Science.gov

Sample records for nicotinic receptor ion

  1. Modelling and simulation of ion channels: applications to the nicotinic acetylcholine receptor.

    PubMed

    Sansom, M S; Adcock, C; Smith, G R

    1998-01-01

    Molecular dynamics simulations with experimentally derived restraints have been used to develop atomic models of M2 helix bundles forming the pore-lining domains of the nicotinic acetylcholine receptor and related ligand-gated ion channels. M2 helix bundles have been used in microscopic simulations of the dynamics and energetics of water and ions within an ion channel. Translational and rotational motion of water are restricted within the pore, and water dipoles are aligned relative to the pore axis by the surrounding helix dipoles. Potential energy profiles for translation of a Na+ ion along the pore suggest that the protein and water components of the interaction energy exert an opposing effect on the ion, resulting in a relatively flat profile which favors cation permeation. Empirical conductance calculations based on a pore radius profile suggest that the M2 helix model is consistent with a single channel conductance of ca. 50 pS. Continuum electrostatics calculations indicate that a ring of glutamate residues at the cytoplasmic mouth of the alpha 7 nicotinic receptor M2 helix bundle may not be fully ionized. A simplified model of the remainder of the channel protein when added to the M2 helix bundle plays a significant role in enhancing the ion selectivity of the channel.

  2. The Nicotinic Acetylcholine Receptor: The Founding Father of the Pentameric Ligand-gated Ion Channel Superfamily*

    PubMed Central

    Changeux, Jean-Pierre

    2012-01-01

    A critical event in the history of biological chemistry was the chemical identification of the first neurotransmitter receptor, the nicotinic acetylcholine receptor. Disciplines as diverse as electrophysiology, pharmacology, and biochemistry joined together in a unified and rational manner with the common goal of successfully identifying the molecular device that converts a chemical signal into an electrical one in the nervous system. The nicotinic receptor has become the founding father of a broad family of pentameric membrane receptors, paving the way for their identification, including that of the GABAA receptors. PMID:23038257

  3. Cross-reactivity of acid-sensing ion channel and Na+–H+ exchanger antagonists with nicotinic acetylcholine receptors

    PubMed Central

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na+–H+ exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation. PMID:21911609

  4. Nicotinic receptors, memory, and hippocampus.

    PubMed

    Kutlu, Munir Gunes; Gould, Thomas J

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) modulate the neurobiological processes underlying hippocampal learning and memory. In addition, nicotine's ability to desensitize and upregulate certain nAChRs may alter hippocampus-dependent memory processes. Numerous studies have examined the effects of nicotine on hippocampus-dependent learning, as well as the roles of low- and high-affinity nAChRs in mediating nicotine's effects on hippocampus-dependent learning and memory. These studies suggested that while acute nicotine generally acts as a cognitive enhancer for hippocampus-dependent learning, withdrawal from chronic nicotine results in deficits in hippocampus-dependent memory. Furthermore, these studies demonstrated that low- and high-affinity nAChRs functionally differ in their involvement in nicotine's effects on hippocampus-dependent learning. In the present chapter, we reviewed studies using systemic or local injections of acute or chronic nicotine, nAChR subunit agonists or antagonists; genetically modified mice; and molecular biological techniques to characterize the effects of nicotine on hippocampus-dependent learning.

  5. Cannabinoid receptor stimulation increases motivation for nicotine and nicotine seeking.

    PubMed

    Gamaleddin, Islam; Wertheim, Carrie; Zhu, Andy Z X; Coen, Kathleen M; Vemuri, Kiran; Makryannis, Alex; Goldberg, Steven R; Le Foll, Bernard

    2012-01-01

    The cannabinoid system appears to play a critical facilitative role in mediating the reinforcing effects of nicotine and relapse to nicotine-seeking behaviour in abstinent subjects based on the actions of cannabinoid (CB) receptor antagonists. However, the effects of CB receptor stimulation on nicotine self-administration and reinstatement have not been systematically studied. Here, we studied the effects of WIN 55,212-2, a CB1/2 agonist, on intravenous nicotine self-administration under fixed-ratio (FR) and progressive-ratio (PR) schedules of reinforcement in rats. The effects of WIN 55,212-2 on responding for food under similar schedules were also studied. In addition, the effects of WIN 55,212-2 on nicotine- and cue-induced reinstatement of nicotine seeking were also studied, as well as the effects of WIN 55,212-2 on nicotine discrimination. WIN 55,212-2 decreased nicotine self-administration under the FR schedule. However, co-administration of WIN 55,212-2 with nicotine decreased responding for food, which suggests that this effect was non-selective. In contrast, WIN 55,212-2 increased both nicotine self-administration and responding for food under the PR schedule, produced dose-dependent reinstatement of nicotine seeking, and enhanced the reinstatement effects of nicotine-associated cues. Some of these effects were reversed by the CB1 antagonist rimonabant, but not by the CB2 antagonist AM630. In the drug discrimination tests between saline and 0.4 mg/kg nicotine, WIN 55,212-2 produced no nicotine-like discriminative effects but significantly potentiated discriminative stimulus effects of nicotine at the low dose through a CB1-receptor-dependent mechanism. These findings indicate that cannabinoid CB1-receptor stimulation increases the reinforcing effects of nicotine and precipitates relapse to nicotine-seeking behaviour in abstinent subjects. Thus, modulating CB1-receptor signalling might have therapeutic value for treating nicotine dependence.

  6. Neuronal Nicotinic Acetylcholine Receptors and Epilepsy

    PubMed Central

    Bertrand, Daniel

    2002-01-01

    The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the α4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function. PMID:15309115

  7. Direct action and modulating effect of (+)- and (-)-nicotine on ion channels expressed in trigeminal sensory neurons.

    PubMed

    Schreiner, Benjamin S P; Lehmann, Ramona; Thiel, Ulrike; Ziemba, Paul M; Beltrán, Leopoldo R; Sherkheli, Muhammad A; Jeanbourquin, Philippe; Hugi, Alain; Werner, Markus; Gisselmann, Günter; Hatt, Hanns

    2014-04-05

    Nicotine sensory perception is generally thought to be mediated by nicotinic acetylcholine (nACh) receptors. However, recent data strongly support the idea that other receptors (e.g., transient receptor potential A1 channel, TRPA1) and other pathways contribute to the detection mechanisms underlying the olfactory and trigeminal cell response to nicotine flavor. This is in accordance with the reported ability of humans to discriminate between (+)- and (-)- nicotine enantiomers. To get a more detailed understanding of the molecular and cellular basis underlying the sensory perception of nicotine, we studied the activity of (+)- and (-)-nicotine on cultured murine trigeminal sensory neurons and on a range of heterologously expressed receptors. The human TRPA1 channel is activated by (-)-nicotine. In this work, we show that (+)-nicotine is also an activator of this channel. Pharmacological experiments using nicotinic acetylcholine receptors and transient receptor potential blockers revealed that trigeminal neurons express one or more unidentified receptors that are sensitive to (+)- and/or (-)-nicotine. Results also indicate that the presence of extracellular calcium ions is required to elicit trigeminal neuron responses to (+)- and (-)-nicotine. Results also show that both (+)-nicotine and (-)-nicotine can block 5-hydroxytryptamine type 3 (5-HT3) receptor-mediated responses in recombinant expression systems and in cultured trigeminal neurons expressing 5-HT3 receptors. Our investigations broaden the spectra of receptors that are targets for nicotine enantiomers and give new insights into the physiological role of nicotine.

  8. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: Dual role in nicotine addiction and lung cancer

    PubMed Central

    Improgo, Ma. Reina D.; Scofield, Michael D.; Tapper, Andrew R.; Gardner, Paul D.

    2010-01-01

    More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer. PMID:20685379

  9. Neuronal nicotinic acetylcholine receptors are modulated by zinc.

    PubMed

    Vázquez-Gómez, Elizabeth; García-Colunga, Jesús

    2009-01-01

    It is known that zinc modulates nicotinic acetylcholine receptors (nAChRs). Here, we studied the effects of zinc on neuronal alpha4beta4 nAChRs, expressed in Xenopus oocytes and activated by nicotine. Membrane ion currents elicited by nicotine (10 nM to 100 microM) were enhanced by zinc (100 microM). Maximal zinc potentiation of the nicotine-activated current (2530%) occurred at 50 nM nicotine, and potentiation gradually decreased as the nicotine concentration increased. The EC(50) and IC(50) for the nicotine-activated current were 639 nM and 14.7 microM nicotine, respectively. Both parameters decreased in the presence of zinc to 160 nM and 4.6 microM, respectively, probably due to an increase of sensitivity of nAChRs for nicotine. We used different concentrations and durations of exposure to nicotine, due to desensitization of nAChRs directly depends on both these factors. With 500 nM nicotine and 20 min washing periods between nicotine applications, zinc potentiation remained constant, 901% for 2 min and 813% for 20 min of nicotine exposure. With continuous application of nicotine, zinc potentiation decreased as the time of nicotine exposure increased, 721% for 2 min and 254% for 48 min of nicotine exposure. Our results indicate that zinc-potentiating effects on alpha4beta4 nAChRs strongly depend on both concentration and time of exposure to nicotine, suggesting that zinc potentiation depends on the degree of desensitization.

  10. Nitrosamines as nicotinic receptor ligands

    PubMed Central

    Schuller, Hildegard M.

    2007-01-01

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (α7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the α7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the a7nAChR and caused influx of Ca2+, activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the α7nAChR was enhanced when cells were maintained in an environment of 10–15% CO2 similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the α7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  11. Nitrosamines as nicotinic receptor ligands.

    PubMed

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention.

  12. Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

    PubMed Central

    Lee, Byung-Hwan; Choi, Sun-Hye; Kim, Hyeon-Joong; Jung, Seok-Won; Hwang, Sung-Hee; Pyo, Mi-Kyung; Rhim, Hyewhon; Kim, Hyoung-Chun; Kim, Ho-Kyoung; Lee, Sang-Mok; Nah, Seung-Yeol

    2016-01-01

    Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance α7 nicotinic acetylcholine receptor (α7 nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of α7 nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current (IACh) in Xenopus oocytes expressing the α7 nAChR. IACh was measured with a two-electrode voltage clamp technique. In oocytes injected with α7 nAChR copy RNA, quercetin enhanced IACh, whereas quercetin glycosides inhibited IACh. Quercetin glycosides mediated an inhibition of IACh, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of IACh inhibition by quercetin glycosides was Rutin≥Rham1>Rham2. Quercetin glycosides-mediated IACh enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated IACh inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated α7 nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the α7 nAChR in a differential manner. PMID:27098860

  13. Nicotine-morphine interactions at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors.

    PubMed

    Talka, Reeta; Salminen, Outi; Whiteaker, Paul; Lukas, Ronald J; Tuominen, Raimo K

    2013-02-15

    Nicotine and opioids share several behavioral and rewarding properties. Although both opioids and nicotine have their own specific mechanism of action, there is empirical and experimental evidence of interactions between these drugs. We studied receptor-level interactions of nicotine and morphine at α4β2, α7 and α3(⁎) nicotinic acetylcholine receptors. [(3)H]epibatidine displacement was used to determine if morphine binds competitively to nicotinic acetylcholine receptors. Functional interactions of morphine and nicotine were studied with calcium fluorometry and (86)Rb(+) efflux assays. Morphine displaced [(3)H]epibatidine from nicotinic agonist binding sites in all cell lines studied. The Ki values for morphine were 13.2μM in SH-EP1-hα4β2 cells, 0.16μM and 126μM in SH-SY5Y cells and 43.7μM in SH-EP1-hα7 cells. In SH-EP1-hα4β2 cells expressing α4β2 nicotinic acetylcholine receptors, morphine acted as a partial agonist of (86)Rb(+) efflux comparable to cytisine (with EC50 values of 53.3μM for morphine and 5.38μM for cytisine). The effect of morphine was attenuated concentration-dependently by the nicotinic antagonist mecamylamine. In the SH-SY5Y cell line expressing several subtypes of nicotinic acetylcholine receptors morphine had an inhibitory effect on nicotine induced (86)Rb(+) ion efflux mediated by α3(⁎) nicotinic acetylcholine receptors. These results suggest that morphine acts as a partial agonist at α4β2 nicotinic acetylcholine receptors and as a weak antagonist at α3(⁎) nicotinic acetylcholine receptors.

  14. [Desensitization of the nicotinic acetylcholine receptor].

    PubMed

    Quiñonez, M; Rojas, L

    1994-01-01

    In biological membranes, ionic channels act speeding up ion movements. Each ionic channel is excited by a specific stimulus (i.e. electric, mechanical, chemical, etc.). Chemically activated ionic channels (CAIC), such as the nicotinic acetylcholine receptor (nAChR), suffer desensitization when the receptor site is still occupied by the agonist molecule. The desensitized CAIC is a non functional channel state regarded as a particular case of receptors rundown. CAIC desensitization only involve reduced activity and not their membrane elimination. Desensitization is important to control synaptic transmission and the development of the nervous system. In this review we discuss results related to its production, modulation and some aspects associated to models that consider it. Finally, an approach combining molecular biology and electrophysiology techniques to understand desensitization and its importance in biological systems is presented.

  15. [Nicotine effects on mitochondria membrane potential: participation of nicotinic acetylcholine receptors].

    PubMed

    Gergalova, G L; Skok, M V

    2011-01-01

    The effect of nicotine on the mouse liver mitochondria was studied by fluorescent flow cytometry. Mice consumed nicotine during 65 days; alternatively, nicotine was added to isolated mitochondria. Mitochondria of nicotine-treated mice had significantly lower basic levels of membrane potential and granularity as compared to those of the control group. Pre-incubation of the isolated mitochondria with nicotine prevented from dissipation of their membrane potential stimulated with 0.8 microM CaCl2 depending on the dose, and this effect was strengthened by the antagonist of alpha7 nicotinic receptors (alpha7 nAChR) methyllicaconitine. Mitochondria of mice intravenously injected with the antibodies against alpha7 nAChR demonstrated lower levels of membrane potential. Introduction of nicotine, choline, acetylcholine or synthetic alpha7 nAChR agonist PNU 282987 into the incubation medium inhibited Ca2+ accumulation in mitochondria, although the doses of agonists were too low to activate the alpha7 nAChR ion channel. It is concluded that nicotine consumption worsens the functional state of mitochondria by affecting their membrane potential and granularity, and this effect, at least in part, is mediated by alpha7 nAChR desensitization.

  16. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    PubMed

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  17. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  18. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    PubMed

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  19. Cross-reactivity of acid-sensing ion channel and Na⁺-H⁺ exchanger antagonists with nicotinic acetylcholine receptors.

    PubMed

    Santos-Torres, Julio; Ślimak, Marta A; Auer, Sebastian; Ibañez-Tallon, Inés

    2011-11-01

    Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.

  20. α7 nicotinic ACh receptors as a ligand-gated source of Ca2+ ions: the search for a Ca2+ optimum

    PubMed Central

    Uteshev, Victor V.

    2013-01-01

    The spatiotemporal distribution of cytosolic Ca2+ ions is a key determinant of neuronal behavior and survival. Distinct sources of Ca2+ ions including ligand- and voltage-gated Ca2+ channels contribute to intracellular Ca2+ homeostasis. Many normal physiological and therapeutic neuronal functions are Ca2+-dependent, however an excess of cytosolic Ca2+ or a lack of the appropriate balance between Ca2+ entry and clearance may destroy cellular integrity and cause cellular death. Therefore, the existence of optimal spatiotemporal patterns of cytosolic Ca2+ elevations and thus, optimal activation of ligand- and voltage-gated Ca2+ ion channels are postulated to benefit neuronal function and survival. Alpha7 nicotinic acetylcholine receptors (nAChRs) are highly permeable to Ca2+ ions and play an important role in modulation of neurotransmitter release, gene expression and neuroprotection in a variety of neuronal and non-neuronal cells. In this review, the focus is placed on α7 nAChR-mediated currents and Ca2+ influx and how this source of Ca2+ entry compares to NMDA receptors in supporting cytosolic Ca2+ homeostasis, neuronal function and survival. PMID:22453962

  1. Nicotine recruits glutamate receptors to postsynaptic sites.

    PubMed

    Duan, Jing-Jing; Lozada, Adrian F; Gou, Chen-Yu; Xu, Jing; Chen, Yuan; Berg, Darwin K

    2015-09-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.

  2. Nicotine Recruits Glutamate Receptors to Postsynaptic Sites

    PubMed Central

    Duan, Jing-jing; Lozada, Adrian F.; Gou, Chen-yu; Xu, Jing; Chen, Yuan; Berg, Darwin K.

    2015-01-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors. PMID:26365992

  3. CHARACTERIZATION OF NICOTINE ACETYLCHOLINE RECEPTOR SUBUNITS IN THE COCKROACH Periplaneta americana MUSHROOM BODIES REVEALS A STRONG EXPRESSION OF β1 SUBUNIT: INVOLVEMENT IN NICOTINE-INDUCED CURRENTS.

    PubMed

    Taillebois, Emiliane; Thany, Steeve H

    2016-09-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that β1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against β1 subunit revealed that inhibition of β1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 μM α-bungarotoxin completely inhibited nicotine currents whereas 10 μM d-tubocurarine had a partial effect demonstrating that β1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.

  4. X-ray structure of the human α4β2 nicotinic receptor

    PubMed Central

    Morales-Perez, Claudio L.; Noviello, Colleen M.; Hibbs, Ryan E.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand gated ion channels that mediate fast chemical neurotransmission at the neuromuscular junction and play diverse signaling roles in the central nervous system. The nicotinic receptor has been a model system for cell surface receptors, and specifically for ligand-gated ion channels, for well over a century1,2. In addition to the receptors’ prominent roles in the development of the fields of pharmacology and neurobiology, nicotinic receptors are important therapeutic targets for neuromuscular disease, addiction, epilepsy, and for neuromuscular blocking agents used during surgery2–4. The overall architecture of the receptor was described in landmark studies of the nicotinic receptor isolated from the electric organ of Torpedo marmorata5. Structures of a soluble ligand binding domain have provided atomic-scale insights into receptor-ligand interactions6, while high-resolution structures of other members of the pentameric receptor superfamily provide touchstones for an emerging allosteric gating mechanism7. All available high-resolution structures are of homopentameric receptors. However, the vast majority of pentameric receptors (called Cys-loop receptors in eukaryotes) present physiologically are heteromeric. Here we present the X-ray crystallographic structure of the human α4β2 nicotinic receptor, the most abundant nicotinic subtype in the brain. This structure provides insights into the architectural principles governing ligand recognition, heteromer assembly, ion permeation and desensitization in this prototypical receptor class. PMID:27698419

  5. Nicotine effect on cardiovascular system and ion channels.

    PubMed

    Hanna, Salma Toma

    2006-03-01

    Smoking is a leading cause of cardiovascular disease, hypertension, myocardial infarction, and stroke. Nicotine is one of the components of cigarette smoke. Nicotine effects on the cardiovascular system reflect the activity of the nicotine receptors centrally and on peripheral autonomic ganglia. It has been found that cigarette smoke extract-induced contraction of porcine coronary arteries is related to superoxide anion-mediated degradation of nitric oxide. Treatment of rabbit aortas with an oxygen free radicals scavenger attenuated cigarette smoke impairment of arterial relaxation. Treatment of smokers with vitamin C, an antioxidant, improved impaired endothelium-dependent reactivity of large peripheral arteries. Thus it appears that chronic smoking and acute exposure to cigarette smoke extract may alter endothelium-dependent reactivity via the production of oxygen derived free radicals. This review discusses the effects of nicotine on resistance arterioles, compliance arteries, smooth muscle cells, and ion channels in the cardiovascular system. We discuss studies performed on humans, nicotine-exposed animals, and cell cultures yielding varying and inconsistent results that may be due to differences in experimental design, species, and the dose of exposure. Nicotine exposure appears to induce a combination of free radical production, vascular wall adhesion, and a reduction of fibrinolytic activity in the plasma.

  6. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    PubMed Central

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R.; Luo, Xingguang

    2016-01-01

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD. PMID:27827986

  7. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence.

    PubMed

    Zuo, Lingjun; Garcia-Milian, Rolando; Guo, Xiaoyun; Zhong, Chunlong; Tan, Yunlong; Wang, Zhiren; Wang, Jijun; Wang, Xiaoping; Kang, Longli; Lu, Lu; Chen, Xiangning; Li, Chiang-Shan R; Luo, Xingguang

    2016-11-07

    It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs) play important roles in nicotine dependence (ND) and influence the number of cigarettes smoked per day (CPD) in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs) and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4). These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4,CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  8. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  9. Neuronal nicotinic acetylcholine receptors: neuroplastic changes underlying alcohol and nicotine addictions

    PubMed Central

    Feduccia, Allison A.; Chatterjee, Susmita; Bartlett, Selena E.

    2012-01-01

    Addictive drugs can activate systems involved in normal reward-related learning, creating long-lasting memories of the drug's reinforcing effects and the environmental cues surrounding the experience. These memories significantly contribute to the maintenance of compulsive drug use as well as cue-induced relapse which can occur even after long periods of abstinence. Synaptic plasticity is thought to be a prominent molecular mechanism underlying drug-induced learning and memories. Ethanol and nicotine are both widely abused drugs that share a common molecular target in the brain, the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are ligand-gated ion channels that are vastly distributed throughout the brain and play a key role in synaptic neurotransmission. In this review, we will delineate the role of nAChRs in the development of ethanol and nicotine addiction. We will characterize both ethanol and nicotine's effects on nAChR-mediated synaptic transmission and plasticity in several key brain areas that are important for addiction. Finally, we will discuss some of the behavioral outcomes of drug-induced synaptic plasticity in animal models. An understanding of the molecular and cellular changes that occur following administration of ethanol and nicotine will lead to better therapeutic strategies. PMID:22876217

  10. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  11. Nicotinic Receptor Polymorphism in Lung Cancer

    DTIC Science & Technology

    2013-10-01

    bronchial cells to the tobacco nitrosamine -induced carcinogenic transformation of human bronchial cells [1-2]. 15. SUBJECT TERMS nicotinic receptor...cells to the tobacco nitrosamine -induced carcinogenic transformation of human bronchial cells [1-2]. Body According to the Statement of Works

  12. Neuronal Nicotinic Acetylcholine Receptor Structure and Function and Response to Nicotine.

    PubMed

    Dani, John A

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) belong to the "Cys-loop" superfamily of ligand-gated ion channels that includes GABAA, glycine, and serotonin (5-HT3) receptors. There are 16 homologous mammalian nAChR subunits encoded by a multigene family. These subunits combine to form many different nAChR subtypes with various expression patterns, diverse functional properties, and differing pharmacological characteristics. Because cholinergic innervation is pervasive and nAChR expression is extremely broad, practically every area of the brain is impinged upon by nicotinic mechanisms. This review briefly examines the structural and functional properties of the receptor/channel complex itself. The review also summarizes activation and desensitization of nAChRs by the low nicotine concentrations obtained from tobacco. Knowledge of the three-dimensional structure and the structural characteristics of channel gating has reached an advanced stage. Likewise, the basic functional properties of the channel also are reasonably well understood. It is these receptor/channel properties that underlie the participation of nAChRs in nearly every anatomical region of the mammalian brain.

  13. A model for the nicotinic acetylcholine receptor ion channel: structure of the transmembrane M2 segments as a pentameric assembly in a lipid bilayer

    NASA Astrophysics Data System (ADS)

    Saiz, Leonor; Klein, Michael L.

    2003-03-01

    The nicotinic acetylcholine receptor (nAChR) is the neurotransmitter gated ion channel responsible for the fast propagation of electrical signals between cells at the nerve-muscle synapse and neurons. The current model for the pore region of the nAChR consists of a bundle of five M2 alpha helices, which is supported by recent solution and solid-state NMR spectroscopy experiments on micelle samples and oriented (DMPC) bilayers. In order to investigate the structure and properties of pore forming region of a simple model for the nAChR, we have performed a molecular dynamics simulation study of the homo-pentameric bundle of M2 peptides in a DMPC lipid bilayer at similar conditions to those of the NMR experiments. During the nanosecond time scale investigated, the peptide bundle adopts a left-handed supercoil structure and the calculated average tilt of the helices agrees well with the recent NMR data. The water filled bundle displays a funnel-like structure. We focuss on those aspects of the structure and dynamics relevant to the function of the channel.

  14. Drug-dependent behaviors and nicotinic acetylcholine receptor expressions in Caenorhabditis elegans following chronic nicotine exposure.

    PubMed

    Polli, Joseph R; Dobbins, Dorothy L; Kobet, Robert A; Farwell, Mary A; Zhang, Baohong; Lee, Myon-Hee; Pan, Xiaoping

    2015-03-01

    Nicotine, the major psychoactive compound in tobacco, targets nicotinic acetylcholine receptors (nAChRs) and results in drug dependence. The nematode Caenorhabditis elegans' (C. elegans) genome encodes conserved and extensive nicotinic receptor subunits, representing a useful system to investigate nicotine-induced nAChR expressions in the context of drug dependence. However, the in vivo expression pattern of nAChR genes under chronic nicotine exposure has not been fully investigated. To define the role of nAChR genes involved in nicotine-induced locomotion changes and the development of tolerance to these effects, we characterized the locomotion behavior combining the use of two systems: the Worm Tracker hardware and the WormLab software. Our results indicate that the combined system is an advantageous alternative to define drug-dependent locomotion behavior in C. elegans. Chronic (24-h dosing) nicotine exposure at 6.17 and 61.7μM induced nicotine-dependent behaviors, including drug stimulation, tolerance/adaption, and withdrawal responses. Specifically, the movement speed of naïve worms on nicotine-containing environments was significantly higher than on nicotine-free environments, suggesting locomotion stimulation by nicotine. In contrast, the 24-h 6.17μM nicotine-treated worms exhibited significantly higher speeds on nicotine-free plates than on nicotine-containing plates. Furthermore significantly increased locomotion behavior during nicotine cessation was observed in worms treated with a higher nicotine concentration of 61.7μM. The relatively low locomotion speed of nicotine-treated worms on nicotine-containing environments also indicates adaption/tolerance of worms to nicotine following chronic nicotine exposure. In addition, this study provides useful information regarding the comprehensive in vivo expression profile of the 28 "core" nAChRs following different dosages of chronic nicotine treatments. Eleven genes (lev-1, acr-6, acr-7, acr-11, lev-8, acr

  15. New quinoline derivatives as nicotinic receptor modulators.

    PubMed

    Manetti, Dina; Bellucci, Cristina; Dei, Silvia; Teodori, Elisabetta; Varani, Katia; Spirova, Ekaterina; Kudryavtsev, Denis; Shelukhina, Irina; Tsetlin, Victor; Romanelli, Maria Novella

    2016-03-03

    As a continuation of previous work on quinoline derivatives, which showed some preference (2-3 times) for the α7 with respect to α4β2 acetylcholine nicotinic receptors (nAChRs), we synthesized a series of novel azabicyclic or diazabicyclic compounds carrying a quinoline or isoquinoline ring, with the aim of searching for more selective α7 nAChR compounds. Radioligand binding studies on α7* and α4β2* nAChRs (rat brain homogenate) revealed one compound (7) with a 2-fold higher affinity for the α4β2*-subtype, and four compounds (11, 13, 14 and 16) with at least 3-fold higher affinity for α7* nAChR. The most promising was 11, showing Ki∼100 nM and over 10-fold selectivity for α7* nAChR. Compounds 7, 11, 13 and 16 at 50 μM suppressed ion currents induced in the rat α4β2 nAChR and the chimeric nAChR composed of the ligand-binding domain of the chick α7 and transmembrane domain of the α1 glycine receptor, expressed in Xenopus oocytes. Calcium imaging experiments on the human α7 nAChR expressed in the Neuro2a cells and potentiated by PNU-120596 confirmed the antagonistic activity for 7; on the contrary, 11, 13 and 16 were agonists with the EC50 values in the range of 1.0-1.6 μM. Thus, the introduced modifications allowed us to enhance the selectivity of quinolines towards α7 nAChR and to get novel compounds with agonistic activity.

  16. Nicotine trapping causes the persistent desensitization of alpha4beta2 nicotinic receptors expressed in oocytes.

    PubMed

    Jia, Li; Flotildes, Karen; Li, Maureen; Cohen, Bruce N

    2003-02-01

    To determine whether prolonged nicotine exposure persistently inactivates rat alpha4beta2 nicotinic receptors expressed in Xenopus oocytes, we measured the voltage-clamped alpha4beta2 response to acetylcholine (ACh) before and 24 h after, 1-h or 12-h incubations in 10 microm nicotine. A 12-h incubation in 10 microm nicotine depressed the alpha4beta2 ACh response for 24 h without affecting total or surface alpha4beta2 expression. To determine whether oocyte-mediated nicotine release caused this depression, we co-incubated an alpha4beta2-expressing oocyte with an un-injected one (pre-incubated in 10 microm nicotine for 12 h) for 24 h and measured the change in the alpha4beta2 ACh response. The response decreased by the same factor after the co-incubation as it did after a 12-h incubation in 10 microm nicotine and a 24-h incubation in nicotine-free media. Thus, oocyte-mediated nicotine release caused the persistent desensitization we observed after a 12-h incubation in 10 microm nicotine. Consistent with this result, measurements of [3H]nicotine release show that oocytes release enough nicotine into the wash media to desensitize alpha4beta2 receptors and that prolonged incubation in 300 microm ACh (which cannot readily cross the membrane or accumulate in acidic vesicles) did not persistently depress the alpha4beta2 response.

  17. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  18. Nicotinic acetylcholine receptors: upregulation, age-related effects and associations with drug use

    PubMed Central

    Melroy-Greif, W. E.; Stitzel, J. A.; Ehringer, M. A.

    2016-01-01

    Nicotinic acetylcholine receptors are ligand-gated ion channels that exogenously bind nicotine. Nicotine produces rewarding effects by interacting with these receptors in the brain’s reward system. Unlike other receptors, chronic stimulation by an agonist induces an upregulation of receptor number that is not due to increased gene expression in adults; while upregulation also occurs during development and adolescence there have been some opposing findings regarding a change in corresponding gene expression. These receptors have also been well studied with regard to human genetic associations and, based on evidence suggesting shared genetic liabilities between substance use disorders, numerous studies have pointed to a role for this system in comorbid drug use. This review will focus on upregulation of these receptors in adulthood, adolescence and development, as well as the findings from human genetic association studies which point to different roles for these receptors in risk for initiation and continuation of drug use. PMID:26351737

  19. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  20. Nicotinic acetylcholine receptor from chick optic lobe.

    PubMed Central

    Norman, R I; Mehraban, F; Barnard, E A; Dolly, J O

    1982-01-01

    An alpha-bungarotoxin-sensitive nicotinic cholinergic receptor from chick optic lobe has been completely purified. Its standard sedimentation coefficient is 9.1 S. The value near 12 S reported for the related component from other brain regions can be reproduced when the initial extraction is by Triton X-100 (rather than Lubrol PX), but other protein is then complexed with it. A single subunit of apparent molecular weight 54,000 is detected, and this subunit is specifically labeled by bromo-[3H]acetylcholine, but only after disulfide reduction. The same size subunit likewise is labeled in the protein (purified similarly) from the rest of the chick brain which can also bind alpha-bungarotoxin and nicotinic ligands. Immunological crossreactivity is demonstrated between both of these proteins with an antiserum to pure acetylcholine receptor from skeletal muscle. The acetylcholine receptor from chick optic lobe and the alpha-bungarotoxin-binding protein from the rest of the brain appear similar or identical by a series of criteria and are related to (but with differences from) peripheral acetylcholine receptors. Images PMID:6175967

  1. Nicotine and Nicotinic Receptor Drugs: Potential for Parkinson's Disease and Drug-Induced Movement Disorders.

    PubMed

    Quik, Maryka; Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A

    2015-01-01

    Parkinson's disease is a progressive neurodegenerative disorder associated with tremor, rigidity, and bradykinesia, as well as nonmotor symptoms including autonomic impairments, olfactory dysfunction, sleep disturbances, depression, and dementia. Although the major neurological deficit is a loss of nigrostriatal dopaminergic neurons, multiple neurotransmitters systems are compromised in Parkinson's disease. Consistent with this observation, dopamine replacement therapy dramatically improves Parkinson's disease motor symptoms. Additionally, drugs targeting the serotonergic, glutamatergic, adenosine, and other neurotransmitter systems may be beneficial. Recent evidence also indicates that nicotinic cholinergic drugs may be useful for the management of Parkinson's disease. This possibility initially arose from the results of epidemiological studies, which showed that smoking was associated with a decreased incidence of Parkinson's disease, an effect mediated in part by the nicotine in smoke. Further evidence for this idea stemmed from preclinical studies which showed that nicotine administration reduced nigrostriatal damage in parkinsonian rodents and monkeys. In addition to a potential neuroprotective role, emerging work indicates that nicotinic receptor drugs improve the abnormal involuntary movements or dyskinesias that arise as a side effect of l-dopa treatment, the gold standard therapy for Parkinson's disease. Both nicotine and nicotinic receptor drugs reduced l-dopa-induced dyskinesias by over 50% in parkinsonian rodent and monkey models. Notably, nicotine also attenuated the abnormal involuntary movements or tardive dyskinesias that arise with antipsychotic treatment. These observations, coupled with reports that nicotinic receptor drugs have procognitive and antidepressant effects, suggest that central nervous system (CNS) nicotinic receptors may represent useful targets for the treatment of movement disorders.

  2. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  3. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  4. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  5. Nicotine Dependence Reveals Distinct Responses from Neurons and Their Resident Nicotinic Receptors in Medial Habenula

    PubMed Central

    Shih, Pei-Yu; McIntosh, J. Michael

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are the molecular target of nicotine. nAChRs in the medial habenula (MHb) have recently been shown to play a role in nicotine dependence, but it is not clear which nAChR subtypes or MHb neuron types are most important. To identify MHb nAChRs and/or cell types that play a role in nicotine dependence, we studied these receptors and cells with brain slice electrophysiology using both acute and chronic nicotine application. Cells in the ventroinferior (MHbVI) and ventrolateral MHb (MHbVL) subregions expressed functional nAChRs with different pharmacology. Further, application of nicotine to cells in these subregions led to different action potential firing patterns. The latter result was correlated with a differing ability of nicotine to induce nAChR desensitization. Chronic nicotine caused functional upregulation of nAChRs selectively in MHbVI cells, but did not change nAChR function in MHbVL. Importantly, firing responses were also differentially altered in these subregions following chronic nicotine. MHbVI neurons treated chronically with nicotine exhibited enhanced basal pacemaker firing but a blunted nicotine-induced firing response. MHbVL neurons did not change their firing properties in response to chronic nicotine. Together, these results suggest that acute and chronic nicotine differentially affect nAChR function and output of cells in MHb subregions. Because the MHb extensively innervates the interpeduncular nucleus, an area critical for both affective and somatic signs of withdrawal, these results could reflect some of the neurophysiological changes thought to occur in the MHb to the interpeduncular nucleus circuit in human smokers. PMID:26429939

  6. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  7. Nicotine enhancement and reinforcer devaluation: Interaction with opioid receptors.

    PubMed

    Kirshenbaum, Ari P; Suhaka, Jesse A; Phillips, Jessie L; Voltolini de Souza Pinto, Maiary

    In rats, nicotine enhances responding maintained by non-pharmacological reinforcers, and discontinuation of nicotine devalues those same reinforcers. The goal of this study was to assess the interaction of nicotine and opioid receptors and to evaluate the degree to which nicotine enhancement and nicotine-induced devaluation are related to opioid activation. Nicotine (0.4mg/kg), or nicotine plus naloxone (0.3 or 3.0mg/kg), was delivered to rats prior to progressive ratio (PR) schedule sessions in which sucrose was used as a reinforcer. PR-schedule responding was assessed during ten daily sessions of drug delivery, and for three post-dosing days/sessions. Control groups for this investigation included a saline-only condition, and naloxone-only (0.3 or 3.0mg/kg) conditions. When administered in conjunction with nicotine, both naloxone doses attenuated nicotine enhancement of the sucrose reinforcer, and the combination of the larger dose of naloxone (3.0mg/kg) with nicotine produced significant impairments in sucrose reinforced responding. When administered alone, neither dose of naloxone (0.3 & 3.0mg/kg) significantly altered responding in comparison to saline. Furthermore, when dosing was discontinued after ten once-daily doses, all nicotine groups (nicotine-only and nicotine+naloxone combination) demonstrated significant decreases in sucrose reinforcement compared to the saline group. Although opioid antagonism attenuated reinforcement enhancement by nicotine, it did not prevent reinforcer devaluation upon discontinuation of nicotine dosing, and the higher dose of naloxone (3.0mg/kg) produced decrements upon discontinuation on its own in the absence of nicotine.

  8. The therapeutic promise of positive allosteric modulation of nicotinic receptors

    PubMed Central

    Uteshev, Victor V.

    2014-01-01

    In the central nervous system, deficits in cholinergic neurotransmission correlate with decreased attention and cognitive impairment, while stimulation of neuronal nicotinic acetylcholine receptors improves attention, cognitive performance and neuronal resistance to injury as well as produces robust analgesic and anti-inflammatory effects. The rational basis for the therapeutic use of orthosteric agonists and positive allosteric modulators (PAMs) of nicotinic receptors arises from the finding that functional nicotinic receptors are ubiquitously expressed in neuronal and non-neuronal tissues including brain regions highly vulnerable to traumatic and ischemic types of injury (e.g., cortex and hippocampus). Moreover, functional nicotinic receptors do not vanish in age-, disease- and trauma-related neuropathologies, but their expression and/or activation levels decline in a subunit- and brain region-specific manner. Therefore, augmenting the endogenous cholinergic tone by nicotinic agents is possible and may offset neurological impairments associated with cholinergic hypofunction. Importantly, because neuronal damage elevates extracellular levels of choline (a selective agonist of α7 nicotinic acetylcholine receptors) near the site of injury, α7-PAM-based treatments may augment pathology-activated α7-dependent auto-therapies where and when they are most needed (i.e., in the penumbra, post-injury). Thus, the nicotinic-PAM-based treatments are expected to be highly efficacious with fewer side effects as compared to a more indiscriminate action of exogenous orthosteric agonists. In this review, I will summarize the existing trends in therapeutic applications of nicotinic PAMs. PMID:24530419

  9. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    SciTech Connect

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  10. Nicotinic Acetylcholine Receptors at the Single-Channel Level.

    PubMed

    Bouzat, Cecilia; Sine, Steven M

    2017-03-05

    Over the past four decades, the patch clamp technique and nicotinic acetylcholine (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding nerve-released ACh and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique toward understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets.

  11. Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses

    PubMed Central

    Miwa, Julie M.; Freedman, Robert; Lester, Henry A.

    2015-01-01

    Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson’s disease, cognitive decline, epilepsy, and schizophrenia. PMID:21482353

  12. Upregulation of surface alpha4beta2 nicotinic receptors is initiated by receptor desensitization after chronic exposure to nicotine.

    PubMed

    Fenster, C P; Whitworth, T L; Sheffield, E B; Quick, M W; Lester, R A

    1999-06-15

    It is hypothesized that desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) induced by chronic exposure to nicotine initiates upregulation of nAChR number. To test this hypothesis directly, oocytes expressing alpha4beta2 receptors were chronically incubated (24-48 hr) in nicotine, and the resulting changes in specific [3H]nicotine binding to surface receptors on intact oocytes were compared with functional receptor desensitization. Four lines of evidence strongly support the hypothesis. (1) The half-maximal nicotine concentration necessary to produce desensitization (9.7 nM) was the same as that needed to induce upregulation (9.9 nM). (2) The concentration of [3H]nicotine for half-maximal binding to surface nAChRs on intact oocytes was also similar (11.1 nM), as predicted from cyclical desensitization models. (3) Functional desensitization of alpha3beta4 receptors required 10-fold higher nicotine concentrations, and this was mirrored by a 10-fold shift in concentrations necessary for upregulation. (4) Mutant alpha4beta2 receptors that do not recover fully from desensitization, but not wild-type channels, were upregulated after acute (1 hr) applications of nicotine. Interestingly, the nicotine concentration required for half-maximal binding of alpha4beta2 receptors in total cell membrane homogenates was 20-fold lower than that measured for surface nAChRs in intact oocytes. These data suggest that cell homogenate binding assays may not accurately reflect the in vivo desensitization affinity of surface nAChRs and may account for some of the previously reported differences in the efficacy of nicotine for inducing nAChR desensitization and upregulation.

  13. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  14. Modulation of nicotinic acetylcholine receptors by strychnine

    PubMed Central

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  15. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  16. Null mutation of the β2 nicotinic acetylcholine receptor subunit attenuates nicotine withdrawal-induced anhedonia in mice.

    PubMed

    Stoker, Astrid K; Marks, Michael J; Markou, Athina

    2015-04-15

    The anhedonic signs of nicotine withdrawal are predictive of smoking relapse rates in humans. Identification of the neurobiological substrates that mediate anhedonia will provide insights into the genetic variations that underlie individual responses to smoking cessation and relapse. The present study assessed the role of β2 nicotinic acetylcholine receptor (nACh receptor) subunits in nicotine withdrawal-induced anhedonia using β2 nACh receptor subunit knockout (β2(-/-)) and wildtype (β2(+/+)) mice. Anhedonia was assessed with brain reward thresholds, defined as the current intensity that supports operant behavior in the discrete-trial current-intensity intracranial self-stimulation procedure. Nicotine was delivered chronically through osmotic minipumps for 28 days (40 mg/kg/day, base), and withdrawal was induced by either administering the broad-spectrum nicotinic receptor antagonist mecamylamine (i.e., antagonist-precipitated withdrawal) in mice chronically treated with nicotine or terminating chronic nicotine administration (i.e., spontaneous withdrawal). Mecamylamine (6 mg/kg, salt) significantly elevated brain reward thresholds in nicotine-treated β2(+/+) mice compared with saline-treated β2(+/+) mice and nicotine-treated β2(-/-) mice. Spontaneous nicotine withdrawal similarly resulted in significant elevations in thresholds in nicotine-withdrawing β2(+/+) mice compared with saline-treated β2(+/+) and nicotine-treated β2(-/-) mice, which remained at baseline levels. These results showed that precipitated and spontaneous nicotine withdrawal-induced anhedonia was attenuated in β2(-/-) mice. The reduced expression of anhedonic signs during nicotine withdrawal in β2(-/-) mice may have resulted from the lack of neuroadaptations in β2 nACh receptor subunit expression and function that may have occurred during either nicotine exposure or nicotine withdrawal in wildtype mice. In conclusion, individuals with genetic variations that result in diminished

  17. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  18. Binding of HIV-1 gp120 to the nicotinic receptor.

    PubMed

    Bracci, L; Lozzi, L; Rustici, M; Neri, P

    1992-10-19

    We previously described a significant sequence homology between HIV-1 gp120 and the functional sites responsible for the specific binding of snake curare-mimetic neurotoxins and rabies virus glycoprotein to the nicotinic acetylcholine receptor. Here we report findings about the existence of a mechanism of functional molecular mimicry which could enable the binding of HIV-1 gp120 to nicotinic acetylcholine receptors in muscle cells and neurons.

  19. Nicotine is highly effective at producing desensitization of rat α4β2 neuronal nicotinic receptors

    PubMed Central

    Paradiso, K G; Steinbach, Joe Henry

    2003-01-01

    We examined desensitization by acetylcholine (ACh) and nicotine at the rat α4β2 neuronal nicotinic receptor stably expressed in HEK cells. For both agonists, the decay in response due to desensitization (‘onset’) was best fitted by the sum of two exponentials with the fast component dominant at concentrations > 1 μm. The time constants for onset were similar for both agonists, and showed little concentration dependence over the range of 0.1–100 μm. Recovery from desensitization also showed two exponential components. In contrast to the similarity in onset, nicotine produced longer lasting desensitization, resulting from an increase in the proportion of receptors in the slowly recovering population and from an increase in the time constant for the slow recovery process. The proportion of receptors in the slowly recovering population increased as the duration of the desensitizing pulse increased. Desensitization was also induced by low concentrations of agonist, with no apparent macroscopic response. A 100 s application of 10 nm nicotine desensitized 70 % of the peak response, while 100 s of 10 nm ACh desensitized only 15 %. At higher concentrations of agonist, which result in a macroscopic response, desensitization in the absence of activation also can occur. Nicotine is a very potent and efficacious desensitizing agent at this neuronal nicotinic receptor. PMID:14555718

  20. Nicotine enhances alcohol intake and dopaminergic responses through β2* and β4* nicotinic acetylcholine receptors

    PubMed Central

    Tolu, Stefania; Marti, Fabio; Morel, Carole; Perrier, Carole; Torquet, Nicolas; Pons, Stephanie; de Beaurepaire, Renaud; Faure, Philippe

    2017-01-01

    Alcohol and nicotine are the most widely co-abused drugs. Both modify the activity of dopaminergic (DA) neurons of the Ventral Tegmental Area (VTA) and lead to an increase in DA release in the Nucleus Accumbens, thereby affecting the reward system. Evidences support the hypothesis that distinct nicotinic acetylcholine receptors (nAChRs), the molecular target of acetylcholine (ACh) and exogenous nicotine, are also in addition implicated in the response to alcohol. The precise molecular and neuronal substrates of this interaction are however not well understood. Here we used in vivo electrophysiology in the VTA to characterise acute and chronic interactions between nicotine and alcohol. Simultaneous injections of the two drugs enhanced their responses on VTA DA neuron firing and chronic exposure to nicotine increased alcohol-induced DA responses and alcohol intake. Then, we assessed the role of β4 * nAChRs, but not β2 * nAChRs, in mediating acute responses to alcohol using nAChR subtypes knockout mice (β2−/− and β4−/− mice). Finally, we showed that nicotine-induced modifications of alcohol responses were absent in β2−/− and β4−/− mice, suggesting that nicotine triggers β2* and β4 * nAChR-dependent neuroadaptations that subsequently modify the responses to alcohol and thus indicating these receptors as key mediators in the complex interactions between these two drugs. PMID:28332590

  1. Evidence that nicotinic alpha(7) receptors are not involved in the hyperlocomotor and rewarding effects of nicotine.

    PubMed

    Grottick, A J; Trube, G; Corrigall, W A; Huwyler, J; Malherbe, P; Wyler, R; Higgins, G A

    2000-09-01

    Neuronal nicotinic receptors are comprised of combinations of alpha(2-9) and beta(2-4) subunits arranged to form a pentameric receptor. Currently, the principal central nervous system (CNS) subtypes are believed to be alpha(4)beta(2) and a homomeric alpha(7) receptor, although other combinations almost certainly exist. The identity of the nicotinic receptor subtype(s) involved in the rewarding effects of nicotine are unknown. In the present study, using some recently described subtype selective nicotinic agonists and antagonists, we investigated the role of the alpha(7) nicotinic receptor in the mediation of nicotine-induced hyperactivity and self-administration in rats. The alpha(7) receptor agonists AR-R 17779 and DMAC failed to stimulate locomotor activity in both nicotine-nontolerant and -sensitized rats. In contrast, nicotine and the putative alpha(4)beta(2) subtype selective agonist SIB1765F increased activity in both experimental conditions. In nicotine-sensitized rats, the high affinity (including the alpha(4)beta(2) subtype) nicotinic antagonist dihydro-beta-erythroidine (DHbetaE), but not the selective alpha(7) antagonist methyllycaconitine (MLA), antagonized a nicotine-induced hyperactivity. Similarly, DHbetaE, but not MLA, pretreatment reduced nicotine self-administration. Electrophysiology experiments using Xenopus oocytes expressing the human alpha(7) receptor confirmed AR-R 17779 and DMAC to be potent agonists at this site, and further studies demonstrated the ability of systemically administered AR-R 17779 to penetrate into the CNS. Taken together, these results indicate a negligible role of alpha(7) receptors in nicotine-induced hyperlocomotion and reward in the rat, and support the view for an involvement of a member from the high-affinity nicotinic receptor subclass, possibly alpha(4)beta(2). Issues such as drug potency, CNS penetration, and desensitization of the alpha(7) receptor are discussed.

  2. Cation-pi interactions in ligand recognition by serotonergic (5-HT3A) and nicotinic acetylcholine receptors: the anomalous binding properties of nicotine.

    PubMed

    Beene, Darren L; Brandt, Gabriel S; Zhong, Wenge; Zacharias, Niki M; Lester, Henry A; Dougherty, Dennis A

    2002-08-13

    A series of tryptophan analogues has been introduced into the binding site regions of two ion channels, the ligand-gated nicotinic acetylcholine and serotonin 5-HT(3A) receptors, using unnatural amino acid mutagenesis and heterologous expression in Xenopus oocytes. A cation-pi interaction between serotonin and Trp183 of the serotonin channel 5-HT(3A)R is identified for the first time, precisely locating the ligand-binding site of this receptor. The energetic contribution of the observed cation-pi interaction between a tryptophan and the primary ammonium ion of serotonin is estimated to be approximately 4 kcal/mol, while the comparable interaction with the quaternary ammonium of acetylcholine is approximately 2 kcal/mol. The binding mode of nicotine to the nicotinic receptor of mouse muscle is examined by the same technique and found to differ significantly from that of the natural agonist, acetylcholine.

  3. Baclofen-induced antinociception and nicotinic receptor mechanism(s).

    PubMed

    Sabetkasai, M; Ahang, S; Shafaghi, B; Zarrindast, M R

    1999-11-01

    In this study, the influences of nicotinic receptor agents on baclofen-induced antinociception in the tail-flick test have been studied. Intraperitoneal administration of baclofen (2.5, 5 and 10 mg/kg) to mice induced a dose-dependent antinociception in the tail-flick test. Subcutaneous injection of nicotine (0.5-2.5 mg/kg) also caused a dose-dependent antinociceptive response. Intracerebral (10 and 20 microg/mouse) but not intraperitoneal administration of hexamethonium (5 and 10 mg/kg) to mice decreased the response of both nicotine and baclofen. However, administration of the GABA(B) antagonist CGP 35348 (100 and 200 mg/kg) decreased the response induced by baclofen but not by nicotine. It is concluded that at least part of the baclofen-induced antinociception may be mediated through a nicotinic mechanism.

  4. Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence.

    PubMed

    Castañé, A; Valjent, E; Ledent, C; Parmentier, M; Maldonado, R; Valverde, O

    2002-10-01

    Cannabis is the most widely consumed illicit drug and its consumption is currently associated with tobacco, which contains another psychoactive compound, namely nicotine. Interactions between cannabinoids and other drugs of abuse, such as opioids, have been previously reported. The aim of the present study was to evaluate the possible role of CB1 cannabinoid receptor in responses induced by acute and repeated nicotine administration by using knockout mice lacking the CB1 cannabinoid receptor and their wild-type littermates. Acute nicotine (0.5, 1, 3 and 6 mg/kg, sc) administration decreased locomotor activity and induced antinociceptive responses in the tail-immersion and the hot-plate test, in wild-type animals. The antinociceptive effects in the tail-immersion test were significantly enhanced in CB1 knockout mice. In wild-type mice nicotine (0.5 mg/kg, sc) produced a significant rewarding effect, as measured by a conditioned place preference paradigm. This response was absent in CB1 knockout mice. Finally, a model of mecamylamine-induced abstinence in chronic nicotine-treated mice (10 mg/kg/day, sc) was developed. Mecamylamine (1 and 2 mg/kg, sc) precipitated several somatic signs of nicotine withdrawal in wild-type dependent mice. However, no difference in the severity of nicotine withdrawal was observed in CB1 knockout mice. These results demonstrate that some acute effects and motivational responses elicited by nicotine can be modulated by the endogenous cannabinoid system and support the existence of a physiological interaction between these two systems.

  5. A potentially novel nicotinic receptor in Aplysia neuroendocrine cells.

    PubMed

    White, Sean H; Carter, Christopher J; Magoski, Neil S

    2014-07-15

    Nicotinic receptors form a diverse group of ligand-gated ionotropic receptors with roles in both synaptic transmission and the control of excitability. In the bag cell neurons of Aplysia, acetylcholine activates an ionotropic receptor, which passes inward current to produce a long-lasting afterdischarge and hormone release, leading to reproduction. While testing the agonist profile of the cholinergic response, we observed a second current that appeared to be gated only by nicotine and not acetylcholine. The peak nicotine-evoked current was markedly smaller in magnitude than the acetylcholine-induced current, cooperative (Hill value of 2.7), had an EC50 near 500 μM, readily recovered from desensitization, showed Ca(2+) permeability, and was blocked by mecamylamine, dihydro-β-erythroidine, or strychnine, but not by α-conotoxin ImI, methyllycaconitine, or hexamethonium. Aplysia transcriptome analysis followed by PCR yielded 20 full-length potential nicotinic receptor subunits. Sixteen of these were predicted to be cation selective, and real-time PCR suggested that 15 of the 16 subunits were expressed to varying degrees in the bag cell neurons. The acetylcholine-induced current, but not the nicotine current, was reduced by double-strand RNA treatment targeted to both subunits ApAChR-C and -E. Conversely, the nicotine-evoked current, but not the acetylcholine current, was lessened by targeting both subunits ApAChR-H and -P. To the best of our knowledge, this is the first report suggesting that a nicotinic receptor is not gated by acetylcholine. Separate receptors may serve as a means to differentially trigger plasticity or safeguard propagation by assuring that only acetylcholine, the endogenous agonist, initiates large enough responses to trigger reproduction.

  6. Actions of octocoral and tobacco cembranoids on nicotinic receptors.

    PubMed

    Ferchmin, P A; Pagán, Oné R; Ulrich, Henning; Szeto, Ada C; Hann, Richard M; Eterović, Vesna A

    2009-12-15

    Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies.

  7. Activation and desensitization of nicotinic alpha7-type acetylcholine receptors by benzylidene anabaseines and nicotine.

    PubMed

    Papke, Roger L; Kem, William R; Soti, Ferenc; López-Hernández, Gretchen Y; Horenstein, Nicole A

    2009-05-01

    Nicotinic receptor activation is inextricably linked to desensitization. This duality affects our ability to develop useful therapeutics targeting nicotinic acetylcholine receptor (nAChR). Nicotine and some alpha7-selective experimental partial agonists produce a transient activation of alpha7 receptors followed by a period of prolonged residual inhibition or desensitization (RID). The object of the present study was to determine whether RID was primarily due to prolonged desensitization or due to channel block. To make this determination, we used agents that varied significantly in their production of RID and two alpha7-selective positive allosteric modulators (PAMs): 5-hydroxyindole (5HI), a type 1 PAM that does not prevent desensitization; and 1-(5-chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxanol-3-yl)-urea (PNU-120596), a type 2 PAM that reactivates desensitized receptors. The RID-producing compounds nicotine and 3-(2,4-dimethoxybenzylidene)anabaseine (diMeOBA) could obscure the potentiating effects of 5HI. However, through the use of nicotine, diMeOBA, and the RID-negative compound 3-(2,4-dihydroxybenzylidene)anabaseine (diOHBA) in combination with PNU-120596, we confirmed that diMeOBA produces short-lived channel block of alpha7 but that RID is because of the induction of a desensitized state that is stable in the absence of PNU-120596 and activated in the presence of PNU-120596. In contrast, diOHBA produced channel block but only readily reversible desensitization, whereas nicotine produced desensitization that could be converted into activation by PNU-120596 but no demonstrable channel block. Steady-state currents through receptors that would otherwise be desensitized could also be produced by the application of PNU-120596 in the presence of a physiologically relevant concentration of choline (60 microM), which may be significant for the therapeutic development of type 2 PAMs.

  8. Negative allosteric modulation of nicotinic acetylcholine receptors blocks nicotine self-administration in rats.

    PubMed

    Yoshimura, Ryan F; Hogenkamp, Derk J; Li, Wen Y; Tran, Minhtam B; Belluzzi, James D; Whittemore, Edward R; Leslie, Frances M; Gee, Kelvin W

    2007-12-01

    Drugs that antagonize nicotinic acetylcholine receptors (nAChRs) can be used to inhibit nicotine-induced behavior in both humans and animals. The aim of our experiments is to establish a proof-of-principle that antagonism of nAChRs by negative allosteric modulation can alter behavior in a relevant animal model of addiction, nicotine self-administration. We have identified a novel, negative allosteric modulator of nAChRs, UCI-30002 [N-(1,2,3,4-tetrahydro-1-naphthyl)-4-nitroaniline], with selectivity for the major neuronal nAChR subtypes over muscle-type nAChRs. After systemic administration, UCI-30002 significantly reduces nicotine self-administration in rats on both fixed ratio and progressive ratio schedules of reinforcement. The minimum effective dose that significantly alters nicotine self-administration corresponds to brain concentrations of UCI-30002 that produce at least 30% inhibition of the major neuronal nAChR subtypes measured in vitro. UCI-30002 has no effect on responding for food reinforcement in rats on either type of schedule, indicating that there is no effect on general responding or natural reward. UCI-30002 represents validation of the concept that negative allosteric modulators may have significant benefits as a strategy for treating nicotine addiction and encourages the development of subtype-selective modulators.

  9. Nicotine increases GABAergic input on rat dorsal raphe serotonergic neurons through alpha7 nicotinic acetylcholine receptor.

    PubMed

    Hernández-Vázquez, F; Chavarría, K; Garduño, J; Hernández-López, S; Mihailescu, S P

    2014-12-15

    The dorsal raphe nucleus (DRN) contains large populations of serotonergic (5-HT) neurons. This nucleus receives GABAergic inhibitory afferents from many brain areas and from DRN interneurons. Both GABAergic and 5-HT DRN neurons express functional nicotinic acetylcholine receptors (nAChRs). Previous studies have demonstrated that nicotine increases 5-HT release and 5-HT DRN neuron discharge rate by stimulating postsynaptic nAChRs and by increasing glutamate and norepinephrine release inside DRN. However, the influence of nicotine on the GABAergic input to 5-HT DRN neurons was poorly investigated. Therefore, the aim of this work was to determine the effect of nicotine on GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs) of 5-HT DRN neurons and the subtype of nAChR(s) involved in this response. Experiments were performed in coronal slices obtained from young Wistar rats. GABAergic sIPSCs were recorded from post hoc-identified 5-HT DRN neurons with the whole cell voltage patch-clamp technique. Administration of nicotine (1 μM) increased sIPSC frequency in 72% of identified 5-HT DRN neurons. This effect was not reproduced by the α4β2 nAChR agonist RJR-2403 and was not influenced by TTX (1 μM). It was mimicked by the selective agonist for α7 nAChR, PNU-282987, and exacerbated by the positive allosteric modulator of the same receptor, PNU-120596. The nicotine-induced increase in sIPSC frequency was independent on voltage-gated calcium channels and dependent on Ca(2+)-induced Ca(2+) release (CICR). These results demonstrate that nicotine increases the GABAergic input to most 5-HT DRN neurons, by activating α7 nAChRs and producing CICR in DRN GABAergic terminals.

  10. Ryanodine receptor-2 upregulation and nicotine-mediated plasticity.

    PubMed

    Ziviani, Elena; Lippi, Giordano; Bano, Daniele; Munarriz, Eliana; Guiducci, Stefania; Zoli, Michele; Young, Kenneth W; Nicotera, Pierluigi

    2011-01-05

    Nicotine, the major psychoactive component of cigarette smoke, modulates neuronal activity to produce Ca2+-dependent changes in gene transcription. However, the downstream targets that underlie the long-term effects of nicotine on neuronal function, and hence behaviour, remain to be elucidated. Here, we demonstrate that nicotine administration to mice upregulates levels of the type 2 ryanodine receptor (RyR2), a Ca2+-release channel present on the endoplasmic reticulum, in a number of brain areas associated with cognition and addiction, notably the cortex and ventral midbrain. Nicotine-mediated RyR2 upregulation was driven by CREB, and caused a long-lasting reinforcement of Ca2+ signalling via the process of Ca2+-induced Ca2+ release. RyR2 upregulation was itself required for long-term phosphorylation of CREB in a positive-feedback signalling loop. We further demonstrate that inhibition of RyR-activation in vivo abolishes sensitization to nicotine-induced habituated locomotion, a well-characterised model for onset of drug dependence. Our findings, therefore, indicate that gene-dependent reprogramming of Ca2+ signalling is involved in nicotine-induced behavioural changes.

