Sample records for nif implosion experiments

  1. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; Zylstra, A. B.; Yi, S. A.; Biener, J.; Braun, T.; Kozioziemski, B. J.; Sater, J. D.; Bradley, P. A.; Peterson, R. R.; Haines, B. M.; Yin, L.; Berzak Hopkins, L. F.; Meezan, N. B.; Walters, C.; Biener, M. M.; Kong, C.; Crippen, J. W.; Kyrala, G. A.; Shah, R. C.; Herrmann, H. W.; Wilson, D. C.; Hamza, A. V.; Nikroo, A.; Batha, S. H.

    2016-12-01

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D2 and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (12 30 ) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  2. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility.

    PubMed

    Olson, R E; Leeper, R J; Kline, J L; Zylstra, A B; Yi, S A; Biener, J; Braun, T; Kozioziemski, B J; Sater, J D; Bradley, P A; Peterson, R R; Haines, B M; Yin, L; Berzak Hopkins, L F; Meezan, N B; Walters, C; Biener, M M; Kong, C; Crippen, J W; Kyrala, G A; Shah, R C; Herrmann, H W; Wilson, D C; Hamza, A V; Nikroo, A; Batha, S H

    2016-12-09

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D_{2} and DT layer inertial confinement fusion (ICF) implosions that can access a low-to-moderate hot-spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CRs of 12-17, and the hot-spot formation is well understood, demonstrated by a good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.

  3. Polar-Direct-Drive Defect Implosions at OMEGA inPreparation for Experiments at NIF

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Schmitt, M. J.; Murphy, T. J.; Tregillis, I. L.; Wysocki, F. J.; Obrey, K. D.; Magelssen, G. R.; Glebov, V.; Bradley, P. A.; Hsu, S. C.; Krasheninnikova, N. V.; Batha, S. H.

    2011-10-01

    The Defect-Implosion (DIME) campaign involves compressing perturbed spherical capsules with polar direct drive (PDD). For direct-drive implosions at NIF, PDD will be used. We have done simulations and experiments at OMEGA to test our modeling capability for equatorial-plane defects in fusion capsules and for PDD at NIF. Since PDD is anisotropic, we show the results of 0th hydrodynamics of implosions and perturbation-driven features near stagnation. Later presentations discuss defect-induced mix and neutronics, and laser pointing for NIF experiments. Prototype OMEGA shots used 865- μm diameter CH shells filled with 5 atm of D2. Machined channels 30- μm wide and up to 9- μm deep formed the defects. This work has been performed under the auspices of the US DOE, contract number DE-AC52-06NA25396.

  4. On krypton-doped capsule implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Ma, T.; Nora, R.; Barrios, M. A.; Scott, H. A.; Schneider, M. B.; Berzak Hopkins, L.; Casey, D. T.; Hammel, B. A.; Jarrott, L. C.; Landen, O. L.; Patel, P. K.; Rosenberg, M. J.; Spears, B. K.

    2017-07-01

    This paper presents the spectroscopic aspects of using Krypton as a dopant in NIF capsule implosions through simulation studies and the first set of NIF experiments. Using a combination of 2D hohlraum and 1D capsule simulations with comprehensive spectroscopic modeling, the calculations focused on the effect of dopant concentration on the implosion, and the impact of gradients in the electron density and temperature to the Kr line features and plasma opacity. Experimental data were obtained from three NIF Kr-dopant experiments, performed with varying Kr dopant concentrations between 0.01% and 0.03%. The implosion performance, hotspot images, and detailed Kr spectral analysis are summarized relative to the predictions. Data show that fuel-dopant spectroscopy can serve as a powerful and viable diagnostic for inertial confinement fusion implosions.

  5. Polar-Drive--Implosion Physics on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Radha, P. B.

    2012-10-01

    Polar drive (PD) permits the execution of direct-drive--ignition experiments on facilities that are configured for x-ray drive such as the National Ignition Facility (NIF) and Laser M'egajoule. Experiments on the OMEGA laser are used to develop and validate models of PD implosions. Results from OMEGA PD shock-timing and warm implosions are presented. Experiments are simulated with the 2-D hydrodynamic code DRACO including full 3-D ray trace to model oblique beams. Excellent agreement is obtained in shock velocity and catch-up in PD geometry in warm, plastic shells. Predicted areal densities are measured in PD implosion experiments. Good agreement between simulation and experiments is obtained in the overall shape of the compressing shell when observed through x-ray backlighting. Simulated images of the hot core, including the effect of magnetic fields, are compared with experiments. Comparisons of simulated and observed scattered light and bang time in PD geometry are presented. Several techniques to increase implosion velocity are presented including beam profile variations and different ablator materials. Results from shimmed-target PD experiments will also be presented. Designs for future PD OMEGA experiments at ignition-relevant intensities will be presented. The implication of these results for NIF-scale plasmas is discussed. Experiments for the NIF in its current configuration, with indirect-drive phase plates, are proposed to study implosion energetics and shell asymmetries. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  6. Capsule physics comparison of National Ignition Facility implosion designs using plastic, high density carbon, and beryllium ablators

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Kritcher, A. L.; Yi, S. A.; Zylstra, A. B.; Haan, S. W.; Weber, C. R.

    2018-03-01

    Indirect drive implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] have now tested three different ablator materials: glow discharge polymer plastic, high density carbon, and beryllium. How do these different ablators compare in current and proposed implosion experiments on NIF? What are the relative advantages and disadvantages of each? This paper compares these different ablator options in capsule-only simulations of current NIF experiments and potential future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition on NIF.

  7. First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Kline, J. L.; ...

    2016-12-07

    The first cryogenic deuterium and deuterium-tritium liquid layer implosions at the National Ignition Facility (NIF) demonstrate D 2 and DT layer Inertial Confinement Fusion (ICF) implosions that can access low-to-moderate hot spot convergence ratio (1230) DT ice layer implosions. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious effects of asymmetries. To date, these asymmetries prevented the achievement of ignition at the NIF and are the major cause of simulation-experiment disagreement. In the initial liquid layer experiments, high neutron yields were achieved with CR’s of 12-17, and the hot spot formation is well understood, demonstratedmore » by good agreement between the experimental data and the radiation hydrodynamic simulations. These initial experiments open a new NIF experimental capability that provides an opportunity to explore the relationship between hot-spot convergence ratio and the robustness of hot-spot formation during ICF implosions.« less

  8. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  9. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  10. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; ...

    2016-03-14

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensionalmore » (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This study describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Finally, for both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.« less

  11. Capsule physics comparison of different ablators for NIF implosion designs

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Kritcher, Andrea; Yi, Austin; Zylstra, Alex; Haan, Steven; Ralph, Joseph; Weber, Christopher

    2017-10-01

    Indirect drive implosion experiments on the Naitonal Ignition Facility (NIF) have now tested three different ablator materials: glow discharge polymer (GDP) plastic, high density carbon (HDC), and beryllium. How do these different ablator choices compare in current and future implosion experiments on NIF? What are the relative advantages and disadvantages of each? This talk compares these different ablator options in capsule-only simulations of current NIF experiments and proposed future designs. The simulations compare the impact of the capsule fill tube, support tent, and interface surface roughness for each case, as well as all perturbations in combination. According to the simulations, each ablator is impacted by the various perturbation sources differently, and each material poses unique challenges in the pursuit of ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. High-resolution, detailed simulations of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, Daniel

    2015-11-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3-D) character of the flow, accurately modeling NIF implosions remains at the edge of current radiation hydrodynamics simulation capabilities. This talk describes the current state of progress of 3-D, high-resolution, capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. Most importantly, it is found that a single, standard simulation methodology appears adequate to model both implosion types and gives confidence that such a model can be used to guide future implosion designs toward ignition. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Analysis of NIF experiments with the minimal energy implosion model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, B., E-mail: bcheng@lanl.gov; Kwan, T. J. T.; Wang, Y. M.

    2015-08-15

    We apply a recently developed analytical model of implosion and thermonuclear burn to fusion capsule experiments performed at the National Ignition Facility that used low-foot and high-foot laser pulse formats. Our theoretical predictions are consistent with the experimental data. Our studies, together with neutron image analysis, reveal that the adiabats of the cold fuel in both low-foot and high-foot experiments are similar. That is, the cold deuterium-tritium shells in those experiments are all in a high adiabat state at the time of peak implosion velocity. The major difference between low-foot and high-foot capsule experiments is the growth of the shock-inducedmore » instabilities developed at the material interfaces which lead to fuel mixing with ablator material. Furthermore, we have compared the NIF capsules performance with the ignition criteria and analyzed the alpha particle heating in the NIF experiments. Our analysis shows that alpha heating was appreciable only in the high-foot experiments.« less

  14. Wavelength Detuning Cross-Beam Energy Transfer Mitigation Scheme for Direct-Drive: Modeling and Evidence from National Ignition Facility Implosions

    NASA Astrophysics Data System (ADS)

    Marozas, J. A.

    2017-10-01

    Cross-beam energy transfer (CBET) has been shown to significantly reduce the laser absorption and implosion speed in direct-drive implosion experiments on OMEGA and the National Ignition Facility (NIF). Mitigating CBET assists in achieving ignition-relevant hot-spot pressures in deuterium-tritium cryogenic OMEGA implosions. In addition, reducing CBET permits lower, more hydrodynamically stable, in-flight aspect ratio ignition designs with smaller nonuniformity growth during the acceleration phase. Detuning the wavelengths of the crossing beams is one of several techniques under investigation at the University of Rochester to mitigate CBET. This talk will describe these techniques with an emphasis on wavelength detuning. Recent experiments designed and predicted using multidimensional hydrodynamic simulations including CBET on the NIF have exploited the wavelength arrangement of the NIF beam geometry to demonstrate CBET mitigation through wavelength detuning in polar-direct-drive (PDD) implosions. Shapes and trajectories inferred from time-resolved x-ray radiography of the imploding shell, scattered-light spectra, and hard x-ray spectra generated by suprathermal electrons all indicate a reduction in CBET. These results and their implications for direct-drive ignition will be presented and discussed. In addition, hydrodynamically scaled ignition-relevant designs for OMEGA implosions exploiting wavelength detuning will be presented. Changes required to the OMEGA laser to permit wavelength detuning will be discussed. Future plans for PDD on the NIF including more-uniform implosions with CBET mitigation will be explored. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE PAGES

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; ...

    2013-04-18

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore » ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  16. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Magoon, J; Meyerhofer, D D; Sangster, T C; Shoup, M; Ulreich, J; Ashabranner, R C; Bionta, R M; Carpenter, A C; Felker, B; Khater, H Y; LePape, S; MacKinnon, A; McKernan, M A; Moran, M; Rygg, J R; Yeoman, M F; Zacharias, R; Leeper, R J; Fletcher, K; Farrell, M; Jasion, D; Kilkenny, J; Paguio, R

    2013-04-01

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, ion-temperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  17. Comparison of the Three NIF Ablators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kritcher, A. L.; Clark, D. S.; Haan, S. W.

    Indirect drive implosion experiments on NIF have now been performed using three different ablator materials: glow discharge polymer (GDP) or CH, high density carbon (HDC, which we also refer to as diamond), and sputtered beryllium (Be). It has been appreciated for some time that each of these materials has specific advantages and disadvantages as an ICF ablator.[1-4] In light of experiments conducted on NIF in the last few years, how do these ablators compare? Given current understanding, is any ablator more or less likely to reach ignition on NIF? Has the understanding of their respective strengths and weaknesses changed sincemore » NIF experiments began? How are those strengths and weaknesses highlighted by implosion designs currently being tested or planned for testing soon? This document aims to address these questions by combining modern simulation results with a survey of the current experimental data base. More particularly, this document is meant to fulfill an L2 Milestone for FY17 to “Document our understanding of the relative advantages and disadvantages of CH, HDC, and Be designs.” Note that this document does not aim to recommend a down-selection of the current three ablator choices. It is intended only to gather and document the current understanding of the differences between these ablators and thereby inform the choices made in planning future implosion experiments. This document has two themes: (i) We report on a reanalysis project in which post-shot simulations were done on a common basis for layered shots using each ablator. This included data from keyholes, 2D ConA, and so forth, from each campaign, leading up to the layered shots. (“Keyholes” are shots dedicated to measuring the shock timing in a NIF target, as described in Ref. 5. “2DConAs” are backlit implosions in which the symmetry of the implosion is measured between about half and full convergence, as described in Ref. 6.) This set of common-basis postshot simulations is compared to the respective shots. Each was then scaled to a “full NIF” experiment that could be done using the respective ablators at full NIF power and/or energy, and these scaled-up designs were simulated in detail. (ii) The report also contains a general survey of experimental and simulated results as pertinent to comparing and evaluating the three ablators.« less

  18. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  19. Performance of High-Convergence, Layered DT Implosions on Power-Scaling Experiments at National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Atherton, L. J.; Benedetti, L. R.; ...

    2013-10-19

    The radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion with extended drive and at reduced peak power of 350 TW achieved the highest compression with fuel areal density of ~1.3±0.1 g/cm 2, representing a significant step from previously measured ~1.0 g/cm 2 toward a goal of 1.5 g/cm 2. Moreover, for future experiments will focus on understanding and mitigating hydrodynamic instabilities and mix, and improving symmetry required to reach the threshold for thermonuclear ignition on NIF.

  20. ICF Implosions, Space-Charge Electric Fields, and Their Impact on Mix and Compression

    NASA Astrophysics Data System (ADS)

    Knoll, Dana; Chacon, Luis; Simakov, Andrei

    2013-10-01

    The single-fluid, quasi-neutral, radiation hydrodynamics codes, used to design the NIF targets, predict thermonuclear ignition for the conditions that have been achieved experimentally. A logical conclusion is that the physics model used in these codes is missing one, or more, key phenomena. Two key model-experiment inconsistencies on NIF are: 1) a lower implosion velocity than predicted by the design codes, and 2) transport of pusher material deep into the hot spot. We hypothesize that both of these model-experiment inconsistencies may be a result of a large, space-charge, electric field residing on the distinct interfaces in a NIF target. Large space-charge fields have been experimentally observed in Omega experiments. Given our hypothesis, this presentation will: 1) Develop a more complete physics picture of initiation, sustainment, and dissipation of a current-driven plasma sheath / double-layer at the Fuel-Pusher interface of an ablating plastic shell implosion on Omega, 2) Characterize the mix that can result from a double-layer field at the Fuel-Pusher interface, prior to the onset of fluid instabilities, and 3) Quantify the impact of the double-layer induced surface tension at the Fuel-Pusher interface on the peak observed implosion velocity in Omega.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrani, J

    Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and itmore » contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.« less

  2. Symmetry Tuning with Cone Powers for Defect Induced Mix Experiment Implosions

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, N.; Schmitt, M.; Murphy, T.; Cobble, J.; Tregillis, I.; Kyrala, G.; Bradley, P.; Hakel, P.; Hsu, S.; Kanzleiter, R.; Obrey, K.; Baumgaertel, J.; Batha, S.; DIME Team

    2013-10-01

    Recent DIME campaigns have demonstrated the effectiveness of cone power tuning to control the implosion symmetry in PDD configuration. DIME aims to assess the effects of mix on thermonuclear burn during a thin-shell capsule implosion. Plastic shell capsules doped with mid-Z material and filled with 5 atm of DD, are ablatively driven in a PDD laser configuration to a CR of ~7. Time-gated, spectrally and spatially resolved, dopant emission images characterize mix and temperature morphology during the implosion, while neutron diagnostics concurrently give the information about burn. Symmetry should be maintained throughout the implosions to achieve high neutron yield and optimum spectroscopic signal. 2D and 3D computer simulations using code HYDRA were performed to validate and optimize implosion symmetry using cone power tuning. In particular, Omega campaign confirmed P2 tunability with cone powers while experiments on NIF demonstrated that by reducing the energy in polar cones P2 was reduced to <1%. However, during NIF campaigns, self-emission images revealed a complex internal structure around the equator, which was not seen in HYDRA simulations and could be attributed to LPI effects. Subsequent DIME campaigns on NIF were able to eliminate this equatorial feature by reducing the laser drive substantiating the LPI hypothesis. Work performed by LANL under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the USDoE.

  3. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Kritcher, A. L.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.

    2016-05-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF.

  4. The Defect Induced Mix Experiment (DIME) for NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitt, Mark J; Bradley, Paul A; Cobble, James A

    2012-06-18

    LANL will perform two Defect Induced Mix Experiment (DIME) implosion campaigns on NIF in July and September, 2012. This presentation describes the goals for these shots and the experimental configuration and diagnostic set up to collect the appropriate data. The first two-shot campaign will focus on executing polar direct drive (PDD) implosions of plastic CH capsules filled with deuterium gas. Gas filling will be performed through a fill tube at target chamber center. A vanadium backligher foil will provide x-rays to radiograph the last half of the implosion to compare the implosion trajectory with modeling predictions. An equatorial groove inmore » one of the capsules will be present to determine its effect on implosion dynamics. The second DIME campaign will commission and use a spectral imager (MMI) to examine the evolution of thin capsule layers doped with either Ge or Ga at 1.85%. Spectral line emission from these layers will quantify the mix width at the inner shell radius and near an equatorial groove feature.« less

  5. Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive

    DOE PAGES

    Casey, D. T.; Milovich, J. L.; Smalyuk, V. A.; ...

    2015-09-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR > 1 g=cm 2. This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

  6. 3D Simulations of NIF Wetted Foam Experiments to Understand the Transition from 2D to 3D Implosion Behavior

    NASA Astrophysics Data System (ADS)

    Haines, Brian; Olson, Richard; Yi, Austin; Zylstra, Alex; Peterson, Robert; Bradley, Paul; Shah, Rahul; Wilson, Doug; Kline, John; Leeper, Ramon; Batha, Steve

    2017-10-01

    The high convergence ratio (CR) of layered Inertial Confinement Fusion capsule implosions contribute to high performance in 1D simulations yet make them more susceptible to hydrodynamic instabilities, contributing to the development of 3D flows. The wetted foam platform is an approach to hot spot ignition to achieve low-to-moderate convergence ratios in layered implosions on the NIF unobtainable using an ice layer. Detailed high-resolution modeling of these experiments in 2D and 3D, including all known asymmetries, demonstrates that 2D hydrodynamics explain capsule performance at CR 12 but become less suitable as the CR increases. Mechanisms for this behavior and detailed comparisons of simulations to experiments on NIF will be presented. To evaluate the tradeoff between increased instability and improved 1D performance, we present a full-scale wetted foam capsule design with 17

  7. Instability growth seeded by ablator material inhomogeneity in indirect drive implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Haan, Steven; Ali, S. J.; Baxamusa, S. H.; Celliers, P. M.; Clark, D. S.; Kritcher, A. L.; Nikroo, A.; Stadermann, M.; Biener, J.; Wallace, R.; Smalyuk, V.; Robey, H.; Weber, C. R.; Huang, H.; Reynolds, H.; Carlson, L.; Rice, N.; Kline, J. L.; Simakov, A. N.; Yi, S. A.

    2017-10-01

    NIF indirect drive ablators (CH, Be, and high density carbon HDC) show hydrodynamic irregularity beyond that expected from surface features. Characterizing these seeds and estimating their growth is important in projecting performance. The resulting modulations can be measured in x-ray backlit implosions on NIF called Hydro Growth Radiography, and on Omega with 2D velocimetry. This presentation summarizes the experiments for the three ablators, along with simulations thereof and projections of the significance for NIF. For CH, dominant seeds are photo-induced oxidation, which might be mitigated with alumina coating. For Be, perturbations result from Ar and O contamination. For HDC, perturbations are seeded by shock propagation around melt, depend on shock strength, and may constrain the adiabat of future HDC implosions. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  8. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  9. Capsule modeling of high foot implosion experiments on the National Ignition Facility

    DOE PAGES

    Clark, D. S.; Kritcher, A. L.; Milovich, J. L.; ...

