affinity agonist activation without altering nicotinic receptor numbers.

    PubMed

    Brown, Robert W B; Collins, Allan C; Lindstrom, Jon M; Whiteaker, Paul

    2007-10-01

    Neuronal nicotinic acetylcholine receptor subunit alpha5 mRNA is widely expressed in the CNS. An alpha5 gene polymorphism has been implicated in behavioral differences between mouse strains, and alpha5-null mutation induces profound changes in mouse acute responses to nicotine. In this study, we have examined the distribution and prevalence of alpha5* nicotinic acetylcholine receptor in mouse brain, and quantified the effects of alpha5-null mutation on pre-synaptic nicotinic acetylcholine receptor function (measured using synaptosomal (86)Rb(+) efflux) and overall [(125)I]epibatidine binding site expression. alpha5* nicotinic acetylcholine receptor expression was found in nine of fifteen regions examined, although < 20% of the total nicotinic acetylcholine receptor population in any region contained alpha5. Deletion of the alpha5 subunit gene resulted in localized loss of function (thalamus, striatum), which was itself confined to the DHbetaE-sensitive receptor population. No changes in receptor expression were seen. Consequently, functional changes must occur as a result of altered function per unit of receptor. The selective depletion of high agonist activation affinity sites results in overall nicotinic function being reduced, and increases the overall agonist activation affinity. Together, these results describe the receptor-level changes underlying altered behavioral responses to nicotine in nicotinic acetylcholine receptor alpha5 subunit-null mutants.

  10. Prenatal nicotine increases pulmonary α7 nicotinic receptor expression and alters fetal lung development in monkeys

    PubMed Central

    Sekhon, Harmanjatinder S.; Jia, Yibing; Raab, Renee; Kuryatov, Alexander; Pankow, James F.; Whitsett, Jeffrey A.; Lindstrom, Jon; Spindel, Eliot R.

    1999-01-01

    It is well established that maternal smoking during pregnancy is a leading preventable cause of low birth weight and prematurity. Less appreciated is that maternal smoking during pregnancy is also associated with alterations in pulmonary function at birth and greater incidence of respiratory illnesses after birth. To determine if this is the direct result of nicotine interacting with nicotinic cholinergic receptors (nAChRs) during lung development, rhesus monkeys were treated with 1 mg/kg/day of nicotine from days 26 to 134 of pregnancy. Nicotine administration caused lung hypoplasia and reduced surface complexity of developing alveoli. Immunohistochemistry and in situ α-bungarotoxin (αBGT) binding showed that α7 nAChRs are present in the developing lung in airway epithelial cells, cells surrounding large airways and blood vessels, alveolar type II cells, free alveolar macrophages, and pulmonary neuroendocrine cells (PNEC). As detected both by immunohistochemistry and by αBGT binding, nicotine administration markedly increased α7 receptor subunit expression and binding in the fetal lung. Correlating with areas of increased α7 expression, collagen expression surrounding large airways and vessels was significantly increased. Nicotine also significantly increased numbers of type II cells and neuroendocrine cells in neuroepithelial bodies. These findings demonstrate that nicotine can alter fetal monkey lung development by crossing the placenta to interact directly with nicotinic receptors on non-neuronal cells in the developing lung, and that similar effects likely occur in human infants whose mothers smoke during pregnancy. J. Clin. Invest. 103:637–647 (1999) PMID:10074480

  11. Involvement of neuronal β2 subunit-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal: Implications for pharmacotherapies

    PubMed Central

    Simmons, Steven J.; Gould, Thomas J.

    2015-01-01

    SUMMARY What is known and objective Tobacco smoking remains a major health problem. Nicotine binds to nicotinic acetylcholine receptors (nAChRs), which can cause addiction and withdrawal symptoms upon cessation of nicotine administration. Pharmacotherapies for nicotine addiction target brain alterations that underlie withdrawal symptoms. This review will delineate the involvement of the β2 subunit of neuronal nAChRs in nicotine reward and in generating withdrawal symptoms to better understand the efficacy of smoking cessation pharmacotherapies. Comment Chronic nicotine desensitizes and upregulates β2 subunit-containing nAChRs, and the prolonged upregulation of receptors may underlie symptoms of withdrawal. Experimental research has demonstrated that the β2 subunit of neuronal nAChRs is necessary for generating nicotine reward and withdrawal symptoms. What is new and conclusion Smoking cessation pharmacotherapies act on β2 subunit-containing nAChRs to reduce nicotine reward and withdrawal symptom severity. PMID:24828779

  12. The nicotinic acetylcholine receptor: smoking and Alzheimer's disease revisited.

    PubMed

    Mehta, Mona; Adem, Abdu; Kahlon, Maninder S; Sabbagh, Marwan N

    2012-01-01

    Epidemiological studies regarding Alzheimer's disease (AD) in smokers currently suggest inconsistent results. The clinicopathological findings also vary as to how AD pathology is affected by smoking behavior. Even though clinicopathological, functional, and epidemiological studies in humans do not present a consistent picture, much of the in vitro data implies that nicotine has neuroprotective effects when used in neurodegenerative disorder models. Current studies of the effects of nicotine and nicotinic agonists on cognitive function in both the non-demented and those with AD are not convincing. More data is needed to determine whether repetitive activation of nAChR with intermittent or acute exposure to nicotine, acute activation of nAChR, or long-lasting inactivation of nAChR secondary to chronic nicotine exposure will have a therapeutic effect and/or explain the beneficial effects of those types of drugs. Other studies show multifaceted connections between nicotine, nicotinic agonists, smoking, and nAChRs implicated in AD etiology. Although many controversies still exist, ongoing studies are revealing how nicotinic receptor changes and functions may be significant to the neurochemical, pathological, and clinical changes that appear in AD.

  13. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor.

    PubMed

    Tong, Fan; Gross, Aaron D; Dolan, Marc C; Coats, Joel R

    2013-07-01

    The phenolic monoterpenoid carvacrol, which is found in many plant essential oils (thyme, oregano and Alaska yellow cedar), is highly active against pest arthropods, but its mechanisms of action are not fully understood. Here, carvacrol is shown to bind in a membrane preparation containing insect nicotinic acetylcholine receptors (nAChRs). [(14) C]-Nicotine binding assays with Musca domestica (housefly) nAChRs were used in this study to demonstrate carvacrol's binding to nAChRs, thereby acting as a modulator of the receptors. Carvacrol showed a concentration-dependent inhibition of [(14) C]-nicotine binding in a membrane preparation of housefly heads containing nAChRs, with IC50 = 1.4 μM, in a non-competitive pattern. Binding studies with neonicotinoid insecticides revealed that imidacloprid and thiamethoxam did not inhibit the binding of [(14) C]-nicotine, while dinotefuran, from the guanidine subclass of neonicotinoids, inhibited nicotine binding like carvacrol. Carvacrol binds to housefly nAChRs at a binding site distinct from nicotine and acetylcholine, and the nAChRs are a possible target of carvacrol for its insecticidal activity. © 2012 Society of Chemical Industry.

  14. Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence.

    PubMed

    Castañé, A; Valjent, E; Ledent, C; Parmentier, M; Maldonado, R; Valverde, O

    2002-10-01

    Cannabis is the most widely consumed illicit drug and its consumption is currently associated with tobacco, which contains another psychoactive compound, namely nicotine. Interactions between cannabinoids and other drugs of abuse, such as opioids, have been previously reported. The aim of the present study was to evaluate the possible role of CB1 cannabinoid receptor in responses induced by acute and repeated nicotine administration by using knockout mice lacking the CB1 cannabinoid receptor and their wild-type littermates. Acute nicotine (0.5, 1, 3 and 6 mg/kg, sc) administration decreased locomotor activity and induced antinociceptive responses in the tail-immersion and the hot-plate test, in wild-type animals. The antinociceptive effects in the tail-immersion test were significantly enhanced in CB1 knockout mice. In wild-type mice nicotine (0.5 mg/kg, sc) produced a significant rewarding effect, as measured by a conditioned place preference paradigm. This response was absent in CB1 knockout mice. Finally, a model of mecamylamine-induced abstinence in chronic nicotine-treated mice (10 mg/kg/day, sc) was developed. Mecamylamine (1 and 2 mg/kg, sc) precipitated several somatic signs of nicotine withdrawal in wild-type dependent mice. However, no difference in the severity of nicotine withdrawal was observed in CB1 knockout mice. These results demonstrate that some acute effects and motivational responses elicited by nicotine can be modulated by the endogenous cannabinoid system and support the existence of a physiological interaction between these two systems.

  15. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.

    PubMed

    White, Sean H; Carter, Christopher J; Magoski, Neil S

    2014-07-15

    Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.

  16. Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus.

    PubMed

    Rodrigues, Ricardo J; Almeida, Teresa; Díaz-Hernández, Miguel; Marques, Joana M; Franco, Rafael; Solsona, Carles; Miras-Portugal, María Teresa; Ciruela, Francisco; Cunha, Rodrigo A

    2016-06-01

    Previous studies documented a cross-talk between purinergic P2X (P2XR) and nicotinic acetylcholine receptors (nAChR) in heterologous expression systems and peripheral preparations. We now investigated if this occurred in native brain preparations and probed its physiological function. We found that P2XR and nAChR were enriched in hippocampal terminals, where both P2X1-3R and α3, but not α4, nAChR subunits were located in the active zone and in dopamine-β-hydroxylase-positive hippocampal terminals. Notably, P2XR ligands displaced nAChR binding and nAChR ligands displaced P2XR binding to hippocampal synaptosomes. In addition, a negative P2XR/nAChR cross-talk was observed in the control of the evoked release of noradrenaline from rat hippocampal synaptosomes, characterized by a less-than-additive facilitatory effect upon co-activation of both receptors. This activity-dependent cross-inhibition was confirmed in Xenopus oocytes transfected with P2X1-3Rs and α3β2 (but not α4β2) nAChR. Besides, P2X2 co-immunoprecipitated α3β2 (but not α4β2) nAChR, both in HEK cells and rat hippocampal membranes indicating that this functional interaction is supported by a physical association between P2XR and nAChR. Moreover, eliminating extracellular ATP with apyrase in hippocampal slices promoted the inhibitory effect of the nAChR antagonist tubocurarine on noradrenaline release induced by high- but not low-frequency stimulation. Overall, these results provide integrated biochemical, pharmacological and functional evidence showing that P2X1-3R and α3β2 nAChR are physically and functionally interconnected at the presynaptic level to control excessive noradrenergic terminal activation upon intense synaptic firing in the hippocampus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Binding of tropane alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sporer, F; Sauerwein, M; Wink, M

    1995-07-01

    Fourteen tropane and related alkaloids were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. The biogenetic intermediates littorine, 6 beta-hydroxyhyoscyamine, 7 beta-hydroxyhyoscyamine exhibit similar affinities at the muscarinic receptor as scopolamine and atropine. The quarternary derivatives N-methylatropine and N-methylscopolamine show the highest binding with IC50 values of less than 100 pM and 300 pM, respectively. The tropane alkaloids (including cocaine) also bind to the nicotinic acetylcholine receptor, albeit with much lower affinities.

  18. Nicotine-induced activation of soluble adenylyl cyclase participates in ion transport regulation in mouse tracheal epithelium.

    PubMed

    Hollenhorst, Monika I; Lips, Katrin S; Kummer, Wolfgang; Fronius, Martin

    2012-11-27

    Functional nicotinic acetylcholine receptors (nAChR) have been identified in airway epithelia and their location in the apical and basolateral membrane makes them targets for acetylcholine released from neuronal and non-neuronal sources. One function of nAChR in airway epithelia is their involvement in the regulation of transepithelial ion transport by activation of chloride and potassium channels. However, the mechanisms underlying this nicotine-induced activation of ion transport are not fully elucidated. Thus, the aim of this study was to investigate the involvement of adenylyl cyclases in the nicotine-induced ion current in mouse tracheal epithelium. To evaluate the nicotine-mediated changes of transepithelial ion transport processes electrophysiological Ussing chamber measurements were applied and nicotine-induced ion currents were recorded in the absence and presence of adenylyl cyclase inhibitors. The ion current changes induced by nicotine (100 μM, apical) were not altered in the presence of high doses of atropine (25 μM, apical and basolateral), underlining the involvement of nAChR. Experiments with the transmembrane adenylyl cyclase inhibitor 2'5'-dideoxyadenosine (50 μM, apical and basolateral) and the soluble adenylyl cyclase inhibitor KH7 (10 μM, apical and basolateral) both reduced the nicotine-mediated ion current to a similar extent. Yet, a statistically significant reduction was obtained only in the experiments with KH7. This study indicates that nicotine binding to nAChR in mouse tracheal epithelium activates transepithelial ion transport involving adenylyl cyclase activity. This might be important for novel therapeutic strategies targeting epithelial ion transport mediated by the non-neuronal cholinergic system. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Actions of octocoral and tobacco cembranoids on nicotinic receptors.

    PubMed

    Ferchmin, P A; Pagán, Oné R; Ulrich, Henning; Szeto, Ada C; Hann, Richard M; Eterović, Vesna A

    2009-12-15

    Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies.

  20. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.

    PubMed

    Papke, Roger L; Kem, William R; Soti, Ferenc; López-Hernández, Gretchen Y; Horenstein, Nicole A

    2009-05-01

    Nicotinic receptor activation is inextricably linked to desensitization. This duality affects our ability to develop useful therapeutics targeting nicotinic acetylcholine receptor (nAChR). Nicotine and some alpha7-selective experimental partial agonists produce a transient activation of alpha7 receptors followed by a period of prolonged residual inhibition or desensitization (RID). The object of the present study was to determine whether RID was primarily due to prolonged desensitization or due to channel block. To make this determination, we used agents that varied significantly in their production of RID and two alpha7-selective positive allosteric modulators (PAMs): 5-hydroxyindole (5HI), a type 1 PAM that does not prevent desensitization; and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), a type 2 PAM that reactivates desensitized receptors. The RID-producing compounds nicotine and 3-(2,4-dimethoxybenzylidene)anabaseine (diMeOBA) could obscure the potentiating effects of 5HI. However, through the use of nicotine, diMeOBA, and the RID-negative compound 3-(2,4-dihydroxybenzylidene)anabaseine (diOHBA) in combination with PNU-120596, we confirmed that diMeOBA produces short-lived channel block of alpha7 but that RID is because of the induction of a desensitized state that is stable in the absence of PNU-120596 and activated in the presence of PNU-120596. In contrast, diOHBA produced channel block but only readily reversible desensitization, whereas nicotine produced desensitization that could be converted into activation by PNU-120596 but no demonstrable channel block. Steady-state currents through receptors that would otherwise be desensitized could also be produced by the application of PNU-120596 in the presence of a physiologically relevant concentration of choline (60 microM), which may be significant for the therapeutic development of type 2 PAMs.

  1. Varenicline attenuates nicotine-enhanced brain-stimulation reward by activation of α4β2 nicotinic receptors in rats

    PubMed Central

    Spiller, Krista; Xi, Zheng-Xiong; Li, Xia; Ashby, Charles R.; Callahan, Patrick M.; Tehim, Ashok; Gardner, Eliot L.

    2009-01-01

    Varenicline, a partial α4β2 and full α7 nicotinic receptor agonist, has been shown to inhibit nicotine self-administration and nicotine-induced increases in extracellular dopamine in the nucleus accumbens. In the present study, we investigated whether varenicline inhibits nicotine-enhanced electrical brain-stimulation reward (BSR), and if so, which receptor subtypes are involved. Systemic administration of nicotine (0.25–1.0 mg/kg, i.p.) or varenicline (0.03–3 mg/kg, i.p.) produced biphasic effects, with low doses producing enhancement (e.g., decreased BSR threshold), and high doses inhibiting BSR. Pretreatment with low dose (0.03–1.0 mg/kg) varenicline dose-dependently attenuated nicotine (0.25 or 0.5 mg/kg)-enhanced BSR. The BSR-enhancing effect produced by varenicline was blocked by mecamylamine (a high affinity nicotinic receptor antagonist) or dihydro-β-erythroidine (a relatively selective nicotinic α4-containing receptor antagonist), but not methyllycaconitine (a selective α7 receptor antagonist), suggesting an effect mediated by activation of α4β2 receptors. This suggestion is supported by findings that the α4β2 receptor agonist SIB-1765F produced a dose-dependent enhancement of BSR, while pretreatment with SIB-1765F attenuated nicotine (0.5 mg/kg)-enhanced BSR. In contrast, the selective α7 receptor agonist ARR-17779, altered neither BSR itself nor nicotine-enhanced BSR, at any dose tested. These findings suggest that: 1) varenicline inhibits nicotine-enhanced BSR, supporting its use as a smoking cessation aid; and 2) varenicline-enhanced BSR by itself and varenicline's anti-nicotine effects are mediated by activation of α4β2, but not α7, receptors. PMID:19393252

  2. Negative allosteric modulation of nicotinic acetylcholine receptors blocks nicotine self-administration in rats.

    PubMed

    Yoshimura, Ryan F; Hogenkamp, Derk J; Li, Wen Y; Tran, Minhtam B; Belluzzi, James D; Whittemore, Edward R; Leslie, Frances M; Gee, Kelvin W

    2007-12-01

    Drugs that antagonize nicotinic acetylcholine receptors (nAChRs) can be used to inhibit nicotine-induced behavior in both humans and animals. The aim of our experiments is to establish a proof-of-principle that antagonism of nAChRs by negative allosteric modulation can alter behavior in a relevant animal model of addiction, nicotine self-administration. We have identified a novel, negative allosteric modulator of nAChRs, UCI-30002 [N-(1,2,3,4-tetrahydro-1-naphthyl)-4-nitroaniline], with selectivity for the major neuronal nAChR subtypes over muscle-type nAChRs. After systemic administration, UCI-30002 significantly reduces nicotine self-administration in rats on both fixed ratio and progressive ratio schedules of reinforcement. The minimum effective dose that significantly alters nicotine self-administration corresponds to brain concentrations of UCI-30002 that produce at least 30% inhibition of the major neuronal nAChR subtypes measured in vitro. UCI-30002 has no effect on responding for food reinforcement in rats on either type of schedule, indicating that there is no effect on general responding or natural reward. UCI-30002 represents validation of the concept that negative allosteric modulators may have significant benefits as a strategy for treating nicotine addiction and encourages the development of subtype-selective modulators.

  3. Nicotine Accelerates Atherosclerosis in Apolipoprotein E-Deficient Mice by Activating α7 Nicotinic Acetylcholine Receptor on Mast Cells.

    PubMed

    Wang, Chen; Chen, Han; Zhu, Wei; Xu, Yinchuan; Liu, Mingfei; Zhu, Lianlian; Yang, Fan; Zhang, Ling; Liu, Xianbao; Zhong, Zhiwei; Zhao, Jing; Jiang, Jun; Xiang, Meixiang; Yu, Hong; Hu, Xinyang; Lu, Hong; Wang, Jian'an

    2017-01-01

    Cigarette smoking is an independent risk factor for atherosclerosis. Nicotine, the addictive component of cigarettes, induces mast cell (MC) release and contributes to atherogenesis. The purpose of this study was to determine whether nicotine accelerates atherosclerosis through MC-mediated mechanisms and whether MC stabilizer prevents this pathological process. Nicotine administration increased the size of atherosclerotic lesions in apolipoprotein E-deficient (Apoe(-/-)) mice fed a fat-enriched diet. This was accompanied by enhanced intraplaque macrophage content and lipid deposition but reduced collagen and smooth muscle cell contents. MC deficiency in Apoe(-/-) mice (Apoe(-/-)Kit(W-sh/W-sh)) diminished nicotine-induced atherosclerosis. Nicotine activated bone marrow-derived MCs in vitro, which was inhibited by a MC stabilizer disodium cromoglycate or a nonselective nicotinic acetylcholine receptor blocker mecamylamine. Further investigation revealed that α7 nicotinic acetylcholine receptor was a target for nicotine activation in MCs. Nicotine did not change atherosclerotic lesion size of Apoe(-/-)Kit(W-sh/W-sh) mice reconstituted with MCs from Apoe(-/-)α7nAChR(-/-) animals. Activation of α7 nicotinic acetylcholine receptor on MCs is a mechanism by which nicotine enhances atherosclerosis. © 2016 American Heart Association, Inc.

  4. Nicotinic modulation of neuronal networks: from receptors to cognition.

    PubMed

    Mansvelder, Huibert D; van Aerde, Karlijn I; Couey, Jonathan J; Brussaard, Arjen B

    2006-03-01

    Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and functional magnetic resonance imaging studies. In this review, we will address aspects of nAChR functioning as well as synaptic and cellular modulation important for nicotinic impact on neuronal networks that ultimately underlie its effects on cognition. Although we will focus on general mechanisms, an emphasis will be put on attention behavior and nicotinic modulation of prefrontal cortex. In addition, we will discuss how nicotinic effects at the neuronal level could be related to its effects on the cognitive level through the study of electrical oscillations as observed in EEGs and brain slices. Very little is known about mechanisms of how nAChR activation leads to a modification of electrical oscillation frequencies in EEGs. The results of studies using pharmacological interventions and transgenic animals implicate some nAChR types in aspects of cognition, but neuronal mechanisms are only poorly understood. We are only beginning to understand how nAChR distribution in neuronal networks impacts network functioning. Unveiling receptor and neuronal mechanisms important for nicotinic modulation of cognition will be instrumental for treatments of human disorders in which cholinergic signaling have been implicated, such as schizophrenia, attention deficit/hyperactivity disorder, and addiction.

  5. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  6. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans

    PubMed Central

    Saccone, Nancy L.; Schwantes-An, Tae-Hwi; Wang, Jen C.; Grucza, Richard A.; Breslau, Naomi; Hatsukami, Dorothy; Johnson, Eric O.; Rice, John P.; Goate, Alison M.; Bierut, Laura J.

    2010-01-01

    Several independent studies show that the chromosome 15q25.1 region, which contains the CHRNA5-CHRNA3-CHRNB4 gene cluster, harbors variants strongly associated with nicotine dependence, other smoking behaviors, lung cancer, and chronic obstructive pulmonary disease. We investigated whether variants in other cholinergic nicotinic receptor subunit (CHRN) genes affect risk for nicotine dependence in a new sample of African-Americans (N = 710). We also analyzed this African-American sample together with a European-American sample (N=2062, 1608 of which have been previously studied), allowing for differing effects in the two populations. Cases are current nicotine-dependent smokers and controls are non-dependent smokers. Variants in or near CHRND-CHRNG, CHRNA7, and CHRNA10 show modest association with nicotine dependence risk in the African-American sample. In addition, CHRNA4, CHRNB3-CHRNA6, and CHRNB1 show association in at least one population. CHRNG and CHRNA4 harbor SNPs that have opposite directions of effect in the two populations. In each of the population samples, these loci substantially increase the trait variation explained, although no loci meet Bonferroni-corrected significance in the African-American sample alone. The trait variation explained by three key associated SNPs in CHRNA5-CHRNA3-CHRNB4 is 1.9% in European-Americans and also 1.9% in African-Americans; this increases to 4.5% in EAs and 7.3% in AAs when we add six variants representing associations at other CHRN genes. Multiple nicotinic receptor subunit genes outside of chromosome 15q25 are likely to be important in the biological processes and development of nicotine dependence, and some of these risks may be shared across diverse populations. PMID:20584212

  7. Neurotransmitter GABA activates muscle but not α7 nicotinic receptors.

    PubMed

    Dionisio, Leonardo; Bergé, Ignacio; Bravo, Matías; Esandi, María Del Carmen; Bouzat, Cecilia

    2015-01-01

    Cys-loop receptors are neurotransmitter-activated ion channels involved in synaptic and extrasynaptic transmission in the brain and are also present in non-neuronal cells. As GABAA and nicotinic receptors (nAChR) belong to this family, we explored by macroscopic and single-channel recordings whether the inhibitory neurotransmitter GABA has the ability to activate excitatory nAChRs. GABA differentially activates nAChR subtypes. It activates muscle nAChRs, with maximal peak currents of about 10% of those elicited by acetylcholine (ACh) and 15-fold higher EC50 with respect to ACh. At the single-channel level, the weak agonism is revealed by the requirement of 20-fold higher concentration of GABA for detectable channel openings, a major population of brief openings, and absence of clusters of openings when compared with ACh. Mutations at key residues of the principal binding-site face of muscle nAChRs (αY190 and αG153) affect GABA activation similarly as ACh activation, whereas a mutation at the complementary face (εG57) shows a selective effect for GABA. Studies with subunit-lacking receptors show that GABA can activate muscle nAChRs through the α/δ interface. Interestingly, single-channel activity elicited by GABA is similar to that elicited by ACh in gain-of-function nAChR mutants associated to congenital myasthenic syndromes, which could be important in the progression of the disorders due to steady exposure to serum GABA. In contrast, GABA cannot elicit single-channel or macroscopic currents of α7 or the chimeric α7-serotonin-type 3 receptor, a feature important for preserving an adequate excitatory/inhibitory balance in the brain as well as for avoiding activation of non-neuronal receptors by serum GABA. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Ryanodine receptor-2 upregulation and nicotine-mediated plasticity.

    PubMed

    Ziviani, Elena; Lippi, Giordano; Bano, Daniele; Munarriz, Eliana; Guiducci, Stefania; Zoli, Michele; Young, Kenneth W; Nicotera, Pierluigi

    2011-01-05

    Nicotine, the major psychoactive component of cigarette smoke, modulates neuronal activity to produce Ca2+-dependent changes in gene transcription. However, the downstream targets that underlie the long-term effects of nicotine on neuronal function, and hence behaviour, remain to be elucidated. Here, we demonstrate that nicotine administration to mice upregulates levels of the type 2 ryanodine receptor (RyR2), a Ca2+-release channel present on the endoplasmic reticulum, in a number of brain areas associated with cognition and addiction, notably the cortex and ventral midbrain. Nicotine-mediated RyR2 upregulation was driven by CREB, and caused a long-lasting reinforcement of Ca2+ signalling via the process of Ca2+-induced Ca2+ release. RyR2 upregulation was itself required for long-term phosphorylation of CREB in a positive-feedback signalling loop. We further demonstrate that inhibition of RyR-activation in vivo abolishes sensitization to nicotine-induced habituated locomotion, a well-characterised model for onset of drug dependence. Our findings, therefore, indicate that gene-dependent reprogramming of Ca2+ signalling is involved in nicotine-induced behavioural changes.

  9. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms

    PubMed Central

    Govind, Anitha P.; Walsh, Heather; Green, William N.

    2012-01-01

    Nicotine causes changes in brain nicotinic acetylcholine receptors (nAChRs) during smoking that initiate addiction. Nicotine-induced upregulation is the long-lasting increase in nAChR radio-ligand binding sites in brain resulting from exposure. The mechanisms causing upregulation are not established. Many different mechanisms have been reported with the assumption that there is a single, underlying cause. Using live cortical neurons, we examined for the first time how exposure and withdrawal of nicotine shape the kinetics of native α4β2-containing nAChR upregulation in real time. Upregulation kinetics demonstrate that at least two different mechanisms underlie this phenomenon. First, a transient upregulation occurs that rapidly reverses, faster than nAChR degradation, and corresponds to nAChR conformational changes as assayed by conformational-dependent, subunit-specific antibodies. Second, a long-lasting process occurs correlating with increases in nAChR numbers caused by decreased proteasomal subunit degradation. Previous radio-ligand binding measurements to brain tissue have measured the second process and largely missed the first. We conclude that nicotine-induced upregulation is composed of multiple processes occurring at different rates with different underlying causes. PMID:22323734

  11. Nicotine-induced upregulation of native neuronal nicotinic receptors is caused by multiple mechanisms.

    PubMed

    Govind, Anitha P; Walsh, Heather; Green, William N

    2012-02-08

    Nicotine causes changes in brain nicotinic acetylcholine receptors (nAChRs) during smoking that initiate addiction. Nicotine-induced upregulation is the long-lasting increase in nAChR radioligand binding sites in brain resulting from exposure. The mechanisms causing upregulation are not established. Many different mechanisms have been reported with the assumption that there is a single underlying cause. Using live rat cortical neurons, we examined for the first time how exposure and withdrawal of nicotine shape the kinetics of native α4β2-containing nAChR upregulation in real time. Upregulation kinetics demonstrates that at least two different mechanisms underlie this phenomenon. First, a transient upregulation occurs that rapidly reverses, faster than nAChR degradation, and corresponds to nAChR conformational changes as assayed by conformational-dependent, subunit-specific antibodies. Second, a long-lasting process occurs correlating with increases in nAChR numbers caused by decreased proteasomal subunit degradation. Previous radioligand binding measurements to brain tissue have measured the second process and largely missed the first. We conclude that nicotine-induced upregulation is composed of multiple processes occurring at different rates with different underlying causes.

  12. Pathogenesis of Abdominal Aortic Aneurysms: Role of Nicotine and Nicotinic Acetylcholine Receptors

    PubMed Central

    Li, Zong-Zhuang; Dai, Qiu-Yan

    2012-01-01

    Inflammation, proteolysis, smooth muscle cell apoptosis, and angiogenesis have been implicated in the pathogenesis of abdominal aortic aneurysms (AAAs), although the well-defined initiating mechanism is not fully understood. Matrix metalloproteinases (MMPs) such as MMP-2 and -9 and other proteinases degrading elastin and extracellular matrix are the critical pathogenesis of AAAs. Among the risk factors of AAAs, cigarette smoking is an irrefutable one. Cigarette smoke is practically involved in various aspects of the AAA pathogenesis. Nicotine, a major alkaloid in tobacco leaves and a primary component in cigarette smoke, can stimulate the MMPs expression by vascular SMCs, endothelial cells, and inflammatory cells in vascular wall and induce angiogenesis in the aneurysmal tissues. However, for the inflammatory and apoptotic processes in the pathogenesis of AAAs, nicotine seems to be moving in just the opposite direction. Additionally, the effects of nicotine are probably dose dependent or associated with the exposure duration and may be partly exerted by its receptors—nicotinic acetylcholine receptors (nAChRs). In this paper, we will mainly discuss the pathogenesis of AAAs involving inflammation, proteolysis, smooth muscle cell apoptosis and angiogenesis, and the roles of nicotine and nAChRs. PMID:22529515

  13. Nicotinic alpha7- or beta2-containing receptor knockout: effects on radial-arm maze learning and long-term nicotine consumption in mice.

    PubMed

    Levin, Edward D; Petro, Ann; Rezvani, Amir H; Pollard, Ninitia; Christopher, N Channelle; Strauss, Mariel; Avery, Jessica; Nicholson, Jessica; Rose, Jed E

    2009-01-23

    Classically, it has been thought that high-affinity nicotinic receptors-containing beta2 subunits are the most important receptor subtypes for nicotinic involvement in cognitive function and nicotine self-administration, while low affinity alpha7-containing nicotinic receptors have not been thought to be important. In the current study, we found that knockout of either beta2 or alpha7 subunits caused significant deficits in spatial discrimination in mice. The character of the impairment in the two knockouts was different. The beta2 knockout preferentially impaired cognition in males while the alpha7 caused impairment regardless of sex. Both beta2- and alpha7-containing nicotinic receptors also are important for nicotine self-administration, also in different ways. Most animal model studies of nicotine self-administration are relatively short-term whereas the problem of tobacco addiction is considerably longer-term. To better model the impact of nicotinic receptor subtypes on nicotine self-administration over the long-term, we studied the impact of genetic knockout of low affinity alpha7 receptors vs. high-affinity beta2-containing nicotinic receptors. Mice with knockouts of either of these receptors and their wildtype counter parts were given free access to a choice of nicotine-containing and nicotine-free solution in their home cages on a continuous basis over a period of 5 months. During the first few weeks, the beta2-containing nicotinic receptor knockout mice showed a significant decrease in nicotine consumption relative to wildtype mice, whereas the alpha7 knockout mice did not significantly differ from wildtype controls at the beginning of their access to nicotine. Interestingly, in the longer-term after the first few weeks of nicotine access, the beta2 knockout mice returned to wildtype mouse levels of nicotine consumption, whereas the alpha7 knockout mice developed an emergent decrease in nicotine consumption. The alpha7 receptor knockout-induced decrease

  14. Drug discrimination analysis of NMDA receptor channel blockers as nicotinic receptor antagonists in rats.

    PubMed

    Zakharova, E S; Danysz, W; Bespalov, A Y

    2005-04-01

    Antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors inhibit various phenomena associated with exposures to nicotine (e.g., tolerance, sensitization, dependence, and intravenous self-administration). These effects are often discussed in terms of nicotine-induced glutamate release with subsequent glutamate-dependent stimulation of dopamine metabolism and neuronal plasticity in brain areas critically involved in drug-addiction mechanisms. However, it is also well established that certain types of NMDA receptor antagonists (channel blockers) potently bind to nicotinic receptors and may act as nicotinic receptor antagonists. The present study aimed to evaluate the discriminative-stimulus effects of the NMDA receptor channel blockers (+)MK-801, dextromethorphan, and memantine in rats trained to discriminate nicotine from its vehicle. Adult male Wistar rats were trained to discriminate 0.6 mg/kg nicotine from saline under a two-lever, fixed-ratio 10 schedule of food reinforcement. During test sessions, injections of (+)MK-801 (0.03--0.3 mg/kg, i.p.), dextromethorphan (30 mg/kg, s.c.), or memantine (1--10 mg/kg, i.p.) were co-administered with s.c. nicotine (0.075--0.6 mg/kg; interaction tests) or saline (generalization tests). Additional interaction and generalization tests were conducted with the selective nicotinic receptor antagonists mecamylamine (0.1--3 mg/kg, s.c.) and MRZ 2/621 (0.3--10 mg/kg, i.p.), and the mGlu5 receptor antagonist MPEP (3--10 mg/kg, i.p.). In generalization tests, none of the compounds produced any appreciable levels of substitution for nicotine. The nicotine discriminative-stimulus control was dose dependently attenuated by mecamylamine (ED(50)=0.67 mg/kg) and MRZ 2/621 (ED(50)=9.7 mg/kg). Both agents produced a marked downward shift in the nicotine dose-response curve. Memantine and MPEP slightly attenuated nicotine discriminative-stimulus effects, while (+)MK-801 and dextromethorphan did not affect the

  15. Central nicotinic receptors: structure, function, ligands, and therapeutic potential.

    PubMed

    Romanelli, M Novella; Gratteri, Paola; Guandalini, Luca; Martini, Elisabetta; Bonaccini, Claudia; Gualtieri, Fulvio

    2007-06-01

    The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.

  16. Activation of α4β2*/α6β2* nicotinic receptors alleviates anxiety during nicotine withdrawal without upregulating nicotinic receptors.

    PubMed

    Yohn, Nicole L; Turner, Jill R; Blendy, Julie A

    2014-05-01

    Although nicotine mediates its effects through several nicotinic acetylcholine receptor (nAChR) subtypes, it remains to be determined which nAChR subtypes directly mediate heightened anxiety during withdrawal. Relative success in abstinence has been found with the nAChR partial agonist varenicline (Chantix; Pfizer, Groton, CT); however, treatment with this drug fails to alleviate anxiety in individuals during nicotine withdrawal. Therefore, it is hypothesized that success can be found by the repurposing of other nAChR partial agonists for cessation therapies that target anxiety. It is noteworthy that the selective partial agonists for α4β2, ABT-089 [2-methyl-3-[2(S)-pyrrolidinylmethoxy]pyridine], and α7, ABT-107 [5-(6-[(3R)-1-azabicyclo[2.2.2]oct-3-yloxy] pyridazin-3-yl)-1H-indole] (AbbVie, North Chicago, IL), have not been evaluated as possible therapeutics for nicotine cessation. Therefore, we examined the effect of ABT-089 and ABT-107 on anxiety during withdrawal from nicotine in the novelty-induced hypophagia (NIH) paradigm. We found that short-term administration of ABT-089 and ABT-107 alleviate anxiety-like behavior during withdrawal from nicotine while long-term administration of ABT-089 but not ABT-107 reduces anxiety-like behavior during withdrawal. After behavioral testing, brains were harvested and β2-containing nAChRs were measured using [(3)H]epibaditine. ABT-089 and ABT-107 do not upregulate nAChRs, which is in contrast to the upregulation of nAChRs observed after nicotine. Furthermore, ABT-089 is anxiogenic in nicotine naive animals, suggesting that the effects on anxiety are specifically related to the nicotine-dependent state. Together, these studies identify additional nAChR partial agonists that may aid in the rational development of smoking cessation aids.

  17. Nicotinic Receptor Alpha7 Expression during Mouse Adrenal Gland Development

    PubMed Central

    Gahring, Lorise C.; Myers, Elizabeth; Palumbos, Sierra; Rogers, Scott W.

    2014-01-01

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7G). At embryonic day 12.5 (E12.5) α7G expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7G cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7G expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7G, TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7G. Occasional α7G cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7G cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood. PMID:25093893

  18. Binding interactions with the complementary subunit of nicotinic receptors.

    PubMed

    Blum, Angela P; Van Arnam, Ethan B; German, Laurel A; Lester, Henry A; Dougherty, Dennis A

    2013-03-08

    The agonist-binding site of nicotinic acetylcholine receptors (nAChRs) spans an interface between two subunits of the pentameric receptor. The principal component of this binding site is contributed by an α subunit, and it binds the cationic moiety of the nicotinic pharmacophore. The other part of the pharmacophore, a hydrogen bond acceptor, has recently been shown to bind to the complementary non-α subunit via the backbone NH of a conserved Leu. This interaction was predicted by studies of ACh-binding proteins and confirmed by functional studies of the neuronal (CNS) nAChR, α4β2. The ACh-binding protein structures further suggested that the hydrogen bond to the backbone NH is mediated by a water molecule and that a second hydrogen bonding interaction occurs between the water molecule and the backbone CO of a conserved Asn, also on the non-α subunit. Here, we provide new insights into the nature of the interactions between the hydrogen bond acceptor of nicotinic agonists and the complementary subunit backbone. We studied both the nAChR of the neuromuscular junction (muscle-type) and a neuronal subtype, (α4)2(β4)3. In the muscle-type receptor, both ACh and nicotine showed a strong interaction with the Leu NH, but the potent nicotine analog epibatidine did not. This interaction was much attenuated in the α4β4 receptor. Surprisingly, we found no evidence for a functionally significant interaction with the backbone carbonyl of the relevant Asn in either receptor with an array of agonists.