  11. Central nicotinic receptors: structure, function, ligands, and therapeutic potential.

    PubMed

    Romanelli, M Novella; Gratteri, Paola; Guandalini, Luca; Martini, Elisabetta; Bonaccini, Claudia; Gualtieri, Fulvio

    2007-06-01

    The growing interest in nicotinic receptors, because of their wide expression in neuronal and non-neuronal tissues and their involvement in several important CNS pathologies, has stimulated the synthesis of a high number of ligands able to modulate their function. These membrane proteins appear to be highly heterogeneous, and still only incomplete information is available on their structure, subunit composition, and stoichiometry. This is due to the lack of selective ligands to study the role of nAChR under physiological or pathological conditions; so far, only compounds showing selectivity between alpha4beta2 and alpha7 receptors have been obtained. The nicotinic receptor ligands have been designed starting from lead compounds from natural sources such as nicotine, cytisine, or epibatidine, and, more recently, through the high-throughput screening of chemical libraries. This review focuses on the structure of the new agonists, antagonists, and allosteric ligands of nicotinic receptors, it highlights the current knowledge on the binding site models as a molecular modeling approach to design new compounds, and it discusses the nAChR modulators which have entered clinical trials.

  12. Cellular approaches to the interaction between cannabinoid receptor ligands and nicotinic acetylcholine receptors.

    PubMed

    Oz, Murat; Al Kury, Lina; Keun-Hang, Susan Yang; Mahgoub, Mohamed; Galadari, Sehamuddin

    2014-05-15

    Cannabinoids are among the earliest known drugs to humanity. Cannabis plant contains various phytochemicals that bind to cannabinoid receptors. In addition, synthetic and endogenously produced cannabinoids (endocannabinoids) constitute other classes of cannabinoid receptor ligands. Although many pharmacological effects of these cannabinoids are mediated by the activation of cannabinoid receptors, recent studies indicate that cannabinoids also modulate the functions of various integral membrane proteins including ion channels, receptors, neurotransmitter transporters, and enzymes by mechanism(s) not involving the activation of known cannabinoid receptors. Currently, the mechanisms of these effects were not fully understood. However, it is likely that direct actions of cannabinoids are closely linked to their lipophilic structures. This report will focus on the actions of cannabinoids on nicotinic acetylcholine receptors and will examine the results of recent studies in this field. In addition some mechanistic approaches will be provided. The results discussed in this review indicate that, besides cannabinoid receptors, further molecular targets for cannabinoids exist and that these targets may represent important novel sites to alter neuronal excitability.

  13. Nicotine enhances the cyclic AMP-dependent protein kinase-mediated phosphorylation of alpha4 subunits of neuronal nicotinic receptors.

    PubMed

    Hsu, Y N; Edwards, S C; Wecker, L

    1997-12-01

    Studies determined whether alpha4beta2 or alpha3beta2 neuronal nicotinic receptors expressed in Xenopus oocytes are substrates for cyclic AMP-dependent protein kinase (PKA) and whether nicotine affects receptor phosphorylation. The cRNAs for the subunits were coinjected into oocytes, and cells were incubated for 24 h in the absence or presence of nicotine (50 nM for alpha4beta2 and 500 nM for alpha3beta2 receptors). Nicotine did not interfere with the isolation of the receptors. When receptors isolated from oocytes expressing alpha4beta2 receptors were incubated with [gamma-32P]ATP and the catalytic subunit of PKA, separated by electrophoresis, and visualized by autoradiography, a labeled phosphoprotein with the predicted molecular size of the alpha4 subunit was present. Phosphorylation of alpha4 subunits of alpha4beta2 receptors increased within the first 5 min of incubation with nicotine and persisted for 24 h. In contrast, receptors isolated from oocytes expressing alpha3beta2 receptors did not exhibit a labeled phosphoprotein corresponding to the size of the alpha3 subunit. Results suggest that the PKA-mediated phosphorylation of alpha4 and not alpha3 subunits may explain the differential inactivation by nicotine of these receptor subtypes expressed in oocytes.

  14. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    PubMed

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  15. Binding interactions with the complementary subunit of nicotinic receptors.

    PubMed

    Blum, Angela P; Van Arnam, Ethan B; German, Laurel A; Lester, Henry A; Dougherty, Dennis A

    2013-03-08

    The agonist-binding site of nicotinic acetylcholine receptors (nAChRs) spans an interface between two subunits of the pentameric receptor. The principal component of this binding site is contributed by an α subunit, and it binds the cationic moiety of the nicotinic pharmacophore. The other part of the pharmacophore, a hydrogen bond acceptor, has recently been shown to bind to the complementary non-α subunit via the backbone NH of a conserved Leu. This interaction was predicted by studies of ACh-binding proteins and confirmed by functional studies of the neuronal (CNS) nAChR, α4β2. The ACh-binding protein structures further suggested that the hydrogen bond to the backbone NH is mediated by a water molecule and that a second hydrogen bonding interaction occurs between the water molecule and the backbone CO of a conserved Asn, also on the non-α subunit. Here, we provide new insights into the nature of the interactions between the hydrogen bond acceptor of nicotinic agonists and the complementary subunit backbone. We studied both the nAChR of the neuromuscular junction (muscle-type) and a neuronal subtype, (α4)2(β4)3. In the muscle-type receptor, both ACh and nicotine showed a strong interaction with the Leu NH, but the potent nicotine analog epibatidine did not. This interaction was much attenuated in the α4β4 receptor. Surprisingly, we found no evidence for a functionally significant interaction with the backbone carbonyl of the relevant Asn in either receptor with an array of agonists.

  16. Adolescent nicotine exposure transiently increases high-affinity nicotinic receptors and modulates inhibitory synaptic transmission in rat medial prefrontal cortex

    PubMed Central

    Counotte, Danielle S.; Goriounova, Natalia A.; Moretti, Milena; Smoluch, Marek T.; Irth, Hubertus; Clementi, Francesco; Schoffelmeer, Anton N. M.; Mansvelder, Huibert D.; Smit, August B.; Gotti, Cecilia; Spijker, Sabine

    2013-01-01

    Adolescence is a critical developmental period during which most adult smokers initiate their habit. Adolescents are more vulnerable than adults to nicotine’s long-term effects on addictive and cognitive behavior. We investigated whether adolescent nicotine exposure in rats modifies expression of nicotinic acetylcholine receptors (nAChRs) in medial prefrontal cortex (mPFC) in the short and/or long term, and whether this has functional consequences. Using receptor binding studies followed by immunoprecipitation of nAChR subunits, we showed that adolescent nicotine exposure, as compared with saline, caused an increase in mPFC nAChRs containing α4 or β2 subunits (24 and 18%, respectively) 24 h after the last injection. Nicotine exposure in adulthood had no such effect. This increase was transient and was not observed 5 wk following either adolescent or adult nicotine exposure. In line with increased nAChRs expression 1 d after adolescent nicotine exposure, we observed a 34% increase in amplitude of nicotine-induced spontaneous inhibitory postsynaptic currents in layer II/III mPFC pyramidal neurons. These effects were transient and specific, and observed only acutely after adolescent nicotine exposure, but not after 5 wk, and no changes were observed in adult-exposed animals. The acute nicotine-induced increase in α4β2-containing receptors in adolescents interferes with the normal developmental decrease (37%) of these receptors from early adolescence (postnatal day 34) to adulthood (postnatal day 104) in the mPFC. Together, this suggests that these receptors play a role in mediating the acute rewarding effects of nicotine and may underlie the increased sensitivity of adolescents to nicotine. PMID:22308197

  17. Antagonism at metabotropic glutamate 5 receptors inhibits nicotine- and cocaine-taking behaviours and prevents nicotine-triggered relapse to nicotine-seeking.

    PubMed

    Tessari, Michela; Pilla, Maria; Andreoli, Michela; Hutcheson, Daniel M; Heidbreder, Christian A

    2004-09-19

    Previous studies in metabotropic glutamate 5 receptor (mGlu5 receptor) deficient mice have indicated the importance of this receptor in the self-administration of cocaine and locomotor sensitisation to this stimulant. Both ionotropic and metabotropic receptors have been implicated in drug-seeking and drug-taking behaviours, but the specific role of each subtype of metabotropic glutamate receptors (mGlu receptors) is still unknown. In the present series of experiments we further investigated the role of mGlu5 receptors on nicotine, cocaine- and food-taking behaviour. We also investigated the effects of the mGlu5 receptor antagonist MPEP (2-methyl-6-(phenylethynyl)pyridine) on the acute locomotor activating effects of nicotine, the expression of sensitisation to its repeated, intermittent administration, and nicotine-triggered relapse to nicotine-seeking behaviour. The results indicate that MPEP treatment reduced nicotine-induced drug-seeking behaviour in a model of nicotine-triggered relapse to nicotine seeking. Furthermore, MPEP decreased both nicotine and cocaine self-administration without affecting food self-administration under similar schedules of reinforcement. Finally, MPEP reduced both the acute locomotor stimulant effects of nicotine as well as the expression of behavioural sensitisation to its repeated administration. Although the intravenous administration of MPEP at 1 and 10 mg/kg transiently reduced spontaneous locomotor activity during the first 25 min post-administration, we also demonstrated that performance on the accelerating rotarod was not affected when MPEP was given 5 and 30 min prior to the test. Altogether, the present findings strengthen the hypothesis that selective antagonism at mGlu5 receptors may be a new potential pharmacotherapeutic approach for the treatment of drug dependence and addiction.

  18. miRNAome analysis of the mammalian neuronal nicotinic acetylcholine receptor gene family.

    PubMed

    Hogan, Eric M; Casserly, Alison P; Scofield, Michael D; Mou, Zhongming; Zhao-Shea, Rubing; Johnson, Chris W; Tapper, Andrew R; Gardner, Paul D

    2014-12-01

    Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3'-untranslated regions (3' UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3' UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3' UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.

  19. Looking below the surface of nicotinic acetylcholine receptors

    PubMed Central

    Stokes, Clare; Treinin, Millet; Papke, Roger L.

    2015-01-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype possesses a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains may play defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most-well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction. PMID:26067101

  20. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  1. r-bPiDI, an α6β2* Nicotinic Receptor Antagonist, Decreases Nicotine-Evoked Dopamine Release and Nicotine Reinforcement

    PubMed Central

    Beckmann, Joshua S.; Meyer, Andrew C.; Pivavarchyk, M.; Horton, David B.; Zheng, Guangrong; Smith, Andrew M.; Wooters, Thomas E.; McIntosh, J. Michael; Crooks, Peter A.; Bardo, Michael T.

    2015-01-01

    α6β2* nicotinic acetylcholine receptors (nACh Rs) expressed by dopaminergic neurons mediate nicotine-evoked dopamine (DA) release and nicotine reinforcement. α6β2* antagonists inhibit these effects of nicotine, such that α6β2* receptors serve as therapeutic targets for nicotine addiction. The present research assessed the neuropharmacology of 1,10-bis(3-methyl-5,6-dihydropyridin-1(2H)-yl)decane (r-bPiDI), a novel small-molecule, tertiary amino analog of its parent compound, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI). bPiDI was previously shown to inhibit both nicotine-evoked DA release and the reinforcing effects of nicotine. In the current study, r-bPiDI inhibition of [3H]nicotine and [3H]methyllyca-conitine binding sites was evaluated to assess interaction with the recognition binding sites on α4β2* and α7* nAChRs, respectively. Further, r-bPiDI inhibition of nicotine-evoked DA release in vitro in the absence and presence of α-conotoxin MII and following chronic in vivo nicotine administration were determined. The ability of r-bPiDI to decrease nicotine self-administration and food-maintained responding was also assessed. Results show that r-bPiDI did not inhibit [3H]nicotine or [3H]methylly-caconitine binding, but potently (IC50 = 37.5 nM) inhibited nicotine-evoked DA release from superfused striatal slices obtained from either drug naïve rats or from those repeatedly treated with nicotine. r-bPiDI inhibition of nicotine-evoked DA release was not different in the absence or presence of α-conotoxin MII, indicating that r-bPiDI acts as a potent, selective α6β2* nAChR antagonist. Acute systemic administration of r-bPiDI specifically decreased nicotine self-administration by 75 %, and did not alter food-maintained responding, demonstrating greater specificity relative to bPiDI and bPiDDB, as well as the tertiary amino analog r-bPiDDB. The current work describes the discovery of r-bPiDI, a tertiary amino, α-conotoxin MII-like small molecule

  2. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  3. Contribution of α7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure.

    PubMed

    Maouche, Kamel; Medjber, Kahina; Zahm, Jean-Marie; Delavoie, Franck; Terryn, Christine; Coraux, Christelle; Pons, Stéphanie; Cloëz-Tayarani, Isabelle; Maskos, Uwe; Birembaut, Philippe; Tournier, Jean-Marie

    2013-03-05

    Loss or dysfunction of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) leads to impairment of airway mucus transport and to chronic lung diseases resulting in progressive respiratory failure. Nicotinic acetylcholine receptors (nAChRs) bind nicotine and nicotine-derived nitrosamines and thus mediate many of the tobacco-related deleterious effects in the lung. Here we identify α7 nAChR as a key regulator of CFTR in the airways. The airway epithelium in α7 knockout mice is characterized by a higher transepithelial potential difference, an increase of amiloride-sensitive apical Na(+) absorption, a defective cAMP-dependent Cl(-) conductance, higher concentrations of Na(+), Cl(-), K(+), and Ca(2+) in secretions, and a decreased mucus transport, all relevant to a deficient CFTR activity. Moreover, prolonged nicotine exposure mimics the absence of α7 nAChR in mice or its inactivation in vitro in human airway epithelial cell cultures. The functional coupling of α7 nAChR to CFTR occurs through Ca(2+) entry and activation of adenylyl cyclases, protein kinase A, and PKC. α7 nAChR, CFTR, and adenylyl cyclase-1 are physically and functionally associated in a macromolecular complex within lipid rafts at the apical membrane of surface and glandular airway epithelium. This study establishes the potential role of α7 nAChR in the regulation of CFTR function and in the pathogenesis of smoking-related chronic lung diseases.

  4. A Multi-Route Model of Nicotine-Cotinine Pharmacokinetics, Pharmacodynamics and Brain Nicotinic Acetylcholine Receptor Binding in Humans

    SciTech Connect

    Teeguarden, Justin G.; Housand, Conrad; Smith, Jordan N.; Hinderliter, Paul M.; Gunawan, Rudy; Timchalk, Charles

    2013-02-01

    The pharmacokinetics of nicotine, the pharmacologically active alkaloid in tobacco responsible for addiction, are well characterized in humans. We developed a physiologically based pharmacokinetic/pharmacodynamic model of nicotine pharmacokinetics, brain dosimetry and brain nicotinic acetylcholine receptor (nAChRs) occupancy. A Bayesian framework was applied to optimize model parameters against multiple human data sets. The resulting model was consistent with both calibration and test data sets, but in general underestimated variability. A pharmacodynamic model relating nicotine levels to increases in heart rate as a proxy for the pharmacological effects of nicotine accurately described the nicotine related changes in heart rate and the development and decay of tolerance to nicotine. The PBPK model was utilized to quantitatively capture the combined impact of variation in physiological and metabolic parameters, nicotine availability and smoking compensation on the change in number of cigarettes smoked and toxicant exposure in a population of 10,000 people presented with a reduced toxicant (50%), reduced nicotine (50%) cigarette Across the population, toxicant exposure is reduced in some but not all smokers. Reductions are not in proportion to reductions in toxicant yields, largely due to partial compensation in response to reduced nicotine yields. This framework can be used as a key element of a dosimetry-driven risk assessment strategy for cigarette smoke constituents.

  5. Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice.

    PubMed

    Blokhina, Elena A; Kashkin, Vladimir A; Zvartau, Edwin E; Danysz, Wojciech; Bespalov, Anton Y

    2005-03-01

    Previous studies have indicated that blockade of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors prevents acquisition of instrumental behaviors reinforced by food and drugs such as morphine and cocaine. The present study aimed to extend this evidence by testing whether NMDA receptor channel blocker, memantine, would exert similar effects on acquisition of cocaine and nicotine self-administration in mice. Inasmuch as memantine also acts as nicotinic receptor channel blocker, this study assessed the effects of mecamylamine and MRZ 2/621 that are more selective nicotinic blockers. Adult male Swiss mice were allowed to self-administer cocaine (0.8-2.4 microg/infusion) or nicotine (0.08-0.32 microg/infusion) during the 30-min test. Pretreatment with memantine (0.1-10 mg/kg) prevented acquisition of nicotine but not cocaine self-administration. Pretreatment with mecamylamine (0.3-3 mg/kg) and MRZ 2/621 (0.3-10 mg/kg) produced dose-dependent suppression of both cocaine and nicotine self-administration. Taken together with the previous reports, these results indicate that nicotinic receptor blockers antagonize acute reinforcing effects of cocaine while NMDA receptor blockade may have limited effectiveness.

  6. Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs

    PubMed Central

    Saccone, Scott F.; Hinrichs, Anthony L.; Saccone, Nancy L.; Chase, Gary A.; Konvicka, Karel; Madden, Pamela A.F.; Breslau, Naomi; Johnson, Eric O.; Hatsukami, Dorothy; Pomerleau, Ovide; Swan, Gary E.; Goate, Alison M.; Rutter, Joni; Bertelsen, Sarah; Fox, Louis; Fugman, Douglas; Martin, Nicholas G.; Montgomery, Grant W.; Wang, Jen C.; Ballinger, Dennis G.; Rice, John P.; Bierut, Laura Jean

    2007-01-01

    Nicotine dependence is one of the world’s leading causes of preventable death. To discover genetic variants that influence risk for nicotine dependence, we targeted over 300 candidate genes and analyzed 3713 single nucleotide polymorphisms (SNPs) in 1050 cases and 879 controls. The Fagerström test for nicotine dependence (FTND) was used to assess dependence, in which cases were required to have an FTND of 4 or more. The control criterion was strict: control subjects must have smoked at least 100 cigarettes in their lifetimes and had an FTND of 0 during the heaviest period of smoking. After correcting for multiple testing by controlling the false discovery rate, several cholinergic nicotinic receptor genes dominated the top signals. The strongest association was from an SNP representing CHRNB3, the β3 nicotinic receptor subunit gene (P = 9.4 × 10−5). Biologically, the most compelling evidence for a risk variant came from a non-synonymous SNP in the α5 nicotinic receptor subunit gene CHRNA5 (P = 6.4 × 10−4). This SNP exhibited evidence of a recessive mode of inheritance, resulting in individuals having a 2-fold increase in risk of developing nicotine dependence once exposed to cigarette smoking. Other genes among the top signals were KCNJ6 and GABRA4. This study represents one of the most powerful and extensive studies of nicotine dependence to date and has found novel risk loci that require confirmation by replication studies. PMID:17135278

  7. High-affinity α4β2 nicotinic receptors mediate the impairing effects of acute nicotine on contextual fear extinction.

    PubMed

    Kutlu, Munir Gunes; Holliday, Erica; Gould, Thomas J

    2016-02-01

    Previously, studies from our lab have shown that while acute nicotine administered prior to training and testing enhances contextual fear conditioning, acute nicotine injections prior to extinction sessions impair extinction of contextual fear. Although there is also strong evidence showing that the acute nicotine's enhancing effects on contextual fear conditioning require high-affinity α4β2 nicotinic acetylcholine receptors (nAChRs), it is unknown which nAChR subtypes are involved in the acute nicotine-induced impairment of contextual fear extinction. In this study, we investigated the effects of acute nicotine administration on contextual fear extinction in knock-out (KO) mice lacking α4, β2 or α7 subtypes of nAChRs and their wild-type (WT) littermates. Both KO and WT mice were first trained and tested for contextual fear conditioning and received a daily contextual extinction session for 4 days. Subjects received intraperitoneal injections of nicotine (0.18 mg/kg) or saline 2-4 min prior to each extinction session. Our results showed that the mice that lack α4 and β2 subtypes of nAChRs showed normal contextual fear extinction but not the acute nicotine-induced impairment while the mice that lack the α7 subtype showed both normal contextual extinction and nicotine-induced impairment of contextual extinction. In addition, control experiments showed that acute nicotine-induced impairment of contextual fear extinction persisted when nicotine administration was ceased and repeated acute nicotine administrations alone did not induce freezing behavior in the absence of context-shock learning. These results clearly demonstrate that high-affinity α4β2 nAChRs are necessary for the effects of acute nicotine on contextual fear extinction.

  8. Prenatal nicotine exposure alters the responses to subsequent nicotine administration and withdrawal in adolescence: Serotonin receptors and cell signaling.

    PubMed

    Slotkin, Theodore A; Tate, Charlotte A; Cousins, Mandy M; Seidler, Frederic J

    2006-11-01

    Offspring of women who smoke during pregnancy are themselves more likely to take up smoking in adolescence, effects that are associated with a high rate of depression and increased sensitivity to withdrawal symptoms. To evaluate the biological basis for this relationship, we assessed effects on serotonin (5-hydroxytryptamine, 5HT) receptors and 5HT-mediated cellular responses in rats exposed to nicotine throughout prenatal development and then given nicotine in adolescence (postnatal days PN30-47.5), using regimens that reproduce plasma nicotine levels found in smokers. Evaluations were then made during the period of adolescent nicotine treatment and for up to one month after the end of treatment. Prenatal nicotine exposure, which elicits damage to 5HT projections in the cerebral cortex and striatum, produced sex-selective changes in the expression of 5HT(1A) and 5HT2 receptors, along with induction of adenylyl cyclase (AC), leading to sensitization of heterologous inputs operating through this signaling pathway. Superimposed on these effects, the AC response to 5HT was shifted toward inhibition. By itself, adolescent nicotine administration, which damages the same pathways, produced similar effects on receptors and the 5HT-mediated response, but a smaller overall induction of AC. Animals exposed to prenatal nicotine showed a reduced response to nicotine administered in adolescence, results in keeping with earlier findings of persistent desensitization. Our results indicate that prenatal nicotine exposure alters parameters of 5HT synaptic communication lasting into adolescence and changes the response to nicotine administration and withdrawal in adolescence, actions which may contribute to a subpopulation especially vulnerable to nicotine dependence.

  9. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors.

    PubMed

    Kasheverov, Igor E; Utkin, Yuri N; Tsetlin, Victor I

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric membrane-bound proteins belonging to the large family of ligand-gated ion channels. nAChRs possess various binding sites which interact with compounds of different chemical nature, including peptides. Historically first peptides found to act on nAChR were synthetic fragments of snake alpha-neurotoxins, competitive receptor antagonists. Later it was shown that fragments of glycoprotein from rabies virus, having homology to alpha-neurotoxins, and polypeptide neurotoxins waglerins from the venom of Wagler's pit viper Trimeresurus (Tropidolaemus) wagleri bind in a similar way, waglerins being efficient blockers of muscle-type nAChRs. Neuropeptide substance P appears to interact with the channel moiety of nAChR. beta-Amyloid, a peptide forming senile plaques in Alzheimer's disease, also can bind to nAChR, although the mode of binding is still unclear. However, the most well-studied peptides interacting with the ligand-binding sites of nAChRs are so-called alpha-conotoxins, peptide neurotoxins from marine snails of Conus genus. First alpha-conotoxins were discovered in the late 1970s, and now it is a rapidly growing family due to isolation of peptides from multiple Conus species, as well as to cloning, and chemical synthesis of new analogues. Because of their unique selectivity towards distinct nAChR subtypes, alpha-conotoxins became valuable tools in nAChR research. Recent X-ray structures of alpha-conotoxin complexes with acetylcholine-binding protein, a model of nAChR ligand-binding domains, revealed the details of the nAChR ligand-binding sites and provided the basis for design of novel ligands.

  10. α7 nicotinic acetylcholine receptors: a therapeutic target in the structure era.

    PubMed

    Taly, Antoine; Charon, Sebastien

    2012-05-01

    The nicotinic acetylcholine receptors (nAChR) are ligand-gated ion channels involved in cognitive processes and are associated with brain disorders which makes them interesting drug targets. This article presents a general overview of the receptor to introduce the α7 nAChR as a drug target. The advances in understanding of the structure/function properties of the nAChR produced during the last decade are detailed as they are crucial for rational drug design. The allosteric properties of the nAChR will also be described because they also have important consequences for drug design.

  11. Does chronic nicotine alter neurotransmitter receptors involved in Parkinson's disease

    SciTech Connect

    Reilly, M.A.; Lapin, E.P.; Lajtha, A.; Maker, H.S.

    1986-03-05

    Cigarette smokers are fewer in number among Parkinson's Disease (PD) patients than among groups of persons who do not have PD. Several hypotheses have been proposed to explain this observation. One which must be tested is the possibility that some pharmacologic agent present in cigarette smoke may interact with some central nervous system component involved in PD. To this end, they have investigated the effect of chronic nicotine administration on receptors for some of the neurotransmitters that are affected in PD. Rats were injected for six weeks with saline or nicotine 0.8 mg/kg S.C., then killed and brains removed and dissected. The binding of (/sup 3/H)-ketanserin to serotonin receptors in frontal cortex and of (/sup 3/H)-domperidone to dopamine receptors in caudate was not affected. However, the binding of (/sup 3/H)-domperidone in nucleus accumbens was altered: the K/sub d/ increased from 0.16 +/- 0.02 nM to 0.61 +/- 0.07 nM, and the B/sub max/ increased from 507 +/- 47 fmol/mg protein to 910 +/- 43 fmol/mg (p < 0.001 for both comparisons). These values are based on three ligand concentrations. Additional studies are in progress to substantiate the data. It is concluded that chronic nicotine administration may alter dopamine receptors in nucleus accumbens.

  12. Electrophysiology-Based Assays to Detect Subtype-Selective Modulation of Human Nicotinic Acetylcholine Receptors

    PubMed Central

    Kirsch, Glenn E.; Fedorov, Nikolai B.; Kuryshev, Yuri A.; Liu, Zhiqi; Orr, Michael S.

    2016-01-01

    Abstract The Family Smoking Prevention and Tobacco Control Act of 2009 (Public Law 111-31) gave the US Food and Drug Administration (FDA) the responsibility for regulating tobacco products. Nicotine is the primary addictive component of tobacco and its effects can be modulated by additional ingredients in manufactured products. Nicotine acts by mimicking the neurotransmitter acetylcholine on neuronal nicotinic acetylcholine receptors (nAChRs), which function as ion channels in cholinergic modulation of neurotransmission. Subtypes within the family of neuronal nAChRs are defined by their α- and β-subunit composition. The subtype-selective profiles of tobacco constituents are largely unknown, but could be essential for understanding the physiological effects of tobacco products. In this report, we report the development and validation of electrophysiology-based high-throughput screens (e-HTS) for human nicotinic subtypes, α3β4, α3β4α5, α4β2, and α7 stably expressed in Chinese Hamster Ovary cells. Assessment of agonist sensitivity and acute desensitization gave results comparable to those obtained by conventional manual patch clamp electrophysiology assays. The potency of reference antagonists for inhibition of the receptor channels and selectivity of positive allosteric modulators also were very similar between e-HTS and conventional manual patch voltage clamp data. Further validation was obtained in pilot screening of a library of FDA-approved drugs that identified α7 subtype-selective positive allosteric modulation by novel compounds. These assays provide new tools for profiling of nicotinic receptor selectivity. PMID:27505073

  13. In vivo interactions between α7 nicotinic acetylcholine receptor and nuclear peroxisome proliferator-activated receptor-α: Implication for nicotine dependence.

    PubMed

    Jackson, Asti; Bagdas, Deniz; Muldoon, Pretal P; Lichtman, Aron H; Carroll, F Ivy; Greenwald, Mark; Miles, Michael F; Damaj, M Imad

    2017-03-07

    Chronic tobacco use dramatically increases health burdens and financial costs. Limitations of current smoking cessation therapies indicate the need for improved molecular targets. The main addictive component of tobacco, nicotine, exerts its dependency effects via nicotinic acetylcholine receptors (nAChRs). Activation of the homomeric α7 nAChR reduces nicotine's rewarding properties in conditioned place preference (CPP) test and i.v. self-administration models, but the mechanism underlying these effects is unknown. Recently, the nuclear receptor peroxisome proliferator-activated receptor type-α (PPARα) has been implicated as a downstream signaling target of the α7 nAChR in ventral tegmental area dopamine cells. The present study investigated PPARα as a possible mediator of the effect of α7 nAChR activation in nicotine dependence. Our results demonstrate the PPARα antagonist GW6471 blocks actions of the α7 nAChR agonist PNU282987 on nicotine reward in an unbiased CPP test in male ICR adult mice. These findings suggests that α7 nAChR activation attenuates nicotine CPP in a PPARα-dependent manner. To evaluate PPARα activation in nicotine dependence we used the selective and potent PPARα agonist, WY-14643 and the clinically used PPARα activator, fenofibrate, in nicotine CPP and we observed attenuation of nicotine preference, but fenofibrate was less potent. We also studied PPARα in nicotine dependence by evaluating its activation in nicotine withdrawal. WY-14643 reversed nicotine withdrawal signs whereas fenofibrate had modest efficacy. This suggests that PPARα plays a role in nicotine reward and withdrawal and that further studies are warranted to elucidate its function in mediating the effects of α7 nAChRs in nicotine dependence.

  14. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  15. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels.

  16. L-theanine inhibits nicotine-induced dependence via regulation of the nicotine acetylcholine receptor-dopamine reward pathway.

    PubMed

    Di, Xiaojing; Yan, Jingqi; Zhao, Yan; Chang, Yanzhong; Zhao, Baolu

    2012-12-01

    In this study, the inhibitory effect of L-theanine, an amino acid derivative of tea, on the rewarding effects of nicotine and its underlying mechanisms of action were studied. We found that L-theanine inhibited the rewarding effects of nicotine in a conditioned place preference (CPP) model of the mouse and reduced the excitatory status induced by nicotine in SH-SY5Y cells to the same extent as the nicotine receptor inhibitor dihydro-beta-erythroidine (DHβE). Further studies using high performance liquid chromatography, western blotting and immunofluorescence staining analyses showed that L-theanine significantly inhibited nicotine-induced tyrosine hydroxylase (TH) expression and dopamine production in the midbrain of mice. L-theanine treatment also reduced the upregulation of the α(4), β(2) and α(7) nicotine acetylcholine receptor (nAChR) subunits induced by nicotine in mouse brain regions that related to the dopamine reward pathway, thus decreasing the number of cells that could react to nicotine. In addition, L-theanine treatment inhibited nicotine-induced c-Fos expression in the reward circuit related areas of the mouse brain. Knockdown of c-Fos by siRNA inhibited the excitatory status of cells but not the upregulation of TH induced by nicotine in SH-SY5Y cells. Overall, the present study showed that L-theanine reduced the nicotine-induced reward effects via inhibition of the nAChR-dopamine reward pathway. These results may offer new therapeutic strategies for treatment of tobacco addiction.

  17. Nicotine and ethanol cooperate to enhance ventral tegmental area AMPA receptor function via α6-containing nicotinic receptors.

    PubMed

    Engle, Staci E; McIntosh, J Michael; Drenan, Ryan M

    2015-04-01

    Nicotine + ethanol co-exposure results in additive and/or synergistic effects in the ventral tegmental area (VTA) to nucleus accumbens (NAc) dopamine (DA) pathway, but the mechanisms supporting this are unclear. We tested the hypothesis that nAChRs containing α6 subunits (α6* nAChRs) are involved in the response to nicotine + ethanol co-exposure. Exposing VTA slices from C57BL/6 WT animals to drinking-relevant concentrations of ethanol causes a marked enhancement of α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA) receptor (AMPAR) function in VTA neurons. This effect was sensitive to α-conotoxin MII (an α6β2* nAChR antagonist), suggesting that α6* nAChR function is required. In mice expressing hypersensitive α6* nAChRs (α6L9S mice), we found that lower concentrations (relative to C57BL/6 WT) of ethanol were sufficient to enhance AMPAR function in VTA neurons. Exposure of live C57BL/6 WT mice to ethanol also produced AMPAR functional enhancement in VTA neurons, and studies in α6L9S mice strongly suggest a role for α6* nAChRs in this response. We then asked whether nicotine and ethanol cooperate to enhance VTA AMPAR function. We identified low concentrations of nicotine and ethanol that were capable of strongly enhancing VTA AMPAR function when co-applied to slices, but that did not enhance AMPAR function when applied alone. This effect was sensitive to both varenicline (an α4β2* and α6β2* nAChR partial agonist) and α-conotoxin MII. Finally, nicotine + ethanol co-exposure also enhanced AMPAR function in VTA neurons from α6L9S mice. Together, these data identify α6* nAChRs as important players in the response to nicotine + ethanol co-exposure in VTA neurons.

  18. Primary Structure of Nicotinic Acetylcholine Receptor

    DTIC Science & Technology

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  19. Effect of dextrometorphan and dextrorphan on nicotine and neuronal nicotinic receptors: in vitro and in vivo selectivity.

    PubMed

    Damaj, M I; Flood, P; Ho, K K; May, E L; Martin, B R

    2005-02-01

    The effects of dextrometorphan and its metabolite dextrorphan on nicotine-induced antinociception in two acute thermal pain assays after systematic administration were evaluated in mice and compared with that of mecamylamine. Dextrometorphan and dextrorphan were found to block nicotine's antinociception in the tail-flick and hot-plate tests with different potencies (dextrometorphan is 10 times more potent than its metabolite). This blockade was not due to antagonism of N-methyl-d-aspartate receptors and/or interaction with opiate receptors, since selective drugs of these receptors failed to block nicotine's analgesic effects. Our results with the tail-flick and hot-plate tests showed an interesting in vivo functional selectivity for dextrometorphan over dextrorphan. In oocytes expressing various neuronal acetylcholine nicotinic receptors (nAChR), dextrometorphan and dextrorphan blocked nicotine activation of expressed alpha(3)beta(4), alpha(4)beta(2), and alpha(7) subtypes with a small degree of selectivity. However, the in vivo antagonistic potency of dextrometorphan and dextrorphan in the pain tests does not correlate well with their in vitro blockade potency at expressed nAChR subtypes. Furthermore, the apparent in vivo selectivity of dextrometorphan over dextrorphan is not related to its in vitro potency and does suggest the involvement of other mechanisms. In that respect, dextrometorphan seems to behave as another mecamylamine, a noncompetitive nicotinic receptor antagonist with a preferential activity to alpha(3)beta(4)(*) neuronal nAChR subtypes.

  20. Positive allosteric modulators of α7 nicotinic acetylcholine receptors affect neither the function of other ligand- and voltage-gated ion channels and acetylcholinesterase, nor β-amyloid content.

    PubMed

    Arias, Hugo R; Ravazzini, Federica; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Feuerbach, Dominik; Boffi, Juan C; Draczkowski, Piotr; Montag, Dirk; Brown, Brandon M; Elgoyhen, Ana Belén; Jozwiak, Krzysztof; Puia, Giulia

    2016-07-01

    The activity of positive allosteric modulators (PAMs) of α7 nicotinic acetylcholine receptors (AChRs), including 3-furan-2-yl-N-p-tolyl-acrylamide (PAM-2), 3-furan-2-yl-N-o-tolylacrylamide (PAM-3), and 3-furan-2-yl-N-phenylacrylamide (PAM-4), was tested on a variety of ligand- [i.e., human (h) α7, rat (r) α9α10, hα3-containing AChRs, mouse (m) 5-HT3AR, and several glutamate receptors (GluRs)] and voltage-gated (i.e., sodium and potassium) ion channels, as well as on acetylcholinesterase (AChE) and β-amyloid (Aβ) content. The functional results indicate that PAM-2 inhibits hα3-containing AChRs (IC50=26±6μM) with higher potency than that for NR1aNR2B and NR1aNR2A, two NMDA-sensitive GluRs. PAM-2 affects neither the activity of m5-HT3ARs, GluR5/KA2 (a kainate-sensitive GluR), nor AChE, and PAM-4 does not affect agonist-activated rα9α10 AChRs. Relevant clinical concentrations of PAM-2-4 do not inhibit Nav1.2 and Kv3.1 ion channels. These PAMs slightly enhance the activity of GluR1 and GluR2, two AMPA-sensitive GluRs. PAM-2 does not change the levels of Aβ42 in an Alzheimer's disease mouse model (i.e., 5XFAD). The molecular docking and dynamics results using the hα7 model suggest that the active sites for PAM-2 include the intrasubunit (i.e., PNU-120596 locus) and intersubunit sites. These results support our previous study showing that these PAMs are selective for the α7 AChR, and clarify that the procognitive/promnesic/antidepressant activity of PAM-2 is not mediated by other targets.

  1. Nicotine binding to brain receptors requires a strong cation-pi interaction.

    PubMed

    Xiu, Xinan; Puskar, Nyssa L; Shanata, Jai A P; Lester, Henry A; Dougherty, Dennis A

    2009-03-26

    Nicotine addiction begins with high-affinity binding of nicotine to acetylcholine (ACh) receptors in the brain. The end result is over 4,000,000 smoking-related deaths annually worldwide and the largest source of preventable mortality in developed countries. Stress reduction, pleasure, improved cognition and other central nervous system effects are strongly associated with smoking. However, if nicotine activated ACh receptors found in muscle as potently as it does brain ACh receptors, smoking would cause intolerable and perhaps fatal muscle contractions. Despite extensive pharmacological, functional and structural studies of ACh receptors, the basis for the differential action of nicotine on brain compared with muscle ACh receptors has not been determined. Here we show that at the alpha4beta2 brain receptors thought to underlie nicotine addiction, the high affinity for nicotine is the result of a strong cation-pi interaction to a specific aromatic amino acid of the receptor, TrpB. In contrast, the low affinity for nicotine at the muscle-type ACh receptor is largely due to the fact that this key interaction is absent, even though the immediate binding site residues, including the key amino acid TrpB, are identical in the brain and muscle receptors. At the same time a hydrogen bond from nicotine to the backbone carbonyl of TrpB is enhanced in the neuronal receptor relative to the muscle type. A point mutation near TrpB that differentiates alpha4beta2 and muscle-type receptors seems to influence the shape of the binding site, allowing nicotine to interact more strongly with TrpB in the neuronal receptor. ACh receptors are established therapeutic targets for Alzheimer's disease, schizophrenia, Parkinson's disease, smoking cessation, pain, attention-deficit hyperactivity disorder, epilepsy, autism and depression. Along with solving a chemical mystery in nicotine addiction, our results provide guidance for efforts to develop drugs that target specific types of nicotinic

  2. A choreography of nicotinic receptors directs the dopamine neuron routine.

    PubMed

    Ungless, Mark A; Cragg, Stephanie J

    2006-06-15

    Modulation of the mesocorticolimbic dopamine system by nicotinic acetylcholine receptors (nAChRs) is thought to play an important role in both health and addiction. However, a clear understanding of how these receptors regulate in vivo firing activity has been elusive. In this issue of Neuron, Mameli-Engvall and colleagues report an impressive and thought-provoking series of in vivo experiments combining single-unit recordings from dopamine neurons with nAChR subunit deletions and region-specific lentiviral subunit re-expression.

  3. Potentiation of alpha7-containing nicotinic acetylcholine receptors by select albumins.

    PubMed

    Conroy, William G; Liu, Qing-Song; Nai, Qiang; Margiotta, Joseph F; Berg, Darwin K

    2003-02-01

    Nicotinic receptors containing alpha7 subunits are ligand-gated ion channels widely distributed in the nervous system; they influence a diverse array of events because of their high relative calcium permeability. We show here that nicotine-induced whole-cell responses generated by such receptors can be dramatically potentiated in a rapidly reversible manner by some but not all albumins. The potentiation involves increases both in potency and efficacy with no obvious differences in rise and fall times of the response. The potentiation is not reduced by removing absorbed components; it is abolished by proteolysis, suggesting that the albumin protein backbone is essential. The fact that some albumins are ineffective indicates that minor differences in amino acid sequence may be critical. Experiments with open channel blockers indicate that the potentiation involves increased responses from active receptors rather than recruitment of receptors from a previously silent pool. Single channel recordings reveal that the potentiation correlates with increased single channel opening probability, reflected in increased frequency of channel opening and increased mean channel open time. The potentiation can be exploited to overcome blockade by noncompetitive inhibitors such as beta-amyloid peptide. The results raise the possibility that endogenous compounds use the site to modulate receptor function in vivo, and suggest that the receptors may represent useful targets for therapeutic intervention in cases where they have been implicated in neuropathologies such as Alzheimer's disease.

  4. SAR of α7 nicotinic receptor agonists derived from tilorone: exploration of a novel nicotinic pharmacophore.

    PubMed

    Schrimpf, Michael R; Sippy, Kevin B; Briggs, Clark A; Anderson, David J; Li, Tao; Ji, Jianguo; Frost, Jennifer M; Surowy, Carol S; Bunnelle, William H; Gopalakrishnan, Murali; Meyer, Michael D

    2012-02-15

    The well-known interferon-inducer tilorone was found to possess potent affinity for the agonist site of the α7 neuronal nicotinic receptor (K(i)=56 nM). SAR investigations determined that both basic sidechains are essential for potent activity, however active monosubstituted derivatives can also be prepared if the flexible sidechains are replaced with conformationally rigidified cyclic amines. Analogs in which the fluorenone core is replaced with either dibenzothiophene-5,5-dioxide or xanthenone also retain potent activity.

  5. Symposium overview: mechanism of action of nicotine on neuronal acetylcholine receptors, from molecule to behavior.

    PubMed

    Narahashi, T; Fenster, C P; Quick, M W; Lester, R A; Marszalec, W; Aistrup, G L; Sattelle, D B; Martin, B R; Levin, E D

    2000-10-01

    Nicotine has long been known to interact with nicotinic acetylcholine (ACh) receptors since Langley used it extensively to chart sympathetic ganglia a century ago. It has also been used as an effective insecticide. However, it was not until the 1990s that the significance of nicotine was increasingly recognized from the toxicological, pharmacological, and environmental points of view. This is partly because studies of neuronal nicotinic ACh receptors are rapidly emerging from orphan status, fueled by several lines of research. Since Alzheimer's disease is known to be associated with down-regulation of cholinergic activity in the brain, a variety of nicotine derivatives are being tested and developed for treatment of the disease. Public awareness of the adverse effects of nicotine has reached the highest level recently. Since insect resistance to insecticides is one of the most serious issues in the pest-control arena, it is an urgent requirement to develop new insecticides that act on target sites not shared by the existing insecticides. The neuronal nicotinic ACh receptor is one of them, and new nicotinoids are being developed. Thus, the time is ripe to discuss the mechanism of action of nicotine from a variety of angles, including the molecular, physiological, and behavioral points of view. This Symposium covered a wide area of nicotine studies: genetic, genomic, and functional aspects of nicotinic ACh receptors were studied, as related to anthelmintics and insecticides; interactions between ethanol and nicotine out the ACh receptor were analyzed, in an attempt to explain the well-known heavy drinker-heavy smoker correlation; the mechanisms that underlie the desensitization of ACh receptors were studied as related to nicotine action; selective pharmacological profiles of nicotine, and descriptions of some derivatives were described; and chronic nicotine infusion effects on memory were examined using animal models.

  6. Neuronal nicotinic receptor ligands modulate chronic nicotine-induced ethanol consumption in C57BL/6J mice.

    PubMed

    Sajja, Ravi K; Rahman, Shafiqur

    2012-07-01

    Alcohol and nicotine are commonly abused drugs in humans and evidence suggests that neuronal nicotinic acetylcholine receptors (nAChRs) in the midbrain dopamine system are common targets for the neurobehavioral interactions between alcohol (ethanol) and nicotine. The present study examined the efficacy of nAChR ligands with different pharmacological profiles such as cytisine, lobeline and dihydro-β-erythroidine (DHβE) to modulate chronic nicotine-induced increase in ethanol intake by C57BL/6J mice, using a two-bottle choice procedure. After establishment of baseline ethanol preference (10%, v/v), animals received daily subcutaneous injections of saline, nicotine (0.4 mg/kg) or different doses of cytisine, lobeline or DHβE 15 min prior to nicotine, for 10 days. Ethanol and water were presented immediately after the last (saline or nicotine) injection and fluid levels were monitored for post 1 h and 2 h treatment. Compared to control, nicotine injection significantly increased mean ethanol intake over 10 days, at both post 1 h and 2 h. Pretreatment with cytisine (0.5, 1.5 or 3.0 mg/kg) or lobeline (4.0 or 10.0 mg/kg) significantly reduced nicotine-induced increase in ethanol intake post 1 h and 2 h, without affecting water consumption. DHβE (0.5 or 2.0 mg/kg) failed to suppress nicotine-induced ethanol intake across 2 h post injection. These results indicate that nAChRmediated signaling is critical in regulating nicotine-induced ethanol drinking behaviors.

  7. An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment

    SciTech Connect

    Pauly, J.R.; Marks, M.J.; Gross, S.D.; Collins, A.C. )

    1991-09-01

    Quantitative autoradiographic procedures were used to examine the effects of chronic nicotine infusion on the number of central nervous system nicotinic cholinergic receptors. Female DBA mice were implanted with jugular cannulas and infused with saline or various doses of nicotine (0.25, 0.5, 1.0 or 2.0 mg/kg/hr) for 10 days. The animals were then sacrificed and the brains were removed and frozen in isopentane. Cryostat sections were collected and prepared for autoradiographic procedures as previously described. Nicotinic cholinergic receptors were labeled with L-(3H)nicotine or alpha-(125I)bungarotoxin; (3H)quinuclidinyl benzilate was used to measure muscarinic cholinergic receptor binding. Chronic nicotine infusion increased the number of sites labeled by (3H)nicotine in most brain areas. However, the extent of the increase in binding as well as the dose-response curves for the increase were widely different among brain regions. After the highest treatment dose, binding was increased in 67 of 86 regions measured. Septal and thalamic regions were most resistant to change. Nicotinic binding measured by alpha-(125I)bungarotoxin also increased after chronic treatment, but in a less robust fashion. At the highest treatment dose, only 26 of 80 regions were significantly changes. Muscarinic binding was not altered after chronic nicotine treatment. These data suggest that brain regions are not equivalent in the mechanisms that regulate alterations in nicotinic cholinergic receptor binding after chronic nicotine treatment.

  8. Nicotine effects on muscarinic receptor-mediated free Ca[Formula: see text] level changes in the facial nucleus following facial nerve injury.

    PubMed

    Sun, Dawei; Zhou, Rui; Dong, Anbing; Sun, Wenhai; Zhang, Hongmei; Tang, Limin

    2016-06-01

    It was suggested that muscarinic, and nicotinic receptors increase free Ca[Formula: see text] levels in the facial nerve nucleus via various channels following facial nerve injury. However, intracellular Ca[Formula: see text] overload can trigger either necrotic or apoptotic cell death. It is assumed that, following facial nerve injury, the interactions of nicotinic and muscarinic acetylcholine receptors in facial nerve nucleus may negatively regulate free Ca[Formula: see text] concentrations in the facial nerve nucleus, which provide important information for the repair and regeneration of the facial nerve. The present study investigated the regulatory effects of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus in a rat model of facial nerve injury at 7, 30, and 90 days following facial nerve injury using laser confocal microscopy. The dose-dependent regulation of nicotine on muscarinic receptor-mediated free calcium ion level changes in the facial nucleus may decrease the range of free Ca[Formula: see text] increases following facial nerve injury, which is important for nerve cell regeneration. It is concluded that the negative effects of nicotine on muscarinic receptors are related to the [Formula: see text] subtype of nicotinic receptors.

  9. Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop

    SciTech Connect

    Wang, Hailong; Cheng, Xiaolin; McCammon, Jonathan

    2009-01-01

    We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed resting state, whereas the model after TMD simulation represents the channel in the proposed active state. Under external voltage biases, the channel in the active state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.

  10. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking

    PubMed Central

    McNally, Gavan P.; Clemens, Kelly J.

    2017-01-01

    The orexin/hypocretin system is important for appetitive motivation towards multiple drugs of abuse, including nicotine. Both OX1 and OX2 receptors individually have been shown to influence nicotine self-administration and reinstatement. Due to the increasing clinical use of dual orexin receptor antagonists in the treatment of disorders such as insomnia, we examined whether a dual orexin receptor antagonist may also be effective in reducing nicotine seeking. We tested the effect of intracerebroventricular (i.c.v.) administration of the potent and selective dual orexin receptor antagonist TCS1102 on orexin-A-induced food self-administration, nicotine self-administration and reinstatement of nicotine-seeking in rats. Our results show that 30 μg of TCS1102 i.c.v. abolishes orexin-A-induced increases in food self-administration but does not reduce nicotine self-administration. Neither i.c.v. 10 μg nor 30 μg of TCS1102 reduced compound reinstatement after short-term (15 days) self-administration nicotine, but 30 μg transiently reduced cue/nicotine compound reinstatement after chronic self-administration (29 days). These results indicate that TCS1102 has no substantial effect on motivation for nicotine seeking following chronic self-administration and no effect after shorter periods of intake. Orexin receptor antagonists may therefore have little clinical utility against nicotine addiction. PMID:28296947

  11. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    PubMed

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  12. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  13. Multiple CNS nicotinic receptors mediate L-dopa-induced dyskinesias: studies with parkinsonian nicotinic receptor knockout mice.

    PubMed

    Quik, Maryka; Campos, Carla; Grady, Sharon R

    2013-10-15

    Accumulating evidence supports the idea that drugs acting at nicotinic acetylcholine receptors (nAChRs) may be beneficial for Parkinson's disease, a neurodegenerative movement disorder characterized by a loss of nigrostriatal dopaminergic neurons. Nicotine administration to parkinsonian animals protects against nigrostriatal damage. In addition, nicotine and nAChR drugs improve L-dopa-induced dyskinesias, a debilitating side effect of L-dopa therapy which remains the gold-standard treatment for Parkinson's disease. Nicotine exerts its antidyskinetic effect by interacting with multiple nAChRs. One approach to identify the subtypes specifically involved in L-dopa-induced dyskinesias is through the use of nAChR subunit null mutant mice. Previous work with β2 and α6 nAChR knockout mice has shown that α6β2* nAChRs were necessary for the development/maintenance of L-dopa-induced abnormal involuntary movements (AIMs). The present results in parkinsonian α4 nAChR knockout mice indicate that α4β2* nAChRs also play an essential role since nicotine did not reduce L-dopa-induced AIMs in such mice. Combined analyses of the data from α4 and α6 knockout mice suggest that the α6α4β2β3 subtype may be critical. In contrast to the studies with α4 and α6 knockout mice, nicotine treatment did reduce L-dopa-induced AIMs in parkinsonian α7 nAChR knockout mice. However, α7 nAChR subunit deletion alone increased baseline AIMs, suggesting that α7 receptors exert an inhibitory influence on L-dopa-induced AIMs. In conclusion, α6β2*, α4β2* and α7 nAChRs all modulate L-dopa-induced AIMs, although their mode of regulation varies. Thus drugs targeting one or multiple nAChRs may be optimal for reducing L-dopa-induced dyskinesias in Parkinson's disease.

  14. Chronic Exposure to Nicotine Enhances Insulin Sensitivity through α7 Nicotinic Acetylcholine Receptor-STAT3 Pathway

    PubMed Central

    Wang, Pei; Song, Jie; Le, Ying-Ying; Viollet, Benoit; Miao, Chao-Yu

    2012-01-01

    This study was to investigate the effect of nicotine on insulin sensitivity and explore the underlying mechanisms. Treatment of Sprague-Dawley rats with nicotine (3 mg/kg/day) for 6 weeks reduced 43% body weight gain and 65% blood insulin level, but had no effect on blood glucose level. Both insulin tolerance test and glucose tolerance test demonstrated that nicotine treatment enhanced insulin sensitivity. Pretreatment of rats with hexamethonium (20 mg/kg/day) to antagonize peripheral nicotinic receptors except for α7 nicotinic acetylcholine receptor (α7-nAChR) had no effect on the insulin sensitizing effect of nicotine. However, the insulin sensitizing effect but not the bodyweight reducing effect of nicotine was abrogated in α7-nAChR knockout mice. Further, chronic treatment with PNU-282987 (0.53 mg/kg/day), a selective α7-nAChR agonist, significantly enhanced insulin sensitivity without apparently modifying bodyweight not only in normal mice but also in AMP-activated kinase-α2 knockout mice, an animal model of insulin resistance with no sign of inflammation. Moreover, PNU-282987 treatment enhanced phosphorylation of signal transducer and activator of transcription 3 (STAT3) in skeletal muscle, adipose tissue and liver in normal mice. PNU-282987 treatment also increased glucose uptake by 25% in C2C12 myotubes and this effect was total abrogated by STAT3 inhibitor, S3I-201. All together, these findings demonstrated that nicotine enhanced insulin sensitivity in animals with or without insulin resistance, at least in part via stimulating α7-nAChR-STAT3 pathway independent of inflammation. Our results contribute not only to the understanding of the pharmacological effects of nicotine, but also to the identifying of new therapeutic targets against insulin resistance. PMID:23251458

  15. Scopolamine administration modulates muscarinic, nicotinic and NMDA receptor systems.

    PubMed

    Falsafi, Soheil Keihan; Deli, Alev; Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration.C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis.Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups.The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest.

  16. (-)-Spiro[1-azabicyclo[2.2.2]octane-3,5'-oxazolidin-2'-one], a conformationally restricted analogue of acetylcholine, is a highly selective full agonist at the alpha 7 nicotinic acetylcholine receptor.

    PubMed

    Mullen, G; Napier, J; Balestra, M; DeCory, T; Hale, G; Macor, J; Mack, R; Loch, J; Wu, E; Kover, A; Verhoest, P; Sampognaro, A; Phillips, E; Zhu, Y; Murray, R; Griffith, R; Blosser, J; Gurley, D; Machulskis, A; Zongrone, J; Rosen, A; Gordon, J

    2000-11-02

    Neuronal nicotinic acetylcholine receptors are members of the ligand-gated ion channel receptor superfamily and may play important roles in modulating neurotransmission, cognition, sensory gating, and anxiety. Because of its distribution and abundance in the CNS, the alpha 7 nicotinic receptor is a strong candidate to be involved in some of these functions. In this paper we describe the synthesis and in vitro profile of AR-R17779, (-)-spiro[1-azabicyclo[2.2. 2]octane-3,5'-oxazolidin-2'-one] (4a), a potent full agonist at the rat alpha 7 nicotinic receptor, which is highly selective for the rat alpha 7 nicotinic receptor over the alpha 4 beta 2 subtype. Preliminary SAR of AR-R17779 presented here indicate that there is little scope for modification of this rigid molecule as even minor changes result in significant loss of the alpha 7 nicotinic receptor affinity.

  17. Cat carotid body chemoreceptor responses before and after nicotine receptor blockade with alpha-bungarotoxin.

    PubMed

    Mulligan, E; Lahiri, S

    1987-01-01

    The nature of nicotine receptors in the carotid body was studied in anesthetized, paralyzed and artificially ventilated cats. Chemoreceptor discharge in single or few-fiber preparations of the carotid sinus nerve was measured during isocapnic hypoxia, hyperoxic hypercapnia and in response to nicotine injections before and after administration of alpha-bungarotoxin (10 cats) and after alpha-bungarotoxin plus mecamylamine (7 cats) which binds to neuromuscular-type nicotine cholinergic receptors. alpha-Bungarotoxin caused a slight enhancement of the chemoreceptor response to hypoxia without affecting the chemoreceptor stimulation by nicotine. Mecamylamine (1-5 mg, i.v.), a ganglionic-type nicotinic receptor blocker, had no further effect on the response to hypoxia while it completely abolished the chemoreceptor stimulation by nicotine. Thus the nicotinic receptors in the cat carotid body which elicit excitation of chemosensory fibers appear to be of the ganglionic-type. Blockade of neuromuscular and ganglionic types of nicotinic receptors in the carotid body by alpha-bungarotoxin and mecamylamine does not attenuate the chemosensory responses to either hypoxia or hypercapnia. These nicotinic receptors therefore, do not appear to play an essential role in hypoxic or hypercapnic chemoreception in the cat carotid body.

  18. Oseltamivir blocks human neuronal nicotinic acetylcholine receptor-mediated currents.

    PubMed

    Muraki, Katsuhiko; Hatano, Noriyuki; Suzuki, Hiroka; Muraki, Yukiko; Iwajima, Yui; Maeda, Yasuhiro; Ono, Hideki

    2015-02-01

    The effects of oseltamivir, a neuraminidase inhibitor, were tested on the function of neuronal nicotinic acetylcholine receptors (nAChRs) in a neuroblastoma cell line IMR32 derived from human peripheral neurons and on recombinant human α3β4 nAChRs expressed in HEK cells. IMR32 cells predominately express α3β4 nAChRs. Nicotine (nic, 30 μm)-evoked currents recorded at -90 mV in IMR32 cells using the whole-cell patch clamp technique were reversibly blocked by oseltamivir in a concentration-dependent manner. In contrast, an active metabolite of oseltamivir, oseltamivir carboxylate (OC) at 30 μm had little effect on the nic-evoked currents. Oseltamivir also blocked nic-evoked currents derived from HEK cells with recombinant α3β4 nAChRs. This blockade was voltage-dependent with 10, 30 and 100 μm oseltamivir inhibiting ~50% at -100, -60 and -40 mV, respectively. Non-inactivating currents in IMR32 cells and in HEK cells with α3β4 nAChRs, which were evoked by an endogenous nicotinic agonist, ACh (5 μm), were reversibly blocked by oseltamivir. These data demonstrate that oseltamivir blocks nAChRs, presumably via binding to a site in the channel pore.

  19. Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism

    DTIC Science & Technology

    2014-08-01

    and Alpha7 Nicotinic Receptors for Treating Autism PRINCIPAL INVESTIGATOR: Kelvin W. Gee RECIPIENT: University of California Irvine...Aug 2014 4. TITLE AND SUBTITLE Dual Modulators of GABA-A and Alpha7 Nicotinic Receptors for Treating Autism 5a. CONTRACT NUMBER 5b. GRANT NUMBER...DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Autism

  20. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala

    PubMed Central

    Kenny, Paul J.; Chartoff, Elena; Roberto, Marisa; Carlezon, William A.; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5–2.5 mg/kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg/kg) or intravenously self-administered (0.03 mg/kg/infusion) nicotine injections. The highest LY235959 dose (5 mg/kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 μM) increased NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1–10 ng/side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug. PMID:18418357

  1. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  2. cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors

    PubMed Central

    Komal, Pragya; Estakhr, Jasem; Kamran, Melad; Renda, Anthony; Nashmi, Raad

    2015-01-01

    Phosphorylation of ion channels, including nicotinic acetylcholine receptors (nAChRs), by protein kinases plays a key role in the modification of synaptic transmission and neuronal excitability. α7 nAChRs are the second most prevalent nAChR subtype in the CNS following α4β2. Serine 365 in the M3–M4 cytoplasmic loop of the α7 nAChR is a phosphorylation site for protein kinase A (PKA). D1/D5 dopamine receptors signal through the adenylate cyclase–PKA pathway and play a key role in working memory and attention in the prefrontal cortex. Thus, we examined whether the dopaminergic system, mediated through PKA, functionally interacts with the α7-dependent cholinergic neurotransmission. In layer 1 interneurons of mouse prefrontal cortex, α7 nicotinic currents were decreased upon stimulation with 8-Br-cAMP, a PKA activator. In HEK 293T cells, dominant negative PKA abolished 8-Br-cAMP's effect of diminishing α7 nicotinic currents, while a constitutively active PKA catalytic subunit decreased α7 currents. In brain slices, the PKA inhibitor KT-5720 nullified 8-Br-cAMP's effect of attenuating α7 nicotinic responses, while applying a PKA catalytic subunit in the pipette solution decreased α7 currents. 8-Br-cAMP stimulation reduced surface expression of α7 nAChRs, but there was no change in single-channel conductance. The D1/D5 dopamine receptor agonist SKF 83822 similarly attenuated α7 nicotinic currents from layer 1 interneurons and this attenuation of nicotinic current was prevented by KT-5720. These results demonstrate that dopamine receptor-mediated activation of PKA negatively modulates nicotinic neurotransmission in prefrontal cortical interneurons, which may be a contributing mechanism of dopamine modulation of cognitive behaviours such as attention or working memory. PMID:25990637

  3. Nootropic alpha7 nicotinic receptor allosteric modulator derived from GABAA receptor modulators.

    PubMed

    Ng, Herman J; Whittemore, Edward R; Tran, Minhtam B; Hogenkamp, Derk J; Broide, Ron S; Johnstone, Timothy B; Zheng, Lijun; Stevens, Karen E; Gee, Kelvin W

    2007-05-08

    Activation of brain alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) has broad therapeutic potential in CNS diseases related to cognitive dysfunction, including Alzheimer's disease and schizophrenia. In contrast to direct agonist activation, positive allosteric modulation of alpha7 nAChRs would deliver the clinically validated benefits of allosterism to these indications. We have generated a selective alpha7 nAChR-positive allosteric modulator (PAM) from a library of GABAA receptor PAMs. Compound 6 (N-(4-chlorophenyl)-alpha-[[(4-chloro-phenyl)amino]methylene]-3-methyl-5-isoxazoleacet-amide) evokes robust positive modulation of agonist-induced currents at alpha7 nAChRs, while preserving the rapid native characteristics of desensitization, and has little to no efficacy at other ligand-gated ion channels. In rodent models, it corrects sensory-gating deficits and improves working memory, effects consistent with cognitive enhancement. Compound 6 represents a chemotype for allosteric activation of alpha7 nAChRs, with therapeutic potential in CNS diseases with cognitive dysfunction.