    2017-03-21

    This study summarizes the results of detailed, capsule-only simulations of a set of high foot implosion experiments conducted on the National Ignition Facility (NIF). These experiments span a range of ablator thicknesses, laser powers, and laser energies, and modeling these experiments as a set is important to assess whether the simulation model can reproduce the trends seen experimentally as the implosion parameters were varied. Two-dimensional (2D) simulations have been run including a number of effects—both nominal and off-nominal—such as hohlraum radiation asymmetries, surface roughness, the capsule support tent, and hot electron pre-heat. Selected three-dimensional simulations have also been run tomore » assess the validity of the 2D axisymmetric approximation. As a composite, these simulations represent the current state of understanding of NIF high foot implosion performance using the best and most detailed computational model available. While the most detailed simulations show approximate agreement with the experimental data, it is evident that the model remains incomplete and further refinements are needed. Nevertheless, avenues for improved performance are clearly indicated.« less

  10. High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility.

    PubMed

    Koch, J A; Stewart, R E; Beiersdorfer, P; Shepherd, R; Schneider, M B; Miles, A R; Scott, H A; Smalyuk, V A; Hsing, W W

    2012-10-01

    Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-α at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

  11. Use of d-3He proton spectroscopy as a diagnostic of shell rho r in capsule implosion experiments with approximately 0.2 NIF scale high temperature Hohlraums at Omega.

    PubMed

    Delamater, N D; Wilson, D C; Kyrala, G A; Seifter, A; Hoffman, N M; Dodd, E; Singleton, R; Glebov, V; Stoeckl, C; Li, C K; Petrasso, R; Frenje, J

    2008-10-01

    We present the calculations and preliminary results from experiments on the Omega laser facility using d-(3)He filled plastic capsule implosions in gold Hohlraums. These experiments aim to develop a technique to measure shell rho r and capsule unablated mass with proton spectroscopy and will be applied to future National Ignition Facility (NIF) experiments with ignition scale capsules. The Omega Hohlraums are 1900 microm length x 1200 microm diameter and have a 70% laser entrance hole. This is approximately a 0.2 NIF scale ignition Hohlraum and reaches temperatures of 265-275 eV similar to those during the peak of the NIF drive. These capsules can be used as a diagnostic of shell rho r, since the d-(3)He gas fill produces 14.7 MeV protons in the implosion, which escape through the shell and produce a proton spectrum that depends on the integrated rho r of the remaining shell mass. The neutron yield, proton yield, and spectra change with capsule shell thickness as the unablated mass or remaining capsule rho r changes. Proton stopping models are used to infer shell unablated mass and shell rho r from the proton spectra measured with different filter thicknesses. The experiment is well modeled with respect to Hohlraum energetics, neutron yields, and x-ray imploded core image size, but there are discrepancies between the observed and simulated proton spectra.

  12. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A., E-mail: abos@lle.rochester.edu; Woo, K. M.; Betti, R.

    2015-07-15

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of χ{sub Ω} ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  13. Hydrodynamic scaling of the deceleration-phase Rayleigh–Taylor instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Woo, K. M.; Nora, R.

    2015-07-02

    The scaling of the deceleration phase of inertial fusion direct-drive implosions is investigated for OMEGA and National Ignition Facility (NIF)-size targets. It is shown that the deceleration-phase Rayleigh–Taylor instability (RTI) does not scale hydro-equivalently with implosion size. This is because ablative stabilization resulting from thermal conduction and radiation transport in a spherically converging geometry is different on the two scales. As a consequence, NIF-scale implosions show lower hot-spot density and mass ablation velocity, allowing for higher RTI growth. On the contrary, stabilization resulting from density-gradient enhancement, caused by reabsorption of radiation emitted from the hot spot, is higher on NIFmore » implosions. Since the RTI mitigation related to thermal conduction and radiation transport scale oppositely with implosion size, the degradation of implosion performance caused by the deceleration RTI is similar for NIF and OMEGA targets. It is found that a minimum threshold for the no-α Lawson ignition parameter of ΧΩ ≈ 0.2 at the OMEGA scale is required to demonstrate hydro-equivalent ignition at the NIF scale for symmetric direct-drive implosions.« less

  14. Recent results of the Defect-Induced Mix Experiments (DIME) on NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Bradley, P. A.; Cobble, J. A.; Hakel, P.; Hsu, S. C.; Krasheninnikova, N. S.; Kyrala, G. A.; Murphy, T. J.; Obrey, K. A.; Shah, R. C.; Tregillis, I. L.; Craxton, S. C.; McKenty, P. W.; Mancini, R. C.; Johns, H. M.; Joshi, Tirtha; Mayes, Daniel

    2012-10-01

    Investigations of directly driven implosions have been performed including experiments on Omega, and more recently NIF, to deduce the extent and uniformity of 4π and defect-induced mix near the shell/gas interface of plastic (CH) capsules filled with 5 atm D2 gas. Imaging diagnostics are used to measure the spatial variation of mix caused by the growth of non-uniformities in both capsule and laser drive characteristics. Thin (2μm) layers containing 1-2% (atomic) mid-Z dopants are imaged spectrally at late time in the implosion using multiple monochromatic imaging of H-like and He-like atomic line emission. Areal image backlighting of the capsules provides both r(t) and the symmetry of the implosion. Recent results will be shown including inferred 4π mix width, laser imprint induced mix, and mix from capsule variations.

  15. Development of new platforms for hydrodynamic instability and asymmetry measurements in deceleration phase of indirectly-driven implosions on NIF

    NASA Astrophysics Data System (ADS)

    Pickworth, Louisa

    2017-10-01

    Hydrodynamic instabilities and asymmetries are a major obstacle in the quest to achieve ignition as they cause pre-existing capsule perturbations to grow and ultimately quench the fusion burn in experiments at the National Ignition Facility (NIF). This talk will review recent developments of the experimental platforms and techniques to measure high-mode instabilities and low-mode asymmetries in the deceleration phase of implosions. These new platforms provide a natural link between the acceleration-phase experiments and neutron performance of layered deuterium-tritium implosions. In one innovative technique, self-emission from the hot spot was enhanced with argon dopant to ``self-backlight'' the shell in-flight around peak compression. Experiments with pre-imposed 2-D perturbations measured instability growth factors, while experiments with 3-D, ``native-roughness'' perturbations measured shell integrity in the deceleration phase of implosions. In a complimentary technique, the inner surface of the shell, along with its low-mode asymmetries and high-mode perturbations were visualized in implosions using x-ray emission of a high-Z dopant added to the inner surface of the capsule. These new measurements were instrumental in revealing unexpected surprises and providing improved understanding of the role of instabilities and asymmetries on implosion performance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Overview of the National Ignition Campaign (NIC)

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2010-11-01

    The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.

  17. Polar-Drive Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.

    2014-10-01

    To support direct-drive inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) in its indirect-drive beam configuration, the polar-drive (PD) concept has been proposed. It requires direct-drive-specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments testing the performance of ignition-relevant PD implosions at the NIF have been performed. The goal of these early experiments was to develop a stable, warm implosion platform to investigate laser deposition and laser-plasma instabilities at ignition-relevant plasma conditions, and to develop and validate ignition-relevant models of laser deposition and heat conduction. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Warm, 2.2-mm-diam plastic shells were imploded with total drive energies ranging from ~ 350 to 750 kJ with peak powers of 60 to 180 TW and peak on-target intensities from 4 ×1014 to 1 . 2 ×1015 W/cm2. Results from these initial experiments are presented, including the level of hot-electron preheat, and implosion symmetry and shell trajectory inferred via self-emission imaging and backlighting. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray trace to model oblique beams, and a model for cross-beam energy transfer (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. Design calculations for NIF convergent ablator experiments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less

  19. The High-Foot Implosion Campaign on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar

    2013-10-01

    The `High-Foot' platform manipulates the laser pulse-shape coming from the National Ignition Facility (NIF) laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This tactic gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. This approach is generally consistent with the philosophy laid out in a recent international workshop on the topic of ignition science on NIF [``Workshop on the Science of Fusion Ignition on NIF,'' Lawrence Livermore National Laboratory Report, LLNL-TR-570412 (2012). Op cit. V. Gocharov and O.A. Hurricane, ``Panel 3 Report: Implosion Hydrodynamics,'' LLNL-TR-562104 (2012)]. Side benefits our the High-Foot pulse-shape modification appear to be improvements in hohlraum behavior--less wall motion achieved through higher pressure He gas fill and improved inner cone laser beam propagation. Another consequence of the `High-Foot' is a higher fuel adiabat, so there is some relation to direct-drive experiments performed at the Laboratory for Laser Energetics (LLE). In this talk, we will cover the various experimental and theoretical motivations for the High-Foot drive as well as cover the experimental results that have come out of the High-Foot experimental campaign. Most notably, at the time of this writing record DT layer implosion performance with record low levels of inferred mix and excellent agreement with one-dimensional implosion models without the aid of mix models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    DOE PAGES

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.; ...

    2016-07-22

    Here, current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries inmore » two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less

  1. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Weber, C. R.; Smalyuk, V. A.

    2016-07-15

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or “shimmed,” so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy ofmore » capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater.« less

  2. Design of a Neutron Temporal Diagnostic for measuring DD or DT burn histories at the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Sio, H.; Petrasso, R. D.; Bradley, D. K.; Le Pape, S.; MacKinnon, A. J.; Isumi, N.; Macphee, A.; Zayas, C.; Spears, B. K.; Hermann, H.; Hilsabeck, T. J.; Kilkenny, J. D.

    2015-11-01

    The DD or DT burn history in Inertial Confinement Fusion (ICF) implosions provides essential information about implosion performance and helps to constrain numerical modeling. The capability of measuring this burn history is thus important for the NIF in its pursuit of ignition. Currently, the Gamma Reaction History (GRH) diagnostic is the only system capable of measuring the burn history for DT implosions with yields greater than ~ 1e14. To complement GRH, a new NIF Neutron Temporal Diagnostic (NTD) is being designed for measuring the DD or DT burn history with yields greater than ~ 1e10. A traditional scintillator-based design and a pulse-dilation-based design are being considered. Using MCNPX simulations, both designs have been optimized, validated and contrasted for various types of implosions at the NIF. This work was supported in part by the U.S. DOE, LLNL and LLE.

  3. Multiple Monochromatic Imaging (MMI) Status and Plans for LANL Campaigns on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Wysocki, F. J.; Hsu, S. C.; Tregillis, I. L.; Schmitt, M. J.; Kyrala, G. A.; Martinson, D. D.; Murphy, T. J.; Mancini, R. C.; Nagayama, T.

    2011-10-01

    LANL's DIME (Defect Implosion Experiment) campaigns on Omega and NIF are aimed at obtaining improved understanding of defect-induced mix via experiments and simulations of directly driven high-Z doped plastic capsules with DD or DT gas fill. To this end, the MMI diagnostic has been identified as a key diagnostic for providing space and time-resolved density, temperature, and mix profiles. The high Z shell dopants used on Omega are Ti and V, and to be used on NIF are Ge and Se. This poster will discuss the following four areas of MMI-related work at LANL, in collaboration with UNR: (1) data and preliminary analysis of MMI data from FY11 Omega campaigns, (2) development of a capability to generate simulated MMI data from radiation- hydrodynamic simulations of ICF implosions, (3) design of an MMI instrument for NIF that will cover the photon energy range 9.5-16.9 keV which includes the Ge/Se, H- like/He-like, α/ β lines, and (4) the development of MMI data post- processing and spectroscopic analysis tools. Supported by DOE NNSA.

  4. Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Hinkel, D. E.; Eder, D. C.; Jones, O. S.; Haan, S. W.; Hammel, B. A.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Suter, L. J.; Town, R. P. J.

    2013-05-01

    More than two dozen inertial confinement fusion ignition experiments with cryogenic deuterium-tritium layers have now been performed on the National Ignition Facility (NIF) [G. H. Miller et al., Opt. Eng. 443, 2841 (2004)]. Each of these yields a wealth of data including neutron yield, neutron down-scatter fraction, burn-averaged ion temperature, x-ray image shape and size, primary and down-scattered neutron image shape and size, etc. Compared to 2-D radiation-hydrodynamics simulations modeling both the hohlraum and the capsule implosion, however, the measured capsule yield is usually lower by a factor of 5 to 10, and the ion temperature varies from simulations, while most other observables are well matched between experiment and simulation. In an effort to understand this discrepancy, we perform detailed post-shot simulations of a subset of NIF implosion experiments. Using two-dimensional HYDRA simulations [M. M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).] of the capsule only, these simulations represent as accurately as possible the conditions of a given experiment, including the as-shot capsule metrology, capsule surface roughness, and ice layer defects as seeds for the growth of hydrodynamic instabilities. The radiation drive used in these capsule-only simulations can be tuned to reproduce quite well the measured implosion timing, kinematics, and low-mode asymmetry. In order to simulate the experiments as accurately as possible, a limited number of fully three-dimensional implosion simulations are also being performed. Despite detailed efforts to incorporate all of the effects known and believed to be important in determining implosion performance, substantial yield discrepancies remain between experiment and simulation. Some possible alternate scenarios and effects that could resolve this discrepancy are discussed.

  5. Measuring spatial distributions of nuclear burn in ICF implosions at OMEGA and the NIF using proton emission imaging

    NASA Astrophysics Data System (ADS)

    Seguin, Fredrick; Rinderknecht, H. G.; Zylstra, A.; Sio, H.; Frenje, J.; Li, C. K.; Petrasso, R.; Rosenberg, M.; Marshall, F. J.; Sangster, T. C.; McKenty, P.; Craxton, S.; Rygg, J. R.; Le Pape, S.; Smalyuk, V.; Amendt, P. A.; Wilks, S. C.; MacKinnon, A.; Hoffman, N. M.

    2015-11-01

    Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Spatial distributions of the D3He and DD reactions are studied with a penumbral imaging camera that utilizes a CR-39-based imaging detector to detect the protons. Up to three orthogonal cameras have been used simultaneously at OMEGA to study the 3-D structure of asymmetric implosions, and two orthogonal cameras have now been used to study an exploding-pusher implosion at the NIF. Recent data from OMEGA and from the NIF will be shown. This work was supported in part by NLUF, US DOE, and LLE.

  6. Ignition and pusher adiabat

    NASA Astrophysics Data System (ADS)

    Cheng, B.; Kwan, T. J. T.; Wang, Y. M.; Yi, S. A.; Batha, S. H.; Wysocki, F.

    2018-07-01

    In the last five years, large amounts of high quality data on inertial confinement fusion (ICF) experiments were produced at the National Ignition Facility (NIF). From this data we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition and identified critical issues that must be addressed to achieve a burning hotspot, such as implosion energetics, pusher adiabat, tamping effects, and confinement time. In this paper we present a review of recently developed TN ignition and implosion scaling theory (Cheng et al 2013 Phys. Rev. E 88 041101; Cheng et al 2014 Phys. Plasmas 21 10270) that characterizes the thermodynamic properties of the hotspot and the ignition criteria for ICF. We compare our theoretical predictions with NIF data and find good agreement between theory and experiments. We demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium–tritium (DT) gas, and thus on the integrated performance of ICF capsules. Theoretical analysis of NIF experiments (Cheng et al 2015 Phys. Plasmas 22 082704; Melvin et al 2015 Phys. Plasmas 22 022708; Cheng et al 2016 Phys. Plasmas 23 120702) and physical explanations of the discrepancies between theory, data, and simulations are presented. It is shown that the true experimental adiabat of the cold DT fuel can be inferred from neutron image data of a capsule implosion. We show that the ablator mix and preheat in the cold fuel can be estimated from the experimentally inferred hotspot mix. Finally, possible paths forward to reach higher yields at NIF implied by the theory are discussed.

  7. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Woo, K. M.; Betti, R.

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less

  8. Core conditions for alpha heating attained in direct-drive inertial confinement fusion

    DOE PAGES

    Bose, A.; Woo, K. M.; Betti, R.; ...

    2016-07-07

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less

  9. Core conditions for alpha heating attained in direct-drive inertial confinement fusion.

    PubMed

    Bose, A; Woo, K M; Betti, R; Campbell, E M; Mangino, D; Christopherson, A R; McCrory, R L; Nora, R; Regan, S P; Goncharov, V N; Sangster, T C; Forrest, C J; Frenje, J; Gatu Johnson, M; Glebov, V Yu; Knauer, J P; Marshall, F J; Stoeckl, C; Theobald, W

    2016-07-01

    It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)10.1103/PhysRevLett.117.025001] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.

  10. Capsule Shimming Developments for National Ignition Facility (NIF) Hohlraum Asymmetry Experiments

    DOE PAGES

    Rice, Neal G.; Vu, M.; Kong, C.; ...

    2017-12-20

    Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klem, Michael

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory seeks to achieve thermonuclear ignition through inertial confinement fusion. The accurate assessment of the performance of each implosion experiment is a crucial step. Here we report on work to derive a reliable electron temperature for the cryogenic deuteriumtritium implosions completed on the NIF using the xray signal from the Ross filter diagnostic. These Xrays are dominated by bremsstrahlung emission. By fitting the xray signal measured through each of the individual Ross filters, the source bremsstrahlung spectrum can be inferred, and an electron temperature of the implosion hot spot inferred.more » Currently, each filter is weighted equally in this analysis. We present work quantifying the errors with such a technique and the results from investigating the contribution of each filter to the overall accuracy of the temperature inference. Using this research, we also compare the inferred electron temperature against other measured implosion quantities to develop a more complete understanding of the hotspot physics.« less

  12. Progress Toward Ignition on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kauffman, R L

    2011-10-17

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays formore » symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimization. The experimental Ignition Threshold Factor (ITFX) is a measure of the progress toward ignition. ITFX is analogous to the Lawson Criterion in Magnetic Fusion. Implosions have improved by over a factor of 50 since the first cryogenic layered experiments were done in September 2010. This increase is a measure of the progress made toward the ignition goal in the past year. Optimization experiments are planned in the coming year for continued improvement in implosion performance to achieve the ignition goal. In summary, NIF has made significant progress toward ignition in the 30 months since project completion. Diagnostics and all of the supporting equipment are in place for ignition experiments. The Ignition Campaign is under way as a national collaborative effort of all the National Nuclear Security Administration (NNSA) science laboratories as well as international partners.« less

  13. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega.

    PubMed

    Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H

    2015-04-01

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.

  14. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  15. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danly, C. R.; Day, T. H.; Herrmann, H.

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  16. Simultaneous neutron and x-ray imaging of inertial confinement fusion experiments along a single line of sight at Omega

    DOE PAGES

    Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; ...

    2015-04-16

    Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less

  17. Mitigating the impact of hohlraum asymmetries in National Ignition Facility implosions using capsule shims

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Weber, Christopher; Smalyuk, Vladimir; Robey, Harry; Kritcher, Andrea; Milovich, Jose; Salmonson, Jay

    2016-10-01

    Current indirect drive implosion experiments on the National Ignition Facility (NIF) are believed to be strongly impacted by long wavelength perturbations driven by asymmetries in the hohlraum x-ray flux. To address this perturbation source, active efforts are underway to develop modified hohlraum designs with reduced asymmetry imprint. An alternative strategy, however, is to modify the capsule design to be more resilient to a given amount of hohlraum asymmetry. In particular, the capsule may be deliberately misshaped, or ``shimmed,'' so as to counteract the expected asymmetries from the hohlraum. Here, the efficacy of capsule shimming to correct the asymmetries in two recent NIF implosion experiments is assessed using two-dimensional radiation hydrodynamics simulations. Despite the highly time-dependent character of the asymmetries and the high convergence ratios of these implosions, simulations suggest that shims could be highly effective at counteracting current asymmetries and result in factors of a few enhancements in neutron yields. For higher compression designs, the yield improvement could be even greater. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2014-02-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.