  19. Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of alpha4 subunits of neuronal nicotinic receptors.

    PubMed

    Hsu, Y N; Edwards, S C; Wecker, L

    1997-12-01

    Studies determined whether alpha4beta2 or alpha3beta2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 nM for alpha4beta2 and 500 nM for alpha3beta2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing alpha4beta2 receptors were incubated with [gamma-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the alpha4 subunit was present. Phosphorylation of alpha4 subunits of alpha4beta2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing alpha3beta2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the alpha3 subunit. Results suggest that the PKA-mediated phosphorylation of alpha4 and not alpha3 subunits may explain the differential inactivation by nicotine of these receptor subtypes expressed in oocytes.

  20. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    PubMed

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  1. Adolescent nicotine exposure transiently increases high-affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex

    PubMed Central

    Counotte, Danielle S.; Goriounova, Natalia A.; Moretti, Milena; Smoluch, Marek T.; Irth, Hubertus; Clementi, Francesco; Schoffelmeer, Anton N. M.; Mansvelder, Huibert D.; Smit, August B.; Gotti, Cecilia; Spijker, Sabine

    2013-01-01

    Adolescence is a critical developmental period during which most adult smokers initiate their habit. Adolescents are more vulnerable than adults to nicotine’s long-term effects on addictive and cognitive behavior. We investigated whether adolescent nicotine exposure in rats modifies expression of nicotinic acetylcholine receptors (nAChRs) in medial prefrontal cortex (mPFC) in the short and/or long term, and whether this has functional consequences. Using receptor binding studies followed by immunoprecipitation of nAChR subunits, we showed that adolescent nicotine exposure, as compared with saline, caused an increase in mPFC nAChRs containing α4 or β2 subunits (24 and 18%, respectively) 24 h after the last injection. Nicotine exposure in adulthood had no such effect. This increase was transient and was not observed 5 wk following either adolescent or adult nicotine exposure. In line with increased nAChRs expression 1 d after adolescent nicotine exposure, we observed a 34% increase in amplitude of nicotine-induced spontaneous inhibitory postsynaptic currents in layer II/III mPFC pyramidal neurons. These effects were transient and specific, and observed only acutely after adolescent nicotine exposure, but not after 5 wk, and no changes were observed in adult-exposed animals. The acute nicotine-induced increase in α4β2-containing receptors in adolescents interferes with the normal developmental decrease (37%) of these receptors from early adolescence (postnatal day 34) to adulthood (postnatal day 104) in the mPFC. Together, this suggests that these receptors play a role in mediating the acute rewarding effects of nicotine and may underlie the increased sensitivity of adolescents to nicotine. PMID:22308197

  2. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  3. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors

    PubMed Central

    Azam, Layla; McIntosh, J Michael

    2009-01-01

    Cysteine-rich peptides from the venom of cone snails (Conus) target a wide variety of different ion channels. One family of conopeptides, the α-conotoxins, specifically target different isoforms of nicotinic acetylcholine receptors (nAChRs) found both in the neuromuscular junction and central nervous system. This family is further divided into subfamilies based on the number of amino acids between cysteine residues. The exquisite subtype selectivity of certain α-conotoxins has been key to the characterization of native nAChR isoforms involved in modulation of neurotransmitter release, the pathophysiology of Parkinson's disease and nociception. Structure/function characterization of α-conotoxins has led to the development of analogs with improved potency and/or subtype selectivity. Cyclization of the backbone structure and addition of lipophilic moieties has led to improved stability and bioavailability of α-conotoxins, thus paving the way for orally available therapeutics. The recent advances in phylogeny, exogenomics and molecular modeling promises the discovery of an even greater number of α-conotoxins and analogs with improved selectivity for specific subtypes of nAChRs. PMID:19448650

  4. Brain Imaging of Nicotinic Receptors in Alzheimer's Disease

    PubMed Central

    Wu, Jin; Ishikawa, Masatomo; Zhang, Jichun; Hashimoto, Kenji

    2010-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion channels which are widely distributed in the human brain. Several lines of evidence suggest that two major subtypes (α4β2 and α7) of nAChRs play an important role in the pathophysiology of Alzheimer's disease (AD). Postmortem studies demonstrated alterations in the density of these subtypes of nAChRs in the brain of patients with AD. Currently, nAChRs are one of the most attractive therapeutic targets for AD. Therefore, several researchers have made an effort to develop novel radioligands that can be used to study quantitatively the distribution of these two subtypes in the human brain with positron emission tomography (PET) and single-photon emission computed tomography (SPECT). In this paper, we discuss the current topics on in vivo imaging of two subtypes of nAChRs in the brain of patients with AD. PMID:21253523

  5. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  6. Looking below the surface of nicotinic acetylcholine receptors

    PubMed Central

    Stokes, Clare; Treinin, Millet; Papke, Roger L.

    2015-01-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype possesses a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains may play defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most-well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction. PMID:26067101

  7. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking.

    PubMed

    Tessari, Michela; Pilla, Maria; Andreoli, Michela; Hutcheson, Daniel M; Heidbreder, Christian A

    2004-09-19

    Previous studies in metabotropic glutamate 5 receptor (mGlu5 receptor) deficient mice have indicated the importance of this receptor in the self-administration of cocaine and locomotor sensitisation to this stimulant. Both ionotropic and metabotropic receptors have been implicated in drug-seeking and drug-taking behaviours, but the specific role of each subtype of metabotropic glutamate receptors (mGlu receptors) is still unknown. In the present series of experiments we further investigated the role of mGlu5 receptors on nicotine, cocaine- and food-taking behaviour. We also investigated the effects of the mGlu5 receptor antagonist MPEP (2-methyl-6-(phenylethynyl)pyridine) on the acute locomotor activating effects of nicotine, the expression of sensitisation to its repeated, intermittent administration, and nicotine-triggered relapse to nicotine-seeking behaviour. The results indicate that MPEP treatment reduced nicotine-induced drug-seeking behaviour in a model of nicotine-triggered relapse to nicotine seeking. Furthermore, MPEP decreased both nicotine and cocaine self-administration without affecting food self-administration under similar schedules of reinforcement. Finally, MPEP reduced both the acute locomotor stimulant effects of nicotine as well as the expression of behavioural sensitisation to its repeated administration. Although the intravenous administration of MPEP at 1 and 10 mg/kg transiently reduced spontaneous locomotor activity during the first 25 min post-administration, we also demonstrated that performance on the accelerating rotarod was not affected when MPEP was given 5 and 30 min prior to the test. Altogether, the present findings strengthen the hypothesis that selective antagonism at mGlu5 receptors may be a new potential pharmacotherapeutic approach for the treatment of drug dependence and addiction.

  8. Galantamine, an Acetylcholinesterase Inhibitor and Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors, Attenuates Nicotine Taking and Seeking in Rats

    PubMed Central

    Hopkins, Thomas J; Rupprecht, Laura E; Hayes, Matthew R; Blendy, Julie A; Schmidt, Heath D

    2012-01-01

    Current smoking cessation pharmacotherapies have limited efficacy in preventing relapse and maintaining abstinence during withdrawal. Galantamine is an acetylcholinesterase inhibitor that also acts as a positive allosteric modulator of nicotinic acetylcholine receptors. Galantamine has recently been shown to reverse nicotine withdrawal-induced cognitive impairments in mice, which suggests that galantamine may function to prevent relapse in human smokers. However, there are no studies examining whether galantamine administration modulates nicotine self-administration and/or reinstatement of nicotine seeking in rodents. The present experiments were designed to determine the effects of galantamine administration on nicotine taking and reinstatement of nicotine-seeking behavior, an animal model of relapse. Moreover, the effects of galantamine on sucrose-maintained responding and sucrose seeking were also examined to determine whether galantamine's effects generalized to other reinforced behaviors. An inverted U-shaped dose-response curve was obtained when animals self-administered different unit doses of nicotine with the highest responding for 0.03 mg/kg per infusion of nicotine. Acute galantamine administration (5.0 mg/kg, i.p.) attenuated nicotine self-administration when animals were maintained on either a fixed-ratio 5 (FR5) or progressive ratio (PR) schedule of reinforcement. Galantamine administration also attenuated the reinstatement of nicotine-seeking behavior. No significant effects of galantamine on sucrose self-administration or sucrose reinstatement were noted. Acetylcholinesterase inhibitors have also been shown to produce nausea and vomiting in humans. However, at doses required to attenuate nicotine self-administration, no effects of galantamine on nausea/malaise as measured by pica were noted. These results indicate that increased extracellular acetylcholine levels and/or nicotinic acetylcholine receptor stimulation is sufficient to attenuate

  9. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.

    PubMed

    Hogan, Eric M; Casserly, Alison P; Scofield, Michael D; Mou, Zhongming; Zhao-Shea, Rubing; Johnson, Chris W; Tapper, Andrew R; Gardner, Paul D

    2014-12-01

    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.

  10. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement

    PubMed Central

    Beckmann, Joshua S.; Meyer, Andrew C.; Pivavarchyk, M.; Horton, David B.; Zheng, Guangrong; Smith, Andrew M.; Wooters, Thomas E.; McIntosh, J. Michael; Crooks, Peter A.; Bardo, Michael T.

    2015-01-01

    α6β2* nicotinic acetylcholine receptors (nACh Rs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [3H]nicotine and [3H]methyllyca-conitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [3H]nicotine or [3H]methylly-caconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule

  11. Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure.

    PubMed

    Maouche, Kamel; Medjber, Kahina; Zahm, Jean-Marie; Delavoie, Franck; Terryn, Christine; Coraux, Christelle; Pons, Stéphanie; Cloëz-Tayarani, Isabelle; Maskos, Uwe; Birembaut, Philippe; Tournier, Jean-Marie

    2013-03-05

    Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.

  12. Variation in the Alpha 5 Nicotinic Acetylcholine Receptor Subunit Gene Predicts Cigarette Smoking Intensity as a Function of Nicotine Content

    PubMed Central

    MacQueen, David A.; Heckman, Bryan W.; Blank, Melissa D.; Van Rensburg, Kate Janse; Park, Jong Y.; Drobes, David J.; Evans, David E.

    2013-01-01

    A single nucleotide polymorphism (SNP) in the α5 nicotinic acetylcholine receptor subunit gene, rs16969968, has been repeatedly associated with both smoking and respiratory health phenotypes. However, there remains considerable debate as to whether associations with lung cancer are mediated through effects on smoking behavior. Preclinical studies suggest that α5 receptor subunit expression and function may play a direct role in nicotine titration during self-administration. The present study investigated the association of CHRNA5 polymorphisms and smoking topography in 66 smokers asked to smoke 4 nicotine containing (nicotine yield = .60 mg) and 4 placebo (nicotine yield < .05 mg) cigarettes, during separate experimental sessions. Genotype at rs16969968 predicted nicotine titration, with homozygotes for the major allele (G:G) displaying significantly reduced puff volume in response to nicotine, while minor allele carriers (A:G or AA) produced equivalent puff volumes for placebo and nicotine cigarettes. The present results suggest that puff volume may be a more powerful objective phenotype of smoking behavior than self-reported cigarettes per day and nicotine dependence. Further, these results suggest that the association between rs16969968 and lung cancer may be mediated by the quantity of smoke inhaled. PMID:23358500

  13. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    SciTech Connect

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  14. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors.

    PubMed

    Kasheverov, Igor E; Utkin, Yuri N; Tsetlin, Victor I

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric membrane-bound proteins belonging to the large family of ligand-gated ion channels. nAChRs possess various binding sites which interact with compounds of different chemical nature, including peptides. Historically first peptides found to act on nAChR were synthetic fragments of snake alpha-neurotoxins, competitive receptor antagonists. Later it was shown that fragments of glycoprotein from rabies virus, having homology to alpha-neurotoxins, and polypeptide neurotoxins waglerins from the venom of Wagler's pit viper Trimeresurus (Tropidolaemus) wagleri bind in a similar way, waglerins being efficient blockers of muscle-type nAChRs. Neuropeptide substance P appears to interact with the channel moiety of nAChR. beta-Amyloid, a peptide forming senile plaques in Alzheimer's disease, also can bind to nAChR, although the mode of binding is still unclear. However, the most well-studied peptides interacting with the ligand-binding sites of nAChRs are so-called alpha-conotoxins, peptide neurotoxins from marine snails of Conus genus. First alpha-conotoxins were discovered in the late 1970s, and now it is a rapidly growing family due to isolation of peptides from multiple Conus species, as well as to cloning, and chemical synthesis of new analogues. Because of their unique selectivity towards distinct nAChR subtypes, alpha-conotoxins became valuable tools in nAChR research. Recent X-ray structures of alpha-conotoxin complexes with acetylcholine-binding protein, a model of nAChR ligand-binding domains, revealed the details of the nAChR ligand-binding sites and provided the basis for design of novel ligands.

  15. α7 nicotinic acetylcholine receptors: a therapeutic target in the structure era.

    PubMed

    Taly, Antoine; Charon, Sebastien

    2012-05-01

    The nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels involved in cognitive processes and are associated with brain disorders which makes them interesting drug targets. This article presents a general overview of the receptor to introduce the α7 nAChR as a drug target. The advances in understanding of the structure/function properties of the nAChR produced during the last decade are detailed as they are crucial for rational drug design. The allosteric properties of the nAChR will also be described because they also have important consequences for drug design.

  16. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice.

    PubMed

    Blokhina, Elena A; Kashkin, Vladimir A; Zvartau, Edwin E; Danysz, Wojciech; Bespalov, Anton Y

    2005-03-01

    Previous studies have indicated that blockade of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors prevents acquisition of instrumental behaviors reinforced by food and drugs such as morphine and cocaine. The present study aimed to extend this evidence by testing whether NMDA receptor channel blocker, memantine, would exert similar effects on acquisition of cocaine and nicotine self-administration in mice. Inasmuch as memantine also acts as nicotinic receptor channel blocker, this study assessed the effects of mecamylamine and MRZ 2/621 that are more selective nicotinic blockers. Adult male Swiss mice were allowed to self-administer cocaine (0.8-2.4 microg/infusion) or nicotine (0.08-0.32 microg/infusion) during the 30-min test. Pretreatment with memantine (0.1-10 mg/kg) prevented acquisition of nicotine but not cocaine self-administration. Pretreatment with mecamylamine (0.3-3 mg/kg) and MRZ 2/621 (0.3-10 mg/kg) produced dose-dependent suppression of both cocaine and nicotine self-administration. Taken together with the previous reports, these results indicate that nicotinic receptor blockers antagonize acute reinforcing effects of cocaine while NMDA receptor blockade may have limited effectiveness.

  17. Long-term nicotine treatment down-regulates α6β2* nicotinic receptor expression and function in nucleus accumbens.

    PubMed

    Perez, Xiomara A; McIntosh, J Michael; Quik, Maryka

    2013-12-01

    Long-term nicotine exposure induces alterations in dopamine transmission in nucleus accumbens that sustain the reinforcing effects of smoking. One approach to understand the adaptive changes that arise involves measurement of endogenous dopamine release using voltammetry. We therefore treated rats for 2-3 months with nicotine and examined alterations in nAChR subtype expression and electrically evoked dopamine release in rat nucleus accumbens shell, a region key in addiction. Long-term nicotine treatment selectively decreased stimulated α6β2* nAChR-mediated dopamine release compared with vehicle-treated rats. It also reduced α6β2* nAChRs, suggesting the receptor decline may contribute to the functional loss. This decreased response in release after chronic nicotine treatment was still partially sensitive to the agonist nicotine. Studies with an acetylcholinesterase inhibitor demonstrated that the response was also sensitive to increased endogenous acetylcholine. However, unlike the agonists, nAChR antagonists decreased dopamine release only in vehicle- but not nicotine-treated rats. As antagonists function by blocking the action of acetylcholine, their ineffectiveness suggests that reduced acetylcholine levels partly underlie the dampened α6β2* nAChR-mediated function in nicotine-treated rats. As long-term nicotine modifies dopamine release by decreasing α6β2* nAChRs and their function, these data suggest that interventions that target this subtype may be useful for treating nicotine dependence. Long-term nicotine treatment decreases dopamine (DA) transmission in the mesolimbic dopaminergic system. Our data suggest this may involve a decrease in α6β2* nicotinic receptor expression and function. These changes may play a key role in nicotine reward and dependence.

  18. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs

    PubMed Central

    Saccone, Scott F.; Hinrichs, Anthony L.; Saccone, Nancy L.; Chase, Gary A.; Konvicka, Karel; Madden, Pamela A.F.; Breslau, Naomi; Johnson, Eric O.; Hatsukami, Dorothy; Pomerleau, Ovide; Swan, Gary E.; Goate, Alison M.; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Martin, Nicholas G.; Montgomery, Grant W.; Wang, Jen C.; Ballinger, Dennis G.; Rice, John P.; Bierut, Laura Jean

    2007-01-01

    Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies. PMID:17135278

  19. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease

    SciTech Connect

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-03-05

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of (/sup 3/H)-ketanserin to serotonin receptors in frontal cortex and of (/sup 3/H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of (/sup 3/H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens.

  20. Prenatal nicotine exposure alters the responses to subsequent nicotine administration and withdrawal in adolescence: Serotonin receptors and cell signaling.

    PubMed

    Slotkin, Theodore A; Tate, Charlotte A; Cousins, Mandy M; Seidler, Frederic J

    2006-11-01

    Offspring of women who smoke during pregnancy are themselves more likely to take up smoking in adolescence, effects that are associated with a high rate of depression and increased sensitivity to withdrawal symptoms. To evaluate the biological basis for this relationship, we assessed effects on serotonin (5-hydroxytryptamine, 5HT) receptors and 5HT-mediated cellular responses in rats exposed to nicotine throughout prenatal development and then given nicotine in adolescence (postnatal days PN30-47.5), using regimens that reproduce plasma nicotine levels found in smokers. Evaluations were then made during the period of adolescent nicotine treatment and for up to one month after the end of treatment. Prenatal nicotine exposure, which elicits damage to 5HT projections in the cerebral cortex and striatum, produced sex-selective changes in the expression of 5HT(1A) and 5HT2 receptors, along with induction of adenylyl cyclase (AC), leading to sensitization of heterologous inputs operating through this signaling pathway. Superimposed on these effects, the AC response to 5HT was shifted toward inhibition. By itself, adolescent nicotine administration, which damages the same pathways, produced similar effects on receptors and the 5HT-mediated response, but a smaller overall induction of AC. Animals exposed to prenatal nicotine showed a reduced response to nicotine administered in adolescence, results in keeping with earlier findings of persistent desensitization. Our results indicate that prenatal nicotine exposure alters parameters of 5HT synaptic communication lasting into adolescence and changes the response to nicotine administration and withdrawal in adolescence, actions which may contribute to a subpopulation especially vulnerable to nicotine dependence.

  1. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction.

  2. A novel physiological property of snake bradykinin-potentiating peptides-reversion of MK-801 inhibition of nicotinic acetylcholine receptors.

    PubMed

    Nery, Arthur A; Trujillo, Cleber A; Lameu, Claudiana; Konno, Katsuhiro; Oliveira, Vitor; Camargo, Antonio C M; Ulrich, Henning; Hayashi, Mirian A F

    2008-10-01

    The first naturally occurring angiotensin-converting enzyme (ACE) inhibitors described are pyroglutamyl proline-rich oligopeptides, found in the venom of the viper Bothrops jararaca, and named as bradykinin-potentiating peptides (BPPs). Biochemical and pharmacological properties of these peptides were essential for the development of Captopril, the first active site-directed inhibitor of ACE, currently used for the treatment of human hypertension. However, a number of data have suggested that the pharmacological activity of BPPs could not only be explained by their inhibitory action on enzymatic activity of somatic ACE. In fact, we showed recently that the strong and long-lasting anti-hypertensive effect of BPP-10c [nicotinic acetylcholine receptors expressed in blood vessels have been related to blood pressure regulation. Therefore, we have studied the effects of BPP-10c on acetylcholine receptor function in the PC12 pheochromocytoma cell line, which following induction to neuronal differentiation expresses most of the nicotinic receptor subtypes. BPP-10c did not induce receptor-mediated ion flux, nor potentiated carbamoylcholine-provoked receptor activity as determined by whole-cell recording. This peptide, however, alleviated MK-801-induced inhibition of nicotinic acetylcholine receptor activity. Although more data are needed for understanding the mechanism of the BPP-10c effect on nicotinic receptor activity and its relationship with the anti-hypertensive activity, this work reveals possible therapeutic applications for BPP-10c in establishing normal acetylcholine receptor activity.

  3. Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content.

    PubMed

    Arias, Hugo R; Ravazzini, Federica; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Feuerbach, Dominik; Boffi, Juan C; Draczkowski, Piotr; Montag, Dirk; Brown, Brandon M; Elgoyhen, Ana Belén; Jozwiak, Krzysztof; Puia, Giulia

    2016-07-01

    The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.

  4. Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence.

    PubMed

    Wu, Jie; Gao, Ming; Taylor, Devin H

    2014-03-01

    Neuronal nicotinic acetylcholine receptors are important targets for alcohol reward and dependence. Alcoholism is a serious public health problem and has been identified as the third major cause of preventable mortality in the world. Worldwide, about 2 billion people consume alcohol, with 76.3 million having diagnosable alcohol use disorders. Alcohol is currently responsible for the death of 4% of adults worldwide (about 2.5 million deaths each year), and this number will be significantly increased by 2020 unless effective action is taken. Alcohol is the most commonly abused substance by humans. Ethanol (EtOH) is the intoxicating agent in alcoholic drinks that can lead to abuse and dependence. Although it has been extensively studied, the mechanisms of alcohol reward and dependence are still poorly understood. The major reason is that, unlike other addictive drugs (eg, morphine, cocaine or nicotine) that have specific molecular targets, EtOH affects much wider neuronal functions. These functions include phospholipid membranes, various ion channels and receptors, synaptic and network functions, and intracellular signaling molecules. The major targets in the brain that mediate EtOH's effects remain unclear. This knowledge gap results in a therapeutic barrier in the treatment of alcoholism. Interestingly, alcohol and nicotine are often co-abused, which suggests that neuronal nicotinic acetylcholine receptors (nAChRs), the molecular targets for nicotine, may also contribute to alcohol's abusive properties. Here, we briefly summarize recent lines of evidence showing how EtOH modulates nAChRs in the mesolimbic pathway, which provides a perspective that nAChRs are important targets mediating alcohol abuse.

  5. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  6. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.

  7. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  8. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    PubMed

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-03-07

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.

  9. Brain α7 Nicotinic Acetylcholine Receptor Assembly Requires NACHO.

    PubMed

    Gu, Shenyan; Matta, Jose A; Lord, Brian; Harrington, Anthony W; Sutton, Steven W; Davini, Weston B; Bredt, David S

    2016-03-02

    Nicotine exerts its behavioral and additive actions through a family of brain nicotinic acetylcholine receptors (nAChRs). Enhancing α7-type nAChR signaling improves symptoms in Alzheimer's disease and schizophrenia. The pharmaceutical study of α7 receptors is hampered because these receptors do not form their functional pentameric structure in cell lines, and mechanisms that underlie α7 receptor assembly in neurons are not understood. Here, a genomic screening strategy solves this long-standing puzzle and identifies NACHO, a transmembrane protein of neuronal endoplasmic reticulum that mediates assembly of α7 receptors. NACHO promotes α7 protein folding, maturation through the Golgi complex, and expression at the cell surface. Knockdown of NACHO in cultured hippocampal neurons or knockout of NACHO in mice selectively and completely disrupts α7 receptor assembly and abolishes α7 channel function. This work identifies NACHO as an essential, client-specific chaperone for nAChRs and has implications for physiology and disease associated with these widely distributed neurotransmitter receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nicotine Reduces l-DOPA-Induced Dyskinesias by Acting at β2* Nicotinic Receptors

    PubMed Central

    Huang, Luping Z.; Grady, Sharon R.

    2011-01-01

    l-DOPA-induced dyskinesias or abnormal involuntary movements (AIMs) are a debilitating adverse complication associated with prolonged l-DOPA administration for Parkinson's disease. Few treatments are currently available for dyskinesias. Our recent data showed that nicotine reduced l-DOPA-induced AIMs in parkinsonian animal models. An important question is the nicotinic acetylcholine receptor (nAChR) subtypes through which nicotine exerts this beneficial effect, because such knowledge would allow for the development of drugs that target the relevant receptor population(s). To address this, we used β2 nAChR subunit knockout [β2(−/−)] mice because β2-containing nAChRs are key regulators of nigrostriatal dopaminergic function. All of the mice were lesioned by intracranial injection of 6-hydroxydopamine into the right medial forebrain bundle. Lesioning resulted in a similar degree of nigrostriatal damage and parkinsonism in β2(−/−) and wild-type mice. All of the mice then were injected with l-DOPA (3 mg/kg) plus benserazide (15 mg/kg) once daily for 4 weeks until AIMs were fully developed. l-DOPA-induced AIMs were approximately 40% less in the β2(−/−) mice compared with the wild-type mice. It is interesting to note that nicotine (300 μg/ml in drinking water) reduced l-DOPA-induced AIMs by 40% in wild-type mice but had no effect in β2(−/−) mice with partial nigrostriatal damage. The nicotine-mediated decline in AIMs was much less pronounced in wild-type mice with near-complete degeneration, suggesting that presynaptic nAChRs on dopaminergic terminals have a major influence. These data demonstrate an essential role for β2* nAChRs in the antidyskinetic effect of nicotine and suggest that drugs targeting these subtypes may be useful for the management of l-DOPA-induced dyskinesias in Parkinson's disease. PMID:21665941

  11. Primary Structure of Nicotinic Acetylcholine Receptor

    DTIC Science & Technology

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  12. Long-term nicotine treatment downregulates α6β* nicotinic receptor expression and function in nucleus accumbens

    PubMed Central

    Perez, Xiomara A.; McIntosh, J. Michael; Quik, Maryka

    2013-01-01

    Long-term nicotine exposure induces alterations in dopamine transmission in nucleus accumbens (NAcc) that sustain the reinforcing effects of smoking. One approach to understand the adaptive changes that arise involves measurement of endogenous dopamine release using voltammetry. We therefore treated rats for 2-3 months with nicotine and examined alterations in nAChR subtype expression and electrically-evoked dopamine release in rat NAcc shell, a region key in addiction. Long-term nicotine treatment selectively decreased stimulated α6β2* nAChR-mediated dopamine release compared to vehicle-treated rats. It also reduced α6β2* nAChRs, suggesting the receptor decline may contribute to the functional loss. This decreased response in release after chronic nicotine treatment was still partially sensitive to the agonist nicotine. Studies with an acetylcholinesterase inhibitor demonstrated that the response was also sensitive to increased endogenous acetylcholine. However, unlike the agonists, nAChR antagonists decreased dopamine release only in vehicle- but not nicotine-treated rats. Since antagonists function by blocking the action of acetylcholine, their ineffectiveness suggests that reduced acetylcholine levels partly underlie the dampened α6β2* nAChR-mediated function in nicotine-treated rats. Since long-term nicotine modifies dopamine release by decreasing α6β2* nAChRs and their function, these data suggest that interventions that target this subtype may be useful for treating nicotine dependence. PMID:23992036

  13. L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway.

    PubMed

    Di, Xiaojing; Yan, Jingqi; Zhao, Yan; Chang, Yanzhong; Zhao, Baolu

    2012-12-01

    In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a conditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DHβE). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly inhibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice. L-theanine treatment also reduced the upregulation of the α(4), β(2) and α(7) nicotine acetylcholine receptor (nAChR) subunits induced by nicotine in mouse brain regions that related to the dopamine reward pathway, thus decreasing the number of cells that could react to nicotine. In addition, L-theanine treatment inhibited nicotine-induced c-Fos expression in the reward circuit related areas of the mouse brain. Knockdown of c-Fos by siRNA inhibited the excitatory status of cells but not the upregulation of TH induced by nicotine in SH-SY5Y cells. Overall, the present study showed that L-theanine reduced the nicotine-induced reward effects via inhibition of the nAChR-dopamine reward pathway. These results may offer new therapeutic strategies for treatment of tobacco addiction.

  14. α2* Nicotinic acetylcholine receptors influence hippocampus-dependent learning and memory in adolescent mice.

    PubMed

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S; Boulter, Jim

    2017-06-01

    The absence of α2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of α2* nAChRs (Chrna2(L9'S/L9'S) and Chrna2(KO)) influence hippocampus-dependent learning and memory and CA1 synaptic plasticity. We substituted a serine for a leucine (L9'S) in the α2 subunit (encoded by the Chrna2 gene) to make a hypersensitive nAChR. Using a dorsal hippocampus-dependent task of preexposure-dependent contextual fear conditioning, adolescent hypersensitive Chrna2(L9'S/L9'S) male mice exhibited impaired learning and memory. The deficit was rescued by low-dose nicotine exposure. Electrophysiological studies demonstrated that hypersensitive α2 nAChRs potentiate acetylcholine-induced ion channel flux in oocytes and acute nicotine-induced facilitation of dorsal/intermediate CA1 hippocampal long-term potentiation in Chrna2(L9'S/L9'S) mice. Adolescent male mice null for the α2 nAChR subunit exhibited a baseline deficit in learning that was not reversed by an acute dose of nicotine. These effects were not influenced by locomotor, sensory or anxiety-related measures. Our results demonstrated that α2* nAChRs influenced hippocampus-dependent learning and memory, as well as nicotine-facilitated CA1 hippocampal synaptic plasticity. © 2017 Lotfipour et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Nicotine and ethanol cooperate to enhance ventral tegmental area AMPA receptor function via α6-containing nicotinic receptors.

    PubMed

    Engle, Staci E; McIntosh, J Michael; Drenan, Ryan M

    2015-04-01

    Nicotine + ethanol co-exposure results in additive and/or synergistic effects in the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine (DA) pathway, but the mechanisms supporting this are unclear. We tested the hypothesis that nAChRs containing α6 subunits (α6* nAChRs) are involved in the response to nicotine + ethanol co-exposure. Exposing VTA slices from C57BL/6 WT animals to drinking-relevant concentrations of ethanol causes a marked enhancement of α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) receptor (AMPAR) function in VTA neurons. This effect was sensitive to α-conotoxin MII (an α6β2* nAChR antagonist), suggesting that α6* nAChR function is required. In mice expressing hypersensitive α6* nAChRs (α6L9S mice), we found that lower concentrations (relative to C57BL/6 WT) of ethanol were sufficient to enhance AMPAR function in VTA neurons. Exposure of live C57BL/6 WT mice to ethanol also produced AMPAR functional enhancement in VTA neurons, and studies in α6L9S mice strongly suggest a role for α6* nAChRs in this response. We then asked whether nicotine and ethanol cooperate to enhance VTA AMPAR function. We identified low concentrations of nicotine and ethanol that were capable of strongly enhancing VTA AMPAR function when co-applied to slices, but that did not enhance AMPAR function when applied alone. This effect was sensitive to both varenicline (an α4β2* and α6β2* nAChR partial agonist) and α-conotoxin MII. Finally, nicotine + ethanol co-exposure also enhanced AMPAR function in VTA neurons from α6L9S mice. Together, these data identify α6* nAChRs as important players in the response to nicotine + ethanol co-exposure in VTA neurons.

  16. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction

    PubMed Central

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J.

    2015-01-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine’s enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2–4 mins prior to each extinction session. Our results showed that the that mice lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction. PMID:26688111

  17. Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2014-08-01

    and Alpha7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR: Kelvin W. Gee RECIPIENT: University of California Irvine...Aug 2014 4. TITLE AND SUBTITLE Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER...receptor (GABAAR) mediated signaling. Therefore GABAARs may be a relevant therapeutic target for blocking or reversing the symptoms of ASD. Nicotinic

  18. Effect of dextrometorphan and dextrorphan on nicotine and neuronal nicotinic receptors: in vitro and in vivo selectivity.

    PubMed

    Damaj, M I; Flood, P; Ho, K K; May, E L; Martin, B R

    2005-02-01

    The effects of dextrometorphan and its metabolite dextrorphan on nicotine-induced antinociception in two acute thermal pain assays after systematic administration were evaluated in mice and compared with that of mecamylamine. Dextrometorphan and dextrorphan were found to block nicotine's antinociception in the tail-flick and hot-plate tests with different potencies (dextrometorphan is 10 times more potent than its metabolite). This blockade was not due to antagonism of N-methyl-d-aspartate receptors and/or interaction with opiate receptors, since selective drugs of these receptors failed to block nicotine's analgesic effects. Our results with the tail-flick and hot-plate tests showed an interesting in vivo functional selectivity for dextrometorphan over dextrorphan. In oocytes expressing various neuronal acetylcholine nicotinic receptors (nAChR), dextrometorphan and dextrorphan blocked nicotine activation of expressed alpha(3)beta(4), alpha(4)beta(2), and alpha(7) subtypes with a small degree of selectivity. However, the in vivo antagonistic potency of dextrometorphan and dextrorphan in the pain tests does not correlate well with their in vitro blockade potency at expressed nAChR subtypes. Furthermore, the apparent in vivo selectivity of dextrometorphan over dextrorphan is not related to its in vitro potency and does suggest the involvement of other mechanisms. In that respect, dextrometorphan seems to behave as another mecamylamine, a noncompetitive nicotinic receptor antagonist with a preferential activity to alpha(3)beta(4)(*) neuronal nAChR subtypes.

  19. Nicotine binding to brain receptors requires a strong cation-pi interaction.

    PubMed

    Xiu, Xinan; Puskar, Nyssa L; Shanata, Jai A P; Lester, Henry A; Dougherty, Dennis A

    2009-03-26

    Nicotine addiction begins with high-affinity binding of nicotine to acetylcholine (ACh) receptors in the brain. The end result is over 4,000,000 smoking-related deaths annually worldwide and the largest source of preventable mortality in developed countries. Stress reduction, pleasure, improved cognition and other central nervous system effects are strongly associated with smoking. However, if nicotine activated ACh receptors found in muscle as potently as it does brain ACh receptors, smoking would cause intolerable and perhaps fatal muscle contractions. Despite extensive pharmacological, functional and structural studies of ACh receptors, the basis for the differential action of nicotine on brain compared with muscle ACh receptors has not been determined. Here we show that at the alpha4beta2 brain receptors thought to underlie nicotine addiction, the high affinity for nicotine is the result of a strong cation-pi interaction to a specific aromatic amino acid of the receptor, TrpB. In contrast, the low affinity for nicotine at the muscle-type ACh receptor is largely due to the fact that this key interaction is absent, even though the immediate binding site residues, including the key amino acid TrpB, are identical in the brain and muscle receptors. At the same time a hydrogen bond from nicotine to the backbone carbonyl of TrpB is enhanced in the neuronal receptor relative to the muscle type. A point mutation near TrpB that differentiates alpha4beta2 and muscle-type receptors seems to influence the shape of the binding site, allowing nicotine to interact more strongly with TrpB in the neuronal receptor. ACh receptors are established therapeutic targets for Alzheimer's disease, schizophrenia, Parkinson's disease, smoking cessation, pain, attention-deficit hyperactivity disorder, epilepsy, autism and depression. Along with solving a chemical mystery in nicotine addiction, our results provide guidance for efforts to develop drugs that target specific types of nicotinic

  20. A choreography of nicotinic receptors directs the dopamine neuron routine.

    PubMed

    Ungless, Mark A; Cragg, Stephanie J

    2006-06-15

    Modulation of the mesocorticolimbic dopamine system by nicotinic acetylcholine receptors (nAChRs) is thought to play an important role in both health and addiction. However, a clear understanding of how these receptors regulate in vivo firing activity has been elusive. In this issue of Neuron, Mameli-Engvall and colleagues report an impressive and thought-provoking series of in vivo experiments combining single-unit recordings from dopamine neurons with nAChR subunit deletions and region-specific lentiviral subunit re-expression.

  1. Potentiation of alpha7-containing nicotinic acetylcholine receptors by select albumins.

    PubMed

    Conroy, William G; Liu, Qing-Song; Nai, Qiang; Margiotta, Joseph F; Berg, Darwin K

    2003-02-01

    Nicotinic receptors containing alpha7 subunits are ligand-gated ion channels widely distributed in the nervous system; they influence a diverse array of events because of their high relative calcium permeability. We show here that nicotine-induced whole-cell responses generated by such receptors can be dramatically potentiated in a rapidly reversible manner by some but not all albumins. The potentiation involves increases both in potency and efficacy with no obvious differences in rise and fall times of the response. The potentiation is not reduced by removing absorbed components; it is abolished by proteolysis, suggesting that the albumin protein backbone is essential. The fact that some albumins are ineffective indicates that minor differences in amino acid sequence may be critical. Experiments with open channel blockers indicate that the potentiation involves increased responses from active receptors rather than recruitment of receptors from a previously silent pool. Single channel recordings reveal that the potentiation correlates with increased single channel opening probability, reflected in increased frequency of channel opening and increased mean channel open time. The potentiation can be exploited to overcome blockade by noncompetitive inhibitors such as beta-amyloid peptide. The results raise the possibility that endogenous compounds use the site to modulate receptor function in vivo, and suggest that the receptors may represent useful targets for therapeutic intervention in cases where they have been implicated in neuropathologies such as Alzheimer's disease.