  4. Serotonin receptors as potential targets for modulation of nicotine use and dependence.

    PubMed

    Fletcher, Paul J; Lê, Anh Dzung; Higgins, Guy A

    2008-01-01

    Nicotine use carries considerable health risks and plays a major role in a variety of diseases. Current pharmacological treatments to aid in smoking cessation include nicotine-replacement therapy and non-nicotinic strategies such as bupropion and varenicline. While these treatments benefit some individuals there is still a need for better and more effective treatment strategies. Nicotine is the major psychoactive substance in tobacco. Some behavioural effects of nicotine, including its reinforcing efficacy result in part from activation of mesolimbic dopamine neurons. Modulation of dopamine function is one potential treatment strategy that could treat nicotine dependence. Serotonergic neurons modulate the functioning of dopamine neurons in a complex fashion. Much of this complexity arises from the fact that serotonin (5-HT) exerts its effects through multiple receptor subtypes, some of which even act in apparent functional opposition to each other. This article reviews evidence, primarily from animal experiments, using behavioural procedures relevant to nicotine use on the potential for 5-HT receptors as targets for treating nicotine dependence. The 5-HT(1A, 2A, 2C, 3, 4, 6) receptor subtypes have received most experimental attention, with the 5-HT(1A) and 5-HT(2C) receptors being the best studied. Several studies have now shown that 5-HT(1A) receptor antagonists alleviate some of the behavioural signs induced by nicotine withdrawal. Electrophysiological and neurochemical studies show that stimulation of 5-HT(2C) receptors reduces the function of the mesolimbic dopamine pathway. 5-HT(2C) receptor agonists block the stimulatory action of nicotine on midbrain dopamine function. They also reduce several behavioural effects of nicotine including its discriminative stimulus properties and reinforcing effects. Although more work remains to be done, 5-HT(2C) receptor agonists perhaps hold the most promise as potential therapies for smoking cessation.

  5. Influence of subunit composition on desensitization of neuronal acetylcholine receptors at low concentrations of nicotine.

    PubMed

    Fenster, C P; Rains, M F; Noerager, B; Quick, M W; Lester, R A

    1997-08-01

    The influence of alpha and beta subunits on the properties of nicotine-induced activation and desensitization of neuronal nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus oocytes was examined. Receptors containing alpha4 subunits were more sensitive to activation by nicotine than alpha3-containing receptors. At low concentrations of nicotine, nAChRs containing beta2 subunits reached near-maximal desensitization more rapidly than beta4-containing receptors. The concentration of nicotine producing half-maximal desensitization was influenced by the particular alpha subunit expressed; similar to results for activation, alpha4-containing receptors were more sensitive to desensitizing levels of nicotine than alpha3-containing receptors. The alpha subunit also influenced the rate of recovery from desensitization; this rate was approximately inversely proportional to the apparent nicotine affinity for the desensitized state. The homomeric alpha7 receptor showed the lowest sensitivity to nicotine for both activation and desensitization; alpha7 nAChRs also demonstrated the fastest desensitization kinetics. These subunit-dependent properties remained in the presence of external calcium, although subtle, receptor subtype-specific effects on both the apparent affinities for activation and desensitization and the desensitization kinetics were noted. These data imply that the subunit composition of various nAChRs determines the degree to which receptors are desensitized and/or activated by tobacco-related levels of nicotine. The subtype-specific balance between receptor activation and desensitization should be considered important when the cellular and behavioral actions of nicotine are interpreted.

  6. Thyroid receptor β involvement in the effects of acute nicotine on hippocampus-dependent memory.

    PubMed

    Leach, Prescott T; Kenney, Justin W; Connor, David A; Gould, Thomas J

    2015-06-01

    Cigarette smoking is common despite adverse health effects. Nicotine's effects on learning may contribute to addiction by enhancing drug-context associations. Effects of nicotine on learning could be direct or could occur by altering systems that modulate cognition. Because thyroid signaling can alter cognition and nicotine/smoking may change thyroid function, nicotine could affect learning through changes in thyroid signaling. These studies investigate the functional contributions of thyroid receptor (TR) subtypes β and α1 to nicotine-enhanced learning and characterize the effects of acute nicotine and learning on thyroid hormone levels. We conducted a high throughput screen of transcription factor activity to identify novel targets that may contribute to the effects of nicotine on learning. Based on these results, which showed that combined nicotine and learning uniquely acted to increase TR activation, we identified TRs as potential targets of nicotine. Further analyses were conducted to determine the individual and combined effects of nicotine and learning on thyroid hormone levels, but no changes were seen. Next, to determine the role of TRβ and TRα1 in the effects of nicotine on learning, mice lacking the TRβ or TRα1 gene and wildtype littermates were administered acute nicotine prior to fear conditioning. Nicotine enhanced contextual fear conditioning in TRα1 knockout mice and wildtypes from both lines but TRβ knockout mice did not show nicotine-enhanced learning. This finding supports involvement of TRβ signaling in the effect of acute nicotine on hippocampus-dependent memory. Acute nicotine enhances learning and these effects may involve processes regulated by the transcription factor TRβ.

  7. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  8. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  9. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  10. GABAA receptor inhibition triggers a nicotinic neuroprotective mechanism

    PubMed Central

    Ferchmin, P. A; Pérez, Dinely; Alvarez, William Castro; Penzo, Mario A.; Maldonado, Héctor M.; Eterovic, Vesna A.

    2014-01-01

    Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer’s, Parkinson’s and hypoxic ischemic events, as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4β2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in a α4β2-dependent manner. Neuroprotection was assessed as the prevention of the NMDA-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of GABA. Blocking either α7 or GABAA receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4β2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4β2 nAChRs. PMID:23280428

  11. Mixed nicotinic and muscarinic features of cholinergic receptor coupled to secretion in bovine chromaffin cells

    SciTech Connect

    Shirvan, M.H.; Pollard, H.B.; Heldman, E. )

    1991-06-01

    Acetylcholine evokes release from cultured bovine chromaffin cells by a mechanism that is believed to be classically nicotinic. However, the authors found that the full muscarinic agonist oxotremorine-M (Oxo-M) induced a robust catecholamine (CA) secretion. By contrast, muscarine, pilocarpine, bethanechol, and McN-A-343 did not elicit any secretory response. Desensitization of the response to nicotine by Oxo-M and desensitization of the response to Oxo-M by nicotine suggest that both nicotine and Oxo-M were acting at the same receptor. Additional experiments supporting this conclusion show that nicotine-induced secretion and Oxo-M-induced secretion were similarly blocked by various muscarinic and nicotinic antagonists. Moreover, secretion induced by nicotine and Oxo-M were Ca{sup 2+} dependent, and both agonists induced {sup 45}Ca{sup 2+} uptake. Equilibrium binding studies showed that ({sup 3}H)Oxo-M bound to chromaffin cell membranes with a K{sub d} value of 3.08 {times} 10{sup {minus}8}M and a Hill coefficient of 1.00, suggesting one binding site for this ligand. Nicotine inhibited Oxo-M binding in a noncompetitive manner, suggesting that both ligands bind at two different sites on the same receptor. They propose that the receptor on bovine chromaffin cells that is coupled to secretion represents an unusual cholinergic receptor that has both nicotinic and muscarinic features.

  12. Nicotine at concentrations found in cigarette smokers activates and desensitizes nicotinic acetylcholine receptors in CA1 interneurons of rat hippocampus.

    PubMed

    Alkondon, M; Pereira, E F; Almeida, L E; Randall, W R; Albuquerque, E X

    2000-10-01

    Behavioral effects of cigarette smoking are attributed to the interactions of nicotine with brain nicotinic acetylcholine receptors (nAChRs). However, the mechanisms by which nAChR function in developing and mature brain is affected by a smoker's level of nicotine (50-500 nM) remain unclear. Thus, the objective of this study was to determine the concentration- and time-dependent effects of nicotine on alpha7 and alpha4beta2 nAChRs, the two major brain subtypes, natively expressed in CA1 interneurons of rat hippocampal slices. Only at concentrations > or =5 microM did nicotine (applied for 6-60 s) elicit action potentials or measurable whole-cell currents (EC(50)=158 microM) in stratum radiatum interneurons that express alpha7 nAChRs. Continuous exposure for 10-15 min of the neurons to nicotine (0.5-2.5 microM) inhibited alpha7 nAChR-mediated currents (IC(50)=640 nM) evoked by choline (10 mM). Nicotine (> or =0.125 microM) applied to the neurons for 1-5 min induced slowly desensitizing whole-cell currents (EC(50)=3.2 microM) in stratum lacunosum moleculare interneurons; this effect was mediated by alpha4beta2 nAChRs. Also via activation of alpha4beta2 nAChRs, nicotine (0.125-0.5 microM) increased the frequency and amplitude of GABAergic postsynaptic currents (PSCs) in stratum radiatum interneurons. However, exposure of the neurons for 10-15 min to nicotine (0.25-0.5 microM) resulted in desensitization of alpha4beta2 nAChRs. It is suggested that nanomolar concentrations of nicotine after acute intake suppress inhibitory inputs to pyramidal cells through a disinhibitory mechanism involving activation of alpha4beta2 nAChRs and desensitization of alpha7 nAChRs, and after chronic intake leads to up-regulation of both receptor subtypes via desensitization. These findings have direct implications to the actions of nicotine in cigarette smokers.

  13. The role of nicotinic acetylcholine receptors in the primary reinforcing and reinforcement-enhancing effects of nicotine.

    PubMed

    Palmatier, Matthew I; Liu, Xiu; Caggiula, Anthony R; Donny, Eric C; Sved, Alan F

    2007-05-01

    The primary reinforcing effects of nicotine are mediated by the drugs action at central nervous system nicotinic acetylcholine receptors (nAChRs). Although previous studies have demonstrated that nicotine potently enhances responding for non-pharmacological stimuli, the role of nAChRs in this reinforcement-enhancing effect is not known. The two reinforcement-related effects of nicotine can be dissociated in a paradigm that provides concurrent access to drug infusions and a non-pharmacological visual stimulus (VS). The present study characterized the role of nAChRs in the primary reinforcing effect of nicotine and the reinforcement-enhancing effect of nicotine. For rats with access to VS (VS-Only), nicotine (NIC-Only), both reinforcers contingent upon one response (NIC+VS) or both reinforcers contingent upon separate responses (2-Lever), unit dose-response relationships (0, 30, 60, or 90 microg/kg/infusion, free base) were determined over a 22-day acquisition period. Expression of the two reinforcement-related effects of nicotine was manipulated by pharmacological antagonism of nAChRs (1 mg/kg mecamylamine, subcutaneous, 5-min before the session) or by substituting saline for nicotine infusions (ie extinction) over a series of seven test sessions. Unit dose manipulations yielded an inverse dose-response relationship for active lever responding in the NIC+VS group. The dose-response relationships for rats with independent access to each reinforcer (2-Lever group) were relatively flat. For the 2-Lever group, acute mecamylamine challenge blocked the reinforcement-enhancing effects of nicotine, VS-lever responding decreased to basal levels on the first day of mecamylamine treatment or saline substitution (to the level of the VS-Only group). In contrast, nicotine-lever responding decreased gradually over the 7-day testing period (similar to saline extinction). The two reinforcement-related effects of nicotine are mediated by nAChRs but can be dissociated by acute and

  14. Nicotinic and opioid receptor regulation of striatal dopamine D2-receptor mediated transmission

    PubMed Central

    Mamaligas, Aphroditi A.; Cai, Yuan; Ford, Christopher P.

    2016-01-01

    In addition to dopamine neuron firing, cholinergic interneurons (ChIs) regulate dopamine release in the striatum via presynaptic nicotinic receptors (nAChRs) on dopamine axon terminals. Synchronous activity of ChIs is necessary to evoke dopamine release through this pathway. The frequency-dependence of disynaptic nicotinic modulation has led to the hypothesis that nAChRs act as a high-pass filter in the dopaminergic microcircuit. Here, we used optogenetics to selectively stimulate either ChIs or dopamine terminals directly in the striatum. To measure the functional consequence of dopamine release, D2-receptor synaptic activity was assessed via virally overexpressed potassium channels (GIRK2) in medium spiny neurons (MSNs). We found that nicotinic-mediated dopamine release was blunted at higher frequencies because nAChRs exhibit prolonged desensitization after a single pulse of synchronous ChI activity. However, when dopamine neurons alone were stimulated, nAChRs had no effect at any frequency. We further assessed how opioid receptors modulate these two mechanisms of release. Bath application of the κ opioid receptor agonist U69593 decreased D2-receptor activation through both pathways, whereas the μ opioid receptor agonist DAMGO decreased D2-receptor activity only as a result of cholinergic-mediated dopamine release. Thus the release of dopamine can be independently modulated when driven by either dopamine neurons or cholinergic interneurons. PMID:27886263

  15. Chalcones as positive allosteric modulators of α7 nicotinic acetylcholine receptors: a new target for a privileged structure.

    PubMed

    Balsera, Beatriz; Mulet, José; Fernández-Carvajal, Asia; de la Torre-Martínez, Roberto; Ferrer-Montiel, Antonio; Hernández-Jiménez, José G; Estévez-Herrera, Judith; Borges, Ricardo; Freitas, Andiara E; López, Manuela G; García-López, M Teresa; González-Muñiz, Rosario; Pérez de Vega, María Jesús; Valor, Luis M; Svobodová, Lucie; Sala, Salvador; Sala, Francisco; Criado, Manuel

    2014-10-30

    The α7 acetylcholine nicotine receptor is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain and inflammation among other diseases. Therefore, the development of new agents that target this receptor has great significance. Positive allosteric modulators might be advantageous, since they facilitate receptor responses without directly interacting with the agonist binding site. Here we report the search for and further design of new positive allosteric modulators having the relatively simple chalcone structure. From the natural product isoliquiritigenin as starting point, chalcones substituted with hydroxyl groups at defined locations were identified as optimal and specific promoters of α7 nicotinic function. The most potent compound (2,4,2',5'-tetrahydroxychalcone, 111) was further characterized showing its potential as neuroprotective, analgesic and cognitive enhancer, opening the way for future developments around the chalcone structure.

  16. PRENATAL NICOTINE EXPOSURE SELECTIVELY AFFECTS NICOTINIC RECEPTOR EXPRESSION IN PRIMARY AND ASSOCIATIVE VISUAL CORTICES OF THE FETAL BABOON

    PubMed Central

    Duncan, Jhodie R.; Garland, Marianne; Stark, Raymond I.; Myers, Michael M.; Fifer, William P.; Mokler, David J.; Kinney, Hannah C.

    2014-01-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex which are important in the development of visual mapping. Using a baboon model we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/hr, i.v.) or saline from 86 days gestation. At 161 days gestation fetal brains were collected (n=5/group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region and subunit dependent manner. Prenatal nicotine exposure was associated with increased binding for 3H-epibatidine sensitive nAChRs in the primary visual cortex (BA 17) and BA 18, but not BA 19, of the associative visual cortex (p<0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy. PMID:24903536

  17. Prenatal nicotine exposure selectively affects nicotinic receptor expression in primary and associative visual cortices of the fetal baboon.

    PubMed

    Duncan, Jhodie R; Garland, Marianne; Stark, Raymond I; Myers, Michael M; Fifer, William P; Mokler, David J; Kinney, Hannah C

    2015-03-01

    Exposure to nicotine during pregnancy via maternal cigarette smoking is associated with visual deficits in children. This is possibly due to the activation of nicotinic acetylcholine receptors (nAChRs) in the occipital cortex, which are important in the development of visual mapping. Using a baboon model, we explored the effects of prenatal nicotine on parameters in the primary and associated visual cortices. Pregnant baboons were infused with nicotine (0.5 mg/h, intravenous) or saline from 86 days gestation. At 161 days gestation, fetal brains were collected (n = 5 per group) and the occipital lobe assessed for nAChRs and markers of the serotonergic and catecholaminergic systems using tissue autoradiography and/or high-performance liquid chromatography. Neuronal nAChRs and serotonergic markers were expressed in a region- and subunit-dependent manner. Prenatal nicotine exposure was associated with increased binding for (3) H-epibatidine sensitive nAChRs in the primary visual cortex [Brodmann areas (BA) 17] and BA 18, but not BA 19, of the associative visual cortex (P < 0.05). Markers of the serotonergic or catecholaminergic systems were not significantly altered. Thus, prenatal nicotine exposure is associated with alterations in the cholinergic system in the occipital lobe, which may aid in the explanation of the appearance of visual deficits in children from mothers who smoke during pregnancy.

  18. Pharmacology of nicotinic receptor-mediated inhibition in rat dorsolateral septal neurones.

    PubMed Central

    Wong, L A; Gallagher, J P

    1991-01-01

    . This response was also sensitive to antagonism by various calcium-dependent potassium channel blockers including apamin, barium and tetraethylammonium. 7. Our studies reveal a novel class of CNS nicotinic receptor whose action upon stimulation by an agonist results in a membrane hyperpolarization via a calcium-dependent increase in potassium ion conductance. PMID:2061835

  19. An ER-resident membrane protein complex regulates nicotinic acetylcholine receptor subunit composition at the synapse

    PubMed Central

    Almedom, Ruta B; Liewald, Jana F; Hernando, Guillermina; Schultheis, Christian; Rayes, Diego; Pan, Jie; Schedletzky, Thorsten; Hutter, Harald; Bouzat, Cecilia; Gottschalk, Alexander

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are homo- or heteropentameric ligand-gated ion channels mediating excitatory neurotransmission and muscle activation. Regulation of nAChR subunit assembly and transfer of correctly assembled pentamers to the cell surface is only partially understood. Here, we characterize an ER transmembrane (TM) protein complex that influences nAChR cell-surface expression and functional properties in Caenorhabditis elegans muscle. Loss of either type I TM protein, NRA-2 or NRA-4 (nicotinic receptor associated), affects two different types of muscle nAChRs and causes in vivo resistance to cholinergic agonists. Sensitivity to subtype-specific agonists of these nAChRs is altered differently, as demonstrated by whole-cell voltage-clamp of dissected adult muscle, when applying exogenous agonists or after photo-evoked, channelrhodopsin-2 (ChR2) mediated acetylcholine (ACh) release, as well as in single-channel recordings in cultured embryonic muscle. These data suggest that nAChRs desensitize faster in nra-2 mutants. Cell-surface expression of different subunits of the ‘levamisole-sensitive' nAChR (L-AChR) is differentially affected in the absence of NRA-2 or NRA-4, suggesting that they control nAChR subunit composition or allow only certain receptor assemblies to leave the ER. PMID:19609303

  20. Contribution of NMDA glutamate and nicotinic acetylcholine receptor mechanisms in the discrimination of ethanol-nicotine mixtures.

    PubMed

    Ford, Matthew M; Davis, Natalie L; McCracken, Aubrey D; Grant, Kathleen A

    2013-10-01

    Ethanol and nicotine are commonly coabused drugs, and the incidence of codependence is greater than would be expected on the basis of the summed probability of dependence on each drug alone. Previous findings from our laboratory and others suggest that interactive mechanisms at the level of discriminative stimulus (S(D)) effects may contribute to this coabuse phenomenon. Specifically, ethanol overshadows the nicotine S(D) whereas nicotine potentiates the stimulus salience of ethanol when the two drugs are conditioned as a drug mixture. The goal of the current study was to begin to delineate the pharmacological bases of these ethanol-nicotine interactions. Three groups of C57BL/6J mice were trained to discriminate 0.8 mg/kg nicotine + 0.5 g/kg ethanol (0.8 N + 0.5 E), 0.8 N + 1.0 E, or 0.8 N + 2.0 E. An NMDA receptor antagonist (MK-801) and three nACh receptor ligands were tested for their ability to generalize from or antagonize, respectively, the drug mixtures. MK-801 fully generalized from the 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures and partially generalized from 0.8 N + 0.5 E. In contrast, nACh receptor ligands had minimal influence in blocking the perception of 0.8 N + 1.0 E and 0.8 N + 2.0 E mixtures, and only mecamylamine partially blocked 0.8 N+0.5 E. Reduced and enhanced contributions of nACh and NMDA receptors, respectively, in the discrimination of ethanol-nicotine mixtures may contribute to the overshadowing and potentiation phenomena observed previously.

  1. C3-halogenation of cytisine generates potent and efficacious nicotinic receptor agonists.

    PubMed

    Abin-Carriquiry, J Andrés; Voutilainen, Merja H; Barik, Jacques; Cassels, Bruce K; Iturriaga-Vásquez, Patricio; Bermudez, Isabel; Durand, Claudia; Dajas, Federico; Wonnacott, Susan

    2006-04-24

    Neuronal nicotinic acetylcholine receptors subserve predominantly modulatory roles in the brain, making them attractive therapeutic targets. Natural products provide key leads in the quest for nicotinic receptor subtype-selective compounds. Cytisine, found in Leguminosae spp., binds with high affinity to alpha4beta2* nicotinic receptors. We have compared the effect of C3 and C5 halogenation of cytisine and methylcytisine (MCy) on their interaction with native rat nicotinic receptors. 3-Bromocytisine (3-BrCy) and 3-iodocytisine (3-ICy) exhibited increased binding affinity (especially at alpha7 nicotinic receptors; Ki approximately 0.1 microM) and functional potency, whereas C5-halogenation was detrimental. 3-BrCy and 3-ICy were more potent than cytisine at evoking [3H]dopamine release from striatal slices (EC50 approximately 11 nM), [3H]noradrenaline release from hippocampal slices (EC50 approximately 250 nM), increases in intracellular Ca2+ in PC12 cells and inward currents in Xenopus oocytes expressing human alpha3beta4 nicotinic receptor (EC50 approximately 2 microM). These compounds were also more efficacious than cytisine. C3-halogenation of cytisine is proposed to stabilize the open conformation of the nicotinic receptor but does not enhance subtype selectivity.

  2. Molecular identification of high and low affinity receptors for nicotinic acid.

    PubMed

    Wise, Alan; Foord, Steven M; Fraser, Neil J; Barnes, Ashley A; Elshourbagy, Nabil; Eilert, Michelle; Ignar, Diane M; Murdock, Paul R; Steplewski, Klaudia; Green, Andrew; Brown, Andrew J; Dowell, Simon J; Szekeres, Philip G; Hassall, David G; Marshall, Fiona H; Wilson, Shelagh; Pike, Nicholas B

    2003-03-14

    Nicotinic acid has been used clinically for over 40 years in the treatment of dyslipidemia producing a desirable normalization of a range of cardiovascular risk factors, including a marked elevation of high density lipoprotein and a reduction in mortality. The precise mechanism of action of nicotinic acid is unknown, although it is believed that activation of a G(i)-G protein-coupled receptor may contribute. Utilizing available information on the tissue distribution of nicotinic acid receptors, we identified candidate orphan receptors. The selected orphan receptors were screened for responses to nicotinic acid, in an assay for activation of G(i)-G proteins. Here we describe the identification of the G protein-coupled receptor HM74 as a low affinity receptor for nicotinic acid. We then describe the subsequent identification of HM74A in follow-up bioinformatics searches and demonstrate that it acts as a high affinity receptor for nicotinic acid and other compounds with related pharmacology. The discovery of HM74A as a molecular target for nicotinic acid may facilitate the discovery of superior drug molecules to treat dyslipidemia.

  3. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways.

    PubMed

    Gorini, C; Jameson, H; Woerman, A L; Perry, D C; Mendelowitz, D

    2013-08-15

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg(-1)·day(-1) of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex.

  4. Prenatal nicotine exposure enhances the trigeminocardiac reflex via serotonin receptor facilitation in brainstem pathways

    PubMed Central

    Gorini, C.; Jameson, H.; Woerman, A. L.; Perry, D. C.

    2013-01-01

    In this study we used a rat model for prenatal nicotine exposure to test whether clinically relevant concentrations of brain nicotine and cotinine are passed from dams exposed to nicotine to her pups, whether this changes the trigeminocardiac reflex (TCR), and whether serotonergic function in the TCR brainstem circuitry is altered. Pregnant Sprague-Dawley dams were exposed to 6 mg·kg−1·day−1 of nicotine via osmotic minipumps for the duration of pregnancy. Following birth dams and pups were killed, blood was collected, and brain nicotine and cotinine levels were measured. A separate group of prenatal nicotine-exposed pups was used for electrophysiological recordings. A horizontal brainstem slice was obtained by carefully preserving the trigeminal nerve with fluorescent identification of cardiac vagal neurons (CVNs) in the nucleus ambiguus. Stimulation of the trigeminal nerve evoked excitatory postsynaptic current in CVNs. Our data demonstrate that prenatal nicotine exposure significantly exaggerates both the TCR-evoked changes in heart rate in conscious unrestrained pups, and the excitatory neurotransmission to CVNs upon trigeminal afferent nerve stimulation within this brainstem reflex circuit. Application of the 5-HT1A receptor antagonist WAY 100635 (100 μM) and 5-HT2A/C receptor antagonist ketanserin (10 μM)significantly decreased neurotransmission, indicating an increased facilitation of 5-HT function in prenatal nicotine-exposed animals. Prenatal nicotine exposure enhances activation of 5-HT receptors and exaggerates the trigeminocardiac reflex. PMID:23766497

  5. Alpha4* nicotinic receptors in preBotzinger complex mediate cholinergic/nicotinic modulation of respiratory rhythm.

    PubMed

    Shao, Xuesi M; Tan, Wenbin; Xiu, Joanne; Puskar, Nyssa; Fonck, Carlos; Lester, Henry A; Feldman, Jack L

    2008-01-09

    Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9'A) of the nAChR alpha4 subunit; this mutation renders alpha4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice. Nicotine affected respiratory rhythm at concentrations approximately 100-fold lower in the homozygous L9'A knock-in mice compared with wild-type mice. Bath application of 5 nm nicotine increased the excitability of preBötC inspiratory neurons, increased respiratory frequency, and induced tonic/seizure-like activities in XIIn in L9'A mice, effects similar to those induced by 1 microM nicotine in wild-type mice. In L9'A mice, microinjection of low nanomolar concentrations of nicotine into the preBötC increased respiratory frequency, whereas injection into the ipsilateral hypoglossal (XII) nucleus induced tonic/seizure-like activity. The alpha4*-selective nAChR antagonist dihydro-beta-erythroidine produced opposite effects and blocked the nicotinic responses. These data, showing that nAChRs in the preBötC and XII nucleus in L9'A mice are hypersensitive to nicotine and endogenous ACh, suggest that functional alpha4* nAChRs are present in the preBötC. They mediate cholinergic/nicotinic modulation of the excitability of preBötC inspiratory neurons and of respiratory rhythm. Furthermore, functional alpha4* nAChRs are present in XII nucleus and mediate cholinergic/nicotinic modulation of tonic activity in XIIn.

  6. Nicotine-induced up-regulation and desensitization of alpha4beta2 neuronal nicotinic receptors depend on subunit ratio.

    PubMed

    López-Hernández, Gretchen Y; Sánchez-Padilla, Javier; Ortiz-Acevedo, Alejandro; Lizardi-Ortiz, José; Salas-Vincenty, Janice; Rojas, Legier V; Lasalde-Dominicci, José A

    2004-09-03

    Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.

  7. Role of nicotine receptor partial agonists in tobacco cessation

    PubMed Central

    Maity, Nivedita; Chand, Prabhat; Murthy, Pratima

    2014-01-01

    One in three adults in India uses tobacco, a highly addictive substance in one or other form. In addition to prevention of tobacco use, offering evidence-based cessation services to dependent tobacco users constitutes an important approach in addressing this serious public health problem. A combination of behavioral methods and pharmacotherapy has shown the most optimal results in tobacco dependence treatment. Among currently available pharmacological agents, drugs that preferentially act on the α4 β2-nicotinic acetyl choline receptor like varenicline and cytisine appear to have relatively better cessation outcomes. These drugs are in general well tolerated and have minimal drug interactions. The odds of quitting tobacco use are at the very least doubled with the use of partial agonists compared with placebo and the outcomes are also superior when compared to nicotine replacement therapy and bupropion. The poor availability of partial agonists and specifically the cost of varenicline, as well as the lack of safety data for cytisine has limited their use world over, particularly in developing countries. Evidence for the benefit of partial agonists is more robust for smoking rather than smokeless forms of tobacco. Although more studies are needed to demonstrate their effectiveness in different populations of tobacco users, present literature supports the use of partial agonists in addition to behavioral methods for optimal outcome in tobacco dependence. PMID:24574554

  8. Full-gestational exposure to nicotine and ethanol augments nicotine self-administration by altering ventral tegmental dopaminergic function due to NMDA receptors in adolescent rats.

    PubMed

    Roguski, Emily E; Sharp, Burt M; Chen, Hao; Matta, Shannon G

    2014-03-01

    In adult rats, we have shown full-gestational exposure to nicotine and ethanol (Nic + EtOH) augmented nicotine self-administration (SA) (increased nicotine intake) compared to pair-fed (PF) offspring. Therefore, we hypothesized that full-gestational exposure to Nic + EtOH disrupts control of dopaminergic (DA) circuitry by ventral tegmental area (VTA) NMDA receptors, augmenting nicotine SA and DA release in nucleus accumbens (NAcc) of adolescents. Both NAcc DA and VTA glutamate release were hyper-responsive to intra-VTA NMDA in Nic + EtOH offspring versus PF (p = 0.03 and 0.02, respectively). Similarly, DA release was more responsive to i.v. nicotine in Nic + EtOH offspring (p = 0.02). Local DL-2-Amino-5-phosphonopentanoic acid sodium salt (AP5) (NMDA receptor antagonist) infusion into the VTA inhibited nicotine-stimulated DA release in Nic + EtOH and PF offspring. Nicotine SA was augmented in adolescent Nic + EtOH versus PF offspring (p = 0.000001). Daily VTA microinjections of AP5 reduced nicotine SA by Nic + EtOH offspring, without affecting PF (p = 0.000032). Indeed, nicotine SA in Nic + EtOH offspring receiving AP5 was not different from PF offspring. Both VTA mRNA transcripts and NMDA receptor subunit proteins were not altered in Nic + EtOH offspring. In summary, adolescent offspring exposed to gestational Nic + EtOH show markedly increased vulnerability to become dependent on nicotine. This reflects the enhanced function of a subpopulation of VTA NMDA receptors that confer greater nicotine-induced DA release in NAcc. We hypothesized that concurrent gestational exposure to nicotine and ethanol would disrupt the control of VTA dopaminergic circuitry by NMDA receptors. Resulting in the augmented nicotine self-administration (SA) in adolescent offspring.

  9. A model of the closed form of the nicotinic acetylcholine receptor m2 channel pore.

    PubMed

    Kim, Sanguk; Chamberlain, Aaron K; Bowie, James U

    2004-08-01

    The nicotinic acetylcholine receptor is a neurotransmitter-gated ion channel in the postsynaptic membrane. It is composed of five homologous subunits, each of which contributes one transmembrane helix--the M2 helix--to create the channel pore. The M2 helix from the delta subunit is capable of forming a channel by itself. Although a model of the receptor was recently proposed based on a low-resolution, cryo-electron microscopy density map, we found that the model does not explain much of the other available experimental data. Here we propose a new model of the M2 channel derived solely from helix packing and symmetry constraints. This model agrees well with experimental results from solid-state NMR, chemical reactivity, and mutagenesis experiments. The model depicts the channel pore, the channel gate, and the residues responsible for cation specificity.

  10. High Throughput Random Mutagenesis and Single Molecule Real Time Sequencing of the Muscle Nicotinic Acetylcholine Receptor

    PubMed Central

    Groot-Kormelink, Paul J.; Ferrand, Sandrine; Kelley, Nicholas; Bill, Anke; Freuler, Felix; Imbert, Pierre-Eloi; Marelli, Anthony; Gerwin, Nicole; Sivilotti, Lucia G.; Miraglia, Loren; Orth, Anthony P.; Oakeley, Edward J.; Schopfer, Ulrich; Siehler, Sandra

    2016-01-01

    High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the α1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each α1 mutant was co-transfected with wildtype β1, δ, and ε subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either α-bungarotoxin or tubocurarine. Eight α1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation. PMID:27649498

  11. Pharmacologic Antagonism of Ghrelin Receptors Attenuates Development of Nicotine Induced Locomotor Sensitization in Rats

    PubMed Central

    Wellman, Paul J.; Clifford, P. Shane; Rodriguez, Juan; Hughes, Samuel; Eitan, Shoshana; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean

    2011-01-01

    Aims Ghrelin (GHR) is an orexigenic gut peptide that interacts with ghrelin receptors (GHR-Rs) to modulate brain reinforcement circuits. Systemic GHR infusions augment cocaine stimulated locomotion and conditioned place preference (CPP) in rats, whereas genetic or pharmacological ablation of GHR-Rs has been shown to attenuate the acute locomotor-enhancing effects of nicotine, cocaine, amphetamine and alcohol and to blunt the CPP induced by food, alcohol, amphetamine and cocaine in mice. The stimulant nicotine can induce CPP and like amphetamine and cocaine, repeated administration of nicotine induces locomotor sensitization in rats. A key issue is whether pharmacological antagonism of GHR-Rs would similarly attenuate nicotine-induced locomotor sensitization. Method To examine the role of GHR-Rs in the behavioral sensitizing effects of nicotine, adult male rats were injected with either 0, 3 or 6 mg/kg of the GHR-R receptor antagonist JMV 2959 (i.p.) and 20 minutes later with either vehicle or 0.4 mg/kg nicotine hydrogen tartrate (s.c.) on each of 7 consecutive days. Results Rats treated with nicotine alone showed robust locomotor sensitization, whereas rats pretreated with JMV 2959 showed significantly attenuated nicotine-induced hyperlocomotion. Conclusions These results suggest that GHR-R activity is required for the induction of locomotor sensitization to nicotine and complement an emerging literature implicating central GHR systems in drug reward/reinforcement. PMID:21903141

  12. Differential effects of serotonin (5-HT)2 receptor-targeting ligands on locomotor responses to nicotine-repeated treatment.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-07-01

    We verified the hypothesis that serotonin (5-HT)(2) receptors control the locomotor effects of nicotine (0.4 mg kg(-1)) in rats by using the 5-HT(2A) receptor antagonist M100907, the preferential 5-HT(2A) receptor agonist DOI, the 5-HT(2C) receptor antagonist SB 242084, and the 5-HT(2C) receptor agonists Ro 60-0175 and WAY 163909. Repeated pairings of a test environment with nicotine for 5 days, on Day 10 significantly augmented the locomotor activity following nicotine administration. Of the investigated 5-HT(2) receptor ligands, M100907 (2 mg kg(-1)) or DOI (1 mg kg(-1)) administered during the first 5 days in combination with nicotine attenuated or enhanced, respectively, the development of nicotine sensitization. Given acutely on Day 10, M100907 (2 mg kg(-1)), Ro 60-0175 (1 mg kg(-1)), and WAY 163909 (1.5 mg kg(-1)) decreased the expression of nicotine sensitization. In another set of experiments, where the nicotine challenge test was performed on Day 15 in animals treated repeatedly (Days: 1-5, 10) with nicotine, none of 5-HT(2) receptor ligands administered during the second withdrawal period (Days: 11-14) to nicotine-treated rats altered the sensitizing effect of nicotine given on Day 15. Our data indicate that 5-HT(2A) receptors (but not 5-HT(2C) receptors) play a permissive role in the sensitizing effects of nicotine, while stimulation of 5-HT(2A) receptors enhances the development of nicotine sensitization and activation of 5-HT(2C) receptors is essential for the expression of nicotine sensitization. Repeated treatment with the 5-HT(2) receptor ligands within the second nicotine withdrawal does not inhibit previously established sensitization.

  13. Methadone is a non-competitive antagonist at the α4β2 and α3* nicotinic acetylcholine receptors and an agonist at the α7 nicotinic acetylcholine receptor.

    PubMed

    Talka, Reeta; Salminen, Outi; Tuominen, Raimo K

    2015-04-01

    Nicotine-methadone interactions have been studied in human beings and in various experimental settings regarding addiction, reward and pain. Most methadone maintenance treatment patients are smokers, and methadone administration has been shown to increase cigarette smoking. Previous in vitro studies have shown that methadone is a non-competitive antagonist at rat α3β4 nicotinic acetylcholine receptors (nAChR) and an agonist at human α7 nAChRs. In this study, we used cell lines expressing human α4β2, α7 and α3* nAChRs to compare the interactions of methadone at the various human nAChRs under the same experimental conditions. A [(3) H]epibatidine displacement assay was used to determine whether methadone binds to the nicotinic receptors, and (86) Rb(+) efflux and changes in intracellular calcium [Ca(2+) ]i were used to assess changes in the functional activity of the receptors. Methadone displaced [(3) H]epibatidine from nicotinic agonist-binding sites in SH-EP1-hα7 and SH-SY5Y cells, but not in SH-EP1-hα4β2 cells. The Ki values for methadone were 6.3 μM in SH-EP1-hα7 cells and 19.4 μM and 1008 μM in SH-SY5Y cells. Methadone increased [Ca(2+) ]i in all cell lines in a concentration-dependent manner, and in SH-EP1-hα7 cells, the effect was more pronounced than the effect of nicotine treatment. In SH-EP1-hα4β2 cells, the effect of methadone was negligible compared to that of nicotine. Methadone pre-treatment abolished the nicotine-induced response in [Ca(2+) ]i in all cell lines expressing nAChRs. In SH-EP1-hα4β2 and SH-SY5Y cells, methadone had no effect on the (86) Rb(+) efflux, but it antagonized the nicotine-induced (86) Rb(+) ion efflux in a non-competitive manner. These results suggest that methadone is an agonist at human α7 nAChRs and a non-competitive antagonist at human α4β2 and α3* nAChRs. This study adds further support to the previous findings that opioids interact with nAChRs, which may underlie their frequent co

  14. Coantagonism of Glutamate Receptors and Nicotinic Acetylcholinergic Receptors Disrupts Fear Conditioning and Latent Inhibition of Fear Conditioning

    ERIC Educational Resources Information Center

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors ([alpha]-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-D-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the…

  15. Energetic Contributions to Channel Gating of Residues in the Muscle Nicotinic Receptor β1 Subunit

    PubMed Central

    Akk, Gustav; Eaton, Megan; Li, Ping; Zheng, Steven; Lo, Joshua; Steinbach, Joe Henry

    2013-01-01

    In the pentameric ligand-gated ion channel family, transmitter binds in the extracellular domain and conformational changes result in channel opening in the transmembrane domain. In the muscle nicotinic receptor and other heteromeric members of the family one subunit does not contribute to the canonical agonist binding site for transmitter. A fundamental question is whether conformational changes occur in this subunit. We used records of single channel activity and rate-equilibrium free energy relationships to examine the β1 (non-ACh-binding) subunit of the muscle nicotinic receptor. Mutations to residues in the extracellular domain have minimal effects on the gating equilibrium constant. Positions in the channel lining (M2 transmembrane) domain contribute strongly and relatively late during gating. Positions thought to be important in other subunits in coupling the transmitter-binding to the channel domains have minimal effects on gating. We conclude that the conformational changes involved in channel gating propagate from the binding-site to the channel in the ACh-binding subunits and subsequently spread to the non-binding subunit. PMID:24194945

  16. The neuronal nicotinic acetylcholine receptor {alpha}7 subunit gene: Cloning, mapping, structure, and targeting in mouse

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1994-09-01

    The neuronal nicotinic acetylcholine receptor {alpha}7 subunit is a member of a family of ligand-gated ion channels, and is the only subunit know to bind {alpha}-bungarotoxin in mammalian brain. {alpha}-Bungarotoxin binding sites are known to be more abundant in the hippocampus of mouse strains that are particularly sensitive to nicotine-induced seizures. The {alpha}7 receptor is highly permeable to calcium, which could suggest a role in synaptic plasticity in the nervous system. Auditory gating deficiency, an abnormal response to a second auditory stimulus, is characteristic of schizophrenia. Mouse strains that exhibit a similar gating deficit have reduced hippocampal expression of the {alpha}7 subunit. We have cloned and sequenced the full length cDNA for the mouse {alpha}7 gene (Acra-7) and characterized its gene structure. The murine {alpha}7 shares amino acid identity of 99% and 93% with the rat and human {alpha}7 subunits, respectively. Using an interspecies backcross panel, the murine gene was mapped to chromosome 7 near the p locus, a region syntenic with human chromosome 15; the human gene (CHRNA7) was confirmed to map to 15q13-q14 by FISH. To generate a mouse {alpha}7 mutant by homologous recombination, we have constructed a replacement vector which will delete transmembrane domains II-IV and the cytoplasmic domain from the gene product. Recombinant embryonic stem (ES) cell clones were selected and used to develop mouse chimeras that are currently being bred to obtain germline transmission.

  17. Activation of the GABA(B) Receptor Prevents Nicotine-Induced Locomotor Stimulation in Mice.

    PubMed

    Lobina, Carla; Carai, Mauro A M; Froestl, Wolfgang; Mugnaini, Claudia; Pasquini, Serena; Corelli, Federico; Gessa, Gian Luigi; Colombo, Giancarlo

    2011-01-01

    Recent studies demonstrated that activation of the GABA(B) receptor, either by means of orthosteric agonists or positive allosteric modulators (PAMs), inhibited different nicotine-related behaviors, including intravenous self-administration and conditioned place preference, in rodents. The present study investigated whether the anti-nicotine effects of the GABA(B) receptor agonist, baclofen, and GABA(B) PAMs, CGP7930, and GS39783, extend to nicotine stimulant effects. To this end, CD1 mice were initially treated with baclofen (0, 1.25, and 2.5 mg/kg, i.p.), CGP7930 (0, 25, and 50 mg/kg, i.g.), or GS39783 (0, 25, and 50 mg/kg, i.g.), then treated with nicotine (0 and 0.05 mg/kg, s.c.), and finally exposed to an automated apparatus for recording of locomotor activity. Pretreatment with doses of baclofen, CGP7930, or GS39783 that did not alter locomotor activity when given with nicotine vehicle fully prevented hyperlocomotion induced by 0.05 mg/kg nicotine. These data extend to nicotine stimulant effects the capacity of baclofen and GABA(B) PAMs to block the reinforcing, motivational, and rewarding properties of nicotine. These data strengthen the hypothesis that activation of the GABA(B) receptor may represent a potentially useful, anti-smoking therapeutic strategy.

  18. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus.

    PubMed

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-03-19

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7*nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7*nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2-3 week-old Wistar rats, and 2-9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7*nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7*nicotinic receptor modulator, which were blocked by a specific α7*nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7*nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7*nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain.

  19. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus

    PubMed Central

    John, Danielle; Shelukhina, Irina; Yanagawa, Yuchio; Deuchars, Jim; Henderson, Zaineb

    2015-01-01

    Neurogenesis occurs throughout life in the subgranular zone of the dentate gyrus, and postnatal-born granule cells migrate into the granule cell layer and extend axons to their target areas. The α7⁎nicotinic receptor has been implicated in neuronal maturation during development of the brain and is abundant in interneurons of the hippocampal formation of the adult brain. Signalling through these same receptors is believed also to promote maturation and integration of adult-born granule cells in the hippocampal formation. We therefore aimed to determine whether functional α7⁎nicotinic receptors are expressed in developing granule cells of the postnatal dentate gyrus. For these experiments we used 2–3 week-old Wistar rats, and 2–9 week old transgenic mice in which GABAergic interneurons were marked by expression of green fluorescent protein. Immunohistochemistry indicated the presence of α7⁎nicotinic receptor subunits around granule cells close around the subgranular zone which correlated with the distribution of developmental markers for immature granule cells. Whole-cell patch clamp recording showed that a proportion of granule cells responded to puffed ACh in the presence of atropine, and that these cells possessed electrophysiological properties found in immature granule cells. The nicotinic responses were potentiated by an allosteric α7⁎nicotinic receptor modulator, which were blocked by a specific α7⁎nicotinic receptor antagonist and were not affected by ionotropic glutamate or GABA receptor antagonists. These results suggest the presence of functional somato-dendritic α7⁎nicotinic receptors on immature granule cells of the postnatal dentate gyrus, consistent with studies implicating α7⁎nicotinic receptors in dendritic maturation of dentate gyrus neurons in adult brain. PMID:25553616

  20. Minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor

    SciTech Connect

    Jones, O.T.; Eubanks, J.H.; Earnest, J.P.; McNamee, M.G.

    1988-05-17

    The detergent sodium cholate was used to both solubilize and partially delipidate the nicotinic acetylcholine receptor from Torpedo californica. Using both native membranes and reconstituted membranes, it is shown that the detergent to lipid molar ratio is the most important parameter in determining the effect of the detergent on the functional properties of the receptor. Receptor-lipid complexes were quantitatively separated from detergent and excess lipids by centrifugation through detergent-free sucrose gradients. The lipid to protein molar ratio of the complexes could be precisely controlled by adjusting the cholate and lipid concentrations of the starting membranes. Analyses of both ion influx activity and ligand binding revealed that a minimum of 45 lipids per receptor was required for stabilization of the receptor in a fully functional state. Progressive irreversible inactivation occurred as the lipid to protein mole ratio was decreased below 45, and complete inactivation occurred below a ratio of 20. The results are consistent with a functional requirement for a single shell of lipids around the perimeter of the receptor.

  1. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Zwart, Ruud; Strotton, Merrick; Ching, Jennifer; Astles, Peter C; Sher, Emanuele

    2014-03-05

    α7β2 is a novel type of nicotinic acetylcholine receptor shown to be uniquely expressed in cholinergic neurons of the basal forebrain and in hippocampal interneurons. We have compared the pharmacological properties of recombinant homomeric α7 and heteromeric α7β2 nicotinic acetylcholine receptors in order to reveal the pharmacological consequences of β2 subunit incorporation into the pentamer. The non-selective agonist epibatidine did not distinguish α7β2 from α7 nicotinic acetylcholine receptors, but three other non-selective agonists (nicotine, cytisine and varenicline) were less efficacious on α7β2 than on α7. A more dramatic change in efficacy was seen with eight different selective α7 agonists. Because of their very low intrinsic efficacy, some compounds became very efficacious functional antagonists at α7β2 receptors. Three α4β2 nicotinic receptor selective agonists that were not active on α7, were also inactive on α7β2, and dihydro-β-erythroidine, an α4β2 receptor-preferring antagonist, inhibited α7 and α7β2 in a similar manner. These results reveal significant effects of β2 incorporation in determining the relative efficacy of several non-selective and α7 selective agonists, and also show that incorporation of β2 subunits does not cause a shift to a more “β2-like” pharmacology of α7 nicotinic acetylcholine receptors.

  2. Expression of nicotinic receptors in normal and tumoral pulmonary neuroendocrine cells (PNEC).

    PubMed

    Sartelet, Hervé; Maouche, Kamel; Totobenazara, Jean-laurent; Petit, Jessica; Burlet, Henriette; Monteau, Michel; Tournier, Jean Marie; Birembaut, Philippe

    2008-01-01

    Neuroendocrine (NE) tumors of the lung represent a wide spectrum of phenotypically distinct entities, with differences in tumor progression and aggressiveness, which include carcinoid tumor (CT) and small-cell lung carcinoma (SCLC). Approximately 20-40% of patients with both typical and atypical CT are non-smokers, while virtually all patients with SCLC are cigarette smokers. Cigarette smoke contains numerous molecules which have been identified as carcinogens. The real impact of nicotine in the development of tumors is not well known. Recent studies show that nicotine upregulates factors of transcription through the nicotinic receptors. The aim of our work was to study the expression of the nicotinic receptors in normal and neoplastic pulmonary NE cells. An immunohistochemical study was carried out with antibodies against NE markers and subunits alpha7 and beta2 of nicotinic receptors in 7 normal lungs, 10 CT (8 typical and 2 atypical) and 10 SCLC fixed in formalin and embedded in paraffin. This study was completed with reverse transcription-polymerase chain reactions (RT-PCR) detection of alpha7-subunit nicotinic receptor mRNA expression. Our data showed that beta2-subunit of nicotinic receptors is never expressed in normal NE cells of lungs and very rarely in NE tumors. In contrast, alpha7-subunit is constantly found in NE cells in normal lungs. In tumors, its expression is significantly higher in SCLC than in CT (p=0.009). Thus, alpha7 subunit nicotinic receptor in a context of chronic nicotinic intoxication seems to be associated with an aggressive phenotype in the spectrum of the NE tumors.

  3. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  4. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  5. Cannabinoid CB1 receptor antagonist rimonabant disrupts nicotine reward-associated memory in rats.

    PubMed

    Fang, Qin; Li, Fang-Qiong; Li, Yan-Qin; Xue, Yan-Xue; He, Ying-Ying; Liu, Jian-Feng; Lu, Lin; Wang, Ji-Shi

    2011-10-01

    Exposure to cues previously associated with drug intake leads to relapse by activating previously acquired memories. Based on previous findings, in which cannabinoid CB(1) receptors were found to be critically involved in specific aspects of learning and memory, we investigated the role of CB(1) receptors in nicotine reward memory using a rat conditioned place preference (CPP) model. In Experiment 1, rats were trained for CPP with alternating injections of nicotine (0.5mg/kg, s.c.) and saline to acquire the nicotine-conditioned memory. To examine the effects of rimonabant on the reconsolidation of nicotine reward memory, rats were administered rimonabant (0, 0.3, and 3.0mg/kg, i.p.) immediately after reexposure to the drug-paired context. In Experiment 2, rats were trained for CPP similarly to Experiment 1. To examine the effects of rimonabant on the reinstatement of nicotine reward memory, rimonabant (0, 0.3, and 3.0mg/kg, i.p.) was administered before the test of nicotine-induced CPP reinstatement. In Experiment 3, to evaluate whether rimonabant itself produces a reward memory, rats were trained for CPP with alternating injections of different doses of rimonabant (0, 0.3, and 3.0mg/kg) and saline. Rimonabant at a dose of 3.0mg/kg significantly disrupted the reconsolidation of nicotine memory and significantly blocked the reinstatement of nicotine-induced CPP. However, rimonabant itself did not produce CPP. These findings provide clear evidence that CB(1) receptors play a role in nicotine reward memory, suggesting that CB(1) receptor antagonists may be a potential target for managing nicotine addiction.

  6. Rare human nicotinic acetylcholine receptor α4 subunit (CHRNA4) variants affect expression and function of high-affinity nicotinic acetylcholine receptors.

    PubMed

    McClure-Begley, T D; Papke, R L; Stone, K L; Stokes, C; Levy, A D; Gelernter, J; Xie, P; Lindstrom, J; Picciotto, M R

    2014-03-01

    Nicotine, the primary psychoactive component in tobacco smoke, produces its behavioral effects through interactions with neuronal nicotinic acetylcholine receptors (nAChRs). α4β2 nAChRs are the most abundant in mammalian brain, and converging evidence shows that this subtype mediates the rewarding and reinforcing effects of nicotine. A number of rare variants in the CHRNA4 gene that encode the α4 nAChR subunit have been identified in human subjects and appear to be underrepresented in a cohort of smokers. We compared three of these variants (α4R336C, α4P451L, and α4R487Q) to the common variant to determine their effects on α4β2 nAChR pharmacology. We examined [(3)H]epibatidine binding, interacting proteins, and phosphorylation of the α4 nAChR subunit with liquid chromatography and tandem mass spectrometry (LC-MS/MS) in HEK 293 cells and voltage-clamp electrophysiology in Xenopus laevis oocytes. We observed significant effects of the α4 variants on nAChR expression, subcellular distribution, and sensitivity to nicotine-induced receptor upregulation. Proteomic analysis of immunopurified α4β2 nAChRs incorporating the rare variants identified considerable differences in the intracellular interactomes due to these single amino acid substitutions. Electrophysiological characterization in X. laevis oocytes revealed alterations in the functional parameters of activation by nAChR agonists conferred by these α4 rare variants, as well as shifts in receptor function after incubation with nicotine. Taken together, these experiments suggest that genetic variation at CHRNA4 alters the assembly and expression of human α4β2 nAChRs, resulting in receptors that are more sensitive to nicotine exposure than those assembled with the common α4 variant. The changes in nAChR pharmacology could contribute to differences in responses to smoked nicotine in individuals harboring these rare variants.

  7. Positive allosteric modulators as an approach to nicotinic acetylcholine receptor-targeted therapeutics: advantages and limitations.

    PubMed

    Williams, Dustin K; Wang, Jingyi; Papke, Roger L

    2011-10-15

    Neuronal nicotinic acetylcholine receptors (nAChR), recognized targets for drug development in cognitive and neuro-degenerative disorders, are allosteric proteins with dynamic interconversions between multiple functional states. Activation of the nAChR ion channel is primarily controlled by the binding of ligands (agonists, partial agonists, competitive antagonists) at conventional agonist binding sites, but is also regulated in either negative or positive ways by the binding of ligands to other modulatory sites. In this review, we discuss models for the activation and desensitization of nAChR, and the discovery of multiple types of ligands that influence those processes in both heteromeric nAChR, such as the high-affinity nicotine receptors of the brain, and homomeric α7-type receptors. In recent years, α7 nAChRs have been identified as a potential target for therapeutic indications leading to the development of α7-selective agonists and partial agonists. However, unique properties of α7 nAChR, including low probability of channel opening and rapid desensitization, may limit the therapeutic usefulness of ligands binding exclusively to conventional agonist binding sites. New enthusiasm for the therapeutic targeting of α7 has come from the identification of α7-selective positive allosteric modulators (PAMs) that work effectively on the intrinsic factors that limit α7 ion channel activation. While these new drugs appear promising for therapeutic development, we also consider potential caveats and possible limitations for their use, including PAM-insensitive forms of desensitization and cytotoxicity issues.

  8. Action of nereistoxin on recombinant neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Raymond Delpech, Valérie; Ihara, Makoto; Coddou, Claudio; Matsuda, Kazuhiko; Sattelle, David B

    2003-11-01

    Nereistoxin (NTX), a natural neurotoxin from the salivary glands of the marine annelid worm Lumbriconereis heteropoda, is highly toxic to insects. Its synthetic analogue, Cartap, was the first commercial insecticide based on a natural product. We have used voltage-clamp electrophysiology to compare the actions of NTX on recombinant nicotinic acetylcholine receptors (nicotinic AChRs) expressed in Xenopus laevis oocytes following nuclear injection of cDNAs. The recombinant nicotinic AChRs investigated were chicken alpha7, chicken alpha4beta2 and the Drosophila melanogaster/chicken hybrid receptors SAD/beta2 and ALS/beta2. No agonist action of NTX (0.1-100 microM) was observed on chicken alpha7, chicken alpha4beta2 and the Drosophila/chicken hybrid nicotinic AChRs. Currents elicited by ACh were reduced in amplitude by NTX in a dose-dependent manner. The toxin was slightly more potent on recombinant Drosophila/vertebrate hybrid receptors than on vertebrate homomeric (alpha7) or heteromeric (alpha4beta2) nicotinic AChRs. Block by NTX of the chicken alpha7, chicken alpha4beta2 and the SAD/beta2 and ALS/beta2 Drosophila/chicken hybrid receptors is in all cases non-competitive. Thus, the site of action on nicotinic AChRs of NTX, to which the insecticide Cartap is metabolised in insects, differs from that of the major nicotinic AChR-active insecticide, imidacloprid.

  9. Parallel Anxiolytic-Like Effects and Upregulation of Neuronal Nicotinic Acetylcholine Receptors Following Chronic Nicotine and Varenicline

    PubMed Central

    Turner, Jill R.; Castellano, Laura M.

    2011-01-01

    Introduction: Clinical and preclinical studies suggest that regulation of nicotinic acetylcholine receptors (nAChR) maybe involved in the etiology of withdrawal symptoms. Methods: We evaluated heteromeric nAChR regulation via [3H]epibatidine binding following cessation of chronic nicotine or varenicline treatment. Animals were concurrently tested in the marble-burying test to evaluate treatment-related effects. Results: We found that both nicotine (18 mg/kg/day, free base) and varenicline (1.8 mg/kg/day) chronically administered for 14 days upregulated nAChRs significantly in the cortex, hippocampus, striatum, and thalamus. The duration of upregulation (up to 72 hr) was both drug and region specific. In addition to nAChR upregulation, chronic administration of both nicotine and varenicline had anxiolytic-like effects in the marble-burying test. This effect was maintained for 48 hr following cessation of varenicline but was absent 24 hr following cessation from nicotine. Additionally, marble-burying behavior positively correlated to the regulation of cortical nAChRs following cessation of either treatment. Conclusions: Varenicline has been shown to be an efficacious smoking cessation aid, with a proposed mechanism of action that includes modulation of dopamine release in reward areas of the brain. Our studies show that varenicline elicits both anxiolytic effects in the marble-burying test as well as region- and time-specific receptor upregulation. These findings suggest receptor upregulation as a mechanism for its efficacy as a smoking cessation therapy. PMID:21097981

  10. Oseltamivir produces hypothermic and neuromuscular effects by inhibition of nicotinic acetylcholine receptor functions: comparison to procaine and bupropion.

    PubMed

    Fukushima, Akihiro; Chazono, Kaori; Hashimoto, Yuichi; Iwajima, Yui; Yamamoto, Shohei; Maeda, Yasuhiro; Ohsawa, Masahiro; Ono, Hideki

    2015-09-05

    Oseltamivir, an anti-influenza virus drug, induces marked hypothermia in normal mice. We have proposed that the hypothermic effect arises from inhibition of the nicotinic acetylcholine receptor function of sympathetic ganglion neurons which innervate the brown adipose tissue (a heat generator). It has been reported that local anesthetics inhibit nicotinic acetylcholine receptor function by acting on its ionic channels, and that bupropion, a nicotinic antagonist, induces hypothermia. In this study, we compared the effects of oseltamivir, procaine and bupropion on body temperature, cardiovascular function and neuromuscular transmission. Intraperitoneal administration of oseltamivir (100mg/kg), procaine (86.6mg/kg) and bupropion (86.7mg/kg) lowered the core body temperature of normal mice. At lower doses (10-30mg/kg oseltamivir, 8.7-26mg/kg procaine and bupropion), when administered subcutaneously, the three drugs antagonized the hypothermia induced by intraperitoneal injection of nicotine (1mg/kg). In anesthetized rats, intravenous oseltamivir (30-100mg/kg), procaine (10mg/kg) and bupropion (10mg/kg) induced hypotension and bradycardia. Oseltamivir alone (100mg/kg) did not inhibit neuromuscular twitch contraction of rats, but at 3-30mg/kg it augmented the muscle-relaxing effect of d-tubocurarine. Similar effects were observed when lower doses of procaine (10-30mg/kg) and bupropion (3-10mg/kg) were administered, suggesting that systemic administration of oseltamivir inhibits muscular nicotinic acetylcholine receptors. These results support the idea that the hypothermic effect of oseltamivir is due to its effects on sympathetic ganglia which innervate the brown adipose tissue, and suggest that oseltamivir may exert non-selective ion channel blocking effects like those of ester-type local anesthetics.