  19. Multiple Experimental Platform Consistency at NIF

    NASA Astrophysics Data System (ADS)

    Benedetti, L. R.; Barrios, M. A.; Bradley, D. K.; Eder, D. C.; Khan, S. F.; Izumi, N.; Jones, O. S.; Ma, T.; Nagel, S. R.; Peterson, J. L.; Rygg, J. R.; Spears, B. K.; Town, R. P.

    2013-10-01

    ICF experiments at NIF utilize several platforms to assess different metrics of implosion quality. In addition to the point design-a target capsule of DT ice inside a thin plastic ablator-notable platforms include: (i) Symmetry Capsules(SymCaps), mass-adjusted CH capsules filled with DT gas for similar hydrodynamic performance without the need for a DT crystal; (ii) D:3He filled SymCaps, designed for low neutron yield implosions to accommodate a variety of x-ray and optical diagnostics; and (iii) Convergent Ablators, SymCaps coupled with x-radiography to assess in-flight velocity and symmetry of the implosion over ~1 ns before stagnation and burn. These platforms are expected to be good surrogates for one another, and their hohlraum and implosion performance variations have been simulated in detail. By comparing results of similar experiments, we isolate platform-specific variations. We focus on the symmetry, convergence, and timing of x-ray emission as observed in each platform as this can be used to infer stagnation pressure and temperature. This work performed under the auspices of the U.S. Dept. of Energy by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-640865.

  20. Shock timing experiments on the National Ignition Facility: Initial results and comparison with simulation

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Boehly, T. R.; Celliers, P. M.; Eggert, J. H.; Hicks, D.; Smith, R. F.; Collins, R.; Bowers, M. W.; Krauter, K. G.; Datte, P. S.; Munro, D. H.; Milovich, J. L.; Jones, O. S.; Michel, P. A.; Thomas, C. A.; Olson, R. E.; Pollaine, S.; Town, R. P. J.; Haan, S.; Callahan, D.; Clark, D.; Edwards, J.; Kline, J. L.; Dixit, S.; Schneider, M. B.; Dewald, E. L.; Widmann, K.; Moody, J. D.; Döppner, T.; Radousky, H. B.; Throop, A.; Kalantar, D.; DiNicola, P.; Nikroo, A.; Kroll, J. J.; Hamza, A. V.; Horner, J. B.; Bhandarkar, S. D.; Dzenitis, E.; Alger, E.; Giraldez, E.; Castro, C.; Moreno, K.; Haynam, C.; LaFortune, K. N.; Widmayer, C.; Shaw, M.; Jancaitis, K.; Parham, T.; Holunga, D. M.; Walters, C. F.; Haid, B.; Mapoles, E. R.; Sater, J.; Gibson, C. R.; Malsbury, T.; Fair, J.; Trummer, D.; Coffee, K. R.; Burr, B.; Berzins, L. V.; Choate, C.; Brereton, S. J.; Azevedo, S.; Chandrasekaran, H.; Eder, D. C.; Masters, N. D.; Fisher, A. C.; Sterne, P. A.; Young, B. K.; Landen, O. L.; Van Wonterghem, B. M.; MacGowan, B. J.; Atherton, J.; Lindl, J. D.; Meyerhofer, D. D.; Moses, E.

    2012-04-01

    Capsule implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the DT fuel on a low adiabat. Initial experiments to measure the strength and relative timing of these shocks have been conducted on NIF in a specially designed surrogate target platform known as the keyhole target. This target geometry and the associated diagnostics are described in detail. The initial data are presented and compared with numerical simulations. As the primary goal of these experiments is to assess and minimize the adiabat in related DT implosions, a methodology is described for quantifying the adiabat from the shock velocity measurements. Results are contrasted between early experiments that exhibited very poor shock timing and subsequent experiments where a modified target geometry demonstrated significant improvement.

  1. Comparisons of NIF convergent ablation simulations with radiograph data.

    PubMed

    Olson, R E; Hicks, D G; Meezan, N B; Koch, J A; Landen, O L

    2012-10-01

    A technique for comparing simulation results directly with radiograph data from backlit capsule implosion experiments will be discussed. Forward Abel transforms are applied to the kappa*rho profiles of the simulation. These provide the transmission ratio (optical depth) profiles of the simulation. Gaussian and top hat blurs are applied to the simulated transmission ratio profiles in order to account for the motion blurring and imaging slit resolution of the experimental measurement. Comparisons between the simulated transmission ratios and the radiograph data lineouts are iterated until a reasonable backlighter profile is obtained. This backlighter profile is combined with the blurred, simulated transmission ratios to obtain simulated intensity profiles that can be directly compared with the radiograph data. Examples will be shown from recent convergent ablation (backlit implosion) experiments at the NIF.

  2. Measurements of Reduced Hydrodynamic Instability Growth in Adiabat Shaped Implosions at the NIF

    NASA Astrophysics Data System (ADS)

    Casey, Daniel; Macphee, Andrew; Milovich, Jose; Smalyuk, Vladimir; Clark, Dan; Robey, Harry; Peterson, Luc; Baker, Kevin; Weber, Chris

    2015-11-01

    Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Radiographic measurements of ablation front perturbation growth were performed using adiabat-shaped drives which are shown to have lower ablation front growth than the low foot drive. This is partly due to faster Richtmyer-Meshkov (RM) oscillations during the shock transit phase of the implosion moving the node in the growth factor spectrum to lower mode numbers reducing the peak growth amplitude. This is demonstrated experimentally by a reversal of the perturbation phase at higher mode numbers (120-160). These results show that the ablation front growth and fuel adiabat can be controlled somewhat-independently and are providing insight into new, more stable, ignition designs. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  3. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nora, R.; Betti, R.; Bose, A.

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scalesmore » and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8 MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6 × 10{sup 13} and ∼0.3 g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.« less

  4. Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF.

    PubMed

    Ma, T; Izumi, N; Tommasini, R; Bradley, D K; Bell, P; Cerjan, C J; Dixit, S; Döppner, T; Jones, O; Kline, J L; Kyrala, G; Landen, O L; LePape, S; Mackinnon, A J; Park, H-S; Patel, P K; Prasad, R R; Ralph, J; Regan, S P; Smalyuk, V A; Springer, P T; Suter, L; Town, R P J; Weber, S V; Glenzer, S H

    2012-10-01

    Accurately assessing and optimizing the implosion performance of inertial confinement fusion capsules is a crucial step to achieving ignition on the NIF. We have applied differential filtering (matched Ross filter pairs) to provide broadband time-integrated absolute x-ray self-emission images of the imploded core of cryogenic layered implosions. This diagnostic measures the temperature- and density-sensitive bremsstrahlung emission and provides estimates of hot spot mass, mix mass, and pressure.

  5. Ignition and pusher adiabat

    DOE PAGES

    Cheng, B. L.; Kwan, T. J. T.; Wang, Y. M.; ...

    2018-05-18

    In the last five years, large amounts of high quality experimental data in inertial confinement fusion (ICF) were produced at the National Ignition Facility (NIF). From the NIF data, we have significantly advanced our scientific understanding of the physics of thermonuclear (TN) ignition in ICF and identified the critical physical issues important to achieve ignition, such as implosion energetics, pusher adiabat, tamping effects in fuel confinement, and confinement time. In this article, we will present recently developed TN ignition theory and implosion scaling laws [1, 2] characterizing the thermodynamic properties of the hot spot and the TN ignition metrics atmore » NIF. We compare our theoretical predictions with NIF data with good agreement between theory and experiments. We will also demonstrate the fundamental effects of the pusher adiabat on the energy partition between the cold shell and the hot deuterium-tritium and on the neutron yields of ICF capsules. Applications [3–5] to NIF experiments and physical explanations of the discrepancies among theory, data and simulations will be presented. In our theory, the actual adiabat of the cold DT fuel can be inferred from neutron image data of a burning capsule. With the experimentally inferred hot spot mix, the CH mix in the cold fuel could be estimated, as well as the preheat. Finally, possible path forwards to reach high yields are discussed.« less

  6. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observablesa)

    NASA Astrophysics Data System (ADS)

    Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-05-01

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  7. Data driven models of the performance and repeatability of NIF high foot implosions

    NASA Astrophysics Data System (ADS)

    Gaffney, Jim; Casey, Dan; Callahan, Debbie; Hartouni, Ed; Ma, Tammy; Spears, Brian

    2015-11-01

    Recent high foot (HF) inertial confinement fusion (ICF) experiments performed at the national ignition facility (NIF) have consisted of enough laser shots that a data-driven analysis of capsule performance is feasible. In this work we use 20-30 individual implosions of similar design, spanning laser drive energies from 1.2 to 1.8 MJ, to quantify our current understanding of the behavior of HF ICF implosions. We develop a probabilistic model for the projected performance of a given implosion and use it to quantify uncertainties in predicted performance including shot-shot variations and observation uncertainties. We investigate the statistical significance of the observed performance differences between different laser pulse shapes, ablator materials, and capsule designs. Finally, using a cross-validation technique, we demonstrate that 5-10 repeated shots of a similar design are required before real trends in the data can be distinguished from shot-shot variations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-674957.

  8. Improved Understanding of Implosion Symmetry through New Experimental Techniques Connecting Hohlraum Dynamics with Laser Beam Deposition

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Salmonson, Jay; Dewald, Eduard; Bachmann, Benjamin; Edwards, John; Graziani, Frank; Hurricane, Omar; Landen, Otto; Ma, Tammy; Masse, Laurent; MacLaren, Stephen; Meezan, Nathan; Moody, John; Parrilla, Nicholas; Pino, Jesse; Sacks, Ryan; Tipton, Robert

    2017-10-01

    Understanding what affects implosion symmetry has been a challenge for scientists designing indirect drive inertial confinement fusion experiments on the National Ignition Facility (NIF). New experimental techniques and data analysis have been employed aimed at improving our understanding of the relationship between hohlraum dynamics and implosion symmetry. Thin wall imaging data allows for time-resolved imaging of 10 keV Au l-band x-rays providing for the first time on the NIF, a spatially resolved measurement of laser deposition with time. In the work described here, we combine measurements from the thin wall imaging with time resolved views of the interior of the hohlraum. The measurements presented are compared to hydrodynamic simulations as well as simplified physics models. The goal of this work is to form a physical picture that better explains the relationship of the hohlraum dynamics and capsule ablator on laser beam propagation and implosion symmetry. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  9. Using secondary nuclear products for inferring the fuel areal density, convergence, and electron temperatures of deuterium filled implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Kabadi, N. V.; Sutcliffe, G.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Rinderknecht, H. G.; Sayre, D. B.; Yeamans, C. B.; Khan, S. F.; Kyrala, G. A.; Lepape, S.; Berzak-Hopkins, L.; Meezan, N.; Bionta, R.; Ma, T.

    2016-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T born from the primary DD reaction branches can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence, and an electron temperature (Te) simultaneously. This technique has been used on a myriad of deuterium filled implosion experiments on the NIF using the nuclear time of flight (NTOF) diagnostics to measure the secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the secondary D3He protons. Additionally, a comparative study is conducted between the nuclear inferred convergence and x-ray inferred convergence obtained on these experiments. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  10. Hohlraum glint and laser pre-pulse detector for NIF experiments using velocity interferometer system for any reflector.

    PubMed

    Moody, J D; Clancy, T J; Frieders, G; Celliers, P M; Ralph, J; Turnbull, D P

    2014-11-01

    Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

  11. Comparison of high-density carbon implosions in unlined uranium versus gold hohlraums

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Meezan, Nathan; Tommasini, Riccardo; Khan, Shahab; MacKinnon, Andrew; Berzak Hopkins, Laura; Divol, Laurent; Lepape, Sebastien; Moore, Alastair; Schneider, Marilyn; Pak, Arthur; Nikroo, Abbas; Landen, Otto

    2016-10-01

    In Inertial Confinement Fusion (ICF) implosions, laser energy is converted to x-ray radiation in hohlraums with High-Z walls. At radiation temperatures near 300 eV relevant for ICF experiments, the radiative losses in heating the wall are lower for U than for Au hohlraums. Furthermore, the intensity of the ``M-band'' x-rays with photon energies h ν >1.8 keV is lower for uranium, allowing for reduced capsule dopant concentrations employed to minimize inner ablator preheat and hence keep favorable fuel/ablator interface Atwood numbers. This in turn improves the ablator rocket efficiency and reduces the risk of polluting the hot-spot with emissive dopant material. The first uranium vacuum hohlraum experiments on the National Ignition Facility (NIF) with undoped high-density carbon (HDC, or diamond) capsules have demonstrated 30% lower ``M-band'' intensity relative to Au, resulting in lower inflight ablator thickness due to reduced preheat. In addition, fusion neutron yields are 2x higher in U than in Au hohlraums for D2-gas filled capsule implosions at ICF relevant velocities of 380 +/-20 km/s. These results have led the NIF ICF implosions to routinely employ U hohlraums. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.

    2014-02-15

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion implosions [Boehly et al., Phys. Rev. Lett. 106, 195005 (2011); Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs.more » DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique. Comparison of the data with simulation shows good agreement for the timing of the first three shocks, but reveals a considerable discrepancy in the timing of the 4th shock in DT ice layered implosions. Electron preheat is examined as a potential cause of the observed discrepancy in the 4th shock timing.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Milovich, J. L.; Hinkel, D. E.

    Recent experimental results using the “high foot” pulse shape for inertial confinement fusion ignition experiments on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] have shown encouraging progress compared to earlier “low foot” experiments. These results strongly suggest that controlling ablation front instability growth can significantly improve implosion performance even in the presence of persistent, large, low-mode distortions. Simultaneously, hydrodynamic growth radiography experiments have confirmed that ablation front instability growth is being modeled fairly well in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes couldmore » be modified to improve one-dimensional implosion performance while maintaining the stability properties demonstrated with the high foot. This paper presents such a survey of pulse shapes intermediate between the low and high foot extremes in search of an intermediate foot optimum. Of the design space surveyed, it is found that a higher picket version of the low foot pulse shape shows the most promise for improved compression without loss of stability.« less

  14. Polar-direct-drive experiments on the National Ignition Facility

    DOE PAGES

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; ...

    2015-05-11

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beammore » geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D₂ gas were imploded with total drive energies ranging from ~500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 10¹⁴ to 1.2 10¹⁵W/cm². Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.« less

  15. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE PAGES

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.; ...

    2016-01-18

    A thin-glass-shell, D 3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D 2 fill), the DD-proton spectrum has been obtained as well,more » illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  16. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.

    A thin-glass-shell, D 3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D 2 fill), the DD-proton spectrum has been obtained as well,more » illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  17. Capsule Ablator Inflight Performance Measurements Via Streaked Radiography Of ICF Implosions On The NIF*

    NASA Astrophysics Data System (ADS)

    Dewald, E. L.; Tommasini, R.; Mackinnon, A.; MacPhee, A.; Meezan, N.; Olson, R.; Hicks, D.; LePape, S.; Izumi, N.; Fournier, K.; Barrios, M. A.; Ross, S.; Pak, A.; Döppner, T.; Kalantar, D.; Opachich, K.; Rygg, R.; Bradley, D.; Bell, P.; Hamza, A.; Dzenitis, B.; Landen, O. L.; MacGowan, B.; LaFortune, K.; Widmayer, C.; Van Wonterghem, B.; Kilkenny, J.; Edwards, M. J.; Atherton, J.; Moses, E. I.

    2016-03-01

    Streaked 1-dimensional (slit imaging) radiography of 1.1 mm radius capsules in ignition hohlraums was recently introduced on the National Ignition Facility (NIF) and gives an inflight continuous record of capsule ablator implosion velocities, shell thickness and remaining mass in the last 3-5 ns before peak implosion time. The high quality data delivers good accuracy in implosion metrics that meets our requirements for ignition and agrees with recently introduced 2-dimensional pinhole radiography. Calculations match measured trajectory across various capsule designs and laser drives when the peak laser power is reduced by 20%. Furthermore, calculations matching measured trajectories give also good agreement in ablator shell thickness and remaining mass.

  18. Techniques for Enhancing Implosion Performance on High-Foot Ignition Capsules on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Haan, S. W.; Hinkel, D. E.; Ma, T.; Nikroo, A.; Pak, A. E.; Park, H. S.; Salmonson, J. D.; Weber, C. R.

    2016-10-01

    Two options that have the potential to improve implosion performance in the High-Foot series of ignition capsules on NIF will be presented. The first option explores changing the shape of the x-ray drive to include a 4th and even a 5th shock in the implosion. According to simulations, these extra shocks improve the configuration of the assembled fuel and lead to improved confinement and performance. A ``ramp compression'' between the foot of the drive and the main pulse is also investigated. The second option studies the effect of increasing the Si dopant in a thin-shell capsule. NIF shot N150211 produced relatively high fusion yield (7.6E15 neutrons) but may have suffered from shell burn through. Increasing the Si dopant may delay this burn through yet preserve high implosion velocity. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.

    Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform wasmore » developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.« less

  20. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    DOE PAGES

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; ...

    2017-10-20

    Hydrodynamic instability growth of the capsule support membranes (or “tents”) and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF). In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new “sub-scale” version of the existing x-ray radiography platform wasmore » developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ~2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ~3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. In conclusion, the effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.« less

  1. Hydro-instability growth of perturbation seeds from alternate capsule-support strategies in indirect-drive implosions on National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Martinez, D. A.; Smalyuk, V. A.; MacPhee, A. G.; Milovich, J.; Casey, D. T.; Weber, C. R.; Robey, H. F.; Chen, K.-C.; Clark, D. S.; Crippen, J.; Farrell, M.; Felker, S.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hamza, A. V.; Stadermann, M.; Hsing, W. W.; Kroll, J. J.; Landen, O. L.; Nikroo, A.; Pickworth, L.; Rice, N.

    2017-10-01

    Hydrodynamic instability growth of the capsule support membranes (or "tents") and fill tubes has been studied in spherical, glow discharge polymer plastic capsule implosions at the National Ignition Facility (NIF) [Campbell et al., AIP Conf. Proc. 429, 3 (1998)]. In NIF implosions, the capsules are supported by tents because the nominal 10-μm thick fill tubes are not strong enough to support capsules by themselves. After it was recognized that the tents had a significant impact of implosion stability, new support methods were investigated, including thicker, 30-μm diameter fill tubes and cantilevered fill tubes, as described in this article. A new "sub-scale" version of the existing x-ray radiography platform was developed for measuring growing capsule perturbations in the acceleration phase of implosions. It was calibrated using hydrodynamic growth measurements of pre-imposed capsule modulations with Legendre modes of 60, 90, 110, and 140 at convergence ratios up to ˜2.4. Subsequent experiments with 3-D perturbations have studied instability growth of 10-μm and 30-μm thick fill tubes to compare them with 30-nm thick tent perturbations at convergence ratios up to ˜3. In other experiments, the perturbations from cantilevered fill tubes were measured and compared to the tent perturbations. The cantilevered fill tubes were supported by 12-μm thick SiC rods, offset by 100 μm, 200 μm, and 300 μm from the capsule surfaces. Based on these experiments, 30-μm thick fill tubes and 300-μm offset cantilevered fill tubes were recommended for further tests using layered deuterium-tritium implosions. The effects of x-ray shadowing during the drive and oxygen-induced perturbations during target assembly produced additional seeds for instabilities and were also measured in these experiments.