  2. Structural model of nicotinic acetylcholine receptor isotypes bound to acetylcholine and nicotine

    PubMed Central

    Schapira, Matthieu; Abagyan, Ruben; Totrov, Maxim

    2002-01-01

    Background Nicotine is a psychoactive drug presenting a diverse array of biological activities, some positive, such as enhancement of cognitive performances, others negative, such as addiction liability. Ligands that discriminate between the different isotypes of nicotinic acetylcholine receptors (nAChRs) could present improved pharmacology and toxicity profile. Results Based on the recent crystal structure of a soluble acetylcholine binding protein from snails, we have built atomic models of acetylcholine and nicotine bound to the pocket of four different human nAChR subtypes. The structures of the docked ligands correlate with available biochemical data, and reveal that the determinants for isotype selectivity are relying essentially on four residues, providing diversity of the ligand binding pocket both in terms of Van der Waals boundary, and electrostatic potential. We used our models to screen in silico a large compound database and identify a new ligand candidate that could display subtype selectivity. Conclusion The nAChR-agonist models should be useful for the design of nAChR agonists with diverse specificity profiles. PMID:11860617

  3. Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop

    SciTech Connect

    Wang, Hailong; Cheng, Xiaolin; McCammon, Jonathan

    2009-01-01

    We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed resting state, whereas the model after TMD simulation represents the channel in the proposed active state. Under external voltage biases, the channel in the active state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.

  4. Flupyrimin: A Novel Insecticide Acting at the Nicotinic Acetylcholine Receptors.

    PubMed

    Onozaki, Yasumichi; Horikoshi, Ryo; Ohno, Ikuya; Kitsuda, Shigeki; Durkin, Kathleen A; Suzuki, Tomonori; Asahara, Chiaki; Hiroki, Natsuko; Komabashiri, Rena; Shimizu, Rikako; Furutani, Shogo; Ihara, Makoto; Matsuda, Kazuhiko; Mitomi, Masaaki; Kagabu, Shinzo; Uomoto, Katsuhito; Tomizawa, Motohiro

    2017-09-13

    A novel chemotype insecticide flupyrimin (FLP) [N-[(E)-1-(6-chloro-3-pyridinylmethyl)pyridin-2(1H)-ylidene]-2,2,2-trifluoroacetamide], discovered by Meiji Seika Pharma, has unique biological properties, including outstanding potency to imidacloprid (IMI)-resistant rice pests together with superior safety toward pollinators. Intriguingly, FLP acts as a nicotinic antagonist in American cockroach neurons, and [(3)H]FLP binds to the multiple high-affinity binding components in house fly nicotinic acetylcholine (ACh) receptor (nAChR) preparation. One of the [(3)H]FLP receptors is identical to the IMI receptor, and the alternative is IMI-insensitive subtype. Furthermore, FLP is favorably safe to rats as predicted by the very low affinity to the rat α4β2 nAChR. Structure-activity relationships of FLP analogues in terms of receptor potency, featuring the pyridinylidene and trifluoroacetyl pharmacophores, were examined, thereby establishing the FLP molecular recognition at the Aplysia californica ACh-binding protein, a suitable structural surrogate of the insect nAChR. These FLP pharmacophores account for the excellent receptor affinity, accordingly revealing differences in its binding mechanism from IMI.

  5. SAR of α7 nicotinic receptor agonists derived from tilorone: exploration of a novel nicotinic pharmacophore.

    PubMed

    Schrimpf, Michael R; Sippy, Kevin B; Briggs, Clark A; Anderson, David J; Li, Tao; Ji, Jianguo; Frost, Jennifer M; Surowy, Carol S; Bunnelle, William H; Gopalakrishnan, Murali; Meyer, Michael D

    2012-02-15

    The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.

  6. Nicotinic acetylcholine receptors controlling attention: behavior, circuits and sensitivity to disruption by nicotine.

    PubMed

    Poorthuis, Rogier B; Mansvelder, Huibert D

    2013-10-15

    Attention is a central cognitive function that enables long-term engagement in a task and suppression of irrelevant information to obtain future goals. The prefrontal cortex (PFC) is the main link in integrating emotional and motivational state of an animal to regulate top-down attentional processes. Acetylcholine modulates PFC neuronal networks by activating nicotinic acetylcholine receptors (nAChRs) to support attention. However, how neuronal activity changes in the PFC during attention and which nAChR subtypes mediate this is only rudimentarily understood, but progress is being made. Recently, exciting new insights were obtained in the dynamics of cholinergic signaling in the PFC and modes of acetylcholine transmission via nAChRs in the cortex. In addition, mechanisms are uncovered on how the PFC circuitry is regulated by nAChRs. Novel studies show that endogenous activation of nAChRs in the PFC plays a central role in controlling attention. Here, we review current insights into how different subtypes of nAChRs expressed by distinct types of neurons in the PFC circuitry shape attention. In addition we discuss the impact of nicotine on the cholinergic system and prefrontal cortical circuits. Low concentrations of nicotine, as experienced by smokers, interfere with cholinergic signaling. In the long-term exposure to nicotine during adolescence leads to maladaptive adaptations of the PFC circuitry, which ultimately leads to a decrement in attention performance, again emphasizing the importance of nAChRs in attention. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Nicotine effects on muscarinic receptor-mediated free Ca[Formula: see text] level changes in the facial nucleus following facial nerve injury.

    PubMed

    Sun, Dawei; Zhou, Rui; Dong, Anbing; Sun, Wenhai; Zhang, Hongmei; Tang, Limin

    2016-06-01

    It was suggested that muscarinic, and nicotinic receptors increase free Ca[Formula: see text] levels in the facial nerve nucleus via various channels following facial nerve injury. However, intracellular Ca[Formula: see text] overload can trigger either necrotic or apoptotic cell death. It is assumed that, following facial nerve injury, the interactions of nicotinic and muscarinic acetylcholine receptors in facial nerve nucleus may negatively regulate free Ca[Formula: see text] concentrations in the facial nerve nucleus, which provide important information for the repair and regeneration of the facial nerve. The present study investigated the regulatory effects of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus in a rat model of facial nerve injury at 7, 30, and 90 days following facial nerve injury using laser confocal microscopy. The dose-dependent regulation of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus may decrease the range of free Ca[Formula: see text] increases following facial nerve injury, which is important for nerve cell regeneration. It is concluded that the negative effects of nicotine on muscarinic receptors are related to the [Formula: see text] subtype of nicotinic receptors.

  8. Vulnerability to nicotine self-administration in adolescent mice correlates with age-specific expression of α4* nicotinic receptors.

    PubMed

    Renda, Anthony; Penty, Nora; Komal, Pragya; Nashmi, Raad

    2016-09-01

    The majority of smokers begin during adolescence, a developmental period with a high susceptibility to substance abuse. Adolescents are affected differently by nicotine compared to adults, with adolescents being more vulnerable to nicotine's rewarding properties. It is unknown if the age-dependent molecular composition of a younger brain contributes to a heightened susceptibility to nicotine addiction. Nicotine, the principle pharmacological component of tobacco, binds and activates nicotinic acetylcholine receptors (nAChRs) in the brain. The most prevalent is the widely expressed α4-containing (α4*) subtype which mediates reward and is strongly implicated in nicotine dependence. Exposing different age groups of mice, postnatal day (P) 44-86 days old, to a two bottle-choice oral nicotine self-administration paradigm for five days yielded age-specific consumption levels. Nicotine self-administration was elevated in the P44 group, peaked at P54-60 and was drastically lower in the P66 through P86 groups. We also quantified α4* nAChR expression via spectral confocal imaging of brain slices from α4YFP knock-in mice, in which the α4 nAChR subunit is tagged with a yellow fluorescent protein. Quantitative fluorescence revealed age-specific α4* nAChR expression in dopaminergic and GABAergic neurons of the ventral tegmental area. Receptor expression showed a strong positive correlation with daily nicotine dose, suggesting that α4* nAChR expression levels are age-specific and may contribute to the propensity to self-administer nicotine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Symposium overview: mechanism of action of nicotine on neuronal acetylcholine receptors, from molecule to behavior.

    PubMed

    Narahashi, T; Fenster, C P; Quick, M W; Lester, R A; Marszalec, W; Aistrup, G L; Sattelle, D B; Martin, B R; Levin, E D

    2000-10-01

    Nicotine has long been known to interact with nicotinic acetylcholine (ACh) receptors since Langley used it extensively to chart sympathetic ganglia a century ago. It has also been used as an effective insecticide. However, it was not until the 1990s that the significance of nicotine was increasingly recognized from the toxicological, pharmacological, and environmental points of view. This is partly because studies of neuronal nicotinic ACh receptors are rapidly emerging from orphan status, fueled by several lines of research. Since Alzheimer's disease is known to be associated with down-regulation of cholinergic activity in the brain, a variety of nicotine derivatives are being tested and developed for treatment of the disease. Public awareness of the adverse effects of nicotine has reached the highest level recently. Since insect resistance to insecticides is one of the most serious issues in the pest-control arena, it is an urgent requirement to develop new insecticides that act on target sites not shared by the existing insecticides. The neuronal nicotinic ACh receptor is one of them, and new nicotinoids are being developed. Thus, the time is ripe to discuss the mechanism of action of nicotine from a variety of angles, including the molecular, physiological, and behavioral points of view. This Symposium covered a wide area of nicotine studies: genetic, genomic, and functional aspects of nicotinic ACh receptors were studied, as related to anthelmintics and insecticides; interactions between ethanol and nicotine out the ACh receptor were analyzed, in an attempt to explain the well-known heavy drinker-heavy smoker correlation; the mechanisms that underlie the desensitization of ACh receptors were studied as related to nicotine action; selective pharmacological profiles of nicotine, and descriptions of some derivatives were described; and chronic nicotine infusion effects on memory were examined using animal models.

  10. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice.

    PubMed

    Sajja, Ravi K; Rahman, Shafiqur

    2012-07-01

    Alcohol and nicotine are commonly abused drugs in humans and evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) in the midbrain dopamine system are common targets for the neurobehavioral interactions between alcohol (ethanol) and nicotine. The present study examined the efficacy of nAChR ligands with different pharmacological profiles such as cytisine, lobeline and dihydro-β-erythroidine (DHβE) to modulate chronic nicotine-induced increase in ethanol intake by C57BL/6J mice, using a two-bottle choice procedure. After establishment of baseline ethanol preference (10%, v/v), animals received daily subcutaneous injections of saline, nicotine (0.4 mg/kg) or different doses of cytisine, lobeline or DHβE 15 min prior to nicotine, for 10 days. Ethanol and water were presented immediately after the last (saline or nicotine) injection and fluid levels were monitored for post 1 h and 2 h treatment. Compared to control, nicotine injection significantly increased mean ethanol intake over 10 days, at both post 1 h and 2 h. Pretreatment with cytisine (0.5, 1.5 or 3.0 mg/kg) or lobeline (4.0 or 10.0 mg/kg) significantly reduced nicotine-induced increase in ethanol intake post 1 h and 2 h, without affecting water consumption. DHβE (0.5 or 2.0 mg/kg) failed to suppress nicotine-induced ethanol intake across 2 h post injection. These results indicate that nAChRmediated signaling is critical in regulating nicotine-induced ethanol drinking behaviors.

  11. Neuronal nicotinic receptors as analgesic targets: it's a winding road.

    PubMed

    Umana, Iboro C; Daniele, Claire A; McGehee, Daniel S

    2013-10-15

    Along with their well known role in nicotine addiction and autonomic physiology, neuronal nicotinic receptors (nAChRs) also have profound analgesic effects in animal models and humans. This is not a new idea, even in the early 1500s, soon after tobacco was introduced to the new world, its proponents listed pain relief among the beneficial properties of smoking. In recent years, analgesics that target specific nAChR subtypes have shown highly efficacious antinociceptive properties in acute and chronic pain models. To date, the side effects of these drugs have precluded their advancement to the clinic. This review summarizes the recent efforts to identify novel analgesics that target nAChRs, and outlines some of the key neural substrates that contribute to these physiological effects. There remain many unanswered mechanistic questions in this field, and there are still compelling reasons to explore neuronal nAChRs as targets for the relief of pain.

  12. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  13. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  14. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking

    PubMed Central

    McNally, Gavan P.; Clemens, Kelly J.

    2017-01-01

    The orexin/hypocretin system is important for appetitive motivation towards multiple drugs of abuse, including nicotine. Both OX1 and OX2 receptors individually have been shown to influence nicotine self-administration and reinstatement. Due to the increasing clinical use of dual orexin receptor antagonists in the treatment of disorders such as insomnia, we examined whether a dual orexin receptor antagonist may also be effective in reducing nicotine seeking. We tested the effect of intracerebroventricular (i.c.v.) administration of the potent and selective dual orexin receptor antagonist TCS1102 on orexin-A-induced food self-administration, nicotine self-administration and reinstatement of nicotine-seeking in rats. Our results show that 30 μg of TCS1102 i.c.v. abolishes orexin-A-induced increases in food self-administration but does not reduce nicotine self-administration. Neither i.c.v. 10 μg nor 30 μg of TCS1102 reduced compound reinstatement after short-term (15 days) self-administration nicotine, but 30 μg transiently reduced cue/nicotine compound reinstatement after chronic self-administration (29 days). These results indicate that TCS1102 has no substantial effect on motivation for nicotine seeking following chronic self-administration and no effect after shorter periods of intake. Orexin receptor antagonists may therefore have little clinical utility against nicotine addiction. PMID:28296947

  15. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking.

    PubMed

    Khoo, Shaun Yon-Seng; McNally, Gavan P; Clemens, Kelly J

    2017-01-01

    The orexin/hypocretin system is important for appetitive motivation towards multiple drugs of abuse, including nicotine. Both OX1 and OX2 receptors individually have been shown to influence nicotine self-administration and reinstatement. Due to the increasing clinical use of dual orexin receptor antagonists in the treatment of disorders such as insomnia, we examined whether a dual orexin receptor antagonist may also be effective in reducing nicotine seeking. We tested the effect of intracerebroventricular (i.c.v.) administration of the potent and selective dual orexin receptor antagonist TCS1102 on orexin-A-induced food self-administration, nicotine self-administration and reinstatement of nicotine-seeking in rats. Our results show that 30 μg of TCS1102 i.c.v. abolishes orexin-A-induced increases in food self-administration but does not reduce nicotine self-administration. Neither i.c.v. 10 μg nor 30 μg of TCS1102 reduced compound reinstatement after short-term (15 days) self-administration nicotine, but 30 μg transiently reduced cue/nicotine compound reinstatement after chronic self-administration (29 days). These results indicate that TCS1102 has no substantial effect on motivation for nicotine seeking following chronic self-administration and no effect after shorter periods of intake. Orexin receptor antagonists may therefore have little clinical utility against nicotine addiction.

  16. Multiple CNS nicotinic receptors mediate L-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice.

    PubMed

    Quik, Maryka; Campos, Carla; Grady, Sharon R

    2013-10-15

    Accumulating evidence supports the idea that drugs acting at nicotinic acetylcholine receptors (nAChRs) may be beneficial for Parkinson's disease, a neurodegenerative movement disorder characterized by a loss of nigrostriatal dopaminergic neurons. Nicotine administration to parkinsonian animals protects against nigrostriatal damage. In addition, nicotine and nAChR drugs improve L-dopa-induced dyskinesias, a debilitating side effect of L-dopa therapy which remains the gold-standard treatment for Parkinson's disease. Nicotine exerts its antidyskinetic effect by interacting with multiple nAChRs. One approach to identify the subtypes specifically involved in L-dopa-induced dyskinesias is through the use of nAChR subunit null mutant mice. Previous work with β2 and α6 nAChR knockout mice has shown that α6β2* nAChRs were necessary for the development/maintenance of L-dopa-induced abnormal involuntary movements (AIMs). The present results in parkinsonian α4 nAChR knockout mice indicate that α4β2* nAChRs also play an essential role since nicotine did not reduce L-dopa-induced AIMs in such mice. Combined analyses of the data from α4 and α6 knockout mice suggest that the α6α4β2β3 subtype may be critical. In contrast to the studies with α4 and α6 knockout mice, nicotine treatment did reduce L-dopa-induced AIMs in parkinsonian α7 nAChR knockout mice. However, α7 nAChR subunit deletion alone increased baseline AIMs, suggesting that α7 receptors exert an inhibitory influence on L-dopa-induced AIMs. In conclusion, α6β2*, α4β2* and α7 nAChRs all modulate L-dopa-induced AIMs, although their mode of regulation varies. Thus drugs targeting one or multiple nAChRs may be optimal for reducing L-dopa-induced dyskinesias in Parkinson's disease.

  17. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems.

    PubMed

    Falsafi, Soheil Keihan; Deli, Alev; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.

  18. The nicotinic acetylcholine receptor and its prokaryotic homologues: Structure, conformational transitions & allosteric modulation.

    PubMed

    Cecchini, Marco; Changeux, Jean-Pierre

    2015-09-01

    Pentameric ligand-gated ion channels (pLGICs) play a central role in intercellular communications in the nervous system by converting the binding of a chemical messenger - a neurotransmitter - into an ion flux through the postsynaptic membrane. Here, we present an overview of the most recent advances on the signal transduction mechanism boosted by X-ray crystallography of both prokaryotic and eukaryotic homologues of the nicotinic acetylcholine receptor (nAChR) in conjunction with time-resolved analyses based on single-channel electrophysiology and Molecular Dynamics simulations. The available data consistently point to a global mechanism of gating that involves a large reorganization of the receptor mediated by two distinct quaternary transitions: a global twisting and a radial expansion/contraction of the extracellular domain. These transitions profoundly modify the organization of the interface between subunits, which host several sites for orthosteric and allosteric modulatory ligands. The same mechanism may thus mediate both positive and negative allosteric modulations of pLGICs ligand binding at topographically distinct sites. The emerging picture of signal transduction is expected to pave the way to new pharmacological strategies for the development of allosteric modulators of nAChR and pLGICs in general. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. (-)-Spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin-2'-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Mullen, G; Napier, J; Balestra, M; DeCory, T; Hale, G; Macor, J; Mack, R; Loch, J; Wu, E; Kover, A; Verhoest, P; Sampognaro, A; Phillips, E; Zhu, Y; Murray, R; Griffith, R; Blosser, J; Gurley, D; Machulskis, A; Zongrone, J; Rosen, A; Gordon, J

    2000-11-02

    Neuronal nicotinic acetylcholine receptors are members of the ligand-gated ion channel receptor superfamily and may play important roles in modulating neurotransmission, cognition, sensory gating, and anxiety. Because of its distribution and abundance in the CNS, the alpha 7 nicotinic receptor is a strong candidate to be involved in some of these functions. In this paper we describe the synthesis and in vitro profile of AR-R17779, (-)-spiro[1-azabicyclo[2.2. 2]octane-3,5'-oxazolidin-2'-one] (4a), a potent full agonist at the rat alpha 7 nicotinic receptor, which is highly selective for the rat alpha 7 nicotinic receptor over the alpha 4 beta 2 subtype. Preliminary SAR of AR-R17779 presented here indicate that there is little scope for modification of this rigid molecule as even minor changes result in significant loss of the alpha 7 nicotinic receptor affinity.

  20. Brainstem nicotinic receptor subtypes that influence intragastric and arterial blood pressures.

    PubMed

    Ferreira, M; Singh, A; Dretchen, K L; Kellar, K J; Gillis, R A

    2000-07-01

    The purpose of this study was to investigate the effect of microinjection of nicotine and nicotinic receptor antagonists into the dorsal motor nucleus of the vagus (DMV) or medial subnucleus of the tractus solitarius (mNTS) on intragastric (IGP) and arterial blood pressures (BP) in anesthetized rats. Nicotine microinjected into the DMV (10-300 pmol) produced dose-related increases in IGP (ED(50) = 89 pmol); no significant changes were noted for BP. Ipsilateral vagotomy abolished nicotine-induced increases in IGP. Nicotine microinjected into the mNTS in a dose range of 0.1 to 300 pmol produced dose-related decreases in IGP (ED(50) = 0.6 pmol) and BP (ED(50) = 5.4 pmol). Bilateral vagotomy abolished nicotine-induced decreases in IGP while having no effect on BP. In rats treated with daily s.c. injections of nicotine (0.8 mg/kg of base) for 10 days, microinjections of nicotine into the DMV produced similar increases in IGP. BP responses from the mNTS were not affected by chronic treatment. However, nicotine microinjections into the mNTS no longer produced a decrease in IGP in these chronically treated animals. alpha-Bungarotoxin (100 pmol) significantly blocked nicotine-evoked increases in IGP from the DMV while having no effect on nicotine-induced responses elicited from the mNTS. Hexamethonium (10 and 100 pmol) microinjected into the mNTS dose-dependently blocked nicotine-induced effects but did not interfere with the action of nicotine at the DMV. Our data indicate that nicotine-induced changes in IGP result from nicotine acting at two sites, the DMV and mNTS; and that at least three different nicotinic receptors in the dorsal medulla oblongata can influence gastrointestinal and cardiovascular function.

  1. Chronic Exposure to Nicotine Enhances Insulin Sensitivity through α7 Nicotinic Acetylcholine Receptor-STAT3 Pathway

    PubMed Central

    Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance. PMID:23251458

  2. Neurocognitive Endophenotypes in Schizophrenia: Modulation by Nicotinic Receptor Systems

    PubMed Central

    Mackowick, Kristen M.; Barr, Mera S.; Wing, Victoria C.; Rabin, Rachel A.; Ouellet-Plamondon, Clairelaine; George, Tony P.

    2013-01-01

    Cigarette smoking is the leading preventable cause of death in the Western world, with a considerably higher prevalence observed in schizophrenia compared to the general population. Despite the negative health consequences of smoking heavily, it has been proposed that individuals with schizophrenia may maintain smoking behaviours to remediate symptoms associated with the disorder. Neurocognitive deficits are a core feature of schizophrenia and are present in approximately 80% of patients. Further, these deficits constitute an endophenotype of schizophrenia, as they are stable across disease phases, and heritable. The neurocognitive deficits that are present in schizophrenia are especially debilitating, since they are associated with poor clinical and functional outcomes and community integration. Interestingly, these deficits may also constitute a vulnerability factor towards the initiation and maintenance of tobacco use. Contributing to the potential shared vulnerability between schizophrenia and tobacco dependence is a dysregulation of the nicotinic acetylcholine receptor (nAChR) system. Pre-clinical evidence has shown that nicotine affects several neurotransmitter systems, including dopamine (DA), glutamate, and γ-aminobutyric acid (GABA), and certain neuropsychological deficits associated with these neurotransmitters (reaction time, spatial working memory, sustained attention, and sensory gating) are improved after nicotine administration in patients with schizophrenia. These positive effects on neurocognition appear to be more pronounced in smokers with schizophrenia, and may be an important mechanism that explains the co-morbidity of schizophrenia and tobacco dependence. PMID:23871750

  3. Cat carotid body chemoreceptor responses before and after nicotine receptor blockade with alpha-bungarotoxin.

    PubMed

    Mulligan, E; Lahiri, S

    1987-01-01

    The nature of nicotine receptors in the carotid body was studied in anesthetized, paralyzed and artificially ventilated cats. Chemoreceptor discharge in single or few-fiber preparations of the carotid sinus nerve was measured during isocapnic hypoxia, hyperoxic hypercapnia and in response to nicotine injections before and after administration of alpha-bungarotoxin (10 cats) and after alpha-bungarotoxin plus mecamylamine (7 cats) which binds to neuromuscular-type nicotine cholinergic receptors. alpha-Bungarotoxin caused a slight enhancement of the chemoreceptor response to hypoxia without affecting the chemoreceptor stimulation by nicotine. Mecamylamine (1-5 mg, i.v.), a ganglionic-type nicotinic receptor blocker, had no further effect on the response to hypoxia while it completely abolished the chemoreceptor stimulation by nicotine. Thus the nicotinic receptors in the cat carotid body which elicit excitation of chemosensory fibers appear to be of the ganglionic-type. Blockade of neuromuscular and ganglionic types of nicotinic receptors in the carotid body by alpha-bungarotoxin and mecamylamine does not attenuate the chemosensory responses to either hypoxia or hypercapnia. These nicotinic receptors therefore, do not appear to play an essential role in hypoxic or hypercapnic chemoreception in the cat carotid body.

  4. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    PubMed

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  5. NACHO Mediates Nicotinic Acetylcholine Receptor Function throughout the Brain.

    PubMed

    Matta, Jose A; Gu, Shenyan; Davini, Weston B; Lord, Brian; Siuda, Edward R; Harrington, Anthony W; Bredt, David S

    2017-04-25

    Neuronal nicotinic acetylcholine receptors (nAChRs) participate in diverse aspects of brain function and mediate behavioral and addictive properties of nicotine. Neuronal nAChRs derive from combinations of α and β subunits, whose assembly is tightly regulated. NACHO was recently identified as a chaperone for α7-type nAChRs. Here, we find NACHO mediates assembly of all major classes of presynaptic and postsynaptic nAChR tested. NACHO acts at early intracellular stages of nAChR subunit assembly and then synergizes with RIC-3 for receptor surface expression. NACHO knockout mice show profound deficits in binding sites for α-bungarotoxin, epibatidine, and conotoxin MII, illustrating essential roles for NACHO in proper assembly of α7-, α4β2-, and α6-containing nAChRs, respectively. By contrast, GABAA receptors are unaffected consistent with NACHO specifically modulating nAChRs. NACHO knockout mice show abnormalities in locomotor and cognitive behaviors compatible with nAChR deficiency and underscore the importance of this chaperone for physiology and disease associated with nAChRs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Blockade of dopamine d4 receptors attenuates reinstatement of extinguished nicotine-seeking behavior in rats.

    PubMed

    Yan, Yijin; Pushparaj, Abhiram; Le Strat, Yann; Gamaleddin, Islam; Barnes, Chanel; Justinova, Zuzana; Goldberg, Steven R; Le Foll, Bernard

    2012-02-01

    Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse.

  7. Blockade of Dopamine D4 Receptors Attenuates Reinstatement of Extinguished Nicotine-Seeking Behavior in Rats

    PubMed Central

    Yan, Yijin; Pushparaj, Abhiram; Le Strat, Yann; Gamaleddin, Islam; Barnes, Chanel; Justinova, Zuzana; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    Since cloning of the dopamine receptor D4 (DRD4), its role in the brain has remained unclear. It has been reported that polymorphism of the DRD4 gene in humans is associated with reactivity to cues related to tobacco smoking. However, the role of DRD4 in animal models of nicotine addiction has seldom been explored. In our study, male Long-Evans rats learned to intravenously self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Effects of the selective DRD4 antagonist L-745,870 were evaluated on nicotine self-administration behavior and on reinstatement of extinguished nicotine-seeking behavior induced by nicotine-associated cues or by priming injections of nicotine. L-745,870 was also tested on reinstatement of extinguished food-seeking behavior as a control. In addition, the selective DRD4 agonist PD 168,077 was tested for its ability to reinstate extinguished nicotine-seeking behavior. Finally, L-745,870 was tested in Sprague Dawley rats trained to discriminate administration of 0.4 mg/kg nicotine from vehicle under an FR schedule of food delivery. L-745,870 significantly attenuated reinstatement of nicotine-seeking induced by both nicotine-associated cues and nicotine priming. In contrast, L-745,870 did not affect established nicotine self-administration behavior or reinstatement of food-seeking behavior induced by food cues or food priming. L-745,870 did not produce nicotine-like discriminative-stimulus effects and did not alter discriminative-stimulus effects of nicotine. PD 168,077 did not reinstate extinguished nicotine-seeking behavior. As DRD4 blockade by L-745,870 selectively attenuated both cue- and nicotine-induced reinstatement of nicotine-seeking behavior, without affecting cue- or food-induced reinstatement of food-seeking behavior, DRD4 antagonists are potential therapeutic agents against tobacco smoking relapse. PMID:22030716

  8. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  9. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  10. cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors

    PubMed Central

    Komal, Pragya; Estakhr, Jasem; Kamran, Melad; Renda, Anthony; Nashmi, Raad

    2015-01-01

    Phosphorylation of ion channels, including nicotinic acetylcholine receptors (nAChRs), by protein kinases plays a key role in the modification of synaptic transmission and neuronal excitability. α7 nAChRs are the second most prevalent nAChR subtype in the CNS following α4β2. Serine 365 in the M3–M4 cytoplasmic loop of the α7 nAChR is a phosphorylation site for protein kinase A (PKA). D1/D5 dopamine receptors signal through the adenylate cyclase–PKA pathway and play a key role in working memory and attention in the prefrontal cortex. Thus, we examined whether the dopaminergic system, mediated through PKA, functionally interacts with the α7-dependent cholinergic neurotransmission. In layer 1 interneurons of mouse prefrontal cortex, α7 nicotinic currents were decreased upon stimulation with 8-Br-cAMP, a PKA activator. In HEK 293T cells, dominant negative PKA abolished 8-Br-cAMP's effect of diminishing α7 nicotinic currents, while a constitutively active PKA catalytic subunit decreased α7 currents. In brain slices, the PKA inhibitor KT-5720 nullified 8-Br-cAMP's effect of attenuating α7 nicotinic responses, while applying a PKA catalytic subunit in the pipette solution decreased α7 currents. 8-Br-cAMP stimulation reduced surface expression of α7 nAChRs, but there was no change in single-channel conductance. The D1/D5 dopamine receptor agonist SKF 83822 similarly attenuated α7 nicotinic currents from layer 1 interneurons and this attenuation of nicotinic current was prevented by KT-5720. These results demonstrate that dopamine receptor-mediated activation of PKA negatively modulates nicotinic neurotransmission in prefrontal cortical interneurons, which may be a contributing mechanism of dopamine modulation of cognitive behaviours such as attention or working memory. PMID:25990637

  11. Phasic D1 and tonic D2 dopamine receptor signaling double dissociate the motivational effects of acute nicotine and chronic nicotine withdrawal

    PubMed Central

    Grieder, Taryn E.; George, Olivier; Tan, Huibing; George, Susan R.; Le Foll, Bernard; Laviolette, Steven R.; van der Kooy, Derek

    2012-01-01

    Nicotine, the main psychoactive ingredient of tobacco smoke, induces negative motivational symptoms during withdrawal that contribute to relapse in dependent individuals. The neurobiological mechanisms underlying how the brain signals nicotine withdrawal remain poorly understood. Using electrophysiological, genetic, pharmacological, and behavioral methods, we demonstrate that tonic but not phasic activity is reduced during nicotine withdrawal in ventral tegmental area dopamine (DA) neurons, and that this pattern of signaling acts through DA D2 and adenosine A2A, but not DA D1, receptors. Selective blockade of phasic DA activity prevents the expression of conditioned place aversions to a single injection of nicotine in nondependent mice, but not to withdrawal from chronic nicotine in dependent mice, suggesting a shift from phasic to tonic dopaminergic mediation of the conditioned motivational response in nicotine dependent and withdrawn animals. Either increasing or decreasing activity at D2 or A2A receptors prevents the aversive motivational response to withdrawal from chronic nicotine, but not to acute nicotine. Modification of D1 receptor activity prevents the aversive response to acute nicotine, but not to nicotine withdrawal. This double dissociation demonstrates that the specific pattern of tonic DA activity at D2 receptors is a key mechanism in signaling the motivational effects experienced during nicotine withdrawal, and may represent a unique target for therapeutic treatments for nicotine addiction. PMID:22308372

  12. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala

    PubMed Central

    Kenny, Paul J.; Chartoff, Elena; Roberto, Marisa; Carlezon, William A.; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5–2.5 mg/kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg/kg) or intravenously self-administered (0.03 mg/kg/infusion) nicotine injections. The highest LY235959 dose (5 mg/kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 μM) increased NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1–10 ng/side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug. PMID:18418357

  13. Serotonin receptors as potential targets for modulation of nicotine use and dependence.

    PubMed

    Fletcher, Paul J; Lê, Anh Dzung; Higgins, Guy A

    2008-01-01

    Nicotine use carries considerable health risks and plays a major role in a variety of diseases. Current pharmacological treatments to aid in smoking cessation include nicotine-replacement therapy and non-nicotinic strategies such as bupropion and varenicline. While these treatments benefit some individuals there is still a need for better and more effective treatment strategies. Nicotine is the major psychoactive substance in tobacco. Some behavioural effects of nicotine, including its reinforcing efficacy result in part from activation of mesolimbic dopamine neurons. Modulation of dopamine function is one potential treatment strategy that could treat nicotine dependence. Serotonergic neurons modulate the functioning of dopamine neurons in a complex fashion. Much of this complexity arises from the fact that serotonin (5-HT) exerts its effects through multiple receptor subtypes, some of which even act in apparent functional opposition to each other. This article reviews evidence, primarily from animal experiments, using behavioural procedures relevant to nicotine use on the potential for 5-HT receptors as targets for treating nicotine dependence. The 5-HT(1A, 2A, 2C, 3, 4, 6) receptor subtypes have received most experimental attention, with the 5-HT(1A) and 5-HT(2C) receptors being the best studied. Several studies have now shown that 5-HT(1A) receptor antagonists alleviate some of the behavioural signs induced by nicotine withdrawal. Electrophysiological and neurochemical studies show that stimulation of 5-HT(2C) receptors reduces the function of the mesolimbic dopamine pathway. 5-HT(2C) receptor agonists block the stimulatory action of nicotine on midbrain dopamine function. They also reduce several behavioural effects of nicotine including its discriminative stimulus properties and reinforcing effects. Although more work remains to be done, 5-HT(2C) receptor agonists perhaps hold the most promise as potential therapies for smoking cessation.

  14. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  15. Noradrenergic α1 Receptors as a Novel Target for the Treatment of Nicotine Addiction

    PubMed Central

    Forget, Benoit; Wertheim, Carrie; Mascia, Paola; Pushparaj, Abhiram; Goldberg, Steven R; Le Foll, Bernard

    2010-01-01

    Nicotine is the main psychoactive ingredient in tobacco and its rewarding effects are considered primarily responsible for persistent tobacco smoking and relapse. Although dopamine has been extensively implicated in the rewarding effects of nicotine, noradrenergic systems may have a larger role than previously suspected. This study evaluated the role of noradrenergic α1 receptors in nicotine and food self-administration and relapse, nicotine discrimination, and nicotine-induced dopamine release in the nucleus accumbens in rats. We found that the noradrenergic α1 receptor antagonist prazosin (0.25–1 mg/kg) dose dependently reduced the self-administration of nicotine (0.03 mg/kg), an effect that was maintained over consecutive daily sessions; but did not reduce food self-administration. Prazosin also decreased reinstatement of extinguished nicotine seeking induced by either a nicotine prime (0.15 mg/kg) or nicotine-associated cues, but not food-induced reinstatement of food-seeking, and decreased nicotine-induced (0.15 mg/kg) dopamine release in the nucleus accumbens shell. However, prazosin did not have nicotine-like discriminative effects and did not alter the dose-response curve for nicotine discrimination. These findings suggest that stimulation of noradrenergic α1 receptors is involved in nicotine self-administration and relapse, possibly via facilitation of nicotine-induced activation of the mesolimbic dopaminergic system. The findings point to α1 adrenoceptor blockade as a potential new approach to the treatment of tobacco dependence in humans. PMID:20357760

  16. Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine.

    PubMed

    Fenster, C P; Rains, M F; Noerager, B; Quick, M W; Lester, R A

    1997-08-01

    The influence of alpha and beta subunits on the properties of nicotine-induced activation and desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes was examined. Receptors containing alpha4 subunits were more sensitive to activation by nicotine than alpha3-containing receptors. At low concentrations of nicotine, nAChRs containing beta2 subunits reached near-maximal desensitization more rapidly than beta4-containing receptors. The concentration of nicotine producing half-maximal desensitization was influenced by the particular alpha subunit expressed; similar to results for activation, alpha4-containing receptors were more sensitive to desensitizing levels of nicotine than alpha3-containing receptors. The alpha subunit also influenced the rate of recovery from desensitization; this rate was approximately inversely proportional to the apparent nicotine affinity for the desensitized state. The homomeric alpha7 receptor showed the lowest sensitivity to nicotine for both activation and desensitization; alpha7 nAChRs also demonstrated the fastest desensitization kinetics. These subunit-dependent properties remained in the presence of external calcium, although subtle, receptor subtype-specific effects on both the apparent affinities for activation and desensitization and the desensitization kinetics were noted. These data imply that the subunit composition of various nAChRs determines the degree to which receptors are desensitized and/or activated by tobacco-related levels of nicotine. The subtype-specific balance between receptor activation and desensitization should be considered important when the cellular and behavioral actions of nicotine are interpreted.

  17. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Connor, David A; Gould, Thomas J

    2015-06-01

    Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ.

  18. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  19. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  20. GABAA receptor inhibition triggers a nicotinic neuroprotective mechanism

    PubMed Central

    Ferchmin, P. A; Pérez, Dinely; Alvarez, William Castro; Penzo, Mario A.; Maldonado, Héctor M.; Eterovic, Vesna A.

    2014-01-01

    Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and hypoxic ischemic events, as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4β2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in a α4β2-dependent manner. Neuroprotection was assessed as the prevention of the NMDA-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of GABA. Blocking either α7 or GABAA receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4β2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4β2 nAChRs. PMID:23280428

  1. Nicotinic ACh Receptors as Therapeutic Targets in CNS Disorders

    PubMed Central

    Dineley, Kelly T.; Pandya, Anshul A.; Yakel, Jerrel L.

    2015-01-01

    The neurotransmitter acetylcholine (ACh) can regulate neuronal excitability by acting on the cys-loop cation-conducting ligand-gated nicotinic ACh receptor channels (nAChRs). These receptors are widely distributed throughout the central nervous system, being expressed on neurons and non-neuronal cells, where they participate in a variety of physiological responses such as anxiety, the central processing of pain, food intake, nicotine seeking behavior, and cognitive functions. In the mammalian brain, nine different subunits have been found thus far, which assemble into pentameric complexes with much subunit diversity; however the α7 and α4β2 subtypes predominate in the CNS. Neuronal nAChR dysfunction is involved in the pathophysiology of many neurological disorders. Here we will briefly discuss the functional makeup and expression of the nAChRs in the mammalian brain, and their role as targets in neurodegenerative diseases (in particular Alzheimer’s disease), neurodevelopmental disorders (in particular autism and schizophrenia), and neuropathic pain. PMID:25639674

  2. Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission

    PubMed Central

    Mamaligas, Aphroditi A.; Cai, Yuan; Ford, Christopher P.