  11. α6β2*-subtype nicotinic acetylcholine receptors are more sensitive than α4β2*-subtype receptors to regulation by chronic nicotine administration

    PubMed Central

    Marks, MJ; Grady, SR; Salminen, O; Paley, MA; Wageman, CR; McIntosh, JM; Whiteaker, P

    2014-01-01

    Nicotinic acetylcholine receptors (nAChR) of the α6β2* subtype (where * indicates the possible presence of additional subunits) are prominently expressed on dopaminergic neurons. Because of this, their role in tobacco use and nicotine dependence has received much attention. Previous studies have demonstrated that α6β2*-nAChR are downregulated following chronic nicotine exposure (unlike other subtypes that have been investigated – most prominently α4β2* nAChR). This study examines, for the first time, effects across a comprehensive chronic nicotine dose range. Chronic nicotine dose-responses and quantitative ligand-binding autoradiography were used to define nicotine sensitivity of changes in α4β2*-nAChR and α6β2*-nAChR expression. α6β2*-nAChR downregulation by chronic nicotine exposure in dopaminergic and optic-tract nuclei was ≈three-fold more sensitive than upregulation of α4β2*-nAChR. In contrast, nAChR-mediated [3H]-dopamine release from dopamine-terminal region synaptosomal preparations changed only in response to chronic treatment with high nicotine doses, while dopaminergic parameters (transporter expression and activity, dopamine receptor expression) were largely unchanged. Functional measures in olfactory tubercle preparations were made for the first time; both nAChR expression levels and nAChR-mediated functional measures changed differently between striatum and olfactory tubercles. These results show that functional changes measured using synaptosomal [3H]-DA release are primarily due to changes in nAChR, rather than in dopaminergic, function. PMID:24661093

  12. Nicotinic receptors in the dorsal and ventral hippocampus differentially modulate contextual fear conditioning.

    PubMed

    Kenney, Justin W; Raybuck, Jonathan D; Gould, Thomas J

    2012-08-01

    Nicotine administration alters various forms of hippocampus-dependent learning and memory. Increasing work has found that the dorsal and ventral hippocampus differentially contribute to multiple behaviors. Thus, the present study examined whether the effects of nicotine in the dorsal and ventral hippocampus have distinct influences on contextual fear learning in male C57BL/6J mice. Direct infusion of nicotine into the dorsal hippocampus resulted in an enhancement of contextual fear learning, whereas nicotine infused into the ventral hippocampus resulted in deficits. Nicotine infusions into the ventral hippocampus did not alter hippocampus-independent cued fear conditioning or time spent in the open arm of the elevated plus maze, a measure of anxiety, suggesting that the effects are due to alterations in contextual learning and not other general processes. Finally, results from using direct infusions of MLA, a low-affinity α7 nicotinic acetylcholine receptor (nAChR) antagonist, in conjunction with systemic nicotine, provide evidence that α7-nAChRs in the ventral hippocampus mediate the detrimental effect of ventral hippocampal nicotine on contextual fear learning. These results suggest that with systemic nicotine administration, competition exists between the dorsal and ventral hippocampus for behavioral control over contextual learning.

  13. Ketanserin, a 5-HT2 receptor antagonist, decreases nicotine self-administration in rats.

    PubMed

    Levin, Edward D; Slade, Susan; Johnson, Michael; Petro, Ann; Horton, Kofi; Williams, Paul; Rezvani, Amir H; Rose, Jed E

    2008-12-14

    Nicotine intake constitutes a principal mechanism for tobacco addiction. In addition to primary effects on nicotinic acetylcholine receptors, nicotine has cascading effects, which may also underlie its neurobehavioral actions. Nicotine induces serotonin (5-HT) release, which has not classically been thought to be involved in tobacco addiction as dopamine has. However, addiction can be characterized more as a disorder of compulsion than a disorder of enjoyment. 5-HT mechanisms play key roles in compulsive disorders. Nicotine-induced 5-HT release may be a key to tobacco addiction. Ketanserin, a 5-HT2a and 5-HT2c receptor antagonist, significantly attenuates nicotine effects on attention and memory. These studies were conducted to determine if ketanserin would reduce nicotine self-administration in rats. Male Sprague-Dawley rats (N=12) were given initial food pellet training and then 10 sessions of nicotine self-administration training (0.03 mg/kg/infusion, i.v.). Then the rats were administered ketanserin (1 or 2 mg/kg, s.c.) or the saline vehicle. Ketanserin (2 mg/kg) significantly decreased nicotine self-administration. This did not seem to be due to sedative or amnestic effects of ketanserin. In a second study, the effects of repeated administration of 2 mg/kg ketanserin (N=11) vs. saline injections (N=10) were examined. In the initial phase, the acute effectiveness of ketanserin in significantly reducing nicotine self-administration was replicated. The effect became attenuated during the following several sessions, but the significant effect became re-established during the final phases of this two-week study. 5-HT mechanisms play critical roles in the maintenance of nicotine self-administration. Better understanding of those roles may help lead to new 5-HT-based treatments for tobacco addiction.

  14. Inhibitory effects of tramadol on nicotinic acetylcholine receptors in adrenal chromaffin cells and in Xenopus oocytes expressing alpha 7 receptors.

    PubMed

    Shiraishi, Munehiro; Minami, Kouichiro; Uezono, Yasuhito; Yanagihara, Nobuyuki; Shigematsu, Akio; Shibuya, Izumi

    2002-05-01

    1. Tramadol has been used clinically as an analgesic; however, the mechanism of its analgesic effects is still unknown. 2. We used bovine adrenal chromaffin cells to investigate effects of tramadol on catecholamine secretion, nicotine-induced cytosolic Ca(2+) concentration ([Ca(2+)](i)) increases and membrane current changes. We also investigated effects of tramadol on alpha7 nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. 3. Tramadol concentration-dependently suppressed carbachol-induced catecholamine secretion to 60% and 27% of the control at the concentration of 10 and 100 microM, respectively, whereas it had little effect on veratridine- or high K(+)-induced catecholamine secretion. 4. Tramadol also suppressed nicotine-induced ([Ca(2+)](i)) increases in a concentration-dependent manner. Tramadol inhibited nicotine-induced inward currents, and the inhibition was unaffected by the opioid receptor antagonist naloxone. 5. Tramadol inhibited nicotinic currents carried by alpha7 receptors expressed in Xenopus oocytes. 6. Tramadol inhibited both alpha-bungarotoxin-sensitive and -insensitive nicotinic currents in bovine adrenal chromaffin cells. 7. In conclusion, tramadol inhibits catecholamine secretion partly by inhibiting nicotinic AChR functions in a naloxone-insensitive manner and alpha7 receptors are one of those inhibited by tramadol.

  15. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  16. Nicotinic Acetylcholine Receptors as Targets for Tobacco Cessation Therapeutics: Cutting-Edge Methodologies to Understand Receptor Assembly and Trafficking.

    PubMed

    Fox-Loe, Ashley M; Dwoskin, Linda P; Richards, Christopher I

    2016-01-01

    Tobacco dependence is a chronic relapsing disorder and nicotine, the primary alkaloid in tobacco, acts at nicotinic receptors to stimulate dopamine release in brain, which is responsible for the reinforcing properties of nicotine, leading to addiction. Although the majority of tobacco users express the desire to quit, only a small percentage of those attempting to quit are successful using the currently available pharmacotherapies. Nicotine upregulates the number of specific nicotinic receptors on the neuronal cell surface. An increase in receptor trafficking or preferential stoichiometric assembly of receptor subunits involves changes in assembly, endoplasmic reticulum export, vesicle transport, decreased degradation, desensitization, enhanced maturation of functional pentamers, and pharmacological chaperoning. Understanding these changes on a mechanistic level is important to the development of nicotinic receptors as drug targets. For this reason, cutting-edge methodologies are being developed and employed to pinpoint distinct changes in localization, assembly, export, vesicle trafficking, and stoichiometry in order to further understand the physiology of these receptors and to evaluate the action of novel therapeutics for smoking cessation.

  17. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  18. Sustained nicotine exposure differentially affects alpha 3 beta 2 and alpha 4 beta 2 neuronal nicotinic receptors expressed in Xenopus oocytes.

    PubMed

    Hsu, Y N; Amin, J; Weiss, D S; Wecker, L

    1996-02-01

    To determine whether prolonged exposure to nicotine differentially affects alpha 3 beta 2 versus alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes, oocytes were coinjected with subunit cRNAs, and peak responses to agonist, evoked by 0.7 or 7 microM nicotine for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively, were determined before and following incubation for up to 48 h with nanomolar concentrations of nicotine. Agonist responses of alpha 4 beta 2 receptors decreased in a concentration-dependent manner with IC50 values in the 10 nM range following incubation for 24 h and in the 1 nM range following incubation for 48 h. In contrast, responses of alpha 3 beta 2 receptors following incubation for 24-48 h with 1,000 nM nicotine decreased by only 50-60%, and total ablation of responses could not be achieved. Attenuation of responses occurred within the first 5 min of nicotine exposure and was a first-order process for both subtypes; half-lives for inactivation were 4.09 and 2.36 min for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Recovery was also first-order for both subtypes; half-lives for recovery were 21 and 7.5 h for alpha 4 beta 2 and alpha 3 beta 2 receptors, respectively. Thus, the responsiveness of both receptors decreased following sustained exposure to nicotine, but alpha 4 beta 2 receptors recovered much slower. Results may explain the differential effect of sustained nicotine exposure on nicotinic receptor-mediated neurotransmitter release.

  19. Attenuation of CNS inflammatory responses by nicotine involves α7 and non-α7 nicotinic receptors1,2

    PubMed Central

    Hao, Junwei; Simard, Alain R.; Turner, Gregory H.; Wu, Jie; Whiteaker, Paul; Lukas, Ronald J.; Shi, Fu-Dong

    2010-01-01

    A considerable number of in vivo studies have demonstrated that the cholinergic system can dampen the peripheral immune response, and it is thought that the α7-nicotinic acetylcholine receptor (nAChR) subtype is a key mediator of this process. The goal of the present study was to determine if nicotine modulates immunological mechanisms known to be involved in the development of experimental autoimmune encephalomyelitis (EAE), a mouse model for CNS autoimmune disease, via α7-nAChRs. Here we show that nicotine exposure attenuates EAE severity and that this effect is largely abolished in nAChR α7 subunit knock-out mice. However, nicotine exposure partially retains the ability to reduce lymphocyte infiltration into the CNS, inhibit auto-reactive T cell proliferation and helper T cell cytokine production, down-regulate co-stimulatory protein expression on myeloid cells, and increase the differentiation and recruitment of regulatory T cells, even in the absence of α7-nAChRs. Diverse effects of nicotine on effector and regulatory T cells, as well as antigen presenting cells, may be linked to differential expression patterns of nAChR subunits across these cell types. Taken together, our data show that although α7-nAChRs indeed seem to play an important role in nicotine-conferred reduction of the CNS inflammatory response and protection against EAE, other nAChR subtypes also are involved in the anti-inflammatory properties of the cholinergic system. PMID:20932827

  20. Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning.

    PubMed

    Devore, Sasha; de Almeida, Licurgo; Linster, Christiane

    2014-08-20

    The olfactory bulb (OB) and piriform cortex receive dense cholinergic projections from the basal forebrain. Cholinergic modulation within the piriform cortex has long been proposed to serve important functions in olfactory learning and memory. We here investigate how olfactory discrimination learning is regulated by cholinergic modulation of the OB inputs to the piriform cortex. We examined rats' performance on a two-alternative choice odor discrimination task following local, bilateral blockade of cholinergic nicotinic and/or muscarinic receptors in the OB. Results demonstrate that acquisition, but not recall, of novel discrimination problems is impaired following blockade of OB cholinergic receptors, although the relative contribution of muscarinic and nicotinic receptors depends on task difficulty. Blocking muscarinic receptors impairs learning for nearly all odor sets, whereas blocking nicotinic receptors only affects performance for perceptually similar odors. This pattern of behavioral effects is consistent with predictions from a model of cholinergic modulation in the OB and piriform cortex (de Almeida et al., 2013). Model simulations suggest that muscarinic and nicotinic receptors may serve complementary roles in regulating coherence and sparseness of the OB network output, which in turn differentially regulate the strength and overlap in cortical odor representations. Overall, our results suggest that muscarinic receptor blockade results in a bona fide learning impairment that may arise because cortical neurons are activated less often. Behavioral impairment following nicotinic receptor blockade may not be due to the inability of the cortex to learn, but rather arises because the cortex is unable to resolve highly overlapping input patterns.

  1. Water-mediated conformational transitions in nicotinic receptor M2 helix bundles: a molecular dynamics study.

    PubMed

    Sankararamakrishnan, R; Sansom, M S

    1995-12-27

    The ion channel of the nicotinic acetylcholine receptor is a water-filled pore formed by five M2 helix segments, one from each subunit. Molecular dynamics simulations on bundles of five M2 alpha 7 helices surrounding a central column of water and with caps of water molecules at either end of the pore have been used to explore the effects of intrapore water on helix packing. Interactions of water molecules with the N-terminal polar sidechains lead to a conformational transition from right- to left-handed supercoils during these stimulations. These studies reveal that the pore formed by the bundle of M2 helices is flexible. A structural role is proposed for water molecules in determining the geometry of bundles of isolated pore-forming helices.

  2. Differential inhibition of nicotine- and acetylcholine-evoked currents through alpha4beta2 neuronal nicotinic receptors by tobacco cembranoids in Xenopus oocytes.

    PubMed

    Eaton, Misty J; Ospina, Claudia A; Rodríguez, Abimael D; Eterović, Vesna A

    2004-08-05

    In tobacco, there are two types of compounds that interact with neuronal nicotinic acetylcholine receptors (nnAChRs) in the brain. The first is the addictive component of tobacco and an agonist of these receptors, nicotine. The second are cyclic diterpenoids called cembranoids that non-competitively inhibit many types of nnAChRs. Nictotinic receptors composed of alpha4beta2 subunits are the predominant type of nicotinic receptors in the brain. These alpha4beta2 receptors are up-regulated upon chronic exposure to nicotine and have been implicated in nicotine addiction. The present study was designed to determine whether the inhibitory effects of two cembranoids from tobacco [(1S, 2E, 4R, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4R) and its diastereoisomer (1S, 2E, 4S, 6R, 7E, 11E)-2,7,11-cembratriene-4,6-diol (4S)] were comparable on acetylcholine (ACh) and nicotine-evoked currents through alpha4beta2 nnAChRs. alpha4beta2 nnAChRs from rat brain were expressed in Xenopus oocytes and studied using the two-electrode voltage-clamp technique. The dose-response curves for acetylcholine and nicotine were hyperbolic and bell-shaped, respectively. Although there was no difference in the potency between cembranoids 4R and 4S, both of these cembranoids more potently inhibited nicotine-induced currents than acetylcholine-induced currents. Furthermore, both cembranoids were more potent inhibitors of this receptor when they were preincubated for 1 min prior to application of agonist. The finding that cembranoids preferentially inhibit nicotine-induced currents over those elicited by the natural neurotransmitter acetylcholine may have important implications when developing strategies to prevent nicotine addiction and tobacco use.

  3. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides and Fibronectin Expression in Lung

    DTIC Science & Technology

    2006-12-01

    acetylcholine receptors (nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this...interaction triggers the exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the...nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In fibroblasts, this interaction triggers

  4. Prenatal Exposure to Nicotine and Childhood Asthma: Role of Nicotine Acetylcholine Receptors, Neuropeptides, and Fibronectin Expression in Lung

    DTIC Science & Technology

    2005-12-01

    nAChRs) that are expressed by lung cells termed fibroblasts and pulmonary neuroendocrine cells ( PNEC ). In fibroblasts, this interaction triggers the...exaggerated expression of a connective tissue protein called fibronectin. In PNECs , nicotine stimulates cell growth and the excessive secretion of...acetylcholine receptors (nAChRs) expressed by fibroblasts and pulmonary neuroendocrine cells ( PNECs ), among other embryonic lung cells. In

  5. Effects of the Sazetidine-a Family of Compounds on the Body Temperature in Wildtype, Nicotinic Receptor B2(-/-) and a7(-/-) Mice

    EPA Science Inventory

    Nicotine elicits hypothermic responses in rodents. This effect appears to be related to nicotinic receptor desensitization because sazetidine-A, an a4B2 nicotinic receptor desensitizing agent, produces marked hypothermia and potentiates nicotine-induced hypothermia in mice. To de...

  6. Nicotinic Acid Receptor Abnormalities in Human Skin Cancer: Implications for a Role in Epidermal Differentiation

    PubMed Central

    Bermudez, Yira; Benavente, Claudia A.; Meyer, Ralph G.; Coyle, W. Russell; Jacobson, Myron K.; Jacobson, Elaine L.

    2011-01-01

    Background Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through Gi-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. Results Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional Gi-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. Conclusions The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s) of nicotinic acid receptors in human skin homeostasis. PMID:21655214

  7. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation.

    PubMed

    Kuryatov, A; Olale, F A; Choi, C; Lindstrom, J

    2000-03-30

    We have shown previously that chronic exposure to submicromolar concentrations of nicotine permanently inactivates alpha4beta2 and alpha7 neuronal nicotinic acetylcholine receptors while alpha3beta2 acetylcholine receptors are resistant to inactivation. Phosphorylation of the large cytoplasmic domain has been proposed to mediate functional inactivation. Chimeric subunits consisting of human alpha4 sequence from their N-terminus to either the beginning of the first transmembrane domain or the large cytoplasmic domain and alpha3 sequences thereafter formed acetylcholine receptors with beta2 subunits which were as susceptible to nicotine-induced inactivation as wild-type alpha4 acetylcholine receptors. The converse chimeras, containing the N-terminal parts of the alpha3 subunit and the C-terminal parts of the alpha4 subunit, formed acetylcholine receptors with beta2 subunits which were as resistant to nicotine-induced inactivation as wild-type alpha3beta2 acetylcholine receptors. Thus, inactivation of acetylcholine receptors produced by chronic exposure to nicotine results primarily from effects of the agonist on the extracellular and transmembrane domains of the alpha subunit.

  8. Stoichiometry and pharmacology of two human alpha4beta2 nicotinic receptor types.

    PubMed

    Moroni, Mirko; Bermudez, Isabel

    2006-01-01

    The alpha4beta2 nicotinic acetylcholine receptor (nAChR) is the most abundant nAChR subtype in the brain, where it forms the high-affinity binding site for nicotine. The alpha4beta2 nAChR belongs to a gene family of ligand-gated ion channels that also includes muscle nAChRs, GABAA receptors, and glycine receptors and that assembles into pentameric structures. alpha4 and beta2 nAChR subunits expressed heterologously in Xenopus laevis oocytes assemble into a mixture of high- and low-affinity functional receptors, giving rise to biphasic ACh concentration-response curves (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001). High- and low-affinity alpha4beta2 nAChRs differ significantly in their functional and pharmacological properties (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003) and result from the assembly of alpha4 and beta2 subunits into two distinct stoichiometric arrangements: (alpha4)2(beta2)3(high-affinity subtype) and (alpha4)3(beta2)2 (low-affinity subtype) (Nelson et al., 2003). In this study we have examined the functional and pharmacological properties of high- and low-affinity alpha4beta2 receptors using two-electrode voltage clamp procedures on Xenopus oocytes transfected with high (1:10) or low (10:1) ratios of alpha4/beta2 cDNAs, which yield high (1:10)- or low (10:1)- affinity receptors with monophasic ACh concentration- response curves. Furthermore, to determine the stoichiometry of high- and low-affinity receptors expressed heterologously by Xenopus oocytes, we have determined the stoichiometry of high- and low-affinity alpha4beta2 receptors by mutating a highly conserved hydrophobic residue in the middle (position 9') of the pore-lining domain, which increases agonist potency in a manner that allows predictions on subunit composition (Cooper et al., 1991; Revah et al., 1991; Labarca et al., 1995; Boorman et al., 2000).

  9. Varenicline, a partial agonist at neuronal nicotinic acetylcholine receptors, reduces nicotine-induced increases in 20% ethanol operant self-administration in Sprague-Dawley rats.

    PubMed

    Bito-Onon, Jade J; Simms, Jeffrey A; Chatterjee, Susmita; Holgate, Joan; Bartlett, Selena E

    2011-07-01

    Alcohol and nicotine use disorders are often treated as separate diseases, despite evidence that approximately 80-90% of alcohol dependent individuals are also heavy smokers. Both nicotine and ethanol have been shown to interact with neuronal nicotinic acetylcholine receptors (nAChRs), suggesting these receptors are a common biological target for the effects of nicotine and ethanol in the brain. There are few studies that have examined the effects of co-administered nicotine and ethanol on the activity of nAChRs in rodents. In the present study, we show that Sprague-Dawley rats, a strain often used for nicotine studies but not as often for voluntary ethanol intake studies, will consume 20% ethanol using both the intermittent-access two-bottle-choice and operant self-administration models without the need for sucrose fading. We show that nicotine (0.2 mg/kg and 0.8 mg/kg, s.c.) significantly increases operant 20% ethanol self-administration and varenicline (2 mg/kg, s.c), a partial agonist at nAChRs, significantly decreases operant ethanol self-administration and nicotine-induced increases in ethanol self-administration. This suggests that nAChRs play an important role in increasing ethanol self-administration and that varenicline may be an efficacious treatment for alcohol and nicotine co-dependencies.

  10. Desensitization of α7 Nicotinic Receptor Is Governed by Coupling Strength Relative to Gate Tightness*

    PubMed Central

    Zhang, Jianliang; Xue, Fenqin; Whiteaker, Paul; Li, Chaokun; Wu, Wen; Shen, Benchang; Huang, Yao; Lukas, Ronald J.; Chang, Yongchang

    2011-01-01

    Binding of a neurotransmitter to its membrane receptor opens an integral ion conducting pore. However, prolonged exposure to the neurotransmitter drives the receptor to a refractory state termed desensitization, which plays an important role in shaping synaptic transmission. Despite intensive research in the past, the structural mechanism of desensitization is still elusive. Using mutagenesis and voltage clamp in an oocyte expression system, we provide several lines of evidence supporting a novel hypothesis that uncoupling between binding and gating machinery is the underlying mechanism for α7 nicotinic receptor (nAChR) desensitization. First, the decrease in gate tightness was highly correlated to the reduced desensitization. Second, nonfunctional mutants in three important coupling loops (loop 2, loop 7, and the M2-M3 linker) could be rescued by a gating mutant. Furthermore, the decrease in coupling strength in these rescued coupling loop mutants reversed the gating effect on desensitization. Finally, coupling between M1 and hinge region of the M2-M3 linker also influenced the receptor desensitization. Thus, the uncoupling between N-terminal domain and transmembrane domain, governed by the balance of coupling strength and gate tightness, underlies the mechanism of desensitization for the α7 nAChR. PMID:21610071

  11. Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase.

    PubMed

    Xu, Z; Seidler, F J; Cousins, M M; Slikker, W; Slotkin, T A

    2002-10-04

    Nicotine is a neuroteratogen that targets synaptic function during critical developmental stages and recent studies indicate that CNS vulnerability extends into adolescence, the age at which smoking typically commences. We administered nicotine to adolescent rats via continuous minipump infusions from PN30 to PN47.5, using 6 mg/kg/day, a dose rate that replicates the plasma nicotine levels found in smokers, and examined 5HT receptors and related cell signaling during nicotine administration (PN45) and in the post-treatment period (PN50, 60, 75). Adolescent nicotine decreased 5HT(2) receptor binding in brain regions containing 5HT projections (hippocampus and cerebral cortex), with selectivity for females in the cerebral cortex; regions containing 5HT cell bodies showed either an increase (midbrain in males) or no change (brainstem). In contrast, there were no significant changes in 5HT(1A) receptors; however, the ability of the receptors to signal through adenylyl cyclase (AC) showed a switch from stimulatory to inhibitory effects in females during the post-treatment period. There were also transient alterations in AC responses to beta-adrenergic receptor stimulation, as well as pronounced induction of the AC response to the non-receptor-mediated stimulant, forskolin. Our results indicate that adolescent nicotine exposure alters the concentrations and functions of postsynaptic 5HT receptors in a manner commensurate with impaired 5HT synaptic function. The direction of change, emergence of defects after the cessation of nicotine administration, and sex-preference for effects in females, all support a relationship of impaired 5HT function to the higher incidence of depression seen in adolescent smokers.

  12. Nicotinic cholinergic receptors in rat brain. Annual report No. 2

    SciTech Connect

    Kellar, K.J.

    1985-05-13

    We have conducted experiments to determine if 3H acetylcholine (3Hach) nicotinic recognition sites are located presynaptically on catecholamine and/or serotonin axons. Lesions of these axons by intraventricular injections of neurotoxins resulted in marked decreases in 3Hach binding sites in the striatum and hypothalamus, but not in the cortex or thalamus. These results indicate that 3Hach nicotinic binding sites are located on catecholamine and serotonin axons in specific areas of the brain. In other experiments, we determined that repeated administration of nicotine results in enhanced behavioral responses to a subsequent injection of nicotine, and that there appears to be a correlation between the enhanced response to nicotine and increased 3Hach binding sites in cerebral cortex.

  13. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors

    PubMed Central

    Griguoli, Marilena; Cherubini, Enrico

    2012-01-01

    The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions. PMID:22124144

  14. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  15. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake

    PubMed Central

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L.; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E.

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  16. Dysregulation of kappa-opioid receptor systems by chronic nicotine modulate the nicotine withdrawal syndrome in an age-dependent manner

    PubMed Central

    Tejeda, Hugo A.; Natividad, Luis A.; Orfila, James E.; Torres, Oscar V.; O’Dell, Laura E.

    2012-01-01

    Rationale The mechanisms that mediate age differences during nicotine withdrawal are unclear. Objective This study compared kappa opioid receptor (KOR) activation in naïve and nicotine-treated adolescent and adult rats using behavioral and neurochemical approaches to study withdrawal. Methods The behavioral models used to assess withdrawal included conditioned place and elevated plus maze procedures. Deficits in dopamine transmission in the nucleus accumbens (NAcc) were examined using microdialysis procedures. Lastly, the effects of KOR stimulation and blockade on physical signs produced upon removal of nicotine were examined in adults. Results Nicotine-treated adults displayed a robust aversion to an environment paired with a KOR agonist versus naïve adults. Neither of the adolescent groups displayed a place aversion. KOR activation produced an increase in anxiety-like behavior that was highest in nicotine-treated adults versus all other groups. KOR activation produced a decrease in NAcc dopamine that was largest in nicotine-treated adults versus all other groups. Lastly, KOR activation facilitated physical signs of upon removal of nicotine and KOR blockade reduced this effect. Conclusion Chronic nicotine enhanced the affective, anxiogenic, and neurochemical effects produced by KOR activation in adult rats. Our data suggest that chronic nicotine elicits an increase in KOR function, and this may contribute to nicotine withdrawal since KOR activation facilitated and KOR blockade prevented withdrawal signs upon removal of nicotine. Given that chronic nicotine facilitated the neurochemical effects of KOR agonists in adults but not adolescents, it is suggested that KOR regulation of mesolimbic dopamine may contribute to age differences in nicotine withdrawal. PMID:22659976

  17. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  18. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation

    PubMed Central

    de Jonge, W J; Ulloa, L

    2007-01-01

    The physiological regulation of the immune system encompasses comprehensive anti-inflammatory mechanisms that can be harnessed for the treatment of infectious and inflammatory disorders. Recent studies indicate that the vagal nerve, involved in control of heart rate, hormone secretion and gastrointestinal motility, is also an immunomodulator. In experimental models of inflammatory diseases, vagal nerve stimulation attenuates the production of proinflammatory cytokines and inhibits the inflammatory process. Acetylcholine, the principal neurotransmitter of the vagal nerve, controls immune cell functions via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR). From a pharmacological perspective, nicotinic agonists are more efficient than acetylcholine at inhibiting the inflammatory signaling and the production of proinflammatory cytokines. This ‘nicotinic anti-inflammatory pathway' may have clinical implications as treatment with nicotinic agonists can modulate the production of proinflammatory cytokines from immune cells. Nicotine has been tested in clinical trials as a treatment for inflammatory diseases such as ulcerative colitis, but the therapeutic potential of this mechanism is limited by the collateral toxicity of nicotine. Here, we review the recent advances that support the design of more specific receptor-selective nicotinic agonists that have anti-inflammatory effects while eluding its collateral toxicity. PMID:17502850

  19. Recurrent exposure to nicotine differentiates human bronchial epithelial cells via epidermal growth factor receptor activation

    SciTech Connect

    Martinez-Garcia, Eva; Irigoyen, Marta; Anso, Elena; Martinez-Irujo, Juan Jose; Rouzaut, Ana

    2008-05-01

    Cigarette smoking is the major preventable cause of lung cancer in developed countries. Nicotine (3-(1-methyl-2-pyrrolidinyl)-pyridine) is one of the major alkaloids present in tobacco. Besides its addictive properties, its effects have been described in panoply of cell types. In fact, recent studies have shown that nicotine behaves as a tumor promoter in transformed epithelial cells. This research focuses on the effects of acute repetitive nicotine exposure on normal human bronchial epithelial cells (NHBE cells). Here we show that treatment of NHBE cells with recurrent doses of nicotine up to 500 {mu}M triggered cell differentiation towards a neuronal-like phenotype: cells emitted filopodia and expressed neuronal markers such as neuronal cell adhesion molecule, neurofilament-M and the transcription factors neuronal N and Pax-3. We also demonstrate that nicotine treatment induced NF-kB translocation to the nucleus, phosphorylation of the epidermal growth factor receptor (EGFR), and accumulation of heparin binding-EGF in the extracellular medium. Moreover, addition of AG1478, an inhibitor of EGFR tyrosine phosphorylation, or cetuximab, a monoclonal antibody that precludes ligand binding to the same receptor, prevented cell differentiation by nicotine. Lastly, we show that differentiated cells increased their adhesion to the extracellular matrix and their protease activity. Given that several lung pathologies are strongly related to tobacco consumption, these results may help to better understand the damaging consequences of nicotine exposure.

  20. Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain.

    PubMed

    Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R; Yasuda, Robert P; Klehm, Jacquelyn; Forcelli, Patrick A; Xiao, Yingxian; Richardson, Janell R; Sahibzada, Niaz; Wolfe, Barry B; Lindstrom, Jon; Blendy, Julie A; Kellar, Kenneth J

    2014-05-01

    Chronic nicotine administration increases the density of brain α4β2* nicotinic acetylcholine receptors (nAChRs), which may contribute to nicotine addiction by exacerbating withdrawal symptoms associated with smoking cessation. Varenicline, a smoking cessation drug, also increases these receptors in rodent brain. The maintenance of this increase by varenicline as well as nicotine replacement may contribute to the high rate of relapse during the first year after smoking cessation. Recently, we found that sazetidine-A (saz-A), a potent partial agonist that desensitizes α4β2* nAChRs, does not increase the density of these receptors in brain at doses that decrease nicotine self-administration, increase attention in rats, and produce anxiolytic effects in mice. Here, we investigated whether chronic saz-A and varenicline maintain the density of nAChRs after their up-regulation by nicotine. In addition, we examined the effects of these drugs on a measure of anxiety in mice and weight gain in rats. After increasing nAChRs in the rodent brain with chronic nicotine, replacing nicotine with chronic varenicline maintained the increased nAChR binding, as well as the α4β2 subunit proteins measured by western blots. In contrast, replacing nicotine treatments with chronic saz-A resulted in the return of the density of nAChRs to the levels seen in saline controls. Nicotine, saz-A and varenicline each demonstrated anxiolytic effects in mice, but only saz-A and nicotine attenuated the gain of weight over a 6-week period in rats. These findings suggest that apart from its modest anxiolytic and weight control effects, saz-A, or drugs like it, may be useful in achieving long-term abstinence from smoking.

  1. Differential use of the nicotinic receptor by rabies virus based upon substrate origin.

    PubMed

    Castañeda-Castellanos, David R; Castellanos, Jaime E; Hurtado, Hernán

    2002-04-01

    To determine the role that the neuronal nicotinic acetylcholine receptor plays in the adsorption process of rabies virus (RV), adult dorsal root ganglion dissociated cultures were exposed to nicotinic agonists before being inoculated. The fixed strain of RV Challenge Virus Standard-11 (CVS-11) was used after being passaged in two different ways, in baby hamster kidney (BHK) cells and in adult mouse brain (MB). Carbachol and nicotine reduced the percentage of CVS-MB infected neurons, yet none of the agonists tested changed the proportion of CVS-BHK infected neurons. This result suggests that the RV phenotype changes depending on its replication environment and neuronal nicotinic acetylcholine receptors are preferentially used for infection by RV strains adapted to adult mouse brain but not to fibroblasts.

  2. Evidence for two types of nicotinic receptors in the cat carotid body chemoreceptor cells.

    PubMed

    Obeso, A; Gómez-Niño, M A; Almaraz, L; Dinger, B; Fidone, S; González, C

    1997-04-18

    Current concepts on the location and functional significance of nicotinic receptors in the carotid body rest on alpha-bungarotoxin binding and autoradiographic studies. Using an in vitro preparation of the cat carotid body whose catecholamine deposits have been labeled by prior incubation with the tritiated natural precursor [3H]tyrosine, we have found that nicotine induces release of [3H]catecholamines in a dose-dependent manner (IC50 = 9.81 microM). We also found that mecamylamine (50 microM) completely abolished the nicotine-induced release, while alpha-bungarotoxin (100 nM; approximately 20 times its binding Kd) only reduced the release by 56%. These findings indicate that chemoreceptor cells, and perhaps other carotid body structures, contain nicotinic receptors that are not sensitive to alpha-bungarotoxin and force a revision of the current concepts on cholinergic mechanisms in the carotid body chemoreception.

  3. Evaluation of the Nicotinic Acetylcholine Receptor-Associated Proteome at Baseline and Following Nicotine Exposure in Human and Mouse Cortex

    PubMed Central

    Esterlis, Irina; Stone, Kathryn L.; Grady, Sharon R.; Lindstrom, Jon M.; Marks, Michael J.

    2016-01-01

    Abstract Nicotinic acetylcholine receptors (nAChRs) support the initiation and maintenance of smoking, but the long-term changes occurring in the protein complex as a result of smoking and the nicotine in tobacco are not known. Human studies and animal models have also demonstrated that increasing cholinergic tone increases behaviors related to depression, suggesting that the nAChR-associated proteome could be altered in individuals with mood disorders. We therefore immunopurified nAChRs and associated proteins for quantitative proteomic assessment of changes in protein–protein interactions of high-affinity nAChRs containing the β2 subunit (β2*-nAChRs) from either cortex of mice treated with saline or nicotine, or postmortem human temporal cortex tissue from tobacco-exposed and nonexposed individuals, with a further comparison of diagnosed mood disorder to control subjects. We observed significant effects of nicotine exposure on the β2*-nAChR-associated proteome in human and mouse cortex, particularly in the abundance of the nAChR subunits themselves, as well as putative interacting proteins that make up core components of neuronal excitability (Na/K ATPase subunits), presynaptic neurotransmitter release (syntaxins, SNAP25, synaptotagmin), and a member of a known nAChR protein chaperone family (14-3-3ζ). These findings identify candidate-signaling proteins that could mediate changes in cholinergic signaling via nicotine or tobacco use. Further analysis of identified proteins will determine whether these interactions are essential for primary function of nAChRs at presynaptic terminals. The identification of differences in the nAChR-associated proteome and downstream signaling in subjects with various mood disorders may also identify novel etiological mechanisms and reveal new treatment targets. PMID:27559543

  4. Synaptic modulation of excitatory synaptic transmission by nicotinic acetylcholine receptors in spinal ventral horn neurons.

    PubMed

    Mine, N; Taniguchi, W; Nishio, N; Izumi, N; Miyazaki, N; Yamada, H; Nakatsuka, T; Yoshida, M

    2015-04-02

    Nicotinic acetylcholine receptors (nAChRs) are distributed widely in the central nervous system and play important roles in higher brain functions, including learning, memory, and recognition. However, functions of the cholinergic system in spinal motoneurons remain poorly understood. In this study, we investigated the actions of presynaptic and postsynaptic nAChRs in spinal ventral horn neurons by performing whole-cell patch-clamp recordings on lumbar slices from male rats. The application of nicotine or acetylcholine generated slow inward currents and increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs). Slow inward currents by acetylcholine or nicotine were not inhibited by tetrodotoxin (TTX) or glutamate receptor antagonists. In the presence of TTX, the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) were also increased by acetylcholine or nicotine. A selective α4β2 nicotinic receptor antagonist, dihydro-β-erythroidine hydrobromide (DhβE), significantly decreased nicotine-induced inward currents without affecting the enhancement of sEPSCs and mEPSCs. In addition, a selective α7 nicotinic receptor antagonist, methyllycaconitine, did not affect either nicotine-induced inward currents or the enhancement of sEPSCs and mEPSCs. These results suggest that α4β2 AChRs are localized at postsynaptic sites in the spinal ventral horn, non-α4β2 and non-α7 nAChRs are located presynaptically, and nAChRs enhance excitatory synaptic transmission in the spinal ventral horn.

  5. Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex

    PubMed Central

    Beiranvand, F; Zlabinger, C; Orr-Urtreger, A; Ristl, R; Huck, S; Scholze, P

    2014-01-01

    Background and purpose Nicotinic acetylcholine receptors (nACh receptors) play a central role in the habenulo-interpeduncular system. We studied nicotine-induced release of NA and ACh in the habenula and interpeduncular nucleus (IPN). Experimental approach The habenula and IPN were loaded with [3H]-choline or [3H]-NA and placed in superfusion chambers. [3H]-ACh release was also stimulated using nicotinic agonists, electrical pulses and elevated [KCl]o in hippocampal and cortical slices from rats, wild-type mice and mice lacking α5, α7, β2, or β4 nACh receptor subunits. Finally, we analysed nACh receptor subtypes in the IPN using immunoprecipitation. Key results Nicotine induced release of [3H]-ACh in the IPN of rats and mice. This release was calcium-dependent but not blocked by tetrodotoxin (TTX); moreover, [3H]-ACh release was abolished in β4-knockout mice but was unaffected in β2- and α5-knockout mice. In contrast, nicotine-induced release of [3H]-NA in the IPN and habenula was blocked by TTX and reduced in both β2-knockout and β4-knockout mice, and dose–response curves were right-shifted in α5-knockout mice. Although electrical stimuli triggered the release of both transmitters, [3H]-ACh release required more pulses delivered at a higher frequency. Conclusions and implications Our results confirm previous findings that β4-containing nACh receptors are critical for [3H]-ACh release in the mouse IPN. Experiments using α5-knockout mice also revealed that unlike in the hippocampus, nicotine-induced [3H]-NA release in the habenulo-interpeduncular system is altered in this knockout model. As α5-containing nACh receptors play a key role in nicotine intake, our results add NA to the list of transmitters involved in this mechanism. PMID:25041479

  6. Increased Nicotinic Acetylcholine Receptor Protein Underlies Chronic Nicotine-Induced Up-Regulation of Nicotinic Agonist Binding Sites in Mouse Brain

    PubMed Central

    McClure-Begley, Tristan D.; Whiteaker, Paul; Salminen, Outi; Brown, Robert W. B.; Cooper, John; Collins, Allan C.; Lindstrom, Jon M.

    2011-01-01

    Chronic nicotine treatment elicits a brain region-selective increase in the number of high-affinity agonist binding sites, a phenomenon termed up-regulation. Nicotine-induced up-regulation of α4β2-nicotinic acetylcholine receptors (nAChRs) in cell cultures results from increased assembly and/or decreased degradation of nAChRs, leading to increased nAChR protein levels. To evaluate whether the increased binding in mouse brain results from an increase in nAChR subunit proteins, C57BL/6 mice were treated with nicotine by chronic intravenous infusion. Tissue sections were prepared, and binding of [125I]3-((2S)-azetidinylmethoxy)-5-iodo-pyridine (A85380) to β2*-nAChR sites, [125I]monoclonal antibody (mAb) 299 to α4 nAChR subunits, and [125I]mAb 270 to β2 nAChR subunits was determined by quantitative autoradiography. Chronic nicotine treatment dose-dependently increased binding of all three ligands. In regions that express α4β2-nAChR almost exclusively, binding of all three ligands increased coordinately. However, in brain regions containing significant β2*-nAChR without α4 subunits, relatively less increase in mAb 270 binding to β2 subunits was observed. Signal intensity measured with the mAbs was lower than that with [125I]A85380, perhaps because the small ligand penetrated deeply into the sections, whereas the much larger mAbs encountered permeability barriers. Immunoprecipitation of [125I]epibatidine binding sites with mAb 270 in select regions of nicotine-treated mice was nearly quantitative, although somewhat less so with mAb 299, confirming that the mAbs effectively recognize their targets. The patterns of change measured using immunoprecipitation were comparable with those determined autoradiographically. Thus, increases in α4β2*-nAChR binding sites after chronic nicotine treatment reflect increased nAChR protein. PMID:21228066

  7. Nicotinic receptors, amyloid-beta, and synaptic failure in Alzheimer's disease.

    PubMed

    Jürgensen, Sofia; Ferreira, Sergio T

    2010-01-01

    Dysfunctional cholinergic transmission is thought to underlie, at least in part, memory impairment and cognitive deficits in Alzheimer's disease (AD). However, it is still unclear whether this is a consequence of the loss of cholinergic neurons and elimination of nicotinic acetycholine receptors (nAChRs) in AD brain or of a direct impact of molecular interactions of the amyloid-beta (Abeta) peptide with nAChRs, leading to dysregulation of receptor function. This review examines recent progress in our understanding of the roles of nicotinic receptors in mechanisms of synaptic plasticity, molecular interactions of Abeta with nAChRs, and how Abeta-induced dysregulation of nicotinic receptor function may underlie synaptic failure in AD.

  8. Metal interactions with voltage- and receptor-activated ion channels.

    PubMed Central

    Vijverberg, H P; Oortgiesen, M; Leinders, T; van Kleef, R G

    1994-01-01

    Effects of Pb and several other metal ions on various distinct types of voltage-, receptor- and Ca-activated ion channels have been investigated in cultured N1E-115 mouse neuroblastoma cells. Experiments were performed using the whole-cell voltage clamp and single-channel patch clamp techniques. External superfusion of nanomolar to submillimolar concentrations of Pb causes multiple effects on ion channels. Barium current through voltage-activated Ca channels is blocked by micromolar concentrations of Pb, whereas voltage-activated Na current appears insensitive. Neuronal type nicotinic acetylcholine receptor-activated ion current is blocked by nanomolar concentrations of Pb and this block is reversed at micromolar concentrations. Serotonin 5-HT3 receptor-activated ion current is much less sensitive to Pb. In addition, external superfusion with micromolar concentrations of Pb as well as of Cd and aluminum induces inward current, associated with the direct activation of nonselective cation channels by these metal ions. In excised inside-out membrane patches of neuroblastoma cells, micromolar concentrations of Ca activate small (SK) and big (BK) Ca-activated K channels. Internally applied Pb activates SK and BK channels more potently than Ca, whereas Cd is approximately equipotent to Pb with respect to SK channel activation, but fails to activate BK channels. The results show that metal ions cause distinct, selective effects on the various types of ion channels and that metal ion interaction sites of ion channels may be highly selective for particular metal ions. PMID:7531139

  9. Nicotinic excitatory postsynaptic potentials in hippocampal CA1 interneurons are predominantly mediated by nicotinic receptors that contain α4 and β2 subunits.

    PubMed

    Bell, Karen A; Shim, Hoon; Chen, Ching-Kang; McQuiston, A Rory

    2011-12-01

    In the hippocampus, activation of nicotinic receptors that include α4 and β2 subunits (α4β2*) facilitates memory formation. α4β2* receptors may also play a role in nicotine withdrawal, and their loss may contribute to cognitive decline in aging and Alzheimer's disease (AD). However, little is known about their cellular function in the hippocampus. Therefore, using optogenetics, whole cell patch clamping and voltage-sensitive dye (VSD) imaging, we measured nicotinic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1. In a subpopulation of inhibitory interneurons, release of ACh resulted in slow depolarizations (rise time constant 33.2 ± 6.5 ms, decay time constant 138.6 ± 27.2 ms) mediated by the activation of α4β2* nicotinic receptors. These interneurons had somata and dendrites located in the stratum oriens (SO) and stratum lacunosum-moleculare (SLM). Furthermore, α4β2* nicotinic EPSPs were largest in the SLM. Thus, our data suggest that nicotinic EPSPs in hippocampal CA1 interneurons are predominantly mediated by α4β2* nicotinic receptors and their activation may preferentially affect extrahippocampal inputs in SLM of hippocampal CA1.

  10. Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor.

    PubMed Central

    Marshall, J; Buckingham, S D; Shingai, R; Lunt, G G; Goosey, M W; Darlison, M G; Sattelle, D B; Barnard, E A

    1990-01-01

    We report the isolation and sequence of a cDNA clone that encodes a locust (Schistocerca gregaria) nervous system nicotinic acetylcholine receptor (AChR) subunit (alpha L1). The calculated molecular weight of the unglycosylated polypeptide, which contains in the proposed extracellular domain two adjacent cysteine residues which are characteristic of alpha (ligand binding) subunits, is 60,641 daltons. Injection into Xenopus oocytes, of RNA synthesized from this clone in vitro, results in expression of functional nicotinic receptors in the oocyte membrane. In these, nicotine opens a cation channel; the receptors are blocked by both alpha-bungarotoxin (alpha-Bgt) and kappa-bungarotoxin (kappa-Bgt). Reversible block of the expressed insect AChR by mecamylamine, d-tubocurarine, tetraethylammonium, bicuculline and strychnine has also been observed. These data are entirely consistent with previously reported electrophysiological studies on in vivo insect nicotinic receptors and also with biochemical studies on an alpha-Bgt affinity purified locust AChR. Thus, a functional receptor exhibiting the characteristic pharmacology of an in vivo insect nicotinic AChR can be expressed in Xenopus oocytes by injection with a single subunit RNA. PMID:1702381

  11. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    EPA Science Inventory

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats

    " NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo.

    " The pattern evok...

  12. Structural features of phenoxycarbonylimino neonicotinoids acting at the insect nicotinic receptor.

    PubMed

    Ohno, Ikuya; Tomizawa, Motohiro; Miyazu, Nozomi; Kushibiki, Gohito; Noda, Kumiko; Hasebe, Yasunori; Durkin, Kathleen A; Miyake, Taiji; Kagabu, Shinzo

    2010-10-01

    Substituted-phenoxycarbonylimino neonicotinoid ligands with an electron-donating group showed significantly higher affinity to the insect nicotinic receptor relative to that of the analogue with an electron-withdrawing substituent, thereby establishing in silico binding site interaction model featuring that the phenoxy ring of neonicotinoids and the receptor loop D tryptophan indole plane form a face-to-edge aromatic interaction.

  13. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  14. Fixation of allosteric states of the nicotinic acetylcholine receptor by chemical cross-linking

    PubMed Central

    Watty, Anke; Methfessel, Christoph; Hucho, Ferdinand

    1997-01-01

    Receptor activity can be described in terms of ligand-induced transitions between functional states. The nicotinic acetylcholine receptor (nAChR), a prototypic ligand-gated ion channel, is an “unconventional allosteric protein” which exists in at least three interconvertible conformations, referred to as resting (low agonist affinity, closed channel), activated (open channel), and desensitized (high agonist affinity, closed channel). Here we show that 3,3′-dimethyl suberimidate (DMS) is an agonistic bifunctional cross-linking reagent, which irreversibly “freezes” the nAChR in a high agonist affinity/closed-channel state. The monofunctional homologue methyl acetoimidate, which is also a weak cholinergic agonist, has no such irreversible effect. Glutardialdehyde, a cross-linker that is not a cholinergic effector, fixes the receptor in a low-affinity state in the absence of carbamoylcholine, but, like DMS, in a high-affinity state in its presence. Covalent cross-linking thus allows us to arrest the nAChR in defined conformational states. PMID:9223339

  15. Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine.

    PubMed

    Brunzell, Darlene H; Boschen, Karen E; Hendrick, Elizabeth S; Beardsley, Patrick M; McIntosh, J Michael

    2010-02-01

    Beta2 subunit containing nicotinic acetylcholine receptors (beta2(*)nAChRs; asterisk ((*)) denotes assembly with other subunits) are critical for nicotine self-administration and nicotine-associated dopamine (DA) release that supports nicotine reinforcement. The alpha6 subunit assembles with beta2 on DA neurons where alpha6beta2(*)nAChRs regulate nicotine-stimulated DA release at neuron terminals. Using local infusion of alpha-conotoxin MII (alpha-CTX MII), an antagonist with selectivity for alpha6beta2(*)nAChRs, the purpose of these experiments was to determine if alpha6beta2(*)nAChRs in the nucleus accumbens (NAc) shell are required for motivation to self-administer nicotine. Long-Evans rats lever-pressed for 0.03 mg/kg, i.v., nicotine accompanied by light+tone cues (NIC) or for light+tone cues unaccompanied by nicotine (CUEonly). Following extensive training, animals were tested under a progressive ratio (PR) schedule that required an increasing number of lever presses for each nicotine infusion and/or cue delivery. Immediately before each PR session, rats received microinfusions of alpha-CTX MII (0, 1, 5, or 10 pmol per side) into the NAc shell or the overlying anterior cingulate cortex. alpha-CTX MII dose dependently decreased break points and number of infusions earned by NIC rats following infusion into the NAc shell but not the anterior cingulate cortex. Concentrations of alpha-CTX MII that were capable of attenuating nicotine self-administration did not disrupt locomotor activity. There was no effect of infusion on lever pressing in CUEonly animals and NAc infusion alpha-CTX MII did not affect locomotor activity in an open field. These data suggest that alpha6beta2(*)nAChRs in the NAc shell regulate motivational aspects of nicotine reinforcement but not nicotine-associated locomotor activation.

  16. α7 nicotinic receptor agonists reduce levodopa-induced dyskinesias with severe nigrostriatal damage

    PubMed Central

    Bordia, Tanuja; Perez, Xiomara A.; McIntosh, J. Michael; Decker, Michael W.; Quik, Maryka

    2015-01-01

    Background ABT-126 is a novel, safe and well-tolerated α7 nicotinic receptor agonist in a Phase 2 Alzheimer's disease study. Here we test the antidyskinetic effect of ABT-126 in MPTP-treated squirrel monkeys with moderate and more severe nigrostriatal damage. Methods Monkeys (n=21, Set 1) were lesioned with MPTP 1-2×. When parkinsonian, they were gavaged with levodopa (10 mg/kg)/carbidopa (2.5 mg/kg) twice daily and dyskinesias rated. They were then given nicotine in drinking water (n=5), or treated with vehicle (n=6) or ABT-126 (n=10) twice daily orally 30 min before levodopa. Set 1 was then re-lesioned 1-2 times for a total of 3-4 MPTP injections. The antidyskinetic effect of ABT-126, nicotine and the β2* nicotinic receptor agonist ABT-894 was re-assessed. Another group of monkeys (n=23, Set 2) was lesioned with MPTP only 1-2×. They were treated with levodopa/carbidopa, administered the α7 agonist ABT-107 (n=6), ABT-894 (n=6), nicotine (n=5) or vehicle (n=6) and dyskinesias evaluated. All monkeys were euthanized and the dopamine transporter measured. Results With moderate nigrostriatal damage (MPTP 1-2×), ABT-126 dose-dependently decreased dyskinesias (~60%), with similar results with ABT-894 (~60%) or nicotine (~60%). With more severe damage (MPTP 3-4×), ABT-126 and nicotine reduced dyskinesias, but ABT-894 did not. The dopamine transporter was 41% and 8.9% of control with moderate and severe nigrostriatal damage, respectively. No drug modified parkinsonism. Conclusion The novel α7 nicotinic receptor drug ABT-126 reduced dyskinesias in monkeys with both moderate and severe nigrostriatal damage. ABT-126 may be useful to reduce dyskinesias in both early and later stage Parkinson's disease. PMID:26573698

  17. Chronic nicotine and withdrawal affect glutamatergic but not nicotinic receptor expression in the mesocorticolimbic pathway in a region-specific manner.

    PubMed

    Pistillo, Francesco; Fasoli, Francesca; Moretti, Milena; McClure-Begley, Tristan; Zoli, Michele; Marks, Michael J; Gotti, Cecilia

    2016-01-01

    Tobacco addiction is a complex form of dependence process that leads high relapse rates in people seeking to stop smoking. Nicotine elicits its primary effects on neuronal nicotinic cholinergic receptors (nAChRs), alters brain reward systems, and induces long-term changes during chronic nicotine use and withdrawal. We analysed the effects of chronic nicotine treatment and withdrawal on the mesocorticolimbic pathway (a brain reward circuit in which addictive drugs induce widespread adaptations) by analysing the expression of nAChRs in the midbrain, striatum and prefrontal cortex (PFC) of mice receiving intravenous infusions of nicotine (4mg/kg/h) or saline (control) for 14 days and mice sacrified two hours, and one, four and 14 days after treatment withdrawal. We biochemically fractionated whole tissue homogenates in order to obtain crude synaptosomal membranes. Western blotting analyses of these membrane fractions, ligand binding and immunoprecipitation studies, showed that chronic nicotine up-regulates heteromeric β2* nAChRs in all three mesocorticolimbic areas, and that these receptors are rapidly removed from synapses upon the cessation of nicotine treatment. The extent of nicotine-induced nAChR up-regulation, and the time course of its reversal were comparable in all three areas. We also analysed the expression of glutamate receptor subunits (GluRs) and scaffold proteins, and found that it was altered in an area-specific manner during nicotine exposure and withdrawal. As the functional properties of GluRs are determined by their subunit composition, the observed changes in subunit expression may indicate alterations in the excitability of mesocorticolimbic circuitry, and this may underlie the long-term biochemical and behavioural effects of nicotine dependence.

  18. Functional nicotinic acetylcholine receptor reconstitution in Au(111)-supported thiolipid monolayers

    NASA Astrophysics Data System (ADS)

    Pissinis, Diego E.; Diaz, Carolina; Maza, Eliana; Bonini, Ida C.; Barrantes, Francisco J.; Salvarezza, Roberto C.; Schilardi, Patricia L.

    2015-09-01

    The insertion and function of the muscle-type nicotinic acetylcholine receptor (nAChR) in Au(111)-supported thiolipid self-assembled monolayers have been studied by atomic force microscopy (AFM), surface plasmon resonance (SPR), and electrochemical techniques. It was possible for the first time to resolve the supramolecular arrangement of the protein spontaneously inserted in a thiolipid monolayer in an aqueous solution. Geometric supramolecular arrays of nAChRs were observed, most commonly in a triangular form compatible with three nAChR dimers of ~20 nm each. Addition of the full agonist carbamoylcholine activated and opened the nAChR ion channel, as revealed by the increase in capacitance relative to that of the nAChR-thiolipid system under basal conditions. Thus, the self-assembled system appears to be a viable biomimetic model to measure ionic conductance mediated by ion-gated ion channels under different experimental conditions, with potential applications in biotechnology and pharmacology.

  19. Understanding the Bases of Function and Modulation of α7 Nicotinic Receptors: Implications for Drug Discovery.

    PubMed

    Corradi, Jeremías; Bouzat, Cecilia

    2016-09-01

    The nicotinic acetylcholine receptor (nAChR) belongs to a superfamily of pentameric ligand-gated ion channels involved in many physiologic and pathologic processes. Among nAChRs, receptors comprising the α7 subunit are unique because of their high Ca(2+) permeability and fast desensitization. nAChR agonists elicit a transient ion flux response that is further sustained by the release of calcium from intracellular sources. Owing to the dual ionotropic/metabotropic nature of α7 receptors, signaling pathways are activated. The α7 subunit is highly expressed in the nervous system, mostly in regions implicated in cognition and memory and has therefore attracted attention as a novel drug target. Additionally, its dysfunction is associated with several neuropsychiatric and neurologic disorders, such as schizophrenia and Alzheimer's disease. α7 is also expressed in non-neuronal cells, particularly immune cells, where it plays a role in immunity, inflammation, and neuroprotection. Thus, α7 potentiation has emerged as a therapeutic strategy for several neurologic and inflammatory disorders. With unique activation properties, the receptor is a sensitive drug target carrying different potential binding sites for chemical modulators, particularly agonists and positive allosteric modulators. Although macroscopic and single-channel recordings have provided significant information about the underlying molecular mechanisms and binding sites of modulatory compounds, we know just the tip of the iceberg. Further concerted efforts are necessary to effectively exploit α7 as a drug target for each pathologic situation. In this article, we focus mainly on the molecular basis of activation and drug modulation of α7, key pillars for rational drug design.

  20. Decreasing nicotinic receptor activity and the spatial learning impairment caused by the NMDA glutamate antagonist dizocilpine in rats

    PubMed Central

    Burke, Dennis A.; Heshmati, Pooneh; Kholdebarin, Ehsan; Levin, Edward D.

    2014-01-01

    Nicotinic systems have been shown by a variety of studies to be involved in cognitive function. Nicotinic receptors have an inherent property to become desensitized after activation. The relative role of nicotinic receptor activation vs. net receptor inactivation by desensitization in the cognitive effects of nicotinic drugs remains to be fully understood. In these studies, we tested the effects of the α7 nicotinic receptor antagonist methyllycaconitine (MLA), the α4β2 nicotinic receptor antagonist dihydro-β-erythroidine (DHβE), the nonspecific nicotinic channel blocker mecamylamine and the α4β2 nicotinic receptor desensitizing agent sazetidine-A on learning in a repeated acquisition test. Adult female Sprague-Dawley rats were trained on a repeated acquisition learning procedure in an 8-arm radial maze. MLA (1–4 mg/kg), DHβE (1–4 mg/kg), mecamylamine (0.125–0.5 mg/kg) or sazetidine-A (1 and 3 mg/kg) were administered in four different studies either alone or together with the NMDA glutamate antagonist dizocilpine (0.05 and 0.10 mg/kg). MLA significantly counteracted the learning impairment caused by dizocilpine. The overall choice accuracy impairment caused by dizocilpine was significantly attenuated by co-administration of DHβE. Low doses of the non-specific nicotinic antagonist mecamylamine also reduced dizocilpine-induced repeated acquisition impairment. Sazetidine-A reversed the accuracy impairment caused by dizocilpine. These studies provide evidence that a net decrease in nicotinic receptor activity can improve learning by attenuating learning impairment induced by NMDA glutamate blockade. This adds to evidence in cognitive tests that nicotinic antagonists can improve cognitive function. Further research characterizing the efficacy and mechanisms underlying nicotinic antagonist and desensitization induced cognitive improvement is warranted. PMID:25064338

  1. Antimuscle atrophy effect of nicotine targets muscle satellite cells partly through an α7 nicotinic receptor in a murine hindlimb ischemia model.

    PubMed

    Kakinuma, Yoshihiko; Noguchi, Tatsuya; Okazaki, Kayo; Oikawa, Shino; Iketani, Mitsue; Kurabayashi, Atsushi; Kurabayashi, Mutsumi; Furihata, Mutsuo; Sato, Takayuki

    2014-07-01

    We have recently identified that donepezil, an anti-Alzheimer drug, accelerates angiogenesis in a murine hindlimb ischemia (HLI) model. However, the precise mechanisms are yet to be fully elucidated, particularly whether the effects are derived from endothelial cells alone or from other nonvascular cells. Further investigation of the HLI model revealed that nicotine accelerated angiogenesis by activation of vascular endothelial cell growth factor (VEGF) synthesis through nicotinic receptors in myogenic cells, that is, satellite cells, in vivo and upregulated the expression of angiogenic factors, for example, VEGF and fibroblast growth factor 2, in vitro. As a result, nicotine prevented skeletal muscle from ischemia-induced muscle atrophy and upregulated myosin heavy chain expression in vitro. The in vivo anti-atrophy effect of nicotine on muscle was also observed in galantamine, another anti-Alzheimer drug, playing as an allosteric potentiating ligand. Such effects of nicotine were attenuated in α7 nicotinic receptor knockout mice. In contrast, PNU282987, an α7 nicotinic receptor agonist, comparably salvaged skeletal muscle, which was affected by HLI. These results suggest that cholinergic signals also target myogenic cells and have inhibiting roles in muscle loss by ischemia-induced muscle atrophy.

  2. Functional distribution of nicotinic receptors in CA3 region of the hippocampus.

    PubMed

    Grybko, Michael; Sharma, Geeta; Vijayaraghavan, Sukumar

    2010-01-01

    Nicotinic acetylcholine receptor (nAChR) modulation of a number of parameters of synaptic signaling in the brain has been demonstrated. It is likely that effects of nicotine are due to its ability to modulate network excitability as a whole. A pre-requisite to understanding the effects of nicotine on network properties is the elucidation of functional receptors. We have examined the distribution of functional nAChRs in the dentate gyrus granule cells and the CA3 region of the mammalian hippocampus using calcium imaging from acute slices. Our results demonstrate the presence of functional nAChRs containing the alpha7 subunit (alpha7-nAChRs) on mossy fiber boutons, CA3 pyramidal cells, and on astrocytes. In addition, both CA3 interneurons and granule cells show nicotinic signals. Our study suggests that functional nicotinic receptors are widespread in their distribution and that calcium imaging might be an effective technique to examine locations of these receptors in the mammalian brain.