  2. The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions

    NASA Astrophysics Data System (ADS)

    Moses, Edward

    2011-11-01

    The National Ignition Facility (NIF), a 192-beam Nd-glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light, is now operational at Lawrence Livermore National Laboratory (LLNL). As the world's largest and most energetic laser system, NIF serves as the national center for the U.S. Department of Energy (DOE) and National Nuclear Security Administration to achieve thermonuclear burn in the laboratory and to explore the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from all of its 192 extremely energetic laser beams into a mm3-sized target, NIF can reach the conditions required to initiate fusion reactions. NIF can also provide access to extreme scientific environments: temperatures about 100 million K, densities of 1,000 g/cm3, and pressures 100 billion times atmospheric pressure. These conditions have never been created before in a laboratory and exist naturally only in interiors of the planetary and stellar environments as well as in nuclear weapons. Since August 2009, the NIF team has been conducting experiments in support of the National Ignition Campaign (NIC)—a partnership among LLNL, Los Alamos National Laboratory, General Atomics, the University of Rochester, Sandia National Laboratories, as well as a number of universities and international collaborators. The results from these initial experiments show promise for the relatively near-term achievement of ignition. Capsule implosion experiments at energies up to 1.2 MJ have demonstrated laser energetics, radiation temperatures, and symmetry control that scale to ignition conditions. Of particular importance is the demonstration of peak hohlraum temperatures near 300 eV with overall backscatter less than 10%. Cryogenic target capability and additional diagnostics are being installed in preparation for layered target deuterium-tritium implosions to be conducted later in 2010. Important national security and basic science experiments have also been conducted on NIF. This paper describes the unprecedented experimental capabilities of NIF and the results achieved so far on the path toward ignition, for stockpile stewardship, and the beginning of frontier science experiments. The paper will also address our plans to transition NIF to a national user facility, providing access to NIF for researchers from the DOE laboratories, as well as the national and international academic and fusion energy communities.

  3. Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackinnon, A J; Johnson, M G; Frenje, J A

    DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{submore » 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.« less

  4. Neutron spectrometry-An essential tool for diagnosing implosions at the National Ignition Facility (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, M. Gatu; Frenje, J. A.; Casey, D. T.

    2012-10-15

    DT neutron yield (Y{sub n}), ion temperature (T{sub i}), and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of inertial confinement fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-time-of-flight (nTOF) spectrometers and a magnetic recoil spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the complementarity required for reliable measurements of Y{sub n}, T{sub i}, and dsr. From the measured dsr value, an areal density ({rho}R) is determined through the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6)more » Multiplication-Sign dsr{sub 10-12MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation, and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration of the as-built spectrometers, which are now performing to the required accuracy. Recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental ignition threshold factor (ITFx), which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.« less

  5. Dynamic Symmetry of Indirectly Driven ICF Capsules on NIF

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.

    2013-10-01

    In order to achieve ignition it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the imploding capsule, hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine the sources of asymmetry and to measure the symmetry throughout the implosion has been developed and executed on the NIF. For the first time on NIF, two-dimensional radiographs of the capsule during its implosion phase have been measured to infer the symmetry of the radiation drive. Time dependent equatorial symmetry has been measured of gas-filled capsules and capsules with cryogenic DT layers. These measurements have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. The technique is being extended to study azimuthal symmetry by imaging along the hohlraum axis. We have also expanded our shock timing measurements by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing a measurement of asymmetries up to mode 4 in both the equatorial and azimuthal planes. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography using a wire-backlighter. In addition to x-ray diagnostics, a series of neutron and proton measurements of the low-mode areal density of the fuel at peak compression and at shock-flash time have been made. This talk will discuss the new imaging techniques, the results, and the analysis of the experiments done to date and their implication for ignition on NIF. The sensitivity of the in-flight and final implosion symmetry to imposed changes will be presented and compared to model predictions. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  6. LLE Review Quarterly Report (January-March 2002). Volume 90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, William R.

    2002-03-01

    This volume of the LLE Review, covering January-March 2002, features “First Results from Cryogenic Target Implosions on OMEGA” by C. Stoeckl et al. (p. 49). This article describes initial results from direct-drive spherical cryogenic target implosions on the 60-beam OMEGA laser system. These experiments are part of the scientific base leading to direct-drive ignition implosions planned for the National Ignition Facility (NIF). Results shown include neutron yield, secondary-neutron and proton yields, the time of peak neutron emission, and both time-integrated and time-resolved x-ray images of the imploding core. The experimental values are compared with 1-D numerical simulations. The target withmore » an ice-layer nonuniformity of srms = 9 mm showed 30% of the 1-D predicted neutron yield. These initial results are encouraging for future cryogenic implosions on OMEGA and the NIF. Other articles in this issue are titled the following: Equation-of-State Measurements of Porous Materials on OMEGA: Numerical Modeling; Observations of Modulated Shock Waves in Solid Targets Driven by Spatially Modulated Laser Beams; Time-Dependent Electron Thermal Flux Inhibition in direct-Drive Laser Implosions; Precision Spectral Sculpting of Broadband FM Pulses Amplified in a Narrowband Medium; Electric-Field-Induced Motion of Polymer Cholesteric Liquid Crystal Flakes in a Moderately Conductive Fluid; and, Femtosecond Response of a Freestanding LT-GaAs Photoconductive Switch.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weilacher, F.; Radha, P. B., E-mail: rbah@lle.rochester.edu; Collins, T. J. B.

    Ongoing polar-direct-drive (PDD) implosions on the National Ignition Facility (NIF) [J. D. Lindl and E. I. Moses, Phys. Plasmas 18, 050901 (2011)] use existing NIF hardware, including indirect-drive phase plates. This limits the performance achievable in these implosions. Spot shapes are identified that significantly improve the uniformity of PDD NIF implosions; outer surface deviation is reduced by a factor of 7 at the end of the laser pulse and hot-spot distortion is reduced by a factor of 2 when the shell has converged by a factor of ∼10. As a result, the neutron yield increases by approximately a factor ofmore » 2. This set of laser spot shapes is a combination of circular and elliptical spots, along with elliptical spot shapes modulated by an additional higher-intensity ellipse offset from the center of the beam. This combination is motivated in this paper. It is also found that this improved implosion uniformity is obtained independent of the heat conduction model. This work indicates that significant improvement in performance can be obtained robustly with the proposed spot shapes.« less

  8. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    NASA Astrophysics Data System (ADS)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  9. Testing a new NIF neutron time-of-flight detector with a bibenzyl scintillator on OMEGA.

    PubMed

    Glebov, V Yu; Forrest, C; Knauer, J P; Pruyne, A; Romanofsky, M; Sangster, T C; Shoup, M J; Stoeckl, C; Caggiano, J A; Carman, M L; Clancy, T J; Hatarik, R; McNaney, J; Zaitseva, N P

    2012-10-01

    A new neutron time-of-flight (nTOF) detector with a bibenzyl crystal as a scintillator has been designed and manufactured for the National Ignition Facility (NIF). This detector will replace a nTOF20-Spec detector with an oxygenated xylene scintillator currently operational on the NIF to improve the areal-density measurements. In addition to areal density, the bibenzyl detector will measure the D-D and D-T neutron yield and the ion temperature of indirect- and direct-drive-implosion experiments. The design of the bibenzyl detector and results of tests on the OMEGA Laser System are presented.

  10. Charged-particle spectroscopy for diagnosing shock ρR and strength in NIF implosions.

    PubMed

    Zylstra, A B; Frenje, J A; Séguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M Gatu; Casey, D T; Sinenian, N; Manuel, M J-E; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G W; Dewald, E; Döppner, T; Edwards, M J; Glenzer, S; Hicks, D G; Landen, O L; London, R; Mackinnon, A; Meezan, N; Prasad, R R; Ralph, J; Richardson, M; Rygg, J R; Sepke, S; Weber, S; Zacharias, R; Moses, E; Kilkenny, J; Nikroo, A; Sangster, T C; Glebov, V; Stoeckl, C; Olson, R; Leeper, R J; Kline, J; Kyrala, G; Wilson, D

    2012-10-01

    The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign diagnostic. The WRF measures the spectrum of protons from D-(3)He reactions in tuning-campaign implosions containing D and (3)He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total ρR through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

  11. Measuring the absolute deuterium-tritium neutron yield using the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Gatu Johnson, M; Séguin, F H; Li, C K; Petrasso, R D; Glebov, V Yu; Katz, J; Knauer, J P; Meyerhofer, D D; Sangster, T C; Bionta, R M; Bleuel, D L; Döppner, T; Glenzer, S; Hartouni, E; Hatchett, S P; Le Pape, S; Ma, T; MacKinnon, A; McKernan, M A; Moran, M; Moses, E; Park, H-S; Ralph, J; Remington, B A; Smalyuk, V; Yeamans, C B; Kline, J; Kyrala, G; Chandler, G A; Leeper, R J; Ruiz, C L; Cooper, G W; Nelson, A J; Fletcher, K; Kilkenny, J; Farrell, M; Jasion, D; Paguio, R

    2012-10-01

    A magnetic recoil spectrometer (MRS) has been installed and extensively used on OMEGA and the National Ignition Facility (NIF) for measurements of the absolute neutron spectrum from inertial confinement fusion implosions. From the neutron spectrum measured with the MRS, many critical implosion parameters are determined including the primary DT neutron yield, the ion temperature, and the down-scattered neutron yield. As the MRS detection efficiency is determined from first principles, the absolute DT neutron yield is obtained without cross-calibration to other techniques. The MRS primary DT neutron measurements at OMEGA and the NIF are shown to be in excellent agreement with previously established yield diagnostics on OMEGA, and with the newly commissioned nuclear activation diagnostics on the NIF.

  12. X-ray penumbral imaging diagnostic developments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Bachmann, B.; Abu-Shawareb, H.; Alexander, N.; Ayers, J.; Bailey, C. G.; Bell, P.; Benedetti, L. R.; Bradley, D.; Collins, G.; Divol, L.; Döppner, T.; Felker, S.; Field, J.; Forsman, A.; Galbraith, J. D.; Hardy, C. M.; Hilsabeck, T.; Izumi, N.; Jarrot, C.; Kilkenny, J.; Kramer, S.; Landen, O. L.; Ma, T.; MacPhee, A.; Masters, N.; Nagel, S. R.; Pak, A.; Patel, P.; Pickworth, L. A.; Ralph, J. E.; Reed, C.; Rygg, J. R.; Thorn, D. B.

    2017-08-01

    X-ray penumbral imaging has been successfully fielded on a variety of inertial confinement fusion (ICF) capsule implosion experiments on the National Ignition Facility (NIF). We have demonstrated sub-5 μm resolution imaging of stagnated plasma cores (hot spots) at x-ray energies from 6 to 30 keV. These measurements are crucial for improving our understanding of the hot deuterium-tritium fuel assembly, which can be affected by various mechanisms, including complex 3-D perturbations caused by the support tent, fill tube or capsule surface roughness. Here we present the progress on several approaches to improve x-ray penumbral imaging experiments on the NIF. We will discuss experimental setups that include penumbral imaging from multiple lines-of-sight, target mounted penumbral apertures and variably filtered penumbral images. Such setups will improve the signal-to-noise ratio and the spatial imaging resolution, with the goal of enabling spatially resolved measurements of the hot spot electron temperature and material mix in ICF implosions.

  13. Development of the CD symcap platform to study gas-shell mix in implosions at the National Ignition Facility

    DOE PAGES

    Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; ...

    2014-09-09

    Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T₂-gas filled CH-shell implosions equipped with 4 μm thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within themore » CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8 μm have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly-radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.« less

  14. Hohlraum-Driven Ignition-Like Double-Shell Implosion Experiments on Omega: Analysis and Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amendt, P; Robey, H F; Park, H-S

    2003-08-22

    An experimental campaign to study hohlraum-driven ignition-like double-shell target performance using the Omega laser facility has begun. These targets are intended to incorporate as many ignition-like properties of the proposed National Ignition Facility (NIF) double-shell ignition design [1,2] as possible, given the energy constraints of the Omega laser. In particular, this latest generation of Omega double-shells is nominally predicted to produce over 99% of the (clean) DD neutron yield from the compressional or stagnation phase of the implosion as required in the NIF ignition design. By contrast, previous double-shell experience on Omega [3] was restricted to cases where a significantmore » fraction of the observed neutron yield was produced during the earlier shock convergence phase where the effects of mix are deemed negligibly small. These new targets are specifically designed to have optimized fall-line behavior for mitigating the effects of pusher-fuel mix after deceleration onset and, thereby, providing maximum neutron yield from the stagnation phase. Experimental results from this recent Omega ignition-like double-shell implosion campaign show favorable agreement with two-dimensional integrated hohlraum simulation studies when enhanced (gold) hohlraum M-band (2-5 keV) radiation is included at a level consistent with observations.« less

  15. A novel particle time of flight diagnostic for measurements of shock- and compression-bang times in D3He and DT implosions at the NIF.

    PubMed

    Rinderknecht, H G; Johnson, M Gatu; Zylstra, A B; Sinenian, N; Rosenberg, M J; Frenje, J A; Waugh, C J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; MacPhee, A; Collins, G W; Hicks, D; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Moses, E I; Glebov, V U; Stoeckl, C; Sangster, T C; Olson, R; Kline, J; Kilkenny, J

    2012-10-01

    The particle-time-of-flight (pTOF) diagnostic, fielded alongside a wedge range-filter (WRF) proton spectrometer, will provide an absolute timing for the shock-burn weighted ρR measurements that will validate the modeling of implosion dynamics at the National Ignition Facility (NIF). In the first phase of the project, pTOF has recorded accurate bang times in cryogenic DT, DT exploding pusher, and D(3)He implosions using DD or DT neutrons with an accuracy better than ±70 ps. In the second phase of the project, a deflecting magnet will be incorporated into the pTOF design for simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions using D(3)He protons and DD-neutrons, respectively.

  16. High Foot Implosion Experiments in Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Leidinger, J.-P.; Callahan, D.; Kaiser, P.; Morice, O.; Marion, D.; Moody, J. D.; Ross, J. S.; Amendt, P.; Kritcher, A. L.; Milovich, J. L.; Strozzi, D.; Hinkel, D.; Michel, P.; Berzak Hopkins, L.; Pak, A.; Dewald, E. L.; Divol, L.; Khan, S.; Rygg, R.; Hurricane, O.; Lawrence Livermore National Lab Team; CEA/DAM Team

    2015-11-01

    The rugby hohlraum design is aimed at providing uniform x-ray drive on the capsule while minimizing the need for crossed beam energy transfer (CBET). As part of a series of experiments at the NIF using rugby hohlraums, design improvements in dual axis shock tuning experiments produced some of the most symmetric shocks measured on implosion experiments at the NIF. Additionally, tuning of the in-flight shell and hot spot shape have demonstrated that capsules can be tuned between oblate and prolate with measured velocities of nearly 340 km/s. However, these experimental measurements were accompanied by high levels of Stimulated Raman Scattering (SRS) that may result from the long inner beam path length, reamplification of the inner SRS by the outers, significant (CBET) or a combination of these. All rugby shots results were achieved with lower levels of hot electrons that can preheat the DT fuel layer for increased adiabat and reduced areal density. Detailed results from these experiments and those planned throughout the summer will be presented and compared with results obtained from cylindrical hohlraums. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Lab under Contract DE-AC52-07NA27344.

  17. First liquid-layer implosion experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex

    2017-10-01

    Replacing the standard ice layer in an ignition design with a liquid layer allows fielding the target with a higher central vapor pressure, leading to reduced implosion convergence ratio (CR). At lower CR, the implosions are expected to be more robust to instabilities and asymmetries than standard ice-layer designs, and are also unique in that the hot spot can be primarily formed from material originating in the central fuel vapor. The first liquid-layer implosions on the National Ignition Facility (NIF) have been performed by wicking the liquid fuel into a supporting foam that lines the inside surface of the capsule. A series of shots has been conducted between CR of 12 and 20 using a HDC ablator driven by a 3-shock pulse in a near-vacuum Au hohlraum. At the lowest CR the implosion performance is well predicted by 2-D radiation-hydrodynamics calculations. However, as the CR is increased the nominal simulations do not capture the experimentally observed trends. Data-based models suggest that the hot spot formation is unexpectedly suppressed at higher convergence. The data could be explained by reduced hydrodynamic coupling efficiency, or an anomalously enhanced thermal conductivity in the mixed DT/foam material. We show that the latter hypothesis can explain observed trends in several experimental metrics, including the yield, ion temperature, and burn duration. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.

  18. Ultra High Mode Mix in NIF NIC Implosions

    NASA Astrophysics Data System (ADS)

    Scott, Robbie; Garbett, Warren

    2017-10-01

    This work re-examines a sub-set of the low adiabat implosions from the National Ignition Campaign in an effort to better understand potential phenomenological sources of `excess' mix observed experimentally. An extensive effort has been made to match both shock-timing and backlit radiography (Con-A) implosion data in an effort to reproduce the experimental conditions as accurately as possible. Notably a 30% reduction in ablation pressure at peak drive is required to match the experimental data. The reduced ablation pressure required to match the experimental data allows the ablator to decompress, in turn causing the DT ice-ablator interface to go Rayleigh-Taylor unstable early in the implosion acceleration phase. Post-processing the runs with various mix models indicates high-mode mix from the DT ice-ablator interface may penetrate deep into the hotspot. This work offers a potential explanation of why these low-adiabat implosions exhibited significantly higher levels of mix than expected from high-fidelity multi-dimensional simulations. Through this new understanding, a possible route forward for low-adiabat implosions on NIF is suggested.

  19. The US ICF Ignition Program and the Inertial Fusion Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindl, J D; Hammel, B A; Logan, B G

    2003-07-02

    There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 andmore » ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets.« less

  20. The coincidence counting technique for orders of magnitude background reduction in data obtained with the magnetic recoil spectrometer at OMEGA and the NIF.

    PubMed

    Casey, D T; Frenje, J A; Séguin, F H; Li, C K; Rosenberg, M J; Rinderknecht, H; Manuel, M J-E; Gatu Johnson, M; Schaeffer, J C; Frankel, R; Sinenian, N; Childs, R A; Petrasso, R D; Glebov, V Yu; Sangster, T C; Burke, M; Roberts, S

    2011-07-01

    A magnetic recoil spectrometer (MRS) has been built and successfully used at OMEGA for measurements of down-scattered neutrons (DS-n), from which an areal density in both warm-capsule and cryogenic-DT implosions have been inferred. Another MRS is currently being commissioned on the National Ignition Facility (NIF) for diagnosing low-yield tritium-hydrogen-deuterium implosions and high-yield DT implosions. As CR-39 detectors are used in the MRS, the principal sources of background are neutron-induced tracks and intrinsic tracks (defects in the CR-39). The coincidence counting technique was developed to reduce these types of background tracks to the required level for the DS-n measurements at OMEGA and the NIF. Using this technique, it has been demonstrated that the number of background tracks is reduced by a couple of orders of magnitude, which exceeds the requirement for the DS-n measurements at both facilities.

  1. Spectroscopic diagnostics of NIF ICF implosions using line ratios of Kr dopant in the ignition capsule

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Ouart, Nicholas; Giuiani, John; Clark, Robert; Schneider, Marilyn; Scott, Howard; Chen, Hui; Ma, Tammy

    2017-10-01

    X ray spectroscopy is used on the NIF to diagnose the plasma conditions in the ignition target in indirect drive ICF implosions. A platform is being developed at NIF where small traces of krypton are used as a dopant to the fuel gas for spectroscopic diagnostics using krypton line emissions. The fraction of krypton dopant was varied in the experiments and was selected so as not to perturb the implosion. Our goal is to use X-ray spectroscopy of dopant line ratios produced by the hot core that can provide a precise measurement of electron temperature. Simulations of the krypton spectra using a 1 in 104 atomic fraction of krypton in direct-drive exploding pusher with a range of electron temperatures and densities show discrepancies when different atomic models are used. We use our non-LTE atomic model with a detailed fine-structure level atomic structure and collisional-radiative rates to investigate the krypton spectra at the same conditions. Synthetic spectra are generated with a detailed multi-frequency radiation transport scheme from the emission regions of interest to analyze the experimental data with 0.02% Kr concentration and compare and contrast with the existing simulations at LLNL. Work supported by DOE/NNSA; Part of this work was also done under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. Hybrid strategy for increasing fusion performance and stagnation pressure in x-ray driven inertially confined fusion implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Callahan, D. A.; Edwards, M. J.; Casey, D.; Doeppner, T.; Hohenberger, M.; Hinkel, D.; Berzak Hopkins, L.; Le Pape, S.; MacLaren, S.; Masse, L.; Thomas, C.; Zylstra, A.