    2016-01-01

    In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons. PMID:27886263

  3. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  4. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    PubMed

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  5. The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine.

    PubMed

    Palmatier, Matthew I; Liu, Xiu; Caggiula, Anthony R; Donny, Eric C; Sved, Alan F

    2007-05-01

    The primary reinforcing effects of nicotine are mediated by the drugs action at central nervous system nicotinic acetylcholine receptors (nAChRs). Although previous studies have demonstrated that nicotine potently enhances responding for non-pharmacological stimuli, the role of nAChRs in this reinforcement-enhancing effect is not known. The two reinforcement-related effects of nicotine can be dissociated in a paradigm that provides concurrent access to drug infusions and a non-pharmacological visual stimulus (VS). The present study characterized the role of nAChRs in the primary reinforcing effect of nicotine and the reinforcement-enhancing effect of nicotine. For rats with access to VS (VS-Only), nicotine (NIC-Only), both reinforcers contingent upon one response (NIC+VS) or both reinforcers contingent upon separate responses (2-Lever), unit dose-response relationships (0, 30, 60, or 90 microg/kg/infusion, free base) were determined over a 22-day acquisition period. Expression of the two reinforcement-related effects of nicotine was manipulated by pharmacological antagonism of nAChRs (1 mg/kg mecamylamine, subcutaneous, 5-min before the session) or by substituting saline for nicotine infusions (ie extinction) over a series of seven test sessions. Unit dose manipulations yielded an inverse dose-response relationship for active lever responding in the NIC+VS group. The dose-response relationships for rats with independent access to each reinforcer (2-Lever group) were relatively flat. For the 2-Lever group, acute mecamylamine challenge blocked the reinforcement-enhancing effects of nicotine, VS-lever responding decreased to basal levels on the first day of mecamylamine treatment or saline substitution (to the level of the VS-Only group). In contrast, nicotine-lever responding decreased gradually over the 7-day testing period (similar to saline extinction). The two reinforcement-related effects of nicotine are mediated by nAChRs but can be dissociated by acute and

  6. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    PubMed Central

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  7. Pharmacology of nicotinic receptor-mediated inhibition in rat dorsolateral septal neurones.

    PubMed Central

    Wong, L A; Gallagher, J P

    1991-01-01

    . This response was also sensitive to antagonism by various calcium-dependent potassium channel blockers including apamin, barium and tetraethylammonium. 7. Our studies reveal a novel class of CNS nicotinic receptor whose action upon stimulation by an agonist results in a membrane hyperpolarization via a calcium-dependent increase in potassium ion conductance. PMID:2061835

  8. Prenatal nicotine exposure selectively affects nicotinic receptor expression in primary and associative visual cortices of the fetal baboon.

    PubMed

    Duncan, Jhodie R; Garland, Marianne; Stark, Raymond I; Myers, Michael M; Fifer, William P; Mokler, David J; Kinney, Hannah C

    2015-03-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to the activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex, which are important in the development of visual mapping. Using a baboon model, we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/h, intravenous) or saline from 86 days gestation. At 161 days gestation, fetal brains were collected (n = 5 per group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high-performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region- and subunit-dependent manner. Prenatal nicotine exposure was associated with increased binding for (3) H-epibatidine sensitive nAChRs in the primary visual cortex [Brodmann areas (BA) 17] and BA 18, but not BA 19, of the associative visual cortex (P < 0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe, which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy.

  9. PRENATAL NICOTINE EXPOSURE SELECTIVELY AFFECTS NICOTINIC RECEPTOR EXPRESSION IN PRIMARY AND ASSOCIATIVE VISUAL CORTICES OF THE FETAL BABOON

    PubMed Central

    Duncan, Jhodie R.; Garland, Marianne; Stark, Raymond I.; Myers, Michael M.; Fifer, William P.; Mokler, David J.; Kinney, Hannah C.

    2014-01-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex which are important in the development of visual mapping. Using a baboon model we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/hr, i.v.) or saline from 86 days gestation. At 161 days gestation fetal brains were collected (n=5/group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region and subunit dependent manner. Prenatal nicotine exposure was associated with increased binding for 3H-epibatidine sensitive nAChRs in the primary visual cortex (BA 17) and BA 18, but not BA 19, of the associative visual cortex (p<0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy. PMID:24903536

  10. Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors

    PubMed Central

    Lotfipour, Shahrdad; Byun, Janet S.; Leach, Prescott; Fowler, Christie D.; Murphy, Niall P.; Kenny, Paul J.; Gould, Thomas J.; Boulter, Jim

    2013-01-01

    Baseline and nicotine-modulated behaviors were assessed in mice harboring a null mutant allele of the nicotinic acetylcholine receptor (nAChR) subunit gene α2 (Chrna2). Homozygous Chrna2−/− mice are viable, show expected sex and Mendelian genotype ratios, and exhibit no gross neuroanatomical abnormalities. A broad range of behavioral tests designed to assess genotype-dependent effects on anxiety (elevated plus maze and light/dark box), motor coordination (narrow bean traverse and gait), and locomotor activity revealed no significant differences between mutant mice and age-matched wild-type littermates. Furthermore, a panel of tests measuring traits, such as body position, spontaneous activity, respiration, tremors, body tone, and startle response, revealed normal responses for Chrna2-null mutant mice. However, Chrna2−/− mice do exhibit a mild motor or coordination phenotype (a decreased latency to fall during the accelerating rotarod test) and possess an increased sensitivity to nicotine-induced analgesia in the hotplate assay. Relative to wild-type, Chrna2−/− mice show potentiated nicotine self-administration and withdrawal behaviors and exhibit a sex-dependent enhancement of nicotine-facilitated cued, but not trace or contextual, fear conditioning. Overall, our results suggest that loss of the mouse nAChR α2 subunit has very limited effects on baseline behavior but does lead to the potentiation of several nicotine-modulated behaviors. PMID:23637165

  11. Contribution of NMDA glutamate and nicotinic acetylcholine receptor mechanisms in the discrimination of ethanol-nicotine mixtures.

    PubMed

    Ford, Matthew M; Davis, Natalie L; McCracken, Aubrey D; Grant, Kathleen A

    2013-10-01

    Ethanol and nicotine are commonly coabused drugs, and the incidence of codependence is greater than would be expected on the basis of the summed probability of dependence on each drug alone. Previous findings from our laboratory and others suggest that interactive mechanisms at the level of discriminative stimulus (S(D)) effects may contribute to this coabuse phenomenon. Specifically, ethanol overshadows the nicotine S(D) whereas nicotine potentiates the stimulus salience of ethanol when the two drugs are conditioned as a drug mixture. The goal of the current study was to begin to delineate the pharmacological bases of these ethanol-nicotine interactions. Three groups of C57BL/6J mice were trained to discriminate 0.8 mg/kg nicotine + 0.5 g/kg ethanol (0.8 N + 0.5 E), 0.8 N + 1.0 E, or 0.8 N + 2.0 E. An NMDA receptor antagonist (MK-801) and three nACh receptor ligands were tested for their ability to generalize from or antagonize, respectively, the drug mixtures. MK-801 fully generalized from the 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures and partially generalized from 0.8 N + 0.5 E. In contrast, nACh receptor ligands had minimal influence in blocking the perception of 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures, and only mecamylamine partially blocked 0.8 N+0.5 E. Reduced and enhanced contributions of nACh and NMDA receptors, respectively, in the discrimination of ethanol-nicotine mixtures may contribute to the overshadowing and potentiation phenomena observed previously.

  12. Molecular identification of high and low affinity receptors for nicotinic acid.

    PubMed

    Wise, Alan; Foord, Steven M; Fraser, Neil J; Barnes, Ashley A; Elshourbagy, Nabil; Eilert, Michelle; Ignar, Diane M; Murdock, Paul R; Steplewski, Klaudia; Green, Andrew; Brown, Andrew J; Dowell, Simon J; Szekeres, Philip G; Hassall, David G; Marshall, Fiona H; Wilson, Shelagh; Pike, Nicholas B

    2003-03-14

    Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.

  13. C3-halogenation of cytisine generates potent and efficacious nicotinic receptor agonists.

    PubMed

    Abin-Carriquiry, J Andrés; Voutilainen, Merja H; Barik, Jacques; Cassels, Bruce K; Iturriaga-Vásquez, Patricio; Bermudez, Isabel; Durand, Claudia; Dajas, Federico; Wonnacott, Susan

    2006-04-24

    Neuronal nicotinic acetylcholine receptors subserve predominantly modulatory roles in the brain, making them attractive therapeutic targets. Natural products provide key leads in the quest for nicotinic receptor subtype-selective compounds. Cytisine, found in Leguminosae spp., binds with high affinity to alpha4beta2* nicotinic receptors. We have compared the effect of C3 and C5 halogenation of cytisine and methylcytisine (MCy) on their interaction with native rat nicotinic receptors. 3-Bromocytisine (3-BrCy) and 3-iodocytisine (3-ICy) exhibited increased binding affinity (especially at alpha7 nicotinic receptors; Ki approximately 0.1 microM) and functional potency, whereas C5-halogenation was detrimental. 3-BrCy and 3-ICy were more potent than cytisine at evoking [3H]dopamine release from striatal slices (EC50 approximately 11 nM), [3H]noradrenaline release from hippocampal slices (EC50 approximately 250 nM), increases in intracellular Ca2+ in PC12 cells and inward currents in Xenopus oocytes expressing human alpha3beta4 nicotinic receptor (EC50 approximately 2 microM). These compounds were also more efficacious than cytisine. C3-halogenation of cytisine is proposed to stabilize the open conformation of the nicotinic receptor but does not enhance subtype selectivity.

  14. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways.

    PubMed

    Gorini, C; Jameson, H; Woerman, A L; Perry, D C; Mendelowitz, D

    2013-08-15

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg(-1)·day(-1) of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex.

  15. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways

    PubMed Central

    Gorini, C.; Jameson, H.; Woerman, A. L.; Perry, D. C.

    2013-01-01

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg−1·day−1 of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex. PMID:23766497

  16. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.

    PubMed

    Kim, Sanguk; Chamberlain, Aaron K; Bowie, James U

    2004-08-01

    The nicotinic acetylcholine receptor is a neurotransmitter-gated ion channel in the postsynaptic membrane. It is composed of five homologous subunits, each of which contributes one transmembrane helix--the M2 helix--to create the channel pore. The M2 helix from the delta subunit is capable of forming a channel by itself. Although a model of the receptor was recently proposed based on a low-resolution, cryo-electron microscopy density map, we found that the model does not explain much of the other available experimental data. Here we propose a new model of the M2 channel derived solely from helix packing and symmetry constraints. This model agrees well with experimental results from solid-state NMR, chemical reactivity, and mutagenesis experiments. The model depicts the channel pore, the channel gate, and the residues responsible for cation specificity.

  17. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm.

    PubMed

    Shao, Xuesi M; Tan, Wenbin; Xiu, Joanne; Puskar, Nyssa; Fonck, Carlos; Lester, Henry A; Feldman, Jack L

    2008-01-09

    Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9'A) of the nAChR alpha4 subunit; this mutation renders alpha4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice. Nicotine affected respiratory rhythm at concentrations approximately 100-fold lower in the homozygous L9'A knock-in mice compared with wild-type mice. Bath application of 5 nm nicotine increased the excitability of preBötC inspiratory neurons, increased respiratory frequency, and induced tonic/seizure-like activities in XIIn in L9'A mice, effects similar to those induced by 1 microM nicotine in wild-type mice. In L9'A mice, microinjection of low nanomolar concentrations of nicotine into the preBötC increased respiratory frequency, whereas injection into the ipsilateral hypoglossal (XII) nucleus induced tonic/seizure-like activity. The alpha4*-selective nAChR antagonist dihydro-beta-erythroidine produced opposite effects and blocked the nicotinic responses. These data, showing that nAChRs in the preBötC and XII nucleus in L9'A mice are hypersensitive to nicotine and endogenous ACh, suggest that functional alpha4* nAChRs are present in the preBötC. They mediate cholinergic/nicotinic modulation of the excitability of preBötC inspiratory neurons and of respiratory rhythm. Furthermore, functional alpha4* nAChRs are present in XII nucleus and mediate cholinergic/nicotinic modulation of tonic activity in XIIn.

  18. Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio.

    PubMed

    López-Hernández, Gretchen Y; Sánchez-Padilla, Javier; Ortiz-Acevedo, Alejandro; Lizardi-Ortiz, José; Salas-Vincenty, Janice; Rojas, Legier V; Lasalde-Dominicci, José A

    2004-09-03

    Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.

  19. Role of nicotine receptor partial agonists in tobacco cessation

    PubMed Central

    Maity, Nivedita; Chand, Prabhat; Murthy, Pratima

    2014-01-01

    One in three adults in India uses tobacco, a highly addictive substance in one or other form. In addition to prevention of tobacco use, offering evidence-based cessation services to dependent tobacco users constitutes an important approach in addressing this serious public health problem. A combination of behavioral methods and pharmacotherapy has shown the most optimal results in tobacco dependence treatment. Among currently available pharmacological agents, drugs that preferentially act on the α4 β2-nicotinic acetyl choline receptor like varenicline and cytisine appear to have relatively better cessation outcomes. These drugs are in general well tolerated and have minimal drug interactions. The odds of quitting tobacco use are at the very least doubled with the use of partial agonists compared with placebo and the outcomes are also superior when compared to nicotine replacement therapy and bupropion. The poor availability of partial agonists and specifically the cost of varenicline, as well as the lack of safety data for cytisine has limited their use world over, particularly in developing countries. Evidence for the benefit of partial agonists is more robust for smoking rather than smokeless forms of tobacco. Although more studies are needed to demonstrate their effectiveness in different populations of tobacco users, present literature supports the use of partial agonists in addition to behavioral methods for optimal outcome in tobacco dependence. PMID:24574554

  20. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  1. Erythrina mulungu Alkaloids Are Potent Inhibitors of Neuronal Nicotinic Receptor Currents in Mammalian Cells

    PubMed Central

    Setti-Perdigão, Pedro; Serrano, Maria A. R.; Flausino, Otávio A.; Bolzani, Vanderlan S.; Guimarães, Marília Z. P.; Castro, Newton G.

    2013-01-01

    Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype. PMID:24349349

  2. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    PubMed

    Setti-Perdigão, Pedro; Serrano, Maria A R; Flausino, Otávio A; Bolzani, Vanderlan S; Guimarães, Marília Z P; Castro, Newton G

    2013-01-01

    Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS) subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i) PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii) cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii) HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+)-11á-hydroxyerysotrine was the lowest, whereas (+)-erythravine and (+)-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+)-erythravine and (+)-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  3. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    PubMed Central

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  4. a2* Nicotinic Acetylcholine Receptors Influence Hippocampus-Dependent Learning and Memory in Adolescent Mice

    ERIC Educational Resources Information Center

    Lotfipour, Shahrdad; Mojica, Celina; Nakauchi, Sakura; Lipovsek, Marcela; Silverstein, Sarah; Cushman, Jesse; Tirtorahardjo, James; Poulos, Andrew; Elgoyhen, Ana Belén; Sumikawa, Katumi; Fanselow, Michael S.; Boulter, Jim

    2017-01-01

    The absence of a2* nicotinic acetylcholine receptors (nAChRs) in oriens lacunosum moleculare (OLM) GABAergic interneurons ablate the facilitation of nicotine-induced hippocampal CA1 long-term potentiation and impair memory. The current study delineated whether genetic mutations of a2* nAChRs ("Chrna2"[superscript L9'S/L9'S] and…

  5. G protein-coupled receptor for nicotinic acid in mouse macrophages.

    PubMed

    Lorenzen, Anna; Stannek, Christina; Burmeister, Anja; Kalvinsh, Ivars; Schwabe, Ulrich

    2002-08-15

    The use of the HDL-elevating drug nicotinic acid in the treatment and prevention of atherosclerotic disease is limited by the frequent induction of skin flushing. The therapeutic effects of nicotinic acid are attributed to inhibition of lipolysis in adipose tissue via a G protein-coupled receptor, whereas the mechanism of flush induction by release of prostaglandin D(2) from macrophages is not understood. In this study, we investigated if macrophages contain nicotinic acid receptors. Specific guanine nucleotide sensitive binding sites for [(3)H]nicotinic acid were detected in membranes from mouse RAW 264.7 macrophages. Nicotinic acid and related heterocycles stimulated activation of pertussis toxin-sensitive G proteins. The rank orders of potency in macrophage membranes were identical for inhibition of [(3)H]nicotinic acid binding and G protein activation, and were pharmacologically indistinguishable from that of the G protein-coupled nicotinic acid receptor in spleen membranes. These results indicate that the effects of nicotinic acid on macrophages, spleen and probably adipocytes are mediated via an identical, unique G protein-coupled receptor.

  6. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  7. The GABAB receptor agonists baclofen and CGP44532 decreased nicotine self-administration in the rat.

    PubMed

    Paterson, Neil E; Froestl, Wolfgang; Markou, Athina

    2004-03-01

    Previous work has indicated a potential role for gamma-aminobutyric acid-B (GABA(B)) receptor agonists in treating drug addiction in humans. Specifically, GABA(B) receptor agonists decreased cocaine, heroin and nicotine self-administration in rats. The purpose of the present studies was to extend previous findings by assessing the effects of additional GABA(B) receptor agonists on nicotine self-administration and food-maintained responding, under both fixed and progressive ratio schedules in rats. Male Wistar rats were exposed to a progressive ratio schedule where various nicotine doses were made available according to a within-subjects Latin Square design. Additional groups of rats were used to test the effects of the GABA(B) receptor agonists baclofen and CGP44532 on nicotine self-administration (0.01 and 0.03 mg/kg per infusion) and food-reinforced responding on fixed and progressive ratio (CGP44532 only) schedules. Nicotine maintained stable self-administration under a progressive ratio schedule with a linear dose-response function ( r=0.61). Both CGP44532 and (-)baclofen dose-dependently reduced nicotine self-administration on the fixed ratio schedule, and also decreased food-maintained responding at higher doses. Further, CGP44532 decreased breakpoints for nicotine and food at identical doses under the progressive ratio schedule. The present data demonstrate that administration of GABA(B) receptor agonists decreased intravenous nicotine self-administration under both fixed and progressive ratio schedules of reinforcement, possibly reflecting reduced rewarding effects of nicotine. Both baclofen and CGP44532 exhibited specificity for nicotine- versus food-maintained responding on the fixed ratio schedules but not on the progressive ratio schedule (CGP44532 tested only), indicating the potential usefulness of GABA(B) receptor agonists as therapeutics for smoking cessation.

  8. Widespread Decrease of Nicotinic Acetylcholine Receptors in Parkinson's Disease

    PubMed Central

    Ichise, Masanori; Zoghbi, Sami S; Liow, Jeih-San; Ghose, Subroto; Vines, Douglass C; Sangare, Janet; Lu, Jian-Qiang; Cropley, Vanessa L; Iida, Hidehiro; Kim, Kyeong Min; Cohen, Robert M; Bara-Jimenez, William; Ravina, Bernard; Innis, Robert B

    2005-01-01

    Nicotinic acetylcholine receptors (nAChRs) have close interactions with the dopaminergic system and play critical roles in cognitive function. nAChRs were imaged in 10 non-demented Parkinson's disease (PD) patients and 15 age-matched healthy subjects using a single photon emission computed tomography ligand [123I]5-iodo-3-[2(S)-2-azetidinylmethoxy]pyridine. Using an arterial input function, we measured the total distribution volume (V; specific plus non-displaceable) as well as the delivery (K1). PD showed a widespread significant decrease (∼10%) of V in both cortical and subcortical regions without a significant change in K1. These results indicate the importance of extending the study to demented patients. PMID:16374823

  9. The selective dopamine D3 receptor antagonist SB-277011A reduces nicotine-enhanced brain reward and nicotine-paired environmental cue functions.

    PubMed

    Pak, Arlene C; Ashby, Charles R; Heidbreder, Christian A; Pilla, Maria; Gilbert, Jeremy; Xi, Zheng-Xiong; Gardner, Eliot L

    2006-10-01

    Increasing evidence suggests that enhanced dopamine (DA) neurotransmission in the nucleus accumbens (NAc) may play a role in mediating the reward and reinforcement produced by addictive drugs and in the attentional processing of drug-associated environmental cues. The meso-accumbens DA system is selectively enriched with DA D3 receptors, a DA receptor subtype increasingly implicated in reward-related brain and behavioural processes. From a variety of evidence, it has been suggested that selective DA D3 receptor antagonism may be a useful pharmacotherapeutic approach for treating addiction. The present experiments tested the efficacy of SB-277011A, a selective DA D3 receptor antagonist, in rat models of nicotine-enhanced electrical brain-stimulation reward (BSR), nicotine-induced conditioned locomotor activity (LMA), and nicotine-induced conditioned place preference (CPP). Nicotine was given subcutaneously within the dose range of 0.25-0.6 mg/kg (nicotine-free base). SB-277011A, given intraperitoneally within the dose range of 1-12 mg/kg, dose-dependently reduced nicotine-enhanced BSR, nicotine-induced conditioned LMA, and nicotine-induced CPP. The results suggest that selective D3 receptor antagonism constitutes a new and promising pharmacotherapeutic approach to the treatment of nicotine dependence.

  10. Minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor

    SciTech Connect

    Jones, O.T.; Eubanks, J.H.; Earnest, J.P.; McNamee, M.G.

    1988-05-17

    The detergent sodium cholate was used to both solubilize and partially delipidate the nicotinic acetylcholine receptor from Torpedo californica. Using both native membranes and reconstituted membranes, it is shown that the detergent to lipid molar ratio is the most important parameter in determining the effect of the detergent on the functional properties of the receptor. Receptor-lipid complexes were quantitatively separated from detergent and excess lipids by centrifugation through detergent-free sucrose gradients. The lipid to protein molar ratio of the complexes could be precisely controlled by adjusting the cholate and lipid concentrations of the starting membranes. Analyses of both ion influx activity and ligand binding revealed that a minimum of 45 lipids per receptor was required for stabilization of the receptor in a fully functional state. Progressive irreversible inactivation occurred as the lipid to protein mole ratio was decreased below 45, and complete inactivation occurred below a ratio of 20. The results are consistent with a functional requirement for a single shell of lipids around the perimeter of the receptor.

  11. Energetic Contributions to Channel Gating of Residues in the Muscle Nicotinic Receptor β1 Subunit

    PubMed Central

    Akk, Gustav; Eaton, Megan; Li, Ping; Zheng, Steven; Lo, Joshua; Steinbach, Joe Henry

    2013-01-01

    In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit. PMID:24194945

  12. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  13. The pore domain of the nicotinic acetylcholine receptor: molecular modeling, pore dimensions, and electrostatics.

    PubMed Central

    Sankararamakrishnan, R; Adcock, C; Sansom, M S

    1996-01-01

    The pore domain of the nicotinic acetylcholine receptor has been modeled as a bundle of five kinked M2 helices. Models were generated via molecular dynamics simulations incorporating restraints derived from 9-A resolution cryoelectron microscopy data (Unwin, 1993; 1995), and from mutagenesis data that identify channel-lining side chains. Thus, these models conform to current experimental data but will require revision as higher resolution data become available. Models of the open and closed states of a homopentameric alpha 7 pore are compared. The minimum radius of the closed-state model is less than 2 A; the minimum radius of the open-state models is approximately 6 A. It is suggested that the presence of "bound" water molecules within the pore may reduce the effective minimum radii below these values by up to approximately 3 A. Poisson-Boltzmann calculations are used to obtain a first approximation to the potential energy of a monovalent cation as it moves along the pore axis. The differences in electrostatic potential energy profiles between the open-state models of alpha 7 and of a mutant of alpha 7 are consistent with the experimentally observed change in ion selectivity from cationic to anionic. Models of the open state of the heteropentameric Torpedo nicotinic acetylcholine receptor pore domain are also described. Relatively small differences in pore radius and electrostatic potential energy profiles are seen when the Torpedo and alpha 7 models are compared. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 5 PMID:8889144

  14. Cannabinoid receptor 1 (CNR1) gene variant moderates neural index of cognitive disruption during nicotine withdrawal.

    PubMed

    Evans, D E; Sutton, S K; Jentink, K G; Lin, H-Y; Park, J Y; Drobes, D J

    2016-09-01

    Nicotine withdrawal-related disruption of cognitive control may contribute to the reinforcement of tobacco use. Identification of gene variants that predict this withdrawal phenotype may lead to tailored pharmacotherapy for smoking cessation. Variation on the cannabinoid receptor 1 gene (CNR1) has been related to nicotine dependence, and CNR1 antagonists may increase attention and memory functioning. We targeted CNR1 variants as moderators of a validated neural marker of nicotine withdrawal-related cognitive disruption. CNR1 polymorphisms comprising the 'TAG' haplotype (rs806379, rs1535255 and rs2023239) were tested independently, as no participants in this sample possessed this haplotype. Nicotine withdrawal-related cognitive disruption was indexed as increased resting electroencephalogram (EEG) alpha-1 power density across 17 electrodes. Seventy-three Caucasian Non-Hispanic smokers (≥15 cigarettes per day) visited the laboratory on two occasions following overnight smoking/nicotine deprivation. Either two nicotine or two placebo cigarettes were smoked prior to collecting EEG data at each session. Analyses showed that rs806379 moderated the effects of nicotine deprivation increasing slow wave EEG (P = 0.004). Smokers homozygous for the major allele exhibited greater nicotine withdrawal-related cognitive disruption. The current findings suggest potential efficacy of cannabinoid receptor antagonism as a pharmacotherapy approach for smoking cessation among individuals who exhibit greater nicotine withdrawal-related cognitive disruption. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  16. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  17. Activation of α7-containing nicotinic receptors on astrocytes triggers AMPA receptor recruitment to glutamateric synapses

    PubMed Central

    Wang, Xulong; Lippi, Giordano; Carlson, David M.; Berg, Darwin K.

    2014-01-01

    Astrocytes, an abundant form of glia, are known to promote and modulate synaptic signaling between neurons. They also express α7-containing nicotinic acetylcholine receptors (α7-nAChRs), but the functional relevance of these receptors is unknown. We show here that stimulation of α7-nAChRs on astrocytes releases components that induce hippocampal neurons to acquire more a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors post-synaptically at glutamatergic synapses. The increase is specific in that no change is seen in synaptic NMDA receptor clusters or other markers for glutamatergic synapses, or in markers for GABAergic synapses. Moreover, the increases in AMPA receptors on the neuron surface are accompanied by increases in the frequency of spontaneous miniature synaptic currents mediated by the receptors and increases in the ratio of evoked synaptic currents mediated by AMPA versus NMDA receptors. This suggests that stimulating α7-nAChRs on astrocytes can convert ‘silent’ glutamatergic synapses to functional status. Astrocyte-derived thrombospondin is necessary but not sufficient for the effect, while tumor necrosis factor-α is sufficient but not necessary. The results identify astrocyte α7-nAChRs as a novel pathway through which nicotinic cholinergic signaling can promote the development of glutamatergic networks, recruiting AMPA receptors to post-synaptic sites and rendering the synapses more functional. PMID:24032433

  18. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-07-01

    We verified the hypothesis that serotonin (5-HT)(2) receptors control the locomotor effects of nicotine (0.4 mg kg(-1)) in rats by using the 5-HT(2A) receptor antagonist M100907, the preferential 5-HT(2A) receptor agonist DOI, the 5-HT(2C) receptor antagonist SB 242084, and the 5-HT(2C) receptor agonists Ro 60-0175 and WAY 163909. Repeated pairings of a test environment with nicotine for 5 days, on Day 10 significantly augmented the locomotor activity following nicotine administration. Of the investigated 5-HT(2) receptor ligands, M100907 (2 mg kg(-1)) or DOI (1 mg kg(-1)) administered during the first 5 days in combination with nicotine attenuated or enhanced, respectively, the development of nicotine sensitization. Given acutely on Day 10, M100907 (2 mg kg(-1)), Ro 60-0175 (1 mg kg(-1)), and WAY 163909 (1.5 mg kg(-1)) decreased the expression of nicotine sensitization. In another set of experiments, where the nicotine challenge test was performed on Day 15 in animals treated repeatedly (Days: 1-5, 10) with nicotine, none of 5-HT(2) receptor ligands administered during the second withdrawal period (Days: 11-14) to nicotine-treated rats altered the sensitizing effect of nicotine given on Day 15. Our data indicate that 5-HT(2A) receptors (but not 5-HT(2C) receptors) play a permissive role in the sensitizing effects of nicotine, while stimulation of 5-HT(2A) receptors enhances the development of nicotine sensitization and activation of 5-HT(2C) receptors is essential for the expression of nicotine sensitization. Repeated treatment with the 5-HT(2) receptor ligands within the second nicotine withdrawal does not inhibit previously established sensitization.

  19. Methadone is a non-competitive antagonist at the α4β2 and α3* nicotinic acetylcholine receptors and an agonist at the α7 nicotinic acetylcholine receptor.

    PubMed

    Talka, Reeta; Salminen, Outi; Tuominen, Raimo K

    2015-04-01

    Nicotine-methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non-competitive antagonist at rat α3β4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4β2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [(3) H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and (86) Rb(+) efflux and changes in intracellular calcium [Ca(2+) ]i were used to assess changes in the functional activity of the receptors. Methadone displaced [(3) H]epibatidine from nicotinic agonist-binding sites in SH-EP1-hα7 and SH-SY5Y cells, but not in SH-EP1-hα4β2 cells. The Ki values for methadone were 6.3 μM in SH-EP1-hα7 cells and 19.4 μM and 1008 μM in SH-SY5Y cells. Methadone increased [Ca(2+) ]i in all cell lines in a concentration-dependent manner, and in SH-EP1-hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH-EP1-hα4β2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre-treatment abolished the nicotine-induced response in [Ca(2+) ]i in all cell lines expressing nAChRs. In SH-EP1-hα4β2 and SH-SY5Y cells, methadone had no effect on the (86) Rb(+) efflux, but it antagonized the nicotine-induced (86) Rb(+) ion efflux in a non-competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non-competitive antagonist at human α4β2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co

  20. α3β4-Nicotinic receptors mediate adrenergic nerve- and peptidergic (CGRP) nerve-dependent vasodilation induced by nicotine in rat mesenteric arteries

    PubMed Central

    Eguchi, S; Miyashita, S; Kitamura, Y; Kawasaki, H

    2007-01-01

    Background and purpose: Previous studies demonstrated that nicotine-induced endothelium-independent vasodilation is mediated by perivascular adrenergic nerves and nerves releasing calcitonin gene-related peptide (CGRPergic nerves). We characterized the nicotinic acetylcholine (ACh) receptor subtype underlying the vasodilation in response to nicotine in rat mesenteric arteries. Experimental approach: Rat mesenteric vascular beds without endothelium were contracted by perfusion with Krebs solution containing methoxamine and the perfusion pressure was measured with a pressure transducer. Key results: Perfusion of nicotine (1–100 μM) for 1 min caused a concentration-dependent decrease in perfusion pressure due to vasodilation. Perfusion of (±)-epibatidine (1–100 nM) (non-selective agonist) or (−)-cytisine (1–100 μM) (partial agonist for nicotinic β2 subtype and full agonist for nicotinic β4 subtype) induced vasodilation in a concentration-dependent manner. Vasodilation induced by nicotine, (−)-cytisine- and (±)-epibatidine was markedly attenuated by guanethidine (5 μM) and pretreatment with capsaicin (1 μM). Mecamylamine (relatively selective antagonist for α3β4 subtype), but not dihydro-β-erythroidine (selective antagonist for α4β2 subtype) or α-bungarotoxin (selective antagonist for α7 subtype), markedly inhibited nicotine-induced vasodilation. Nicotine-induced vasodilation was inhibited by methyllycaconitine at high concentrations (>1 μM), which non-selectively antagonize nicotinic receptors, while a low concentration of 10 nM, which selectively antagonizes α7 subtype, had no effect. (−)-Cytisine and (±)-epibatidine-induced vasodilation were abolished by mecamylamine Conclusion and implications: These results suggest that the nicotinic α3β4 receptor subtype, but not the α7 and α4β2 subtypes, is responsible for the vasodilation in rat mesenteric arteries induced by nicotine- and nicotinic ACh receptor agonists

  1. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus

    PubMed Central

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-01-01

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. PMID:25553616

  2. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    PubMed

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  3. Activation of the GABA(B) Receptor Prevents Nicotine-Induced Locomotor Stimulation in Mice.

    PubMed

    Lobina, Carla; Carai, Mauro A M; Froestl, Wolfgang; Mugnaini, Claudia; Pasquini, Serena; Corelli, Federico; Gessa, Gian Luigi; Colombo, Giancarlo

    2011-01-01

    Recent studies demonstrated that activation of the GABA(B) receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs), inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABA(B) receptor agonist, baclofen, and GABA(B) PAMs, CGP7930, and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p.), CGP7930 (0, 25, and 50 mg/kg, i.g.), or GS39783 (0, 25, and 50 mg/kg, i.g.), then treated with nicotine (0 and 0.05 mg/kg, s.c.), and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABA(B) PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABA(B) receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  4. Role of beta2-containing nicotinic acetylcholine receptors in auditory event-related potentials.

    PubMed

    Rudnick, Noam D; Koehler, Christine; Picciotto, Marina R; Siegel, Steven J

    2009-03-01

    Nicotine improves sensory processing in schizophrenic individuals, as measured by changes in auditory event-related potentials (ERPs). Nicotine administration also alters ERPs in mice by increasing the amplitude and gating of the P20 ERP component while decreasing the amplitude of the N40 ERP component. Less is known about the role of specific nicotinic acetylcholine receptor (nAChR) subtypes. In this study, we examined whether nAChRs containing the beta2 subunit contribute to nicotine's effects on auditory ERPs. We tested the effect of nicotine in wild-type mice and mice lacking the beta2 nAChR subunit. Mice underwent stereotaxic implantation of stainless steel electrodes located in the CA3 region of the hippocampus, and 50 paired click stimuli were delivered during each drug condition. There was no significant difference in P20 or N40 amplitude or gating between genotypes during the control condition, suggesting that beta2-containing receptors are not essential for the baseline auditory ERP response. Nicotine increased P20 amplitude and enhanced gating in wild-type and beta2 knockout mice, but only decreased N40 amplitude in wild-type mice. There was no effect of nicotine on N40 gating in either genotype. beta2-containing receptors are necessary for nicotine's effects on the N40 component of the mouse auditory ERP. These results suggest that beta2-containing nAChRs modulate sensory processing and may serve as a therapeutic target in schizophrenic individuals.

  5. Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures.

    PubMed

    Moser, N; Mechawar, N; Jones, I; Gochberg-Sarver, A; Orr-Urtreger, A; Plomann, M; Salas, R; Molles, B; Marubio, L; Roth, U; Maskos, U; Winzer-Serhan, U; Bourgeois, J-P; Le Sourd, A-M; De Biasi, M; Schröder, H; Lindstrom, J; Maelicke, A; Changeux, J-P; Wevers, A

    2007-07-01

    Nicotinic acetylcholine receptors play important roles in numerous cognitive processes as well as in several debilitating central nervous system (CNS) disorders. In order to fully elucidate the diverse roles of nicotinic acetylcholine receptors in CNS function and dysfunction, a detailed knowledge of their cellular and subcellular localizations is essential. To date, methods to precisely localize nicotinic acetylcholine receptors in the CNS have predominantly relied on the use of anti-receptor subunit antibodies. Although data obtained by immunohistology and immunoblotting are generally in accordance with ligand binding studies, some discrepancies remain, in particular with electrophysiological findings. In this context, nicotinic acetylcholine receptor subunit-deficient mice should be ideal tools for testing the specificity of subunit-directed antibodies. Here, we used standard protocols for immunohistochemistry and western blotting to examine the antibodies raised against the alpha3-, alpha4-, alpha7-, beta2-, and beta4-nicotinic acetylcholine receptor subunits on brain tissues of the respective knock-out mice. Unexpectedly, for each of the antibodies tested, immunoreactivity was the same in wild-type and knock-out mice. These data imply that, under commonly used conditions, these antibodies are not suited for immunolocalization. Thus, particular caution should be exerted with regards to the experimental approach used to visualize nicotinic acetylcholine receptors in the brain.

  6. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Zwart, Ruud; Strotton, Merrick; Ching, Jennifer; Astles, Peter C; Sher, Emanuele

    2014-03-05

    α7β2 is a novel type of nicotinic acetylcholine receptor shown to be uniquely expressed in cholinergic neurons of the basal forebrain and in hippocampal interneurons. We have compared the pharmacological properties of recombinant homomeric α7 and heteromeric α7β2 nicotinic acetylcholine receptors in order to reveal the pharmacological consequences of β2 subunit incorporation into the pentamer. The non-selective agonist epibatidine did not distinguish α7β2 from α7 nicotinic acetylcholine receptors, but three other non-selective agonists (nicotine, cytisine and varenicline) were less efficacious on α7β2 than on α7. A more dramatic change in efficacy was seen with eight different selective α7 agonists. Because of their very low intrinsic efficacy, some compounds became very efficacious functional antagonists at α7β2 receptors. Three α4β2 nicotinic receptor selective agonists that were not active on α7, were also inactive on α7β2, and dihydro-β-erythroidine, an α4β2 receptor-preferring antagonist, inhibited α7 and α7β2 in a similar manner. These results reveal significant effects of β2 incorporation in determining the relative efficacy of several non-selective and α7 selective agonists, and also show that incorporation of β2 subunits does not cause a shift to a more “β2-like” pharmacology of α7 nicotinic acetylcholine receptors.