  3. Barium permeability of neuronal nicotinic receptor alpha 7 expressed in Xenopus oocytes.

    PubMed Central

    Sands, S B; Costa, A C; Patrick, J W

    1993-01-01

    The rat alpha 7 neuronal nicotinic acetylcholine receptor was expressed and studied in Xenopus oocytes. The magnitude and reversal potential of instantaneous whole cell currents were examined in solutions containing varying concentrations of either calcium or barium, and in the presence or absence of the intracellular calcium chelator BAPTA. In external barium, application of nicotine elicits an inwardly rectifying response; in calcium the response is larger and has a linear IV relation. Pretreatment of oocytes with BAPTA-AM could not prevent activation of calcium-dependent chloride channels in external Ringer containing calcium. Using an extended GHK equation, the permeability ratio PBa/PNa of the alpha 7 receptor was determined to be about 17. Our results suggest that alpha 7 nicotinic receptors are highly permeable to divalent cations. PMID:8312496

  4. Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse

    PubMed Central

    Souza, Fred G. Oliveira; Bruce, Kady S.; Strang, Christianne E.; Morley, Barbara J.; Keyser, Kent T.

    2014-01-01

    Purpose The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer’s disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. Methods To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. Results In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype

  5. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  6. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  7. Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

    PubMed

    Hashemizadeh, Shiva; Sardari, Maryam; Rezayof, Ameneh

    2014-06-03

    In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats. A conditioned place preference (CPP) apparatus was used for the assessment of rewarding effects of the drugs in adult male Wistar rats. Subcutaneous (s.c.) administration of nicotine (0.2mg/kg) induced a significant CPP, without any effect on the locomotor activity during the testing phase. Intra-BLA microinjection of a non-selective cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (0.1-0.5 μg/rat) with an ineffective dose of nicotine (0.1mg/kg, s.c.) induced a significant place preference. On the other hand, intra-BLA administration of AM251 (20-60 ng/rat), a selective cannabinoid CB1 receptor antagonist inhibited the acquisition of nicotine-induced place preference. It should be considered that the microinjection of the same doses of WIN 55,212-2 or AM251 into the BLA, by itself had no effect on the CPP score. The administration of a higher dose of AM251 (60 ng/rat) during the acquisition decreased the locomotor activity of animals on the testing phase. Interestingly, the microinjection of AM251 (20 and 40 ng/rat), but not WIN55,212-2 (0.1-0.5 μg/rat), into the BLA inhibited the expression of nicotine-induced place preference without any effect on the locomotor activity. Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.

  8. Nicotine Ameliorates NMDA Receptor Antagonist-Induced Deficits in Contextual Fear Conditioning through High Affinity Nicotinic Acetylcholine Receptors in the Hippocampus

    PubMed Central

    André, Jessica M.; Leach, Prescott T.; Gould, Thomas J.

    2011-01-01

    NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV) induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits. PMID:21167848

  9. Recruitment of GABAA Receptors in Chemoreceptor Pulmonary Neuroepithelial Bodies by Prenatal Nicotine Exposure in Monkey Lung

    PubMed Central

    Fu, XW.; Spindel, E.R.

    2010-01-01

    Pulmonary neuroepithelial bodies (NEB) act as airway oxygen sensors and produce serotonin, a variety of neuropeptides and are involved in autonomic nervous system control of breathing, especially during the neonatal period. We now report that NEB cells also express a GABAegic signaling loop that is increased by prenatal nicotine exposure. In this study, cultured monkey NEB cells show hypoxia-evoked spikes and hypoxia-sensitive K+ current. As shown by both immunofluorescence and RT-PCR, monkey NEB cells synthesize and contain serotonin. The monkey NEB cells express the β2 and β3 GABAA receptor subunits, GAD and also express α7, α4 and β4 nicotinic receptor (nAChR) subunits. The α7 nAChR is co-expressed with GAD in NEB. The numbers of NEB and β3 GABAA receptor subunits expressed in NEB cells in lungs from control newborn monkeys were compared to lungs from animals that received nicotine during gestation. Prenatal nicotine exposure increased the numbers of NEB by 46% in lung and the numbers of NEB cells expressing GAD and GABAA β3 receptors increased by 67% and 66%, respectively. This study suggests that prenatal nicotine exposure can modulate NEB function by increasing the numbers of NEB cells and by increasing both GAD expression and β3 GABAA receptor subunit expression. The interaction of the intrinsic GABAergic system in the lung with nicotinic receptors in PNEC/NEB may provide a mechanism to explain the link between smoking during pregnancy and SIDS. PMID:19536509

  10. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  11. Characterization of a purified nicotinic receptor from rat brain by using idiotypic and anti-idiotypic antibodies

    SciTech Connect

    Abood, L.G.; Langone, J.J.; Bjercke, R.; Lu, X.; Banerjee, S.

    1987-09-01

    The availability of an anti-nicotine monoclonal antibody has made it possible to further establish the nature of the nicotine recognition proteins purified from rat brain by affinity chromatography and to provide a highly sensitive assay for determining (/sup 3/H)nicotine binding to the purified material. An enantiomeric analogue of nicotine. (-)-6-hydroxymethylnicotine, was used to prepare the affinity column. In addition, with the use of an anti-idiotypic monoclonal antibody, it was confirmed that the recognition site for nicotine resides on a protein complex composed of two components with molecular masses of 62 and 57 kDa. It was also demonstrated that the same two proteins could be purified by immunoaffinity chromatography with the use of an anti-idiotypic monoclonal antibody. With the use of the anti-nicotine antibody to measure (/sup 3/H)nicotine binding, the purified material was shown to bind 250 pmol/mg of protein. By utilizing a procedure in which the purified receptor protein was conjugated to membranes by disulfide bonds, a binding activity of 80 pmol/mg was obtained. With the availability of sterospecific monoclonal antibodies to (-)-nicotine as well as monoclonal anti-idiotypic antibodies derived when the anti-nicotine antibodies were used as immunogens, additional procedures became available for the further characterization of the purified nicotine receptor and examining its (-)-(/sup 3/H)nicotine-binding characteristics.

  12. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  13. Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD).

    PubMed

    Dwoskin, Linda P; Joyce, B Matthew; Zheng, Guangrong; Neugebauer, Nichole M; Manda, Vamshi K; Lockman, Paul; Papke, Roger L; Bardo, Michael T; Crooks, Peter A

    2007-10-15

    Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom converts nicotine from a potent agonist into a potent antagonist. The classical antagonists, hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker to provide N,N'-bis-nicotinium analogs, affording a lead compound, N,N'-dodecyl-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD completely inhibited (IC(50)=500 nM) nicotine-evoked DA release from superfused rat striatal slices, suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 microM) inhibited the response to acetylcholine at alpha3beta4, alpha4beta4, alpha4beta2, and alpha1beta1varepsilondelta receptors expressed in Xenopus oocytes. TMPD had a 2-fold higher affinity than choline for the blood-brain barrier choline transporter, suggesting brain bioavailability. TMPD did not inhibit hyperactivity in nicotine sensitized rats, but significantly and specifically decreased nicotine self-administration. Together, the results suggest that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects, a pharmacological profile indicative of potential clinical utility for the treatment of tobacco dependence.

  14. Differential roles of α6β2* and α4β2* neuronal nicotinic receptors in nicotine- and cocaine-conditioned reward in mice.

    PubMed

    Sanjakdar, Sarah S; Maldoon, Pretal P; Marks, Michael J; Brunzell, Darlene H; Maskos, Uwe; McIntosh, J Michael; Bowers, M Scott; Damaj, M Imad

    2015-01-01

    Mesolimbic α6* nicotinic acetylcholine receptors (nAChRs) are thought to have an important role in nicotine behavioral effects. However, little is known about the role of the various α6*-nAChRs subtypes in the rewarding effects of nicotine. In this report, we investigated and compared the role of α6*-nAChRs subtypes and their neuro-anatomical locus in nicotine and cocaine reward-like effects in the conditioned place preference (CPP) paradigm, using pharmacological antagonism of α6β2* nAChRs and genetic deletion of the α6 or α4 subunits in mice. We found that α6 KO mice exhibited a rightward shift in the nicotine dose-response curve compared with WT littermates but that α4 KO failed to show nicotine preference, suggesting that α6α4β2*-nAChRs are involved. Furthermore, α6β2* nAChRs in nucleus accumbens were found to have an important role in nicotine-conditioned reward as the intra-accumbal injection of the selective α6β2* α-conotoxin MII [H9A; L15A], blocked nicotine CPP. In contrast to nicotine, α6 KO failed to condition to cocaine, but cocaine CPP in the α4 KO was preserved. Intriguingly, α-conotoxin MII [H9A; L15A], blocked cocaine conditioning in α4 KO mice, implicating α6β2* nAChRs in cocaine reward. Importantly, these effects did not generalize as α6 KO showed both a conditioned place aversion to lithium chloride as well as CPP to palatable food. Finally, dopamine uptake was not different between the α6 KO or WT mice. These data illustrate that the subjective rewarding effects of both nicotine and cocaine may be mediated by mesolimbic α6β2* nAChRs and that antagonists of these receptor subtypes may exhibit therapeutic potential.

  15. Pesticide exposure during pregnancy, like nicotine, affects the brainstem α7 nicotinic acetylcholine receptor expression, increasing the risk of sudden unexplained perinatal death.

    PubMed

    Lavezzi, Anna Maria; Cappiello, Achille; Pusiol, Teresa; Corna, Melissa Felicita; Termopoli, Veronica; Matturri, Luigi

    2015-01-15

    This study indicates the impact of nicotine and pesticides (organochlorine and organophosphate insecticides used in agriculture) on neuronal α7-nicotinic acetylcholine receptor expression in brainstem regions receiving cholinergic projections in human perinatal life. An in-depth anatomopathological examination of the autonomic nervous system and immunohistochemistry to analyze the α7-nicotinic acetylcholine receptor expression in the brainstem from 44 fetuses and newborns were performed. In addition, the presence of selected agricultural pesticides in cerebral cortex samples of the victims was determined by specific analytical procedures. Hypodevelopment of brainstem structures checking the vital functions, frequently associated with α7-nicotinic acetylcholine receptor immunopositivity and smoke absorption in pregnancy, was observed in high percentages of victims of sudden unexpected perinatal death. In nearly 30% of cases however the mothers never smoked, but lived in rural areas. The search for pesticides highlighted in many of these cases traces of both organochlorine and organophosphate pesticides. We detain that exposition to pesticides in pregnancy produces homologous actions to those of nicotine on neuronal α7-nicotinic acetylcholine receptor, allowing to developmental alterations of brainstem vital centers in victims of sudden unexplained death.

  16. alpha7 nicotinic acetylcholine receptors and modulation of gabaergic synaptic transmission in the hippocampus.

    PubMed

    Alkondon, M; Braga, M F; Pereira, E F; Maelicke, A; Albuquerque, E X

    2000-03-30

    The present report provides new findings regarding modulation of gamma-aminobutyric acid (GABA) transmission by alpha7 nicotinic receptor activity in CA1 interneurons of rat hippocampal slices. Recordings were obtained from tight-seal cell-attached patches of the CA1 interneurons, and agonists were delivered to the neurons via a modified U-tube. Application for 6 s of the alpha7 nicotinic receptor-selective agonist choline (> or =1 mM) to all CA1 interneurons tested triggered action potentials that were detected as fast current transients. The activity triggered by choline terminated well before the end of the agonist pulse, was blocked by the alpha7 nicotinic receptor antagonist methyllycaconitine (50 nM) and was concentration dependent; the higher the concentration of choline the higher the frequency of events and the shorter the delay for detection of the first event. In 40% of the neurons tested, choline-triggered action potentials decreased in amplitude progressively until no more events could be detected despite the presence of the agonist. Primarily, this finding could be explained by Na(+)-channel inactivation associated with membrane depolarization induced by alpha7 nicotinic receptor activation. In 60% of the neurons, the amplitude of choline-induced action potentials was sustained at the intial level, but again the activity did not last as long as the agonist pulse, in this case apparently because of agonist-induced receptor desensitization. These results altogether demonstrate that agonists interacting with alpha7 nicotinic receptors, including the natural transmitter acetylcholine and its metabolite choline, influence GABAergic transmission, not only by activating these receptors, but also by controlling the rate of Na(+)-channel inactivation and/or by inducing receptor desensitization.

  17. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  18. Nicotine promotes cell proliferation via {alpha}7-nicotinic acetylcholine receptor and catecholamine-synthesizing enzymes-mediated pathway in human colon adenocarcinoma HT-29 cells

    SciTech Connect

    Wong, Helen Pui Shan; Yu Le; Lam, Emily Kai Yee; Tai, Emily Kin Ki; Wu, William Ka Kei; Cho, Chi Hin . E-mail: chcho@cuhk.edu.hk

    2007-06-15

    Cigarette smoking has been implicated in colon cancer. Nicotine is a major alkaloid in cigarette smoke. In the present study, we showed that nicotine stimulated HT-29 cell proliferation and adrenaline production in a dose-dependent manner. The stimulatory action of nicotine was reversed by atenolol and ICI 118,551, a {beta}{sub 1}- and {beta}{sub 2}-selective antagonist, respectively, suggesting the role of {beta}-adrenoceptors in mediating the action. Nicotine also significantly upregulated the expression of the catecholamine-synthesizing enzymes [tyrosine hydroxylase (TH), dopamine-{beta}-hydroxylase (D{beta}H) and phenylethanolamine N-methyltransferase]. Inhibitor of TH, a rate-limiting enzyme in the catecholamine-biosynthesis pathway, reduced the actions of nicotine on cell proliferation and adrenaline production. Expression of {alpha}7-nicotinic acetylcholine receptor ({alpha}7-nAChR) was demonstrated in HT-29 cells. Methyllycaconitine, an {alpha}7-nAChR antagonist, reversed the stimulatory actions of nicotine on cell proliferation, TH and D{beta}H expression as well as adrenaline production. Taken together, through the action on {alpha}7-nAChR nicotine stimulates HT-29 cell proliferation via the upregulation of the catecholamine-synthesis pathway and ultimately adrenaline production and {beta}-adrenergic activation. These data reveal the contributory role {alpha}7-nAChR and {beta}-adrenoceptors in the tumorigenesis of colon cancer cells and partly elucidate the carcinogenic action of cigarette smoke on colon cancer.

  19. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex.

    PubMed

    Parikh, Vinay; Man, Kingson; Decker, Michael W; Sarter, Martin

    2008-04-02

    Because modulation of cortical cholinergic neurotransmission has been hypothesized to represent a necessary mechanism mediating the beneficial cognitive effects of nicotine and nicotinic acetylcholine receptor (nAChR) subtype-selective agonists, we used choline-sensitive microelectrodes for the real-time measurement of ACh release in vivo, to characterize cholinergic transients evoked by nicotine and the alpha4beta2*-selective nAChR partial agonist 2-methyl-3-(2-(S)-pyrrolindinylmethoxy)pyridine dihydrochloride (ABT-089), a clinically effective cognition enhancer. In terms of cholinergic signal amplitudes, ABT-089 was significantly more potent than nicotine in evoking ACh cholinergic transients. Moreover, cholinergic signals evoked by ABT-089 were characterized by faster signal rise time and decay rate. The nAChR antagonist mecamylamine attenuated the cholinergic signals evoked by either compound. Cholinergic signals evoked by ABT-089 were more efficaciously attenuated by the relatively beta2*-selective nAChR antagonist dihydro-beta-erythroidine. The alpha7 antagonist methyllycaconitine did not affect choline signal amplitudes but partly attenuated the relatively slow decay rate of nicotine-evoked cholinergic signals. Furthermore, the AMPA receptor antagonist DNQX as well as the NMDA receptor antagonist APV more potently attenuated cholinergic signals evoked by ABT-089. Using glutamate-sensitive microelectrodes to measure glutamatergic transients, ABT-089 was more potent than nicotine in evoking glutamate release. Glutamatergic signals were highly sensitive to tetrodotoxin-induced blockade of voltage-regulated sodium channels. Together, the present evidence indicates that compared with nicotine, ABT-089 evokes more potent and sharper cholinergic transients in prefrontal cortex. Glutamatergic mechanisms necessarily mediate the cholinergic effects of nAChR agonists in the prefrontal cortex.

  20. Whole-cell patch-clamp recording of nicotinic acetylcholine receptors in adult Brugia malayi muscle

    PubMed Central

    Robertson, A. P.; Buxton, S. K.; Martin, R. J.

    2013-01-01

    Lymphatic filariasis is a debilitating disease caused by clade III parasites like Brugia malayi and Wuchereria bancrofti. Current recommended treatment regimen for this disease relies on albendazole, ivermectin and diethylcarbamazine, none of which targets the nicotinic acetylcholine receptors in these parasitic nematodes. Our aim therefore has been to develop adult B. malayi for electrophysiological recordings to aid in characterizing the ion channels in this parasite as anthelmintic target sites. In that regard, we recently demonstrated the amenability of adult B. malayi to patch-clamp recordings and presented results on the single-channel properties of nAChR in this nematode. We have built on this by recording whole-cell nAChR currents from adult B. malayi muscle. Acetylcholine, levamisole, pyrantel, bephenium and tribendimidine activated the receptors on B. malayi muscle, producing robust currents ranging from > 200 pA to ~1.5 nA. Levamisole completely inhibited motility of the adult B. malayi within 10 min and after 60 min, motility had recovered back to control values. PMID:23562945

  1. Neuronal Nicotinic Receptors in Sleep-Related Epilepsy: Studies in Integrative Biology

    PubMed Central

    Becchetti, Andrea

    2012-01-01

    Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications. PMID:25969754

  2. Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons.

    PubMed

    Fernandes, Catarina C; Pinto-Duarte, António; Ribeiro, Joaquim Alexandre; Sebastião, Ana M

    2008-05-21

    Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory and constitute a significant therapeutic target for many neurodegenerative, neurological, and psychiatric disorders. Here, we report that brain-derived neurotrophic factor (BDNF) (1-100 ng/ml), a member of the neurotrophin gene family, rapidly decreases alpha7 nicotinic acetylcholine receptor responses in interneurons of the hippocampal CA1 stratum radiatum. Such effect is dependent on the activation of the TrkB receptor and involves the actin cytoskeleton; noteworthy, it is compromised when the extracellular levels of the endogenous neuromodulator adenosine are reduced with adenosine deaminase (1 U/ml) or when adenosine A(2A) receptors are blocked with SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine) (100 nm). The intracellular application of U73122 (1-[6[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (5 mum), a broad-spectrum inhibitor of phospholipase C, or GF 109203X (bisindolylmaleimide I) (2 mum), a general inhibitor of protein kinase C isoforms, blocks BDNF-induced inhibition of alpha7 nicotinic acetylcholine receptor function. Moreover, in conditions of simultaneous intracellular dialysis of the fast Ca(2+) chelator BAPTA (10 mm) and removal of extracellular Ca(2+) ions, the inhibitory action of BDNF is further prevented. The present findings disclose a novel target for rapid actions of BDNF that might play important roles on synaptic transmission and plasticity in the brain.

  3. Nicotine normalizes intracellular subunit stoichiometry of nicotinic receptors carrying mutations linked to autosomal dominant nocturnal frontal lobe epilepsy.

    PubMed

    Son, Cagdas D; Moss, Fraser J; Cohen, Bruce N; Lester, Henry A

    2009-05-01

    Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is linked with high penetrance to several distinct nicotinic receptor (nAChR) mutations. We studied (alpha4)(3)(beta2)(2) versus (alpha4)(2)(beta2)(3) subunit stoichiometry for five channel-lining M2 domain mutations: S247F, S252L, 776ins3 in alpha4, V287L, and V287M in beta2. alpha4 and beta2 subunits were constructed with all possible combinations of mutant and wild-type (WT) M2 regions, of cyan and yellow fluorescent protein, and of fluorescent and nonfluorescent M3-M4 loops. Sixteen fluorescent subunit combinations were expressed in N2a cells. Förster resonance energy transfer (FRET) was analyzed by donor recovery after acceptor photobleaching and by pixel-by-pixel sensitized emission, with confirmation by fluorescence intensity ratios. Because FRET efficiency is much greater for adjacent than for nonadjacent subunits and the alpha4 and beta2 subunits occupy specific positions in nAChR pentamers, observed FRET efficiencies from (alpha4)(3)(beta2)(2) carrying fluorescent alpha4 subunits were significantly higher than for (alpha4)(2)(beta2)(3); the converse was found for fluorescent beta2 subunits. All tested ADNFLE mutants produced 10 to 20% increments in the percentage of intracellular (alpha4)(3)(beta2)(2) receptors compared with WT subunits. In contrast, 24- to 48-h nicotine (1 muM) exposure increased the proportion of (alpha4)(2)(beta2)(3) in WT receptors and also returned subunit stoichiometry to WT levels for alpha4S248F and beta2V287L nAChRs. These observations may be relevant to the decreased seizure frequency in patients with ADNFLE who use tobacco products or nicotine patches. Fluorescence-based investigations of nAChR subunit stoichiometry may provide efficient drug discovery methods for nicotine addiction or for other disorders that result from dysregulated nAChRs.

  4. Caffeine and nicotine decrease acetylcholine receptor clustering in C2C12 myotube culture.

    PubMed

    Kordosky-Herrera, Kaia; Grow, Wade A

    2009-02-01

    As motor neurons approach skeletal muscle during development, agrin is released and induces acetylcholine receptor (AChR) clustering. Our laboratory investigates the effect of environmental agents on skeletal muscle development by using C2C12 cell culture. For the current project, we investigated both short-term and long-term exposure to caffeine, nicotine, or both, at physiologically relevant concentrations. Short-term exposure was limited to the last 48 h of myotube formation, whereas a long-term exposure of 2 weeks allowed for several generations of myoblast proliferation followed by myotube formation. Both agrin-induced and spontaneous AChR clustering frequencies were assessed. For agrin-induced AChR clustering, agrin was added for the last 16 h of myotube formation. Caffeine, nicotine, or both significantly decreased agrin-induced AChR clustering during short-term and long-term exposure. Furthermore, caffeine, nicotine, or both significantly decreased spontaneous AChR clustering during long-term, but not short-term exposure. Surprisingly, caffeine and nicotine in combination did not decrease AChR clustering beyond the effect of either treatment alone. We conclude that physiologically relevant concentrations of caffeine or nicotine decrease AChR clustering. Moreover, we predict that fetuses exposed to caffeine or nicotine may be less likely to form appropriate neuromuscular synapses.

  5. Nicotinic acid-adenine dinucleotide phosphate activates the skeletal muscle ryanodine receptor.

    PubMed Central

    Hohenegger, Martin; Suko, Josef; Gscheidlinger, Regina; Drobny, Helmut; Zidar, Andreas

    2002-01-01

    Calcium is a universal second messenger. The temporal and spatial information that is encoded in Ca(2+)-transients drives processes as diverse as neurotransmitter secretion, axonal outgrowth, immune responses and muscle contraction. Ca(2+)-release from intracellular Ca(2+) stores can be triggered by diffusible second messengers like Ins P (3), cyclic ADP-ribose or nicotinic acid-adenine dinucleotide phosphate (NAADP). A target has not yet been identified for the latter messenger. In the present study we show that nanomolar concentrations of NAADP trigger Ca(2+)-release from skeletal muscle sarcoplasmic reticulum. This was due to a direct action on the Ca(2+)-release channel/ryanodine receptor type-1, since in single channel recordings, NAADP increased the open probability of the purified channel protein. The effects of NAADP on Ca(2+)-release and open probability of the ryanodine receptor occurred over a similar concentration range (EC(50) approximately 30 nM) and were specific because (i) they were blocked by Ruthenium Red and ryanodine, (ii) the precursor of NAADP, NADP, was ineffective at equimolar concentrations, (iii) NAADP did not affect the conductance and reversal potential of the ryanodine receptor. Finally, we also detected an ADP-ribosyl cyclase activity in the sarcoplasmic reticulum fraction of skeletal muscle. This enzyme was not only capable of synthesizing cyclic GDP-ribose but also NAADP, with an activity of 0.25 nmol/mg/min. Thus, we conclude that NAADP is generated in the vicinity of type 1 ryanodine receptor and leads to activation of this ion channel. PMID:12102654

  6. Role of α7-nicotinic acetylcholine receptor in nicotine-induced invasion and epithelial-to-mesenchymal transition in human non-small cell lung cancer cells

    PubMed Central

    Yang, Xin-Jie; An, Shi-Min; Wang, Hao; Xu, Lu; Zhu, Liang; Chen, Hong-Zhuan

    2016-01-01

    Nicotine via nicotinic acetylcholine receptors (nAChRs) stimulates non-small cell lung cancer (NSCLC) cell invasion and epithelial to mesenchymal transition (EMT) which underpin the cancer metastasis. However, the receptor subtype-dependent effects of nAChRs on NSCLC cell invasion and EMT, and the signaling pathway underlying the effects remain not fully defined. We identified that nicotine induced NSCLC cell invasion, migration, and EMT; the effects were suppressed by pharmacological intervention using α7-nAChR selective antagonists or by genetic intervention using α7-nAChR knockdown via RNA inference. Meanwhile, nicotine induced activation of MEK/ERK signaling in NSCLC cells; α7-nAChR antagonism or MEK/ERK signaling pathway inhibition suppressed NSCLC cell invasion and EMT marker expression. These results indicate that nicotine induces NSCLC cell invasion, migration, and EMT; the effects are mediated by α7-nAChRs and involve MEK/ERK signaling pathway. Delineating the effect of nicotine on the NSCLC cell invasion and EMT at receptor subtype level would improve the understanding of cancer biology and offer potentials for the exploitation of selective ligands for the control of the cancer metastasis. PMID:27409670

  7. Involvement of dorsal hippocampal and medial septal nicotinic receptors in cross state-dependent memory between WIN55, 212-2 and nicotine or ethanol in mice.

    PubMed

    Alijanpour, S; Rezayof, A

    2013-08-15

    The present study examined whether nicotinic acetylcholine receptors (nAChRs) of the CA1 regions of the dorsal hippocampus and medial septum (MS) are involved in cross state-dependent memory retrieval between WIN55, 212-2 (WIN, a non-selective CB1/CB2 receptor agonist) and nicotine or ethanol. Memory retrieval was measured in one-trial step-down type passive avoidance apparatus in male adult mice. Pre-training intraperitoneal administration of WIN (0.1-1mg/kg) dose-dependently impaired memory retrieval when it was tested 24h later. Pre-test systemic administration of nicotine (0.6 and 0.7mg/kg, s.c.) or ethanol (0.5g/kg, i.p.) improved WIN-induced memory impairment, suggesting a cross state-dependent memory retrieval between the drugs. Pre-test intra-CA1 microinjection of nicotine (1 and 2μg/mouse) before systemic administration of an ineffective dose of nicotine (0.5mg/kg, s.c.) or ethanol (0.25g/kg) significantly reversed WIN-induced memory impairment. Pre-test intra-CA1 microinjection of mecamylamine (1 and 3μg/mouse) inhibited cross state-dependent memory between WIN and nicotine or ethanol. Moreover, pre-test intra-MS microinjection of nicotine (1 and 2μg/mouse) in combination with systemic administration of a lower dose of nicotine (0.5mg/kg), but not ethanol (0.25g/kg), improved memory impairment induced by pre-training administration of WIN. On the other hand, in the animals that received pre-training WIN and pre-test systemic administration of nicotine (0.7mg/kg), but not ethanol (0.5g/kg), pre-test intra-MS microinjection of mecamylamine (1-5μg/mouse) inhibited WIN-nicotine state-dependent memory retrieval. It should be noted that pre-test intra-CA1 or intra-MS microinjection of nicotine or mecamylamine by itself had no effect on memory retrieval and also could not reverse memory impairment induced by pre-training administration of WIN. It can be concluded that WIN and nicotine or WIN and ethanol can induce state-dependent memory retrieval. In

  8. Presynaptic α7 Nicotinic Acetylcholine Receptors Enhance Hippocampal Mossy Fiber Glutamatergic Transmission via PKA Activation

    PubMed Central

    Cheng, Qing

    2014-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed widely in the CNS, and mediate both synaptic and perisynaptic activities of endogenous cholinergic inputs and pharmacological actions of exogenous compounds (e.g., nicotine and choline). Behavioral studies indicate that nicotine improves such cognitive functions as learning and memory. However, the mechanism of nicotine's action on cognitive function remains elusive. We performed patch-clamp recordings from hippocampal CA3 pyramidal neurons to determine the effect of nicotine on mossy fiber glutamatergic synaptic transmission. We found that nicotine in combination with NS1738, an α7 nAChR-positive allosteric modulator, strongly potentiated the amplitude of evoked EPSCs (eEPSCs), and reduced the EPSC paired-pulse ratio. The action of nicotine and NS1738 was mimicked by PNU-282987 (an α7 nAChR agonist), and was absent in α7 nAChR knock-out mice. These data indicate that activation of α7 nAChRs was both necessary and sufficient to enhance the amplitude of eEPSCs. BAPTA applied postsynaptically failed to block the action of nicotine and NS1738, suggesting again a presynaptic action of the α7 nAChRs. We also observed α7 nAChR-mediated calcium rises at mossy fiber giant terminals, indicating the presence of functional α7 nAChRs at presynaptic terminals. Furthermore, the addition of PNU-282987 enhanced action potential-dependent calcium transient at these terminals. Last, the potentiating effect of PNU-282987 on eEPSCs was abolished by inhibition of protein kinase A (PKA). Our findings indicate that activation of α7 nAChRs at presynaptic sites, via a mechanism involving PKA, plays a critical role in enhancing synaptic efficiency of hippocampal mossy fiber transmission. PMID:24381273

  9. The endogenous cannabinoid anandamide inhibits alpha7 nicotinic acetylcholine receptor-mediated responses in Xenopus oocytes.

    PubMed

    Oz, Murat; Ravindran, Arippa; Diaz-Ruiz, Oscar; Zhang, Li; Morales, Marisela

    2003-09-01

    The effect of the endogenous cannabinoid ligand anandamide on the function of the cloned alpha7 subunit of the nicotinic acetylcholine (ACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Anandamide reversibly inhibited nicotine (10 microM) induced-currents in a concentration-dependent manner (10 nM to 30 microM), with an IC50 value of 229.7 +/- 20.4 nM. The effect of anandamide was neither dependent on the membrane potential nor meditated by endogenous Ca2+ dependent Cl- channels since it was unaffected by intracellularly injected BAPTA and perfusion with Ca2+-free bathing solution containing 2 mM Ba2+. Anandamide decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on nicotinic acetylcholine (nACh) alpha7 receptors. This effect was not mediated by CB1 or CB2 receptors, as neither the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboximide hydrochloride (SR 141716A) nor CB2 receptor antagonist N-((1S)-endo-1,3,3-trimethyl-bicyclo-heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR 144528) reduced the inhibition by anandamide. In addition, inhibition of nicotinic responses by anandamide was not sensitive to either pertussis toxin treatment or to the membrane permeable cAMP analog 8-Br-cAMP (0.2 mM). Inhibitors of enzymes involved in anandamide metabolism including phenylmethylsulfonyl fluoride, superoxide dismutase, and indomethacin, or the anandamide transport inhibitor AM404 did not prevent anandamide inhibition of nicotinic responses, suggesting that anandamide itself acted on nicotinic receptors. In conclusion, these results demonstrate that the endogenous cannabinoid anandamide inhibits the function of nACh alpha7 receptors expressed in Xenopus oocytes in a cannabinoid receptor-independent and

  10. Functional Characterization of the α5(Asn398) Variant Associated with Risk for Nicotine Dependence in the α3β4α5 Nicotinic Receptor

    PubMed Central

    Li, Ping; McCollum, Megan; Bracamontes, John; Steinbach, Joe Henry

    2011-01-01

    Smoking is a major cause for premature death. Work aimed at identifying genetic factors that contribute to nicotine addiction has revealed several single nucleotide polymorphisms (SNPs) that are linked to smoking-related behaviors such as nicotine dependence and level of smoking. One of these SNPs leads to an aspartic acid-to-asparagine substitution in the nicotinic receptor α5 subunit at amino acid position 398 [rs16969968; α5(Asn398)]. The α5 subunit is expressed both in the brain and in the periphery. In the brain, it associates with the α4 and β2 subunits to form α4β2α5 receptors. In the periphery, the α5 subunit combines with the α3 and β4 subunits to form the major ganglionic postsynaptic nicotinic receptor subtype. The α3β4α5 receptor regulates a variety of autonomic responses such as control of cardiac rate, blood pressure, and perfusion. In this paradigm, the α5(Asn398) variant may act by regulating autonomic responses that may affect nicotine intake by humans. Here, we have investigated the effect of the α5(Asn398) variant on the function of the α3β4α5 receptor. The wild-type or variant α5 subunits were coexpressed with the α3 and β4 subunits in human embryonic kidney 293 cells. The properties of the receptors were studied using whole-cell and single-channel electrophysiology. The data indicate that the introduction of the α5(Asn398) mutation has little effect on the pharmacology of receptor activation, receptor desensitization, or single-channel properties. We propose that the effect of the α5(Asn398) variant on nicotine use is not mediated by an action on the physiological or pharmacological properties of the α3β4α5 subtype. PMID:21856741

  11. The hippocampus and cingulate cortex differentially mediate the effects of nicotine on learning versus on ethanol-induced learning deficits through different effects at nicotinic receptors.

    PubMed

    Gulick, Danielle; Gould, Thomas J

    2009-08-01

    The current study examined the effects of nicotine infusion into the dorsal hippocampus or anterior cingulate on fear conditioning and on ethanol-induced deficits in fear conditioning, and whether these effects involved receptor activation or inactivation. Conditioning consisted of two white noise (30 s, 85 dB)-foot-shock (2 s, 0.57 mA) pairings. Saline or ethanol was administered to C57BL/6 mice 15 min before training and saline or nicotine was administered 5 min before training or before training and testing. The ability of the high-affinity nicotinic acetylcholinergic receptor (nAChR) antagonist dihydro-beta-erythroidine (DHbetaE) to modulate the effects of ethanol and nicotine was also tested; saline or DHbetaE was administered 25 (injection) or 15 (infusion) minutes before training or before training and testing. Infusion of nicotine into the hippocampus enhanced contextual fear conditioning but had no effect on ethanol-induced learning deficits. Infusion of nicotine into the anterior cingulate ameliorated ethanol-induced deficits in contextual and cued fear conditioning but had no effect on learning in ethanol-naive mice. DHbetaE blocked the effects of nicotine on ethanol-induced deficits; interestingly, DHbetaE alone and co-administration of subthreshold doses of DHbetaE and nicotine also ameliorated ethanol-induced deficits but failed to enhance learning. Finally, DHbetaE failed to ameliorate ethanol-induced deficits in beta2 nAChR subunit knockout mice. These results suggest that nicotine acts in the hippocampus to enhance contextual learning, but acts in the cingulate to ameliorate ethanol-induced learning deficits through inactivation of high-affinity beta2 subunit-containing nAChRs.

  12. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    PubMed Central

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions

  13. Nicotinic receptors in non-human primates: analysis of genetic and functional conservation with humans

    PubMed Central

    Shorey-Kendrick, Lyndsey E.; Ford, Matthew M.; Allen, Daicia C.; Kuryatov, Alexander; Lindstrom, Jon; Wilhelm, Larry; Grant, Kathleen A.; Spindel, Eliot R.

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans. PMID:25661700

  14. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

    PubMed

    Deflorio, Cristina; Blanchard, Stéphane; Carisì, Maria Carla; Bohl, Delphine; Maskos, Uwe

    2017-02-01

    Tobacco smoking is a public health problem, with ∼5 million deaths per year, representing a heavy burden for many countries. No effective therapeutic strategies are currently available for nicotine addiction, and it is therefore crucial to understand the etiological and pathophysiological factors contributing to this addiction. The neuronal α5 nicotinic acetylcholine receptor (nAChR) subunit is critically involved in nicotine dependence. In particular, the human polymorphism α5D398N corresponds to the strongest correlation with nicotine dependence risk found to date in occidental populations, according to meta-analysis of genome-wide association studies. To understand the specific contribution of this subunit in the context of nicotine addiction, an efficient screening system for native human nAChRs is needed. We have differentiated human induced pluripotent stem (iPS) cells into midbrain dopaminergic (DA) neurons and obtained a comprehensive characterization of these neurons by quantitative RT-PCR. The functional properties of nAChRs expressed in these human DA neurons, with or without the polymorphism in the α5 subunit, were studied with the patch-clamp electrophysiological technique. Our results in human DA neurons carrying the polymorphism in the α5 subunit showed an increase in EC50, indicating that, in the presence of the polymorphism, more nicotine or acetylcholine chloride is necessary to obtain the same effect. This human cell culturing system can now be used in drug discovery approaches to screen for compounds that interact specifically with human native and polymorphic nAChRs.-Deflorio, C., Blanchard, S., Carisì, M. C., Bohl, D., Maskos, U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons.

  15. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications.

    PubMed

    Hilmas, C; Pereira, E F; Alkondon, M; Rassoulpour, A; Schwarcz, R; Albuquerque, E X

    2001-10-01

    The tryptophan metabolite kynurenic acid (KYNA) has long been recognized as an NMDA receptor antagonist. Here, interactions between KYNA and the nicotinic system in the brain were investigated using the patch-clamp technique and HPLC. In the electrophysiological studies, agonists were delivered via a U-shaped tube, and KYNA was applied in admixture with agonists and via the background perfusion. Exposure (>/=4 min) of cultured hippocampal neurons to KYNA (>/=100 nm) inhibited activation of somatodendritic alpha7 nAChRs; the IC(50) for KYNA was approximately 7 microm. The inhibition of alpha7 nAChRs was noncompetitive with respect to the agonist and voltage independent. The slow onset of this effect could not be accounted for by an intracellular action because KYNA (1 mm) in the pipette solution had no effect on alpha7 nAChR activity. KYNA also blocked the activity of preterminal/presynaptic alpha7 nAChRs in hippocampal neurons in cultures and in slices. NMDA receptors were less sensitive than alpha7 nAChRs to KYNA. The IC(50) values for KYNA-induced blockade of NMDA receptors in the absence and presence of glycine (10 microm) were approximately 15 and 235 microm, respectively. Prolonged (3 d) exposure of cultured hippocampal neurons to KYNA increased their nicotinic sensitivity, apparently by enhancing alpha4beta2 nAChR expression. Furthermore, as determined by HPLC with fluorescence detection, repeated systemic treatment of rats with nicotine caused a transient reduction followed by an increase in brain KYNA levels. These results demonstrate that nAChRs are targets for KYNA and suggest a functionally significant cross talk between the nicotinic cholinergic system and the kynurenine pathway in the brain.

  16. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer's disease.

    PubMed

    Maelicke, A; Samochocki, M; Jostock, R; Fehrenbacher, A; Ludwig, J; Albuquerque, E X; Zerlin, M

    2001-02-01

    Cholinesterase inhibitors are the only approved drug treatment for patients with mild to moderately severe Alzheimer's disease. Interestingly, the clinical potency of these drugs does not correlate well with their activity as cholinesterase inhibitors, nor is their action as short lived as would be expected from purely symptomatic treatment. A few cholinesterase inhibitors, including galantamine, produce beneficial effects even after drug treatment has been terminated. These effects assume modes of action other than mere esterase inhibition and are capable of inducing systemic changes. We have recently discovered a mechanism that could account, at least in part, for the above-mentioned unexpected properties of some cholinesterase inhibitors. We have found that a subgroup of cholinesterase inhibitors, including galantamine but excluding tacrine, directly interacts with nicotinic acetylcholine receptors. These compounds, named allosterically potentiating ligands, sensitize nicotinic receptors by increasing the probability of channel opening induced by acetylcholine and nicotinic agonists and by slowing down receptor desensitization. The allosterically potentiating ligand action, which is not necessarily associated with cholinesterase inhibition, has been demonstrated by whole-cell patch-clamp recordings to occur in natural murine and human neurons and in murine and human cell lines expressing various subtypes of neuronal nicotinic acetylcholine receptors.

  17. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  18. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  19. Phylogenetic differences in calcium permeability of the auditory hair cell cholinergic nicotinic receptor

    PubMed Central

    Lipovsek, Marcela; Im, Gi Jung; Franchini, Lucía F.; Pisciottano, Francisco; Katz, Eleonora; Fuchs, Paul Albert; Elgoyhen, Ana Belén

    2012-01-01

    The α9 and α10 cholinergic nicotinic receptor subunits assemble to form the receptor that mediates efferent inhibition of hair cell function within the auditory sensory organ, a mechanism thought to modulate the dynamic range of hearing. In contrast to all nicotinic receptors, which serve excitatory neurotransmission, the activation of α9α10 produces hyperpolarization of hair cells. An evolutionary analysis has shown that the α10 subunit exhibits signatures of positive selection only along the mammalian lineage, strongly suggesting the acquisition of a unique function. To establish whether mammalian α9α10 receptors have acquired distinct functional properties as a consequence of this evolutionary pressure, we compared the properties of rat and chicken recombinant and native α9α10 receptors. Our main finding in the present work is that, in contrast to the high (pCa2+/pMonovalents ∼10) Ca2+ permeability reported for rat α9α10 receptors, recombinant and native chicken α9α10 receptors have a much lower permeability (∼2) to this cation, comparable to that of neuronal α4β2 receptors. Moreover, we show that, in contrast to α10, α7 as well as α4 and β2 nicotinic subunits are under purifying selection in vertebrates, consistent with the conserved Ca2+ permeability reported across species. These results have important consequences for the activation of signaling cascades that lead to hyperpolarization of hair cells after α9α10 gating at the cholinergic–hair cell synapse. In addition, they suggest that high Ca2+ permeability of the α9α10 cholinergic nicotinic receptor might have evolved together with other features that have given the mammalian ear an expanded high-frequency sensitivity. PMID:22371598

  20. Indolizidine (−)-235B′ and related structural analogs: discovery of nicotinic receptor antagonists that inhibit nicotine-evoked [3H]dopamine release

    PubMed Central

    Pivavarchyk, Marharyta; Smith, Andrew M.; Zhang, Zhenfa; Zhou, Dejun; Wang, Xu; Toyooka, Naoki; Tsuneki, Hiroshi; Sasaoka, Toshiyasu; McIntosh, J. Michael; Crooks, Peter A.; Dwoskin, Linda P.

    2011-01-01

    Although several therapeutic agents are available to aid in tobacco smoking cessation, relapse rates continue to be high, warranting the development of alternative pharmacotherapies. Nicotine-evoked dopamine release from its presynaptic terminals in the central nervous system leads to reward which maintains continued tobacco use. The ability of indolizidine (−)-235B′ and a sub-library of structurally-related analogs to inhibit nicotine-evoked [3H]dopamine release from rat striatal slices was determined in the current study. Indolizidine (−)-235B′ inhibited nicotine-evoked [3H]dopamine release in a concentration-dependent manner (IC50 = 42 nM, Imax = 55%). Compound (−)-237D, the double bond-reduced analog, afforded the greatest inhibitory potency (IC50 = 0.18 nM, Imax = 76%), and was 233-fold more potent than indolizidine (−)-235B′. The des-8-methyl aza-analog of indolizidine (−)-235B′, ZZ-272, also inhibited nicotine-evoked [3H]dopamine release ((IC50 = 413 nM, Imax = 59%). Concomitant exposure to maximally effective concentrations of indolizidine (−)-235B′, ZZ-272 or (−)-237D with a maximally effective concentration of α-conotoxin MII, a selective antagonist for α6β2-containing nicotinic receptors, resulted in inhibition of nicotine-evoked [3H]dopamine release no greater than that produced by each compound alone. The latter results suggest that indolizidine (−)-235B′, (−)-237D, ZZ-272 and α-conotoxin MII inhibit the same α-conotoxin MII-sensitive nicotinic receptor subtypes. Thus, indolizidine (−)-235B′ and its analogs act as antagonists of α6β2-nicotinic receptors and constitute a novel structural scaffold for the discovery of pharmacotherapies for smoking cessation. PMID:21371454

  1. What is the effect of nicotinic acetylcholine receptor stimulation on osteoarthritis in a rodent animal model?

    PubMed Central

    Bock, Kilian; Plaass, Christian; Coger, Vincent; Peck, Claas-Tido; Reimers, Kerstin; Stukenborg-Colsman, Christina; Claassen, Leif

    2016-01-01

    Objectives: Despite the rising number of patients with osteoarthritis, no sufficient chondroprotective and prophylactic therapy for osteoarthritis has been established yet. The purpose of this study was to verify whether stimulation of the nicotinic acetylcholine receptor via nicotine has a beneficial effect on cartilage degeneration in the development of osteoarthritis and is capable of reducing the expression of proinflammatory cytokines and cartilage degrading enzymes in synovial membranes after osteoarthritis induction. Methods: Experimental osteoarthritis was induced in Lewis rats using a standardized osteoarthritis model with monoiodoacetate. A total of 16 Lewis rats were randomized into four groups: control, sham + nicotine application, osteoarthritis, and osteoarthritis + nicotine application. Nicotine (0.625 mg/kg twice daily) was administered intraperitoneally for 42 days. We analyzed histological sections, radiological images and the expression of the proinflammatory cytokines, such as interleukin-1β, tumor necrosis factor-α and interleukin-6, and of matrix metalloproteases 3, 9 and 13 and tissue inhibitors of metalloprotease-1 in synovial membranes via quantitative polymerase chain reaction. Results: Histological and x-ray examination revealed cartilage degeneration in the osteoarthritis group compared to control or sham + nicotine groups (histological control vs osteoarthritis: p = 0.002 and x-ray control vs osteoarthritis: p = 0.004). Nicotine treatment reduced the cartilage degeneration without significant differences. Osteoarthritis induction led to a higher expression of proinflammatory cytokines and matrix metalloproteases as compared to control groups. This effect was attenuated after nicotine administration. The differences of proinflammatory cytokines and matrix metalloproteases did not reach statistical significance. Conclusion: With the present small-scale study, we could not prove a positive effect of nicotinic

  2. Nicotine alters limbic function in adolescent rat by a 5-HT1A receptor mechanism.

    PubMed

    Dao, Jasmin M; McQuown, Susan C; Loughlin, Sandra E; Belluzzi, James D; Leslie, Frances M

    2011-06-01

    Epidemiological studies have shown that adolescent smoking is associated with health risk behaviors, including high-risk sexual activity and illicit drug use. Using rat as an animal model, we evaluated the behavioral and biochemical effects of a 4-day, low-dose nicotine pretreatment (60 μg/kg; intravenous) during adolescence and adulthood. Nicotine pretreatment significantly increased initial acquisition of cocaine self-administration, quinpirole-induced locomotor activity, and penile erection in adolescent rats, aged postnatal day (P)32. These effects were long lasting, remaining evident 10 days after the last nicotine treatment, and were observed when nicotine pretreatment was administered during early adolescence (P28-31), but not late adolescence (P38-41) or adulthood (P86-89). Neurochemical analyses of c-fos mRNA expression, and of monoamine transmitter and transporter levels, showed that forebrain limbic systems are continuing to develop during early adolescence, and that this maturation is critically altered by brief nicotine exposure. Nicotine selectively increased c-fos mRNA expression in the nucleus accumbens shell and basolateral amygdala in adolescent, but not adult animals, and altered serotonin markers in these regions as well as the prefrontal cortex. Nicotine enhancement of cocaine self-administration and quinpirole-induced locomotor activity was blocked by co-administration of WAY 100 635 (N-{2-[4-(2-methoxyphenyl)-1-piperazinyl] ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide), a selective serotonin 1A (5-HT1A) receptor antagonist. Early adolescent pretreatment with the mixed autoreceptor/heteroceptor 5-HT1A receptor agonist, 8-OH-DPAT, but not the autoreceptor-selective agonist, S-15535, also enhanced quinpirole-induced locomotor activation. Nicotine enhancement of quinpirole-induced penile erection was not blocked by WAY 100 635 nor mimicked by 8-OH-DPAT. These findings indicate that early adolescent nicotine exposure uniquely alters limbic

  3. Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome.

    PubMed

    Duncan, Jhodie R; Garland, Marianne; Myers, Michael M; Fifer, William P; Yang, May; Kinney, Hannah C; Stark, Raymond I

    2009-11-01

    During pregnancy, exposure to nicotine and other compounds in cigarette smoke increases the risk of the sudden infant death syndrome (SIDS) two- to fivefold. Serotonergic (5-HT) abnormalities are found, in infants who die of SIDS, in regions of the medulla oblongata known to modulate cardiorespiratory function. Using a baboon model, we tested the hypothesis that prenatal exposure to nicotine alters 5-HT receptor and/or transporter binding in the fetal medullary 5-HT system in association with cardiorespiratory dysfunction. At 87 (mean) days gestation (dg), mothers were continuously infused with saline (n = 5) or nicotine (n = 5) at 0.5 mg/h. Fetuses were surgically instrumented at 129 dg for cardiorespiratory monitoring. Cesarean section delivery and retrieval of fetal medulla were performed at 161 (mean) dg for autoradiographic analyses of nicotinic and 5-HT receptor and transporter binding. In nicotine-exposed fetuses, high-frequency heart rate variability was increased 55%, possibly reflecting increases in the parasympathetic control of heart rate. This effect was more pronounced with greater levels of fetal breathing and age. These changes in heart rate variability were associated with increased 5-HT(1A) receptor binding in the raphé obscurus (P = 0.04) and increased nicotinic receptor binding in the raphé obscurus and vagal complex (P < 0.05) in the nicotine-exposed animals compared with controls (n = 6). The shift in autonomic balance in the fetal primate toward parasympathetic predominance with chronic exposure to nicotine may be related, in part, to abnormal 5-HT-nicotine alterations in the raphé obscurus. Thus increased risk for SIDS due to maternal smoking may be partly related to the effects of nicotine on 5-HT and/or nicotinic receptors.

  4. Prenatal nicotine-exposure alters fetal autonomic activity and medullary neurotransmitter receptors: implications for sudden infant death syndrome

    PubMed Central

    Duncan, Jhodie R.; Garland, Marianne; Myers, Michael M.; Fifer, William P.; Yang, May; Stark, Raymond I.

    2009-01-01

    During pregnancy, exposure to nicotine and other compounds in cigarette smoke increases the risk of the sudden infant death syndrome (SIDS) two- to fivefold. Serotonergic (5-HT) abnormalities are found, in infants who die of SIDS, in regions of the medulla oblongata known to modulate cardiorespiratory function. Using a baboon model, we tested the hypothesis that prenatal exposure to nicotine alters 5-HT receptor and/or transporter binding in the fetal medullary 5-HT system in association with cardiorespiratory dysfunction. At 87 (mean) days gestation (dg), mothers were continuously infused with saline (n = 5) or nicotine (n = 5) at 0.5 mg/h. Fetuses were surgically instrumented at 129 dg for cardiorespiratory monitoring. Cesarean section delivery and retrieval of fetal medulla were performed at 161 (mean) dg for autoradiographic analyses of nicotinic and 5-HT receptor and transporter binding. In nicotine-exposed fetuses, high-frequency heart rate variability was increased 55%, possibly reflecting increases in the parasympathetic control of heart rate. This effect was more pronounced with greater levels of fetal breathing and age. These changes in heart rate variability were associated with increased 5-HT1A receptor binding in the raphé obscurus (P = 0.04) and increased nicotinic receptor binding in the raphé obscurus and vagal complex (P < 0.05) in the nicotine-exposed animals compared with controls (n = 6). The shift in autonomic balance in the fetal primate toward parasympathetic predominance with chronic exposure to nicotine may be related, in part, to abnormal 5-HT-nicotine alterations in the raphé obscurus. Thus increased risk for SIDS due to maternal smoking may be partly related to the effects of nicotine on 5-HT and/or nicotinic receptors. PMID:19729586

  5. Exposure to nicotine increases nicotinic acetylcholine receptor density in the reward pathway and binge ethanol consumption in C57BL/6J adolescent female mice.

    PubMed

    Locker, Alicia R; Marks, Michael J; Kamens, Helen M; Klein, Laura Cousino

    2016-05-01

    Nearly 80% of adult smokers begin smoking during adolescence. Binge alcohol consumption is also common during adolescence. Past studies report that nicotine and ethanol activate dopamine neurons in the reward pathway and may increase synaptic levels of dopamine in the nucleus accumbens through nicotinic acetylcholine receptor (nAChR) stimulation. Activation of the reward pathway during adolescence through drug use may produce neural alterations affecting subsequent drug consumption. Consequently, the effect of nicotine exposure on binge alcohol consumption was examined along with an assessment of the neurobiological underpinnings that drive adolescent use of these drugs. Adolescent C57BL/6J mice (postnatal days 35-44) were exposed to either water or nicotine (200μg/ml) for ten days. On the final four days, ethanol intake was examined using the drinking-in-the-dark paradigm. Nicotine-exposed mice consumed significantly more ethanol and displayed higher blood ethanol concentrations than did control mice. Autoradiographic analysis of nAChR density revealed higher epibatidine binding in frontal cortical regions in mice exposed to nicotine and ethanol compared to mice exposed to ethanol only. These data show that nicotine exposure during adolescence increases subsequent binge ethanol consumption, and may affect the number of nAChRs in regions of the brain reward pathway, specifically the frontal cortex.

  6. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    PubMed Central

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  7. Nicotinic acid is a common regulator of heat-sensing TRPV1-4 ion channels.

    PubMed

    Ma, Linlin; Lee, Bo Hyun; Clifton, Heather; Schaefer, Saul; Zheng, Jie

    2015-03-10

    Nicotinic acid (NA, a.k.a. vitamin B3 or niacin) can reduce blood cholesterol and low-density lipoproteins whereas increase high-density lipoproteins. However, when NA is used to treat dyslipidemias, it causes a strong side effect of cutaneous vasodilation, commonly called flushing. A recent study showed that NA may cause flushing by lowering activation threshold temperature of the heat-sensitive capsaicin receptor TRPV1 ion channel, leading to its activation at body temperature. The finding calls into question whether NA might also interact with the homologous heat-sensitive TRPV2-4 channels, particularly given that TRPV3 and TRPV4 are abundantly expressed in keratinocytes of the skin where much of the flushing response occurs. We found that NA indeed potentiated TRPV3 while inhibited TRPV2 and TRPV4. Consistent with these gating effects, NA lowered the heat-activation threshold of TRPV3 but elevated that of TRPV4. We further found that activity of TRPV1 was substantially prolonged by extracellular NA, which may further enhance the direct activation effect. Consistent with the broad gating effect on TRPV1-4 channels, evidence from the present study hints that NA may share the same activation pathway as 2-aminoethoxydiphenyl borate (2-APB), a common agonist for these TRPV channels. These findings shed new light on the molecular mechanism underlying NA regulation of TRPV channels.

  8. Aversion to nicotine is regulated by the balanced activity of β4 and α5 nicotinic receptor subunits in the medial habenula.

    PubMed

    Frahm, Silke; Slimak, Marta A; Ferrarese, Leiron; Santos-Torres, Julio; Antolin-Fontes, Beatriz; Auer, Sebastian; Filkin, Sergey; Pons, Stéphanie; Fontaine, Jean-Fred; Tsetlin, Victor; Maskos, Uwe; Ibañez-Tallon, Inés

    2011-05-12

    Nicotine dependence is linked to single nucleotide polymorphisms in the CHRNB4-CHRNA3-CHRNA5 gene cluster encoding the α3β4α5 nicotinic acetylcholine receptor (nAChR). Here we show that the β4 subunit is rate limiting for receptor activity, and that current increase by β4 is maximally competed by one of the most frequent variants associated with tobacco usage (D398N in α5). We identify a β4-specific residue (S435), mapping to the intracellular vestibule of the α3β4α5 receptor in close proximity to α5 D398N, that is essential for its ability to increase currents. Transgenic mice with targeted overexpression of Chrnb4 to endogenous sites display a strong aversion to nicotine that can be reversed by viral-mediated expression of the α5 D398N variant in the medial habenula (MHb). Thus, this study both provides insights into α3β4α5 receptor-mediated mechanisms contributing to nicotine consumption, and identifies the MHb as a critical element in the circuitry controlling nicotine-dependent phenotypes.

  9. N-haloacetylimino neonicotinoids: potency and molecular recognition at the insect nicotinic receptor.

    PubMed

    Tomizawa, Motohiro; Durkin, Kathleen A; Ohno, Ikuya; Nagura, Kyoko; Manabe, Mio; Kumazawa, Satoru; Kagabu, Shinzo

    2011-06-15

    This structure-activity relationship study for neonicotinoids with an N-haloacetylimino pharmacophore identifies several candidate compounds showing outstanding insecticidal potency and consequently leads to establishing their molecular recognition at an insect nicotinic receptor structural model, wherein the neonicotinoid halogen atoms (fluorine, chlorine, bromine, and iodine) variously interact with the receptor loops C-D interfacial niche via H-bonding and/or hydrophobic interactions.

  10. Chronic nicotine alters cannabinoid-mediated locomotor activity and receptor density in periadolescent but not adult male rats

    PubMed Central

    Werling, Linda L.; Reed, Stephanie Collins; Wade, Dean; Izenwasser, Sari

    2009-01-01

    A significant number of youths use cigarettes, and more than half of the youths who smoke daily also use illicit drugs. The focus of these studies is on how exposure to nicotine affects subsequent responses to both nicotine and cannabinoids in adolescents compared with adults. We have shown previously that chronic treatment with nicotine produces sensitization to its locomotor-activating effects in female and adult rats but not male adolescent rats. To better understand the effects of nicotine on adolescent and adult rats, rats were injected with nicotine or saline for 7 days and, on day 8, either challenged with delta-9-tetrahydrocannabinol (Δ9-THC) or the cannabinoid agonist CP 55,940 and tested for locomotor activity, or the brains were removed for quantitative autoradiography studies of the cannabinoid1 receptor. A separate group of rats was treated with nicotine plus the cannabinoid antagonist AM 251 and then challenged with CP 55,940. In adolescent male rats, nicotine administration led to sensitization to the locomotor-decreasing effects of both Δ9-THC and CP 55,940, but in adult male rats, the response to either drug was unchanged compared to controls. The effect of nicotine on CP 55,940-mediated locomotor activity was blocked by co-administration of AM 251 with the nicotine. Further, cannabinoid receptor density was increased in the prelimbic prefrontal cortex, ventral tegmental area, and select regions of the hippocampus in adolescent male rats pretreated with nicotine compared to vehicle-treated controls. There were no significant changes in cannabinoid receptor binding, however, in any of the brain regions examined in adult males pretreated with nicotine. The prelimbic prefrontal cortex and the hippocampus have been shown previously to be involved in stimulant reinforcement; thus it is possible that these changes contribute to the unique behavioral effects of chronic nicotine and subsequent drug administration in adolescents compared with adults. PMID

  11. The reaction site of a non-competitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor.

    PubMed Central

    Oberthür, W; Muhn, P; Baumann, H; Lottspeich, F; Wittmann-Liebold, B; Hucho, F

    1986-01-01

    A site in the primary structure of the nicotinic acetylcholine receptor from Torpedo marmorata covalently labeled with the non-competitive antagonist [3H]triphenylmethylphosphonium (TPMP+) was localized. The label was found in position 262 of the delta-polypeptide chain. This site is specifically labeled in the presence of the agonist carbamoylcholine. Labeling is prevented by the non-competitive antagonist histrionicotoxin. Position 262, probably a serine, is located in the highly conserved membrane-spanning helix M2 (according to the predicted folding scheme of Finer-Moore and Stroud (1984). The relationship of this site to the receptor's ion channel and its regulation is discussed. Images Fig. 2. PMID:3758027

  12. Alteration in contractile G-protein coupled receptor expression by moist snus and nicotine in rat cerebral arteries

    SciTech Connect

    Sandhu, Hardip; Xu Cangbao; Edvinsson, Lars

    2011-04-15

    The cardiovascular risk for users of use of Swedish snus/American snuff (moist tobacco) has been debated for a long time. The present study was designed to examine the effects of water- or lipid-soluble (DMSO-soluble) snus and nicotine, the most important substance in tobacco, on the expression of vasocontractile G-protein coupled receptors (GPCR), such as endothelin ET{sub B}, serotonin 5-HT{sub 1B}, and thromboxane A{sub 2} TP receptors, in rat cerebral arteries. Studies show that these vasocontractile GPCR show alterations by lipid-soluble cigarette smoke particles via activation of mitogen-activated protein kinases (MAPK). However, the effects of moist tobacco on the expression of GPCR are less studied. Rat middle cerebral arteries were isolated and organ cultured in serum-free medium for 24 h in the presence of water-soluble snus (WSS), DMSO-soluble snus (DSS), or nicotine. The dose of snus and nicotine was kept at plasma level of snus users (25 ng nicotine/ml). A high dose (250 ng nicotine/ml) was also included due to the previous results showing alteration in the GPCR expression by nicotine at this concentration. Contractile responses to the ET{sub B} receptor agonist sarafotoxin 6c, 5-HT{sub 1B} receptor agonist 5-carboxamidotryptamine, and TP receptor agonist U46619 were investigated by a sensitive myograph. The expression of ET{sub B}, 5-HT{sub 1B}, and TP receptors was studied at mRNA and protein levels using quantitative real-time PCR and immunohistochemistry, respectively. Organ culture with WSS or DSS (25 ng nicotine/ml) lowered the 5-HT{sub 1B} receptor-mediated contraction. Furthermore, DSS shifted the TP receptor-mediated contraction curve left-wards with a stronger contraction. High dose of nicotine (250 ng nicotine/ml) increased the ET{sub B} receptor-mediated contraction. The combined 5-HT{sub 1B} and 5-HT{sub 2A} receptor-mediated contraction was increased, and both the 5-CT and TxA2 induced contractions were left-ward shifted by WSS, DSS, or

  13. Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid.