    2017-10-01

    Post NIC (2012), more stable and lower convergence implosions were developed and used as part of a `basecamp' strategy to identify obstacles to further performance. From 2013-2015 by probing away from a conservative working implosion in-steps towards conditions of higher velocity and compression, `Fuel Gain' and alpha-heating were obtained. In the process, performance cliffs unrelated to `mix' were identified the most impactful of which were symmetry control of the implosion and hydro seeded by engineering features. From 2015-2017 we focused on mitigating poor symmetry control and engineering improvements on fill-tubes and capsule mounting techniques. The results were more efficient implosions that can obtain the same performance levels as the earlier implosions, but with less laser energy. Presently, the best of these implosions is poised to step into a burning plasma state. Here, we describe the next step in our strategy that involves using the data we've acquired across parameter space to make a step to the largest symmetric implosions that can be fielded on NIF with the energy available. We describe the key principles that form the foundation of this approach. Performed under the auspices of U.S. Dept. of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Hohlraum-driven mid-Z (SiO2) double-shell implosions on the omega laser facility and their scaling to NIF.

    PubMed

    Robey, H F; Amendt, P A; Milovich, J L; Park, H-S; Hamza, A V; Bono, M J

    2009-10-02

    High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO2) inner shells have been performed on the OMEGA laser facility [T. R. Boehly, Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt, Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, and provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner, Laser Focus World 30, 75 (1994)].

  4. Analysis of BigFoot HDC SymCap experiment N161205 on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Baker, K. L.; Thomas, C. A.; Berzak Hopkins, L. F.; Harte, J. A.; Zimmerman, G. B.; Woods, D. T.; Kritcher, A. L.; Ho, D. D.; Weber, C. R.; Kyrala, G.

    2017-10-01

    Analysis of NIF implosion experiment N161205 provides insight into both hohlraum and capsule performance. This experiment used an undoped High Density Carbon (HDC) ablator driven by a BigFoot x-ray profile in a Au hohlraum. Observations from this experiment include DT fusion yield, bang time, DSR, Tion and time-resolved x-ray emission images around bang time. These observations are all consistent with an x-ray spectrum having significantly reduced Au m-band emission that is present in a standard hohlraum simulation. Attempts to justify the observations using several other simulation modifications will be presented. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  5. Measurement of the hot spot electron temperature in NIF ICF implosions using Krypton x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M.; Barrios, M.; Berzak Hopkins, L.; Casey, D.; Chung, H.-K.; Hammel, B.; Jarrott, C.; Nora, R.; Pak, A.; Scott, H.; Spears, B.; Weber, C.

    2015-11-01

    The inference of ion temperature from neutron spectral measurements in indirect-drive ICF implosions is known to be sensitive to non-thermal velocity distributions in the fuel. The electron temperature (Te) inferred from dopant line ratios should not be sensitive to these bulk motions and hence may be a better measure of the thermal temperature of the hot spot. Here we describe a series of experiments to be conducted on the NIF where a small concentration of a mid-Z dopant (Krypton) is added to the fuel gas. The x-ray spectra is measured and the electron temperature is inferred from Kr line ratios. We also quantify the level of radiative cooling in the hot spot due to this mid-Z dopant. These experiments represent the first direct measurement of hot spot Te using spectroscopy, and we will describe the considerations for applying x-ray spectroscopy in such dense and non-uniform hot spots. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. LANL C10.2 Projects in FY13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batha, Steven H.; Fincke, James R.; Schmitt, Mark J.

    2012-06-07

    LANL has two projects in C10.2: Defect-Induced Mix Experiment (DIME) (ongoing, several runs at Omega; NIF shots this summer); and Shock/Shear (tested at Omega for two years; NIF shots in second half of FY13). Each project is jointly funded by C10.2, other C10 MTEs, and Science Campaigns. DIME is investigating 4{pi} and feature-induced mix in spherically convergent ICF implosions by using imaging of the mix layer. DIME prepared for NIF by demonstrating its PDD mix platform on Omega including imaging mid-Z doped layers and defects. DIME in FY13 will focus on PDD symmetry-dependent mix and moving burn into the mixmore » region for validation of mix/burn models. Re-Shock and Shear are two laser-driven experiments designed to study the turbulent mixing of materials. In FY-2012 43 shear and re-shock experimental shots were executed on the OMEGA laser and a complete time history obtained for both. The FY-2013 goal is to transition the experiment to NIF where the larger scale will provide a longer time period for mix layer growth.« less

  7. High-density carbon capsule experiments on the national ignition facility

    DOE PAGES

    Ross, J. S.; Ho, D.; Milovich, J.; ...

    2015-02-25

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. In this study, a series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (~90 %) and excellent nuclear performance. Lastly, a deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10 15 ± 3×10 13, amore » yield over simulated in one dimension of 70%.« less

  8. A survey of pulse shape options for a revised plastic ablator ignition design

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Eder, David; Haan, Steven; Hinkel, Denise; Jones, Ogden; Marinak, Michael; Milovich, Jose; Peterson, Jayson; Robey, Harold; Salmonson, Jay; Smalyuk, Vladimir; Weber, Christopher

    2014-10-01

    Recent experimental results using the ``high foot'' pulse shape on the National Ignition Facility (NIF) have shown encouraging progress compared to earlier ``low foot'' experiments. These results strongly suggest that controlling ablation front instability growth can dramatically improve implosion performance, even in the presence of persistent, large, low-mode distortions. In parallel, Hydro. Growth Radiography experiments have so far validated the techniques used for modeling ablation front growth in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified so as to improve implosion performance, namely fuel compressibility, while maintaining the stability properties demonstrated with the high foot. This talk presents a survey of pulse shapes intermediate between the low and high foot extremes in search of a more optimal design. From the database of pulse shapes surveyed, a higher picket version of the original low foot pulse shape shows the most promise for improved compression without loss of stability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Designing cylindrical implosion experiments on NIF to study deceleration phase of Rayleigh-Taylor

    NASA Astrophysics Data System (ADS)

    Vazirani, N.; Kline, J. L.; Loomis, E.; Sauppe, J. P.; Palaniyappan, S.; Flippo, K.; Srinivasan, B.; Malka, E.; Bose, A.; Shvarts, D.

    2017-10-01

    The Rayleigh-Taylor (RT) hydrodynamic instability occurs when a lower density fluid pushes on a higher density fluid. This occurs in inertial confinement fusion (ICF) implosions at each of the capsule interfaces during the initial acceleration and the deceleration as it stagnates. The RT instabilities mix capsule material into the fusion fuel degrading the Deuterium-Tritium reactivity and ultimately play a key role in limiting target performance. While significant effort has focused on understanding RT at the outer capsule surface, little work has gone into understanding the inner surface RT instability growth during the deceleration phase. Direct measurements of the RT instability are difficult to make at high convergence in a spherical implosion. Here we present the design of a cylindrical implosion system for the National Ignition Facility for studying deceleration phase RT. We will discuss the experimental design, the estimated instability growth, and our outstanding concerns.

  10. Hydrodynamic simulations of long-scale-length plasmas for two-plasmon-decay planar-target experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Regan, S. P.; Seka, W.; Shaw, J.; Hohenberger, M.; Bates, J. W.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.

    2016-05-01

    The two-plasmon-decay (TPD) instability can be detrimental for direct-drive inertial confinement fusion because it generates high-energy electrons that can preheat the target, thereby reducing target performance. Hydrodynamic simulations to design a new experimental platform to investigate TPD and other laser-plasma instabilities relevant to direct-drive-ignition implosions at the National Ignition Facility are presented. The proposed experiments utilize planar plastic targets with an embedded Mo layer to characterize generation of hot electrons through Mo Kα fluorescence and hard x-ray emission. Different laser-irradiation geometries approximate conditions near both the equator and the pole of a polar-direct-drive implosion.

  11. Implosion Dynamics and Mix in Double-Shell ICF Capsule Designs

    NASA Astrophysics Data System (ADS)

    Gunderson, Mark; Daughton, William; Simakov, Andrei; Wilson, Douglas; Watt, Robert; Delamater, Norman; Montgomery, David

    2015-11-01

    From an implosion dynamics perspective, double-shell ICF capsule designs have several advantages over the single-shell NIF ICF capsule point design. Double shell designs do not require precise shock sequencing, do not rely on hot spot ignition, have lower peak implosion speed requirements, and have lower convergence ratio requirements. However, there are still hurdles that must be overcome. The timing of the two main shocks in these designs is important in achieving sufficient compression of the DT fuel. Instability of the inner gold shell due to preheat from the hohlraum environment can disrupt the implosion of the inner pill. Mix, in addition to quenching burn in the DT fuel, also decreases the transfer of energy between the beryllium ablator and the inner gold shell during collision thus decreasing the implosion speed of the inner shell along with compression of the DT fuel. Herein, we will discuss practical implications of these effects on double-shell design we carry out in preparation for the NIF double-shell campaign. Work performed under the auspices of DOE by LANL under contract DE-AC52-06NA25396.

  12. Numerical modeling of the sensitivity of x-ray driven implosions to low-mode flux asymmetries.

    PubMed

    Scott, R H H; Clark, D S; Bradley, D K; Callahan, D A; Edwards, M J; Haan, S W; Jones, O S; Spears, B K; Marinak, M M; Town, R P J; Norreys, P A; Suter, L J

    2013-02-15

    The sensitivity of inertial confinement fusion implosions, of the type performed on the National Ignition Facility (NIF) [1], to low-mode flux asymmetries is investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P(4), resulting from low-order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the deuterium and tritium (DT) "ice" layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of implosion kinetic energy to internal energy of the central hot spot, thus reducing the neutron yield. Furthermore, synthetic gated x-ray images of the hot spot self-emission indicate that P(4) shapes may be unquantifiable for DT layered capsules. Instead the positive P(4) asymmetry "aliases" itself as an oblate P(2) in the x-ray images. Correction of this apparent P(2) distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed postshot two-dimensional simulations.

  13. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions.

    PubMed

    Rosenberg, M J; Zylstra, A B; Frenje, J A; Rinderknecht, H G; Johnson, M Gatu; Waugh, C J; Séguin, F H; Sio, H; Sinenian, N; Li, C K; Petrasso, R D; Glebov, V Yu; Hohenberger, M; Stoeckl, C; Sangster, T C; Yeamans, C B; LePape, S; Mackinnon, A J; Bionta, R M; Talison, B; Casey, D T; Landen, O L; Moran, M J; Zacharias, R A; Kilkenny, J D; Nikroo, A

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ∼1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  14. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ρR are determined in thin-shell inertial-confinement-fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2014-10-01

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.« less

  15. Using Secondary Nuclear Reaction Products to Infer the Fuel Areal Density, Convergence, and Electron Temperatures of Imploding D2 and D3 He Filled Capsules on the NIF

    NASA Astrophysics Data System (ADS)

    Lahmann, B.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Hartouni, E. P.; Yeamans, C. B.; Rinderknecht, H. G.; Sayre, D. B.; Grim, G.; Baker, K.; Casey, D. T.; Dewald, E.; Goyon, C.; Jarrott, L. C.; Khan, S.; Lepape, S.; Ma, T.; Pickworth, L.; Shah, R.; Kline, J. L.; Perry, T.; Zylstra, A.; Yi, S. A.

    2017-10-01

    In deuterium-filled inertial confinement fusion implosions, 0.82 MeV 3He and 1.01 MeV T (generated by the primary DD reaction branches) can undergo fusion reactions with the thermal deuterium plasma to create secondary D3He protons and DT neutrons, respectively. In regimes of moderate fuel areal density (ρR 5 - 100 mg/cm2) the ratio of both of these secondary yields to the primary yield can be used to infer the fuel ρR, convergence ratio (CR), and an electron temperature (Te) . This technique has been used on a myriad of deuterium filled capsule implosion experiments on the NIF using the neutron time of flight (nTOF) diagnostics to measure the yield of secondary DT neutrons and CR-39 based wedge range filters (WRFs) to measure the yield of secondary D3He protons. This work is supported in part by the U.S. DoE and LLNL.

  16. Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate [Comparison of implosion core shape observations, 10 ps dilation X-ray imager vs 100 ps gated microchannel plate

    DOE PAGES

    Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.; ...

    2016-08-05

    The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less

  17. Comparison of implosion core metrics: A 10 ps dilation X-ray imager vs a 100 ps gated microchannel plate [Comparison of implosion core shape observations, 10 ps dilation X-ray imager vs 100 ps gated microchannel plate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagel, S. R.; Benedetti, L. R.; Bradley, D. K.

    The dilation x-ray imager (DIXI) is a high-speed x-ray framing camera that uses the pulse-dilation technique to achieve a temporal resolution of less than 10 ps. This is a 10× improvement over conventional framing cameras currently employed on the National Ignition Facility (NIF) (100 ps resolution), and otherwise only achievable with 1D streaked imaging. A side effect of the dramatically reduced gate width is the comparatively lower detected signal level. Therefore we implement a Poisson noise reduction with non-local principal component analysis method to improve the robustness of the DIXI data analysis. Furthermore, we present results on ignition-relevant experiments atmore » the NIF using DIXI. In particular we focus on establishing that/when DIXI gives reliable shape metrics (P 0, P 2 and P 4 Legendre modes, and their temporal evolution/swings).« less

  18. Laser-plasma interactions and implosion symmetry in rugby hohlraums

    NASA Astrophysics Data System (ADS)

    Michel, Pierre; Berger, R. L.; Lasinski, B. F.; Ross, J. S.; Divol, L.; Williams, E. A.; Meeker, D.; Langdon, B. A.; Park, H.; Amendt, P.

    2011-10-01

    Cross-beam energy transfer is studied in the context of ``rugby''-hohlraum experiments at the Omega laser facility in FY11, in preparation for future NIF experiments. The transfer acts in opposite direction between rugby and cylinder hohlraums due to the different beam pointing geometries and flow patterns. Its interaction with backscatter is also different as both happen in similar regions inside rugby hohlraums. We will analyze the effects of non-linearities and temporal beam smoothing on energy transfer using the code pF3d. Calculations will be compared to experiments at Omega; analysis of future rugby hohlraum experiments on NIF will also be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. Recent results from the first polar direct drive plastic capsule implosions on NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark J.

    2012-10-01

    Polar direct drive (PDD) offers a simplified platform for conducting strongly driven implosions on NIF to investigate mix, hydro-burn and ignition-relevant physics. Its successful use necessitates a firm understanding and predictive capability of its implosion characteristics including hydro performance, symmetry and yield. To assess this capability, the first two PDD implosions of deuterium filled CH capsules were recently conducted at NIF. The P2 Legendre mode symmetry seen in these implosions agreed with pre-shot predictions even though the 700kJ drive energy produced intensities that far exceeded thresholds for both Raman and Brillouin stimulated scattering. These shots were also the first to employ image backlighting driven by two laser quads. Preliminary results indicate that the yield from the uncoated 2.25 mm diameter, 42 μm thick, CH shells was reduced by about a factor of two owing to as-shot laser drive asymmetries. Similarly, a small (sim50 μm) centroid offset between the upper and lower shell hemispheres seen in the first shot appears to be indicative of the laser quad energies. Overall, the implosion trajectories agreed with pre-shot predictions of bangtime. The second shot incorporated an 80 ?m wide,10 ?m deep depression encircling the equator of the capsule. This engineered feature was imposed to test our capability to predict the effect of high-mode features on yield and mix. A predicted yield reduction factor of 3 was not observed.[4pt] In collaboration with P. A. Bradley, J. A. Cobble, P. Hakel, S. C. Hsu, N. S. Krasheninnikova, G. A. Kyrala, G. R. Magelssen, T. J. Murphy, K. A. Obrey, R. C. Shah, I. L. Tregillis and F. J. Wysocki of Los Alamos National Laboratory; M. Marinak, R. Wallace, T. Parham, M. Cowan, S. Glenn, R. Benedetti and the NIF Operations Team of Lawrence Livermore National Laboratory; R. S. Craxton and P. W. McKenty of the Univ. Rochester; P. Fitzsimmons and A. Nikroo of General Atomics; H. Rinderknecht, M. Rosenberg, and M. G. Johnson, MIT; Work supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  20. Design Options for the High-Foot Ignition Capsule Series on NIF

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak Hopkins, L. F.; Callahan, D. A.; Clark, D.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Ma, T.; Pak, A. E.; Park, H.-S.; Salmonson, J. D.; Weber, C. R.; Zimmerman, G. B.; Olson, R. E.; Kline, J. L.; Leeper, R. J.

    2015-11-01

    Several options exist for improving implosion performance in the High-Foot series of ignition capsules on NIF. One option is to modify the fill tube used to supply DT to the capsule. Simulations indicate that a gold-coated glass tube may reduce implosion hydro effects and allow fielding a larger diameter tube capable of supporting the capsule, eliminating the need for the nominal tent support. A second option adds a fourth shock to the implosion history. According to simulation, this extra shock improves fuel confinement and capsule performance. A third option studies the feasibility of holding the DT fuel in liquid form in a foam layer inside the shell. This ``wetted foam'' concept, advanced by Olson, has existed for several years and may allow some control over the convergence of the capsule during implosion. This work was performed under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  1. Measuring radial profiles of nuclear burn in ICF implosions at OMEGA and the NIF using proton emission imaging

    NASA Astrophysics Data System (ADS)

    Seguin, F. H.; Rinderknecht, H. G.; Rosenberg, M.; Zylstra, A.; Frenje, J.; Li, C. K.; Petrasso, R.; Marshall, F. J.; Sangster, T. C.; Hoffman, N. M.; Amendt, P. A.; Bellei, C.; Le Pape, S.; Wilks, S. C.

    2014-10-01

    Fusion reactions in ICF implosions of D3He-filled capsules produce 14.7-MeV D3He protons and 3-MeV DD protons. Measurements of the spatial distributions of the D3He and DD reactions are studied with a penumbral imaging system that utilizes a CR-39-based imaging detector to simultaneously record separate penumbral images of the two types of protons. Measured burn profiles are useful for studying implosion physics and provide a critical test for benchmarking simulations. Recent implosions at OMEGA of CD capsules containing 3He gas fill and SiO2 capsules containing low-pressure D3He gas were expected to have hollow D3He burn profiles (in the 3He-filled capsule, due to fuel-shell mix), but penumbral imaging showed that the reactions were centrally peaked due to enhanced ion diffusion. The imaging technique is to be implemented soon on the NIF. This work was supported in part by NLUF, DOE, and LLE.

  2. Neutron Spectroscopy on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Knauer, J. P.

    2012-10-01

    The performance of cryogenic fuel implosion experiments in progress at the National Ignition Facility (NIF) is measured by an experimental threshold factorfootnotetextM. J. Edwards et al., Phys. Plasmas 18, 051003 (2011). (ITFX) and a generalized Lawson Criterion.footnotetextC. D. Zhou and R. Betti, Phys. Plasmas 15, 102707 (2008); P. Y. Chang et al., Phys. Rev. Lett. 104, 135002 (2010); and R. Betti et al., Phys. Plasmas 17, 058102 (2010). The ITFX metric is determined by the fusion yield and the areal density of an assembled deuterium-tritium (DT) fuel mass. Typical neutron yields from NIF implosions are greater than 10^14 allowing the neutron energy spectrum to be measured with unprecedented precision. A NIF spectrum is composed of neutrons created by fusion (DT, DD, and TT reactions) and neutrons scattered by the dense, cold fuel layer. Neutron scattering is used to determine the areal density of a NIF implosion and is measured along four lines of sight by two neutron time-of-flight detectors, a neutron imaging system, and the magnetic recoil spectrometer. An accurate measurement of the instrument response function for these detectors allows for the routine production of neutron spectra showing DT fuel areal densities up to 1.3 g/cm^2. Spectra over neutron energies of 10 to 17 MeV show areal-density asymmetries of 20% that are inconsistent with simulations. New calibrations and analyses have expended the spectral coverage down to energies less than the deuterium backscatter edge (1.5 MeV for 14 MeV neutrons). These data and analyses are presented along with a compilation of other nuclear diagnostic data that show a larger-than-expected variation in the areal density over the cold fuel mass. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No DE-FC52-08NA28302. In collaboration with NIC.