  7. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  8. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  9. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  10. Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNEC).

    PubMed

    Sartelet, Hervé; Maouche, Kamel; Totobenazara, Jean-laurent; Petit, Jessica; Burlet, Henriette; Monteau, Michel; Tournier, Jean Marie; Birembaut, Philippe

    2008-01-01

    Neuroendocrine (NE) tumors of the lung represent a wide spectrum of phenotypically distinct entities, with differences in tumor progression and aggressiveness, which include carcinoid tumor (CT) and small-cell lung carcinoma (SCLC). Approximately 20-40% of patients with both typical and atypical CT are non-smokers, while virtually all patients with SCLC are cigarette smokers. Cigarette smoke contains numerous molecules which have been identified as carcinogens. The real impact of nicotine in the development of tumors is not well known. Recent studies show that nicotine upregulates factors of transcription through the nicotinic receptors. The aim of our work was to study the expression of the nicotinic receptors in normal and neoplastic pulmonary NE cells. An immunohistochemical study was carried out with antibodies against NE markers and subunits alpha7 and beta2 of nicotinic receptors in 7 normal lungs, 10 CT (8 typical and 2 atypical) and 10 SCLC fixed in formalin and embedded in paraffin. This study was completed with reverse transcription-polymerase chain reactions (RT-PCR) detection of alpha7-subunit nicotinic receptor mRNA expression. Our data showed that beta2-subunit of nicotinic receptors is never expressed in normal NE cells of lungs and very rarely in NE tumors. In contrast, alpha7-subunit is constantly found in NE cells in normal lungs. In tumors, its expression is significantly higher in SCLC than in CT (p=0.009). Thus, alpha7 subunit nicotinic receptor in a context of chronic nicotinic intoxication seems to be associated with an aggressive phenotype in the spectrum of the NE tumors.

  11. Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats.

    PubMed

    Fang, Qin; Li, Fang-Qiong; Li, Yan-Qin; Xue, Yan-Xue; He, Ying-Ying; Liu, Jian-Feng; Lu, Lin; Wang, Ji-Shi

    2011-10-01

    Exposure to cues previously associated with drug intake leads to relapse by activating previously acquired memories. Based on previous findings, in which cannabinoid CB(1) receptors were found to be critically involved in specific aspects of learning and memory, we investigated the role of CB(1) receptors in nicotine reward memory using a rat conditioned place preference (CPP) model. In Experiment 1, rats were trained for CPP with alternating injections of nicotine (0.5mg/kg, s.c.) and saline to acquire the nicotine-conditioned memory. To examine the effects of rimonabant on the reconsolidation of nicotine reward memory, rats were administered rimonabant (0, 0.3, and 3.0mg/kg, i.p.) immediately after reexposure to the drug-paired context. In Experiment 2, rats were trained for CPP similarly to Experiment 1. To examine the effects of rimonabant on the reinstatement of nicotine reward memory, rimonabant (0, 0.3, and 3.0mg/kg, i.p.) was administered before the test of nicotine-induced CPP reinstatement. In Experiment 3, to evaluate whether rimonabant itself produces a reward memory, rats were trained for CPP with alternating injections of different doses of rimonabant (0, 0.3, and 3.0mg/kg) and saline. Rimonabant at a dose of 3.0mg/kg significantly disrupted the reconsolidation of nicotine memory and significantly blocked the reinstatement of nicotine-induced CPP. However, rimonabant itself did not produce CPP. These findings provide clear evidence that CB(1) receptors play a role in nicotine reward memory, suggesting that CB(1) receptor antagonists may be a potential target for managing nicotine addiction.

  12. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors.

    PubMed

    McClure-Begley, T D; Papke, R L; Stone, K L; Stokes, C; Levy, A D; Gelernter, J; Xie, P; Lindstrom, J; Picciotto, M R

    2014-03-01

    Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.

  13. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study.

    PubMed

    Suarez, S V; Amadon, A; Giacomini, E; Wiklund, A; Changeux, J-P; Le Bihan, D; Granon, S

    2009-03-01

    The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity beta2-containing nicotinic receptors (beta2*nAChRs) are located. We intend to see which brain circuits are activated when nicotine is given in animals naïve for nicotine and whether the beta2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and beta2 knockout (KO) mice. Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, beta2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via alpha7 nicotinic receptors. Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on beta2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice.

  14. Positive allosteric modulation of α4β2 nicotinic acetylcholine receptors as a new approach to smoking reduction: evidence from a rat model of nicotine self-administration.

    PubMed

    Liu, Xiu

    2013-11-01

    The α4β2 subtype of nicotinic acetylcholine receptors (nAChRs) plays a central role in the mediation of nicotine reinforcement. Positive allosteric modulators (PAMs) at α4β2 nAChRs facilitate the intrinsic efficiency of these receptors, although they do not directly activate the receptors. α4β2 PAMs are hypothesized to reduce nicotine self-administration in subjects engaged in routine nicotine consumption. The present study tested this hypothesis using a rat model of nicotine self-administration. Male Sprague-Dawley rats were trained in daily 1-h sessions to intravenously self-administer nicotine (0.03 mg/kg per infusion, free base) on a fixed-ratio 5 schedule. The effects of the α4β2 PAM desformylflustrabromine (dFBr), α4β2 agonist 5-iodo-A-85380, and acetylcholinesterase inhibitor galantamine on nicotine intake were examined. The ability of dFBr and 5-iodo-A-85380 to substitute for nicotine was also assessed. dFBr and 5-iodo-A-85380 dose-dependently reduced nicotine self-administration without changing lever responses for food. Galantamine decreased the self-administration of nicotine and food at high doses. Unlike 5-iodo-A-85380, dFBr failed to substitute for nicotine in supporting self-administration behavior. These results demonstrated the effectiveness of dFBr in reducing nicotine intake and the inability of dFBr to support self-administration behavior. These findings suggest that positive allosteric modulation of α4β2 nAChRs may be a promising target for the treatment of nicotine addiction. Moreover, α4β2 PAMs, in contrast to agonist medications, may have clinical advantages because they may have little liability for abuse because of their lack of reinforcing actions on their own.

  15. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  16. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-05

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Parallel Anxiolytic-Like Effects and Upregulation of Neuronal Nicotinic Acetylcholine Receptors Following Chronic Nicotine and Varenicline

    PubMed Central

    Turner, Jill R.; Castellano, Laura M.

    2011-01-01

    Introduction: Clinical and preclinical studies suggest that regulation of nicotinic acetylcholine receptors (nAChR) maybe involved in the etiology of withdrawal symptoms. Methods: We evaluated heteromeric nAChR regulation via [3H]epibatidine binding following cessation of chronic nicotine or varenicline treatment. Animals were concurrently tested in the marble-burying test to evaluate treatment-related effects. Results: We found that both nicotine (18 mg/kg/day, free base) and varenicline (1.8 mg/kg/day) chronically administered for 14 days upregulated nAChRs significantly in the cortex, hippocampus, striatum, and thalamus. The duration of upregulation (up to 72 hr) was both drug and region specific. In addition to nAChR upregulation, chronic administration of both nicotine and varenicline had anxiolytic-like effects in the marble-burying test. This effect was maintained for 48 hr following cessation of varenicline but was absent 24 hr following cessation from nicotine. Additionally, marble-burying behavior positively correlated to the regulation of cortical nAChRs following cessation of either treatment. Conclusions: Varenicline has been shown to be an efficacious smoking cessation aid, with a proposed mechanism of action that includes modulation of dopamine release in reward areas of the brain. Our studies show that varenicline elicits both anxiolytic effects in the marble-burying test as well as region- and time-specific receptor upregulation. These findings suggest receptor upregulation as a mechanism for its efficacy as a smoking cessation therapy. PMID:21097981

  18. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  19. Discovery of peptide ligands through docking and virtual screening at nicotinic acetylcholine receptor homology models.

    PubMed

    Leffler, Abba E; Kuryatov, Alexander; Zebroski, Henry A; Powell, Susan R; Filipenko, Petr; Hussein, Adel K; Gorson, Juliette; Heizmann, Anna; Lyskov, Sergey; Tsien, Richard W; Poget, Sébastien F; Nicke, Annette; Lindstrom, Jon; Rudy, Bernardo; Bonneau, Richard; Holford, Mandë

    2017-09-19

    Venom peptide toxins such as conotoxins play a critical role in the characterization of nicotinic acetylcholine receptor (nAChR) structure and function and have potential as nervous system therapeutics as well. However, the lack of solved structures of conotoxins bound to nAChRs and the large size of these peptides are barriers to their computational docking and design. We addressed these challenges in the context of the α4β2 nAChR, a widespread ligand-gated ion channel in the brain and a target for nicotine addiction therapy, and the 19-residue conotoxin α-GID that antagonizes it. We developed a docking algorithm, ToxDock, which used ensemble-docking and extensive conformational sampling to dock α-GID and its analogs to an α4β2 nAChR homology model. Experimental testing demonstrated that a virtual screen with ToxDock correctly identified three bioactive α-GID mutants (α-GID[A10V], α-GID[V13I], and α-GID[V13Y]) and one inactive variant (α-GID[A10Q]). Two mutants, α-GID[A10V] and α-GID[V13Y], had substantially reduced potency at the human α7 nAChR relative to α-GID, a desirable feature for α-GID analogs. The general usefulness of the docking algorithm was highlighted by redocking of peptide toxins to two ion channels and a binding protein in which the peptide toxins successfully reverted back to near-native crystallographic poses after being perturbed. Our results demonstrate that ToxDock can overcome two fundamental challenges of docking large toxin peptides to ion channel homology models, as exemplified by the α-GID:α4β2 nAChR complex, and is extendable to other toxin peptides and ion channels. ToxDock is freely available at rosie.rosettacommons.org/tox_dock.

  20. Block of the alpha9 nicotinic receptor by ototoxic aminoglycosides.

    PubMed

    Rothlin, C V; Katz, E; Verbitsky, M; Vetter, D E; Heinemann, S F; Elgoyhen, A B

    2000-10-01

    In the present study, we report that the alpha9 nicotinic acetylcholine receptor (nAChR) expressed in Xenopus laevis oocytes is reversibly blocked by aminoglycoside antibiotics. The aminoglycosides tested blocked the alpha9 nAChR in a concentration-dependent manner with the following rank order of potency: neomycin>gentamicin>streptomycin>amikacin>kanamycin. The antagonistic effect of gentamicin was not overcome by increasing the concentration of acetylcholine (ACh), indicative of a non-competitive type of block. Blockage of ACh-evoked currents by gentamicin was found to be voltage-dependent, being more potent at hyperpolarized than at depolarized holding potentials. Furthermore, gentamicin blockage was dependent upon the extracellular Ca(2+) concentration, shown by the fact that increments in extracellular Ca(2+) significantly reduced the potency of this aminoglycoside to block the alpha9 nAChR. Possible mechanisms of blockage by the aminoglycosides are discussed. The present results suggest that the initial reversible actions of aminoglycosides at the organ of Corti, such as the elimination of the olivocochlear efferent function, are due in part to the interaction with the native alpha9-containing cholinergic receptor of the outer hair cells.

  1. Alpha9 nicotinic acetylcholine receptors and the treatment of pain

    PubMed Central

    McIntosh, J. Michael; Absalom, Nathan; Chebib, Mary; Elgoyhen, Ana Belén; Vincler, Michelle

    2009-01-01

    Chronic pain is a vexing worldwide problem that causes substantial disability and consumes significant medical resources. Although there are numerous analgesic medications, these work through a small set of molecular mechanisms. Even when these medications are used in combination, substantial amounts of pain often remain. It is therefore highly desirable to develop treatments that work through distinct mechanisms of action. While agonists of nicotinic acetylcholine receptors (nAChRs) have been intensively studied, new data suggest a role for selective antagonists of nAChRs. α-Conotoxins are small peptides used offensively by carnivorous marine snails known as Conus. A subset of these peptides known as α-conotoxins RgIA and Vc1.1 produces both acute and long lasting analgesia. In addition, these peptides appear to accelerate the recovery of function after nerve injury, possibly through immune mediated mechanisms. Pharmacological analysis indicates that RgIA and Vc1.1 are selective antagonists of α9α10 nAChRs. A recent study also reported that these α9α10 antagonists are also potent GABA-B agonists. In the current study, we were unable to detect RgIA or Vc1.1 binding to or action on cloned GABA-B receptors expressed in HEK cells or Xenopus oocytes. We review the background, findings and implications of use of compounds that act on α9* nAChRs. PMID:19477168

  2. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration

    PubMed Central

    Marks, MJ; Grady, SR; Salminen, O; Paley, MA; Wageman, CR; McIntosh, JM; Whiteaker, P

    2014-01-01

    Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where * indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are downregulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR downregulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than upregulation of α4β2*-nAChR. In contrast, nAChR-mediated [3H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, while dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]-DA release are primarily due to changes in nAChR, rather than in dopaminergic, function. PMID:24661093

  3. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  4. Impact of short access nicotine self-administration on expression of α4β2* nicotinic acetylcholine receptors in non-human primates.

    PubMed

    Le Foll, Bernard; Chefer, Svetlana I; Kimes, Alane S; Stein, Elliot A; Goldberg, Steven R; Mukhin, Alexey G

    2016-05-01

    Although nicotine exposure upregulates the α4β2* subtype of nicotinic acetylcholine receptors (nAChRs), the upregulation of nAChRs in non-human primates voluntarily self-administering nicotine has never been demonstrated. The objective of the study is to determine if short access to nicotine in a non-human primate model of nicotine self-administration is sufficient to induce nAChRs upregulation. We combined a nicotine self-administration paradigm with in vivo measure of α4β2* nAChRs using 2-[(18)F]fluoro-A-85380 (2-FA) and positron emission tomography (PET) in six squirrel monkeys. PET measurement was performed before and after intravenous nicotine self-administration (unit dose 10 μg/kg per injection). Monkeys were trained to self-administer nicotine under a fixed-ratio (FR) schedule of reinforcement. Intermittent access (1 h daily per weekday) to nicotine was allowed for 4 weeks and levels of α4β2* nAChRs were measured 4 days later. This intermittent access was sufficient to induce upregulation of α4β2* receptors in the whole brain (31 % upregulation) and in specific brain areas (+36 % in amygdala and +62 % in putamen). These results indicate that intermittent nicotine exposure is sufficient to produce change in nAChRs expression.

  5. Inhibitory effects of tramadol on nicotinic acetylcholine receptors in adrenal chromaffin cells and in Xenopus oocytes expressing alpha 7 receptors.

    PubMed

    Shiraishi, Munehiro; Minami, Kouichiro; Uezono, Yasuhito; Yanagihara, Nobuyuki; Shigematsu, Akio; Shibuya, Izumi

    2002-05-01

    1. Tramadol has been used clinically as an analgesic; however, the mechanism of its analgesic effects is still unknown. 2. We used bovine adrenal chromaffin cells to investigate effects of tramadol on catecholamine secretion, nicotine-induced cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases and membrane current changes. We also investigated effects of tramadol on alpha7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. 3. Tramadol concentration-dependently suppressed carbachol-induced catecholamine secretion to 60% and 27% of the control at the concentration of 10 and 100 microM, respectively, whereas it had little effect on veratridine- or high K(+)-induced catecholamine secretion. 4. Tramadol also suppressed nicotine-induced ([Ca(2+)](i)) increases in a concentration-dependent manner. Tramadol inhibited nicotine-induced inward currents, and the inhibition was unaffected by the opioid receptor antagonist naloxone. 5. Tramadol inhibited nicotinic currents carried by alpha7 receptors expressed in Xenopus oocytes. 6. Tramadol inhibited both alpha-bungarotoxin-sensitive and -insensitive nicotinic currents in bovine adrenal chromaffin cells. 7. In conclusion, tramadol inhibits catecholamine secretion partly by inhibiting nicotinic AChR functions in a naloxone-insensitive manner and alpha7 receptors are one of those inhibited by tramadol.

  6. Physostigmine, galanthamine and codeine act as 'noncompetitive nicotinic receptor agonists' on clonal rat pheochromocytoma cells.

    PubMed

    Storch, A; Schrattenholz, A; Cooper, J C; Abdel Ghani, E M; Gutbrod, O; Weber, K H; Reinhardt, S; Lobron, C; Hermsen, B; Soskiç, V

    1995-08-15

    The acetylcholine esterase inhibitor (-)-physostigmine has been shown to act as agonist on nicotinic acetylcholine receptors from muscle and brain, by binding to sites on the alpha-polypeptide that are distinct from those for the natural transmitter acetylcholine (Schröder et al., 1994). In the present report we show that (-)-physostigmine, galanthamine, and the morphine derivative codeine activate single-channel currents in outside-out patches excised from clonal rat pheochromocytoma (PC12) cells. Although several lines of evidence demonstrate that the three alkaloids act on the same channels as acetylcholine, the competitive nicotinic antagonist methyllycaconitine only inhibited channel activation by acetylcholine but not by (-)-physostigmine, galanthamine or codeine. In contrast, the monoclonal antibody FK1, which competitively inhibits (-)-physostigmine binding to nicotinic acetylcholine receptors, did not affect channel activation by acetylcholine but inhibited activation by (-)-physostigmine, galanthamine and codeine. The three alkaloids therefore act via binding sites distinct from those for acetylcholine, in a 'noncompetitive' fashion. The potency of (-)-physostigmine and related compounds to act as a noncompetitive agonist is unrelated to the level of acetylcholine esterase inhibition induced by these drugs. (-)-Physostigmine, galanthamine and codeine do not evoke sizable whole-cell currents, which is due to the combined effects of low open-channel probability, slow onset and slow inactivation of response. In contrast, they sensitize PC12 cell nicotinic receptors in their submaximal response to acetylcholine. While the abundance of nicotinic acetylcholine receptor isoforms expressed in PC12 cells excludes identification of specific nicotinic acetylcholine receptor subtypes that interact with noncompetitive agonists, the identical patterns of single-channel current amplitudes observed with acetylcholine and with noncompetitive agonists suggested that all

  7. Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning.

    PubMed

    Kenney, Justin W; Raybuck, Jonathan D; Gould, Thomas J

    2012-08-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting that the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning.

  8. Nicotinic Receptors in the Dorsal and Ventral Hippocampus Differentially Modulate Contextual Fear Conditioning

    PubMed Central

    Kenney, Justin W.; Raybuck, Jonathan D.; Gould, Thomas J.

    2012-01-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning. PMID:22271264

  9. Mechanics of Channel Gating of the Nicotinic Acetylcholine Receptor

    PubMed Central

    Liu, Xinli; Xu, Yechun; Li, Honglin; Wang, Xicheng; Jiang, Hualiang; Barrantes, Francisco J

    2008-01-01

    The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating, both conventional molecular dynamics (CMD) and steered rotation molecular dynamics (SRMD) simulations have been conducted on the cryo-electron microscopy (cryo-EM) structure of nAChR embedded in a dipalmitoylphosphatidylcholine (DPPC) bilayer and water molecules. A 30-ns CMD simulation revealed a collective motion amongst C-loops, M1, and M2 helices. The inward movement of C-loops accompanying the shrinking of acetylcholine (ACh) binding pockets induced an inward and upward motion of the outer β-sheet composed of β9 and β10 strands, which in turn causes M1 and M2 to undergo anticlockwise motions around the pore axis. Rotational motion of the entire receptor around the pore axis and twisting motions among extracellular (EC), transmembrane (TM), and intracellular MA domains were also detected by the CMD simulation. Moreover, M2 helices undergo a local twisting motion synthesized by their bending vibration and rotation. The hinge of either twisting motion or bending vibration is located at the middle of M2, possibly the gate of the receptor. A complementary twisting-to-open motion throughout the receptor was detected by a normal mode analysis (NMA). To mimic the pulsive action of ACh binding, nonequilibrium MD simulations were performed by using the SRMD method developed in one of our laboratories. The result confirmed all the motions derived from the CMD simulation and NMA. In addition, the SRMD simulation indicated that the channel may undergo an open-close (O ↔ C) motion. The present MD simulations explore the structural dynamics of the receptor under its gating process

  10. Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats.

    PubMed

    Levin, Edward D; Slade, Susan; Johnson, Michael; Petro, Ann; Horton, Kofi; Williams, Paul; Rezvani, Amir H; Rose, Jed E

    2008-12-14

    Nicotine intake constitutes a principal mechanism for tobacco addiction. In addition to primary effects on nicotinic acetylcholine receptors, nicotine has cascading effects, which may also underlie its neurobehavioral actions. Nicotine induces serotonin (5-HT) release, which has not classically been thought to be involved in tobacco addiction as dopamine has. However, addiction can be characterized more as a disorder of compulsion than a disorder of enjoyment. 5-HT mechanisms play key roles in compulsive disorders. Nicotine-induced 5-HT release may be a key to tobacco addiction. Ketanserin, a 5-HT2a and 5-HT2c receptor antagonist, significantly attenuates nicotine effects on attention and memory. These studies were conducted to determine if ketanserin would reduce nicotine self-administration in rats. Male Sprague-Dawley rats (N=12) were given initial food pellet training and then 10 sessions of nicotine self-administration training (0.03 mg/kg/infusion, i.v.). Then the rats were administered ketanserin (1 or 2 mg/kg, s.c.) or the saline vehicle. Ketanserin (2 mg/kg) significantly decreased nicotine self-administration. This did not seem to be due to sedative or amnestic effects of ketanserin. In a second study, the effects of repeated administration of 2 mg/kg ketanserin (N=11) vs. saline injections (N=10) were examined. In the initial phase, the acute effectiveness of ketanserin in significantly reducing nicotine self-administration was replicated. The effect became attenuated during the following several sessions, but the significant effect became re-established during the final phases of this two-week study. 5-HT mechanisms play critical roles in the maintenance of nicotine self-administration. Better understanding of those roles may help lead to new 5-HT-based treatments for tobacco addiction.

  11. Nicotinic Acetylcholine Receptors as Targets for Tobacco Cessation Therapeutics: Cutting-Edge Methodologies to Understand Receptor Assembly and Trafficking.

    PubMed

    Fox-Loe, Ashley M; Dwoskin, Linda P; Richards, Christopher I

    2016-01-01

    Tobacco dependence is a chronic relapsing disorder and nicotine, the primary alkaloid in tobacco, acts at nicotinic receptors to stimulate dopamine release in brain, which is responsible for the reinforcing properties of nicotine, leading to addiction. Although the majority of tobacco users express the desire to quit, only a small percentage of those attempting to quit are successful using the currently available pharmacotherapies. Nicotine upregulates the number of specific nicotinic receptors on the neuronal cell surface. An increase in receptor trafficking or preferential stoichiometric assembly of receptor subunits involves changes in assembly, endoplasmic reticulum export, vesicle transport, decreased degradation, desensitization, enhanced maturation of functional pentamers, and pharmacological chaperoning. Understanding these changes on a mechanistic level is important to the development of nicotinic receptors as drug targets. For this reason, cutting-edge methodologies are being developed and employed to pinpoint distinct changes in localization, assembly, export, vesicle trafficking, and stoichiometry in order to further understand the physiology of these receptors and to evaluate the action of novel therapeutics for smoking cessation.

  12. Implications of the quaternary twist allosteric model for the physiology and pathology of nicotinic acetylcholine receptors

    PubMed Central

    Taly, Antoine; Corringer, Pierre-Jean; Grutter, Thomas; de Carvalho, Lia Prado; Karplus, Martin; Changeux, Jean-Pierre

    2006-01-01

    Nicotinic acetylcholine receptors (nAChR) are pentameric ligand-gated ion channels composed of subunits that consist of an extracellular domain that carries the ligand-binding site and a distinct ion-pore domain. Signal transduction results from the allosteric coupling between the two domains: the distance from the binding site to the gate of the pore domain is 50 Å. Normal mode analysis with a Cα Gaussian network of a new structural model of the neuronal α7 nAChR showed that the lowest mode involves a global quaternary twist motion that opens the ion pore. A molecular probe analysis, in which the network is modified at each individual amino acid residue, demonstrated that the major effect is to change the frequency, but not the form, of the twist mode. The largest effects were observed for the ligand-binding site and the Cys-loop. Most (24/27) of spontaneous mutations known to cause congenital myasthenia and autosomal dominant nocturnal frontal lobe epilepsy are located either at the interface between subunits or, within a given subunit, at the interface between rigid blocks. These interfaces are modified significantly by the twist mode. The present analysis, thus, supports the quaternary twist model of the nAChR allosteric transition and provides a qualitative interpretation of the effect of the mutations responsible for several receptor pathologies. PMID:17077146

  13. Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study.

    PubMed

    Sankararamakrishnan, R; Sansom, M S

    1995-12-27

    The ion channel of the nicotinic acetylcholine receptor is a water-filled pore formed by five M2 helix segments, one from each subunit. Molecular dynamics simulations on bundles of five M2 alpha 7 helices surrounding a central column of water and with caps of water molecules at either end of the pore have been used to explore the effects of intrapore water on helix packing. Interactions of water molecules with the N-terminal polar sidechains lead to a conformational transition from right- to left-handed supercoils during these stimulations. These studies reveal that the pore formed by the bundle of M2 helices is flexible. A structural role is proposed for water molecules in determining the geometry of bundles of isolated pore-forming helices.

  14. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.

    PubMed

    Devore, Sasha; de Almeida, Licurgo; Linster, Christiane

    2014-08-20

    The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns.

  15. Are neuronal nicotinic receptors a target for antiepileptic drug development? Studies in different seizure models in mice and rats.

    PubMed

    Löscher, Wolfgang; Potschka, Heidrun; Wlaź, Piotr; Danysz, Wojciech; Parsons, Christopher G

    2003-04-11

    Altered function of neuronal nicotinic acetylcholine receptors in the brain has recently been associated with an idiopathic form of partial epilepsy, suggesting that functional alterations of these receptors can be involved in the processes leading to epileptic seizures. Thus, nicotinic acetylcholine receptors may form a novel target for antiepileptic drug development. In the present study, various nicotinic acetylcholine receptor antagonists, including novel amino-alkyl-cyclohexane derivatives, were evaluated in two animal models, namely the maximal electroshock seizure test in mice and amygdala-kindling in rats. For comparison with these standard models of generalized and partial seizures, the effects against nicotine-induced seizures were examined. Because some of the agents tested showed an overlap between channel blocking at nicotinic acetylcholine receptors and NMDA receptors, the potency at these receptors was assessed by using patch clamp in a hippocampal cell preparation. Preferential nicotinic acetylcholine receptor antagonists were potent anticonvulsants in the maximal electroshock seizure test and against nicotine-induced seizures. The anticonvulsant potency in the maximal electroshock seizure test was decreased by administration of a subconvulsant dose of nicotine. Such a potency shift was also seen with selective NMDA receptor antagonists, which were also efficacious anticonvulsants against both maximal electroshock seizures and nicotine-induced seizures. Experiments with agents combining nicotinic acetylcholine receptor and NMDA receptor antagonistic effects suggested that both mechanisms contributed to the anticonvulsant effect of the respective agents in the maximal electroshock seizure test. This was not found in kindled rats, in which nicotinic acetylcholine receptor antagonists exerted less robust effects. In conclusion, it may be suggested that nicotinic acetylcholine receptor antagonism might be a valuable therapeutic approach to treat

  16. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors1,2

    PubMed Central

    Hao, Junwei; Simard, Alain R.; Turner, Gregory H.; Wu, Jie; Whiteaker, Paul; Lukas, Ronald J.; Shi, Fu-Dong

    2010-01-01

    A considerable number of in vivo studies have demonstrated that the cholinergic system can dampen the peripheral immune response, and it is thought that the α7-nicotinic acetylcholine receptor (nAChR) subtype is a key mediator of this process. The goal of the present study was to determine if nicotine modulates immunological mechanisms known to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for CNS autoimmune disease, via α7-nAChRs. Here we show that nicotine exposure attenuates EAE severity and that this effect is largely abolished in nAChR α7 subunit knock-out mice. However, nicotine exposure partially retains the ability to reduce lymphocyte infiltration into the CNS, inhibit auto-reactive T cell proliferation and helper T cell cytokine production, down-regulate co-stimulatory protein expression on myeloid cells, and increase the differentiation and recruitment of regulatory T cells, even in the absence of α7-nAChRs. Diverse effects of nicotine on effector and regulatory T cells, as well as antigen presenting cells, may be linked to differential expression patterns of nAChR subunits across these cell types. Taken together, our data show that although α7-nAChRs indeed seem to play an important role in nicotine-conferred reduction of the CNS inflammatory response and protection against EAE, other nAChR subtypes also are involved in the anti-inflammatory properties of the cholinergic system. PMID:20932827

  17. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  18. Sustained nicotine exposure differentially affects alpha 3 beta 2 and alpha 4 beta 2 neuronal nicotinic receptors expressed in Xenopus oocytes.

    PubMed

    Hsu, Y N; Amin, J; Weiss, D S; Wecker, L

    1996-02-01

    To determine whether prolonged exposure to nicotine differentially affects alpha 3 beta 2 versus alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 microM nicotine for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of alpha 4 beta 2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 nM range following incubation for 24 h and in the 1 nM range following incubation for 48 h. In contrast, responses of alpha 3 beta 2 receptors following incubation for 24-48 h with 1,000 nM nicotine decreased by only 50-60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but alpha 4 beta 2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.

  19. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides and Fibronectin Expression in Lung

    DTIC Science & Technology

    2006-12-01

    acetylcholine receptors (nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this...interaction triggers the exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the...nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In fibroblasts, this interaction triggers

  20. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides, and Fibronectin Expression in Lung

    DTIC Science & Technology

    2005-12-01

    nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this interaction triggers the...exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the excessive secretion of...acetylcholine receptors (nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In

  1. α-Conotoxin dendrimers have enhanced potency and selectivity for homomeric nicotinic acetylcholine receptors.

    PubMed

    Wan, Jingjing; Huang, Johnny X; Vetter, Irina; Mobli, Mehdi; Lawson, Joshua; Tae, Han-Shen; Abraham, Nikita; Paul, Blessy; Cooper, Matthew A; Adams, David J; Lewis, Richard J; Alewood, Paul F

    2015-03-11

    Covalently attached peptide dendrimers can enhance binding affinity and functional activity. Homogenous di- and tetravalent dendrimers incorporating the α7-nicotinic receptor blocker α-conotoxin ImI (α-ImI) with polyethylene glycol spacers were designed and synthesized via a copper-catalyzed azide-alkyne cycloaddition of azide-modified α-ImI to an alkyne-modified polylysine dendron. NMR and CD structural analysis confirmed that each α-ImI moiety in the dendrimers had the same 3D structure as native α-ImI. The binding of the α-ImI dendrimers to binding protein Ac-AChBP was measured by surface plasmon resonance and revealed enhanced affinity. Quantitative electrophysiology showed that α-ImI dendrimers had ∼100-fold enhanced potency at hα7 nAChRs (IC50 = 4 nM) compared to native α-ImI (IC50 = 440 nM). In contrast, no significant potency enhancement was observed at heteromeric hα3β2 and hα9α10 nAChRs. These findings indicate that multimeric ligands can significantly enhance conotoxin potency and selectivity at homomeric nicotinic ion channels.

  2. Differential inhibition of nicotine- and acetylcholine-evoked currents through alpha4beta2 neuronal nicotinic receptors by tobacco cembranoids in Xenopus oocytes.

    PubMed

    Eaton, Misty J; Ospina, Claudia A; Rodríguez, Abimael D; Eterović, Vesna A

    2004-08-05

    In tobacco, there are two types of compounds that interact with neuronal nicotinic acetylcholine receptors (nnAChRs) in the brain. The first is the addictive component of tobacco and an agonist of these receptors, nicotine. The second are cyclic diterpenoids called cembranoids that non-competitively inhibit many types of nnAChRs. Nictotinic receptors composed of alpha4beta2 subunits are the predominant type of nicotinic receptors in the brain. These alpha4beta2 receptors are up-regulated upon chronic exposure to nicotine and have been implicated in nicotine addiction. The present study was designed to determine whether the inhibitory effects of two cembranoids from tobacco [(1S, 2E, 4R, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4R) and its diastereoisomer (1S, 2E, 4S, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4S)] were comparable on acetylcholine (ACh) and nicotine-evoked currents through alpha4beta2 nnAChRs. alpha4beta2 nnAChRs from rat brain were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The dose-response curves for acetylcholine and nicotine were hyperbolic and bell-shaped, respectively. Although there was no difference in the potency between cembranoids 4R and 4S, both of these cembranoids more potently inhibited nicotine-induced currents than acetylcholine-induced currents. Furthermore, both cembranoids were more potent inhibitors of this receptor when they were preincubated for 1 min prior to application of agonist. The finding that cembranoids preferentially inhibit nicotine-induced currents over those elicited by the natural neurotransmitter acetylcholine may have important implications when developing strategies to prevent nicotine addiction and tobacco use.

  3. Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types.

    PubMed

    Moroni, Mirko; Bermudez, Isabel

    2006-01-01

    The alpha4beta2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR subtype in the brain, where it forms the high-affinity binding site for nicotine. The alpha4beta2 nAChR belongs to a gene family of ligand-gated ion channels that also includes muscle nAChRs, GABAA receptors, and glycine receptors and that assembles into pentameric structures. alpha4 and beta2 nAChR subunits expressed heterologously in Xenopus laevis oocytes assemble into a mixture of high- and low-affinity functional receptors, giving rise to biphasic ACh concentration-response curves (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001). High- and low-affinity alpha4beta2 nAChRs differ significantly in their functional and pharmacological properties (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003) and result from the assembly of alpha4 and beta2 subunits into two distinct stoichiometric arrangements: (alpha4)2(beta2)3(high-affinity subtype) and (alpha4)3(beta2)2 (low-affinity subtype) (Nelson et al., 2003). In this study we have examined the functional and pharmacological properties of high- and low-affinity alpha4beta2 receptors using two-electrode voltage clamp procedures on Xenopus oocytes transfected with high (1:10) or low (10:1) ratios of alpha4/beta2 cDNAs, which yield high (1:10)- or low (10:1)- affinity receptors with monophasic ACh concentration- response curves. Furthermore, to determine the stoichiometry of high- and low-affinity receptors expressed heterologously by Xenopus oocytes, we have determined the stoichiometry of high- and low-affinity alpha4beta2 receptors by mutating a highly conserved hydrophobic residue in the middle (position 9') of the pore-lining domain, which increases agonist potency in a manner that allows predictions on subunit composition (Cooper et al., 1991; Revah et al., 1991; Labarca et al., 1995; Boorman et al., 2000).

  4. The Duration of Nicotine Withdrawal-Associated Deficits in Contextual Fear Conditioning Parallels Changes in Hippocampal High Affinity Nicotinic Acetylcholine Receptor Upregulation

    PubMed Central

    Gould, Thomas J.; Portugal, George S.; André, Jessica M.; Tadman, Matthew P.; Marks, Michael J.; Kenney, Justin W.; Yildirim, Emre; Adoff, Michael

    2012-01-01

    A predominant symptom of nicotine withdrawal is cognitive deficits, yet understanding of the neural basis for these deficits is limited. Withdrawal from chronic nicotine disrupts contextual learning in mice and this deficit is mediated by direct effects of nicotine in the hippocampus. Chronic nicotine treatment upregulates nicotinic acetylcholine receptors (nAChR); however, it is unknown whether upregulation is related to the observed withdawal-induced cognitive deficits. If a relationship between altered learning and nAChR levels exists, changes in nAChR levels after cessation of nicotine treatment should match the duration of learning deficits. To test this hypothesis, mice were chronically administered 6.3 mg/kg/day (freebase) nicotine for 12 days and trained in contextual fear conditioning on day 11 or between 1 to 16 days after withdrawal of treatment. Changes in [125I]-epibatidine binding at cytisine-sensitive and cytisine-resistant nAChRs and chronic nicotine-related changes in α4, α7, and β2 nAChR subunit mRNA expression were assessed. Chronic nicotine had no behavioral effect but withdrawal produced deficits in contextual fear conditioning that lasted 4 days. Nicotine withdrawal did not disrupt cued fear conditioning. Chronic nicotine upregulated hippocampal cytisine-sensitive nAChR binding; upregulation continued after cessation of nicotine administration and the duration of upregulation during withdrawal paralleled the duration of behavioral changes. Changes in binding in cortex and cerebellum did not match behavioral changes. No changes in α4, α7, and β2 subunit mRNA expression were seen with chronic nicotine. Thus, nicotine withdrawal-related deficits in contextual learning are time-limited changes that are associated with temporal changes in upregulation of high-affinity nAChR binding. PMID:22285742

  5. Desensitization of α7 Nicotinic Receptor Is Governed by Coupling Strength Relative to Gate Tightness*

    PubMed Central

    Zhang, Jianliang; Xue, Fenqin; Whiteaker, Paul; Li, Chaokun; Wu, Wen; Shen, Benchang; Huang, Yao; Lukas, Ronald J.; Chang, Yongchang

    2011-01-01

    Binding of a neurotransmitter to its membrane receptor opens an integral ion conducting pore. However, prolonged exposure to the neurotransmitter drives the receptor to a refractory state termed desensitization, which plays an important role in shaping synaptic transmission. Despite intensive research in the past, the structural mechanism of desensitization is still elusive. Using mutagenesis and voltage clamp in an oocyte expression system, we provide several lines of evidence supporting a novel hypothesis that uncoupling between binding and gating machinery is the underlying mechanism for α7 nicotinic receptor (nAChR) desensitization. First, the decrease in gate tightness was highly correlated to the reduced desensitization. Second, nonfunctional mutants in three important coupling loops (loop 2, loop 7, and the M2-M3 linker) could be rescued by a gating mutant. Furthermore, the decrease in coupling strength in these rescued coupling loop mutants reversed the gating effect on desensitization. Finally, coupling between M1 and hinge region of the M2-M3 linker also influenced the receptor desensitization. Thus, the uncoupling between N-terminal domain and transmembrane domain, governed by the balance of coupling strength and gate tightness, underlies the mechanism of desensitization for the α7 nAChR. PMID:21610071

  6. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation.