    PubMed Central

    Bhushan, A; McNamee, M G

    1993-01-01

    Fourier transform infrared spectroscopy is used to characterize specific interactions between negatively charged lipids, such as phosphatidic acid, and the purified nicotinic acetylcholine receptor from Torpedo californica. The specific interaction of phosphatidic acid with acetylcholine receptor is demonstrated by the receptor-induced perturbation of the lipid ionization state, which is monitored using Fourier transform infrared bands arising from the phosphate head group. The acetylcholine receptor shifts the pKa of phosphatidic acid molecules adjacent to the receptor to a lower value by almost 2 pH units from 8.5 to 6.6. Decreased pH also leads to changes in ion channel function and to changes in the secondary structure of the acetylcholine receptor in membranes containing ionizable phospholipids. Phospholipase D restores functional activity of acetylcholine receptor reconstituted in an unfavorable environment containing phosphatidylcholine by generating phosphatidic acid. Lipids such as phosphatidic acid may serve as allosteric effectors for membrane protein function and the lipid-protein interface could be a site for activity-dependent changes that lead to modulation of synaptic efficacy. PMID:8471723

  14. Beta 2 subunit-containing nicotinic receptors mediate acute nicotine-induced activation of calcium/calmodulin-dependent protein kinase II-dependent pathways in vivo.

    PubMed

    Jackson, K J; Walters, C L; Damaj, M I

    2009-08-01

    Nicotine is the addictive component of tobacco, and successful smoking cessation therapies must address the various processes that contribute to nicotine addiction. Thus, understanding the nicotinic acetylcholine receptor (nAChR) subtypes and subsequent molecular cascades activated after nicotine exposure is of the utmost importance in understanding the progression of nicotine dependence. One possible candidate is the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Substrates of this kinase include the vesicle-associated protein synapsin I and the transcription factor cAMP response element-binding protein (CREB). The goal of these studies was to examine these postreceptor mechanisms after acute nicotine treatment in vivo. We first show that administration of nicotine increases CaMKII activity in the ventral tegmental area (VTA), nucleus accumbens (NAc), and amygdala. In beta2 nAChR knockout (KO) mice, nicotine does not induce an increase in kinase activity, phosphorylated (p)Synapsin I, or pCREB. In contrast, alpha7 nAChR KO mice show nicotine-induced increases in CaMKII activity and pCREB, similar to their wild-type littermates. Moreover, we show that when animals are pretreated with the CaMKII inhibitors 4-[(2S)-2-[(5-isoquinolinylsulfonyl) methylamino]-3-oxo-3-(4-phenyl-1-piperazinyl)propyl]phenyl isoquinolinesulfonic acid ester (KN-62) and N-[2-[[[3-(4-chlorophenyl)-2 propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulphonamide (KN-93), nicotine-induced increase in the kinase activity and pCREB was attenuated in the VTA and NAc, whereas pretreatment with (2-[N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine, phosphate) (KN-92), the inactive analog, did not alter the nicotine-induced increase in pCREB. Taken together, these data suggest that the nicotine-induced increase in CaMKII activity may correlate with the nicotine-induced increase in pSynapsin I and pCREB in the VTA and NAc via beta2

  15. Abelson Family Tyrosine Kinases Regulate the Function of Nicotinic Acetylcholine Receptors and Nicotinic Synapses on Autonomic NeuronsS⃞

    PubMed Central

    Jayakar, Selwyn S.

    2011-01-01

    Abelson family kinases (AFKs; Abl1, Abl2) are non-receptor tyrosine kinases (NRTKs) implicated in cancer, but they also have important physiological roles that include regulating synaptic structure and function. Recent studies using Abl-deficient mice and the antileukemia drug STI571 [imatinib mesylate (Gleevec); Novartis], which potently and selectively blocks Abl kinase activity, implicate AFKs in regulating presynaptic neurotransmitter release in hippocampus and postsynaptic clustering of nicotinic acetylcholine receptors (nAChRs) in muscle. Here, we tested whether AFKs are relevant for regulating nAChRs and nAChR-mediated synapses on autonomic neurons. AFK immunoreactivity was detected in ciliary ganglion (CG) lysates and neurons, and STI571 application blocked endogenous Abl tyrosine kinase activity. With similar potency, STI571 specifically reduced whole-cell current responses generated by both nicotinic receptor subtypes present on CG neurons (α3*- and α7-nAChRs) and lowered the frequency and amplitude of α3*-nAChR-mediated excitatory postsynaptic currents. Quantal analysis indicated that the synaptic perturbations were postsynaptic in origin, and confocal imaging experiments revealed they were unaccompanied by changes in nAChR clustering or alignment with presynaptic terminals. The results indicate that in autonomic neurons, Abl kinase activity normally supports postsynaptic nAChR function to sustain nAChR-mediated neurotransmission. Such consequences contrast with the influence of Abl kinase activity on presynaptic function and synaptic structure in hippocampus and muscle, respectively, demonstrating a cell-specific mechanism of action. Finally, because STI571 potently inhibits Abl kinase activity, the autonomic dysfunction side effects associated with its use as a chemotherapeutic agent may result from perturbed α3*- and/or α7-nAChR function. PMID:21502378

  16. Subtype-selective nicotinic acetylcholine receptor agonists enhance the responsiveness to citalopram and reboxetine in the mouse forced swim test.

    PubMed

    Andreasen, Jesper T; Nielsen, Elsebet Ø; Christensen, Jeppe K; Olsen, Gunnar M; Peters, Dan; Mirza, Naheed R; Redrobe, John P

    2011-10-01

    Nicotine increases serotonergic and noradrenergic neuronal activity and facilitates serotonin and noradrenaline release. Accordingly, nicotine enhances antidepressant-like actions of reuptake inhibitors selective for serotonin or noradrenaline in the mouse forced swim test and the mouse tail suspension test. Both high-affinity α4β2 and low-affinity α7 nicotinic acetylcholine receptor subtypes are implicated in nicotine-mediated release of serotonin and noradrenaline. The present study therefore investigated whether selective agonism of α4β2 or α7 nicotinic acetylcholine receptors would affect the mouse forced swim test activity of two antidepressants with distinct mechanisms of action, namely the selective serotonin reuptake inhibitor citalopram and the noradrenaline reuptake inhibitor reboxetine. Subthreshold and threshold doses of citalopram (3 and 10 mg/kg) or reboxetine (10 and 20 mg/kg) were tested alone and in combination with the novel α4β2-selective partial nicotinic acetylcholine receptor agonist, NS3956 (0.3 and 1.0 mg/kg) or the α7-selective nicotinic acetylcholine receptor agonist, PNU-282987 (10 and 30 mg/kg). Alone, NS3956 and PNU-282987 were devoid of activity in the mouse forced swim test, but both 1.0 mg/kg NS3956 and 30 mg/kg PNU-282987 enhanced the effect of citalopram and also reboxetine. The data suggest that the activity of citalopram and reboxetine in the mouse forced swim test can be enhanced by agonists at either α4β2 or α7 nicotinic acetylcholine receptors, suggesting that both nicotinic acetylcholine receptor subtypes may be involved in the nicotine-enhanced action of antidepressants.

  17. The Nicotinic Receptor Alpha7 Impacts the Mouse Lung Response to LPS through Multiple Mechanisms

    PubMed Central

    Enioutina, Elena Y.; Myers, Elizabeth J.; Tvrdik, Petr; Hoidal, John R.; Rogers, Scott W.; Gahring, Lorise C.

    2015-01-01

    The nicotinic acetylcholine receptor alpha7 (α7) is expressed by neuronal and non-neuronal cells throughout the body. We examined the mechanisms of the lung inflammatory response to intranasal (i.n.) lipopolysaccharide (LPS) regulated by α7. This was done in mice using homologous recombination to introduce a point mutation in the α7 receptor that replaces the glutamate residue 260 that lines the pore with alanine (α7E260A), which has been implicated in controlling the exceptional calcium ion conductance of this receptor. The α7E260A mice exhibit normal inflammatory cell recruitment to the blood in response to i.n. LPS administration. This differs from the α7knock-out (α7KO) in which upstream signaling to initiate the recruitment to the blood following i.n. LPS is significantly impaired. While hematopoietic cells are recruited to the bloodstream in the α7E260A mouse, they fail to be recruited efficiently into both the interstitium and alveolar spaces of the lung. Bone marrow reconstitution experiments demonstrate that the responsiveness of both CD45+ and CD45- cells of the α7E260A mouse are impaired. The expression of several pro-inflammatory cytokine and chemokine RNAs including TNFα, IL-1α, Ccl2 and Cxcl10 are decreased in the α7E260A mouse. However, there is a substantial increase in IL-13 expression by CD45- lung interstitial cells in the α7E260A mouse. Our results support the conclusion that α7 functional pleiotropy contributes to modulating the tissue response to an inflammatory insult through impacting upon a variety of mechanisms reflecting the individual cell composition of the lung. PMID:25803612

  18. Identification and characterization of novel nicotinic receptor-associated proteins in Caenorhabditis elegans

    PubMed Central

    Gottschalk, Alexander; Almedom, Ruta B; Schedletzky, Thorsten; Anderson, Scott D; Yates, John R; Schafer, William R

    2005-01-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast excitatory neurotransmission in neurons and muscles. To identify nAChR accessory proteins, which may regulate their expression or function, we performed tandem affinity purification of the levamisole-sensitive nAChR from Caenorhabditis elegans, mass spectrometry of associated components, and RNAi-based screening for effects on in vivo nicotine sensitivity. Among the proteins identified was the calcineurin A subunit TAX-6, which appeared to function as a negative regulator of nAChR activity. We also identified five proteins not previously linked to nAChR function, whose inactivation conferred nicotine resistance, implicating them as positive regulators of nAChR activity. Of these, the copine NRA-1 colocalized with the levamisole receptor at neuronal and muscle plasma membranes, and, when mutated, caused reduced synaptic nAChR expression. Loss of SOC-1, which acts in receptor tyrosine kinase (RTK) signaling, also reduced synaptic levamisole receptor levels, as did mutations in the fibroblast growth factor receptor EGL-15, and another RTK, CAM-1. Thus, tandem affinity purification is a viable approach to identify novel proteins regulating neurotransmitter receptor activity or expression in model systems like C. elegans. PMID:15990870

  19. In vivo modulation of alpha7 nicotinic receptors on striatal glutamate release induced by anatoxin-A.

    PubMed

    Campos, F; Alfonso, M; Durán, R

    2010-01-01

    In vitro studies suggest that alpha7 nicotinic receptors located on striatal glutamatergic terminals stimulate the release of glutamate which in turn acts at ionotropic glutamate receptors on dopaminergic terminals to increase dopamine release. However, this mechanism has never been observed in in vivo studies. In the present work, the effect of the nicotinic receptors agonist, anatoxin-a, on striatal glutamate and dopamine release has been studied. Using in vivo microdialysis technique, our results have shown that anatoxin-a evokes glutamate release in a dependent way of activation alpha7 nicotinic receptors. The increase of glutamate is followed by an increase on dopamine levels. These results represent a clear in vivo evidence of the striatal modulation of dopamine by means of glutamate release through alpha7 nicotinic receptors.

  20. Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection

    PubMed Central

    Rommel, Frank R.; Raghavan, Badrinarayanan; Paddenberg, Renate; Kummer, Wolfgang; Tumala, Susanne; Lochnit, Günter; Gieler, Uwe

    2015-01-01

    Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. PMID:25673288

  1. Kinked structures of isolated nicotinic receptor M2 helices: a molecular dynamics study.

    PubMed

    Sankararamakrishnan, R; Samsom, M S

    1994-12-01

    The pore-lining M2 helix of the nicotinic acetylcholine receptor exhibits a pronounced kink when the corresponding ion channel is in a closed conformation [N. Unwin (1993) Journal of Molecular Biology, Vol. 229, pp. 1101-1124]. We have performed molecular dynamics simulations of isolated 22-residue M2 helices in order to identify a possible molecular origin of this kink. In order to sample a wide range of conformational space, a simulated annealing protocol was used to generate five initial M2 helix structures, each of which was subsequently used as the basis of 300 ps MD simulations. Two helix sequences (M2 alpha and M2 delta) were studied in this manner, resulting in a total of ten 300 ps trajectories. Kinked helices present in the trajectories were identified and energy minimized to yield a total of five different stable kinked structures. For comparison, a similar molecular dynamics simulation of a Leu23 helix yielded no stable kinked structures. In four of the five kinked helices, the kink was stabilized by H bonds between the helix backbone and polar side-chain atoms. Comparison with data from the literature on site-directed mutagenesis of M2 residues suggests that such polar side-chain to main-chain H bonds may also contribute to kinking of M2 helices in the intact channel protein.

  2. Regulation of the common carotid arterial blood flow by nicotinic receptors in the medulla of cats

    PubMed Central

    Gong, C-L; Chiu, Y-T; Lin, N-N; Cheng, C-C; Lin, S-Z; Lee, T J-F; Kuo, J-S

    2006-01-01

    Background and purpose: Actions of glutamate and serotonin on their respective receptors in the dorsal facial area (DFA) of the medulla are known to regulate common carotid arterial (CCA) blood flow in cats. Less is known about acetylcholine action on its nicotinic receptor (nAChR) subtypes in the DFA for regulation of CCA blood flow and this aspect was investigated. Experimental approach: Nicotinic and muscarinic agonists and antagonists were microinjected into the DFA through a three-barrel tubing in anesthetized cats. Results: CCA blood flow was dose-dependently increased by nicotine (a non-selective nAChR agonist) and choline (a selective α7-nAChR agonist). These effects of nicotine were attenuated by α-bungarotoxin (an α7-nAChR antagonist), methyllycaconitine (an α7-nAChR antagonist), mecamylamine (a relatively selective α3β4-nAChR antagonist) and dihydro-β-erythroidine (a relatively selective α4β2-nAChR antagonist). The choline-induced flow increase was attenuated by α-bungarotoxin and mecamylamine, but not by dihydro-β-erythroidine. Muscarinic agonists (muscarine and methacholine) and antagonist (atropine) affected neither the basal nor the nicotine-induced increase in the CCA blood flow. Conclusions and implications: Functional α7, α4β2, and α3β4 subunits of the nAChR appear to be present on the DFA neurons. Activations of these receptors increase the CCA blood flow. The present findings do not preclude the presence of other nAChRs subunits. Muscarinic receptors, if any, on the DFA are not involved in regulation of the CCA blood flow. Various subtypes of nAChRs in the DFA may mediate regulation of the CCA and cerebral blood flows. PMID:16894347

  3. Pharmacological profile of zacopride and new quaternarized fluorobenzamide analogues on mammalian α7 nicotinic acetylcholine receptor.

    PubMed

    Bourdin, Céline M; Lebreton, Jacques; Mathé-Allainmat, Monique; Thany, Steeve H

    2015-08-15

    From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 μM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 μM and 39.3 μM whereas LMA10203 and zacopride possessed IC50 values of 8.07 μM and 7.04 μM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor.

  4. Effect of nicotine and cocaine on neurofilaments and receptors in whole brain tissue and synaptoneurosome preparations.

    PubMed

    Kovacs, K; Lajtha, A; Sershen, H

    2010-04-29

    The present study examined the effect of repeated nicotine and cocaine administration on the expression of neurofilament proteins (NF-L, -M, and -H), actin, and on alpha-7 nicotinic, dopamine D1 and NMDA NR1 receptors in brain. Whole tissue homogenate and synaptoneurosomal preparations from hippocampus, striatum and cortex were assayed. C57BL/6By mice were treated for 2 weeks with a daily injection of nicotine (0.4 mg/kg) or cocaine (25mg/kg). The mice were killed 60 min after the last injection and tissue prepared for Western blot analysis of expression of NFs and receptor expression. Actin protein was affected by cocaine and nicotine treatment, decreasing in homogenate fraction (striatum and cortex) and showing an increase in the synaptoneurosome preparation (hippocampus and cortex). NF expression was affected; with regional and response differences dependent on tissue preparation. NF-M increased in all three brain regions; NF-L increased in the cortex and NF-H increased in the striatum in the synaptoneurosomal preparations. Change in nicotinic and dopamine receptor expression was dependent on region and tissue preparation. NMDA NR1 expression increased in the three brain regions in the synaptoneurosomal preparation. The results suggest that specific brain protein levels are affected by repeated drug administration. Drug effects on cytoskeletal elements are selective, regionally heterogeneous, and change with time after drug administration. Changes in cytoskeletal proteins maybe part of the mechanism in drug-induced neurotransmitter changes. We have found previously that drug-induced changes in neurotransmitters are regionally heterogeneous and are drug specific. We now found similar regional heterogeneity and drug specificity in drug-induced changes in cytoskeletal and receptor proteins.

  5. α7-nicotinic acetylcholine receptor agonists for cognitive enhancement in schizophrenia.

    PubMed

    Freedman, Robert

    2014-01-01

    α7-Nicotinic acetylcholine receptors have emerged as a potential therapeutic target for the treatment of neurocognitive dysfunctions in schizophrenia that are often resistant to existing antipsychotic drugs. Molecular evidence for involvement in schizophrenia of CHRNA7, the gene for the receptor subunit, in the neurobiology of deficits in attention is a critical rationale for the clinical study of α7-nicotinic receptor agonists to improve neurocognition. Initial clinical trials show enhancement of inhibitory neuron function related to sensory gating and increased attention and working memory, as well as improvement in negative symptoms such as anhedonia and alogia. Further development of this therapeutic strategy requires assessment of interactions with patients' heavy cigarette smoking and the relationship of this mechanism to the therapeutic effects of clozapine and olanzapine, both highly effective therapeutics with significant side effects.

  6. Effects of serotonin (5-HT)2 receptor ligands on depression-like behavior during nicotine withdrawal.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Wydra, Karolina; Filip, Małgorzata

    2010-06-01

    A pronounced withdrawal syndrome including depressed mood prevents cigarette smoking cessation. We tested if blockade or activation of serotonin (5-HT)(2) receptors affected the time of immobility (as an indirect measure of depression-like behavior) in naïve animals and in those withdrawn from chronic nicotine in the forced swim test (FST). The antidepressant imipramine was used as a control. In the FST, the selective 5-HT(2A) receptor antagonist M100,907 (1-2 mg/kg, but not 0.5 mg/kg), the selective 5-HT(2C) receptor antagonist SB 242,084 (0.3-1 mg/kg, but not 0.1 mg/kg), the 5-HT(2C) receptor agonists Ro 60-0175 (10 mg/kg, but not 3 mg/kg) and WAY 163,909 (1.5-10 mg/kg, but not 0.75 mg/kg) as well as imipramine (30 mg/kg, but not 15 mg/kg) decreased the immobility time while the non-selective 5-HT(2) receptor agonist DOI (0.1-1 mg/kg) was inactive in naïve rats. We found an increase in immobility time in rats that were withdrawn from nicotine exposure after 5 days of chronic nicotine treatment. This effect increased from day 1 until day 10 following withdrawal of nicotine, with maximal withdrawal effects on day 3. M100,907 (1 mg/kg), SB 242,084 (0.3 mg/kg), Ro 60-0175 (3 mg/kg), WAY 163,909 (0.75-1.5 mg/kg) and imipramine (15-30 mg/kg) shortened the immobility time in rats that had been removed from nicotine exposure for 3 days. Locomotor activity studies indicated that the effects of SB 242,084 might have been non-specific, as we noticed enhanced basal locomotion in naïve rats. This data set demonstrates that 5-HT(2A) receptor antagonist and 5-HT(2C) receptor agonists exhibited effects similar to antidepressant drugs and abolished the depression-like effects in nicotine-withdrawn rats. These drugs should be considered as adjuncts to smoking cessation therapy, to ameliorate abstinence-induced depressive symptoms.

  7. Mecamylamine-precipitated nicotine withdrawal syndrome and its prevention with baclofen: an autoradiographic study of α4β2 nicotinic acetylcholine receptors in mice.

    PubMed

    Varani, Andrés P; Antonelli, Marta C; Balerio, Graciela N

    2013-07-01

    A previous study from our laboratory showed that baclofen (BAC, GABAB receptor agonist) was able to prevent the behavioral expression of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying this effect, we conducted this study, with the aims of analyzing α4β2 nicotinic receptor density during NIC withdrawal and, in case we found any changes, of determining whether they could be prevented by pretreatment with BAC. Swiss Webster albino mice received NIC (2.5 mg/kg, s.c.) 4 times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and brain autoradiography with [(3)H]epibatidine was carried out at five different anatomical levels. Autoradiographic mapping showed a significant increase of α4β2 nicotinic receptor labeling during NIC withdrawal in the nucleus accumbens shell (AcbSh), medial habenular nucleus (HbM), thalamic nuclei, dorsal lateral geniculate (DLG) nucleus, fasciculus retroflexus (fr), ventral tegmental area, interpeduncular nucleus and superior colliculus. BAC pretreatment prevented the increased α4β2 nicotinic receptor binding sites in the AcbSh, MHb, thalamic nuclei, DLG nucleus and fr. The present results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in α4β2 nicotinic receptor labeling, evidenced in specific brain areas in NIC withdrawn animals.

  8. Tritiated-nicotine- and /sup 125/I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. II. Effects of habenular destruction

    SciTech Connect

    Clarke, P.B.; Hamill, G.S.; Nadi, N.S.; Jacobowitz, D.M.; Pert, A.

    1986-09-15

    The cholinergic innervation of the interpeduncular nucleus (IPN) is wholly extrinsic and is greatly attenuated by bilateral habenular destruction. We describe changes in the labeling of putative nicotinic receptors within this nucleus at 3, 5, or 11 days after bilateral habenular lesions. Adjacent tissue sections of the rat IPN were utilized for /sup 3/H-nicotine and /sup 125/I-alpha-bungarotoxin (/sup 125/I-BTX) receptor autoradiography. Compared to sham-operated controls, habenular destruction significantly reduced autoradiographic /sup 3/H-nicotine labeling in rostral (-25%), intermediate (-13%), and lateral subnuclei (-36%). Labeling in the central subnucleus was unchanged. Loss of labeling was maximal at the shortest survival time (3 days) and did not change thereafter. In order to establish whether this loss was due to a reduction in the number or the affinity of /sup 3/H-nicotine-binding sites, a membrane assay was performed on microdissected IPN tissue from rats that had received surgery 3 days previously. Bilateral habenular lesions produced a 35% reduction of high-affinity /sup 3/H-nicotine-binding sites, with no change in binding affinity. Bilateral habenular lesions reduced /sup 125/I-BTX labeling in the intermediate subnuclei, and a slight increase occurred in the rostral subnucleus. In the lateral subnuclei, /sup 125/I-BTX labeling was significantly reduced (27%) at 3 days but not at later survival times. In view of the known synaptic morphology of the habenulointerpeduncular tract, it is concluded that a subpopulation of /sup 3/H-nicotine binding sites within the IPN is located on afferent axons and/or terminals. This subpopulation, located within rostral, intermediate, and lateral subnuclei, may correspond to presynaptic nicotinic cholinergic receptors. Sites that bind /sup 125/I-BTX may include a presynaptic subpopulation located in the lateral and possibly the intermediate subnuclei.

  9. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors.

    PubMed

    Mishra, Neerad C; Rir-sima-ah, Jules; Boyd, R Thomas; Singh, Shashi P; Gundavarapu, Sravanthi; Langley, Raymond J; Razani-Boroujerdi, Seddigheh; Sopori, Mohan L

    2010-07-01

    Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC(4). Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma. Mast cells express a high-affinity receptor for IgE (FcepsilonRI). Following its cross-linking, cells degranulate and release preformed inflammatory mediators (early phase) and synthesize and secrete cytokines/chemokines and leukotrienes (late phase). The mechanism by which nicotine modulates mast cell activation is unclear. Using alpha-bungarotoxin binding and quantitative PCR and PCR product sequencing, we showed that the rat mast/basophil cell line RBL-2H3 expresses nicotinic acetylcholine receptors (nAChRs) alpha7, alpha9, and alpha10; exposure to exceedingly low concentrations of nicotine (nanomolar), but not the biologically inactive metabolite cotinine, for > or = 8 h suppressed the late phase (leukotriene/cytokine production) but not degranulation (histamine and hexosaminidase release). These effects were unrelated to those of nicotine on intracellular free calcium concentration but were causally associated with the inhibition of cytosolic phospholipase A(2) activity and the PI3K/ERK/NF-kappaB pathway, including phosphorylation of Akt and ERK and nuclear translocation of NF-kappaB. The suppressive effect of nicotine on the late-phase response was blocked by the alpha7/alpha9-nAChR antagonists methyllycaconitine and alpha-bungarotoxin, as well as by small interfering RNA knockdown of alpha7-, alpha9-, or alpha10-nAChRs, suggesting a functional interaction between alpha7-, alpha9-, and alpha10-nAChRs that might explain the response of RBL cells to nanomolar concentrations of nicotine. This "hybrid" receptor might serve as a target for novel antiallergic/antiasthmatic therapies.

  10. GABA(B) receptors involvement in the effects induced by nicotine on anxiety-related behaviour in mice.

    PubMed

    Varani, Andrés P; Balerio, Graciela N

    2012-05-01

    The aim of the present study was to evaluate the possible involvement of GABA(B) receptors in the anxiolytic- and anxiogenic-like responses induced by nicotine in mice. Animals were exposed to nicotine only once. The acute administration of low (0.05mg/kg, sc) or high (0.8mg/kg, sc) doses of nicotine produced opposite effects in the elevated plus maze test; respectively, anxiolytic- and anxiogenic-like responses. The effect of pretreatment with either the GABA(B) receptor antagonist 2-OH-saclofen (0.25, 0.5 and 1mg/kg; ip) or the GABA(B) receptor agonist baclofen (0.5, 1 and 2mg/kg; ip), was evaluated on the anxiolytic- and anxiogenic-like responses induced by nicotine. 2-OH-saclofen completely abolished both nicotine-induced effects (p<0.001) at the highest dose tested, suggesting an involvement of GABA(B) receptors in these behavioural responses. On the other hand, baclofen failed to modify the anxiety-related effects of nicotine. These results suggest that the GABA(B) receptors are involved in the regulation of nicotine-induced anxiety-related behavioural responses in mice, and provide new findings to support a potential pharmaco therapeutic use of GABAergic drugs in the treatment of tobacco addiction.

  11. Chronic FAAH inhibition during nicotine abstinence alters habenular CB1 receptor activity and precipitates depressive-like behaviors.

    PubMed

    Simonnet, A; Zamberletti, E; Cador, M; Rubino, T; Caillé, S

    2017-02-01

    The role of the endocannabinoid system in nicotine addiction is being increasingly acknowledged. Acute inhibition of anandamide (AEA) degradation efficiently reduces nicotine withdrawal-induced affective symptoms in rats and fatty acid amide hydrolase (FAAH), the degradation enzyme of AEA, has been proposed as a possible treatment against nicotine addiction. However, it is unclear whether chronic inhibition of AEA during nicotine abstinence will have beneficial or deleterious affective side-effects. Using a rat model of nicotine addiction, we found that, during abstinence, rats injected daily with a FAAH inhibitor (URB597) developed a depressive-like phenotype. Our results show that in the nicotine abstinent rats, URB597 induced low saccharin consumption, persistent immobility in the forced swim test and increased corticosterone levels in response to stress. In addition, URB597decreased CB1 receptor binding and activity in the habenula, a key structure in the control of nicotine-related emotional states. In contrast, non-treated abstinent rats showed increased CB1 receptor activity and behaviors comparable to controls. No FAAH inhibition-induced alterations were observed in animals that had a previous history of saline self-administration. Taken together, our results suggest that chronic FAAH inhibition prevents the homeostatic adaptations of habenular CB1 receptor function that are necessary for the recovery from nicotine dependence.

  12. In vitro labelling of muscle type nicotinic receptors using a fluorophore-conjugated pinnatoxin F derivative.

    PubMed

    Hellyer, Shane D; Selwood, Andrew I; van Ginkel, Roel; Munday, Rex; Sheard, Phil; Miles, Christopher O; Rhodes, Lesley; Kerr, D Steven

    2014-09-01

    Fluorescent molecules are regularly utilised to study ligand-receptor interactions. Many ligands for nicotinic receptors have been conjugated with fluorophores to study receptor kinetics, recycling and ligand binding characteristics. These include small agonist molecules, as well as large peptidic antagonists. However, no small molecule antagonists have been investigated using this method. Pinnatoxin F is a newly discovered non-peptidic muscle type nicotinic receptor antagonist produced by the marine dinoflagellate species Vulcanodinium rugosum. This molecule has the potential for conjugation to a fluorophore, allowing subsequent visualisation of interactions with nicotinic receptors. Pinnatoxin F was modified by addition of diaminopolyether spacers, to which a fluorophore (VivoTag(®) 645) was conjugated. The fluorescent pinnatoxin was then applied to muscle sections from thy1-YFP-H transgenic mice, which express YFP in motor nerves, to allow direct visualization of fluorescent binding at the neuromuscular junction. The addition of both the diaminopolyether spacer and the VivoTag(®) 645 reduced the potency of pinnatoxin F, as evidenced by a reduction in in vitro neuromuscular blocking activity and in vivo toxicity. Despite this reduced potency, the fluorescent molecule selectively labelled endplate regions in thy1-YFP mouse muscle sections and this labelling was inhibited by pre-exposure of muscle sections to native pinnatoxin F or the nicotinic antagonist α-bungarotoxin. This study proves nicotinic receptor binding activity of pinnatoxin F and is the first example of a fluorophore-conjugated small-molecule antagonist for nicotinic receptors. These results indicate the potential for other small-molecule nicotinic receptor antagonists to be fluorescently labelled and used as probes for specific nicotinic receptor subtypes.

  13. Role of nicotinic receptors and acetylcholine in mucous cell metaplasia, hyperplasia and airway mucus formation in vitro and in vivo

    PubMed Central

    Gundavarapu, Sravanthi; Wilder, Julie A.; Mishra, Neerad C.; Rir-sima-ah, Jules; Langley, Raymond J.; Singh, Shashi P.; Saeed, Ali Imran; Jaramillo, Richard J.; Gott, Katherine M.; Peña-Philippides, Juan Carlos; Harrod, Kevin S.; McIntosh, J. Michael; Buch, Shilpa; Sopori, Mohan L.

    2012-01-01

    Background Airway mucus hypersecretion is a key pathophysiological feature in number of lung diseases. Cigarette smoke/nicotine and allergens are strong stimulators of airway mucus; however, the mechanism of mucus modulation is unclear. Objectives Characterize the pathway by which cigarette smoke/nicotine regulates airway mucus and identify agents that decrease airway mucus. Methods IL-13 and gamma-aminobutyric acid receptors (GABAARs) are implicated in airway mucus. We examined the role of IL-13 and GABAARs in nicotine-induced mucus formation in normal human bronchial epithelial (NHBE) and A549 cells, and secondhand cigarette smoke and/or ovalbumin-induced mucus formation in vivo. Results Nicotine promotes mucus formation in NHBE cells; however, the nicotine-induced mucus formation is independent of IL-13 but sensitive to the GABAAR antagonist picrotoxin (PIC). Airway epithelial cells express α7/α9/α10 nicotinic acetylcholine receptors (nAChRs) and specific inhibition or knockdown of α7- but not α9/α10-nAChRs abrogates mucus formation in response to nicotine and IL-13. Moreover, addition of acetylcholine or inhibition of its degradation increases mucus in NHBE cells. Nicotinic but not muscarinic receptor antagonists block allergen or nicotine/cigarette smoke-induced airway mucus formation in NHBE cells and/or in mouse airways. Conclusions Nicotine-induced airway mucus formation is independent of IL-13 and α7-nAChRs are critical in airway mucous cell metaplasia/hyperplasia and mucus production in response to various pro-mucoid agents, including IL-13. In the absence of nicotine, acetylcholine may be the biological ligand for α7-nAChRs to trigger airway mucus formation. α7-nAChRs are downstream of IL-13 but upstream of GABAARα2 in the MUC5AC pathway. Acetylcholine and α-7-nAChRs may serve as therapeutic targets to control airway mucus. PMID:22578901

  14. CYP2A6- and CYP2A13-catalyzed metabolism of the nicotine Δ5'(1')iminium ion.

    PubMed

    von Weymarn, Linda B; Retzlaff, Cassandra; Murphy, Sharon E

    2012-11-01

    Nicotine, the major addictive agent in tobacco, is metabolized primarily by CYP2A6-catalyzed oxidation. The product of this reaction, 5'-hydroxynicotine, is in equilibrium with the nicotine Δ5'(1')iminium ion and is further metabolized to cotinine. We reported previously that both CYP2A6 and the closely related extrahepatic enzyme CYP2A13 were inactivated during nicotine metabolism; however, inactivation occurred after metabolism was complete. This led to the hypothesis that oxidation of a nicotine metabolite, possibly the nicotine Δ5'(1')iminium ion, was responsible for generating the inactivating species. In the studies presented here, we confirm that the nicotine Δ5'(1')iminium ion is an inactivator of both CYP2A6 and CYP2A13, and inactivation depends on time, concentration, and the presence of NADPH. Inactivation was not reversible and was accompanied by a parallel loss in spectrally active protein, as measured by reduced CO spectra. These data are consistent with the characterization of the nicotine Δ5'(1')iminium ion as a mechanism-based inactivator of both CYP2A13 and CYP2A6. We also confirm that both CYP2A6 and CYP2A13 catalyze the metabolism of the nicotine Δ5'(1')iminium ion to cotinine and provide evidence that both enzymes catalyze the sequential metabolism of the nicotine Δ5'(1')iminium ion. That is, a fraction of the cotinine formed may not be released from the enzyme before further oxidation to 3'-hydroxycotinine.

  15. Nicotinic cholinergic receptors in rat brain. Annual report No. 3, 1 May 85-30 Apr 86

    SciTech Connect

    Kellar, K.J.

    1986-05-01

    We have compared the characteristics of the recognition sites for 3(H)acetylcholine and 3H(-)nicotine in rat brain and found that the pharmacology, distribution, disulfide bond requirement, and regulation by chronic administration of nicotine and soman are identical. From these studies we conclude that 3Hacetylcholine and 3H(-)nicotine recognize the same recognition site which has the characteristics expected of a nicotinic cholinergic receptor. We have also determined that 3Hacetylcholine of high specific radioactivity (80 Ci/mmol) is an excellent ligand with which to study muscarinic receptors that have high affinity for agonists. These receptors may represent a subtype of muscarinic receptors found in brain, heart, glands, an some smooth muscle. (JS)

  16. Nicotinic receptor activation on primary sensory afferents modulates autorhythmicity in the mouse renal pelvis

    PubMed Central

    Nguyen, M J; Angkawaijawa, S; Hashitani, H; Lang, R J

    2013-01-01

    BACKGROUND AND PURPOSE The modulation of the spontaneous electrical and Ca2+ signals underlying pyeloureteric peristalsis upon nicotinic receptor activation located on primary sensory afferents (PSAs) was investigated in the mouse renal pelvis. EXPERIMENTAL APPROACH Contractile activity was followed using video microscopy, electrical and Ca2+ signals in typical and atypical smooth muscle cells (TSMCs and ASMCs) within the renal pelvis were recorded separately using intracellular microelectrodes and Fluo-4 Ca2+ imaging. KEY RESULTS Nicotine and carbachol (CCh; 1–100 μM) transiently reduced the frequency and increased the amplitude of spontaneous phasic contractions in a manner unaffected by muscarininc antagonists, 4-DAMP (1,1-dimethyl-4-diphenylacetoxypiperidinium iodide) and pirenzipine (10 nM) or L-NAME (L-Nω-nitroarginine methyl ester; 200 μM), inhibitor of NO synthesis, but blocked by the nicotinic antagonist, hexamethonium or capsaicin, depletor of PSA neuropeptides. These negative chronotropic and delayed positive inotropic effects of CCh on TSMC contractions, action potentials and Ca2+ transients were inhibited by glibenclamide (Glib; 1 μM), blocker of ATP-dependent K (KATP) channels. Nicotinic receptor-evoked inhibition of the spontaneous Ca2+ transients in ASMCs was prevented by capsaicin but not Glib. In contrast, the negative inotropic and chronotropic effects of the non-selective COX inhibitor indomethacin were not prevented by Glib. CONCLUSIONS AND IMPLICATIONS The negative chronotropic effect of nicotinic receptor activation results from the release of calcitonin gene-related peptide (CGRP) from PSAs, which suppresses Ca2+ signalling in ASMCs. PSA-released CGRP also evokes a transient hyperpolarization in TSMCs upon the opening of KATP channels, which reduces contraction propagation but promotes the recruitment of TSMC Ca2+ channels that underlie the delayed positive inotropic effects of CCh. PMID:24004375

  17. Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induce cyclooxygenase-2 activity in human gastric cancer cells: Involvement of nicotinic acetylcholine receptor (nAChR) and {beta}-adrenergic receptor signaling pathways

    SciTech Connect

    Shin, Vivian Yvonne; Jin, H.C.; Ng, Enders K.O.; Yu Jun; Leung, W.K.; Cho, C.H.; Sung, J.J.Y.

    2008-12-01

    Induction of cyclooxygenase-2 (COX-2) associates with cigarette smoke exposure in many malignancies. Nicotine and its derivative, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), are the two important components in cigarette smoke that contributes to cancer development. However, the molecular mechanism(s) by which nicotine or NNK promotes gastric carcinogenesis remains largely unknown. We found that nicotine and NNK significantly enhanced cell proliferation in AGS cells that expressed both alpha7 nicotinic acetylcholine receptor ({alpha}7 nAChR) and {beta}-adrenergic receptors. Treatment of cells with {alpha}-bungarotoxin ({alpha}-BTX, {alpha}7nAChR antagonist) or propranolol ({beta}-adrenergic receptor antagonist) blocked NNK-induced COX-2/PGE{sub 2} and cell proliferation, while nicotine-mediated cell growth and COX-2/PGE{sub 2} induction can only be suppressed by propranolol, but not {alpha}-BTX. Moreover, in contrast to the dependence of growth promoting effect of nicotine on Erk activation, inhibitor of p38 mitogen-activated protein kinase (MAPK) repressed NNK-induced COX-2 upregulation and resulted in suppression of cell growth. In addition, nicotine and NNK mediated COX-2 induction via different receptors to modulate several G1/S transition regulatory proteins and promote gastric cancer cell growth. Selective COX-2 inhibitor (SC-236) caused G1 arrest and abrogated nicotine/NNK-induced cell proliferation. Aberrant expression of cyclin D1 and other G1 regulatory proteins are reversed by blockade of COX-2. These results pointed to the importance of adrenergic and nicotinic receptors in gastric tumor growth through MAPK/COX-2 activation, which may perhaps provide a chemoprevention strategy for cigarette smoke-related gastric carcinogenesis.

  18. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    SciTech Connect

    Middleton, R.E.; Cohen, J.B. )

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  19. In vivo chronic nicotine exposure differentially and reversibly affects upregulation and stoichiometry of α4β2 nicotinic receptors in cortex and thalamus.

    PubMed

    Fasoli, F; Moretti, M; Zoli, M; Pistillo, F; Crespi, A; Clementi, F; Mc Clure-Begley, T; Marks, M J; Gotti, C

    2016-09-01

    Studies with heterologous expression systems have shown that the α4β2 nicotinic acetylcholine receptor (nAChR) subtype can exist in two stoichiometries (with two [(α4)2(β2)3] or three [(α4)3(β2)2] copies of the α subunit in the receptor pentamer) which have different pharmacological and functional properties and are differently regulated by chronic nicotine treatment. However, the effects of nicotine treatment in vivo on native α4β2 nAChR stoichiometry are not well known. We investigated in C57BL/6 mice the in vivo effect of 14-day chronic nicotine treatment and subsequent withdrawal, on the subunit expression and β2/α4 subunit ratio of (3)H-epibatidine labeled α4β2*-nAChR in total homogenates of cortex and thalamus. We found that in basal conditions the ratio of the β2/α4 subunit in the cortex and thalamus is different indicating a higher proportion in receptors with (α4)2(β2)3 subunit stoichiometry in the thalamus. For cortex exposure to chronic nicotine elicited an increase in receptor density measured by (3)H-epibatidine binding, an increase in the α4 and β2 protein levels, and an increase in β2/α4 subunit ratio, that indicates an increased proportion of receptors with the (α4)2(β2)3 stoichiometry. For thalamus we did not find a significant increase in receptor density, α4 and β2 protein levels, or changes in β2/α4 subunit ratio. All the changes elicited by chronic nicotine in cortex were transient and returned to basal levels with an average half-life of 2.8 days following nicotine withdrawal. These data suggest that chronic nicotine exposure in vivo favors increased assembly of α4β2 nAChR containing three β2 subunits. A greater change in stoichiometry was observed for cortex (which has relatively low basal expression of (α4)2(β2)3 nAChR) than in thalamus (which has a relatively high basal expression of (α4)2(β2)3 nAChR).

  20. Stress-induced activation of the dynorphin/κ-opioid receptor system in the amygdala potentiates nicotine conditioned place preference

    PubMed Central

    Smith, Jeffrey S.; Schindler, Abigail G.; Martinelli, Emma; Gustin, Richard M.; Bruchas, Michael R.; Chavkin, Charles

    2012-01-01

    Many smokers describe the anxiolytic and stress-reducing effects of nicotine, the primary addictive component of tobacco, as a principal motivation for continued drug use. Recent evidence suggests that activation of the stress circuits, including the dynorphin/κ-opioid receptor system, modulates the rewarding effects of addictive drugs. In the present study, we find that nicotine produced dose-dependent conditioned place preference (CPP) in mice. κ-Receptor activation, either by repeated forced swim stress or U50,488 (5 mg/kg or 10 mg/kg, i.p.) administration, significantly potentiated the magnitude of nicotine CPP. The increase in nicotine CPP was blocked by the κ-receptor antagonist norBNI either systemically (10 mg/kg, i.p.) or by local injection in the amygdala (2.5 μg) without affecting nicotine reward in the absence of stress. U50,488 (5 mg/kg, i.p.) produced anxiety-like behaviors in the elevated-plus maze and novel object exploration assays, and the anxiety-like behaviors were attenuated both by systemic nicotine (0.5 mg/kg, s.c.) and local injection of norBNI into the amygdala. Local norBNI injection in the ventral posterior thalamic nucleus (an adjacent brain region) did not block the potentiation of nicotine CPP or the anxiogenic-like effects of κ-receptor activation. These results suggest that the rewarding effects of nicotine may include a reduction in the stress-induced anxiety responses caused by activation of the dynorphin/κ-opioid system. Together, these data implicate the amygdala as a key region modulating the appetitive properties of nicotine, and suggest that κ-opioid antagonists may be useful therapeutic tools to reduce stress-induced nicotine craving. PMID:22279233

  1. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  2. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  3. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors.

    PubMed

    Ihara, Makoto; Buckingham, Steven D; Matsuda, Kazuhiko; Sattelle, David B

    2017-02-06

    Nicotinic acetylcholine receptors (nAChRs) are members of the cys-loop superfamily of ligand-gated ion channels (cys-loop LGICs) and mediate fast cholinergic synaptic transmission in the nervous system of insects. The completion of many insect genome projects has greatly enhanced our understanding of the individual subunits that make up nAChR gene families from an insect genetic model organism (Drosophila melanogaster), crop pests, disease vectors and beneficial (pollinator) species. In addition to considerable insect nAChR subunit diversity, individual subunits can be subject to alternative splicing and RNA editing and these post-transcriptional modifications can add significantly to the diversity of nAChR receptor subtypes. The actions of insecticides targeting nAChRs, notably cartap, neonicotinoids, sulfoximines, flupyradifurone, spinosyns and triflumezopyrim are reviewed. Structural studies obtained using an acetylcholine binding protein (AChBP) co-crystallised with neonicotinoids have yielded important new insights into the requirements for neonicotinoid insecticide - nAChR interactions. The persistent application of insecticides to crop pests leads to the onset of resistance and several examples of resistance to insecticides targeting nAChRs have been documented. Understanding the molecular basis of resistance can inform our understanding of the mechanism of insecticide action. It also provides an important driver for the development of new chemistry, diagnostic tests for resistance and the adoption of application strategies designed to attenuate such problems. Finally, we consider toxicity issues relating to nAChR-active insecticides, with particular reference to beneficial insect species (pollinators) as well as mammalian and avian toxicity. This review is part of the special issue "Insecticide Mode of Action: From Insect to Mammalian Toxicity.".

  4. A Structural Model of the Human α7 Nicotinic Receptor in an Open Conformation.

    PubMed

    Chiodo, Letizia; Malliavin, Thérèse E; Maragliano, Luca; Cottone, Grazia; Ciccotti, Giovanni

    2015-01-01

    Nicotinic acetylcholine receptors (nAchRs) are ligand-gated ion channels that regulate chemical transmission at the neuromuscular junction. Structural information is available at low resolution from open and closed forms of an eukaryotic receptor, and at high resolution from other members of the same structural family, two prokaryotic orthologs and an eukaryotic GluCl channel. Structures of human channels however are still lacking. Homology modeling and Molecular Dynamics simulations are valuable tools to predict structures of unknown proteins, however, for the case of human nAchRs, they have been unsuccessful in providing a stable open structure so far. This is due to different problems with the template structures: on one side the homology with prokaryotic species is too low, while on the other the open eukaryotic GluCl proved itself unstable in several MD studies and collapsed to a dehydrated, non-conductive conformation, even when bound to an agonist. Aim of this work is to obtain, by a mixing of state-of-the-art homology and simulation techniques, a plausible prediction of the structure (still unknown) of the open state of human α7 nAChR complexed with epibatidine, from which it is possible to start structural and functional test studies. To prevent channel closure we employ a restraint that keeps the transmembrane pore open, and obtain in this way a stable, hydrated conformation. To further validate this conformation, we run four long, unbiased simulations starting from configurations chosen at random along the restrained trajectory. The channel remains stable and hydrated over the whole runs. This allows to assess the stability of the putative open conformation over a cumulative time of 1 μs, 800 ns of which are of unbiased simulation. Mostly based on the analysis of pore hydration and size, we suggest that the obtained structure has reasonable chances to be (at least one of the possible) structures of the channel in the open conformation.

  5. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition

    PubMed Central

    Kachel, Hamid S.; Patel, Rohit N.; Franzyk, Henrik; Mellor, Ian R.

    2016-01-01

    Philanthotoxin-433 (PhTX-433) is an active component of the venom from the Egyptian digger wasp, Philanthus triangulum. PhTX-433 inhibits several excitatory ligand-gated ion channels, and to improve selectivity two synthetic analogues, PhTX-343 and PhTX-12, were developed. Previous work showed a 22-fold selectivity of PhTX-12 over PhTX-343 for embryonic muscle-type nicotinic acetylcholine receptors (nAChRs) in TE671 cells. We investigated their inhibition of different neuronal nAChR subunit combinations as well as of embryonic muscle receptors expressed in Xenopus oocytes. Whole-cell currents in response to application of acetylcholine alone or co-applied with PhTX analogue were studied by using two-electrode voltage-clamp. α3β4 nAChRs were most sensitive to PhTX-343 (IC50 = 12 nM at −80 mV) with α4β4, α4β2, α3β2, α7 and α1β1γδ being 5, 26, 114, 422 and 992 times less sensitive. In contrast α1β1γδ was most sensitive to PhTX-12 along with α3β4 (IC50 values of 100 nM) with α4β4, α4β2, α3β2 and α7 being 3, 3, 26 and 49 times less sensitive. PhTX-343 inhibition was strongly voltage-dependent for all subunit combinations except α7, whereas this was not the case for PhTX-12 for which weak voltage dependence was observed. We conclude that PhTX-343 mainly acts as an open-channel blocker of nAChRs with strong subtype selectivity. PMID:27901080

  6. Molecular-Dynamics Simulations of ELIC a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor

    SciTech Connect

    Cheng, Xiaolin; Ivanov, Ivaylo N; Wang, Hailong; McCammon, Jonathan

    2009-01-01

    The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics and hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human ?7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.

  7. First and second transmembrane segments of alpha3, alpha4, beta2, and beta4 nicotinic acetylcholine receptor subunits influence the efficacy and potency of nicotine.

    PubMed

    Rush, Ray; Kuryatov, Alexander; Nelson, Mark E; Lindstrom, Jon

    2002-06-01

    The first three transmembrane segments (M1-M3) of human nicotinic acetylcholine receptors (nAChRs) have been implicated in determining the efficacy of nicotine by studies of alpha3/alpha4 subunit chimeras. Nicotine has full efficacy on the alpha4beta2 nAChR and partial efficacy on the alpha3beta2 nAChR. Now, we have exchanged individually three amino acids between the alpha4 and the alpha3 subunits at positions 226(M1), 258(M2), and 262(M2). Also, similar exchanges were made in the beta2 and beta4 subunits at positions 224(M1), 226(M1), and 254(M2) (using alpha subunit numbering). Expression of these mutated nAChRs in Xenopus laevis oocytes showed that the mutated M1 amino acids were important in influencing the potency of ACh and nicotine. It is hypothesized that these M1 amino acids affect the stability between the resting and activated states of the nAChR. M2 amino acids altered the efficacy of nicotine, usually without altering its potency. When the residue located at position 258 in the M2 region of the alpha subunit was valine (as in the alpha3 subunit), the resulting nAChR exhibited partial efficacy for nicotine that was voltage-dependent. Therefore, we believe that these M2 amino acids contribute to the formation of a binding site for nicotine in the alpha3beta2 nAChR channel, which results in a low-affinity channel block, causing the lower efficacy of nicotine on this nAChR.

  8. Effects of the nicotinic receptor antagonist mecamylamine on ad-lib smoking behavior, topography, and nicotine levels in smokers with and without schizophrenia: a preliminary study.

    PubMed

    McKee, Sherry A; Weinberger, Andrea H; Harrison, Emily L R; Coppola, Sabrina; George, Tony P

    2009-12-01

    Individuals with schizophrenia have higher plasma nicotine levels in comparison to non-psychiatric smokers, even when differences in smoking are equated. This difference may be related to how intensely cigarettes are smoked but this has not been well studied. Mecamylamine (MEC), a non-competitive nicotinic acetylcholine receptor (nAChR) antagonist, which has been shown to increase ad-lib smoking and to affect smoking topography, was used in the current study as a pharmacological probe to increase our understanding of smoking behavior, smoking topography, and resulting nicotine levels in smokers with schizophrenia. This preliminary study used a within-subject, placebo-controlled design in smokers with schizophrenia (n=6) and healthy control smokers (n=8) to examine the effects of MEC (10mg/day) on ad-lib smoking behavior, topography, nicotine levels, and tobacco craving across two smoking deprivation conditions (no deprivation and 12-h deprivation). MEC, compared to placebo, increased the number of cigarettes smoked and plasma nicotine levels. MEC increased smoking intensity and resulted in greater plasma nicotine levels in smokers with schizophrenia compared to controls, although these results were not consistent across deprivation conditions. MEC also increased tobacco craving in smokers with schizophrenia but not in control smokers. Our results suggest that antagonism of high-affinity nAChRs in smokers with schizophrenia may prompt compensatory smoking, increasing the intensity of smoking and nicotine exposure without alleviating craving. Further work is needed to assess whether nicotine levels are directly mediated by how intensely the cigarettes are smoked, and to confirm whether this effect is more pronounced in smokers with schizophrenia.

  9. Antipsychotic clozapine inhibits the function of alpha7-nicotinic acetylcholine receptors.

    PubMed

    Singhal, Sachin K; Zhang, Li; Morales, Marisela; Oz, Murat

    2007-02-01

    The effects of the antipsychotic clozapine on the function of the cloned alpha(7) subunit of the nicotinic acetylcholine (nACh) receptor expressed in Xenopus oocytes was investigated by using the two-electrode voltage-clamp technique. Clozapine reversibly inhibited nicotine (10 microM)-induced currents in a concentration-dependent manner (300 nM to 90 microM), with an IC(50) value of 3.2+/-0.4 microM. The effect of clozapine was not dependent on the membrane potential. Clozapine did not affect the activity of endogenous Ca(2+)-dependent Cl(-) channels since the inhibition by clozapine was unaltered by the intracellularly injected Ca(2+) chelator BAPTA and perfusion with Ca(2+)-free bathing solution containing 2mM Ba(2+). Clozapine decreased the maximal nicotine-induced responses without significantly affecting its potency, indicating that it acts as a noncompetitive antagonist on alpha(7)-nACh receptors. In hippocampal slices, the whole-cell recordings from CA1 pyramidal neurons indicated that the increases in the frequency and amplitudes of the GABA-mediated spontaneous inhibitory postsynaptic currents induced by bath application of 2 mM choline, a specific agonist for alpha(7)-nACh receptors, were abolished after 10 min application of 5 microM clozapine. In conclusion, these results demonstrate that clozapine inhibits the function of alpha(7)-nACh receptors expressed in Xenopus oocytes and in hippocampal neurons.

  10. Regulation of the Nicotinic Receptor Alpha7 Subunit by Chronic Stress and Corticosteroids

    PubMed Central

    Hunter, Richard G.; Bloss, Erik B.; McCarthy, Katharine J.; McEwen, Bruce S.

    2010-01-01

    The α7 subunit of the nicotinic acetylcholine receptor (NAchRα7) is one of the principal brain receptors for nicotine and is thought to be a mediator of nicotine’s pro-cognitive effects. While nicotine is known to interact with the stress axis, little is known about the effect of stress or corticosteroids on the expression in the hippocampus, a brain region important to both cognition and stress reactivity. We examined the effects of chronic (21 day) restraint stress (CRS) and adrenalectomy with hormone replacement with the selective mineralocorticoid receptor (MR) agonist aldosterone, the selective glucocorticoid receptor (GR) agonist RU28,362 or corticosterone for 7 days, on the hippocampal expression of NAchRα7 mRNA and protein, as measured by 125I α-Bungarotoxin autoradiography. We found that CRS increase the levels of NAchRα7 mRNA in the CA1, CA3 and Dentate gyrus while levels of the protein were lowered by the same treatment. Corticosteroid replacement showed a GR specific increase in NAchRα7 mRNA, consistent with a corticosteroid mediated effect of CRS. While the mechanism behind these observations is as yet unclear, they may be neuroprotective against the damaging effects of CRS or an example of adaptation to the allostatic load produced by CRS. PMID:20153739

  11. Use of Monoclonal Antibodies to Study the Structural Basis of the Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1989-09-30

    of chicken neurona .4receptor subunits. Sequences of al and a2 are from Net .Ot al. -l Sequences of a3 and a4 were determintl from clones described...Sucrose gradient analysis of neurona & nicotinic receptors was conducted as follows. Chicken ind rat brain receptors were extracted from crude

  12. Beta2-containing nicotinic acetylcholine receptors mediate calcium/calmodulin-dependent protein kinase-II and synapsin I protein levels in the nucleus accumbens after nicotine withdrawal in mice.

    PubMed

    Jackson, Kia J; Imad Damaj, M

    2013-02-15

    Nicotinic acetylcholine receptors are calcium-permeable and the initial targets for nicotine. Studies suggest that calcium-dependent mechanisms mediate some behavioral responses to nicotine; however, the post-receptor calcium-dependent mechanisms associated with chronic nicotine and nicotine withdrawal remain unclear. The proteins calcium/calmodulin-dependent protein kinase II (CaMKII) and synapsin I are essential for neurotransmitter release and were shown to be involved in drug dependence. In the current study, using pharmacological techniques, we sought to (a) complement previously published behavioral findings from our lab indicating a role for calcium-dependent signaling in nicotine dependence and (b) expand on previously published acute biochemical and pharmacological findings indicating the relevance of calcium-dependent mechanisms in acute nicotine responses by evaluating the function of CaMKII and synapsin I after chronic nicotine and withdrawal in the nucleus accumbens, a brain region implicated in drug dependence. Male mice were chronically infused with nicotine for 14 days, and treated with the β2-selective antagonist dihydro-β-erythroidine (DHβE), or the α7 antagonist, methyllycaconitine citrate (MLA) 20min prior to dissection of the nucleus accumbens. Results show that phosphorylated and total CaMKII and synapsin I protein levels were significantly increased in the nucleus accumbens after chronic nicotine infusion, and reduced after treatment with DHβE, but not MLA. A spontaneous nicotine withdrawal assessment also revealed significant reductions in phosphorylated CaMKII and synapsin I levels 24h after cessation of nicotine treatment. Our findings suggest that post-receptor calcium-dependent mechanisms associated with nicotine withdrawal are mediated through β2-containing nicotinic receptors.

  13. Differential Roles of α6β2* and α4β2* Neuronal Nicotinic Receptors in Nicotine- and Cocaine-Conditioned Reward in Mice

    PubMed Central

    Sanjakdar, Sarah S; Maldoon, Pretal P; Marks, Michael J; Brunzell, Darlene H; Maskos, Uwe; McIntosh, J Michael; Bowers, M Scott; Damaj, M Imad

    2015-01-01

    Mesolimbic α6* nicotinic acetylcholine receptors (nAChRs) are thought to have an important role in nicotine behavioral effects. However, little is known about the role of the various α6*-nAChRs subtypes in the rewarding effects of nicotine. In this report, we investigated and compared the role of α6*-nAChRs subtypes and their neuro-anatomical locus in nicotine and cocaine reward-like effects in the conditioned place preference (CPP) paradigm, using pharmacological antagonism of α6β2* nAChRs and genetic deletion of the α6 or α4 subunits in mice. We found that α6 KO mice exhibited a rightward shift in the nicotine dose–response curve compared with WT littermates but that α4 KO failed to show nicotine preference, suggesting that α6α4β2*-nAChRs are involved. Furthermore, α6β2* nAChRs in nucleus accumbens were found to have an important role in nicotine-conditioned reward as the intra-accumbal injection of the selective α6β2* α-conotoxin MII [H9A; L15A], blocked nicotine CPP. In contrast to nicotine, α6 KO failed to condition to cocaine, but cocaine CPP in the α4 KO was preserved. Intriguingly, α-conotoxin MII [H9A; L15A], blocked cocaine conditioning in α4 KO mice, implicating α6β2* nAChRs in cocaine reward. Importantly, these effects did not generalize as α6 KO showed both a conditioned place aversion to lithium chloride as well as CPP to palatable food. Finally, dopamine uptake was not different between the α6 KO or WT mice. These data illustrate that the subjective rewarding effects of both nicotine and cocaine may be mediated by mesolimbic α6β2* nAChRs and that antagonists of these receptor subtypes may exhibit therapeutic potential. PMID:25035086

  14. Neuronal nicotinic receptor agonists improve gait and balance in olivocerebellar ataxia.

    PubMed

    Wecker, L; Engberg, M E; Philpot, R M; Lambert, C S; Kang, C W; Antilla, J C; Bickford, P C; Hudson, C E; Zesiewicz, T A; Rowell, Peter P

    2013-10-01

    Clinical studies have reported that the nicotinic receptor agonist varenicline improves balance and coordination in patients with several types of ataxia, but confirmation in an animal model has not been demonstrated. This study investigated whether varenicline and nicotine could attenuate the ataxia induced in rats following destruction of the olivocerebellar pathway by the neurotoxin 3-acetylpyridine (3-AP). The administration of 3-AP (70 mg/kg followed by 300 mg niacinamide/kg; i.p.) led to an 85% loss of inferior olivary neurons within one week without evidence of recovery, and was accompanied by a 72% decrease in rotorod activity, a 3-fold increase in the time to traverse a stationary beam, a 19% decrease in velocity and 31% decrease in distance moved in the open field, and alterations in gait parameters, with a 19% increase in hindpaw stride width. The daily administration of nicotine (0.33 mg free base/kg) for one week improved rotorod performance by 50% and normalized the increased hindpaw stride width, effects that were prevented by the daily preadministration of the nicotinic antagonist mecamylamine (0.8 mg free base/kg). Varenicline (1 and 3 mg free base/kg daily) also improved rotorod performance by approximately 50% following one week of administration, and although it did not alter the time to traverse the beam, it did improve the ability to maintain balance on the beam. Neither varenicline nor nicotine, at doses that improved balance, affected impaired locomotor activity in the open field. Results provide evidence that nicotinic agonists are of benefit for alleviating some of the behavioral deficits in olivocerebellar ataxia and warrant further studies to elucidate the specific mechanism(s) involved.