  3. Defect Induced Mix Experiments (DIME) for NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Bradley, Paul; Cobble, James; Hsu, Scott; Krasheninnikova, Natalia; Magelssen, Glenn; Murphy, Thomas; Obrey, Kimberly; Tregillis, Ian; Wysocki, Frederick

    2011-10-01

    Los Alamos National Laboratory will be performing FY12 NIF experiments using polar direct drive to measure the effects of high mode number defects on ICF implosion hydrodynamics and yield. The effect of equatorial groove features will be assessed using both x-ray backlighting and spectrally resolved imaging of higher-Z dopant layers in 2.2 mm diameter (30 microns thick) CH capsules using a multiple monochromatic imager (MMI). By placing thin, 2 micron thick, layers containing ~1.5% of either Ge or Se at different depths in the capsule, we will be able to characterize the mixing and heating of these layers in both perturbed and unperturbed regions of the capsule. Precursor experiments have been performed on Omega to validate these measurement methods using Ti and V layers. An overview of our current results from Omega and design efforts for NIF will be presented. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.

  4. Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.; Thomas, C. A.; Baker, K. L.; Benedetti, L. R.; Berzak Hopkins, L. F.; Casey, D. T.; Chapman, T.; Czajka, C. E.; Dewald, E. L.; Divol, L.; Döppner, T.; Hinkel, D. E.; Hohenberger, M.; Jarrott, L. C.; Khan, S. F.; Kritcher, A. L.; Landen, O. L.; LePape, S.; MacLaren, S. A.; Masse, L. P.; Meezan, N. B.; Pak, A. E.; Salmonson, J. D.; Woods, D. T.; Izumi, N.; Ma, T.; Mariscal, D. A.; Nagel, S. R.; Kline, J. L.; Kyrala, G. A.; Loomis, E. N.; Yi, S. A.; Zylstra, A. B.; Batha, S. H.

    2018-05-01

    We present a data-based model for low mode asymmetry in low gas-fill hohlraum experiments on the National Ignition Facility {NIF [Moses et al., Fusion Sci. Technol. 69, 1 (2016)]} laser. This model is based on the hypothesis that the asymmetry in these low fill hohlraums is dominated by the hydrodynamics of the expanding, low density, high-Z (gold or uranium) "bubble," which occurs where the intense outer cone laser beams hit the high-Z hohlraum wall. We developed a simple model which states that the implosion symmetry becomes more oblate as the high-Z bubble size becomes large compared to the hohlraum radius or the capsule size becomes large compared to the hohlraum radius. This simple model captures the trends that we see in data that span much of the parameter space of interest for NIF ignition experiments. We are now using this model as a constraint on new designs for experiments on the NIF.

  5. Hydro-scaling of DT implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Spears, Brian; Clark, Dan

    2017-10-01

    Recent implosion experiments on the National Ignition Facility (NIF) exceed 50 kJ in fusion yield and exhibit yield amplifications of >2.5-3x due to alpha-particle self-heating of the hot-spot. Two methods to increase the yield are (i) to improve the implosion quality, or stagnation pressure, at fixed target scale (by increasing implosion velocity, reducing 3D effects, etc.), and (ii) to hydrodynamically scale the capsule and absorbed energy. In the latter case the stagnation pressure remains constant, but the yield-in the absence of alpha-heating-increases as Y S 4 . 5 , where the capsule radius is increased by S, and the absorbed energy by S3 . With alpha-heating the increase with scale is considerably stronger. We present projections in the performance of current DT experiments, and the extrapolations to ignition, based on applying hydro-scaling theory and accounting for the effect of alpha-heating. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. The Crystal Backlighter Imager: a spherically-bent crystal imager for radiography on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hall, Gareth; Krauland, Christine; Buscho, Justin; Hibbard, Robin; McCarville, Thomas; Lowe-Webb, Roger; Ayers, Shannon; Kalantar, Daniel; Kohut, Thomas; Kemp, G. Elijah; Bradley, David; Bell, Perry; Landen, Otto; Brewster, Nathaniel; Piston, Kenneth

    2017-10-01

    The Crystal Backlighter Imager (CBI) is a quasi-monochromatic, near-normal incidence, spherically-bent crystal imager being developed for the NIF, which will allow ICF capsule implosions to be radiographed close to stagnation for the first time. This has not been possible using the previous pinhole-based area-backlighter configuration, as the self-emission from the capsule hotspot overwhelms the backlighter in the final stages of the implosion. CBI mitigates the broadband self-emission from the capsule hot spot by using the extremely narrow bandwidth (a few eV) inherent to imagers based on near-normal-incidence Bragg x-ray optics. The development of a diagnostic with the capability to image the capsule during the final stages of the implosion (r less than 200um) is important, as it will allow the shape, integrity and density of the shell to be measured, and will allow the evolution of features, such as the fill tube and capsule support structure, to be imaged close to bang time. The concept and operation of the 11.6keV CBI diagnostic will be discussed, and the first results from experiments on the NIF will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  7. Enthalpy generation from mixing in hohlraum-driven targets

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Milovich, Jose

    2016-10-01

    The increase in enthalpy from the physical mixing of two initially separated materials is analytically estimated and applied to ICF implosions and gas-filled hohlraums. Pressure and temperature gradients across a classical interface are shown to be the origin of enthalpy generation from mixing. The amount of enthalpy generation is estimated to be on the order of 100 Joules for a 10 micron-scale annular mixing layer between the solid deuterium-tritium fuel and the undoped high-density carbon ablator of a NIF-scale implosion. A potential resonance is found between the mixing layer thickness and gravitational (Cs2/ g) and temperature-gradient scale lengths, leading to elevated enthalpy generation. These results suggest that if mixing occurs in current capsule designs for the National Ignition Facility, the ignition margin may be appreciably eroded by the associated enthalpy of mixing. The degree of enthalpy generation from mixing of high- Z hohlraum wall material and low- Z gas fills is estimated to be on the order of 100 kJ or more for recent NIF-scale hohlraum experiments, which is consistent with the inferred missing energy based on observed delays in capsule implosion times. Work performed under the auspices of Lawrence Livermore National Security, LLC (LLNS) under Contract No. DE-AC52-07NA27344.

  8. The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Perkins, L. J.; Ho, D. D.-M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A.

    2017-06-01

    We examine the potential that imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under implosion compression may relax the conditions required for ignition and propagating burn in indirect-drive inertial confinement fusion (ICF) targets. This may allow the attainment of ignition, or at least significant fusion energy yields, in presently performing ICF targets on the National Ignition Facility (NIF) that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation [Doeppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. Results of detailed two-dimensional radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction, and potential stabilization of higher-mode Rayleigh-Taylor instabilities. Optimum initial applied fields are found to be around 50 T. Given that the full plasma structure at capsule stagnation may be governed by three-dimensional resistive magneto-hydrodynamics, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to further assess the potential of applied magnetic fields to ICF ignition and burn on NIF.

  9. Advances in shock timing experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R.; Ross, J. S.; LePape, S.; Ralph, J. E.; Hohenberger, M.; Dewald, E. L.; Berzak Hopkins, L.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2016-03-01

    Recent advances in shock timing experiments and analysis techniques now enable shock measurements to be performed in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility (NIF). Previous measurements of shock timing in inertial confinement fusion (ICF) implosions were performed in surrogate targets, where the solid DT ice shell and central DT gas were replaced with a continuous liquid deuterium (D2) fill. These previous experiments pose two surrogacy issues: a material surrogacy due to the difference of species (D2 vs. DT) and densities of the materials used and a geometric surrogacy due to presence of an additional interface (ice/gas) previously absent in the liquid-filled targets. This report presents experimental data and a new analysis method for validating the assumptions underlying this surrogate technique.

  10. Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Town, R. P. J.; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Kline, J. L.; Kyrala, G. A.; Ma, T.; Milovich, J. L.; Moody, J. D.; Nagel, S. R.; Pak, A.; Peterson, J. L.; Robey, H. F.; Ross, J. S.; Scott, R. H. H.; Spears, B. K.; Edwards, M. J.; Kilkenny, J. D.; Landen, O. L.

    2014-05-01

    In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

  11. An assessment of the 3D geometric surrogacy of shock timing diagnostic techniques for tuning experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Munro, D. H.; Spears, B. K.; Marinak, M. M.; Jones, O. S.; Patel, M. V.; Haan, S. W.; Salmonson, J. D.; Landen, O. L.; Boehly, T. R.; Nikroo, A.

    2008-05-01

    Ignition capsule implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of four steps, which launch a corresponding series of shocks through the ablator and DT ice shell. The relative timing of these shocks is critical for maintaining the DT fuel on a low adiabat. The current NIF specification requires that the timing of all four shocks be tuned to an accuracy of <= +/- 100ps. To meet these stringent requirements, dedicated tuning experiments are being planned to measure and adjust the shock timing on NIF. These tuning experiments will be performed in a modified hohlraum geometry, where a re-entrant Au cone is added to the standard NIF hohlraum to provide optical diagnostic (VISAR and SOP) access to the shocks as they break out of the ablator. This modified geometry is referred to as the 'keyhole' hohlraum and introduces a geometric difference between these tuning-experiments and the full ignition geometry. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The results from simulations of a quarter of the target geometry are presented. Comparisons of the hohlraum drive conditions and the resulting effect on the shock timing in the keyhole hohlraum are compared with the corresponding results for the standard ignition hohlraum.

  12. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalyuk, V. A.; Weber, C. R.; Robey, H. F.

    Hydrodynamic instability growth has been studied using three-dimensional (3-D) broadband modulations by comparing “high-foot” and “low-foot” spherical plastic (CH) capsule implosions at the National Ignition Facility (NIF). The initial perturbations included capsule outer-surface roughness and capsule-mounting membranes (“tents”) that were similar to those used in a majority of implosions on NIF. The tents with thicknesses of 31-nm, 46-nm, and 109-nm were used in the experiments. The outer-surface roughness in the “low-foot” experiment was similar to the standard specification, while it was increased by ~4 times in the “high-foot” experiment to compensate for the reduced growth. The ablation-front instability growth wasmore » measured using a Hydrodynamic Growth Radiography platform at a convergence ratio of 3. The dominant capsule perturbations, generated by the tent mountings, had measured perturbation amplitudes comparable to the capsule thickness with the “low-foot” drive. These tent perturbations were reduced by ~3 to 10 times in implosions with the “high-foot” drive. Unexpectedly, the measured perturbations with initially thinner tents were either larger or similar to the measured perturbations with thicker tents for both “high-foot” and “low-foot” drives. While the measured instability growth of 3-D broadband perturbations was also significantly reduced by ~5 to 10 times with the “high-foot” drive, compared to the “low-foot” drive, the growth mitigation was stronger than expected based on previous “growth-factor” results measured with two-dimensional modulations. Lastly, one of the hypotheses to explain the results is based on the 3-D modulations of the oxygen content in the bulk of the capsule having a stronger effect on the overall growth of capsule perturbations than the outer-surface capsule roughness.« less

  13. Hydrodynamic instability growth of three-dimensional modulations in radiation-driven implosions with “low-foot” and “high-foot” drives at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Weber, C. R.; Robey, H. F.; ...

    2017-04-11

    Hydrodynamic instability growth has been studied using three-dimensional (3-D) broadband modulations by comparing “high-foot” and “low-foot” spherical plastic (CH) capsule implosions at the National Ignition Facility (NIF). The initial perturbations included capsule outer-surface roughness and capsule-mounting membranes (“tents”) that were similar to those used in a majority of implosions on NIF. The tents with thicknesses of 31-nm, 46-nm, and 109-nm were used in the experiments. The outer-surface roughness in the “low-foot” experiment was similar to the standard specification, while it was increased by ~4 times in the “high-foot” experiment to compensate for the reduced growth. The ablation-front instability growth wasmore » measured using a Hydrodynamic Growth Radiography platform at a convergence ratio of 3. The dominant capsule perturbations, generated by the tent mountings, had measured perturbation amplitudes comparable to the capsule thickness with the “low-foot” drive. These tent perturbations were reduced by ~3 to 10 times in implosions with the “high-foot” drive. Unexpectedly, the measured perturbations with initially thinner tents were either larger or similar to the measured perturbations with thicker tents for both “high-foot” and “low-foot” drives. While the measured instability growth of 3-D broadband perturbations was also significantly reduced by ~5 to 10 times with the “high-foot” drive, compared to the “low-foot” drive, the growth mitigation was stronger than expected based on previous “growth-factor” results measured with two-dimensional modulations. Lastly, one of the hypotheses to explain the results is based on the 3-D modulations of the oxygen content in the bulk of the capsule having a stronger effect on the overall growth of capsule perturbations than the outer-surface capsule roughness.« less

  14. Using absolute x-ray spectral measurements to infer stagnation conditions in ICF implosions

    NASA Astrophysics Data System (ADS)

    Patel, Pravesh; Benedetti, L. R.; Cerjan, C.; Clark, D. S.; Hurricane, O. A.; Izumi, N.; Jarrott, L. C.; Khan, S.; Kritcher, A. L.; Ma, T.; Macphee, A. G.; Landen, O.; Spears, B. K.; Springer, P. T.

    2016-10-01

    Measurements of the continuum x-ray spectrum emitted from the hot-spot of an ICF implosion can be used to infer a number thermodynamic properties at stagnation including temperature, pressure, and hot-spot mix. In deuterium-tritium (DT) layered implosion experiments on the National Ignition Facility (NIF) we field a number of x-ray diagnostics that provide spatial, temporal, and spectrally-resolved measurements of the radiated x-ray emission. We report on analysis of these measurements using a 1-D hot-spot model to infer thermodynamic properties at stagnation. We compare these to similar properties that can be derived from DT fusion neutron measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to themore » predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.« less

  16. Simulation of alternate hohlraum shapes for improved inner beam propagation in indirectly-driven ICF implosions

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Berzak Hopkins, L. F.

    2017-10-01

    Recent indirectly-driven ICF experiments performed on the National Ignition Facility have shown that the propagation of the inner beam cones is impeded late in the laser pulse by the growth of a gold bubble, which is initiated at the location where the outer beams hit the hohlraum wall and which expands radially inward into the hohlraum as the implosion progresses. Late in time, this gold bubble intercepts a significant portion of the inner beams reducing the available energy reaching the waist of the hohlraum and affecting the implosion symmetry. Integrated hohlraum simulations of alternate hohlraum shapes using HYDRA are performed to explore options for reducing the impact of the gold bubble on inner beam propagation. The simulations are based on recent NIF implosions using High-Density Carbon (HDC) ablators, which have shown good performance, but which could benefit from improved inner beam propagation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  17. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    PubMed

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robey, H. F.; MacGowan, B. J.; Landen, O. L.

    Indirectly driven capsule implosions on the National Ignition Facility (NIF) [Moses et al., Phys. Plasmas 16, 041006 (2009)] are being performed with the goal of compressing a layer of cryogenic deuterium-tritium (DT) fuel to a sufficiently high areal density (ρR) to sustain the self-propagating burn wave that is required for fusion power gain greater than unity. These implosions are driven with a temporally shaped laser pulse that is carefully tailored to keep the DT fuel on a low adiabat (ratio of fuel pressure to the Fermi degenerate pressure). In this report, the impact of variations in the laser pulse shapemore » (both intentionally and unintentionally imposed) on the in-flight implosion adiabat is examined by comparing the measured shot-to-shot variations in ρR from a large ensemble of DT-layered ignition target implosions on NIF spanning a two-year period. A strong sensitivity to variations in the early-time, low-power foot of the laser pulse is observed. It is shown that very small deviations (∼0.1% of the total pulse energy) in the first 2 ns of the laser pulse can decrease the measured ρR by 50%.« less

  19. Robust spherical direct-drive design for NI

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Hurricane, O.; Michel, P.; Nora, R.; Tabak, M.; Lawrence Livermore Natl Lab Team

    2016-10-01

    Achieving ignition in a direct-drive or indirect-drive cryogenic implosion is a tremendous challenge. Both approaches need to deal with physic and technologic issues. During the past years, the indirect drive effort on the National Ignition Facility (NIF) has revealed unpredicted lost of performances that force to think to more robust designs and to dig into detailed physics aspects. Encouraging results have been obtained using a strong first shock during the implosion of CH ablator ignition capsules. These ``high-foot'' implosion results in a significantly lower ablation Rayleigh-Taylor instability growth than that of the NIC point design capsule. The trade-off with this design is a higher fuel adiabat that limits both fuel compression and theoretical capsule yield. The purpose of designing this capsule is to recover a more ideal one-dimensional implosion that is in closer agreement to simulation predictions. In the same spirit of spending energy on margin, at the coast of decreased performance, we are presenting here a study on ``robust'' spherical direct drive design for NIF. This 2-Shock direct drive pulse shape results in a high adiabat (>3) and low convergence (<17) implosion designed to produce a near 1D-like implosion. We take a particular attention to design a robust implosion with respect to long-wavelength non uniformity seeded by power imbalance and target offset. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  20. Impacts of Implosion Asymmetry And Hot Spot Shape On Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Yi, S. Austin; Batha, Steve

    2017-10-01

    Implosion symmetry plays a critical role in achieving high areal density and internal energy at stagnation during hot spot formation in ICF capsules. Asymmetry causes hot spot irregularity and stagnation de-synchronization that results in lower temperatures and areal densities of the hot fuel. These degradations significantly affect the alpha heating process in the DT fuel as well as on the thermonuclear performance of the capsules. In this work, we explore the physical factors determining the shape of the hot spot late in the implosion and the effects of shape on Î+/-particle transport. We extend our ignition theory [1-4] to include the hot spot shape and quantify the effects of the implosion asymmetry on both the ignition criterion and capsule performance. We validate our theory with the NIF existing experimental data Our theory shows that the ignition criterion becomes more restrictive with the deformation of the hot spot. Through comparison with the NIF data, we demonstrate that the shape effects on the capsules' performance become more explicit as the self-heating and yield of the capsules increases. The degradation of the thermonuclear burn by the hot spot shape for high yield shots to date can be as high as 20%. Our theory is in good agreement with the NIF data. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

  1. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions.

    PubMed

    Xu, Barry; Hu, S X

    2011-07-01

    The electron-ion temperature relaxation essentially affects both the laser absorption in coronal plasmas and the hot-spot formation in inertial confinement fusion (ICF). It has recently been reexamined for plasma conditions closely relevant to ICF implosions using either classical molecular-dynamics simulations or analytical methods. To explore the electron-ion temperature equilibration effects on ICF implosion performance, we have examined two Coulomb logarithm models by implementing them into our hydrocodes, and we have carried out hydrosimulations for ICF implosions. Compared to the Lee-More model that is currently used in our standard hydrocodes, the two models predict substantial differences in laser absorption, coronal temperatures, and neutron yields for ICF implosions at the OMEGA Laser Facility [Boehly et al. Opt. Commun. 133, 495 (1997)]. Such effects on the triple-picket direct-drive design at the National Ignition Facility (NIF) have also been explored. Based on the validity of the two models, we have proposed a combined model of the electron-ion temperature-relaxation rate for the overall ICF plasma conditions. The hydrosimulations using the combined model for OMEGA implosions have shown ∼6% more laser absorption, ∼6%-15% higher coronal temperatures, and ∼10% more neutron yield, when compared to the Lee-More model prediction. It is also noticed that the gain for the NIF direct-drive design can be varied by ∼10% among the different electron-ion temperature-relaxation models.

  2. Self characterization of a coded aperture array for neutron source imaging

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; Guler, N.; Merrill, F. E.; Wilde, C. H.