    PubMed

    Kuryatov, A; Olale, F A; Choi, C; Lindstrom, J

    2000-03-30

    We have shown previously that chronic exposure to submicromolar concentrations of nicotine permanently inactivates alpha4beta2 and alpha7 neuronal nicotinic acetylcholine receptors while alpha3beta2 acetylcholine receptors are resistant to inactivation. Phosphorylation of the large cytoplasmic domain has been proposed to mediate functional inactivation. Chimeric subunits consisting of human alpha4 sequence from their N-terminus to either the beginning of the first transmembrane domain or the large cytoplasmic domain and alpha3 sequences thereafter formed acetylcholine receptors with beta2 subunits which were as susceptible to nicotine-induced inactivation as wild-type alpha4 acetylcholine receptors. The converse chimeras, containing the N-terminal parts of the alpha3 subunit and the C-terminal parts of the alpha4 subunit, formed acetylcholine receptors with beta2 subunits which were as resistant to nicotine-induced inactivation as wild-type alpha3beta2 acetylcholine receptors. Thus, inactivation of acetylcholine receptors produced by chronic exposure to nicotine results primarily from effects of the agonist on the extracellular and transmembrane domains of the alpha subunit.

  7. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  8. Nicotine tolerance to PC12 cell line: acute and chronic exposures modulate dopamine D2 receptor and tyrosine hydroxylase expression.

    PubMed

    Naha, Nibedita; Lee, Hae Young; Hwang, Jin Su; Bahk, Jong Yoon; Park, Moon Seok; Lee, Sang Yeol; Kim, Sung Hoon; Kim, Myeong Ok

    2009-04-01

    PC12 is a clonal cell line from chromaffin tumor of rat adrenal pheochromocytoma that releases catecholamine including dopamine, which via interaction with its receptor (D(1) and D(2) receptor), is known to be involved in reward and reinforcement properties of many addictive drugs like nicotine. Nicotine tolerance is the key aspect of nicotine addiction. However, nicotine tolerance on dopamine receptors in PC12 cell line is poorly understood. In this paper, we have demonstrated the tolerance to acute and chronic nicotine administrations on PC12 cell line on the basis of the expressions of dopamine receptors and tyrosine hydroxylase, the rate-limiting enzyme of dopamine biosynthesis, by Western blot, immunohistochemistry and in situ hybridization. In vitro treatment of nicotine resulted in similar expressional changes of dopamine D(2) receptor and tyrosine hydroxylase at protein and mRNA levels in dose- and time-dependent manner, whereas dopamine D(1) receptor did not reveal any positive output. Moreover, moderate to strong signals were obtained from 0.1 to 10 microM of nicotine concentrations and the signals were gradually decreased at 100 and 1000 microM nicotine concentrations relative to the untreated control cell line. Therefore, this study implied a new approach towards nicotine tolerance which is likely to be related to the modulation of dopamine D(2) receptor and tyrosine hydroxylase expressions by chronic and acute nicotine exposures in PC12 cell line.

  9. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    EPA Science Inventory

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  10. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    EPA Science Inventory

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  11. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors.

    PubMed

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-05-13

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Emamectin is a non-selective allosteric activator of nicotinic acetylcholine receptors and GABAA/C receptors

    PubMed Central

    Xu, Xiaojun; Sepich, Caraline; Lukas, Ronald J; Zhu, Guonian; Chang, Yongchang

    2016-01-01

    Avermectins are a group of compounds isolated from a soil-dwelling bacterium. They have been widely used as parasiticides and insecticides, acting by relatively irreversible activation of invertebrate chloride channels. Emamectin is a soluble derivative of an avermectin. It is an insecticide, which persistently activates glutamate-gated chloride channels. However, its effects on mammalian ligand-gated ion channels are unknown. To this end, we tested the effect of emamectin on two cation selective nicotinic receptors and two GABA-gated chloride channels expressed in Xenopus oocytes using two-electrode voltage clamp. Our results demonstrate that emamectin could directly activate α7 nAChR, α4β2 nAChR, α1β2γ2 GABAA receptor and ρ1 GABAC receptor concentration dependently, with similar potencies for each channel. However, the potencies for it to activate these channels were at least two orders of magnitude lower than its potency of activating invertebrate glutamate-gated chloride channel. In contrast, ivermectin only activated the α1β2γ2 GABAA receptor. PMID:27049309

  13. Varenicline, a partial agonist at neuronal nicotinic acetylcholine receptors, reduces nicotine-induced increases in 20% ethanol operant self-administration in Sprague-Dawley rats.

    PubMed

    Bito-Onon, Jade J; Simms, Jeffrey A; Chatterjee, Susmita; Holgate, Joan; Bartlett, Selena E

    2011-07-01

    Alcohol and nicotine use disorders are often treated as separate diseases, despite evidence that approximately 80-90% of alcohol dependent individuals are also heavy smokers. Both nicotine and ethanol have been shown to interact with neuronal nicotinic acetylcholine receptors (nAChRs), suggesting these receptors are a common biological target for the effects of nicotine and ethanol in the brain. There are few studies that have examined the effects of co-administered nicotine and ethanol on the activity of nAChRs in rodents. In the present study, we show that Sprague-Dawley rats, a strain often used for nicotine studies but not as often for voluntary ethanol intake studies, will consume 20% ethanol using both the intermittent-access two-bottle-choice and operant self-administration models without the need for sucrose fading. We show that nicotine (0.2 mg/kg and 0.8 mg/kg, s.c.) significantly increases operant 20% ethanol self-administration and varenicline (2 mg/kg, s.c), a partial agonist at nAChRs, significantly decreases operant ethanol self-administration and nicotine-induced increases in ethanol self-administration. This suggests that nAChRs play an important role in increasing ethanol self-administration and that varenicline may be an efficacious treatment for alcohol and nicotine co-dependencies.

  14. Varenicline, a Partial Agonist at Neuronal Nicotinic Receptors, Reduces Nicotine-Induced Increases in 20% Ethanol Operant Self-Administration in Sprague-Dawley Rats

    PubMed Central

    Bito-Onon, Jade J.; Simms, Jeffrey A.; Chatterjee, Susmita; Holgate, Joan; Bartlett, Selena E.

    2010-01-01

    Alcohol and nicotine use disorders are often treated as separate diseases, despite evidence that approximately 80–90% of alcohol dependent individuals are also heavy smokers. Both nicotine and ethanol have been shown to interact with neuronal nicotinic acetylcholine receptors (nAChRs), suggesting these receptors are a common biological target for the effects of nicotine and ethanol in the brain. There are few studies that have examined the effects of co-administered nicotine and ethanol on the activity of nAChRs in rodents. In the present study, we show that Sprague-Dawley rats, a strain often used for nicotine studies but not as often for voluntary ethanol intake studies, will consume 20% ethanol using both the intermittent-access two-bottle-choice and operant self-administration models without the need for sucrose fading. We show that nicotine (0.2mg/kg and 0.8mg/kg, s.c.) significantly increases operant 20% ethanol self-administration and varenicline (2mg/kg, s.c), a partial agonist at nAChRs, significantly decreases operant ethanol self-administration and nicotine-induced increases in ethanol self-administration. This suggests that nAChRs play an important role in increasing ethanol self-administration and that varenicline may be an efficacious treatment for alcohol and nicotine co-dependencies. PMID:21392178

  15. Plant toxins that affect nicotinic acetylcholine receptors: a review.

    PubMed

    Green, Benedict T; Welch, Kevin D; Panter, Kip E; Lee, Stephen T

    2013-08-19

    Plants produce a wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis, or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. However, in some cases these secondary metabolites found in poisonous plants perturb biological systems. Ingestion of toxins from poisonous plants by grazing livestock often results in large economic losses to the livestock industry. The chemical structures of these compounds are diverse and range from simple, low molecular weight toxins such as oxalate in halogeton to the highly complex norditerpene alkaloids in larkspurs. While the negative effects of plant toxins on people and the impact of plant toxins on livestock producers have been widely publicized, the diversity of these toxins and their potential as new pharmaceutical agents for the treatment of diseases in people and animals has also received widespread interest. Scientists are actively screening plants from all regions of the world for bioactivity and potential pharmaceuticals for the treatment or prevention of many diseases. In this review, we focus the discussion to those plant toxins extensively studied at the USDA Poisonous Plant Research Laboratory that affect the nicotinic acetylcholine receptors including species of Delphinium (Larkspurs), Lupinus (Lupines), Conium (poison hemlock), and Nicotiana (tobaccos).

  16. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  17. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors

    PubMed Central

    Griguoli, Marilena; Cherubini, Enrico

    2012-01-01

    The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions. PMID:22124144

  18. Nicotinic cholinergic receptors in rat brain. Annual report No. 2

    SciTech Connect

    Kellar, K.J.

    1985-05-13

    We have conducted experiments to determine if 3H acetylcholine (3Hach) nicotinic recognition sites are located presynaptically on catecholamine and/or serotonin axons. Lesions of these axons by intraventricular injections of neurotoxins resulted in marked decreases in 3Hach binding sites in the striatum and hypothalamus, but not in the cortex or thalamus. These results indicate that 3Hach nicotinic binding sites are located on catecholamine and serotonin axons in specific areas of the brain. In other experiments, we determined that repeated administration of nicotine results in enhanced behavioral responses to a subsequent injection of nicotine, and that there appears to be a correlation between the enhanced response to nicotine and increased 3Hach binding sites in cerebral cortex.

  19. Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase.

    PubMed

    Xu, Z; Seidler, F J; Cousins, M M; Slikker, W; Slotkin, T A

    2002-10-04

    Nicotine is a neuroteratogen that targets synaptic function during critical developmental stages and recent studies indicate that CNS vulnerability extends into adolescence, the age at which smoking typically commences. We administered nicotine to adolescent rats via continuous minipump infusions from PN30 to PN47.5, using 6 mg/kg/day, a dose rate that replicates the plasma nicotine levels found in smokers, and examined 5HT receptors and related cell signaling during nicotine administration (PN45) and in the post-treatment period (PN50, 60, 75). Adolescent nicotine decreased 5HT(2) receptor binding in brain regions containing 5HT projections (hippocampus and cerebral cortex), with selectivity for females in the cerebral cortex; regions containing 5HT cell bodies showed either an increase (midbrain in males) or no change (brainstem). In contrast, there were no significant changes in 5HT(1A) receptors; however, the ability of the receptors to signal through adenylyl cyclase (AC) showed a switch from stimulatory to inhibitory effects in females during the post-treatment period. There were also transient alterations in AC responses to beta-adrenergic receptor stimulation, as well as pronounced induction of the AC response to the non-receptor-mediated stimulant, forskolin. Our results indicate that adolescent nicotine exposure alters the concentrations and functions of postsynaptic 5HT receptors in a manner commensurate with impaired 5HT synaptic function. The direction of change, emergence of defects after the cessation of nicotine administration, and sex-preference for effects in females, all support a relationship of impaired 5HT function to the higher incidence of depression seen in adolescent smokers.

  20. Activation of nicotinic receptors on GABAergic amacrine cells in the rabbit retina indirectly stimulates dopamine release.

    PubMed

    Neal, M J; Cunningham, J R; Matthews, K L

    2001-01-01

    The retina possesses subpopulations of amacrine cells, which utilize different transmitters, including acetylcholine (ACh), GABA, and dopamine. We have examined interactions between these neurones by studying the effects of nicotinic agonists on GABA and dopamine release. Isolated rabbit retinas were incubated with [3H]dopamine and then superfused. Fractions of the superfusate (2 min) were collected and the [3H]dopamine in each sample was measured. Endogenous GABA release was examined by incubating retinas in a small chamber. At 5-min intervals, the medium was changed and the GABA measured by high-pressure liquid chromatography (HPLC). Exposure of the retina to nicotine, epibatidine, and other nicotinic agonists increased the release of both GABA and dopamine. The effects of nicotine and epibatidine were blocked by mecamylamine, confirming an action on nicotinic receptors. The action of epibatidine on dopamine release was unaffected by glutamate antagonists but was blocked by picrotoxin and gabazine. These results suggested that nicotine might increase dopamine release indirectly by stimulating the release of GABA, which in turn inhibited the release of an inhibitory transmitter acting tonically on the dopaminergic amacrines. Exposure of the retina to GABA caused a small increase in dopamine release. This hypothetical inhibitory transmitter was not GABA, an opioid, adenosine, glycine, nociceptin, a cannabinoid, or nitric oxide because appropriate antagonists did not affect the resting release of dopamine. However, metergoline, a 5HT1/5HT2 receptor antagonist, and ketanserin, a 5HT2A receptor antagonist, but not the 5HT1A antagonist WAY100635, increased the resting release of dopamine and blocked the effects of nicotine. The 5HT1A/5HT7 agonist 8-hydroxy DPAT inhibited both the nicotine and GABA-evoked release of dopamine. We conclude that nicotinic agonists directly stimulate the release of GABA, but the evoked release of dopamine is indirect, and arises from GABA

  1. Estrogen dependence of the renal vasodilatory effect of nicotine in rats: role of α7 nicotinic cholinergic receptor/eNOS signaling

    PubMed Central

    El-Mas, Mahmoud M.; El-gowilly, Sahar M.; Gohar, Eman Y.; Ghazal, Abdel-Rheem M.; Abdel-Rahman, Abdel A.

    2013-01-01

    Aims We recently reported that acute exposure to nicotine vasodilates the renal vasculature of male rats via facilitation of endothelial nitric oxide synthase (eNOS). In this study, we investigated whether this effect of nicotine is sexually dimorphic and the role of estrogen in modulating the nicotine effect. Main methods Nicotine-evoked vasodilation was evaluated in phenylephrine-preconstricted perfused kidneys obtained from male, proestrus female, ovariectomized (OVX) and estrogen-replaced OVX (OVXE2) rats. Key findings Nicotine infusion (5×10−5, 1×10−4, and 5×10−4 M) produced greater concentration-dependent reductions in the renal perfusion pressure (RPP) in isolated kidney from proestrus females than from males. Inhibition of NOS by NG-nitro-L-arginine abolished the nicotine-evoked reduction in RPP and abolished the gender difference in the nicotine effect. Nicotine vasodilation was also attenuated in kidneys isolated from OVX and diestrus rats, models characterized by reduced estrogen levels. Further, estrogen or L-arginine supplementation in OVX rats largely restored the renal vasodilatory response to nicotine. Estrogen receptor blockade by tamoxifen abrogated the enhanced nicotine-evoked vasodilation elicited by E2 in OVX rats. The nitrite/nitrate levels and protein expressions of eNOS and α7 nicotinic cholinergic receptor (α7 nAChRs) were significantly higher in renal tissues of OVXE2 compared with OVX rats, suggesting a facilitatory effect for E2 on α7 nAChRs/eNOS signaling. Significance Estrogen-dependent facilitation of NOS signaling mediates the enhanced vasodilator capacity of nicotine in the renal vasculature of female rats. Preliminary evidence also suggests a potential role for α7 nAChRs in this estrogen-dependent phenomenon. PMID:21092740

  2. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    PubMed Central

    de Jonge, W J; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This ‘nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity. PMID:17502850

  3. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  4. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  5. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation.

    PubMed

    Martínez-García, Eva; Irigoyen, Marta; Ansó, Elena; Martínez-Irujo, Juan José; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 muM triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  6. Alpha-conotoxin GIC from Conus geographus, a novel peptide antagonist of nicotinic acetylcholine receptors.

    PubMed

    McIntosh, J Michael; Dowell, Cheryl; Watkins, Maren; Garrett, James E; Yoshikami, Doju; Olivera, Baldomero M

    2002-09-13

    Many venomous organisms produce toxins that disrupt neuromuscular communication to paralyze their prey. One common class of such toxins comprises nicotinic acetylcholine receptor antagonists (nAChRs). Thus, most toxins that act on nAChRs are targeted to the neuromuscular subtype. The toxin characterized in this report, alpha-conotoxin GIC, is a most striking exception. The 16-amino acid peptide was identified from a genomic DNA clone from Conus geographus. The predicted mature toxin was synthesized, and synthetic toxin was used in all studies described. alpha-Conotoxin GIC shows no paralytic activity in fish or mice. Furthermore, even at concentrations up to 100 microm, the peptide has no detectable effect on the human muscle nicotinic receptor subtype heterologously expressed in Xenopus oocytes. In contrast, the toxin has high affinity (IC(50) approximately 1.1 nm) for the human alpha3beta2 subunit combination, making it the most neuronally selective nicotinic antagonist characterized thus far. Although alpha-conotoxin GIC shares some sequence similarity with alpha-conotoxin MII, which is also a potent alpha3beta2 nicotinic antagonist, it is much less hydrophobic, and the kinetics of channel block are substantially different. It is noteworthy that the nicotinic ligands in C. geographus venom fit an emerging pattern in venomous predators, with one nicotinic antagonist targeted to the muscle subtype (thereby causing paralysis) and a second nicotinic antagonist targeted to the alpha3beta2 nAChR subtype (possibly inhibiting the fight-or-flight response).

  7. Differential use of the nicotinic receptor by rabies virus based upon substrate origin.

    PubMed

    Castañeda-Castellanos, David R; Castellanos, Jaime E; Hurtado, Hernán

    2002-04-01

    To determine the role that the neuronal nicotinic acetylcholine receptor plays in the adsorption process of rabies virus (RV), adult dorsal root ganglion dissociated cultures were exposed to nicotinic agonists before being inoculated. The fixed strain of RV Challenge Virus Standard-11 (CVS-11) was used after being passaged in two different ways, in baby hamster kidney (BHK) cells and in adult mouse brain (MB). Carbachol and nicotine reduced the percentage of CVS-MB infected neurons, yet none of the agonists tested changed the proportion of CVS-BHK infected neurons. This result suggests that the RV phenotype changes depending on its replication environment and neuronal nicotinic acetylcholine receptors are preferentially used for infection by RV strains adapted to adult mouse brain but not to fibroblasts.

  8. Evidence for two types of nicotinic receptors in the cat carotid body chemoreceptor cells.

    PubMed

    Obeso, A; Gómez-Niño, M A; Almaraz, L; Dinger, B; Fidone, S; González, C

    1997-04-18

    Current concepts on the location and functional significance of nicotinic receptors in the carotid body rest on alpha-bungarotoxin binding and autoradiographic studies. Using an in vitro preparation of the cat carotid body whose catecholamine deposits have been labeled by prior incubation with the tritiated natural precursor [3H]tyrosine, we have found that nicotine induces release of [3H]catecholamines in a dose-dependent manner (IC50 = 9.81 microM). We also found that mecamylamine (50 microM) completely abolished the nicotine-induced release, while alpha-bungarotoxin (100 nM; approximately 20 times its binding Kd) only reduced the release by 56%. These findings indicate that chemoreceptor cells, and perhaps other carotid body structures, contain nicotinic receptors that are not sensitive to alpha-bungarotoxin and force a revision of the current concepts on cholinergic mechanisms in the carotid body chemoreception.

  9. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain.

    PubMed

    Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J

    2014-05-01

    Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking.

  10. Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner

    PubMed Central

    Tejeda, Hugo A.; Natividad, Luis A.; Orfila, James E.; Torres, Oscar V.; O’Dell, Laura E.

    2012-01-01

    Rationale The mechanisms that mediate age differences during nicotine withdrawal are unclear. Objective This study compared kappa opioid receptor (KOR) activation in naïve and nicotine-treated adolescent and adult rats using behavioral and neurochemical approaches to study withdrawal. Methods The behavioral models used to assess withdrawal included conditioned place and elevated plus maze procedures. Deficits in dopamine transmission in the nucleus accumbens (NAcc) were examined using microdialysis procedures. Lastly, the effects of KOR stimulation and blockade on physical signs produced upon removal of nicotine were examined in adults. Results Nicotine-treated adults displayed a robust aversion to an environment paired with a KOR agonist versus naïve adults. Neither of the adolescent groups displayed a place aversion. KOR activation produced an increase in anxiety-like behavior that was highest in nicotine-treated adults versus all other groups. KOR activation produced a decrease in NAcc dopamine that was largest in nicotine-treated adults versus all other groups. Lastly, KOR activation facilitated physical signs of upon removal of nicotine and KOR blockade reduced this effect. Conclusion Chronic nicotine enhanced the affective, anxiogenic, and neurochemical effects produced by KOR activation in adult rats. Our data suggest that chronic nicotine elicits an increase in KOR function, and this may contribute to nicotine withdrawal since KOR activation facilitated and KOR blockade prevented withdrawal signs upon removal of nicotine. Given that chronic nicotine facilitated the neurochemical effects of KOR agonists in adults but not adolescents, it is suggested that KOR regulation of mesolimbic dopamine may contribute to age differences in nicotine withdrawal. PMID:22659976

  11. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    PubMed Central

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets. PMID:27559543

  12. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

    PubMed

    Mine, N; Taniguchi, W; Nishio, N; Izumi, N; Miyazaki, N; Yamada, H; Nakatsuka, T; Yoshida, M

    2015-04-02

    Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.

  13. Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex

    PubMed Central

    Beiranvand, F; Zlabinger, C; Orr-Urtreger, A; Ristl, R; Huck, S; Scholze, P

    2014-01-01

    Background and purpose Nicotinic acetylcholine receptors (nACh receptors) play a central role in the habenulo-interpeduncular system. We studied nicotine-induced release of NA and ACh in the habenula and interpeduncular nucleus (IPN). Experimental approach The habenula and IPN were loaded with [3H]-choline or [3H]-NA and placed in superfusion chambers. [3H]-ACh release was also stimulated using nicotinic agonists, electrical pulses and elevated [KCl]o in hippocampal and cortical slices from rats, wild-type mice and mice lacking α5, α7, β2, or β4 nACh receptor subunits. Finally, we analysed nACh receptor subtypes in the IPN using immunoprecipitation. Key results Nicotine induced release of [3H]-ACh in the IPN of rats and mice. This release was calcium-dependent but not blocked by tetrodotoxin (TTX); moreover, [3H]-ACh release was abolished in β4-knockout mice but was unaffected in β2- and α5-knockout mice. In contrast, nicotine-induced release of [3H]-NA in the IPN and habenula was blocked by TTX and reduced in both β2-knockout and β4-knockout mice, and dose–response curves were right-shifted in α5-knockout mice. Although electrical stimuli triggered the release of both transmitters, [3H]-ACh release required more pulses delivered at a higher frequency. Conclusions and implications Our results confirm previous findings that β4-containing nACh receptors are critical for [3H]-ACh release in the mouse IPN. Experiments using α5-knockout mice also revealed that unlike in the hippocampus, nicotine-induced [3H]-NA release in the habenulo-interpeduncular system is altered in this knockout model. As α5-containing nACh receptors play a key role in nicotine intake, our results add NA to the list of transmitters involved in this mechanism. PMID:25041479

  14. Repeated administration of the GABAB receptor positive modulator BHF177 decreased nicotine self-administration, and acute administration decreased cue-induced reinstatement of nicotine seeking in rats.

    PubMed

    Vlachou, Styliani; Guery, Sebastien; Froestl, Wolfgang; Banerjee, Deboshri; Benedict, Jessica; Finn, M G; Markou, Athina

    2011-05-01

    γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the modulation of central reward processes. Acute or chronic administration of GABA(B) receptor agonists or positive modulators decreased self-administration of various drugs of abuse. Furthermore, GABA(B) receptor agonists inhibited cue-induced reinstatement of nicotine- and cocaine-seeking behavior. Because of their fewer adverse side effects compared with GABA(B) receptor agonists, GABA(B) receptor positive modulators are potentially improved therapeutic compounds for the treatment of drug dependence compared with agonists. We examined whether the acute effects of the GABA(B) receptor positive modulator N-[(1R,2R,4S)-bicyclo[2.2.1]hept-2-yl]-2-methyl-5-[4-(trifluoromethyl)phenyl]-4-pyrimidinamine (BHF177) on nicotine self-administration and food-maintained responding under a fixed-ratio 5 schedule of reinforcement were maintained after repeated administration. The effects of acute BHF177 administration on cue-induced nicotine- and food-seeking behavior, a putative animal model of relapse, were also examined. Repeated administration of BHF177 for 14 days decreased nicotine self-administration, with small tolerance observed during the last 7 days of treatment, whereas BHF177 minimally affected food-maintained responding. Acute BHF177 administration dose-dependently blocked cue-induced reinstatement of nicotine-, but not food-, seeking behavior after a 10-day extinction period. These results showed that BHF177 selectively blocked nicotine self-administration and prevented cue-induced reinstatement of nicotine seeking, with minimal effects on responding for food and no effect on cue-induced reinstatement of food seeking. Thus, GABA(B) receptor positive modulators could be useful therapeutics for the treatment of different aspects of nicotine dependence by facilitating smoking cessation by decreasing nicotine intake and preventing relapse to smoking in humans.

  15. Nicotinic receptors, amyloid-beta, and synaptic failure in Alzheimer's disease.

    PubMed

    Jürgensen, Sofia; Ferreira, Sergio T

    2010-01-01

    Dysfunctional cholinergic transmission is thought to underlie, at least in part, memory impairment and cognitive deficits in Alzheimer's disease (AD). However, it is still unclear whether this is a consequence of the loss of cholinergic neurons and elimination of nicotinic acetycholine receptors (nAChRs) in AD brain or of a direct impact of molecular interactions of the amyloid-beta (Abeta) peptide with nAChRs, leading to dysregulation of receptor function. This review examines recent progress in our understanding of the roles of nicotinic receptors in mechanisms of synaptic plasticity, molecular interactions of Abeta with nAChRs, and how Abeta-induced dysregulation of nicotinic receptor function may underlie synaptic failure in AD.

  16. Increased Nicotinic Acetylcholine Receptor Protein Underlies Chronic Nicotine-Induced Up-Regulation of Nicotinic Agonist Binding Sites in Mouse Brain

    PubMed Central

    McClure-Begley, Tristan D.; Whiteaker, Paul; Salminen, Outi; Brown, Robert W. B.; Cooper, John; Collins, Allan C.; Lindstrom, Jon M.

    2011-01-01

    Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [125I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [125I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [125I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [125I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [125I]epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein. PMID:21228066

  17. Deficits in spatial learning and nicotinic-acetylcholine receptors in older, spontaneously hypertensive rats.

    PubMed

    Terry, A V; Hernandez, C M; Buccafusco, J J; Gattu, M

    2000-01-01

    Spontaneously hypertensive rats are often used as models of attention deficit hyperactivity disorder and to investigate the effects of hypertension on cognitive function. Along with the wide variety of cardiovascular anomalies, these animals as young adults also exhibit deficits in memory and attention and central nicotinic-acetylcholine receptor sites. These findings may have particular significance since nicotinic receptors appear to be involved in the regulation of cerebral circulation and mnemonic function. Furthermore, a lack of high affinity nicotinic receptors (in knockout mice) has also been shown to accelerate both the structural and cognitive degeneration associated with age, findings that may be especially relevant to age-related memory disorders such as Alzheimer's Disease where large deficits in nicotinic receptors are observed. Since spontaneously hypertensive rats appear to be both memory-impaired and deficient in nicotinic receptors at a young age (compared to the non-hypertensive phenotype, Wistar-Kyoto rats), we were interested to learn if these conditions were exacerbated in older animals with particular interest in specific nicotinic receptor subtypes in memory areas of the brain. Spatial learning was assessed in 15-month-old subjects of each phenotype (i.e. hypertensive and non-hypertensive) using a two-phase water maze paradigm, and nicotinic receptors were measured via autoradiography with [125I]-alpha-bungarotoxin and [3H]-epibatidine. In the water maze, both groups learned to locate a hidden platform as indicated by progressively shorter latencies across training days, however, Wistar-Kyoto rats were more efficient in both phases. While the number of both bungarotoxin and epibatidine binding sites was lower in the hypertensive rats across several brain regions, in the case of epibatidine binding, the magnitude of the difference and the number of areas affected was generally greater and included areas important for spatial learning (e

  18. Conditional Knockout of NMDA Receptors in Dopamine Neurons Prevents Nicotine-Conditioned Place Preference

    PubMed Central

    Phillip Wang, Lei; Li, Fei; Shen, Xiaoming; Tsien, Joe Z.

    2010-01-01

    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction. PMID:20062537

  19. Conditional knockout of NMDA receptors in dopamine neurons prevents nicotine-conditioned place preference.

    PubMed

    Wang, Lei Phillip; Li, Fei; Shen, Xiaoming; Tsien, Joe Z

    2010-01-07

    Nicotine from smoking tobacco produces one of the most common forms of addictive behavior and has major societal and health consequences. It is known that nicotine triggers tobacco addiction by activating nicotine acetylcholine receptors (nAChRs) in the midbrain dopaminergic reward system, primarily via the ventral tegmental area. Heterogeneity of cell populations in the region has made it difficult for pharmacology-based analyses to precisely assess the functional significance of glutamatergic inputs to dopamine neurons in nicotine addiction. By generating dopamine neuron-specific NR1 knockout mice using cre/loxP-mediated method, we demonstrate that genetic inactivation of the NMDA receptors in ventral tegmental area dopamine neurons selectively prevents nicotine-conditioned place preference. Interestingly, the mutant mice exhibit normal performances in the conditioned place aversion induced by aversive air puffs. Therefore, this selective effect on addictive drug-induced reinforcement behavior suggests that NMDA receptors in the dopamine neurons are critical for the development of nicotine addiction.

  20. Fixation of allosteric states of the nicotinic acetylcholine receptor by chemical cross-linking

    PubMed Central

    Watty, Anke; Methfessel, Christoph; Hucho, Ferdinand

    1997-01-01

    Receptor activity can be described in terms of ligand-induced transitions between functional states. The nicotinic acetylcholine receptor (nAChR), a prototypic ligand-gated ion channel, is an “unconventional allosteric protein” which exists in at least three interconvertible conformations, referred to as resting (low agonist affinity, closed channel), activated (open channel), and desensitized (high agonist affinity, closed channel). Here we show that 3,3′-dimethyl suberimidate (DMS) is an agonistic bifunctional cross-linking reagent, which irreversibly “freezes” the nAChR in a high agonist affinity/closed-channel state. The monofunctional homologue methyl acetoimidate, which is also a weak cholinergic agonist, has no such irreversible effect. Glutardialdehyde, a cross-linker that is not a cholinergic effector, fixes the receptor in a low-affinity state in the absence of carbamoylcholine, but, like DMS, in a high-affinity state in its presence. Covalent cross-linking thus allows us to arrest the nAChR in defined conformational states. PMID:9223339

  1. Conotoxin αD-GeXXA utilizes a novel strategy to antagonize nicotinic acetylcholine receptors.

    PubMed

    Xu, Shaoqiong; Zhang, Tianlong; Kompella, Shiva N; Yan, Mengdi; Lu, Aiping; Wang, Yanfang; Shao, Xiaoxia; Chi, Chengwu; Adams, David J; Ding, Jianping; Wang, Chunguang

    2015-09-23

    Nicotinic acetylcholine receptors (nAChRs) play essential roles in transmitting acetylcholine-mediated neural signals across synapses and neuromuscular junctions, and are also closely linked to various diseases and clinical conditions. Therefore, novel nAChR-specific compounds have great potential for both neuroscience research and clinical applications. Conotoxins, the peptide neurotoxins produced by cone snails, are a rich reservoir of novel ligands that target receptors, ion channels and transporters in the nervous system. From the venom of Conus generalis, we identified a novel dimeric nAChR-inhibiting αD-conotoxin GeXXA. By solving the crystal structure and performing structure-guided dissection of this toxin, we demonstrated that the monomeric C-terminal domain of αD-GeXXA, GeXXA-CTD, retains inhibitory activity against the α9α10 nAChR subtype. Furthermore, we identified that His7 of the rat α10 nAChR subunit determines the species preference of αD-GeXXA, and is probably part of the binding site of this toxin. These results together suggest that αD-GeXXA cooperatively binds to two inter-subunit interfaces on the top surface of nAChR, thus allosterically disturbing the opening of the receptor. The novel antagonistic mechanism of αD-GeXXA via a new binding site on nAChRs provides a valuable basis for the rational design of new nAChR-targeting compounds.

  2. Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats.

    PubMed

    Forget, Benoît; Hamon, Michel; Thiébot, Marie-Hélène

    2005-10-01

    The endocannabinoid system plays a role in mediating the appetitive value of a variety of reinforcing compounds, either natural rewards or drugs of abuse, but little is known about its involvement in the incentive properties of nicotine. The objective of the study is to evaluate whether activation of CB1 cannabinoid receptors is necessary for the establishment and the short- and long-term expression of nicotine-induced conditioned place preference (CPP). This was studied in rats subjected to an unbiased, one-compartment place conditioning procedure, using the selective CB1 receptor antagonist, rimonabant, as a pharmacological tool. Wistar rats, given previous experience with nicotine in their home cage, were subjected to eight alternating nicotine (0.006-0.6 mg/kg s.c.) and saline pairings with distinct floor textures in an open field and given a test session, with no nicotine injection, in the open field whose floor was covered by two quadrants of the saline-paired texture and two quadrants of the nicotine-paired texture. Rimonabant (0.3-3 mg/kg i.p.) was administered 30 min before each nicotine (0.06 mg/kg) pairing to assess its effect on the establishment of nicotine-CPP. To study the effects of CB1 receptor blockade on short- and long-term expression of nicotine-CPP, rimonabant was administered as a single injection 30 min before the test session, conducted either 24 h, 3 weeks or 12 weeks after the last conditioning session. Rats developed reliable and robust CPP to the 0.06- and 0.125-mg/kg doses of nicotine. Once established, CPP persisted for at least 12 weeks without additional exposure to nicotine and the test apparatus. Pre-pairing injections of rimonabant (3 mg/kg, but not lower doses) prevented the acquisition of nicotine-CPP, and a single pretest administration of rimonabant (3 mg/kg) abolished the expression of nicotine-CPP when the test session took place 24 h after the last conditioning session. However, rimonabant (3 mg/kg) did not antagonize the

  3. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  4. Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain α4 and β2 subunits.

    PubMed

    Bell, Karen A; Shim, Hoon; Chen, Ching-Kang; McQuiston, A Rory

    2011-12-01

    In the hippocampus, activation of nicotinic receptors that include α4 and β2 subunits (α4β2*) facilitates memory formation. α4β2* receptors may also play a role in nicotine withdrawal, and their loss may contribute to cognitive decline in aging and Alzheimer's disease (AD). However, little is known about their cellular function in the hippocampus. Therefore, using optogenetics, whole cell patch clamping and voltage-sensitive dye (VSD) imaging, we measured nicotinic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1. In a subpopulation of inhibitory interneurons, release of ACh resulted in slow depolarizations (rise time constant 33.2 ± 6.5 ms, decay time constant 138.6 ± 27.2 ms) mediated by the activation of α4β2* nicotinic receptors. These interneurons had somata and dendrites located in the stratum oriens (SO) and stratum lacunosum-moleculare (SLM). Furthermore, α4β2* nicotinic EPSPs were largest in the SLM. Thus, our data suggest that nicotinic EPSPs in hippocampal CA1 interneurons are predominantly mediated by α4β2* nicotinic receptors and their activation may preferentially affect extrahippocampal inputs in SLM of hippocampal CA1.

  5. Nicotine attenuates activation of tissue resident macrophages in the mouse stomach through the β2 nicotinic acetylcholine receptor.

    PubMed

    Nemethova, Andrea; Michel, Klaus; Gomez-Pinilla, Pedro J; Boeckxstaens, Guy E; Schemann, Michael

    2013-01-01

    The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. Calcium transients ([Ca(2+)]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900 nm. The ATP induced [Ca(2+)]i increase was significantly inhibited in 65% or 55% of macrophages by 100 µM or 10 µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3β4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident macrophages.

  6. Nicotine Attenuates Activation of Tissue Resident Macrophages in the Mouse Stomach through the β2 Nicotinic Acetylcholine Receptor

    PubMed Central

    Nemethova, Andrea; Michel, Klaus; Gomez-Pinilla, Pedro J.; Boeckxstaens, Guy E.; Schemann, Michael

    2013-01-01

    Background The cholinergic anti-inflammatory pathway is an endogenous mechanism by which the autonomic nervous system attenuates macrophage activation via nicotinic acetylcholine receptors (nAChR). This concept has however not been demonstrated at a cellular level in intact tissue. To this end, we have studied the effect of nicotine on the activation of resident macrophages in a mouse stomach preparation by means of calcium imaging. Methods Calcium transients ([Ca2+]i) in resident macrophages were recorded in a mouse stomach preparation containing myenteric plexus and muscle layers by Fluo-4. Activation of macrophages was achieved by focal puff administration of ATP. The effects of nicotine on activation of macrophages were evaluated and the nAChR involved was pharmacologically characterized. The proximity of cholinergic nerves to macrophages was quantified by confocal microscopy. Expression of β2 and α7 nAChR was evaluated by β2 immunohistochemistry and fluorophore-tagged α-bungarotoxin. Results In 83% of macrophages cholinergic varicose nerve fibers were detected at distances <900nm. The ATP induced [Ca2+]i increase was significantly inhibited in 65% or 55% of macrophages by 100µM or 10µM nicotine, respectively. This inhibitory effect was reversed by the β2 nAChR preferring antagonist dihydro-β-eryhtroidine but not by hexamethonium (non-selective nAChR-antagonist), mecamylamine (α3β4 nAChR-preferring antagonist), α-bungarotoxin or methyllycaconitine (both α7 nAChR-preferring antagonist). Macrophages in the stomach express β2 but not α7 nAChR at protein level, while those in the intestine express both receptor subunits. Conclusion This study is the first in situ demonstration of an inhibition of macrophage activation by nicotine suggesting functional signaling between cholinergic neurons and macrophages in the stomach. The data suggest that the β2 subunit of the nAChR is critically involved in the nicotine-induced inhibition of these resident

  7. Structural features of phenoxycarbonylimino neonicotinoids acting at the insect nicotinic receptor.

    PubMed

    Ohno, Ikuya; Tomizawa, Motohiro; Miyazu, Nozomi; Kushibiki, Gohito; Noda, Kumiko; Hasebe, Yasunori; Durkin, Kathleen A; Miyake, Taiji; Kagabu, Shinzo

    2010-10-01

    Substituted-phenoxycarbonylimino neonicotinoid ligands with an electron-donating group showed significantly higher affinity to the insect nicotinic receptor relative to that of the analogue with an electron-withdrawing substituent, thereby establishing in silico binding site interaction model featuring that the phenoxy ring of neonicotinoids and the receptor loop D tryptophan indole plane form a face-to-edge aromatic interaction.