  15. Anxiolytic-like and anxiogenic-like effects of nicotine are regulated via diverse action at β2*nicotinic acetylcholine receptors

    PubMed Central

    Anderson, S M; Brunzell, D H

    2015-01-01

    Background and Purpose Nicotine dose-dependently activates or preferentially desensitizes β2 subunit containing nicotinic ACh receptors (β2*nAChRs). Genetic and pharmacological manipulations assessed effects of stimulation versus inhibition of β2*nAChRs on nicotine-associated anxiety-like phenotype. Experimental Approach Using a range of doses of nicotine in β2*nAChR subunit null mutant mice (β2KO; backcrossed to C57BL/6J) and their wild-type (WT) littermates, administration of the selective β2*nAChR agonist, 5I-A85380, and the selective β2*nAChR antagonist dihydro-β-erythroidine (DHβE), we determined the behavioural effects of stimulation and inhibition of β2*nAChRs in the light–dark and elevated plus maze (EPM) assays. Key Results Low-dose i.p. nicotine (0.05 mg·kg−1) supported anxiolysis-like behaviour independent of genotype whereas the highest dose (0.5 mg·kg−1) promoted anxiogenic-like phenotype in WT mice, but was blunted in β2KO mice for the measure of latency. Administration of 5I-A85380 had similar dose-dependent effects in C57BL/6J WT mice; 0.001 mg·kg−1 5I-A85380 reduced anxiety on an EPM, whereas 0.032 mg·kg−1 5I-A85380 promoted anxiogenic-like behaviour in both the light–dark and EPM assays. DHβE pretreatment blocked anxiogenic-like effects of 0.5 mg·kg−1 nicotine. Similarly to DHβE, pretreatment with low-dose 0.05 mg·kg−1 nicotine did not accumulate with 0.5 mg·kg−1 nicotine, but rather blocked anxiogenic-like effects of high-dose nicotine in the light–dark and EPM assays. Conclusions and Implications These studies provide direct evidence that low-dose nicotine inhibits nAChRs and demonstrate that inhibition or stimulation of β2*nAChRs supports the corresponding anxiolytic-like or anxiogenic-like effects of nicotine. Inhibition of β2*nAChRs may relieve anxiety in smokers and non-smokers alike. PMID:25625469

  16. Effect of the selective kappa-opioid receptor antagonist JDTic on nicotine antinociception, reward, and withdrawal in the mouse

    PubMed Central

    Jackson, K. J.; Negus, S. S.; Damaj, M. I.

    2010-01-01

    Rationale Several lines of evidence support a role for the endogenous opioid system in mediating behaviors associated with drug dependence. Specifically, recent findings suggest that the kappa-opioid receptor (KOR) may play a role in aspects of nicotine dependence, which contribute to relapse and continued tobacco smoking. Objective The objective of this study is to determine the involvement of the KOR in the initial behavioral responses of nicotine, nicotine reward, and nicotine withdrawal using the highly selective KOR antagonist JDTic. JDTic doses of 1, 4, 8, or 16 mg/kg were administered subcutaneously (s.c.) 18 h prior to nicotine treatment. Results JDTic dose-dependently blocked acute nicotine-induced antinociception in the tail-flick but not the hot-plate test and did not significantly attenuate morphine’s antinociceptive effect in either the tail-flick or hot-plate test. Furthermore, JDTic (8 and 16 mg/kg, s.c.) failed to block the expression of nicotine reward as measured by the conditioned place preference model. In contrast, JDTic and the KOR antagonist norBNI attenuated the expression of both the physical (somatic signs and hyperalgesia) and affective (anxiety-related behavior and conditioned place aversion) nicotine withdrawal signs. Conclusions Our findings clearly show that the KOR is involved in mediating the withdrawal aspects of nicotine dependence. The results from this study suggest that blockade of the KOR by selective KOR antagonists may be useful smoking cessation pharmacotherapies. PMID:20232057

  17. On the origin of ion selectivity in the Cys-loop receptor family.

    PubMed

    Sine, Steven M; Wang, Hai-Long; Hansen, Scott; Taylor, Palmer

    2010-01-01

    Agonist binding to Cys-loop receptors promotes a large transmembrane ion flux of several million cations or anions per second. To investigate structural bases for the dynamics (MD) simulations, X-ray crystallography, and single channel recording. MD simulations of the muscle nicotinic receptor, imbedded in a lipid bilayer with an applied transmembrane potential, reveal single cation translocation events during transient periods of channel hydration. During the simulation trajectory, cations paused for prolonged periods near several rings of anionic residues projecting from the lumen of the extracellular domain of the receptor, but subsequently the cation moved rapidly through the hydrophobic transmembrane region as the constituent alpha-helices exhibited back and forth rocking motions. Cocrystallization of acetylcholine binding protein with sulfate ions revealed coordination of five sulfates with residues from one of these charged rings; in cation-selective Cys-loop receptors this ring contains negatively charged residues, whereas in anion-selective receptors it contains positively charged residues. In the muscle nicotinic receptor, charge reversal of residues of this ring decreases unitary conductance by up to 80%. Thus in Cys-loop receptors, a series of charged rings along the ion translocation pathway concentrates hydrated ions relative to bulk solution, giving rise to charge selectivity, and then subtle motions of the hydrophobic transmembrane, coupled with transient periods of water filling, enable rapid ion flux.

  18. Heterogeneity of Drosophila nicotinic acetylcholine receptors: SAD, a novel developmentally regulated alpha-subunit.

    PubMed Central

    Sawruk, E; Schloss, P; Betz, H; Schmitt, B

    1990-01-01

    Two genes, ard and als, are known to encode subunits of the nicotinic acetylcholine receptor (nAChR) in Drosophila. Here we describe the isolation of cDNA clones encoding a novel member (SAD, or alpha 2) of this receptor protein family. The deduced amino acid sequence displays high homology to the ALS protein and shares structural features with ligand binding nAChR alpha-subunits. Sad transcripts accumulate during major periods of neuronal differentiation and, in embryos, are localized in the central nervous system. Expression of SAD cRNA in Xenopus oocytes generates cation channels that are gated by nicotine. These data indicate heterogeneity of nAChRs in Drosophila. Images Fig. 3. Fig. 4. PMID:1697262

  19. Role of gamma-aminobutyric acid (GABA) and metabotropic glutamate receptors in nicotine reinforcement: potential pharmacotherapies for smoking cessation.

    PubMed

    Markou, Athina; Paterson, Neil E; Semenova, Svetlana

    2004-10-01

    Previous work indicated a role for GABA and glutamate in the reinforcing effects of drugs of abuse. The present studies assessed the effects of GABAergic and glutamatergic manipulations on the reinforcing effects of nicotine as assessed by intravenous nicotine self-administration. Male Wistar rats were allowed to self-administer either of two nicotine doses under a fixed ratio or a progressive ratio schedule of reinforcement. The effects of a glutamatergic compound on nicotine self-administration in male DBA/2J mice were also explored. Finally, to assess for nonspecific effects of the drug manipulations, the effects of all test compounds on responding maintained by a food reinforcer were investigated. The pharmacological manipulations used were: gamma-vinyl-GABA (vigabatrin or GVG), an irreversible inhibitor of GABA transaminase, the GABAB receptor agonists (-)baclofen and CGP44532, and the metabotropic glutamate receptor 5 (mGluR5) antagonist MPEP. GVG, CGP44532, and (-)baclofen dose-dependently decreased nicotine self-administration on the fixed-ratio schedule, but also decreased food-maintained responding. Furthermore, CGP44532 decreased breakpoints for nicotine and food at identical doses under the progressive-ratio schedule. MPEP dose-dependently decreased nicotine self-administration with no effect on food-maintained responding in rats. MPEP also decreased nicotine self-administration in the mice. These results demonstrate that activation of GABAB receptors or blockade of mGluR5 decreased nicotine self-administration. Although there was some selectivity for the effects of the GABAergic manipulations, there was clear selectivity of the effects of MPEP on nicotine- versus food-maintained responding. Thus, compounds that increase GABAergic neurotransmission and antagonists at mGluR5 have potential as anti-smoking medications for humans.

  20. Alpha7 Nicotinic Acetylcholine Receptors Modulate Motivation to Self-Administer Nicotine: Implications for Smoking and Schizophrenia

    PubMed Central

    Brunzell, Darlene H; McIntosh, J Michael

    2012-01-01

    Individuals diagnosed with schizophrenia have an exceptionally high risk for tobacco dependence. Postmortem studies show that these individuals have significant reductions in α7 nicotinic acetylcholine receptors (nAChRs) in several brain areas. Decreased α7-mediated function might not only be linked to schizophrenia but also to increased tobacco consumption. The purpose of this study was to determine whether pharmacological blockade of α7 nAChRs would increase motivation of rats to intravenously self-administer nicotine (NIC) during a progressive ratio schedule of reinforcement (PR). Before PR, rats received local infusions of 0, 10, or 20 pmol of a selective α7 nAChR antagonist, α-conotoxin ArIB [V11L,V16D] (ArIB) into the nucleus accumbens (NAc) shell or the anterior cingulate cortex, brain areas that contribute to motivation for drug reward. We additionally sought to determine whether local infusion of 0, 10, or 40 nmol of a selective α7 nAChR agonist, PNU 282987, into these brain areas would decrease motivation for NIC use. Infusion of ArIB into the NAc shell and anterior cingulate cortex resulted in a significant increase in active lever pressing, breakpoints, and NIC intake, suggesting that a decrease in α7 nAChR function increases motivation to work for NIC. In contrast, PNU 282987 infusion resulted in reductions in these measures when administered into the NAc shell, but had no effect after administration into the anterior cingulate cortex. These data identify reduction of α7 nAChR function as a potential mechanism for elevated tobacco use in schizophrenia and also identify activation of α7 nAChRs as a potential strategy for tobacco cessation therapy. PMID:22169946

  1. The β2 nicotinic acetylcholine receptor subunit differentially influences ethanol behavioral effects in the mouse.

    PubMed

    Dawson, Anton; Miles, Micheal F; Damaj, M Imad

    2013-03-01

    The high co-morbidity between alcohol (ethanol) and nicotine abuse suggests that nicotinic acetylcholine receptors (nAChRs), thought to underlie nicotine dependence, may also be involved in alcohol dependence. The β2* nAChR subtype serves as a potential interface for these interactions since they are the principle mediators of nicotine dependence and have recently been shown to modulate some acute responses to ethanol. Therefore, the aim of this study was to more fully characterize the role of β2* nAChRs in ethanol-responsive behaviors in mice after acute exposure to the drug. We conducted a battery of tests in mice lacking the β2* coding gene (Chrnb2) or pretreated with a selective β2* nAChR antagonist for a range of ethanol-induced behaviors including locomotor depression, hypothermia, hypnosis, and anxiolysis. We also tested the effect of deletion on voluntary escalated ethanol consumption in an intermittent access two-bottle choice paradigm to determine the extent of these effects on drinking behavior. Our results showed that antagonism of β2* nAChRs modulated some acute behaviors, namely by reducing recovery time from hypnosis and enhancing the anxiolytic-like response produced by acute ethanol in mice. Chrnb2 deletion had no effect on ethanol drinking behavior, however. We provide further evidence that β2* nAChRs have a measurable role in mediating specific behavioral effects induced by acute ethanol exposure without affecting drinking behavior directly. We conclude that these receptors, along with being key components in nicotine dependence, may also present viable candidates in the discovery of the molecular underpinnings of alcohol dependence.

  2. Tritiated-nicotine and /sup 125/I-alpha-bungarotoxin-labeled nicotinic receptors in the interpeduncular nucleus of rats. I. Subnuclear distribution

    SciTech Connect

    Hamill, G.S.; Clarke, P.B.; Pert, A.; Jacobowitz, D.M.

    1986-09-15

    The distribution of nicotinic receptors within the interpeduncular nucleus (IPN) was determined in male rats following in vitro labeling with the cholinergic ligands /sup 3/H-nicotine and /sup 125/I-alpha-bungarotoxin (BTX). Autoradiographic images of two rostrocaudal levels of IPN were analyzed by computer-assisted densitometry and the optical density contributed by displaceable labeling was determined in the rostral, central, intermediate, and lateral subnuclei. /sup 3/H-nicotine labeling density within the four subnuclei differs significantly at both levels of IPN. The greatest density of labeling is localized in the rostral subnucleus, followed in order of diminishing density by the central, intermediate, and lateral subnuclei. Labeling within the rostral subnucleus is prominently localized within its central zone. In the central subnucleus, a dense concentration of binding sites is apparent in the middle region, adjacent to less dense vertically oriented columns; /sup 3/H-nicotine binding sites in the lateral subnuclei appear to be most concentrated medially, adjacent to the intermediate subnuclei. /sup 125/I-BTX labeling density within the four subnuclei also differs significantly at both levels of IPN. The greatest density of labeling is found in the rostral subnucleus, followed in order of decreasing density by the lateral, central, and intermediate subnuclei. The ovoid regions of the rostral subnucleus contain dense /sup 125/I-BTX labeling. In the lateral subnuclei, /sup 125/I-BTX binding appears to be predominantly along the lateral margins of the subnucleus. The present data indicate that the IPN contains two distinct populations of putative cholinergic nicotinic receptors identified, respectively, by /sup 3/H-nicotine and /sup 125/I-BTX labeling. Each population of labeled receptors is uniquely localized in patterns that suggest differences in density within and across subnuclei.

  3. Competitive antagonism between the nicotinic allosteric potentiating ligand galantamine and kynurenic acid at alpha7* nicotinic receptors.

    PubMed

    Lopes, Cristiane; Pereira, Edna F R; Wu, Hui-Qiu; Purushottamachar, Puranik; Njar, Vincent; Schwarcz, Robert; Albuquerque, Edson X

    2007-07-01

    Galantamine, a drug used to treat Alzheimer's disease, is a nicotinic allosteric potentiating ligand, and kynurenic acid (KYNA), a neuroactive metabolite of the kynurenine pathway, is an endogenous noncompetitive inhibitor of alpha7* nicotinic receptors (nAChRs) [the asterisk next to the nAChR subunit is intended to indicate that the exact subunit composition of the receptor is not known (Pharmacol Rev 51:397-401, 1999)]. Here, possible interactions between KYNA and galantamine at alpha7* nAChRs were examined in vitro and in vivo. In the presence of tetrodotoxin (TTX), approximately 85% of cultured hippocampal neurons responded to choline (0.3-30 mM) with alpha7* nAChR-subserved whole-cell (type IA) currents. In the absence of TTX and in the presence of glutamate receptor antagonists, choline triggered inhibitory postsynaptic currents (IPSCs) by activating alpha7* nAChRs on GABAergic neurons synapsing onto the neurons under study. Galantamine (1-10 microM) potentiated, whereas KYNA (10 nM-1 mM) inhibited, choline-triggered responses. Galantamine (1 microM), applied before KYNA, shifted to the right the concentration-response relationship for KYNA to inhibit type IA currents, increasing the IC(50) of KYNA from 13.9 +/- 8.3 to 271 +/- 131 microM. Galantamine, applied before or after KYNA, antagonized inhibition of choline-triggered IPSCs by KYNA. Local infusion of KYNA (100 nM) in the rat striatum reduced extracellular dopamine levels in vivo. This effect resulted from alpha7* nAChR inhibition and was blocked by coapplied galantamine (1-5 microM). It is concluded that galantamine competitively antagonizes the actions of KYNA on alpha7* nAChRs. Reducing alpha7* nAChR inhibition by endogenous KYNA may be an important determinant of the effectiveness of galantamine in neurological and psychiatric disorders associated with decreased alpha7* nAChR activity in the brain.

  4. [Development of physical dependence on nicotine and endogenous opioid system--participation of α7 nicotinic acetylcholine receptor].

    PubMed

    Kishioka, Shiroh; Kiguchi, Norikazu; Kobayashi, Yuka; Saika, Fumihiro; Yamamoto, Chizuko

    2014-10-01

    Nicotine (NIC) regulates various cellular functions acting on the nicotinic acetylcholine receptor (nAChR). And nAChR consists of ligand-gated cation channels with pentameric structure and composed of α and β subunits. In the central nervous system, α 4 β 2 and α 7 nAChRs are the most abundantly expressed as nAChR subtypes. There are several lines of evidence indicating that systemic administration of NIC elicits the release of endogenous opioids, such as, endorphins, enkephalins and dynorphins, in the brain. NIC exerts numerous acute effects, for example, antinociceptive effects and the activating effects of the hypothalamic-pituitary-adrenal (HPA) axis. In these effects, NIC-induced antinociception, but not HPA axis activation, was inhibited by opioid receptor antagonist, naloxone (NLX), and was also suppressed in morphine tolerated mice, indicating the participation of the endogenous opioid system in NIC-induced antinociception, but not HPA axis activation. Moreover, NIC-induced antinociception was antagonized by both α 4 β 2 and α 7 nAChR antagonists, while NIC-induced HPA axis activation was antagonized by α 4 β 2 nAChR antagonist, but not by α 7 nAChR antagonist. These results suggest that the endogenous opioid system may not be located on the downstream of α 4 β 2 nAChR. On the other hand, NIC has substantial physical dependence liability. NLX elicits NIC withdrawal after repeated NIC administration evaluated by corticosterone increase as a withdrawal sign, and NLX-precipitated NIC withdrawal is inhibited by concomitant administration of other opioid receptor antagonist, naltrexone, indicating the participation of endogenous opioid system in the development of physical dependence on NIC. NLX-precipitated NIC withdrawal was also inhibited by concomitant administration of an α 7 nAChR antagonist, but not an α 4 β 2 nAChR antagonist. Taken together, these findings suggest that the endogenous opioid system may be located on the downstream of α 7

  5. The α6 nicotinic acetylcholine receptor subunit influences ethanol-induced sedation.

    PubMed

    Kamens, Helen M; Hoft, Nicole R; Cox, Ryan J; Miyamoto, Jill H; Ehringer, Marissa A

    2012-08-01

    Alcohol and nicotine are often co-used and data from human and animals studies have demonstrated that common genes underlie responses to these two drugs. Recently, the genes that code for the subunits of the nicotinic acetylcholine receptors have been implicated as a common genetic mediator for alcohol and nicotine responses. The mammalian genes that code for the α6 and β3 subunits of the nicotinic acetylcholine receptor (Chrna6 and Chrnb3, respectively) are located adjacent to each other on human and mouse chromosome 8. These subunits have gained attention as potential regulators of drug behaviors because of their expression in the striatum where they have been shown to modulate dopamine release. Human genetic studies have shown that variation in these genes is associated with alcohol phenotypes. In the current experiments, mice lacking the Chrna6 or Chrnb3 gene were tested for three ethanol behaviors: choice ethanol consumption, ataxia, and sedation. Wildtype (WT), heterozygous (HET), and knockout (KO) mice of each strain went through a standard 2-bottle choice drinking paradigm, the balance beam, and the Loss of Righting Reflex (LORR) paradigm. No genotypic effects on any of the 3 behavioral tasks were observed in Chrnb3 animals. While the Chrna6 gene did not significantly influence ethanol consumption (g/kg) or ataxia, mice lacking the α6 subunit took significantly longer to recover their righting reflex than WT animals. These data provide evidence that receptors containing this subunit modulate the sedative effects of ethanol. Further work examining other models of ethanol consumption and behavioral responses to ethanol is needed to fully characterize the role of these receptor subunits in modulating ethanol responses.

  6. Regulation of GABA release by nicotinic acetylcholine receptors in the neonatal rat hippocampus

    PubMed Central

    Maggi, Laura; Sher, Emanuele; Cherubini, Enrico

    2001-01-01

    The whole-cell configuration of the patch-clamp technique was used to study the modulation of giant depolarizing potentials (GDPs) by nicotinic acetylcholine receptors (nAChRs) in CA3 hippocampal neurons in slices from postnatal day (P) 2–6 rats.Bath application of nicotine increased GDP frequency in a concentration-dependent manner. For example, nicotine (0.5–1 μm) enhanced GDP frequency from 0.05 ± 0.04 to 0.17 ± 0.04 Hz. This effect was prevented by the broad-spectrum nicotinic receptor antagonist dihydro-β-erythtroidine (DHβE, 50 μm) and partially antagonized by methyllycaconitine (MLA, 50 nm) a competitive antagonist of α7 nAChRs. GDP frequency was also enhanced by AR-17779 (100 μm), a selective agonist of α7 nAChRs.The GABAA receptor antagonist bicuculline (10 μm) and the non-NMDA glutamate receptor antagonist DNQX (20 μm) blocked GDPs and prevented the effects of nicotine on GDPs. In the presence of DNQX, nicotine increased GABA-mediated synaptic noise, indicating that this drug may have a direct effect on GABAergic interneurons.Bath application of edrophonium (20 μm), a cholinesterase inhibitor, in the presence of atropine (1 μm), increased GDP frequency, indicating that nAChRs can be activated by ACh released from the septo-hippocampal fibres. This effect was prevented by DHβE (50 μm).In the majority of neurons tested, MLA (50 nm) and DHβE (50 μm) reduced the frequency of GDPs with different efficacy: a reduction of 98 ± 11 and 61 ± 29 % was observed with DHβE and MLA, respectively. In a subset of cells (40 % in the case of MLA and 17 % in the case of DHβE) these drugs induced a twofold increase in GDP frequency.It is suggested that, during development, nAChRs modulate the release of GABA, assessed as GDPs, through distinct nAChRs. The rise of intracellular calcium via nAChRs would further strengthen GABA-mediated oscillatory activity. This can be crucial for consolidation of synaptic contacts and for the fine-tuning of the

  7. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway.

    PubMed

    Trombino, Sonya; Cesario, Alfredo; Margaritora, Stefano; Granone, PierLuigi; Motta, Giovanni; Falugi, Carla; Russo, Patrizia

    2004-01-01

    This study presents data suggesting that both human mesothelioma (cell lines and human mesothelioma biopsies) and human normal mesothelial cells express receptors for acetylcholine and that stimulation of these receptors by nicotine prompted cell growth via activation of nicotinic cholinergic receptors. Thus, these data demonstrate that: (a) human mesothelioma cells and human biopsies of mesothelioma as well as of normal pleural mesothelial cells express functionally alpha-7 nicotinic acethlycholine receptors, evaluated by alpha-bungarotoxin-FITC binding, receptor binding assay, Western blot, and reverse transcription-PCR; (b) choline acetyltransferase immunostaining is present in mesothelioma cells; (c) mesothelioma cell growth is modulated by the cholinergic system in which agonists (i.e., nicotine) has a proliferative effect, and antagonists (i.e., curare) has an inhibitory effect, evaluated by cell cloning, DNA synthesis and cell cycle; (d) nicotine induces Ca(+2) influx, evaluated by [(45)Ca(2+)] uptake, and consequently activation of mitogen-activated protein kinase pathway (extracellular signal-regulated kinase and p90(RSK) phosphorylation), evaluated by Western blot; and (e) apoptosis mechanisms in mesothelioma cells are under the control of the cholinergic system (nicotine antiapoptotic via induction of nuclear factor-kappaB complexes and phosphorylation of Bad at Ser(112); curare proapoptotic via G(0)-G(1) arrest p21(waf-1) dependent but p53 independent). The involvement of the nonneuronal cholinergic system in mesothelioma appears reasonable and open up new therapeutic strategies.

  8. A New IRAK-M-Mediated Mechanism Implicated in the Anti-Inflammatory Effect of Nicotine via α7 Nicotinic Receptors in Human Macrophages

    PubMed Central

    Maldifassi, Maria C.; Atienza, Gema; Arnalich, Francisco; López-Collazo, Eduardo; Cedillo, Jose L.; Martín-Sánchez, Carolina; Bordas, Anna; Renart, Jaime; Montiel, Carmen

    2014-01-01

    Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the ‘endotoxin tolerant’ phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases. PMID:25259522

  9. A fluorinated quinuclidine benzamide named LMA 10203 acts as an agonist of insect nicotinic acetylcholine receptors.

    PubMed

    Mathé-Allainmat, Monique; Bodereau-Dubois, Béatrice; Lapied, Bruno; Lebreton, Jacques; Thany, Steeve H

    2012-06-01

    In the present study, we take advantage of the fact that cockroach dorsal unpaired median neurons express different nicotinic acetylcholine receptor subtypes to demonstrate that simple quinuclidine benzamides such as the 2-fluorinated benzamide LMA 10203, could act as an agonist of cockroach α-bungarotoxin-insensitive nicotinic acetylcholine receptor subtype, called nAChR2. Indeed, 1 mM LMA 10203 induced ionic currents which were partially blocked by 0.5 μM α-bungarotoxin and methyllycaconitine and completely blocked by 5 μM mecamylamine. Moreover, the current-voltage curve revealed that the ionic current induced by LMA 10203 increased from -30 mV to +20 mV confirming that it acted as an agonist of α-bungarotoxin-insensitive nAChR2. In addition, 1 mM LMA 10203 induced a depolarization of the sixth abdominal ganglion and this neuroexcitatory activity was completely blocked by 5 μM mecamylamine. These data suggest that nAChR2 was also expressed at the postsynaptic level on the synapse between the cercal afferent nerve and the giant interneurons. Interestingly, despite LMA 10203 being an agonist of cockroach nicotinic receptors, it had a poor insecticidal activity. We conclude that LMA 10203 could be used as an interesting compound to identify specific insect nAChR subtypes.

  10. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    PubMed

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-05

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies.

  11. Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits.

    PubMed

    Criado, Manuel; Valor, Luis M; Mulet, José; Gerber, Susana; Sala, Salvador; Sala, Francisco

    2012-11-01

    Although α7 nicotinic receptors are predominantly homopentamers, previous reports have indicated that α7 and β2 subunits are able to form heteromers. We have studied whether other nicotinic receptor subunits can also assemble with α7 subunits and the effect of this potential association. Coexpression of α7 with α2, α3, or β4 subunits reduced to about half, surface α-bungarotoxin binding sites and acetylcholine-gated currents. This is probably because of inhibition of membrane trafficking, as the total amount of α7 subunits was similar in all cases and a significant proportion of mature α7 receptors was present inside the cell. Only β4 subunits appeared to directly associate with α7 receptors at the membrane and these heteromeric receptors showed some kinetic and pharmacological differences when compared with homomeric α7 receptors. Finally, we emulated the situation of bovine chromaffin cells in Xenopus laevis oocytes by using the same proportion of α3, β4, α5, and α7 mRNAs, finding that α-bungarotoxin binding was similarly reduced in spite of increased currents, apparently mediated by α3β4(α5) receptors.

  12. Autoradiographic localization of putative nicotinic receptors in the rat brain using sup 125 I-neuronal bungarotoxin

    SciTech Connect

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E. )

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits.

  13. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.

    PubMed

    Kichko, Tatjana I; Lennerz, Jochen; Eberhardt, Mirjam; Babes, Ramona M; Neuhuber, Winfried; Kobal, Gerd; Reeh, Peter W

    2013-11-01

    High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.

  14. Allosteric Modulation of Alpha7 Nicotinic Receptors: Mechanistic Insight through Metadynamics and Essential Dynamics.

    PubMed

    Grazioso, Giovanni; Sgrignani, Jacopo; Capelli, Romina; Matera, Carlo; Dallanoce, Clelia; De Amici, Marco; Cavalli, Andrea

    2015-12-28

    Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.

  15. Nicotine-Induced Effects on Nicotinic Acetylcholine Receptors (nAChRs), Ca2+ and Brain-Derived Neurotrophic Factor (BDNF) in STC-1 Cells

    PubMed Central

    Qian, Jie; Mummalaneni, Shobha K.; Alkahtani, Reem M.; Mahavadi, Sunila; Murthy, Karnam S.; Grider, John R.

    2016-01-01

    In addition to the T2R bitter taste receptors, neuronal nicotinic acetylcholine receptors (nAChRs) have recently been shown to be involved in the bitter taste transduction of nicotine, acetylcholine and ethanol. However, at present it is not clear if nAChRs are expressed in enteroendocrine cells other than beta cells of the pancreas and enterochromaffin cells, and if they play a role in the synthesis and release of neurohumoral peptides. Accordingly, we investigated the expression and functional role of nAChRs in enteroendocrine STC-1 cells. Our studies using RT-PCR, qRT-PCR, immunohistochemical and Western blotting techniques demonstrate that STC-1 cells express several α and β nAChR subunits. Exposing STC-1 cells to nicotine acutely (24h) or chronically (4 days) induced a differential increase in the expression of nAChR subunit mRNA and protein in a dose- and time-dependent fashion. Mecamylamine, a non-selective antagonist of nAChRs, inhibited the nicotine-induced increase in mRNA expression of nAChRs. Exposing STC-1 cells to nicotine increased intracellular Ca2+ in a dose-dependent manner that was inhibited in the presence of mecamylamine or dihydro-β-erythroidine, a α4β2 nAChR antagonist. Brain-derived neurotrophic factor (BDNF) mRNA and protein were detected in STC-1 cells using RT-PCR, specific BDNF antibody, and enzyme-linked immunosorbent assay. Acute nicotine exposure (30 min) decreased the cellular content of BDNF in STC-1 cells. The nicotine-induced decrease in BDNF was inhibited in the presence of mecamylamine. We also detected α3 and β4 mRNA in intestinal mucosal cells and α3 protein expression in intestinal enteroendocrine cells. We conclude that STC-1 cells and intestinal enteroendocrine cells express nAChRs. In STC-1 cells nAChR expression is modulated by exposure to nicotine in a dose- and time-dependent manner. Nicotine interacts with nAChRs and inhibits BDNF expression in STC-1 cells. PMID:27846263

  16. Effect of administration of the nicotinic acetylcholine receptor antagonist BTMPS, during nicotine self-administration, on lever responding induced by context long after withdrawal.

    PubMed

    Hall, Brandon J; Pearson, Laura S; Buccafusco, Jerry J

    2010-02-01

    The use-dependent, nicotinic acetylcholine receptor antagonist bis-(2,2,6,6-tetramethyl-4-piperidinyl) sebacate (BTMPS) was studied for its potential to reduce the self-administration of nicotine in rats, as well as to reduce context-induced recidivistic-like behavior after a six-week period of cessation. Rats were allowed to self-administer nicotine (FR1 schedule) inside an operant chamber with a response lever active on a 24 h basis for 14 days. After the self-administration phase, the rats were returned to standard maintenance cages for a period of six weeks. At the end of six weeks the rats were returned to the operant chambers for 7 days and lever responses were recorded under conditions identical to the original self-administration phase, except that lever responses were not rewarded. Daily administration (s.c.) of BTMPS produced a dose-dependent decrease in the self-administration of nicotine 55-80% compared to control animals, and significantly decreased context-induced lever responding initiated six weeks after cessation (35-78% reduction vs. controls). Decreasing the BTMPS regimen to administration once every 3 days was not effective in reducing nicotine self-administration, but lever responding induced during the return to the operant chambers 6 weeks later was significantly decreased (40% reduction vs. controls). Therefore BTMPS can selectively reduce both self-administration of nicotine and long-term recidivistic-like behavior depending upon the dose regimen. Since BTMPS does not evoke anti-nicotinic effects under normal physiological conditions, these data support a proof of concept for the safe use of such compounds in the treatment of tobacco abuse.

  17. Early postnatal nicotine exposure disrupts the α2* nicotinic acetylcholine receptor-mediated control of oriens-lacunosum moleculare cells during adolescence in rats.

    PubMed

    Chen, Kang; Nakauchi, Sakura; Su, Hailing; Tanimoto, Saki; Sumikawa, Katumi

    2016-02-01

    Maternal cigarette smoking during pregnancy and maternal nicotine exposure in animal models are associated with cognitive impairments in offspring. However, the underlying mechanism remains unknown. Oriens-lacunosum moleculare (OLM) cells expressing α2* nicotinic acetylcholine receptors (nAChRs) are an important component of hippocampal circuitry, gating information flow and long-term potentiation (LTP) in the CA1 region. Here we investigated whether early postnatal nicotine exposure alters the normal role of α2*-nAChR-expressing OLM cells during adolescence in rats. We found that early postnatal nicotine exposure significantly decreased not only the number of α2-mRNA-expressing interneurons in the stratum oriens/alveus, but also α2*-nAChR-mediated responses in OLM cells. These effects of nicotine were prevented by co-administration with the nonselective nAChR antagonist mecamylamine, suggesting that nicotine-induced activation, but not desensitization, of nAChRs mediates the effects. α2*-nAChR-mediated depolarization of OLM cells normally triggers action potentials, causing an increase in spontaneous inhibitory postsynaptic currents in synaptically connected pyramidal cells. However, these α2*-nAChR-mediated effects were profoundly reduced after early postnatal nicotine exposure, suggesting altered control of CA1 circuits by α2*-nAChR-expressing OLM cells. Furthermore, these effects were associated with altered excitatory neural activity and LTP as well as the loss of normal α2*-nAChR-mediated control of excitatory neural activity and LTP. These findings suggest the altered function of α2*-nAChR-expressing OLM cells as an important target of further study for identifying the mechanisms underlying the cognitive impairment induced by maternal smoking during pregnancy.

  18. Nicotinic receptors and functional regulation of GABA cell microcircuitry in bipolar disorder and schizophrenia.

    PubMed

    Benes, Francine M

    2012-01-01

    Studies of the hippocampus in postmortem brains from patients with schizophrenia and bipolar disorder have provided evidence for a defect of GABAergic interneurons. Significant decreases in the expression of GAD67, a marker for GABA cell function, have been found repeatedly in several different brain regions that include the hippocampus. In this region, nicotinic receptors are thought to play an important role in modulating the activity of GABAergic interneurons by influences of excitatory cholinergic afferents on their activity. In bipolar disorder, this influence appears to be particularly prominent in the stratum oriens of sectors CA3/2 and CA1, two sites where these cells constitute the exclusive neuronal cell type. In sector CA3/2, this layer receives a robust excitatory projection from the basolateral amygdala (BLA) and this is thought to play a central role in regulating GABA cells at this locus. Using laser microdissection, recent studies have focused selectively on these two layers and their associated GABA cells using microarray technology. The results have provided support for the idea that nicotinic cholinergic receptors play a particularly important role in regulating the activity of GABA neurons at these loci by regulating the progression of cell cycle and the repair of damaged DNA. In bipolar disorder, there is a prominent reduction in the expression of mRNAs for several different nicotinic subunit isoforms. These decreases could reflect a diminished influence of this receptor system on these GABA cells, particularly in sector CA3/2 where a preponderance of abnormalities have been observed in postmortem studies. In patients with bipolar disorder, excitatory nicotinic cholinergic fibers from the medial septum may converge with glutamatergic fibers from the BLA on GABAergic interneurons in the stratum oriens of CA3/2 and result in disturbances of their genomic and functional integrity, ones that may induce disruptions of the integration of

  19. Inhibition of nicotinic receptor-mediated responses in bovine chromaffin cells by diltiazem.

    PubMed

    Gandía, L; Villarroya, M; Sala, F; Reig, J A; Viniegra, S; Quintanar, J L; García, A G; Gutiérrez, L M

    1996-07-01

    IDMPP were similar at different holding potentials (inhibition by around 30% at -100, -80 or -50 mV). Diltiazem did not affect the current flow through voltage-dependent Na+ channels. 6. These data are compatible with the idea that diltiazem has little effect on Ca2+ entry through voltage-dependent Ca2+ channels in bovine chromaffin cells. Neither, does diltiazem affect INa. Rather, diltiazem acts directly on the neuronal nicotinic receptor ion channel and blocks ion fluxes, cell depolarization and the subsequent Ca2+ entry and catecholamine release. This novel effect of diltiazem might have clinical relevance since it might reduce the sympathoadrenal drive to the heart and blood vessels, thus contributing to the well established antihypertensive and cardioprotective effects of the drug.

  20. Presynaptic α4β2 nicotinic acetylcholine receptors increase glutamate release and serotonin neuron excitability in the dorsal raphe nucleus.

    PubMed

    Garduño, Julieta; Galindo-Charles, Luis; Jiménez-Rodríguez, Javier; Galarraga, Elvira; Tapia, Dagoberto; Mihailescu, Stefan; Hernandez-Lopez, Salvador

    2012-10-24

    Several behavioral effects of nicotine are mediated by changes in serotonin (5-HT) release in brain areas that receive serotonergic afferents from the dorsal raphe nucleus (DRN). In vitro experiments have demonstrated that nicotine increases the firing activity in the majority of DRN 5-HT neurons and that DRN contains nicotinic acetylcholine receptors (nAChRs) located at both somata and presynaptic elements. One of the most common presynaptic effects of nicotine is to increase glutamate release. Although DRN receives profuse glutamatergic afferents, the effect of nicotine on glutamate release in the DRN has not been studied in detail. Using whole-cell recording techniques, we investigated the effects of nicotine on the glutamatergic input to 5-HT DRN neurons in rat midbrain slices. Low nicotine concentrations, in the presence of bicuculline and tetrodotoxin (TTX), increased the frequency but did not change the amplitude of glutamate-induced EPSCs, recorded from identified 5-HT neurons. Nicotine-induced increase of glutamatergic EPSC frequency persisted 10-20 min after drug withdrawal. This nicotinic effect was mimicked by exogenous administration of acetylcholine (ACh) or inhibition of ACh metabolism. In addition, the nicotine-induced increase in EPSC frequency was abolished by blockade of α4β2 nAChRs, voltage-gated calcium channels, or intracellular calcium signaling but not by α7 nAChR antagonists. These data suggest that both nicotine and endogenous ACh can increase glutamate release through activation of presynaptic α4β2 but not α7 nAChRs in the DRN. The effect involves long-term changes in synaptic function, and it is dependent on voltage-gated calcium channels and presynaptic calcium stores.

  1. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.

  2. Synthesis of 2-(substituted phenyl)-3,5,5-trimethylmorpholine analogues and their effects on monoamine uptake, nicotinic acetylcholine receptor function, and behavioral effects of nicotine.

    PubMed

    Carroll, F Ivy; Muresan, Ana Z; Blough, Bruce E; Navarro, Hernán A; Mascarella, S Wayne; Eaton, J Brek; Huang, Xiaodong; Damaj, M Imad; Lukas, Ronald J

    2011-03-10

    Toward development of smoking cessation aids superior to bupropion (2), we describe synthesis of 2-(substituted phenyl)-3,5,5-trimethylmorpholine analogues 5a-5h and their effects on inhibition of dopamine, norepinephrine, and serotonin uptake, nicotinic acetylcholine receptor (nAChR) function, acute actions of nicotine, and nicotine-conditioned place preference (CPP). Several analogues encompassing aryl substitutions, N-alkylation, and alkyl extensions of the morpholine ring 3-methyl group provided analogues more potent in vitro than (S,S)-hydroxybupropion (4a) as inhibitors of dopamine or norepinephrine uptake and antagonists of nAChR function. All of the new (S,S)-5 analogues had better potency than (S,S)-4a as blockers of acute nicotine analgesia in the tail-flick test. Two analogues with highest potency at α3β4*-nAChR and among the most potent transporter inhibitors have better potency than (S,S)-4a in blocking nicotine-CPP. Collectively, these findings illuminate mechanisms of action of 2 analogues and identify deshydroxybupropion analogues 5a-5h as possibly superior candidates as aids to smoking cessation.

  3. NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas.

    PubMed

    Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X; McMillan, Elizabeth A; Minna, John D; Cobb, Melanie H

    2014-06-01

    Cigarette smoking is a major risk factor for acquisition of small cell lung cancer (SCLC). A role has been demonstrated for the basic helix-loop-helix transcription factor NeuroD1 in the pathogenesis of neural and neuroendocrine lung cancer, including SCLC. In the present study we investigate the possible function of NeuroD1 in established tumors, as well as actions early on in pathogenesis, in response to nicotine. We demonstrate that nicotine up-regulates NeuroD1 in immortalized normal bronchial epithelial cells and a subset of undifferentiated carcinomas. Increased expression of NeuroD1 subsequently leads to regulation of expression and function of the nicotinic acetylcholine receptor subunit cluster of α3, α5, and β4. In addition, we find that coordinated expression of these subunits by NeuroD1 leads to enhanced nicotine-induced migration and invasion, likely through changes in intracellular calcium. These findings suggest that aspects of the pathogenesis of neural and neuroendocrine lung cancers may be affected by a nicotine- and NeuroD1-induced positive feedback loop.

  4. Rapid determination of nicotine in urine by direct thermal desorption ion trap mass spectrometry

    SciTech Connect

    Wise, M.B.; Ilgner, R.H.; Guerin, M.R.

    1990-01-01

    The measurement of nicotine and cotinine in physiological fluids (urine, blood serum, and saliva) is widely used as a means of assessing human exposure to environmental tobacco smoke (ETS). Although numerous analytical methods exist for these measurements, they generally involve extensive sample preparation which increases cost and decreases sample throughput. We report the use of thermal desorption directly into an ion trap mass spectrometer (ITMS) for the rapid determination of nicotine and cotinine in urine. A 1{mu}L aliquot of urine is injected into a specially designed inlet and flash vaporized directly into an ITMS through an open-split capillary restrictor interface. Isobutane chemical ionization is used to generate (M+H){sup +} ions of the analytes and collision induced dissociation is used to generate characteristic fragment ions which are used to confirm their identity. Quantification is achieved by integrating the ion current for the characteristic ions and comparing with an external working curve. Detection limits are approximately 50 pg per analyte and the sample turnaround time is approximately 3 minutes without the need for extensive sample preparation. 12 refs., 5 figs.

  5. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis.

    PubMed

    Chernyavsky, Alex; Chen, Yumay; Wang, Ping H; Grando, Sergei A

    2015-11-01

    The mechanism of detachment and death of keratinocytes in pemphigus vulgaris (PV) involves pro-apoptotic action of constellations of autoantibodies determining disease severity and response to treatment. The presence of antibodies to nicotinic acetylcholine receptors (nAChRs) and the therapeutic efficacy of cholinomimetics in PV is well-established. Recently, adsorption of anti-mitochondrial antibodies abolished the ability of PVIgGs to cause acantholysis, demonstrating their pathophysiological significance. Since, in addition to cell membrane, nAChRs are also present on the mitochondrial outer membrane, wherein they act to prevent activation of intrinsic (mitochondrial apoptosis), we hypothesized that mitochondrial (mt)-nAChRs might be targeted by PVIgGs. To test this hypothesis, we employed the immunoprecipitation-western blot assay of keratinocyte mitochondrial proteins that visualized the α3, α5, α7, α9, α10, β2 and β4 mt-nAChR subunits precipitated by PV IgGs, suggesting that functions of mt-nAChRs are compromised in PV. To pharmacologically counteract the pro-apoptotic action of anti-mitochondrial antibodies in PV, we exposed naked keratinocyte mitochondria to PVIgGs in the presence of the nicotinic agonist nicotine ± antagonists, and measured cytochrome c (CytC) release. Nicotine abolished PVIgG-dependent CytC release, showing a dose-dependent effect, suggesting that protection of mitochondria can be a novel mechanism of therapeutic action of nicotinic agonists in PV. The obtained results indicated that the mt-nAChRs targeted by anti-mitochondrial antibodies produced by PV patients are coupled to inhibition of CytC release, and that nicotinergic stimulation can abolish PVIgG-dependent activation of intrinsic apoptosis in KCs. Future studies should determine if and how the distinct anti-mt-nAChR antibodies penetrate KCs and correlate with disease severity.

  6. Orthosteric and Allosteric Ligands of Nicotinic Acetylcholine Receptors for Smoking Cessation.

    PubMed

    Mohamed, Tasnim S; Jayakar, Selwyn S; Hamouda, Ayman K

    2015-01-01

    Nicotine addiction, the result of tobacco use, leads to over six million premature deaths world-wide per year, a number that is expected to increase by a third within the next two decades. While more than half of smokers want and attempt to quit, only a small percentage of smokers are able to quit without pharmacological interventions. Therefore, over the past decades, researchers in academia and the pharmaceutical industry have focused their attention on the development of more effective smoking cessation therapies, which is now a growing 1.9 billion dollar market. Because the role of neuronal nicotinic acetylcholine receptors (nAChR) in nicotine addiction is well established, nAChR based therapeutics remain the leading strategy for smoking cessation. However, the development of neuronal nAChR drugs that are selective for a nAChR subpopulation is challenging, and only few neuronal nAChR drugs are clinically available. Among the many neuronal nAChR subtypes that have been identified in the brain, the α4β2 subtype is the most abundant and plays a critical role in nicotine addiction. Here, we review the role of neuronal nAChRs, especially the α4β2 subtype, in the development and treatment of nicotine addiction. We also compare available smoking cessation medications and other nAChR orthosteric and allosteric ligands that have been developed with emphasis on the difficulties faced in the development of clinically useful compounds with high nAChR subtype selectivity.

  7. D{sub 2} dopamine receptor gene and behavioral characteristics in nicotine dependence

    SciTech Connect

    Noble, E.P.; Fitch, R.J.; Syndulko, K.

    1994-09-01

    The D{sub 2} dopamine receptor (DRD2) A1 allele has been recently associated with nicotine dependence. In the present study, TaqI A alleles (the minor A1 and the major A2 allele) of the DRD2 were determined in medically-ill subjects. The sample was composed of 41 non-smokers (N), 69 ex-smokers (X) and 63 active smokers (A). The relationships of DRD2 alleles to personality (Eysenick`s Addictive Personality [AP]), depression and nicotine dependence (Fagerstroem) scores were ascertained. A significant (P = 0.002) group effect prevailed in the AP scores, with the A group having the highest scores. Moreover, a significant (P = 0.025) allele by group interaction was found, with A1 allelic subjects in group A showing the highest AP scores. Significant group effects were also found in both the depression (P = 0.0004) and the nicotine dependence (P = 0.0003) scores, with the A group again showing the highest scores. However, in contrast to the AP scores, no significant allele by group interaction was found either in the depression or the nicotine dependence scores. In conclusion, the present findings suggest a role for the DRD2 gene in personality of smokers. However, relationship of the DRD2 gene to the degree of depression or nicotine dependence was not found. The data indicate the importance of using behavioral and genetic variables in dissecting the complex set of variables associated with the smoking habit, and thus in achieving a better understanding of the biobehavioral bases of this addiction.

  8. Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism.

    PubMed

    Rahman, Shafiqur; Engleman, Eric A; Bell, Richard L

    2016-01-01

    Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions.

  9. Cloning and mapping of the mouse {alpha}7-neuronal nicotinic acetylcholine receptor

    SciTech Connect

    Orr-Urtreger, A.; Baldini, A.; Beaudet, A.L.

    1995-03-20

    We report the isolation of cDNA clones for the mouse {alpha}7 neuronal nicotinic acetylcholine receptor subunit (gene symbol Acra7), the only nicotinic receptor subunit known to bind a-bungarotoxin in mammalian brain. This gene may have relevance to nicotine sensitivity and to some electrophysiologic findings in schizophrenia. The mouse {alpha}7 subunit gene encodes a protein of 502 amino acids with substantial identity to the rat (99.6%), human (92.8%), and chicken (87.5%) amino acid sequences. The {alpha}7 gene was mapped to mouse chromosome 7 near the p locus with the following gene order from proximal to distal: Myod1-3.5 {+-}1.7 cM-Gas2-0.9 cM {+-} 0.9 cM-D7Mit70-1.8 {+-} 1.2 cM- Acra7-4.4 {+-}1.0 cM-Hras1-ps11/Igf1r/Snrp2a. The human gene was confirmed to map to the homologous region of human chromosome 15q13-q14. 26 refs., 3 figs.

  10. Ethanol-Induced Motor Impairment Mediated by Inhibition of α7 Nicotinic Receptors

    PubMed Central

    McDaid, John; Abburi, Chandrika; Wolfman, Shannon L.; Gallagher, Keith

    2016-01-01

    Nicotine and ethanol (EtOH) are among the most widely co-abused substances, and nicotinic acetylcholine receptors (nAChRs) contribute to the behavioral effects of both drugs. Along with their role in addiction, nAChRs also contribute to motor control circuitry. The α7 nAChR subtype is highly expressed in the laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic center that contributes to motor performance through its projections to thalamic motor relay centers, including the mediodorsal thalamus. We demonstrate that EtOH concentrations just above the legal limits for intoxication in humans can inhibit α7 nAChRs in LDTg neurons from rats. This EtOH-induced inhibition is mediated by a decrease in cAMP/PKA signaling. The α7 nAChR-positive allosteric modulator PNU120596 [N-(5-chloro-2,4-dimethoxyphenyl)-N′-(5-methyl-3-isoxazolyl)-urea], which interferes with receptor desensitization, completely eliminated EtOH modulation of these receptors. These data suggest that EtOH inhibits α7 responses through a PKA-dependent enhancement of receptor desensitization. EtOH also inhibited the effects of nicotine at presynaptic α7 nAChRs on glutamate terminals in the mediodorsal thalamus. In vivo administration of PNU120596 either into the cerebral ventricles or directly into the mediodorsal thalamus attenuated EtOH-induced motor impairment. Thus, α7 nAChRs are likely important mediators of the motor impairing effects of moderate EtOH consumption. SIGNIFICANCE STATEMENT The motor-impairing effects of ethanol contribute to intoxication-related injury and death. Here we explore the cellular and neural circuit mechanisms underlying ethanol-induced motor impairment. Physiologically relevant concentrations of ethanol inhibit activity of a nicotinic receptor subtype that is expressed in brain areas associated with motor control. That receptor inhibition is mediated by decreased receptor phosphorylation, suggesting an indirect modulation of cell signaling pathways to achieve

  11. Central amygdala nicotinic and 5-HT1A receptors mediate the reversal effect of nicotine and MDMA on morphine-induced amnesia.

    PubMed

    Tirgar, F; Rezayof, A; Zarrindast, M-R

    2014-09-26

    The present study was designed to investigate possible involvement of the central amygdala (CeA) nicotinic acetylcholine (nACh) and 5-hydroxytryptamine 1A (5-HT1A) receptors in the reversal effect of nicotine and 3,4-methylenedioxy-N-methylamphetamine (MDMA or ecstasy) on morphine-induced amnesia. Two guide cannulas were stereotaxically implanted in the CeA regions and a step-through passive avoidance task was used for the assessment of memory retrieval in adult male Wistar rats. Our results indicated that post-training s.c. administration of morphine (3-7-mg/kg) impaired memory retrieval. Pre-test administration of nicotine (0.3- and 0.5-mg/kg, s.c.) reversed morphine-induced amnesia. In addition, pre-test intra-CeA injection of MDMA (1-2-μg/rat) with an ineffective dose of nicotine (0.1-mg/kg, s.c.) improved memory retrieval, suggesting the interactive effect of the drugs on memory formation. It should be noted that that pre-test intra-CeA injection of 2-μg/rat of MDMA by itself produced amnesia. Interestingly, pre-test intra-CeA injection of mecamylamine, a nACh receptor antagonist (1-2-μg/rat) or (S)-WAY 100135 (0.25-1-μg/rat), a selective 5-HT1A receptor antagonist inhibited the improvement of morphine-induced amnesia which was produced by pre-test co-injection of nicotine and MDMA. Pre-test intra-CeA injection of the same doses of MDMA, mecamylamine or (S)-WAY 100135 by itself had no effect on morphine-induced amnesia. Moreover, pre-test injection of the same doses of mecamylamine or (S)-WAY 100135 into the CeA alone could not change memory retrieval. Taken together, it can be concluded that there is a functional interaction between morphine, nicotine and MDMA via the CeA nicotinic and serotonergic receptor mechanisms in passive avoidance memory retrieval. Moreover, cross state-dependent memory retrieval may have been induced between the drugs and this probably depends on the rewarding effects of the drugs.

  12. Differential sensitivity of Ctenocephalides felis and Drosophila melanogaster nicotinic acetylcholine receptor α1 and α2 subunits in recombinant hybrid receptors to nicotinoids and neonicotinoid insecticides.

    PubMed

    Dederer, Helene; Werr, Margaret; Ilg, Thomas

    2011-01-01

    Nicotinic acetylcholine receptors (nAChRs) are the binding sites for nicotinoid drugs, such as nicotine and epibatidine, and are the molecular targets of the selectively insecticidal neonicotinoids. In this study we report the full length cDNA cloning of the three Ctenocephalides (C.) felis (cat flea) nAChR α subunits Cfα1, Cfα2, and Cfα3. When expressed in Xenopus oocytes as hybrid receptors with the Gallus gallus (chicken) β2 (Ggβ2) subunit, these cat flea α subunits formed acetylcholine-responsive ion channels. Acetylcholine-evoked currents of Cfα2/Ggβ2 were resistant to α-bungarotoxin, while those of Cfα1/Ggβ2 were sensitive to this snake toxin. The pharmacological profiles of Cfα1/Ggβ2, Cfα2/Ggβ2 and the chicken neuronal receptor Ggα4/Ggβ2 for acetylcholine, two nicotinoids and 6 insecticidal neonicotinoids were determined and compared. Particularly remarkable was the finding that Cfα1/Ggβ2 was far more sensitive to acetylcholine, nicotine and neonicotinoid agonists than either Cfα2/Ggβ2 or Ggα4/Ggβ2: for the anti flea neonicotinoid market compound imidacloprid the respective EC₅₀s were 0.02 μM, 1.31 μM and 10 μM. These results were confirmed for another insect species, Drosophila melanogaster, where the pharmacological profile of the Dmα1 and Dmα2 subunits as hybrid receptors with Ggβ2 in Xenopus oocyte expressions resulted in a similar sensitivity pattern as those identified for the C. felis orthologs. Our results show that at least in a Ggβ2 hybrid receptor setting, insect α1 subunits confer higher sensitivity to neonicotinoids than α2 subunits, which may contribute in vivo to the insect-selective action of this pesticide class.

  13. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid.

    PubMed

    Li, Ping; Ann, Jason; Akk, Gustav

    2011-08-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. Though highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1-4% of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI for the human α4β2 receptor is 18 μM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)(2) (β2)(3) receptors significantly more strongly inhibited than the (α4)(3) (β2)(2) receptors.

  14. A method for soluble overexpression of the 7 nicotinic acetylcholine receptor extracellular domain

    NASA Astrophysics Data System (ADS)

    Fischer, Markus; Corringer, Pierre-Jean; Schott, Karin; Bacher, Adelbert; Changeux, Jean-Pierre

    2001-03-01

    We describe the construction of a soluble protein carrying the N-terminal extracellular domain (ECD) of the 7 subunit of the nicotinic acetylcholine receptor. The approach was to fuse the 7 ECD at the C and N termini of several monomeric and pentameric soluble carrier proteins and to investigate the soluble expression of the product in Escherichia coli. An initial screening of six carrier proteins resulted in the selection of a fusion protein comprising, from the N to the C terminus, the maltose binding protein, a 17-aa linker containing an enterokinase binding site, and the α7 ECD. This protein is soluble upon expression in bacteria and is purified by affinity chromatography. It binds the competitive nicotinic antagonist α-bungarotoxin with 2.5 μM affinity and displays a CD spectrum corresponding to a folded protein. The method might be suitable to produce large quantities of protein for crystallization and immunochemical experiments.

  15. Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry.

    PubMed

    Ochoa, Mariela L; Harrington, Peter B

    2004-02-15

    The detection of methamphetamine in the presence of nicotine has been successfully accomplished using in situ chemical derivatization with propyl chloroformate as the derivatization reagent and ion mobility spectrometry (IMS). The rapid detection of methamphetamine is important for forensic scientists in order to establish a chain of evidence and link criminals to the crime scene. Nicotine is pervasive in clandestine drug laboratories from cigarette smoke residue. It has been demonstrated that nicotine obscures the methamphetamine peaks in ion mobility spectrometers due to their similar charge affinities and ion mobilities, which makes their detection a challenging task. As a consequence, false positive or negative responses may arise. In situ chemical derivatization poses as a sensitive, accurate, and reproducible alternative to remove the nicotine background when detecting nanogram amounts of methamphetamine. The derivatization agent was coated onto the sample disk, and the derivatization product corresponding to propyl methamphetamine carbamate was detected. In the present study, in situ chemical derivatization was demonstrated to be a feasible method to detect methamphetamine hydrochloride as the carbamate derivative, which was baseline-resolved from the nicotine peak. Alternating least squares (ALS) was used to model the datasets. A mixture containing both compounds revealed reduced mobilities of 1.61 cm(2)/V.s and 1.54 cm(2)/V.s for methamphetamine and nicotine, respectively. The reduced mobility of propyl methamphetamine carbamate was found at 1.35 cm(2)/V.s.

  16. GLUTAMATERGIC SYNAPSE FORMATION IS PROMOTED BY α7-CONTAINING NICOTINIC ACETYLCHOLINE RECEPTORS

    PubMed Central

    Lozada, Adrian F.; Wang, Xulong; Gounko, Natalia V.; Massey, Kerri A.; Duan, Jingjing; Liu, Zhaoping; Berg, Darwin K.

    2012-01-01

    Glutamate is the primary excitatory transmitter in adult brain, acting through synapses on dendritic spines and shafts. Early in development, however, when glutamatergic synapses are only beginning to form, nicotinic cholinergic excitation is already widespread; it is mediated by acetylcholine activating nicotinic acetylcholine receptors (nAChRs) that generate waves of activity across brain regions. A major class of nAChRs contributing at this time is a species containing α7 subunits (α7-nAChRs). These receptors are highly permeable to calcium, influence a variety of calcium-dependent events, and are diversely distributed throughout the developing CNS. Here we show that α7-nAChRs unexpectedly promote formation of glutamatergic synapses during development. The dependence on α7-nAChRs becomes clear when comparing wild-type mice with mice constitutively lacking the α7-nAChR gene. Ultrastructural analysis, immunostaining, and patch-clamp recording all reveal synaptic deficits when α7-nAChR input is absent. Similarly, nicotinic activation of α7-nAChRs in wild-type organotypic culture, as well as cell culture, increases the number of glutamatergic synapses. RNA interference demonstrates that the α7-nAChRs must be expressed in the neuron being innervated for normal innervation to occur. Moreover the deficits persist throughout the developmental period of major de novo synapse formation and are still fully apparent in the adult. GABAergic synapses, in contrast, are undiminished in number under such conditions. As a result, mice lacking α7-nAChRs have an altered balance in the excitatory/inhibitory input they receive. This ratio represents a fundamental feature of neural networks and shows for the first time that endogenous nicotinic cholinergic signaling plays a key role in network construction. PMID:22649244

  17. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain.

    PubMed

    Metaxas, Athanasios; Al-Hasani, Ream; Farshim, Pamela; Tubby, Kristina; Berwick, Amy; Ledent, Catherine; Hourani, Susanna; Kitchen, Ian; Bailey, Alexis

    2013-08-01

    Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors.

  18. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    PubMed

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  19. Interactions of serotonin (5-HT)2 receptor-targeting ligands and nicotine: locomotor activity studies in rats.

    PubMed

    Zaniewska, Magdalena; McCreary, Andrew C; Filip, Małgorzata

    2009-08-01

    Male Wistar rats were used to verify the hypothesis that serotonin (5-HT)(2A) or 5-HT(2C) receptors may control the locomotor effects evoked by nicotine (0.4 mg/kg). The 5-HT(2A) receptor antagonist (M100,907), the 5-HT(2A) receptor agonist (DOI), the 5-HT(2C) receptor antagonist (SB 242,084), and the 5-HT(2C) receptor agonists (Ro 60-0175 and WAY 163,909) were used. M100,907 (0.5-2mg/kg) did not alter, while DOI (1 mg/kg) enhanced the nicotine-induced hyperlocomotion. The effect of DOI was antagonized by M100,907 (1 mg/kg). SB 242,084 (0.25-1 mg/kg) augmented, while Ro 60-0175 (1 and 3 mg/kg) and WAY 163,909 (1.5 mg/kg) decreased the overall effect of acute nicotine; effects of Ro 60-0175 and WAY 163,909 were attenuated by SB 242,084 (0.125 mg/kg). In another set of experiments, M100,907 (2 mg/kg) on Day 10 attenuated, while DOI (0.1-1 mg/kg) enhanced the nicotine-evoked conditioned hyperlocomotion in rats repeatedly (Days 1-5) treated with nicotine in experimental chambers. SB 242,084 (0.125 or 1 mg/kg) did not change, while Ro 60-0175 (1 mg/kg) or WAY 163,909 (1.5 mg/kg) decreased the expression of nicotine-induced conditioned hyperactivity. Only DOI (0.3 and 1 mg/kg) and SB 242,084 (1 mg/kg) enhanced the basal locomotion. The present data indicate that 5-HT(2A) receptors are significant for the expression of nicotine-evoked conditioned hyperactivity. Conversely, 5-HT(2C) receptors play a pivotal role in the acute effects of nicotine. Pharmacological stimulation of 5-HT(2A) receptors enhances the conditioned hyperlocomotion, while activation of 5-HT(2C) receptors decreases both the response to acute nicotine and conditioned hyperactivity.