    2014-12-01

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (˜100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  3. Defect-induced mix experiment for NIF

    NASA Astrophysics Data System (ADS)

    Schmitt, M. J.; Bradley, P. A.; Cobble, J. A.; Hsu, S. C.; Krasheninnikova, N. S.; Kyrala, G. A.; Magelssen, G. R.; Murphy, T. J.; Obrey, K. A.; Tregillis, I. L.; Wysocki, F. J.; Finnegan, S. M.

    2013-11-01

    The Defect Induced Mix Experiment (DIME-II) will measure the implosion and mix characteristics of CH capsules filled with 5 atmospheres of DT by incorporating mid-Z dopant layers of Ge and Ga. This polar direct drive (PDD) experiment also will demonstrate the filling of a CH capsule at target chamber center using a fill tube. Diagnostics for these experiments include areal x-ray backlighting to obtain early time images of the implosion trajectory and a multiple-monochromatic imager (MMI) to collect spectrally-resolved images of the capsule dopant line emission near bangtime. The inclusion of two (or more) thin dopant layers at separate depths within the capsule shell facilitates spatial correlation of mix between the layers and the hot gas core on a single shot. The dopant layers are typically 2 μm thick and contain dopant concentrations of 1.5%. Three dimensional Hydra simulations have been performed to assess the effects of PDD asymmetry on capsule performance.

  4. Thin Shell Model for NIF capsule stagnation studies

    NASA Astrophysics Data System (ADS)

    Hammer, J. H.; Buchoff, M.; Brandon, S.; Field, J. E.; Gaffney, J.; Kritcher, A.; Nora, R. C.; Peterson, J. L.; Spears, B.; Springer, P. T.

    2015-11-01

    We adapt the thin shell model of Ott et al. to asymmetric ICF capsule implosions on NIF. Through much of an implosion, the shell aspect ratio is large so the thin shell approximation is well satisfied. Asymmetric pressure drive is applied using an analytic form for ablation pressure as a function of the x-ray flux, as well as time-dependent 3D drive asymmetry from hohlraum calculations. Since deviations from a sphere are small through peak velocity, we linearize the equations, decompose them by spherical harmonics and solve ODE's for the coefficients. The model gives the shell position, velocity and areal mass variations at the time of peak velocity, near 250 microns radius. The variables are used to initialize 3D rad-hydro calculations with the HYDRA and ARES codes. At link time the cold fuel shell and ablator are each characterized by a density, adiabat and mass. The thickness, position and velocity of each point are taken from the thin shell model. The interior of the shell is filled with a uniform gas density and temperature consistent with the 3/2PV energy found from 1D rad-hydro calculations. 3D linked simulations compare favorably with integrated simulations of the entire implosion. Through generating synthetic diagnostic data, the model offers a method for quickly testing hypothetical sources of asymmetry and comparing with experiment. Prepared by LLNL under Contract DE-AC52-07NA27344.

  5. Non-LTE modeling for the National Ignition Facility (and beyond)

    NASA Astrophysics Data System (ADS)

    Scott, H. A.; Hammel, B. A.; Hansen, S. B.

    2012-05-01

    Considerable progress has been made in the last year in the study of laser-driven inertial confinement fusion at the National Ignition Facility (NIF). Experiments have demonstrated symmetric capsule implosions with plasma conditions approaching those required for ignition. Improvements in computational models - in large part due to advances in non-LTE modeling - have resulted in simulations that match experimental results quite well for the X-ray drive, implosion symmetry and total wall emission [1]. Non-LTE modeling is a key part of the NIF simulation effort, affecting several aspects of experimental design and diagnostics. The X-rays that drive the capsule arise from high-Z material ablated off the hohlraum wall. Current capsule designs avoid excessive preheat from high-energy X-rays by shielding the fuel with a mid-Z dopant, which affects the capsule dynamics. The dopant also mixes into the hot spot through hydrodynamic instabilities, providing diagnostic possibilities but potentially impacting the energy balance of the capsule [2]. Looking beyond the NIF, a proposed design for a fusion reactor chamber depends on lowdensity high-Z gas absorbing X-rays and particles to protect the first wall [3]. These situations encompass a large range of temperatures, densities and spatial scales. They each emphasize different aspects of atomic physics and present a variety of challenges for non-LTE modeling. We discuss the relevant issues and summarize the current state of the modeling effort for these applications.

  6. Imaging of High-Z doped, Imploded Capsule Cores

    NASA Astrophysics Data System (ADS)

    Prisbrey, Shon T.; Edwards, M. John; Suter, Larry J.

    2006-10-01

    The ability to correctly ascertain the shape of imploded fusion capsules is critical to be able to achieve the spherical symmetry needed to maximize the energy yield of proposed fusion experiments for the National Ignition Facility. Implosion of the capsule creates a hot, dense core. The introduction of a high-Z dopant into the gas-filled core of the capsule increases the amount of bremsstrahlung radiation produced in the core and should make the imaging of the imploded core easier. Images of the imploded core can then be analyzed to ascertain the symmetry of the implosion. We calculate that the addition of Ne gas into a deuterium gas core will increase the amount of radiation emission while preserving the surrogacy of the radiation and hydrodynamics in the indirect drive NIF hohlraum in the proposed cryogenic hohlraums. The increased emission will more easily enable measurement of asymmetries and tuning of the implosion.

  7. Inline CBET Model Including SRS Backscatter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, David S.

    2015-06-26

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. Using the CBET gains derived in this paper, we show how to implement these equations in amore » ray-based laser source for a rad-hydro code.« less

  8. Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Town, R J; Rosen, M D; Michel, P A

    2010-11-22

    A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys ofmore » Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.« less

  9. Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal

    2017-08-01

    The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.

  10. NIF Double Shell outer/inner shell collision experiments

    NASA Astrophysics Data System (ADS)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  11. Atomic Scale Mixing for Inertial Confinement Fusion Associated Hydro Instabilities

    DTIC Science & Technology

    2013-01-26

    observe that the obvious step of RT validation using NIF or Omega laser data does not address themultimode, mode coupling RTgrowth stage, as the...ignition facility, Phys. Plasmas 18 (2011) 051001. [2] W. Goldstein, R. Rosner, Workshop on the Science of Fusion Ignition on NIF , Technical Report LLNL-TR...11 (2004) 339e491. [6] S.P. Regan, R. Epstein, B.A. Hammel, L.J. Suter, J. Ralph, et al., Hot-spot mix in ignition-scale implosions on the NIF , Phys

  12. Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Macfarlane, J. J.; Golovkin, I.; Kulkarni, S.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L. J.

    2013-10-01

    We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple 2-D plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and K α reemission from the dopant.

  13. Hot spot mix in ICF implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, Tammy

    2016-10-01

    In the quest to achieve ignition through the inertial confinement fusion scheme, one of the critical challenges is to drive a symmetric implosion at high velocity without hydrodynamic instabilities becoming detrimental. These instabilities, primarily at the ablation front and the fuel-ablator interface, can cause mix of the higher-Z shell into the hot spot, resulting in increased radiation loss and thus reduced temperature and neutron yield. To quantify the level of mix, we developed a model that infers the level of hot spot contamination using the ratio of the enhanced x-ray production relative to the neutron yield. Applying this methodology to the full ensemble of indirect-drive National Ignition Facility (NIF) cryogenically layered DT implosions provides insight on the sensitivity of performance to the level of ablator-hot spot mix. In particular, the improvement seen with the High Foot design can be primarily attributed to a reduction in ablation-front instability mix that enabled the implosions to be pushed to higher velocity and performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.

  14. Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries

    DOE PAGES

    Scott, R. H. H.; Clark, D. S.; Bradley, D. K.; ...

    2013-02-01

    In this study, the sensitivity of inertial confinement fusion implosions of the type performed on the National Ignition Facility (NIF) [1] to low-mode flux asymmetries has been investigated numerically. It is shown that large-amplitude, low-order mode shapes (Legendre polynomial P4), resulting from associated low order flux asymmetries, cause spatial variations in capsule and fuel momentum that prevent the DT “ice” layer from being decelerated uniformly by the hot spot pressure. This reduces the transfer of kinetic to internal energy of the central hot spot, thus reducing neutron yield. Furthermore, synthetic gated x-ray images indicate that the P4 component of hotmore » spot self-emission shape is insensitive to P4 hot spot shapes, and a positive P4 asymmetry aliases itself as a negative or oblate P2 in these images. Correction of this apparent P2 distortion can further distort the implosion while creating a round x-ray image. Long wavelength asymmetries may be playing a significant role in the observed yield reduction of NIF DT implosions relative to detailed post-shot 2D simulations.« less

  15. ``Green's function'' approach & low-mode asymmetries

    NASA Astrophysics Data System (ADS)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  16. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by amore » factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.« less

  17. Description of the NIF Laser

    DOE PAGES

    Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.; ...

    2017-03-23

    The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less

  18. Advances in NIF Shock Timing Experiments

    NASA Astrophysics Data System (ADS)

    Robey, Harry

    2012-10-01

    Experiments are underway to tune the shock timing of capsule implosions on the National Ignition Facility (NIF). These experiments use a modified cryogenic hohlraum geometry designed to precisely match the performance of ignition hohlraums. The targets employ a re-entrant Au cone to provide optical access to multiple shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of all four shocks is diagnosed with VISAR (Velocity Interferometer System for Any Reflector). Experiments are now routinely conducted in a mirrored keyhole geometry, which allows for simultaneous diagnosis of the shock timing at both the hohlraum pole and equator. Further modifications are being made to improve the surrogacy to ignition hohlraums by replacing the standard liquid deuterium (D2) capsule fill with a deuterium-tritium (DT) ice layer. These experiments will remove any possible surrogacy difference between D2 and DT as well as incorporate the physics of shock release from the ice layer, which is absent in current experiments. Experimental results and comparisons with numerical simulation are presented.

  19. Progress towards ignition on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, M. J.; Patel, P. K.; Lindl, J. D.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-μm light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ∼0.2 mgmore » of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ∼5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ∼1000 g/cm{sup 3} with an areal density (ρR) of ∼1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ∼10 keV and a ρR ∼0.3 g/cm{sup 2}, or approximately an α-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ∼80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ∼3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.« less

  20. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    DOE PAGES

    Ma, T.; Chen, H.; Patel, P. K.; ...

    2016-08-18

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. We describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.Published by AIP Publishing

  1. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF.

    PubMed

    Ma, T; Chen, H; Patel, P K; Schneider, M B; Barrios, M A; Casey, D T; Chung, H-K; Hammel, B A; Berzak Hopkins, L F; Jarrott, L C; Khan, S F; Lahmann, B; Nora, R; Rosenberg, M J; Pak, A; Regan, S P; Scott, H A; Sio, H; Spears, B K; Weber, C R

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  2. Diagnosing radiative shocks from deuterium and tritium implosions on NIF.

    PubMed

    Pak, A; Divol, L; Weber, S; Döppner, T; Kyrala, G A; Kilne, J; Izumi, N; Glenn, S; Ma, T; Town, R P; Bradley, D K; Glenzer, S H

    2012-10-01

    During the recent ignition tuning campaign at the National Ignition Facility, layered cryogenic deuterium and tritium capsules were imploded via x-ray driven ablation. The hardened gated x-ray imager diagnostic temporally and spatially resolves the x-ray emission from the core of the capsule implosion at energies above ~8 keV. On multiple implosions, ~200-400 ps after peak compression a spherically expanding radiative shock has been observed. This paper describes the methods used to characterize the radial profile and rate of expansion of the shock induced x-ray emission.

  3. Development of a krypton-doped gas symmetry capsule platform for x-ray spectroscopy of implosion cores on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M. B.; Barrios, M. A.; Casey, D. T.; Chung, H.-K.; Hammel, B. A.; Berzak Hopkins, L. F.; Jarrott, L. C.; Khan, S. F.; Lahmann, B.; Nora, R.; Rosenberg, M. J.; Pak, A.; Regan, S. P.; Scott, H. A.; Sio, H.; Spears, B. K.; Weber, C. R.

    2016-11-01

    The electron temperature at stagnation of an ICF implosion can be measured from the emission spectrum of high-energy x-rays that pass through the cold material surrounding the hot stagnating core. Here we describe a platform developed on the National Ignition Facility where trace levels of a mid-Z dopant (krypton) are added to the fuel gas of a symcap (symmetry surrogate) implosion to allow for the use of x-ray spectroscopy of the krypton line emission.

  4. Progress Toward Modeling Spectroscopic Signatures of Mix on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Tregillis, I. L.; Schmitt, M. J.; Hsu, S. C.; Wysocki, F. J.; Cobble, J. A.; Murphy, T. J.

    2011-10-01

    Defect-induced mix processes may degrade the performance of ICF and ICF-like targets at Omega and NIF. An improved understanding of the relevant physics requires an experimental program built on a foundation of radiation-hydrodynamic simulations plus reliable synthetic diagnostic outputs. To that end, the Applications of Ignition (AoI) and Defect Implosion Experiment (DIME) efforts at LANL have focused on directly driven plastic capsules containing high-Z dopants and manufactured with an equatorial ``trench'' defect. One of the key diagnostic techniques for detecting and diagnosing the migration of dopant material into the hot core is Multi-Monochromatic X-ray Imaging (MMI). This talk will focus on recent efforts to model spectroscopic signatures of mix processes in AoI/DIME capsules via simulated MMI-type diagnostic instruments. It will also include data from recent Omega shots and calculations in support of Tier 1 experiments at NIF in FY2012. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  5. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J.; Lahmann, B.; Seguin, F.; Petrasso, R.; Appelbe, B.; Chittenden, J.; Walsh, C.; Delettrez, J.; Igumenshchev, I.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Grimble, W.; Marshall, F.; Michel, T.; Stoeckl, C.; Haines, B. M.; Zylstra, A. B.

    2017-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by e.g. engineering features or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation, we report on OMEGA experiments with intentional drive asymmetry designed for testing the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The measurements are contrasted to CHIMERA, RAGE and ASTER simulations, providing insight into implosion dynamics and the relative importance of laser drive non-uniformity, stalk and offset as sources of asymmetry. The results highlight the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by the U.S. DOE, NLUF and LLE.

  6. The near vacuum hohlraum campaign at the NIF: A new approach

    NASA Astrophysics Data System (ADS)

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N.; Turnbull, D.; Mackinnon, A. J.; Ho, D.; Ross, J. S.; Khan, S.; Pak, A.; Dewald, E.; Benedetti, L. R.; Nagel, S.; Biener, J.; Callahan, D. A.; Yeamans, C.; Michel, P.; Schneider, M.; Kozioziemski, B.; Ma, T.; Macphee, A. G.; Haan, S.; Izumi, N.; Hatarik, R.; Sterne, P.; Celliers, P.; Ralph, J.; Rygg, R.; Strozzi, D.; Kilkenny, J.; Rosenberg, M.; Rinderknecht, H.; Sio, H.; Gatu-Johnson, M.; Frenje, J.; Petrasso, R.; Zylstra, A.; Town, R.; Hurricane, O.; Nikroo, A.; Edwards, M. J.

    2016-05-01

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30×). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examine the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30× implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.

  7. Self characterization of a coded aperture array for neutron source imaging

    DOE PAGES

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D. N.; ...

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning DT plasma during the stagnation stage of ICF implosions. Since the neutron source is small (~100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be preciselymore » aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.« less

  8. Investigation of the cylindrical vacuum hohlraum energy in the first implosion experiment at the SGIII laser facility

    NASA Astrophysics Data System (ADS)

    Zhang, Huasen; Jiang, Wei; Ge, Fengjun; Song, Peng; Zou, Shiyang; Huang, Tianxuan; Li, Sanwei; Yang, Dong; Li, Zhichao; Hou, Lifei; Guo, Liang; Che, Xingsen; Du, Huabing; Xie, Xufei; He, Xiaoan; Li, Chaoguang; Zha, Weiyi; Xu, Tao; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Chen, Zhongjing; Zhang, Xing; Yan, Ji; Pu, Yudong; Peng, Xiaoshi; Li, Yulong; Gu, Peijun; Zheng, Wudi; Liu, Jie; Ding, Yongkun; Zhu, Shaoping

    2018-02-01

    The cylindrical vacuum hohlraum energy at the SGIII laser facility [X. T. He and W. Y. Zhang, Eur. Phys. J. D 44, 227 (2007) and W. Zheng et al., High Power Laser Sci. Eng. 4, e21 (2016)] is investigated for the first time. The hohlraum size and the laser energy are intermediate between the Nova and NIF typical hohlraum experiments. It is found that the SGIII hohlraum exhibits an x-ray conversion efficiency of about 85%, which is more close to that of the NIF hohlraum. The LARED simulations of the SGIII hohlraum underestimate about 15% of the radiation flux measured from the laser entrance hole, while the capsule radiation drive inferred from the x-ray bangtime is roughly consistent with the experiments. The underestimation of the SGIII hohlraum radiation flux is mainly caused by the more enclosed laser entrance hole in the LARED simulation. The comparison between the SGIII and NIF hohlraum simulations by LARED indicates that the LARED generally underestimates the measured radiation flux by 15% for the high x-ray conversion efficiency hohlraums, while it can roughly predict the capsule radiation drive inside the hohlraum.

  9. Comparison of Raman Scattering Measurements and Modeling in NIF Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strozzi, D J; Hinkel, D E; Williams, E A

    2011-11-04

    Recent NIF indirect-drive experiments have shown significant Raman scattering from the inner beams. NIF data has motivated improvements to rad-hydro modeling, leading to the 'high flux model' [M. D. Rosen et al., HEDP 7, 180 (2011)]. Cross-beam energy transfer [P. A. Michel et al., Phys. Plasmas 17, 056305 (2010] in the laser entrance hole is an important tool for achieving round implosions, and is uniformly distributed across the laser spot in rad-hydro simulations (but not necessarily in experiments). We find the Raman linear gain spectra computed with these plasma conditions agree well in time-dependent peak wavelength with the measured data,more » especially when overlapping laser-beam intensities are used. More detailed, spatially non-uniform modeling of the cross-beam transfer has been performed. The resulting gains better follow the time history of the measured backscatter. We shall present the impact of spatially non-uniform energy transfer on SRS gain. This metric is valid when amplification is in a linear regime, and so we shall also present an assessment of whether electron trapping in Langmuir waves can play a role in these shots.« less

  10. Tests and calibration of NIF neutron time of flight detectors.

    PubMed

    Ali, Z A; Glebov, V Yu; Cruz, M; Duffy, T; Stoeckl, C; Roberts, S; Sangster, T C; Tommasini, R; Throop, A; Moran, M; Dauffy, L; Horsefield, C

    2008-10-01

    The National Ignition Facility (NIF) neutron time of flight (NTOF) diagnostic will measure neutron yield and ion temperature in all NIF campaigns in DD, DT, and THD(*) implosions. The NIF NTOF diagnostic is designed to measure neutron yield from 1x10(9) to 2x10(19). The NTOF consists of several detectors of varying sensitivity located on the NIF at about 5 and 20 m from the target. Production, testing, and calibration of the NIF NTOF detectors have begun at the Laboratory for Laser Energetics (LLE). Operational tests of the NTOF detectors were performed on several facilities including the OMEGA laser at LLE and the Titan laser at Lawrence Livermore National Laboratory. Neutron calibrations were carried out on the OMEGA laser. Results of the NTOF detector tests and calibration will be presented.

  11. Simulations of fill tube effects on the implosion of high-foot NIF ignition capsules

    NASA Astrophysics Data System (ADS)

    Dittrich, T. R.; Hurricane, O. A.; Berzak-Hopkins, L. F.; Callahan, D. A.; Casey, D. T.; Clark, D.; Dewald, E. L.; Doeppner, T.; Haan, S. W.; Hammel, B. A.; Harte, J. A.; Hinkel, D. E.; Kozioziemski, B. J.; Kritcher, A. L.; Ma, T.; Nikroo, A.; Pak, A. E.; Parham, T. G.; Park, H.-S.; Patel, P. K.; Remington, B. A.; Salmonson, J. D.; Springer, P. T.; Weber, C. R.; Zimmerman, G. B.; Kline, J. L.