  8. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  9. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  10. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor.

    PubMed Central

    Marshall, J; Buckingham, S D; Shingai, R; Lunt, G G; Goosey, M W; Darlison, M G; Sattelle, D B; Barnard, E A

    1990-01-01

    We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA. PMID:1702381

  11. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  12. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2016-09-01

    The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.

  13. α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage

    PubMed Central

    Bordia, Tanuja; Perez, Xiomara A.; McIntosh, J. Michael; Decker, Michael W.; Quik, Maryka

    2015-01-01

    Background ABT-126 is a novel, safe and well-tolerated α7 nicotinic receptor agonist in a Phase 2 Alzheimer's disease study. Here we test the antidyskinetic effect of ABT-126 in MPTP-treated squirrel monkeys with moderate and more severe nigrostriatal damage. Methods Monkeys (n=21, Set 1) were lesioned with MPTP 1-2×. When parkinsonian, they were gavaged with levodopa (10 mg/kg)/carbidopa (2.5 mg/kg) twice daily and dyskinesias rated. They were then given nicotine in drinking water (n=5), or treated with vehicle (n=6) or ABT-126 (n=10) twice daily orally 30 min before levodopa. Set 1 was then re-lesioned 1-2 times for a total of 3-4 MPTP injections. The antidyskinetic effect of ABT-126, nicotine and the β2* nicotinic receptor agonist ABT-894 was re-assessed. Another group of monkeys (n=23, Set 2) was lesioned with MPTP only 1-2×. They were treated with levodopa/carbidopa, administered the α7 agonist ABT-107 (n=6), ABT-894 (n=6), nicotine (n=5) or vehicle (n=6) and dyskinesias evaluated. All monkeys were euthanized and the dopamine transporter measured. Results With moderate nigrostriatal damage (MPTP 1-2×), ABT-126 dose-dependently decreased dyskinesias (~60%), with similar results with ABT-894 (~60%) or nicotine (~60%). With more severe damage (MPTP 3-4×), ABT-126 and nicotine reduced dyskinesias, but ABT-894 did not. The dopamine transporter was 41% and 8.9% of control with moderate and severe nigrostriatal damage, respectively. No drug modified parkinsonism. Conclusion The novel α7 nicotinic receptor drug ABT-126 reduced dyskinesias in monkeys with both moderate and severe nigrostriatal damage. ABT-126 may be useful to reduce dyskinesias in both early and later stage Parkinson's disease. PMID:26573698

  14. Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse

    PubMed Central

    Souza, Fred G. Oliveira; Bruce, Kady S.; Strang, Christianne E.; Morley, Barbara J.; Keyser, Kent T.

    2014-01-01

    Purpose The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer’s disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. Methods To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. Results In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype

  15. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine.

    PubMed

    Brunzell, Darlene H; Boschen, Karen E; Hendrick, Elizabeth S; Beardsley, Patrick M; McIntosh, J Michael

    2010-02-01

    Beta2 subunit containing nicotinic acetylcholine receptors (beta2(*)nAChRs; asterisk ((*)) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The alpha6 subunit assembles with beta2 on DA neurons where alpha6beta2(*)nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of alpha-conotoxin MII (alpha-CTX MII), an antagonist with selectivity for alpha6beta2(*)nAChRs, the purpose of these experiments was to determine if alpha6beta2(*)nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of alpha-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. alpha-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of alpha-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion alpha-CTX MII did not affect locomotor activity in an open field. These data suggest that alpha6beta2(*)nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation.

  16. Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner.

    PubMed

    Pistillo, Francesco; Fasoli, Francesca; Moretti, Milena; McClure-Begley, Tristan; Zoli, Michele; Marks, Michael J; Gotti, Cecilia

    2016-01-01

    Tobacco addiction is a complex form of dependence process that leads high relapse rates in people seeking to stop smoking. Nicotine elicits its primary effects on neuronal nicotinic cholinergic receptors (nAChRs), alters brain reward systems, and induces long-term changes during chronic nicotine use and withdrawal. We analysed the effects of chronic nicotine treatment and withdrawal on the mesocorticolimbic pathway (a brain reward circuit in which addictive drugs induce widespread adaptations) by analysing the expression of nAChRs in the midbrain, striatum and prefrontal cortex (PFC) of mice receiving intravenous infusions of nicotine (4mg/kg/h) or saline (control) for 14 days and mice sacrified two hours, and one, four and 14 days after treatment withdrawal. We biochemically fractionated whole tissue homogenates in order to obtain crude synaptosomal membranes. Western blotting analyses of these membrane fractions, ligand binding and immunoprecipitation studies, showed that chronic nicotine up-regulates heteromeric β2* nAChRs in all three mesocorticolimbic areas, and that these receptors are rapidly removed from synapses upon the cessation of nicotine treatment. The extent of nicotine-induced nAChR up-regulation, and the time course of its reversal were comparable in all three areas. We also analysed the expression of glutamate receptor subunits (GluRs) and scaffold proteins, and found that it was altered in an area-specific manner during nicotine exposure and withdrawal. As the functional properties of GluRs are determined by their subunit composition, the observed changes in subunit expression may indicate alterations in the excitability of mesocorticolimbic circuitry, and this may underlie the long-term biochemical and behavioural effects of nicotine dependence.

  17. Nicotinic acetylcholine receptor expression in human airway correlates with lung function.

    PubMed

    Lam, David Chi-Leung; Luo, Susan Yang; Fu, Kin-Hang; Lui, Macy Mei-Sze; Chan, Koon-Ho; Wistuba, Ignacio Ivans; Gao, Boning; Tsao, Sai-Wah; Ip, Mary Sau-Man; Minna, John Dorrance

    2016-02-01

    Nicotine and its derivatives, by binding to nicotinic acetylcholine receptors (nAChRs) on bronchial epithelial cells, can regulate cellular signaling and inflammatory processes. Delineation of nAChR subtypes and their responses to nicotine stimulation in bronchial epithelium may provide information for therapeutic targeting in smoking-related inflammation in the airway. Expression of nAChR subunit genes in 60 bronchial epithelial biopsies and immunohistochemical staining for the subcellular locations of nAChR subunit expression were evaluated. Seven human bronchial epithelial cell lines (HBECs) were exposed to nicotine in vitro for their response in nAChR subunit gene expression to nicotine exposure and removal. The relative normalized amount of expression of nAChR α4, α5, and α7 and immunohistochemical staining intensity of nAChR α4, α5, and β3 expression showed significant correlation with lung function parameters. Nicotine stimulation in HBECs resulted in transient increase in the levels of nAChR α5 and α6 but more sustained increase in nAChR α7 expression. nAChR expression in bronchial epithelium was found to correlate with lung function. Nicotine exposure in HBECs resulted in both short and longer term responses in nAChR subunit gene expression. These results gave insight into the potential of targeting nAChRs for therapy in smoking-related inflammation in the airway. Copyright © 2016 the American Physiological Society.

  18. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  19. Functional Distribution of Nicotinic Receptors in CA3 Region of the Hippocampus

    PubMed Central

    Grybko, Michael; Sharma, Geeta; Vijayaraghavan, Sukumar

    2010-01-01

    Nicotinic acetylcholine receptor (nAChR) modulation of a number of parameters of synaptic signaling in the brain has been demonstrated. It is likely that effects of nicotine are due to its ability to modulate network excitability as a whole. A pre-requisite to understanding the effects of nicotine on network properties is the elucidation of functional receptors. We have examined the distribution of functional nAChRs in the dentate gyrus granule cells and the CA3 region of the mammalian hippocampus using calcium imaging from acute slices. Our results demonstrate the presence of functional nAChRs containing the α7 subunit (α7-nAChRs) on mossy fiber boutons, CA3 pyramidal cells, and on astrocytes. In addition, both CA3 interneurons and granule cells show nicotinic signals. Our study suggests that functional nicotinic receptors are widespread in their distribution and that calcium imaging might be an effective technique to examine locations of these receptors in the mammalian brain. PMID:19693709

  20. Functional distribution of nicotinic receptors in CA3 region of the hippocampus.

    PubMed

    Grybko, Michael; Sharma, Geeta; Vijayaraghavan, Sukumar

    2010-01-01

    Nicotinic acetylcholine receptor (nAChR) modulation of a number of parameters of synaptic signaling in the brain has been demonstrated. It is likely that effects of nicotine are due to its ability to modulate network excitability as a whole. A pre-requisite to understanding the effects of nicotine on network properties is the elucidation of functional receptors. We have examined the distribution of functional nAChRs in the dentate gyrus granule cells and the CA3 region of the mammalian hippocampus using calcium imaging from acute slices. Our results demonstrate the presence of functional nAChRs containing the alpha7 subunit (alpha7-nAChRs) on mossy fiber boutons, CA3 pyramidal cells, and on astrocytes. In addition, both CA3 interneurons and granule cells show nicotinic signals. Our study suggests that functional nicotinic receptors are widespread in their distribution and that calcium imaging might be an effective technique to examine locations of these receptors in the mammalian brain.

  1. Barium permeability of neuronal nicotinic receptor alpha 7 expressed in Xenopus oocytes.

    PubMed Central

    Sands, S B; Costa, A C; Patrick, J W

    1993-01-01

    The rat alpha 7 neuronal nicotinic acetylcholine receptor was expressed and studied in Xenopus oocytes. The magnitude and reversal potential of instantaneous whole cell currents were examined in solutions containing varying concentrations of either calcium or barium, and in the presence or absence of the intracellular calcium chelator BAPTA. In external barium, application of nicotine elicits an inwardly rectifying response; in calcium the response is larger and has a linear IV relation. Pretreatment of oocytes with BAPTA-AM could not prevent activation of calcium-dependent chloride channels in external Ringer containing calcium. Using an extended GHK equation, the permeability ratio PBa/PNa of the alpha 7 receptor was determined to be about 17. Our results suggest that alpha 7 nicotinic receptors are highly permeable to divalent cations. PMID:8312496

  2. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  3. Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an α7 nicotinic receptor in a murine hindlimb ischemia model.

    PubMed

    Kakinuma, Yoshihiko; Noguchi, Tatsuya; Okazaki, Kayo; Oikawa, Shino; Iketani, Mitsue; Kurabayashi, Atsushi; Kurabayashi, Mutsumi; Furihata, Mutsuo; Sato, Takayuki

    2014-07-01

    We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy.

  4. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers.

    PubMed

    Kuwabara, Hiroto; Heishman, Stephen J; Brasic, James R; Contoreggi, Carlo; Cascella, Nicola; Mackowick, Kristen M; Taylor, Richard; Rousset, Olivier; Willis, William; Huestis, Marilyn A; Concheiro, Marta; Wand, Gary; Wong, Dean F; Volkow, Nora D

    2014-01-01

    The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward.

  5. Mu Opioid Receptor Binding Correlates with Nicotine Dependence and Reward in Smokers

    PubMed Central

    Brasic, James R.; Contoreggi, Carlo; Cascella, Nicola; Mackowick, Kristen M.; Taylor, Richard; Rousset, Olivier; Willis, William; Huestis, Marilyn A.; Concheiro, Marta; Wand, Gary; Wong, Dean F.; Volkow, Nora D.

    2014-01-01

    The rewarding effects of nicotine are associated with activation of nicotine receptors. However, there is increasing evidence that the endogenous opioid system is involved in nicotine's rewarding effects. We employed PET imaging with [11C]carfentanil to test the hypotheses that acute cigarette smoking increases release of endogenous opioids in the human brain and that smokers have an upregulation of mu opioid receptors (MORs) when compared to nonsmokers. We found no significant changes in binding potential (BPND) of [11C]carfentanil between the placebo and the active cigarette sessions, nor did we observe differences in MOR binding between smokers and nonsmokers. Interestingly, we showed that in smokers MOR availability in bilateral superior temporal cortices during the placebo condition was negatively correlated with scores on the Fagerström Test for Nicotine Dependence (FTND). Also in smokers, smoking-induced decreases in [11C]carfentanil binding in frontal cortical regions were associated with self-reports of cigarette liking and wanting. Although we did not show differences between smokers and nonsmokers, the negative correlation with FTND corroborates the role of MORs in superior temporal cortices in nicotine addiction and provides preliminary evidence of a role of endogenous opioid signaling in frontal cortex in nicotine reward. PMID:25493427

  6. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  7. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    PubMed

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-03

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  8. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  9. Role of CB2 Cannabinoid Receptors in the Rewarding, Reinforcing, and Physical Effects of Nicotine

    PubMed Central

    Navarrete, Francisco; Rodríguez-Arias, Marta; Martín-García, Elena; Navarro, Daniela; García-Gutiérrez, María S; Aguilar, María A; Aracil-Fernández, Auxiliadora; Berbel, Pere; Miñarro, José; Maldonado, Rafael; Manzanares, Jorge

    2013-01-01

    This study was aimed to evaluate the involvement of CB2 cannabinoid receptors (CB2r) in the rewarding, reinforcing and motivational effects of nicotine. Conditioned place preference (CPP) and intravenous self-administration experiments were carried out in knockout mice lacking CB2r (CB2KO) and wild-type (WT) littermates treated with the CB2r antagonist AM630 (1 and 3 mg/kg). Gene expression analyses of tyrosine hydroxylase (TH) and α3- and α4-nicotinic acetylcholine receptor subunits (nAChRs) in the ventral tegmental area (VTA) and immunohistochemical studies to elucidate whether CB2r colocalized with α3- and α4-nAChRs in the nucleus accumbens and VTA were performed. Mecamylamine-precipitated withdrawal syndrome after chronic nicotine exposure was evaluated in CB2KO mice and WT mice treated with AM630 (1 and 3 mg/kg). CB2KO mice did not show nicotine-induced place conditioning and self-administered significantly less nicotine. In addition, AM630 was able to block (3 mg/kg) nicotine-induced CPP and reduce (1 and 3 mg/kg) nicotine self-administration. Under baseline conditions, TH, α3-nAChR, and α4-nAChR mRNA levels in the VTA of CB2KO mice were significantly lower compared with WT mice. Confocal microscopy images revealed that CB2r colocalized with α3- and α4-nAChRs. Somatic signs of nicotine withdrawal (rearings, groomings, scratches, teeth chattering, and body tremors) increased significantly in WT but were absent in CB2KO mice. Interestingly, the administration of AM630 blocked the nicotine withdrawal syndrome and failed to alter basal behavior in saline-treated WT mice. These results suggest that CB2r play a relevant role in the rewarding, reinforcing, and motivational effects of nicotine. Pharmacological manipulation of this receptor deserves further consideration as a potential new valuable target for the treatment of nicotine dependence. PMID:23817165

  10. Recruitment of GABAA Receptors in Chemoreceptor Pulmonary Neuroepithelial Bodies by Prenatal Nicotine Exposure in Monkey Lung

    PubMed Central

    Fu, XW.; Spindel, E.R.

    2010-01-01

    Pulmonary neuroepithelial bodies (NEB) act as airway oxygen sensors and produce serotonin, a variety of neuropeptides and are involved in autonomic nervous system control of breathing, especially during the neonatal period. We now report that NEB cells also express a GABAegic signaling loop that is increased by prenatal nicotine exposure. In this study, cultured monkey NEB cells show hypoxia-evoked spikes and hypoxia-sensitive K+ current. As shown by both immunofluorescence and RT-PCR, monkey NEB cells synthesize and contain serotonin. The monkey NEB cells express the β2 and β3 GABAA receptor subunits, GAD and also express α7, α4 and β4 nicotinic receptor (nAChR) subunits. The α7 nAChR is co-expressed with GAD in NEB. The numbers of NEB and β3 GABAA receptor subunits expressed in NEB cells in lungs from control newborn monkeys were compared to lungs from animals that received nicotine during gestation. Prenatal nicotine exposure increased the numbers of NEB by 46% in lung and the numbers of NEB cells expressing GAD and GABAA β3 receptors increased by 67% and 66%, respectively. This study suggests that prenatal nicotine exposure can modulate NEB function by increasing the numbers of NEB cells and by increasing both GAD expression and β3 GABAA receptor subunit expression. The interaction of the intrinsic GABAergic system in the lung with nicotinic receptors in PNEC/NEB may provide a mechanism to explain the link between smoking during pregnancy and SIDS. PMID:19536509

  11. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  12. Neonicotinoid insecticides differently modulate acetycholine-induced currents on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Cartereau, Alison; Martin, Carine; Thany, Steeve H

    2017-08-29

    Neonicotinoid insecticides are described as poor agonists of mammalian nicotinic acetylcholine receptors. In this paper, we provide evidence that they diffenrently act on mammalian nicotinic receptors. Two-electrode voltage-clamp electrophysiology was used to characterized the pharmacology of neonicotinoid insecticides on α7 receptors expressed in Xenopus oocytes. Single and combined application of clothianidin, acetamiprid and thiamethoxam were tested. The neonicotinoid insecticides, clothianidin and acetamiprid were partial agonists of mammalian neuronal α7 nicotinic receptors and thiamethoxam, a neonicotinoid insecticide, which is converted to clothianidin in insect and plant tissues had no effect. Pretreatment of 10 μM clothianidin and acetamiprid with 100 μM acetylcholine, significantly enhanced the subsequent acetylcholine-evoked currents whereas, 10 μM thiamethoxam reduced acetylcholine-induced current amplitudes. Moreover, the combinations of the three neonicotinoids decreased the ACh evoked currents. The present findings suggest that neonicotinoid insecticides differently affect α7 nicotinic acetylcholine receptors and can modulate acetylcholine-induced current. In final, the data indicate a previous unknown modulation of mammalian α7 receptors by combined application of clothianidin, acetamiprid and thiamethoxam. This article is protected by copyright. All rights reserved.

  13. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  14. Nicotinic acid activates the capsaicin receptor TRPV1: Potential mechanism for cutaneous flushing.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Mao, Rongrong; Cai, Anping; Jia, Yunfang; Clifton, Heather; Schaefer, Saul; Xu, Lin; Zheng, Jie

    2014-06-01

    Nicotinic acid (also known as niacin or vitamin B3), widely used to treat dyslipidemias, represents an effective and safe means to reduce the risk of mortality from cardiovascular disease. Nonetheless, a substantial fraction of patients discontinue treatment because of a strong side effect of cutaneous vasodilation, commonly termed flushing. In the present study, we tested the hypothesis that nicotinic acid causes flushing partially by activating the capsaicin receptor TRPV1, a polymodal cellular sensor that mediates the flushing response on consumption of spicy food. We observed that the nicotinic acid-induced increase in blood flow was substantially reduced in Trpv1(-/-) knockout mice, indicating involvement of the channel in flushing response. Using exogenously expressed TRPV1, we confirmed that nicotinic acid at submillimolar to millimolar concentrations directly and potently activates TRPV1 from the intracellular side. Binding of nicotinic acid to TRPV1 lowers its activation threshold for heat, causing channel opening at physiological temperatures. The activation of TRPV1 by voltage or ligands (capsaicin and 2-aminoethoxydiphenyl borate) is also potentiated by nicotinic acid. We further demonstrated that nicotinic acid does not compete directly with capsaicin but may activate TRPV1 through the 2-aminoethoxydiphenyl borate activation pathway. Using live-cell fluorescence imaging, we observed that nicotinic acid can quickly enter the cell through a transporter-mediated pathway to activate TRPV1. Direct activation of TRPV1 by nicotinic acid may lead to cutaneous vasodilation that contributes to flushing, suggesting a potential novel pathway to inhibit flushing and to improve compliance. © 2014 American Heart Association, Inc.

  15. Nicotinic Acid Activates the Capsaicin Receptor TRPV1 – A Potential Mechanism for Cutaneous Flushing

    PubMed Central

    Ma, Linlin; Lee, Bo Hyun; Mao, Rongrong; Cai, Anping; Jia, Yunfang; Clifton, Heather; Schaefer, Saul; Xu, Lin; Zheng, Jie

    2014-01-01

    Objective Nicotinic acid (a.k.a. niacin or vitamin B3), widely used to treat dyslipidemias, represents an effective and safe means to reduce the risk of mortality from cardiovascular disease. Nonetheless, a substantial fraction of patients discontinue treatment due to a strong side effect of cutaneous vasodilation, commonly termed flushing. In the present study we tested the hypothesis that nicotinic acid causes flushing partially by activating the capsaicin receptor TRPV1, a polymodal cellular sensor that mediates the flushing response upon consumption of spicy food. Approach and Results We observed that the nicotinic acid-induced increase in blood flow was substantially reduced in Trpv1−/− knockout mice, indicating involvement of the channel in flushing response. Using exogenously expressed TRPV1, we confirmed that nicotinic acid at sub-millimolar to millimolar concentrations directly and potently activates TRPV1 from the intracellular side. Binding of nicotinic acid to TRPV1 lowers its activation threshold for heat, causing channel opening at physiological temperatures. Activation of TRPV1 by voltage or ligands (capsaicin and 2-APB) is also potentiated by nicotinic acid. We further demonstrated that nicotinic acid does not compete directly with capsaicin but may activate TRPV1 through the 2-APB activation pathway. Using live-cell fluorescence imaging, we observed that nicotinic acid can quickly enter the cell through a transporter-mediated pathway to activate TRPV1. Conclusions Direct activation of TRPV1 by nicotinic acid may lead to cutaneous vasodilation that contributes to flushing, suggesting a potential novel pathway to inhibit flushing and improve compliance. PMID:24675661

  16. Activation of α2A-Containing Nicotinic Acetylcholine Receptors Mediates Nicotine-Induced Motor Output in Embryonic Zebrafish

    PubMed Central

    Menelaou, Evdokia; Udvadia, Ava J.; Tanguay, Robert L.; Svoboda, Kurt R.

    2014-01-01

    It is well established that cholinergic signaling has critical roles during central nervous system development. In physiological and behavioral studies, activation of nicotinic acetylcholine receptors has been implicated in mediating cholinergic signaling. In developing spinal cord, cholinergic transmission is associated with neural circuits responsible for producing locomotor behaviors. In this study, we investigated the expression pattern of the α2A nAChR subunit as evidence from others suggested it could be expressed by spinal neurons. In situ hybridization and immunohistochemistry revealed that the α2A nAChR subunits are expressed in spinal Rohon-Beard (RB) neurons and olfactory sensory neurons in young embryos. In order to examine the functional role of the α2A nAChR subunit during embryogenesis, we blocked its expression using antisense modified oligonucleotides. Blocking the expression of α2A nAChR subunits had no effect on spontaneous motor activity. However, it did alter the embryonic nicotine-induced motor output. This reduction in motor activity was not accompanied by defects in neuronal and muscle elements associated with the motor output. Moreover, the anatomy and functionality of RB neurons was normal even in the absence of the α2A nAChR subunit. Thus, we propose that α2A-containing nAChR are dispensable for normal RB development. However, in the context of nicotine-induced motor output, α2A-containing nAChRs on RB neurons provide the substrate that nicotine acts upon to induce the motor output. These findings also indicate that functional neuronal nAChRs are present within spinal cord at the time when locomotor output in zebrafish first begins to manifest itself. PMID:24738729

  17. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3H]glutamate release in rat cerebellum slices.

    PubMed

    Markus, Regina P; Santos, Jussara M; Zago, Wagner; Reno, Livia A C

    2003-05-01

    In mammals, the most important synchronizer for endogenous rhythms is the environmental light/dark cycle. In this report we have explored the ability of light/dark cycle and melatonin, the pineal hormone released during the night, to modulate cerebellar cholinergic input by interfering with the nicotinic acetylcholine receptors' (nAChRs) availability. Through the analysis of the response to selective cholinergic agonists and antagonists, we observed that nAChRs containing the alpha7 gene product mediate the release of [(3)H]glutamate from rat cerebellum slices. The [(3)H]glutamate overflow induced by alpha7 nAChR activation was higher during the dark phase, although the number of alpha-[(125)I]bungarotoxin binding sites, but not the [(3)H]nicotine binding sites (B(max)), was reduced. On the other hand, glutamate-evoked [(3)H]glutamate release was not modified by the hour of the day. Finally, we show that the nocturnal increase in nicotine-evoked [(3)H]glutamate release is imposed by a nocturnal surge of melatonin, as it is abolished when pineal melatonin production is inhibited by either maintaining the animals in constant light for 48 h or by injecting propranolol just before lights off for 2 days. The difference between light and dark [(3)H]glutamate-evoked release is restored in propranolol-treated animals that received melatonin during the dark period. In conclusion, we show that nicotine-evoked [(3)H]glutamate release in rat cerebellum presents a diurnal variation, driven by nocturnal pineal melatonin surge.

  18. The nicotinic acid receptor--a new mechanism for an old drug.

    PubMed

    Karpe, Fredrik; Frayn, Keith N

    2004-06-05

    Non-esterified fatty acids in plasma originate from adipose tissue. Delivery of fatty acids to the liver provides the substrate for VLDL triglycerides. Insulin-sensitive organs, overburdened by high concentrations of non-esterified fatty acids, may develop resistance to insulin action. In addition, insulin secretion from pancreatic beta-cells may be impaired by long-standing elevation of concentrations of non-esterified fatty acid in plasma. Normally, such concentrations fluctuate over the day depending on the transient suppression of lipolysis from adipose tissue by insulin released after meals. Diurnal concentrations of non-esterified fatty acid are often elevated in obesity, in particular in male-pattern upper-body fat accumulation. Nicotinic acid is the only drug that primarily lowers concentrations of non-esterified fatty acids and thereby lowers VLDL triglycerides. Nicotinic acid, or its analogues, seems to alleviate insulin resistance in the short-term whereas, paradoxically, the long-term effect is often the opposite. Suppression of lipolysis by nicotinic acid gives rise to a prominent rebound and the degree to which this occurs might explain this paradox. The exact cellular mechanism by which nicotinic acid exerts its antilipolytic effects has not been known until the recent discovery of a distinct G-protein coupled receptor. Nicotinic acid is a high affinity ligand, but the endogenous ligand is still unknown. Recently, Tina Rubic and colleagues (Biochem Pharmacol 2004; 67: 411-19) proposed a mechanism in which nicotinic acid stimulates cholesterol mobilisation from macrophages, thereby providing a potential link between regression of atherosclerosis and use of nicotinic acid. Research on signalling through the nicotinic acid receptor might give rise to novel and more effective methods to interfere with fatty-acid metabolism, with insulin resistance, hyperlipidaemia, and atherosclerosis as target diseases.

  19. Nicotinic receptor agonists as neuroprotective/neurotrophic drugs. Progress in molecular mechanisms.

    PubMed

    Mudo, G; Belluardo, N; Fuxe, K

    2007-01-01

    In the present work we reviewed recent advances concerning neuroprotective/neurotrophic effects of acute or chronic nicotine exposure, and the signalling pathways mediating these effects, including mechanisms implicated in nicotine addiction and nAChR desensitization. Experimental and clinical data largely indicate long-lasting effects of nicotine and nicotinic agonists that imply a neuroprotective/neurotrophic role of nAChR activation, involving mainly alpha7 and alpha4beta2 nAChR subtypes, as evidenced using selective nAChR agonists. Compounds interacting with neuronal nAChRs have the potential to be neuroprotective and treatment with nAChR agonists elicits long-lasting neurotrophic effects, e.g. improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Nicotine addiction, which is mediated by interaction with nACh receptors, is believed to involve the modification of signalling cascades that modulate synaptic plasticity and gene expression. Desensitization, in addition to protecting cells from uncontrolled excitation, is recently considered as a form of signal plasticity. nAChR can generate these longe-lasting effects by elaboration of complex intracellular signals that mediate medium to long-term events crucial for neuronal maintenance, survival and regeneration. Although a comprehensive survey of the gene-based molecular mechanisms that underlie nicotine effects has yet not been performed a growing amount of data is beginning to improve our understanding of signalling mechanisms that lead to neurotrophic/neuroprotective responses. Evidence for an involvement of the fibroblast growth factor-2 gene in nAChR mechanisms mediating neuronal survival, trophism and plasticity has been obtained. However, more work is needed to establish the mechanisms involved in the effects of nicotinic receptor subtype activation from cognition-enhancing and neurotrophic effects to smoking behaviour and to determine more precisely the

  20. alpha-Bungarotoxin-sensitive hippocampal nicotinic receptor channel has a high calcium permeability.

    PubMed Central

    Castro, N G; Albuquerque, E X

    1995-01-01

    The hippocampal nicotinic acetylcholine receptor (nAChR) is a newly identified ligand-gated ion channel that is blocked by the snake toxin alpha-bungarotoxin (alpha-BGT) and that probably contains the alpha 7 nAChR subunit in its structure. Here its ion selectivity was characterized and compared with that of the N-methyl-D-aspartate (NMDA) receptor channel. The reversal potentials (VR) of acetylcholine- and NMDA-activated whole-cell currents were determined under various ionic conditions. Using ion activities and a Goldman-Hodgkin-Katz equation for VR shifts in the presence of Ca2+, permeability ratios were calculated. For the alpha-BGT-sensitive nAChR, PNa/PCs was close to 1 and Cl- did not contribute to the currents. Changing the [Ca2+]0 from 1 to 10 mM, the VRs of the nAChR and NMDA currents were shifted by +5.6 +/- 0.4 and +8.3 +/- 0.4 mV, respectively, and the nAChR current decay was accelerated. These shifts yielded PCa/PCss of 6.1 +/- 0.5 for the nAChR channel and 10.3 +/- 0.7 for the NMDA channel. Thus, the neuronal alpha-BGT-sensitive nAChR is a cation channel considerably selective to Ca2+ and may mediate a fast rise in intracellular Ca2+ that would increase in magnitude with membrane hyperpolarization. PMID:7696505

  1. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    SciTech Connect

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-09-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining (/sup 3/H)nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure (/sup 3/H)nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-(/sup 3/H)nicotine-binding characteristics.

  2. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states.

    PubMed

    Picciotto, Marina R; Lewis, Alan S; van Schalkwyk, Gerrit I; Mineur, Yann S

    2015-09-01

    The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Differential roles of α6β2* and α4β2* neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice.

    PubMed

    Sanjakdar, Sarah S; Maldoon, Pretal P; Marks, Michael J; Brunzell, Darlene H; Maskos, Uwe; McIntosh, J Michael; Bowers, M Scott; Damaj, M Imad

    2015-01-01

    Mesolimbic α6* nicotinic acetylcholine receptors (nAChRs) are thought to have an important role in nicotine behavioral effects. However, little is known about the role of the various α6*-nAChRs subtypes in the rewarding effects of nicotine. In this report, we investigated and compared the role of α6*-nAChRs subtypes and their neuro-anatomical locus in nicotine and cocaine reward-like effects in the conditioned place preference (CPP) paradigm, using pharmacological antagonism of α6β2* nAChRs and genetic deletion of the α6 or α4 subunits in mice. We found that α6 KO mice exhibited a rightward shift in the nicotine dose-response curve compared with WT littermates but that α4 KO failed to show nicotine preference, suggesting that α6α4β2*-nAChRs are involved. Furthermore, α6β2* nAChRs in nucleus accumbens were found to have an important role in nicotine-conditioned reward as the intra-accumbal injection of the selective α6β2* α-conotoxin MII [H9A; L15A], blocked nicotine CPP. In contrast to nicotine, α6 KO failed to condition to cocaine, but cocaine CPP in the α4 KO was preserved. Intriguingly, α-conotoxin MII [H9A; L15A], blocked cocaine conditioning in α4 KO mice, implicating α6β2* nAChRs in cocaine reward. Importantly, these effects did not generalize as α6 KO showed both a conditioned place aversion to lithium chloride as well as CPP to palatable food. Finally, dopamine uptake was not different between the α6 KO or WT mice. These data illustrate that the subjective rewarding effects of both nicotine and cocaine may be mediated by mesolimbic α6β2* nAChRs and that antagonists of these receptor subtypes may exhibit therapeutic potential.

  4. Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD).

    PubMed

    Dwoskin, Linda P; Joyce, B Matthew; Zheng, Guangrong; Neugebauer, Nichole M; Manda, Vamshi K; Lockman, Paul; Papke, Roger L; Bardo, Michael T; Crooks, Peter A

    2007-10-15

    Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom converts nicotine from a potent agonist into a potent antagonist. The classical antagonists, hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker to provide N,N'-bis-nicotinium analogs, affording a lead compound, N,N'-dodecyl-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD completely inhibited (IC(50)=500 nM) nicotine-evoked DA release from superfused rat striatal slices, suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 microM) inhibited the response to acetylcholine at alpha3beta4, alpha4beta4, alpha4beta2, and alpha1beta1varepsilondelta receptors expressed in Xenopus oocytes. TMPD had a 2-fold higher affinity than choline for the blood-brain barrier choline transporter, suggesting brain bioavailability. TMPD did not inhibit hyperactivity in nicotine sensitized rats, but significantly and specifically decreased nicotine self-administration. Together, the results suggest that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects, a pharmacological profile indicative of potential clinical utility for the treatment of tobacco dependence.

  5. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  6. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  7. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle

    PubMed Central

    Robertson, A. P.; Buxton, S. K.; Martin, R. J.

    2013-01-01

    Lymphatic filariasis is a debilitating disease caused by clade III parasites like Brugia malayi and Wuchereria bancrofti. Current recommended treatment regimen for this disease relies on albendazole, ivermectin and diethylcarbamazine, none of which targets the nicotinic acetylcholine receptors in these parasitic nematodes. Our aim therefore has been to develop adult B. malayi for electrophysiological recordings to aid in characterizing the ion channels in this parasite as anthelmintic target sites. In that regard, we recently demonstrated the amenability of adult B. malayi to patch-clamp recordings and presented results on the single-channel properties of nAChR in this nematode. We have built on this by recording whole-cell nAChR currents from adult B. malayi muscle. Acetylcholine, levamisole, pyrantel, bephenium and tribendimidine activated the receptors on B. malayi muscle, producing robust currents ranging from > 200 pA to ~1.5 nA. Levamisole completely inhibited motility of the adult B. malayi within 10 min and after 60 min, motility had recovered back to control values. PMID:23562945

  8. Neuronal Nicotinic Receptors in Sleep-Related Epilepsy: Studies in Integrative Biology

    PubMed Central

    Becchetti, Andrea

    2012-01-01

    Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications. PMID:25969754

  9. Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death.

    PubMed

    Lavezzi, Anna Maria; Cappiello, Achille; Pusiol, Teresa; Corna, Melissa Felicita; Termopoli, Veronica; Matturri, Luigi

    2015-01-15

    This study indicates the impact of nicotine and pesticides (organochlorine and organophosphate insecticides used in agriculture) on neuronal α7-nicotinic acetylcholine receptor expression in brainstem regions receiving cholinergic projections in human perinatal life. An in-depth anatomopathological examination of the autonomic nervous system and immunohistochemistry to analyze the α7-nicotinic acetylcholine receptor expression in the brainstem from 44 fetuses and newborns were performed. In addition, the presence of selected agricultural pesticides in cerebral cortex samples of the victims was determined by specific analytical procedures. Hypodevelopment of brainstem structures checking the vital functions, frequently associated with α7-nicotinic acetylcholine receptor immunopositivity and smoke absorption in pregnancy, was observed in high percentages of victims of sudden unexpected perinatal death. In nearly 30% of cases however the mothers never smoked, but lived in rural areas. The search for pesticides highlighted in many of these cases traces of both organochlorine and organophosphate pesticides. We detain that exposition to pesticides in pregnancy produces homologous actions to those of nicotine on neuronal α7-nicotinic acetylcholine receptor, allowing to developmental alterations of brainstem vital centers in victims of sudden unexplained death. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Differential regulation of nicotinic receptor-mediated neurotransmitter release following chronic (-)-nicotine administration.

    PubMed

    Jacobs, Iris; Anderson, David J; Surowy, Carol S; Puttfarcken, Pamela S

    2002-10-01

    The objective of this study was to compare nAChR-mediated neurotransmitter release from slices of rat striatum, frontal cortex and hippocampus following chronic (-)-nicotine (Nic) administration (tartrate salt, 2 mg/kg twice daily for 10 days). Binding studies were also conducted to measure changes in receptor density. Relative to saline-treated animals, the number of nAChRs measured by [(3)H]-cytisine (CYT) binding was significantly increased in all brain regions examined by 15% to 25% following chronic Nic administration. Using a relatively high throughput method to measure neurotransmitter release, we found that Nic, CYT, and (+/-)-epibatidine (EB) evoked similar concentration-dependent striatal [(3)H]-dopamine (DA) and hippocampal [(3)H]-norepinephrine (NE) release from both saline (rank order of potency for [(3)H]-DA: EB>CYT>Nic; pEC(50) values, EB (9 +/- 0.1), CYT (8 +/- 0.13), Nic (7.3 +/- 0.19); rank order potency for [(3)H]-NE: EB>Nic=CYT; pEC(50) values, EB (8 +/- 0.18), Nic (5.5 +/- 0.09), CYT (5.12 +/- 0.1)) -and Nic-treated animals (pEC(50) values [(3)H]-DA, EB (9.5 +/- 0.15), Nic (8 +/- 0.16, CYT (6.6 +/- 0.52); [(3)H]-NE, EB (8.4 +/- 0.23), Nic (5.19 +/- 0.1), CYT (5.18 +/- 0.29)). Although no change in potency was detected between the two treatment groups, the agonist efficacies in both tissues were significantly reduced by approximately 17-54% following chronic Nic administration. In contrast to striatum, treatment with Nic did not affect the maximal [(3)H]-DA response (efficacy) in the frontal cortex. However, as observed in the striatum, no change in agonist potency was observed in the frontal cortex following chronic Nic administration (pEC(50) values, saline; EB (9.2 +/- 0.2), >CYT (6.95 +/- 0.75) = Nic (6.9 +/- 0.16); Nic-treated, EB (9 +/- 0.42)>CYT (6.88 +/- 0.27) = Nic (7.1 +/- 0.17)). Chronic Nic treatment did not significantly affect KCl-evoked [(3)H]-NE release from hippocampus or [(3)H]-DA release from frontal cortex or striatum. Since

  11. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex.