  20. Effects of the nicotinic acetylcholine receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in male rhesus monkeys.

    PubMed

    Banks, Matthew L

    2014-06-01

    Preclinical drug discrimination procedures have been useful in understanding the pharmacological mechanisms of the subjective-like effects of abused drugs. Converging lines of evidence from neurochemical and behavioral studies implicate a potential role of nicotinic acetylcholine (nACh) receptors in the abuse-related effects of cocaine. The aim of the present study was to determine the effects of the nACh receptor antagonist mecamylamine on the discriminative stimulus effects of cocaine in nonhuman primates. The effects of mecamylamine on the cocaine-like discriminative stimulus effects of nicotine were also examined. Male rhesus monkeys (n = 5) were trained to discriminate 0.32 mg/kg, IM cocaine from saline in a 2-key, food-reinforced discrimination procedure. Initially, potency and time course of cocaine-like discriminative stimulus effects were determined for nicotine and mecamylamine alone. Test sessions were then conducted examining the effects of mecamylamine on cocaine or the cocaine-like discriminative stimulus effects of nicotine. Curiously, mecamylamine produced partial cocaine-like discriminative stimulus effects. Mecamylamine did not significantly alter the discriminative stimulus effects of cocaine up to doses that significantly decreased rates of operant responding. Mecamylamine and nicotine combinations were not different than saline. These results confirm previous nonhuman primate studies of partial substitution with nicotine and extend these findings with mecamylamine. Furthermore, these results extend previous results in rats suggesting cocaine may have nACh receptor antagonist properties.

  1. Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour.

    PubMed

    Sivilotti, L G; McNeil, D K; Lewis, T M; Nassar, M A; Schoepfer, R; Colquhoun, D

    1997-04-01

    1. In order to establish the subunit composition of neuronal nicotinic receptors in rat superior cervical ganglia (SCG), their single-channel properties were compared with those of recombinant receptors expressed in Xenopus oocytes, using outside-out excised patch recording. 2. The mean main conductance of SCG channels from adult and 1-day-old rats was 34.8 and 36.6 pS, respectively. Less frequent openings to lower conductances occurred both as isolated bursts and as events connected to the main level by direct transitions. There was considerable interpatch variability in the values of the lower conductances. 3. Nicotinic receptors from oocytes expressing alpha3beta4 and alpha4beta4 subunits had chord conductances lower than that of SCG neurones (22 pS for alpha3beta4 and 29 pS for alpha4beta4). 4. Prolonged recording from both native and recombinant channels was precluded by 'run-down', i.e. channel activity could be elicited for only a few minutes after excision. Nevertheless, SCG channel openings were clearly seen to occur as short bursts (slowest component, 38 ms), whereas recombinant channels opened in very prolonged bursts of activity, the major component being the slowest (480 ms). 5. Addition of the alpha5 subunit to the alpha3beta4 pair produced channels with a higher conductance than those observed after injection of the pair alone (24.9 vs. 22 pS), suggesting incorporation of alpha5 into the channel. Addition of the beta2 subunit did not change alpha3beta4 single-channel properties. In one out of fourteen alpha3alpha5beta4 patches, both ganglion-like, high conductance, short burst openings and recombinant-type, low conductance, slow burst openings were observed. 6. Channels produced by expression in Xenopus oocytes of neuronal nicotinic subunits present in rat SCG as a rule differ from native ganglion receptors in single-channel conductance and gross kinetics. While it is possible that an essential nicotinic subunit remains to be cloned, it is perhaps

  2. Responding for a conditioned reinforcer, and its enhancement by nicotine, is blocked by dopamine receptor antagonists and a 5-HT(2C) receptor agonist but not by a 5-HT(2A) receptor antagonist.

    PubMed

    Guy, Elizabeth Glenn; Fletcher, Paul J

    2014-10-01

    An aspect of nicotine reinforcement that may contribute to tobacco addiction is the effect of nicotine to enhance the motivational properties of reward-associated cues, or conditioned stimuli (CSs). Several studies have now shown that nicotine enhances responding for a stimulus that has been paired with a natural reinforcer. This effect of nicotine to enhance responding for a conditioned reinforcer is likely due to nicotine-induced enhancements in mesolimbic dopaminergic activity, but this has not been directly assessed. In this study, we assessed roles for dopamine (DA) D1 or D2 receptors, and two serotonin (5-HT) receptor subtypes known to modulate DA activity, the 5-HT2C or 5-HT2A subtypes, on nicotine-enhanced responding for a conditioned reinforcer. Water-restricted rats were exposed to Pavlovian conditioning sessions, where a CS was paired with water delivery. Then, in a second phase, animals were required to perform a novel, lever-pressing response for presentations of the CS as a conditioned reinforcer. Nicotine (0.4 mg/kg) enhanced responding for the conditioned reinforcer. To examine potential roles for dopamine (DA) and serotonin (5-HT) receptors in this effect, separate groups of animals were used to assess the impact of administering the D1 receptor antagonist SCH 23390, D2 receptor antagonist eticlopride, 5-HT2C receptor agonist Ro 60-0175, or 5-HT2A receptor antagonist M100907 on nicotine-enhanced responding for conditioned reinforcement. SCH 23390, eticlopride, and Ro 60-0175 all reduced responding for conditioned reinforcement, and the ability of nicotine to enhance this effect. M100907 did not alter this behavior. Together, these studies indicate that DA D1 and D2 receptors, but not 5-HT2A receptors, contribute to the effect of nicotine to enhance responding for a conditioned reinforcer. This effect can also be modulated by 5-HT2C receptor activation.

  3. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function.

    PubMed

    Boffi, Juan Carlos; Marcovich, Irina; Gill-Thind, JasKiran K; Corradi, Jeremías; Collins, Toby; Lipovsek, María Marcela; Moglie, Marcelo; Plazas, Paola V; Craig, Patricio O; Millar, Neil S; Bouzat, Cecilia; Elgoyhen, Ana Belén

    2017-03-01

    Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits.

  4. Differential Contribution of Subunit Interfaces to α9α10 Nicotinic Acetylcholine Receptor Function

    PubMed Central

    Boffi, Juan Carlos; Marcovich, Irina; Gill-Thind, JasKiran K.; Corradi, Jeremías; Collins, Toby; Lipovsek, María Marcela; Moglie, Marcelo; Plazas, Paola V.; Craig, Patricio O.; Millar, Neil S.; Bouzat, Cecilia

    2017-01-01

    Nicotinic acetylcholine receptors can be assembled from either homomeric or heteromeric pentameric subunit combinations. At the interface of the extracellular domains of adjacent subunits lies the acetylcholine binding site, composed of a principal component provided by one subunit and a complementary component of the adjacent subunit. Compared with neuronal nicotinic acetylcholine cholinergic receptors (nAChRs) assembled from α and β subunits, the α9α10 receptor is an atypical member of the family. It is a heteromeric receptor composed only of α subunits. Whereas mammalian α9 subunits can form functional homomeric α9 receptors, α10 subunits do not generate functional channels when expressed heterologously. Hence, it has been proposed that α10 might serve as a structural subunit, much like a β subunit of heteromeric nAChRs, providing only complementary components to the agonist binding site. Here, we have made use of site-directed mutagenesis to examine the contribution of subunit interface domains to α9α10 receptors by a combination of electrophysiological and radioligand binding studies. Characterization of receptors containing Y190T mutations revealed unexpectedly that both α9 and α10 subunits equally contribute to the principal components of the α9α10 nAChR. In addition, we have shown that the introduction of a W55T mutation impairs receptor binding and function in the rat α9 subunit but not in the α10 subunit, indicating that the contribution of α9 and α10 subunits to complementary components of the ligand-binding site is nonequivalent. We conclude that this asymmetry, which is supported by molecular docking studies, results from adaptive amino acid changes acquired only during the evolution of mammalian α10 subunits. PMID:28069778

  5. Alpha5 nicotinic acetylcholine receptor mediates nicotine-induced HIF-1α and VEGF expression in non-small cell lung cancer

    SciTech Connect

    Ma, Xiaoli; Jia, Yanfei; Zu, Shanshan; Li, Ruisheng; Jia, Ying; Zhao, Yun; Xiao, Dongjie; Dang, Ningning; Wang, Yunshan

    2014-07-15

    By binding to nicotinic acetylcholine receptors (nAChRs), nicotine induces the proliferation and apoptosis of non-small cell lung cancer (NSCLC). Previous studies have indicated that α5-nAChR is highly associated with lung cancer risk and nicotine dependence. However, the mechanisms through which α5-nAChRs may influence lung carcinogenesis are far from clear. In the present study, we investigated the roles of α5-nAChR in the nicotine-induced expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). Immunohistochemistry was used to detect the expression of α5-nAChR and HIF-1α in 60 specimens of lung cancer and para-carcinoma tissue. The correlations between the expression levels of α5-nAChR and HIF-1α and other clinicopathological data were analyzed. In a cell line that highly expressed α5-nAChR, the loss of α5-nAChR function by siRNA was used to study whether α5-nAChR is involved in the nicotine-induced expression of HIF-1α and VEGF through the activation of the ERK1/2 and PI3K/Akt signaling pathways. Cell growth was detected using the cell counting kit-8 (CCK-8). α5-nAChR (78.3%) and HIF-1α (88.3%) were both overexpressed in NSCLC, and their expression levels were found to be correlated with each other (P < 0.05). In the A549 cell line, α5-nAChR and HIF-1α were found to be expressed under normal conditions, and their expression levels were significantly increased in response to nicotine treatment. The silencing of α5-nAChR significantly inhibited the nicotine-induced cell proliferation compared with the control group and attenuated the nicotine-induced upregulation of HIF-1α and VEGF, and these effects required the cooperation of the ERK1/2 and PI3K/Akt signaling pathways. These results show that the α5-nAChR/HIF-1α/VEGF axis is involved in nicotine-induced tumor cell proliferation, which suggests that α5-nAChR may serve as a potential anticancer target in nicotine-associated lung cancer. - Highlights

  6. The nicotinic receptor in the rat pineal gland is an alpha3beta4 subtype.

    PubMed

    Hernandez, Susan C; Vicini, Stefano; Xiao, Yingxian; Dávila-García, Martha I; Yasuda, Robert P; Wolfe, Barry B; Kellar, Kenneth J

    2004-10-01

    The rat pineal gland contains a high density of neuronal nicotinic acetylcholine receptors (nAChRs). We characterized the pharmacology of the binding sites and function of these receptors, measured the nAChR subunit mRNA, and used subunit-specific antibodies to establish the receptor subtype as defined by subunit composition. In ligand binding studies, [3H]epibatidine ([3H]EB) binds with an affinity of approximately 100 pM to nAChRs in the pineal gland, and the density of these sites is approximately 5 times that in rat cerebral cortex. The affinities of nicotinic drugs for binding sites in the pineal gland are similar to those at alpha3beta4 nAChRs heterologously expressed in human embryonic kidney 293 cells. In functional studies, the potencies and efficacies of nicotinic drugs to activate or block whole-cell currents in dissociated pinealocytes match closely their potencies and efficacies to activate or block 86Rb+ efflux in the cells expressing heterologous alpha3beta4 nAChRs. Measurements of mRNA indicated the presence of transcripts for alpha3, beta2, and beta4 nAChR subunits but not those for alpha2, alpha4, alpha5, alpha6, alpha7, or beta3 subunits. Immunoprecipitation with subunit-specific antibodies showed that virtually all [3H]EB-labeled nAChRs contained alpha3 and beta4 subunits associated in one complex. The beta2 subunit was not associated with this complex. Taken together, these results indicate that virtually all of the nAChRs in the rat pineal gland are the alpha3beta4 nAChR subtype and that the pineal gland can therefore serve as an excellent and convenient model in which to study the pharmacology and function of these receptors in a native tissue.

  7. Nicotinic receptor-mediated biphasic effect on neuronal excitability in chick lateral spiriform neurons.

    PubMed

    Liu, Y-B; Guo, J-Z; Chiappinelli, V A

    2007-09-21

    Local neuronal circuits integrate synaptic information with different excitatory or inhibitory time windows. Here we report that activation of nicotinic acetylcholine receptors (nAChRs) leads to biphasic effects on excitability in chick lateral spiriform (SPL) neurons during whole cell recordings in brain slices. Carbachol (100 microM in the presence of 1 microM atropine) produced an initial short-term increase in the firing rates of SPL neurons (125+/-14% of control) that was mediated by postsynaptic nAChRs. However, after 3 min exposure to nicotinic agonists, the firing rate measured during an 800 ms depolarizing pulse declined to 19+/-7% (100 microM carbachol) or 26+/-8% (10 microM nicotine) of the control rate and remained decreased for 10-20 min after washout of the agonists. Similarly, after 60 s of electrically-stimulated release of endogenous acetylcholine (ACh) from cholinergic afferent fibers, there was a marked reduction (45+/-5% of control) in firing rates in SPL neurons. All of these effects were blocked by the nAChR antagonist dihydro-beta-erythroidine (30 microM). The inhibitory effect was not observed in Ca(2+)-free buffer. The nAChR-mediated inhibition depended on active G-proteins in SPL neurons and was prevented by the GABA(B) receptor antagonist phaclofen (200 microM), while the GABA(B) receptor agonist baclofen (10 microM) decreased firing rate in SPL neurons to 13+/-1% of control. The inhibitory response thus appears to be due to a nAChR-mediated enhancement of presynaptic GABA release, which then activates postsynaptic GABA(B) receptors. In conclusion, activation of nAChRs in the SPL initiates a limited time window for an excitatory period, after which a prolonged inhibitory effect turns off this window. The prolonged inhibitory effect may serve to protect SPL neurons from excessive excitation.

  8. Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices.

    PubMed

    Alkondon, M; Pereira, E F; Barbosa, C T; Albuquerque, E X

    1997-12-01

    In the present study we investigated electrophysiologically the nicotinic responses of pyramidal neurons and interneurons visualized by infrared-assisted videomicroscopy and fluorescence in the CA1 field of hippocampal slices obtained from 8- to 24-day-old rats. Application of nicotinic agonists to CA1 neurons evoked at least four types of nicotinic responses. Of major interest was the ability of these agonists to induce the release of gamma-aminobutyric acid (GABA) from interneurons. Slowly decaying ACh whole-cell currents and GABA-mediated postsynaptic currents could be recorded from pyramidal neurons and interneurons, whereas fast-decaying nicotinic currents and fast current transients were recorded only from interneurons. Nicotinic responses were sensitive to blockade by d-tubocurarine (10 microM), which indicated that they were mediated by nicotinic acetylcholine receptors (nAChRs). The slowly decaying currents, the postsynaptic currents and the fast current transients were insensitive to blockade by the alpha-7 nAChR-specific antagonist methyllycaconitine (up to 1 microM) or alpha-bungarotoxin (100 nM). On the other hand, the slowly decaying nicotinic currents recorded from the interneurons were blocked by the alpha4beta2 nAChR-specific antagonist dihydro-beta-erythroidine, and the fast-desensitizing nicotinic currents were evoked by the alpha-7 nAChR-specific agonist choline. In experimental conditions similar to those used to record nicotinic responses from neurons in slice (i. e., in the absence of tetrodotoxin), we observed that nicotinic agonists can also induce the release of GABA from hippocampal neurons in culture. In summary, these results provide direct evidence for more than one subtype of functional nAChR in CA1 neurons and suggest that activation of nAChRs present in GABAergic interneurons can evoke inhibitory activity in CA1 pyramidal neurons, thereby modulating processing of information in the hippocampus.

  9. AT-1001: a high affinity and selective α3β4 nicotinic acetylcholine receptor antagonist blocks nicotine self-administration in rats.

    PubMed

    Toll, Lawrence; Zaveri, Nurulain T; Polgar, Willma E; Jiang, Faming; Khroyan, Taline V; Zhou, Wei; Xie, Xinmin Simon; Stauber, Gregory B; Costello, Matthew R; Leslie, Frances M

    2012-05-01

    Genomic and pharmacologic data have suggested the involvement of the α3β4 subtype of nicotinic acetylcholine receptors (nAChRs) in drug seeking to nicotine and other drugs of abuse. In order to better examine this receptor subtype, we have identified and characterized the first high affinity and selective α3β4 nAChR antagonist, AT-1001, both in vitro and in vivo. This is the first reported compound with a Ki below 10 nM at α3β4 nAChR and >90-fold selectivity over the other major subtypes, the α4β2 and α7 nAChR. AT-1001 competes with epibatidine, allowing for [³H]epibatidine binding to be used for structure-activity studies, however, both receptor binding and ligand-induced Ca²⁺ flux are not strictly competitive because increasing ligand concentration produces an apparent decrease in receptor number and maximal Ca²⁺ fluorescence. AT-1001 also potently and reversibly blocks epibatidine-induced inward currents in HEK cells transfected with α3β4 nAChR. Importantly, AT-1001 potently and dose-dependently blocks nicotine self-administration in rats, without affecting food responding. When tested in a nucleus accumbens (NAcs) synaptosomal preparation, AT-1001 inhibits nicotine-induced [³H]dopamine release poorly and at significantly higher concentrations compared with mecamylamine and conotoxin MII. These results suggest that its inhibition of nicotine self-administration in rats is not directly due to a decrease in dopamine release from the NAc, and most likely involves an indirect pathway requiring α3β4 nAChR. In conclusion, our studies provide further evidence for the involvement of α3β4 nAChR in nicotine self-administration. These findings suggest the utility of this receptor as a target for smoking cessation medications, and highlight the potential of AT-1001 and congeners as clinically useful compounds.

  10. Methanandamide allosterically inhibits in vivo the function of peripheral nicotinic acetylcholine receptors containing the alpha 7-subunit.

    PubMed

    Baranowska, Urszula; Göthert, Manfred; Rudz, Radoslaw; Malinowska, Barbara

    2008-09-01

    Methanandamide (MAEA), the stable analog of the endocannabinoid anandamide, has been proven in Xenopus oocytes to allosterically inhibit the function of the alpha7-nicotinic acetylcholine receptors (nAChRs) in a cannabinoid (CB) receptor-independent manner. The present study aimed at demonstrating that this mechanism can be activated in vivo. In anesthetized and vagotomized pithed rats treated with atropine, we determined the tachycardic response to electrical stimulation of preganglionic sympathetic nerves via the pithing rod or to i.v. nicotine (0.7 micromol/kg) activating nAChRs on the cardiac postganglionic sympathetic neurons. MAEA (3 and 10 micromol/kg) inhibited the electrically induced tachycardia (maximally by 15-20%; abolished by the CB(1) receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]; 3 micromol/kg) in pentobarbitone-anesthetized pithed rats, but not in urethane-anesthetized pithed rats, which, thus, are suitable to study the CB(1) receptor-independent inhibition of nicotine-evoked tachycardia. The subunit-nonselective nAChR antagonist hexamethonium (100 micromol/kg) and the selective alpha7-subunit antagonist methyllycaconitine (MLA; 3 and 10 micromol/kg) decreased the nicotine-induced tachycardia by 100 and 40%, respectively (maximal effects), suggesting that nAChRs containing the alpha7-subunit account for 40% of the nicotine-induced tachycardia. MAEA (3 micromol/kg) produced an AM 251-insensitive inhibition (maximum again by 40%) of the nicotine-induced tachycardia. Simultaneous or sequential coadministration of MLA and MAEA inhibited the nicotine-induced tachycardia to the same extent (maximally by 40%) as each of the drugs alone. In conclusion, according to nonadditivity of the effects, MAEA mediates in vivo inhibition by the same receptors as MLA, namely alpha7-subunit-containing nAChRs, although at an allosteric instead of the orthosteric site.

  11. Role of adenosine A2A receptor signaling in the nicotine-evoked attenuation of reflex cardiac sympathetic control.

    PubMed

    El-Mas, Mahmoud M; El-Gowilly, Sahar M; Fouda, Mohamed A; Saad, Evan I

    2011-08-01

    Baroreflex dysfunction contributes to increased cardiovascular risk in cigarette smokers. Given the importance of adenosinergic pathways in baroreflex control, the hypothesis was tested that defective central adenosinergic modulation of cardiac autonomic activity mediates the nicotine-baroreflex interaction. Baroreflex curves relating changes in heart rate (HR) to increases or decreases in blood pressure (BP) evoked by i.v. doses (1-16μg/kg) of phenylephrine (PE) and sodium nitroprusside (SNP), respectively, were constructed in conscious rats; slopes of the curves were taken as measures of baroreflex sensitivity (BRS). Nicotine (25 and 100μg/kg i.v.) dose-dependently reduced BRS(SNP) in contrast to no effect on BRS(PE). BRS(SNP) was also attenuated after intracisternal (i.c.) administration of nicotine. Similar reductions in BRS(SNP) were observed in rats pretreated with atropine or propranolol. The combined treatment with nicotine and atropine produced additive inhibitory effects on BRS, an effect that was not demonstrated upon concurrent exposure to nicotine and propranolol. BRS(SNP) was reduced in preparations treated with i.c. 8-phenyltheophylline (8-PT, nonselective adenosine receptor antagonist), 8-(3-Chlorostyryl) caffeine (CSC, A(2A) antagonist), or VUF5574 (A(3) antagonist). In contrast, BRS(SNP) was preserved after blockade of A(1) (DPCPX) or A(2B) (alloxazine) receptors or inhibition of adenosine uptake by dipyridamole. CSC or 8-PT abrogated the BRS(SNP) depressant effect of nicotine whereas other adenosinergic antagonists were without effect. Together, nicotine preferentially impairs reflex tachycardia via disruption of adenosine A(2A) receptor-mediated facilitation of reflex cardiac sympathoexcitation. Clinically, the attenuation by nicotine of compensatory sympathoexcitation may be detrimental in conditions such as hypothalamic defense response, posture changes, and ventricular rhythms.

  12. An ion selectivity filter in the extracellular domain of Cys-loop receptors reveals determinants for ion conductance.

    PubMed

    Hansen, Scott B; Wang, Hai-Long; Taylor, Palmer; Sine, Steven M

    2008-12-26

    Neurotransmitter binding to Cys-loop receptors promotes a prodigious transmembrane flux of several million ions/s, but to date, structural determinants of ion flux have been identified flanking the membrane-spanning region. Using x-ray crystallography, sequence analysis, and single-channel recording, we identified a novel determinant of ion conductance near the point of entry of permeant ions. Co-crystallization of acetylcholine-binding protein with sulfate anions revealed coordination of SO4(2-) with a ring of lysines at a position equivalent to 24 A above the lipid membrane in homologous Cys-loop receptors. Analysis of multiple sequence alignments revealed that residues equivalent to the ring of lysines are negatively charged in cation-selective receptors but are positively charged in anion-selective receptors. Charge reversal of side chains at homologous positions in the nicotinic receptor from the motor end plate decreases unitary conductance up to 80%. Selectivity filters stemming from transmembrane alpha-helices have similar pore diameters and compositions of amino acids. These findings establish that when the channel opens under a physiological electrochemical gradient, permeant ions are initially stabilized within the extracellular vestibule of Cys-loop receptors, and this stabilization is a major determinant of ion conductance.

  13. Nicotine facilitates long-term potentiation induction in oriens-lacunosum moleculare cells via Ca2+ entry through non-alpha7 nicotinic acetylcholine receptors.

    PubMed

    Jia, Yousheng; Yamazaki, Yoshihiko; Nakauchi, Sakura; Ito, Ken-Ichi; Sumikawa, Katumi

    2010-02-01

    Hippocampal inhibitory interneurons have a central role in the control of network activity, and excitatory synapses that they receive express Hebbian and anti-Hebbian long-term potentiation (LTP). Because many interneurons in the hippocampus express nicotinic acetylcholine receptors (nAChRs), we explored whether exposure to nicotine promotes LTP induction in these interneurons. We focussed on a subset of interneurons in the stratum oriens/alveus that were continuously activated in the presence of nicotine due to the expression of non-desensitizing non-alpha7 nAChRs. We found that, in addition to alpha2 subunit mRNAs, these interneurons were consistently positive for somatostatin and neuropeptide Y mRNAs, and showed morphological characteristics of oriens-lacunosum moleculare cells. Activation of non-alpha7 nAChRs increased intracellular Ca(2+) levels at least in part via Ca(2+) entry through their channels. Presynaptic tetanic stimulation induced N-methyl-D-aspartate receptor-independent LTP in voltage-clamped interneurons at -70 mV when in the presence, but not absence, of nicotine. Intracellular application of a Ca(2+) chelator blocked LTP induction, suggesting the requirement of Ca(2+) signal for LTP induction. The induction of LTP was still observed in the presence of ryanodine, which inhibits Ca(2+) -induced Ca(2+) release from ryanodine-sensitive intracellular stores, and the L-type Ca(2+) channel blocker nifedipine. These results suggest that Ca(2+) entry through non-alpha7 nAChR channels is critical for LTP induction. Thus, nicotine affects hippocampal network activity by promoting LTP induction in oriens-lacunosum moleculare cells via continuous activation of non-alpha7 nAChRs.

  14. Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals.

    PubMed

    Marchi, Mario; Grilli, Massimo; Pittaluga, Anna M

    2015-01-01

    This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation.

  15. Nicotine-induced Ca2+-myristoyl switch of neuronal Ca2+ sensor VILIP-1 in hippocampal neurons: a possible crosstalk mechanism for nicotinic receptors.

    PubMed

    Zhao, CongJian; Anand, Rene; Braunewell, Karl-Heinz

    2009-03-01

    Visinin-like protein (VILIP-1) belongs to the neuronal Ca2+ sensor family of EF-hand Ca2+-binding proteins that regulate a variety of Ca2+-dependent signal transduction processes in neurons. It is an interaction partner of alpha4beta2 nicotinic acetylcholine receptor (nAChR) and increases surface expression level and agonist sensitivity of the receptor in oocytes. Nicotine stimulation of nicotinic receptors has been reported to lead to an increase in intracellular Ca2+ concentration by Ca2+-permeable nAChRs, which in turn might lead to activation of VILIP-1, by a mechanism described as the Ca2+-myristoyl switch. It has been postulated that this will lead to co-localization of the proteins at cell membranes, where VILIP-1 can influence functional activity of alpha4-containing nAChRs. In order to test this hypothesis we have investigated whether a nicotine-induced and reversible Ca2+-myristoyl switch of VILIP-1 exists in primary hippocampal neurons and whether pharmacological agents, such as antagonist specific for distinct nAChRs, can interfere with the Ca2+-dependent membrane localization of VILIP-1. Here we report, that only alpha7- but not alpha4-containing nAChRs are able to elicit a Ca2+-dependent and reversible membrane-translocation of VILIP-1 in interneurons as revealed by employing the specific receptor antagonists dihydro-beta-erythroidine and methylallylaconitine. The nAChRs are associated with processes of synaptic plasticity in hippocampal neurons and they have been implicated in the pathology of CNS disorders, including Alzheimer's disease and schizophrenia. VILIP-1 might provide a novel functional crosstalk between alpha4- and alpha7-containing nAChRs.

  16. Strychnine activates neuronal α7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains

    PubMed Central

    Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio

    1999-01-01

    Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336

  17. Recent developments in novel antidepressants targeting α4β2-nicotinic acetylcholine receptors.

    PubMed

    Yu, Li-Fang; Zhang, Han-Kun; Caldarone, Barbara J; Eaton, J Brek; Lukas, Ronald J; Kozikowski, Alan P

    2014-10-23

    Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients.

  18. Recent Developments in Novel Antidepressants Targeting α4β2-Nicotinic Acetylcholine Receptors

    PubMed Central

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) have been investigated for developing drugs that can potentially treat various central nervous system disorders. Considerable evidence supports the hypothesis that modulation of the cholinergic system through activation and/or desensitization/inactivation of nAChR holds promise for the development of new antidepressants. The introductory portion of this Miniperspective discusses the basic pharmacology that underpins the involvement of α4β2-nAChRs in depression, along with the structural features that are essential to ligand recognition by the α4β2-nAChRs. The remainder of this Miniperspective analyzes reported nicotinic ligands in terms of drug design considerations and their potency and selectivity, with a particular focus on compounds exhibiting antidepressant-like effects in preclinical or clinical studies. This Miniperspective aims to provide an in-depth analysis of the potential for using nicotinic ligands in the treatment of depression, which may hold some promise in addressing an unmet clinical need by providing relief from depressive symptoms in refractory patients. PMID:24901260

  19. Endogenous methyl palmitate modulates nicotinic receptor-mediated transmission in the superior cervical ganglion.

    PubMed

    Lin, Hung Wen; Liu, Chao-Zong; Cao, Deshou; Chen, Po-Yi; Chen, Mei-Fang; Lin, Shinn-Zong; Mozayan, Mansoor; Chen, Alex F; Premkumar, Louis S; Torry, Donald S; Lee, Tony J-F

    2008-12-09

    Nitric oxide (NO) is identified as the endothelium-derived relaxing factor and a neurotransmitter with a superfusion bioassay cascade technique. By using a similar technique with rat superior cervical ganglion (SCG) as donor tissue and rabbit endothelium-denuded aortic ring as detector tissue, we report here that a vasodilator, which is more potent than NO, is released in the SCG upon field electrical stimulation (FES) or addition of nicotine. Release of this vasodilator was enhanced by arginine analogs, including N(omega)-nitro-l-arginine (a NO synthase inhibitor), suggesting that it is not NO. Analysis by gas chromatography/mass spectrometry identified 2 saturated fatty acids, palmitic acid methyl ester (PAME) and stearic acid methyl ester (SAME), being released from the SCG upon FES in the presence of arginine analogs. Exogenous PAME but not SAME induced significant aortic dilation (EC(50) = 0.19 nM), indicating that PAME is the potent vasodilator. Release of PAME and SAME was significantly diminished in chronically decentralized SCG but not denervated SCG, suggesting the preganglionic origin. Furthermore, release of both fatty acids was calcium- and myosin light chain kinase-dependent, suggesting that both were released from axoplasmic vesicular stores. Electrophysiological studies further demonstrated that PAME but not SAME inhibited nicotine-induced inward currents in cultured SCG and the alpha7-nicotinic acetylcholine receptor-expressing Xenopus oocytes. Endogenous PAME appears to play a role in modulation of the autonomic ganglionic transmission and to complement the vasodilator effect of NO.

  20. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors.

    PubMed

    Tomizawa, Motohiro; Casida, John E

    2003-01-01

    Neonicotinoids, the most important new class of synthetic insecticides of the past three decades, are used to control sucking insects both on plants and on companion animals. Imidacloprid (the principal example), nitenpyram, acetamiprid, thiacloprid, thiamethoxam, and others act as agonists at the insect nicotinic acetylcholine receptor (nAChR). The botanical insecticide nicotine acts at the same target without the neonicotinoid level of effectiveness or safety. Fundamental differences between the nAChRs of insects and mammals confer remarkable selectivity for the neonicotinoids. Whereas ionized nicotine binds at an anionic subsite in the mammalian nAChR, the negatively tipped ("magic" nitro or cyano) neonicotinoids interact with a proposed unique subsite consisting of cationic amino acid residue(s) in the insect nAChR. Knowledge reviewed here of the functional architecture and molecular aspects of the insect and mammalian nAChRs and their neonicotinoid-binding site lays the foundation for continued development and use of this new class of safe and effective insecticides.

  1. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    PubMed

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-04-07

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α7 subunit of the human nicotinic acetylcholine (α7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca(2+)-dependent Cl(-) channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [(125)I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α7 nACh receptor indicated that thujone suppressed choline induced Ca(2+) transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.

  2. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists.

    PubMed

    Papke, Roger L; Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A

    2011-05-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)(2)(β2)(3), (α4)(3)(β2)(2), and (α4)(2)(β2)(2)α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, "run-up" of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development.

  3. Nicotine Effects and Receptor Expression on Human Spermatozoa: Possible Neuroendocrine Mechanism

    PubMed Central

    Condorelli, Rosita A.; La Vignera, Sandro; Giacone, Filippo; Iacoviello, Linda; Mongioì, Laura M.; Li Volti, Giovanni; Barbagallo, Ignazio; Avola, Roberto; Calogero, Aldo E.

    2017-01-01

    The aim of this experimental study was to investigate the mechanism by which nicotine (NIC) alters spermatozoa and to evaluate the expression of nicotinic receptors (nAChR) subunits in human spermatozoa. We analyzed 30 healthy normozoospermic men. Spermatozoa were incubated with NIC 100 ng/ml and the nAChR antagonist, hexamethonium (HEX) (0, 100, 1,000, 10,000 ng/ml) for 3 and 24 h. The following sperm parameters evaluated: (a) progressive motility; (b) mitochondrial membrane potential (MMP); (c) chromatin compactness; (d) externalization of phosphatidylserine (PS); (e) late apoptosis; (f) viability; (g) DNA fragmentation; (h) degree of lipid peroxidation (LP) by flow cytometry; (i) nAChR subunits expression by quantitative Real Time PCR and (j) protein expression evaluation by Western blot analysis. HEX fully antagonized the effects of NIC both after 3 and 24 h of incubation with significant improvement (p < 0.05) of sperm progressive motility, MMP, abnormal chromatin compactness, PS externalization, late apoptosis and DNA fragmentation, already at the concentration of HEX 100 ng/ml. The degree of LP increased after incubation with NIC in raw semen but this effect was fully antagonized (p < 0.05) by HEX after 3 and 24 h of incubation. Finally, 8 nAChR subunits mRNA (α1, α3, α4, α6, α7, β2, β4, and δ) were found expressed in all samples examined, but only α7 subunit is translated, making an homomer receptor, in non-smokers subjects. The effects of NIC on sperm function are mediated by interaction with a specific nicotinic receptor. The presence of nAChR subunits suggests the presence of a neuroendocrine mechanism on human spermatozoa.

  4. Some properties of human neuronal alpha 7 nicotinic acetylcholine receptors fused to the green fluorescent protein.

    PubMed

    Palma, Eleonora; Mileo, Anna M; Martinez-Torres, Ataulfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-03-19

    The functional properties and cellular localization of the human neuronal alpha7 nicotinic acetylcholine (AcCho) receptor (alpha7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutalpha7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtalpha7 receptors decay much faster than those elicited by the mutalpha7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated alpha7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable "run-down" of the AcCho currents generated by mutalpha7-GFP receptors, whereas those of the wtalpha7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutalpha7-GFP oocytes was accompanied by a marked decrease of alpha-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtalpha7 and mutalpha7 receptors provides powerful tools to study the distribution and function of alpha7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins.

  5. Some properties of human neuronal α7 nicotinic acetylcholine receptors fused to the green fluorescent protein

    PubMed Central

    Palma, Eleonora; Mileo, Anna M.; Martínez-Torres, Ataúlfo; Eusebi, Fabrizio; Miledi, Ricardo

    2002-01-01

    The functional properties and cellular localization of the human neuronal α7 nicotinic acetylcholine (AcCho) receptor (α7 AcChoR) and its L248T mutated (mut) form were investigated by expressing them alone or as gene fusions with the enhanced version of the green fluorescent protein (GFP). Xenopus oocytes injected with wild-type (wt), mutα7, or the chimeric subunit cDNAs expressed receptors that gated membrane currents when exposed to AcCho. As already known, AcCho currents generated by wtα7 receptors decay much faster than those elicited by the mutα7 receptors. Unexpectedly, the fusion of GFP to the wt and mutated α7 receptors led to opposite results: the AcCho-current decay of the wt receptors became slower, whereas that of the mutated receptors was accelerated. Furthermore, repetitive applications of AcCho led to a considerable “run-down” of the AcCho currents generated by mutα7-GFP receptors, whereas those of the wtα7-GFP receptors remained stable or increased in amplitude. The AcCho-current run-down of mutα7-GFP oocytes was accompanied by a marked decrease of α-bungarotoxin binding activity. Fluorescence, caused by the chimeric receptors expressed, was seen over the whole oocyte surface but was more intense and abundant in the animal hemisphere, whereas it was much weaker in the vegetal hemisphere. We conclude that fusion of GFP to wtα7 and mutα7 receptors provides powerful tools to study the distribution and function of α7 receptors. We also conclude that fused genes do not necessarily recapitulate all of the properties of the original receptors. This fact must be borne close in mind whenever reporter genes are attached to proteins. PMID:11891308

  6. alpha4beta2 nicotinic receptors with high and low acetylcholine sensitivity: pharmacology, stoichiometry, and sensitivity to long-term exposure to nicotine.

    PubMed

    Moroni, Mirko; Zwart, Ruud; Sher, Emanuele; Cassels, Bruce K; Bermudez, Isabel

    2006-08-01

    alpha4 and beta2 nicotinic acetylcholine receptor (nAChR) subunits expressed heterologously assemble into receptors with high (HS) and low (LS) sensitivity to acetylcholine (ACh); their relative proportions depend on the alpha4to beta2 ratio. In this study, injection of oocytes with 1:10 alpha4/beta2 subunit cDNA ratios favored expression of HS alpha4beta2 nAChRs, as evidenced by monophasic ACh concentration-response curves, whereas injections with 10:1 cDNA ratios favored expression of LS alpha4beta2 receptors. The stoichiometry was inferred from the shifts in the ACh EC(50) values caused by Leu to Thr mutations at position 9' of the second transmembrane domain of alpha4 and beta2. The 1:10 injection ratio produced the (alpha4)(2)(beta2)(3) stoichiometry, whereas 10:1 injections produced the (alpha4)(3)(beta2)(2) stoichiometry. The agonists epibatidine, 3-[2(S)-azetidinylmethoxy]pyridine (A-85380), 5-ethoxy-metanicotine (TC-2559), cytisine, and 3-Br-cytisine and the antagonists dihydro-beta-erythroidine and d-tubocurarine were more potent at HS receptors. TC-2559 was more efficacious than ACh at HS receptors but was a partial agonist at LS receptors. Epibatidine was more efficacious than ACh at LS receptors and a partial agonist at HS receptors. Cytisine and 5-halogenated cytisines had moderate efficacy at LS receptors but had almost no efficacy at HS receptors. By exploiting the differential effects of ACh, TC-2559 and 5-I-cytisine we evaluated the effects of long-term exposure to nicotine on HS and LS receptors expressed in Xenopus laevis oocytes after cDNA injections or microtransplantation of alpha4beta2 receptors assembled in human embryonic kidney 293 cells. We conclude that nicotine up-regulates HS alpha4beta2 receptors, probably by influencing the assembly of receptors rather than by altering the functional state of LS alpha4beta2 nAChRs.

  7. Cannabinoid receptor ligands suppress memory-related effects of nicotine in the elevated plus maze test in mice.

    PubMed

    Biala, Grazyna; Kruk, Marta

    2008-10-10

    The purpose of the experiments was to examine the memory-related effects of nicotine using the mouse elevated plus maze. It has been shown that the acute doses of nicotine (0.1 and 0.5 mg/kg) significantly decreased the time of transfer latency (TL2) on the retention trial, indicating that nicotine improved memory processes. Similarly, acute doses of the CB1 cannabinoid receptor antagonist AM 251 (0.5, 1, 1.5 and 3 mg/kg) significantly decreased TL2 values. WIN55,212-2, a non-selective CB cannabinoid receptor agonist, at any dose tested (0.25, 0.5 and 1 mg/kg), did not provoke any effect in this model. Moreover, the acute injection of both WIN55,212-2 (0.25 and 0.5 mg/kg) and AM 251 (0.25 mg/kg), prior to injections of nicotine (0.1 and 0.5 mg/kg), significantly prevented nicotine-induced memory improvement. The results of this study provide clear evidence that the endogenous cannabinoid system participates in the responses induced by nicotine on memory-related behaviour in mice.

  8. BLOCKING CANNABINOID CB1 RECEPTORS FOR THE TREATMENT OF NICOTINE DEPENDENCE: INSIGHTS FROM PRECLINICAL AND CLINICAL STUDIES

    PubMed Central

    Le Foll, Bernard; Forget, Benoit; Aubin, Henri-Jean; Goldberg, Steven R.

    2009-01-01

    Tobacco use is one of the leading preventable causes of death in developed countries. Since existing medications are only partially effective in treating tobacco smokers, there is a great need for improved medications for smoking cessation. It has been recently proposed that cannabinoid CB1 receptor antagonists represent a new class of therapeutic agents for drug dependence, and, notably, nicotine dependence. Here, we will review current evidence supporting the use of this class of drugs for smoking cessation treatment. Preclinical studies indicate that nicotine exposure produces changes in endocannabinoid content in the brain. In experimental animals, Rimonabant (SR141716) and AM251, two cannabinoid CB1 receptor antagonists, block nicotine self-administration behavior, an effect that may be related to the blockade of the dopamine-releasing effects of nicotine in the brain. Rimonabant also seems efficacious in decreasing the influence of nicotine-associated stimuli over behavior, suggesting that it may act on two distinct neuronal pathways, those implicated in drug-taking behavior and those involved in relapse phenomena. The utility of Rimonabant has been evaluated in several clinical trials. It seems that Rimonabant is an efficacious treatment for smoking cessation, although its efficacy doesn’t exceed that of nicotine replacement therapy and its use may be limited by emotional side effects (nausea, anxiety and depression, mostly). Rimonabant also appears to decrease relapse rates in smokers. These findings indicate significant, but limited, utility of Rimonabant for smoking cessation. PMID:18482433

  9. Neuronal nicotinic receptors as novel targets for inflammation and neuroprotection: mechanistic considerations and clinical relevance

    PubMed Central

    Bencherif, Merouane

    2009-01-01

    A number of studies have confirmed the potential for neuronal nicotinic acetylcholine receptor (NNR)-mediated neuroprotection and, more recently, its anti-inflammatory effects. The mechanistic overlap between these pathways and the ubiquitous effects observed following diverse insults suggest that NNRs modulate fundamental pathways involved in cell survival. These results have wide-reaching implications for the design of experimental therapeutics that regulate inflammatory and anti-apoptotic responses through NNRs and represent an initial step toward understanding the benefits of novel therapeutic strategies for the management of central nervous system disorders that target neuronal survival and associated inflammatory processes. PMID:19498416

  10. Functional Impact of 14 Single Nucleotide Polymorphisms Causing Missense Mutations of Human α7 Nicotinic Receptor.

    PubMed

    Zhang, Qinhui; Du, Yingjie; Zhang, Jianliang; Xu, Xiaojun; Xue, Fenqin; Guo, Cong; Huang, Yao; Lukas, Ronald J; Chang, Yongchang

    2015-01-01

    The α7nicotinic receptor (nAChR) is a major subtype of the nAChRs in the central nervous system, and the receptor plays an important role in brain function. In the dbSNP database, there are 55 single nucleotide polymorphisms (SNPs) that cause missense mutations of the human α7nAChR in the coding region. In this study, we tested the impact of 14 SNPs that cause missense mutations in the agonist binding site or the coupling region between binding site and channel gate on the receptor function. The wild type or mutant receptors were expressed or co-expressed in Xenopus oocytes, and the agonist-induced currents were tested using two-electrode voltage clamp. Our results demonstrated that 6 mutants were nonfunctional, 4 mutants had reduced current expression, and 1 mutants altered ACh and nicotine efficacy in the opposite direction, and one additional mutant had slightly reduced agonist sensitivity. Interestingly, the function of most of these nonfunctional mutants could be rescued by α7nAChR positive allosteric modulator PNU-120596 and agonist-PAM 4BP-TQS. Finally, when coexpressed with the wild type, the nonfunctional mutants could also influence the receptor function. These changes of the receptor properties by the mutations could potentially have an impact on the physiological function of the α7nAChR-mediated cholinergic synaptic transmission and anti-inflammatory effects in the human SNP carriers. Rescuing the nonfunctional mutants could provide a novel way to treat the related disorders.

  11. Differential modulation of GABAA and NMDA receptors by α7-nicotinic receptor desensitization in cultured rat hippocampal neurons

    PubMed Central

    Shen, Lei; Cui, Wen-yu; Chen, Ru-zhu; Wang, Hai

    2016-01-01

    Aim: To explore the modulatory effect of desensitized α7-containing nicotinic receptors (α7-nAChRs) on excitatory and inhibitory amino acid receptors in cultured hippocampal neurons and to identify the mechanism underlying this effect. Methods: Whole-cell patch-clamp recordings were performed on cultured rat hippocampal neurons to measure α7-nAChR currents and to determine the role of desensitized α7-nAChRs on brain amino acid receptor activity. Results: Pulse and perfusion applications of the α7-nAChR agonist choline were applied to induce different types of α7-nAChR desensitization in cultured hippocampal neurons. After a brief choline pulse, α7-nAChR was desensitized as a result of receptor activation, which reduced the response of the A type γ-aminobutyric acid (GABAA) receptor to its agonist, muscimol, and enhanced the response of the NMDA receptor to its agonist NMDA. By contrast, the responses of glycine or AMPA receptors to their agonists, glycine or AMPA, respectively, were not affected. Pretreatment with the α7-nAChR antagonist methyllycaconitine (MLA, 10 nmol/L) blocked the choline-induced negative modulation of the GABAA receptor and the positive modulation of the NMDA receptor. The regulation of the GABAA and NMDA receptors was confirmed using another type of α7-nAChR desensitization, which was produced by a low concentration of choline perfusion. The negative modulation of the GABAA receptor was characterized by choline-duration dependency and intracellular calcium dependency, but the positive modulation of the NMDA receptor was not associated with cytoplasmic calcium. Conclusion: Brain GABAA and NMDA receptors are modulated negatively and positively, respectively, by desensitized α7-nAChR as a result of choline pretreatment in cultured hippocampal neurons. PMID:26806304

  12. Role of the kappa-opioid receptor system in stress-induced reinstatement of nicotine seeking in rats

    PubMed Central

    Grella, Stephanie L; Funk, Douglas; Coen, Kathy; Li, Zhaoxia; Lê, A.D.

    2014-01-01

    Rationale The correlation between stress and smoking is well established. The mechanisms that underlie this relationship are, however, unclear. Recent data suggest the kappa-opioid system is involved in the mediation of negative affective states associated with stress thereby promoting drug addiction and relapse. Pharmacological treatments targeting the kappa opioid system and this mechanism may prove to be useful therapeutics for nicotine addiction in the future. Objectives We sought to determine whether there was a stress-specific role of the kappa opioid system in nicotine seeking behavior. Method Groups of male Long Evans rats were trained to self-administer nicotine intravenously; their operant responding for nicotine was extinguished prior to tests of reinstatement. Pretreatment with systemic injections of the kappa opioid receptor (KOR) antagonist nor-binaltorphimine (nor-BNI) was given prior to tests of stress (systemic injections of yohimbine (YOH)) or cue-induced reinstatement of nicotine seeking. Systemic injections of the KOR agonist U50,488 were also given in a test for reinstatement of nicotine seeking. Results Nor-BNI pretreatment at 1 hr and 24 hrs prior to testing was able to block YOH-induced, but not cue-induced reinstatement of nicotine seeking. U50,488 reinstated nicotine seeking behavior in a dose-dependent manner. Conclusions These findings support the hypothesis that the kappa opioid system is involved in relapse to nicotine seeking induced by stress, but not by conditioned cues. KOR antagonists such as nor-BNI may therefore be useful novel therapeutic agents for decreasing the risk of stress-induced drug relapse. PMID:24583188

  13. The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control.

    PubMed

    Higgins, Guy A; Silenieks, Leo B; Rossmann, Anne; Rizos, Zoe; Noble, Kevin; Soko, Ashlie D; Fletcher, Paul J

    2012-04-01

    Lorcaserin ((1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine HCl) is a selective 5-HT(2C) receptor agonist with clinical efficacy in phase-III obesity trials. Based on evidence that this drug class also affects behaviors motivated by drug reinforcement, we compared the effect of lorcaserin on behavior maintained by food and nicotine reinforcement, as well as the stimulant and discriminative stimulus properties of nicotine in the rat. Acutely administered lorcaserin (0.3-3 mg/kg, subcutaneous (SC)) dose dependently reduced feeding induced by 22-h food deprivation or palatability. Effects up to 1 mg/kg were consistent with a specific effect on feeding motivation. Lorcaserin (0.6-1 mg/kg, SC) reduced operant responding for food on progressive and fixed ratio schedules of reinforcement. In this dose range lorcaserin also reversed the motor stimulant effect of nicotine, reduced intravenous self-administration of nicotine, and attenuated the nicotine cue in rats trained to discriminate nicotine from saline. Lorcaserin also reduced the reinstatement of nicotine-seeking behavior elicited by a compound cue comprising a nicotine prime and conditioned stimulus previously paired with nicotine reinforcement. Lorcaserin did not reinstate nicotine-seeking behavior or substitute for a nicotine cue. Finally, lorcaserin (0.3-1 mg/kg) reduced nicotine-induced increases in anticipatory responding, a measure of impulsive action, in rats performing the five-choice serial reaction time task. Importantly, these results indicate that lorcaserin, and likely other selective 5-HT(2C) receptor agonists, similarly affect both food- and nicotine-motivated behaviors, and nicotine-induced impulsivity. Collectively, these findings highlight a therapeutic potential for 5-HT(2C) agonists such as lorcaserin beyond obesity into addictive behaviors, such as nicotine dependence.

  14. Gestational nicotine exposure regulates expression of AMPA and NMDA receptors and their signaling apparatus in developing and adult rat hippocampus

    PubMed Central

    Wang, Hong; Dávila-García, Martha I.; Yarl, Weonpo; Gondré-Lewis, Marjorie C.

    2011-01-01

    Untimely activation of nicotinic acetylcholine receptor (nAChR) by nicotine results in short- and long-term consequences on learning and behavior. In this study, the aim was to determine how prenatal nicotine exposure affects components of glutamatergic signaling in the hippocampus during postnatal development. We investigated regulation of both nAChRs and glutamate receptors for α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartate (NMDA), from postnatal day (P) 1 to P63 after a temporally restricted exposure to saline or nicotine for 14 days in utero. We analyzed postsynaptic density components associated with AMPAR and NMDAR signaling: Calcium/calmodulin-dependent protein kinase II α (CaMKIIα), Calmodulin (CaM), and postsynaptic density-95 (PSD95), as well as presynaptically localized synaptosomal-associated protein 25 (SNAP25). At P1, there was significantly heightened expression of AMPAR subunit GluR1 but not GluR2, and of NMDAR subunits NR1, NR2a and NR2d but not NR2b. NR2c was not detectable. At P1, the postsynaptic proteins CaMKIIα, CaM, and PSD95 were also significantly upregulated, together with presynaptic SNAP25. This enhanced expression of glutamate receptors and signaling proteins was concomitant with elevated levels of [3H] Epibatidine (EB) binding in prenatal nicotine-exposed hippocampus, indicating that α4β2 nAChR may influence glutamatergic function in the hippocampus at P1. By P14, neither [3H]EB binding nor the expression levels of subunits GluR1, GluR2, NR1, NR2a, NR2b, NR2c, or NR2d seemed changed with prenatal nicotine. However, CaMKIIα was significantly upregulated with nicotine treatment while CaM showed downregulation at P14. The effects of nicotine persisted in young adult brains at P63. They exhibited significantly downregulated GluR2, NR1, and NR2c expression levels in hippocampal homogenates and a considerably muted overall distribution of [3H]AMPA binding in areas CA1, CA2, CA3, and the dentate

  15. Effects of the 5-HT2C receptor agonist Ro60-0175 and the 5-HT2A receptor antagonist M100907 on nicotine self-administration and reinstatement.

    PubMed

    Fletcher, Paul J; Rizos, Zoë; Noble, Kevin; Soko, Ashlie D; Silenieks, Leo B; Lê, Anh Dzung; Higgins, Guy A

    2012-06-01

    The reinforcing effects of nicotine are mediated in part by brain dopamine systems. Serotonin, acting via 5-HT(2A) and 5-HT(2C) receptors, modulates dopamine function. In these experiments we examined the effects of the 5-HT(2C) receptor agonist Ro60-0175 and the 5-HT(2A) receptor antagonist (M100907, volinanserin) on nicotine self-administration and reinstatement of nicotine-seeking. Male Long-Evans rats self-administered nicotine (0.03 mg/kg/infusion, IV) on either a FR5 or a progressive ratio schedule of reinforcement. Ro60-0175 reduced responding for nicotine on both schedules. While Ro60-0175 also reduced responding for food reinforcement, response rates under drug treatment were several-fold higher than in animals responding for nicotine. M100907 did not alter responding for nicotine, or food, on either schedule. In tests of reinstatement of nicotine-seeking, rats were first trained to lever press for IV infusions of nicotine; each infusion was also accompanied by a compound cue consisting of a light and tone. This response was then extinguished over multiple sessions. Injecting rats with a nicotine prime (0.15 mg/kg) reinstated responding; reinstatement was also observed when responses were accompanied by the nicotine associated cue. Ro60-0175 attenuated reinstatement of responding induced by nicotine and by the cue. The effects of Ro60-0175 on both forms of reinstatement were blocked by the 5-HT(2C) receptor antagonist SB242084. M100907 also reduced reinstatement induced by either the nicotine prime or by the nicotine associated cue. The results indicate that 5-HT(2C) and 5-HT(2A) receptors may be potential targets for therapies to treat some aspects of nicotine dependence.

  16. Brain α4β2 nicotinic acetylcholine receptors are involved in the secretion of noradrenaline and adrenaline from adrenal medulla in rats.

    PubMed

    Shimizu, Takahiro; Tanaka, Kenjiro; Hasegawa, Takashi; Yokotani, Kunihiko

    2011-03-11

    Recently, we reported that intracerebroventricularly (i.c.v.) administered (±)-epibatidine (a non-selective agonist of nicotinic acetylcholine receptors) elevates plasma noradrenaline and adrenaline through brain nicotinic acetylcholine receptor-mediated mechanisms in rats. In the present study, we characterized the receptors involved in these responses using selective agonists and antagonists of nicotinic acetylcholine receptor subtypes in anesthetized rats. (±)-Epibatidine (5 and 10nmol/animal, i.c.v.) and (-)-nicotine (250 and 500nmol/animal, i.c.v.) both elevated plasma noradrenaline and adrenaline (adrenaline>noradrenaline) but the former was more efficient than the latter. The (±)-epibatidine (5nmol/animal, i.c.v.)-induced elevation of plasma catecholamines was reduced by dihydro-β-erythroidine (a selective antagonist of α4β2 nicotinic acetylcholine receptors) (100 and 300nmol/animal, i.c.v.), while methyllycaconitine (a selective antagonist of α7 nicotinic acetylcholine receptors) (100 and 300nmol/animal, i.c.v.) had no effect on the (±)-epibatidine-induced responses. RJR-2403 (a selective agonist of α4β2 nicotinic acetylcholine receptors) (2.5 and 5μmol/animal, i.c.v.) elevated plasma noradrenaline and adrenaline (adrenaline>noradrenaline), while PNU-282987 (a selective agonist of α7 nicotinic acetylcholine receptors) (2.5 and 5μmol/animal, i.c.v.) had no effect. Furthermore, the RJR-2403 (5μmol/animal, i.c.v.)-induced responses were abolished by acute bilateral adrenalectomy. Immunohistochemical procedures demonstrated the expression of α4 and β2 nicotinic acetylcholine receptor subunits on the spinally projecting hypothalamic paraventricular neurons. Taken together, brain α4β2 nicotinic acetylcholine receptors seem to be involved in the secretion of noradrenaline and adrenaline from adrenal medulla in rats.

  17. Alpha-9 Nicotinic Acetylcholine Receptor Immunoreactivity in the Rodent Vestibular Labyrinth

    PubMed Central

    Luebke, Anne E.; Maroni, Paul D.; Guth, Scott M.; Lysakowski, Anna

    2010-01-01

    Vestibular tissues (cristae ampullares, macular otolithic organs, and Scarpa’s ganglia) in chinchilla, rat, and guinea pig were examined for immunoreactivity to the α9 nicotinic acetylcholine receptor (nAChR) subunit. The α9 antibody was generated against a conserved peptide present in the intracellular loop of the predicted protein sequence of the guinea pig α9 nAChR subunit. In the vestibular periphery, staining was observed in calyces around type I hair cells, at the synaptic pole of type II hair cells, and in varying levels in Scarpa’s ganglion cells. Ganglion cells were also triply labeled to detect α9, calretinin, and peripherin. Calretinin labels calyx-only afferents. Peripherin labels bouton-only afferents. Dimorphic afferents, which have both calyx and bouton endings, are not labeled by calretinin or peripherin. In these experiments, α9 was expressed in both calyx and dimorphic afferents. A subpopulation of small ganglion cells did not contain the α9 nAChR but did stain for peripherin. We surmise that these are bouton-only afferents. Bouton (regularly discharging) afferents also show efferent responses, although they are qualitatively different from those in irregularly discharging (calyx and dimorphic) afferents, much slower and longer lasting. Thus, regular afferents are probably more affected via a muscarinic cholinergic or a peptidergic mechanism, with a much smaller superimposed fast nicotinic-type response. This latter response could be due to one of the other nicotinic receptors that have been described in studies from other laboratories. PMID:16217793

  18. Dorsal hippocampal cannabinoid CB1 receptors mediate the interactive effects of nicotine and ethanol on passive avoidance learning in mice.

    PubMed

    Alijanpour, Sakineh; Rezayof, Ameneh; Zarrindast, Mohammad-Reza

    2013-03-01

    The present study evaluated the involvement of the dorsal hippocampal cannabinoid CB1 receptors in the combined effect of ethanol and nicotine on passive avoidance learning in adult male mice. The results indicated that pre-training administration of ethanol (1 g/kg, i.p.) impaired memory retrieval. Pre-test administration of ethanol (0.5 and 1 g/kg, i.p.) or nicotine (0.5 and 0.7 mg/kg, s.c.) significantly reversed ethanol-induced amnesia, suggesting a functional interaction between ethanol and nicotine. Pre-test microinjection of a selective CB1 receptor agonist, ACPA (3 and 5 ng/mouse), plus an ineffective dose of ethanol (0.25 g/kg) or nicotine (0.3 mg/kg) improved memory retrieval, while ACPA by itself could not reverse ethanol-induced amnesia. Pre-test intra-CA1 microinjection of a selective CB1 receptor antagonist, AM251 (0.5-2 ng/mouse), did not lead to a significant change in ethanol-induced amnesia. However, pre-test intra-CA1 microinjection of AM251 prevented the ethanol (1 g/kg) or nicotine (0.7 mg/kg) response on ethanol-induced amnesia. In order to support the involvement of the dorsal hippocampal CB1 receptors in nicotine response, the scheduled mixed treatments of AM251 (0.1-1 ng/mouse), ACPA (5 ng/mouse) and nicotine (0.3 mg/kg) were used. The results indicated that AM251 reversed the response of ACPA to the interactive effects of nicotine and ethanol in passive avoidance learning. Furthermore, pre-test intra-CA1 microinjection of the same doses of ACPA or AM251 had no effect on memory retrieval. These findings show that the cannabinoid CB1 receptors of dorsal hippocampus are important in the combined effect of ethanol and nicotine on passive avoidance learning.

  19. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors

    PubMed Central

    Mnatsakanyan, Nelli; Jansen, Michaela

    2013-01-01

    Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two α, and one each of β, γ, and δ subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four α-helical segments (M1–M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently-solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel α (GluClα)showed the same overall architecture . However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluClα structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2–M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel (GLIC) and GluClα are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes. PMID:23565737

  20. Identification of nicotinic acetylcholine receptor recycling and its role in maintaining receptor density at the neuromuscular junction in vivo.

    PubMed

    Bruneau, Emile; Sutter, David; Hume, Richard I; Akaaboune, Mohammed

    2005-10-26

    In the CNS, receptor recycling is critical for synaptic plasticity; however, the recycling of receptors has never been observed at peripheral synapses. Using a novel imaging technique, we show here that nicotinic acetylcholine receptors (AChRs) recycle into the postsynaptic membrane of the neuromuscular junction. By sequentially labeling AChRs with biotin-bungarotoxin and streptavidin-f