    PubMed

    Parikh, Vinay; Man, Kingson; Decker, Michael W; Sarter, Martin

    2008-04-02

    Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.

  12. Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons.

    PubMed

    Fernandes, Catarina C; Pinto-Duarte, António; Ribeiro, Joaquim Alexandre; Sebastião, Ana M

    2008-05-21

    Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory and constitute a significant therapeutic target for many neurodegenerative, neurological, and psychiatric disorders. Here, we report that brain-derived neurotrophic factor (BDNF) (1-100 ng/ml), a member of the neurotrophin gene family, rapidly decreases alpha7 nicotinic acetylcholine receptor responses in interneurons of the hippocampal CA1 stratum radiatum. Such effect is dependent on the activation of the TrkB receptor and involves the actin cytoskeleton; noteworthy, it is compromised when the extracellular levels of the endogenous neuromodulator adenosine are reduced with adenosine deaminase (1 U/ml) or when adenosine A(2A) receptors are blocked with SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine) (100 nm). The intracellular application of U73122 (1-[6[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (5 mum), a broad-spectrum inhibitor of phospholipase C, or GF 109203X (bisindolylmaleimide I) (2 mum), a general inhibitor of protein kinase C isoforms, blocks BDNF-induced inhibition of alpha7 nicotinic acetylcholine receptor function. Moreover, in conditions of simultaneous intracellular dialysis of the fast Ca(2+) chelator BAPTA (10 mm) and removal of extracellular Ca(2+) ions, the inhibitory action of BDNF is further prevented. The present findings disclose a novel target for rapid actions of BDNF that might play important roles on synaptic transmission and plasticity in the brain.

  13. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    SciTech Connect

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin . E-mail: chcho@cuhk.edu.hk

    2007-06-15

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.

  14. Nicotinic receptor agonists and antagonists increase sAPPalpha secretion and decrease Abeta levels in vitro.

    PubMed

    Mousavi, M; Hellström-Lindahl, E

    2009-01-01

    We have earlier reported that Abeta were significantly reduced in brains of smoking Alzheimer patients and control subjects compared with non-smokers, as well as in nicotine treated APPsw transgenic mice. To examine the mechanisms by which nicotine modulates APP processing we here measured levels of secreted amyloid precursor protein (sAPPalpha), total sAPP, Abeta40 and Abeta42 in different cell lines expressing different nicotinic receptor (nAChR) subtypes or no nAChRs. Treatment with nicotine increased release of sAPPalpha and at the same time lowered Abeta levels in both SH-SY5Y and SH-SY5Y/APPsw cells expressing alpha3 and alpha7 nAChR subtypes. These effects could also be evoked by co-treatment with the competitive alpha7 nAChR antagonists alpha-bungarotoxin and methyllycaconitine (MLA), and by these antagonists alone, suggesting that binding to the agonist binding site, rather than activation of the receptor, may be sufficient to trigger changes in APP processing. The nicotine-induced increase in sAPPalpha could only be blocked by co-treatment with the open channel blocker mecamylamine. In addition to nicotine, the agonists epibatidine and cytisine both significantly increased the release of sAPP in M10 cells expressing the alpha4/beta2 nAChR subtype, and this effect was blocked by co-treatment with mecamylamine but not by the alpha4/beta2 competitive antagonist dihydro-beta-erythroidine. The lack of effect of nicotine on sAPPalpha and Abeta levels in HEK 293/APPsw cells, which do not express any nAChRs, demonstrates that the nicotine-induced attenuation of beta-amyloidosis is mediated by nAChRs and not by a direct effect of nicotine. Our data show that nicotinic compounds stimulate the non-amyloidogenic pathway and that alpha4 and alpha7 nAChRs play a major role in modulating this process. Nicotinic drugs directed towards specific nAChR subtypes might therefore be beneficial for the treatment of AD not only by lowering Abeta production but also by enhance

  15. Local Application of Drugs to Study Nicotinic Acetylcholine Receptor Function in Mouse Brain Slices

    PubMed Central

    Engle, Staci E.; Broderick, Hilary J.; Drenan, Ryan M.

    2012-01-01

    Tobacco use leads to numerous health problems, including cancer, heart disease, emphysema, and stroke. Addiction to cigarette smoking is a prevalent neuropsychiatric disorder that stems from the biophysical and cellular actions of nicotine on nicotinic acetylcholine receptors (nAChRs) throughout the central nervous system. Understanding the various nAChR subtypes that exist in brain areas relevant to nicotine addiction is a major priority. Experiments that employ electrophysiology techniques such as whole-cell patch clamp or two-electrode voltage clamp recordings are useful for pharmacological characterization of nAChRs of interest. Cells expressing nAChRs, such as mammalian tissue culture cells or Xenopus laevis oocytes, are physically isolated and are therefore easily studied using the tools of modern pharmacology. Much progress has been made using these techniques, particularly when the target receptor was already known and ectopic expression was easily achieved. Often, however, it is necessary to study nAChRs in their native environment: in neurons within brain slices acutely harvested from laboratory mice or rats. For example, mice expressing "hypersensitive" nAChR subunits such as α4 L9′A mice 1 and α6 L9′S mice 2, allow for unambiguous identification of neurons based on their functional expression of a specific nAChR subunit. Although whole-cell patch clamp recordings from neurons in brain slices is routinely done by the skilled electrophysiologist, it is challenging to locally apply drugs such as acetylcholine or nicotine to the recorded cell within a brain slice. Dilution of drugs into the superfusate (bath application) is not rapidly reversible, and U-tube systems are not easily adapted to work with brain slices. In this paper, we describe a method for rapidly applying nAChR-activating drugs to neurons recorded in adult mouse brain slices. Standard whole-cell recordings are made from neurons in slices, and a second micropipette filled with a drug of

  16. Nicotine normalizes intracellular subunit stoichiometry of nicotinic receptors carrying mutations linked to autosomal dominant nocturnal frontal lobe epilepsy.

    PubMed

    Son, Cagdas D; Moss, Fraser J; Cohen, Bruce N; Lester, Henry A

    2009-05-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (alpha4)(3)(beta2)(2) versus (alpha4)(2)(beta2)(3) subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in alpha4, V287L, and V287M in beta2. alpha4 and beta2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluorescent and nonfluorescent M3-M4 loops. Sixteen fluorescent subunit combinations were expressed in N2a cells. Förster resonance energy transfer (FRET) was analyzed by donor recovery after acceptor photobleaching and by pixel-by-pixel sensitized emission, with confirmation by fluorescence intensity ratios. Because FRET efficiency is much greater for adjacent than for nonadjacent subunits and the alpha4 and beta2 subunits occupy specific positions in nAChR pentamers, observed FRET efficiencies from (alpha4)(3)(beta2)(2) carrying fluorescent alpha4 subunits were significantly higher than for (alpha4)(2)(beta2)(3); the converse was found for fluorescent beta2 subunits. All tested ADNFLE mutants produced 10 to 20% increments in the percentage of intracellular (alpha4)(3)(beta2)(2) receptors compared with WT subunits. In contrast, 24- to 48-h nicotine (1 muM) exposure increased the proportion of (alpha4)(2)(beta2)(3) in WT receptors and also returned subunit stoichiometry to WT levels for alpha4S248F and beta2V287L nAChRs. These observations may be relevant to the decreased seizure frequency in patients with ADNFLE who use tobacco products or nicotine patches. Fluorescence-based investigations of nAChR subunit stoichiometry may provide efficient drug discovery methods for nicotine addiction or for other disorders that result from dysregulated nAChRs.

  17. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

    PubMed Central

    Hohenegger, Martin; Suko, Josef; Gscheidlinger, Regina; Drobny, Helmut; Zidar, Andreas

    2002-01-01

    Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel. PMID:12102654

  18. Interaction of ibogaine with human alpha3beta4-nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Rosenberg, Avraham; Targowska-Duda, Katarzyna M; Feuerbach, Dominik; Yuan, Xiao Juan; Jozwiak, Krzysztof; Moaddel, Ruin; Wainer, Irving W

    2010-09-01

    The interaction of ibogaine and phencyclidine (PCP) with human (h) alpha3beta4-nicotinic acetylcholine receptors (AChRs) in different conformational states was determined by functional and structural approaches including, radioligand binding assays, Ca2+ influx detections, and thermodynamic and kinetics measurements. The results established that (a) ibogaine inhibits (+/-)-epibatidine-induced Ca2+ influx in h(alpha)3beta4 AChRs with approximately 9-fold higher potency than that for PCP, (b) [3H]ibogaine binds to a single site in the h(alpha)3beta4 AChR ion channel with relatively high affinity (Kd = 0.46 +/- 0.06 microM), and ibogaine inhibits [3H]ibogaine binding to the desensitized h(alpha)3beta4 AChR with slightly higher affinity compared to the resting AChR. This is explained by a slower dissociation rate from the desensitized ion channel compared to the resting ion channel, and (c) PCP inhibits [3H]ibogaine binding to the h(alpha)3beta4 AChR, suggesting overlapping sites. The experimental results correlate with the docking simulations suggesting that ibogaine and PCP interact with a binding domain located between the serine (position 6') and valine/phenylalanine (position 13') rings. This interaction is mediated mainly by van der Waals contacts, which is in agreement with the observed enthalpic contribution determined by non-linear chromatography. However, the calculated entropic contribution also indicates local conformational changes. Collectively our data suggest that ibogaine and PCP bind to overlapping sites located between the serine and valine/phenylalanine rings, to finally block the AChR ion channel, and in the case of ibogaine, to probably maintain the AChR in the desensitized state for longer time.

  19. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect.

    PubMed

    Tunaru, Sorin; Kero, Jukka; Schaub, Annette; Wufka, Christian; Blaukat, Andree; Pfeffer, Klaus; Offermanns, Stefan

    2003-03-01

    Nicotinic acid (niacin), a vitamin of the B complex, has been used for almost 50 years as a lipid-lowering drug. The pharmacological effect of nicotinic acid requires doses that are much higher than those provided by a normal diet. Its primary action is to decrease lipolysis in adipose tissue by inhibiting hormone-sensitive triglyceride lipase. This anti-lipolytic effect of nicotinic acid involves the inhibition of cyclic adenosine monophosphate (cAMP) accumulation in adipose tissue through a G(i)-protein-mediated inhibition of adenylyl cyclase. A G-protein-coupled receptor for nicotinic acid has been proposed in adipocytes. Here, we show that the orphan G-protein-coupled receptor, 'protein upregulated in macrophages by interferon-gamma' (mouse PUMA-G, human HM74), is highly expressed in adipose tissue and is a nicotinic acid receptor. Binding of nicotinic acid to PUMA-G or HM74 results in a G(i)-mediated decrease in cAMP levels. In mice lacking PUMA-G, the nicotinic acid-induced decrease in free fatty acid (FFA) and triglyceride plasma levels was abrogated, indicating that PUMA-G mediates the anti-lipolytic and lipid-lowering effects of nicotinic acid in vivo. The identification of the nicotinic acid receptor may be useful in the development of new drugs to treat dyslipidemia.

  20. Evidence of alpha 7 nicotinic acetylcholine receptor expression in retinal pigment epithelial cells.

    PubMed

    Maneu, Victoria; Gerona, Guillermo; Fernández, Laura; Cuenca, Nicolás; Lax, Pedro

    2010-11-01

    Some evidence suggests that retinal pigment epithelium (RPE) can express nicotinic acetylcholine receptors (nAChRs) as described for other epithelial cells, where nAChRs have been involved in processes such as cell development, cell death, cell migration, and angiogenesis. This study is designed to determine the expression and activity of α7 nAChRs in RPE cells. Reverse transcriptase (RT)-PCR was performed to test the expression of nicotinic α7 subunit in bovine RPE cells. Protein expression was determined by Western blot and by immunocytochemistry. Expression of nicotinic α7 subunits was also analyzed in cryostat sections of albino rat retina. Changes in protein expression were tested under hypoxic conditions. Functional nAChRs were studied by examining the Ca2+ transients elicited by nicotine and acetylcholine stimulation in fura-2-loaded cells. Expression of endogenous modulators of nAChRs was analyzed by RT-PCR and Western blot in retina and RPE. Cultured bovine RPE cells expressed nicotinic receptors containing α7 subunit. RT-PCR amplified the expected specific α7 fragment. Western blotting showed expression at the protein level, with a specific band being found at 57 kDa in both cultured and freshly isolated RPE cells. Expression of nAChRs was confirmed for cultured cells by immunofluorescence. Immunohistochemistry confirmed α7 receptor expression in rat RPE retina. α7 receptor expression was down-regulated by long-term hypoxia. A small subpopulation of RPE cultured cells showed functional nAChRs, as evidenced by the selective response elicited by nicotine and acetylcholine stimulation. Expression of the endogenous nicotinic receptors' modulator lynx1 was confirmed in bovine retina and RPE, and expression of lynx1 and other endogenous nicotinic receptor modulators (SLURP1 and RGD1308195) were also confirmed in rat retina. These results suggest that nAChRs could have a significant role in RPE, which may not be related to the traditional role in nerve

  1. Melatonin Administration Alters Nicotine Preference Consumption via Signaling Through High-Affinity Melatonin Receptors

    PubMed Central

    Horton, William J.; Gissel, Hannah J.; Saboy, Jennifer E.; Wright, Kenneth P.; Stitzel, Jerry A.

    2015-01-01

    Rationale While it is known that tobacco use varies across the 24-hour day, the time-of-day effects are poorly understood. Findings from several previous studies indicate a potential role for melatonin in these time-of-day effects; however the specific underlying mechanisms have not been well characterized. Understanding of these mechanisms may lead to potential novel smoking cessation treatments. Objective Examine the role of melatonin and melatonin receptors in nicotine free choice consumption Methods A two-bottle oral nicotine choice paradigm was utilized with melatonin supplementation in melatonin deficient mice (C57BL/6J) or without melatonin supplementation in mice proficient at melatonin synthesis (C3H/Ibg) compared to melatonin proficient mice lacking both or one of the high affinity melatonin receptors (MT1 and MT2; double null mutant DM, or MT1 or MT2). Preference for bitter and sweet tastants also was assessed in wild type and MT1 and MT2 DM mice. Finally, home cage locomotor monitoring was performed to determine the effect of melatonin administration on activity patterns. Results Supplemental melatonin in drinking water significantly reduced free-choice nicotine consumption in C57BL/6J mice, which do not produce endogenous melatonin, while not altering activity patterns. Independently, genetic deletion of both MT1 and MT2 receptors in a melatonin proficient mouse strain (C3H) resulted in significantly more nicotine consumption than controls. However single genetic deletion of either the MT1 or MT2 receptor alone did not result in increased nicotine consumption. Deletion of MT1 and MT2 did not impact taste preference. Conclusions This study demonstrates that nicotine consumption can be affected by exogenous or endogenous melatonin and requires at least one of the high-affinity melatonin receptors. The fact that expression of either the MT1 or MT2 melatonin receptor is sufficient to maintain lower nicotine consumption suggests functional overlap and

  2. Caffeine and nicotine decrease acetylcholine receptor clustering in C2C12 myotube culture.

    PubMed

    Kordosky-Herrera, Kaia; Grow, Wade A

    2009-02-01

    As motor neurons approach skeletal muscle during development, agrin is released and induces acetylcholine receptor (AChR) clustering. Our laboratory investigates the effect of environmental agents on skeletal muscle development by using C2C12 cell culture. For the current project, we investigated both short-term and long-term exposure to caffeine, nicotine, or both, at physiologically relevant concentrations. Short-term exposure was limited to the last 48 h of myotube formation, whereas a long-term exposure of 2 weeks allowed for several generations of myoblast proliferation followed by myotube formation. Both agrin-induced and spontaneous AChR clustering frequencies were assessed. For agrin-induced AChR clustering, agrin was added for the last 16 h of myotube formation. Caffeine, nicotine, or both significantly decreased agrin-induced AChR clustering during short-term and long-term exposure. Furthermore, caffeine, nicotine, or both significantly decreased spontaneous AChR clustering during long-term, but not short-term exposure. Surprisingly, caffeine and nicotine in combination did not decrease AChR clustering beyond the effect of either treatment alone. We conclude that physiologically relevant concentrations of caffeine or nicotine decrease AChR clustering. Moreover, we predict that fetuses exposed to caffeine or nicotine may be less likely to form appropriate neuromuscular synapses.

  3. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors.

    PubMed

    Noda, Mami; Kobayashi, A I

    2017-01-01

    Alpha 7 subunits of nicotinic acetylcholine receptors (nAChRs) are expressed in microglia and are involved in the suppression of neuroinflammation. Over the past decade, many reports show beneficial effects of nicotine, though little is known about the mechanism. Here we show that nicotine inhibits lipopolysaccharide (LPS)-induced proton (H(+)) currents and morphological change by using primary cultured microglia. The H(+) channel currents were measured by whole-cell patch clamp method under voltage-clamp condition. Increased H(+) current in activated microglia was attenuated by blocking NADPH oxidase. The inhibitory effect of nicotine was due to the activation of α7 nAChR, not a direct action on the H(+) channels, because the effects of nicotine was cancelled by α7 nAChR antagonists. Neurotoxic effect of LPS-activated microglia due to inflammatory cytokines was also attenuated by pre-treatment of microglia with nicotine. These results suggest that α7 nAChRs in microglia may be a therapeutic target in neuroinflammatory diseases.

  4. Selective and regulated trapping of nicotinic receptor weak base ligands and relevance to smoking cessation

    PubMed Central

    Govind, Anitha P; Vallejo, Yolanda F; Stolz, Jacob R; Yan, Jing-Zhi; Swanson, Geoffrey T; Green, William N

    2017-01-01

    To better understand smoking cessation, we examined the actions of varenicline (Chantix) during long-term nicotine exposure. Varenicline reduced nicotine upregulation of α4β2-type nicotinic receptors (α4β2Rs) in live cells and neurons, but not for membrane preparations. Effects on upregulation depended on intracellular pH homeostasis and were not observed if acidic pH in intracellular compartments was neutralized. Varenicline was trapped as a weak base in acidic compartments and slowly released, blocking 125I-epibatidine binding and desensitizing α4β2Rs. Epibatidine itself was trapped; 125I-epibatidine slow release from acidic vesicles was directly measured and required the presence of α4β2Rs. Nicotine exposure increased epibatidine trapping by increasing the numbers of acidic vesicles containing α4β2Rs. We conclude that varenicline as a smoking cessation agent differs from nicotine through trapping in α4β2R-containing acidic vesicles that is selective and nicotine-regulated. Our results provide a new paradigm for how smoking cessation occurs and suggest how more effective smoking cessation reagents can be designed. DOI: http://dx.doi.org/10.7554/eLife.25651.001 PMID:28718768

  5. Selective and regulated trapping of nicotinic receptor weak base ligands and relevance to smoking cessation.

    PubMed

    Govind, Anitha P; Vallejo, Yolanda F; Stolz, Jacob R; Yan, Jing-Zhi; Swanson, Geoffrey T; Green, William N

    2017-07-18

    To better understand smoking cessation, we examined the actions of varenicline (Chantix) during long-term nicotine exposure. Varenicline reduced nicotine upregulation of α4β2-type nicotinic receptors (α4β2Rs) in live cells and neurons, but not for membrane preparations. Effects on upregulation depended on intracellular pH homeostasis and were not observed if acidic pH in intracellular compartments was neutralized. Varenicline was trapped as a weak base in acidic compartments and slowly released, blocking (125)I-epibatidine binding and desensitizing α4β2Rs. Epibatidine itself was trapped; (125)I-epibatidine slow release from acidic vesicles was directly measured and required the presence of α4β2Rs. Nicotine exposure increased epibatidine trapping by increasing the numbers of acidic vesicles containing α4β2Rs. We conclude that varenicline as a smoking cessation agent differs from nicotine through trapping in α4β2R-containing acidic vesicles that is selective and nicotine-regulated. Our results provide a new paradigm for how smoking cessation occurs and suggest how more effective smoking cessation reagents can be designed.

  6. Dopamine-dependent modulation of rat globus pallidus excitation by nicotine acetylcholine receptors.

    PubMed

    Ríos, Alain; Barrientos, Rafael; Alatorre, Alberto; Delgado, Alfonso; Perez-Capistran, Teresa; Chuc-Meza, Eliezer; García-Ramirez, Martha; Querejeta, Enrique

    2016-02-01

    The globus pallidus (GP) coordinates information processing in the basal ganglia nuclei. The contribution of nicotinic cholinergic receptors (nAChRs) to the spiking activity of GP neurons is largely unknown. Several studies have reported that the effect of nAChRs in other nuclei depends on dopaminergic input. Via in vivo single unit extracellular recordings and intranuclear drug infusions, we analyzed the effects of local activation and blockade of nAChRs in neurons of both sham and 6-hydroxydopamine (6-OHDA)-lesioned rats. In sham rats, the local application of nicotine and edrophonium (an acetylcholinesterase inhibitor) increases GP neurons spiking rate. Local application of mecamylamine, a neuronal nicotinic cholinergic antagonist, diminishes pallidal neurons spiking rate, an effect not produced by d-tubocurarine, a peripheral nicotinic cholinergic antagonist. Moreover, mecamylamine blocks the excitatory effect evoked by nicotine and edrophonium. In 6-OHDA-lesioned rats, local infusion of nicotine does not change pallidal neurons firing rate. Our results show that there is a tonic cholinergic input to the GP that increases their spiking rate through the activation of nAChRs and that this effect depends on functional dopaminergic pathways.

  7. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    PubMed Central

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions

  8. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-03-10

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.

  9. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  10. Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells

    PubMed Central

    Yang, Xin-Jie; An, Shi-Min; Wang, Hao; Xu, Lu; Zhu, Liang; Chen, Hong-Zhuan

    2016-01-01

    Nicotine via nicotinic acetylcholine receptors (nAChRs) stimulates non-small cell lung cancer (NSCLC) cell invasion and epithelial to mesenchymal transition (EMT) which underpin the cancer metastasis. However, the receptor subtype-dependent effects of nAChRs on NSCLC cell invasion and EMT, and the signaling pathway underlying the effects remain not fully defined. We identified that nicotine induced NSCLC cell invasion, migration, and EMT; the effects were suppressed by pharmacological intervention using α7-nAChR selective antagonists or by genetic intervention using α7-nAChR knockdown via RNA inference. Meanwhile, nicotine induced activation of MEK/ERK signaling in NSCLC cells; α7-nAChR antagonism or MEK/ERK signaling pathway inhibition suppressed NSCLC cell invasion and EMT marker expression. These results indicate that nicotine induces NSCLC cell invasion, migration, and EMT; the effects are mediated by α7-nAChRs and involve MEK/ERK signaling pathway. Delineating the effect of nicotine on the NSCLC cell invasion and EMT at receptor subtype level would improve the understanding of cancer biology and offer potentials for the exploitation of selective ligands for the control of the cancer metastasis. PMID:27409670

  11. CB1 Cannabinoid Receptors Mediate Cognitive Deficits and Structural Plasticity Changes During Nicotine Withdrawal.

    PubMed

    Saravia, Rocio; Flores, África; Plaza-Zabala, Ainhoa; Busquets-Garcia, Arnau; Pastor, Antoni; de la Torre, Rafael; Di Marzo, Vincenzo; Marsicano, Giovanni; Ozaita, Andrés; Maldonado, Rafael; Berrendero, Fernando

    2017-04-01

    Tobacco withdrawal is associated with deficits in cognitive function, including attention, working memory, and episodic memory. Understanding the neurobiological mechanisms involved in these effects is crucial because cognitive deficits during nicotine withdrawal may predict relapse in humans. We investigated in mice the role of CB1 cannabinoid receptors (CB1Rs) in memory impairment and spine density changes induced by nicotine withdrawal precipitated by the nicotinic antagonist mecamylamine. Drugs acting on the endocannabinoid system and genetically modified mice were used. Memory impairment during nicotine withdrawal was blocked by the CB1R antagonist rimonabant or the genetic deletion of CB1R in forebrain gamma-aminobutyric acidergic (GABAergic) neurons (GABA-CB1R). An increase of 2-arachidonoylglycerol (2-AG), but not anandamide, was observed during nicotine withdrawal. The selective inhibitor of 2-AG biosynthesis O7460 abolished cognitive deficits of nicotine abstinence, whereas the inhibitor of 2-AG enzymatic degradation JZL184 did not produce any effect in cognitive impairment. Moreover, memory impairment was prevented by the selective mammalian target of rapamycin inhibitor temsirolimus and the protein synthesis inhibitor anisomycin. Mature dendritic spines on CA1 pyramidal hippocampal neurons decreased 4 days after the precipitation of nicotine withdrawal, when the cognitive deficits were still present. Indeed, a correlation between memory performance and mature spine density was found. Interestingly, these structural plasticity alterations were normalized in GABA-CB1R conditional knockout mice and after subchronic treatment with rimonabant. These findings underline the interest of CB1R as a target to improve cognitive performance during early nicotine withdrawal. Cognitive deficits in early abstinence are associated with increased relapse risk. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Presynaptic α7 Nicotinic Acetylcholine Receptors Enhance Hippocampal Mossy Fiber Glutamatergic Transmission via PKA Activation

    PubMed Central

    Cheng, Qing

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory. However, the mechanism of nicotine's action on cognitive function remains elusive. We performed patch-clamp recordings from hippocampal CA3 pyramidal neurons to determine the effect of nicotine on mossy fiber glutamatergic synaptic transmission. We found that nicotine in combination with NS1738, an α7 nAChR-positive allosteric modulator, strongly potentiated the amplitude of evoked EPSCs (eEPSCs), and reduced the EPSC paired-pulse ratio. The action of nicotine and NS1738 was mimicked by PNU-282987 (an α7 nAChR agonist), and was absent in α7 nAChR knock-out mice. These data indicate that activation of α7 nAChRs was both necessary and sufficient to enhance the amplitude of eEPSCs. BAPTA applied postsynaptically failed to block the action of nicotine and NS1738, suggesting again a presynaptic action of the α7 nAChRs. We also observed α7 nAChR-mediated calcium rises at mossy fiber giant terminals, indicating the presence of functional α7 nAChRs at presynaptic terminals. Furthermore, the addition of PNU-282987 enhanced action potential-dependent calcium transient at these terminals. Last, the potentiating effect of PNU-282987 on eEPSCs was abolished by inhibition of protein kinase A (PKA). Our findings indicate that activation of α7 nAChRs at presynaptic sites, via a mechanism involving PKA, plays a critical role in enhancing synaptic efficiency of hippocampal mossy fiber transmission. PMID:24381273

  13. Recent advances in understanding nicotinic receptor signaling mechanisms that regulate drug self-administration behavior

    PubMed Central

    Tuesta, Luis; Fowler, Christie D.; Kenny, Paul J.

    2011-01-01

    Tobacco smoking is one of the leading causes of disease and premature death in the United States. Nicotine is considered the major reinforcing component in tobacco smoke responsible for tobacco addiction. Nicotine acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits. The α4β2 nAChRs, particularly those located in the mesoaccumbens dopamine pathway, play a key role in regulating the reinforcing properties of nicotine. Considering that twelve mammalian nAChR subunits have been cloned, it is likely that nAChRs containing subunits in addition to, or other than, α4 and β2 also play a role in the tobacco smoking habit. Consistent with this possibility, human genome-wide association studies have shown that genetic variation in the CHRNA5-CHRNA3–CHRNB4 gene cluster located in chromosome region 15q25, which encode the α5, α3 and β4 nAChR subunits, respectively, increases vulnerability to tobacco addiction and smoking-related diseases. Most recently, α5-containing nAChRs located in the habenulo-interpeduncular tract were shown to limit intravenous nicotine self-administration behavior in rats and mice, suggesting that deficits in α5-containing nAChR signaling in the habenulo-interpeduncular tract increases vulnerability to the motivational properties of nicotine. Finally, evidence suggests that nAChRs may also play a prominent role in controlling consumption of addictive drugs other than nicotine, including cocaine, alcohol, opiates and cannabinoids. The aim of the present review is to discuss recent preclinical findings concerning the identity of the nAChR subtypes that regulate self-administration of nicotine and other drugs of abuse. PMID:21740894

  14. Functional Characterization of the α5(Asn398) Variant Associated with Risk for Nicotine Dependence in the α3β4α5 Nicotinic Receptor

    PubMed Central

    Li, Ping; McCollum, Megan; Bracamontes, John; Steinbach, Joe Henry

    2011-01-01

    Smoking is a major cause for premature death. Work aimed at identifying genetic factors that contribute to nicotine addiction has revealed several single nucleotide polymorphisms (SNPs) that are linked to smoking-related behaviors such as nicotine dependence and level of smoking. One of these SNPs leads to an aspartic acid-to-asparagine substitution in the nicotinic receptor α5 subunit at amino acid position 398 [rs16969968; α5(Asn398)]. The α5 subunit is expressed both in the brain and in the periphery. In the brain, it associates with the α4 and β2 subunits to form α4β2α5 receptors. In the periphery, the α5 subunit combines with the α3 and β4 subunits to form the major ganglionic postsynaptic nicotinic receptor subtype. The α3β4α5 receptor regulates a variety of autonomic responses such as control of cardiac rate, blood pressure, and perfusion. In this paradigm, the α5(Asn398) variant may act by regulating autonomic responses that may affect nicotine intake by humans. Here, we have investigated the effect of the α5(Asn398) variant on the function of the α3β4α5 receptor. The wild-type or variant α5 subunits were coexpressed with the α3 and β4 subunits in human embryonic kidney 293 cells. The properties of the receptors were studied using whole-cell and single-channel electrophysiology. The data indicate that the introduction of the α5(Asn398) mutation has little effect on the pharmacology of receptor activation, receptor desensitization, or single-channel properties. We propose that the effect of the α5(Asn398) variant on nicotine use is not mediated by an action on the physiological or pharmacological properties of the α3β4α5 subtype. PMID:21856741

  15. Involvement of dorsal hippocampal and medial septal nicotinic receptors in cross state-dependent memory between WIN55, 212-2 and nicotine or ethanol in mice.

    PubMed

    Alijanpour, S; Rezayof, A

    2013-08-15

    The present study examined whether nicotinic acetylcholine receptors (nAChRs) of the CA1 regions of the dorsal hippocampus and medial septum (MS) are involved in cross state-dependent memory retrieval between WIN55, 212-2 (WIN, a non-selective CB1/CB2 receptor agonist) and nicotine or ethanol. Memory retrieval was measured in one-trial step-down type passive avoidance apparatus in male adult mice. Pre-training intraperitoneal administration of WIN (0.1-1mg/kg) dose-dependently impaired memory retrieval when it was tested 24h later. Pre-test systemic administration of nicotine (0.6 and 0.7mg/kg, s.c.) or ethanol (0.5g/kg, i.p.) improved WIN-induced memory impairment, suggesting a cross state-dependent memory retrieval between the drugs. Pre-test intra-CA1 microinjection of nicotine (1 and 2μg/mouse) before systemic administration of an ineffective dose of nicotine (0.5mg/kg, s.c.) or ethanol (0.25g/kg) significantly reversed WIN-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (1 and 3μg/mouse) inhibited cross state-dependent memory between WIN and nicotine or ethanol. Moreover, pre-test intra-MS microinjection of nicotine (1 and 2μg/mouse) in combination with systemic administration of a lower dose of nicotine (0.5mg/kg), but not ethanol (0.25g/kg), improved memory impairment induced by pre-training administration of WIN. On the other hand, in the animals that received pre-training WIN and pre-test systemic administration of nicotine (0.7mg/kg), but not ethanol (0.5g/kg), pre-test intra-MS microinjection of mecamylamine (1-5μg/mouse) inhibited WIN-nicotine state-dependent memory retrieval. It should be noted that pre-test intra-CA1 or intra-MS microinjection of nicotine or mecamylamine by itself had no effect on memory retrieval and also could not reverse memory impairment induced by pre-training administration of WIN. It can be concluded that WIN and nicotine or WIN and ethanol can induce state-dependent memory retrieval. In

  16. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

    PubMed

    Deflorio, Cristina; Blanchard, Stéphane; Carisì, Maria Carla; Bohl, Delphine; Maskos, Uwe

    2017-02-01

    Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

  17. Nicotinic receptors in non-human primates: analysis of genetic and functional conservation with humans

    PubMed Central

    Shorey-Kendrick, Lyndsey E.; Ford, Matthew M.; Allen, Daicia C.; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A.; Spindel, Eliot R.

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. PMID:25661700

  18. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    PubMed Central

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  19. The hippocampus and cingulate cortex differentially mediate the effects of nicotine on learning versus on ethanol-induced learning deficits through different effects at nicotinic receptors.

    PubMed

    Gulick, Danielle; Gould, Thomas J

    2009-08-01

    The current study examined the effects of nicotine infusion into the dorsal hippocampus or anterior cingulate on fear conditioning and on ethanol-induced deficits in fear conditioning, and whether these effects involved receptor activation or inactivation. Conditioning consisted of two white noise (30 s, 85 dB)-foot-shock (2 s, 0.57 mA) pairings. Saline or ethanol was administered to C57BL/6 mice 15 min before training and saline or nicotine was administered 5 min before training or before training and testing. The ability of the high-affinity nicotinic acetylcholinergic receptor (nAChR) antagonist dihydro-beta-erythroidine (DHbetaE) to modulate the effects of ethanol and nicotine was also tested; saline or DHbetaE was administered 25 (injection) or 15 (infusion) minutes before training or before training and testing. Infusion of nicotine into the hippocampus enhanced contextual fear conditioning but had no effect on ethanol-induced learning deficits. Infusion of nicotine into the anterior cingulate ameliorated ethanol-induced deficits in contextual and cued fear conditioning but had no effect on learning in ethanol-naive mice. DHbetaE blocked the effects of nicotine on ethanol-induced deficits; interestingly, DHbetaE alone and co-administration of subthreshold doses of DHbetaE and nicotine also ameliorated ethanol-induced deficits but failed to enhance learning. Finally, DHbetaE failed to ameliorate ethanol-induced deficits in beta2 nAChR subunit knockout mice. These results suggest that nicotine acts in the hippocampus to enhance contextual learning, but acts in the cingulate to ameliorate ethanol-induced learning deficits through inactivation of high-affinity beta2 subunit-containing nAChRs.

  20. Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor

    PubMed Central

    Lipovsek, Marcela; Im, Gi Jung; Franchini, Lucía F.; Pisciottano, Francisco; Katz, Eleonora; Fuchs, Paul Albert; Elgoyhen, Ana Belén

    2012-01-01

    The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function. To establish whether mammalian α9α10 receptors have acquired distinct functional properties as a consequence of this evolutionary pressure, we compared the properties of rat and chicken recombinant and native α9α10 receptors. Our main finding in the present work is that, in contrast to the high (pCa2+/pMonovalents ∼10) Ca2+ permeability reported for rat α9α10 receptors, recombinant and native chicken α9α10 receptors have a much lower permeability (∼2) to this cation, comparable to that of neuronal α4β2 receptors. Moreover, we show that, in contrast to α10, α7 as well as α4 and β2 nicotinic subunits are under purifying selection in vertebrates, consistent with the conserved Ca2+ permeability reported across species. These results have important consequences for the activation of signaling cascades that lead to hyperpolarization of hair cells after α9α10 gating at the cholinergic–hair cell synapse. In addition, they suggest that high Ca2+ permeability of the α9α10 cholinergic nicotinic receptor might have evolved together with other features that have given the mammalian ear an expanded high-frequency sensitivity. PMID:22371598

  1. Sex Differences in Midbrain Dopamine D2-Type Receptor Availability and Association with Nicotine Dependence.

    PubMed

    Okita, Kyoji; Petersen, Nicole; Robertson, Chelsea L; Dean, Andy C; Mandelkern, Mark A; London, Edythe D

    2016-11-01

    Women differ from men in smoking-related behaviors, among them a greater difficulty in quitting smoking. Unlike female smokers, male smokers have lower striatal dopamine D2-type receptor availability (binding potential, BPND) than nonsmokers and exhibit greater smoking-induced striatal dopamine release. Because dopamine D2-type autoreceptors in the midbrain influence striatal dopamine release, a function that has been linked to addiction, we tested for sex differences in midbrain dopamine D2-type receptor BPND and in relationships between midbrain BPND, nicotine dependence and striatal dopamine D2-type receptor BPND. Positron emission tomography was used with [(18)F]fallypride to measure BPND in a midbrain region, encompassing the substantia nigra and ventral tegmental area, in 18 daily smokers (7 women, 11 men) and 19 nonsmokers (10 women, 9 men). A significant sex-by-group interaction reflected greater midbrain BPND in female but not male smokers than in corresponding nonsmokers (F1, 32=5.089, p=0.03). Midbrain BPND was positively correlated with BPND in the caudate nucleus and putamen in nonsmokers and female smokers but not in male smokers and with nicotine dependence in female but not in male smokers. Striatal BPND was correlated negatively with nicotine dependence and smoking exposure. These findings extend observations on dopamine D2-type receptors in smokers and suggest a sex differe