    2016-05-01

    Encouraging results have been obtained using a strong first shock during the implosion of carbon-based ablator ignition capsules. These “high-foot” implosion results show that capsule performance deviates from 1D expectations as laser power and energy are increased. A possible cause of this deviation is the disruption of the hot spot by jets originating in the capsule fill tube. Nominally, a 10 μm outside diameter glass (SiO2) fill tube is used in these implosions. Simulations indicate that a thin coating of Au on this glass tube may lessen the hotspot disruption. These results and other mitigation strategies will be presented.

  12. eHXI: A permanently installed, hard x-ray imager for the National Ignition Facility

    DOE PAGES

    Doppner, T.; Bachmann, B.; Albert, F.; ...

    2016-06-14

    We have designed and built a multi-pinhole imaging system for high energy x-rays (≥ 50 keV) that is permanently installed in the equatorial plane outside of the target chamber at the National Ignition Facility (NIF). It records absolutely-calibrated, time-integrated x-ray images with the same line-of-sight as the multi-channel, spatially integrating hard x-ray detector FFLEX [McDonald et al., Rev. Sci. Instrum. 75 (2004) 3753], having a side view of indirect-drive inertial confinement fusion (ICF) implosion targets. The equatorial hard x-ray imager (eHXI) has recorded images on the majority of ICF implosion experiments since May 2011. Lastly, eHXI provides valuable information onmore » hot electron distribution in hohlraum experiments, target alignment, potential hohlraum drive asymmetries and serves as a long term reference for the FFLEX diagnostics.« less

  13. First downscattered neutron images from Inertial Confinement Fusion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Guler, Nevzat; Aragonez, Robert J.; Archuleta, Thomas N.; Batha, Steven H.; Clark, David D.; Clark, Deborah J.; Danly, Chris R.; Day, Robert D.; Fatherley, Valerie E.; Finch, Joshua P.; Gallegos, Robert A.; Garcia, Felix P.; Grim, Gary; Hsu, Albert H.; Jaramillo, Steven A.; Loomis, Eric N.; Mares, Danielle; Martinson, Drew D.; Merrill, Frank E.; Morgan, George L.; Munson, Carter; Murphy, Thomas J.; Oertel, John A.; Polk, Paul J.; Schmidt, Derek W.; Tregillis, Ian L.; Valdez, Adelaida C.; Volegov, Petr L.; Wang, Tai-Sen F.; Wilde, Carl H.; Wilke, Mark D.; Wilson, Douglas C.; Atkinson, Dennis P.; Bower, Dan E.; Drury, Owen B.; Dzenitis, John M.; Felker, Brian; Fittinghoff, David N.; Frank, Matthias; Liddick, Sean N.; Moran, Michael J.; Roberson, George P.; Weiss, Paul; Buckles, Robert A.; Cradick, Jerry R.; Kaufman, Morris I.; Lutz, Steve S.; Malone, Robert M.; Traille, Albert

    2013-11-01

    Inertial Confinement Fusion experiments at the National Ignition Facility (NIF) are designed to understand and test the basic principles of self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic (CH) capsules. The experimental campaign is ongoing to tune the implosions and characterize the burning plasma conditions. Nuclear diagnostics play an important role in measuring the characteristics of these burning plasmas, providing feedback to improve the implosion dynamics. The Neutron Imaging (NI) diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by collecting images at two different energy bands for primary (13-15 MeV) and downscattered (10-12 MeV) neutrons. From these distributions, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. The first downscattered neutron images from imploding ICF capsules are shown in this paper.

  14. Wetted Foam Liquid DT Layer ICF Experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Leeper, R. J.; Peterson, R. R.; Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Bradley, P. A.; Yin, L.; Wilson, D. C.; Haines, B. M.; Batha, S. H.

    2016-10-01

    A key physics issue in indirect-drive ICF relates to the understanding of the limitations on hot spot convergence ratio (CR), principally set by the hohlraum drive symmetry, the capsule mounting hardware (the ``tent''), and the capsule fill tube. An additional key physics issue relates to the complex process by which a hot spot must be dynamically formed from the inner ice surface in a DT ice-layer implosion. These physics issues have helped to motivate the development of a new liquid DT layer wetted foam platform at the NIF that provides an ability to form the hot spot from DT vapor and experimentally study and understand hot spot formation at a variety of CR's in the range of 12

  15. Simulation of Ge Dopant Emission in Indirect-Drive ICF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, I.; Regan, S.; Epstein, R.; Mancini, R.; Peterson, K.; Suter, L.

    2012-10-01

    We present results from simulations performed to study the radiative properties of dopants used in inertial confinement fusion indirect-drive capsule implosion experiments on NIF. In Rev5 NIF ignition capsules, a Ge dopant is added to an inner region of the CH ablator to absorb hohlraum x-ray preheat. Spectrally resolved emission from ablator dopants can be used to study the degree of mixing of ablator material into the ignition hot spot. Here, we study the atomic processes that affect the radiative characteristics of these elements using a set of simulation tools to first estimate the evolution of plasma conditions in the compressed target, and then to compute the atomic kinetics of the dopant and the resultant radiative emission. Using estimates of temperature and density profiles predicted by radiation-hydrodynamics simulations, we set up simple plasma grids where we allow dopant material to be embedded in the fuel, and perform multi-dimensional collisional-radiative simulations using SPECT3D to compute non-LTE atomic level populations and spectral signatures from the dopant. Recently improved Stark-broadened line shape modeling for Ge K-shell lines has been included. The goal is to study the radiative and atomic processes that affect the emergent spectra, including the effects of inner-shell photoabsorption and Kα reemission from the dopant, and to study the sensitivity of the emergent spectra to the dopant and the hot spot and ablator conditions.

  16. Review of high convergence implosion experiments with single and double shell targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, N. D.; Watt, R. G.; Varnum, W. S.

    2002-01-01

    Experiments have been been performed in recent years at the Omega laser studying double shell capsules as an a1 teinative, 11011 cryogenic, path towards ignition at NTF. Double shell capsules designed to mitigate the Au M-band radiation asymmetries, were experimentally found to perform well in both spherical and cylindrical hohlraums, achieving near 1-D (-90 %) clean calculated yield at convergence comparable to that required for NIF ignition. Near-term plans include directly driven double shell experiments at Omega, which eliminates Au M-band radiation as a yield degradation m ec h an i s in.

  17. Inferences of Shell Asymmetry in ICF Implosions using Fluence Compensated Neutron Images at the NIF

    NASA Astrophysics Data System (ADS)

    Casey, D.; Fittinghoff, D.; Bionta, R.; Smalyuk, V.; Grim, G.; Munro, D.; Spears, B.; Raman, K.; Clark, D.; Kritcher, A.; Hinkel, D.; Hurricane, O.; Callahan, D.; Döppner, T.; Landen, O.; Ma, T.; Le Pape, S.; Ross, S.; Meezan, N.; Pak, A.; Park, H.-S.; Volegov, P.; Merill, F.

    2016-10-01

    In ICF experiments, a dense shell is imploded and used to compress and heat a hotspot of DT fuel. Controlling the symmetry of this process is both important and challenging. It is therefore important to observe the symmetry of the stagnated shell assembly. The Neutron Imaging System at the NIF is used to observe the primary 14 MeV neutrons from the hotspot and the down-scattered neutrons (6-12 MeV), from the assembled shell but with a strong imprint from the primary-neutron fluence. Using a characteristic scattering angle approximation, we have compensated the image for this fluence effect, revealing information about shell asymmetry that is otherwise difficult to extract without models. Preliminary observations with NIF data show asymmetries in imploded shell, which will be compared with other nuclear diagnostics and postshot simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Double shell planar experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  19. Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Tommasini, R.; Clark, D. S.; Field, J.; Stadermann, M.; Weber, C.

    2016-05-01

    NIF capsules are supported in the hohlraum by two thin (∼15-110 nm) Formvar films (“tent”). Highly resolved HYDRA simulations indicate that a large (∼40% peak-average) areal density (ρR) perturbation develops on the capsule during acceleration as a consequence of this support geometry. This perturbation results in a jet of dense DT and, in some cases, CH that penetrates and cools the hot spot, significantly degrading the neutron yield (∼10-20% of 1D yield). We examine “low-foot” and “high-foot” pulse shapes, tent thicknesses, and geometries. Simulations indicate that thinner tents result in a smaller pR perturbation, however, the departure angle of the tent from the capsule surface is important, with steeper angles resulting in larger perturbations.

  20. Development of a PDXP platform on NIF

    NASA Astrophysics Data System (ADS)

    Whitley, Heather; Schneider, Marilyn; Garbett, Warren; Pino, Jesse; Shepherd, Ronnie; Brown, Colin; Castor, John; Scott, Howard; Ellison, C. Leland; Benedict, Lorin; Sio, Hong; Lahmann, Brandon; Petrasso, Richard; Graziani, Frank

    2016-10-01

    Over the past several years, we have conducted theoretical investigations of electron-ion coupling and electronic transport in plasmas. In the regime of weakly coupled plasmas, we have identified models that we believe describe the physics well, but experimental measurements are still needed to validate the models. We are developing spectroscopic experiments to study electron-ion equilibration and electron heat transport using a polar direct drive exploding pusher (PDXP) platform at the National Ignition Facility (NIF). Initial measurements are focused on characterizing the laser-target coupling, symmetry of the PDXP implosion, and overall neutron and x-ray signals. We present images from the first set of shots and make comparisons with simulations from ARES and discuss next steps in the platform development. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697489.

  1. Influence and measurement of mass ablation in ICF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, B K; Hicks, D; Velsko, C

    2007-09-05

    Point design ignition capsules designed for the National Ignition Facility (NIF) currently use an x-ray-driven Be(Cu) ablator to compress the DT fuel. Ignition specifications require that the mass of unablated Be(Cu), called residual mass, be known to within 1% of the initial ablator mass when the fuel reaches peak velocity. The specifications also require that the implosion bang time, a surrogate measurement for implosion velocity, be known to +/- 50 ps RMS. These specifications guard against several capsule failure modes associated with low implosion velocity or low residual mass. Experiments designed to measure and to tune experimentally the amount ofmore » residual mass are being developed as part of the National Ignition Campaign (NIC). Tuning adjustments of the residual mass and peak velocity can be achieved using capsule and laser parameters. We currently plan to measure the residual mass using streaked radiographic imaging of surrogate tuning capsules. Alternative techniques to measure residual mass using activated Cu debris collection and proton spectrometry have also been developed. These developing techniques, together with bang time measurements, will allow us to tune ignition capsules to meet NIC specs.« less

  2. The role of hot spot mix in the low-foot and high-foot implosions on the NIF

    NASA Astrophysics Data System (ADS)

    Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Barrios, M. A.; Benedetti, L. R.; Bionta, R.; Bond, E.; Bradley, D. K.; Caggiano, J.; Callahan, D. A.; Casey, D. T.; Celliers, P. M.; Cerjan, C. J.; Church, J. A.; Clark, D. S.; Dewald, E. L.; Dittrich, T. R.; Dixit, S. N.; Döppner, T.; Dylla-Spears, R.; Edgell, D. H.; Epstein, R.; Field, J.; Fittinghoff, D. N.; Frenje, J. A.; Gatu Johnson, M.; Glenn, S.; Glenzer, S. H.; Grim, G.; Guler, N.; Haan, S. W.; Hammel, B. A.; Hatarik, R.; Herrmann, H. W.; Hicks, D.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hsing, W. W.; Hurricane, O. A.; Jones, O. S.; Kauffman, R.; Khan, S. F.; Kilkenny, J. D.; Kline, J. L.; Kozioziemski, B.; Kritcher, A.; Kyrala, G. A.; Landen, O. L.; Lindl, J. D.; Le Pape, S.; MacGowan, B. J.; Mackinnon, A. J.; MacPhee, A. G.; Meezan, N. B.; Merrill, F. E.; Moody, J. D.; Moses, E. I.; Nagel, S. R.; Nikroo, A.; Pak, A.; Parham, T.; Park, H.-S.; Ralph, J. E.; Regan, S. P.; Remington, B. A.; Robey, H. F.; Rosen, M. D.; Rygg, J. R.; Ross, J. S.; Salmonson, J. D.; Sater, J.; Sayre, D.; Schneider, M. B.; Shaughnessy, D.; Sio, H.; Spears, B. K.; Smalyuk, V.; Suter, L. J.; Tommasini, R.; Town, R. P. J.; Volegov, P. L.; Wan, A.; Weber, S. V.; Widmann, K.; Wilde, C. H.; Yeamans, C.; Edwards, M. J.

    2017-05-01

    Hydrodynamic mix of the ablator into the DT fuel layer and hot spot can be a critical performance limitation in inertial confinement fusion implosions. This mix results in increased radiation loss, cooling of the hot spot, and reduced neutron yield. To quantify the level of mix, we have developed a simple model that infers the level of contamination using the ratio of the measured x-ray emission to the neutron yield. The principal source for the performance limitation of the "low-foot" class of implosions appears to have been mix. Lower convergence "high-foot" implosions are found to be less susceptible to mix, allowing velocities of >380 km/s to be achieved.

  3. A concept to collect neutron and x-ray images on the same line of sight at NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, F. E., E-mail: fmerrill@lanl.gov; Danly, C. R.; Grim, G. P.

    2014-11-15

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis andmore » nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.« less

  4. A concept to collect neutron and x-ray images on the same line of sight at NIF.

    PubMed

    Merrill, F E; Danly, C R; Izumi, N; Jedlovec, D; Fittinghoff, D N; Grim, G P; Pak, A; Park, H-S; Volegov, P L; Wilde, C H

    2014-11-01

    Neutron and x-ray images are collected at the National Ignition Facility (NIF) to measure the size and shape of inertial confinement fusion implosions. The x-ray images provide a measure of the size and shape of the hot region of the deuterium-tritium fuel while the neutron images provide a measure of the size and shape of the burning plasma. Although these two types of images are collected simultaneously, they are not collected along the same line of sight (LOS). One 14 MeV neutron image is collected on the NIF equator, and two x-ray images are collected along the polar axis and nearly perpendicular to the neutron imaging line of sight on the equator. Both measurements use pinhole apertures to form the images, but existing x-ray imaging provides time-resolved measurements while the neutron images are time-integrated. Detailed comparisons of the x-ray and neutron images can provide information on the fuel assembly, but these studies have been limited because the implosions are not azimuthally symmetric and the images are collected along different LOS. We have developed a conceptual design of a time-integrated x-ray imaging system that could be added to the existing neutron imaging LOS. This new system would allow these detailed studies, providing important information on the fuel assembly of future implosions. Here we present this conceptual design and the expected performance characteristics.

  5. Development of Eulerian Code Modeling for ICF Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Paul A.

    2014-02-27

    One of the most pressing unexplained phenomena standing in the way of ICF ignition is understanding mix and how it interacts with burn. Experiments were being designed and fielded as part of the Defect-Induced Mix Experiment (DIME) project to obtain data about the extent of material mix and how this mix influenced burn. Experiments on the Omega laser and National Ignition Facility (NIF) provided detailed data for comparison to the Eulerian code RAGE1. The Omega experiments were able to resolve the mix and provide “proof of principle” support for subsequent NIF experiments, which were fielded from July 2012 through Junemore » 2013. The Omega shots were fired at least once per year between 2009 and 2012. RAGE was not originally designed to model inertial confinement fusion (ICF) implosions. It still lacks lasers, so the code has been validated using an energy source. To test RAGE, the simulation output is compared to data and by means of postprocessing tools that were developed. Here, the various postprocessing tools are described with illustrative examples.« less

  6. The near vacuum hohlraum campaign at the NIF: A new approach

    DOE PAGES

    Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; ...

    2016-05-25

    The near vacuum campaign on the National Ignition Facility has concentrated its efforts over the last year on finding the optimum target geometry to drive a symmetric implosion at high convergence ratio (30x). As the hohlraum walls are not tamped with gas, the hohlraum is filling with gold plasma and the challenge resides in depositing enough energy in the hohlraum before it fills up. Hohlraum filling is believed to cause symmetry swings late in the pulse that are detrimental to the symmetry of the hot spot at high convergence. This paper describes a series of experiments carried out to examinemore » the effect of increasing the distance between the hohlraum wall and the capsule (case to capsule ratio) on the symmetry of the hot spot. These experiments have shown that smaller Case to Capsule Ratio (CCR of 2.87 and 3.1) resulted in oblate implosions that could not be tuned round. Larger CCR (3.4) led to a prolate implosion at convergence 30x implying that inner beam propagation at large CCR is not impeded by the expanding hohlraum plasma. A Case to Capsule ratio of 3.4 is a promising geometry to design a round implosion but in a smaller hohlraum where the hohlraum losses are lower, enabling a wider cone fraction range to adjust symmetry.« less

  7. The role of hot spot mix in the low-foot and high-foot implosions on the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, T.; Patel, P. K.; Izumi, N.

    Hydrodynamic mix of the ablator into the DT fuel layer and hot spot can be a critical performance limitation in inertial confinement fusion implosions. This mix results in increased radiation loss, cooling of the hot spot, and reduced neutron yield. To quantify the level of mix, we have developed a simple model that infers the level of contamination using the ratio of the measured x-ray emission to the neutron yield. The principal source for the performance limitation of the “low-foot” class of implosions appears to have been mix. As a result, lower convergence “high-foot” implosions are found to be lessmore » susceptible to mix, allowing velocities of >380 km/s to be achieved.« less

  8. The role of hot spot mix in the low-foot and high-foot implosions on the NIF

    DOE PAGES

    Ma, T.; Patel, P. K.; Izumi, N.; ...

    2017-05-18

    Hydrodynamic mix of the ablator into the DT fuel layer and hot spot can be a critical performance limitation in inertial confinement fusion implosions. This mix results in increased radiation loss, cooling of the hot spot, and reduced neutron yield. To quantify the level of mix, we have developed a simple model that infers the level of contamination using the ratio of the measured x-ray emission to the neutron yield. The principal source for the performance limitation of the “low-foot” class of implosions appears to have been mix. As a result, lower convergence “high-foot” implosions are found to be lessmore » susceptible to mix, allowing velocities of >380 km/s to be achieved.« less

  9. February 2017 - NIF Highlights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fournier, K. B.

    2017-03-13

    February was a very productive month with only 20 shot days on the calendar. There were 41 target shots performed for the HED, ICF, and the Discovery Science (DS) program. The DS program had a week dedicated to their experiments that was extraordinarily fruitful: 14 target shots were performed for five independent teams, each of whom had a unique experimental platform to field. The teams and the facility worked extraordinarily well to pull off this feat! Additionally, the facility developed high-energy laser operations on a demonstration quad to investigate taking NIF to a new level of performance, and the ICFmore » program demonstrated a 40% increase in the yield from a capsule that had a new, 5-μm-diameter fill tube that apparently mitigates some of the issues that have affected implosions to date. Details follow below.« less

  10. Measurement of the argon-38(n,2n)argon-37 and calcium- 40(n,alpha)argon-37 cross sections, and National Ignition Facility concrete activation using the rotating target neutron source. The design of an experiment to measure the beryllium-9(n,gamma)beryllium-10 cross section at 14 MeV

    NASA Astrophysics Data System (ADS)

    Belian, Anthony Paul

    The Rotating Target Neutron Source (RTNS) was used in experiments to measure neutron induced cross sections at 14 MeV, and the activation properties of a specific mix of concrete. The RTNS is an accelerator based DT fusion neutron source located at the University of California, Berkeley. Two of the experiments performed for this thesis were specifically of interest for the construction and operation of the National Ignition Facility (NIF), they were the 38Ar(n,2n)37Ar cross section measurement, and the concrete activation measurement. The NIF is a large multi-beam laser facility that will study the effects of age on the nation's stockpile of nuclear weapons. The NIF, when fully operational, will focus the energy of 192 Neodymium glass lasers onto a 1 mm diameter pellet filled with deuterium and tritium fuel. This pellet is compressed by the laser energy giving some of the individual atoms of deuterium and tritium enough kinetic energy to overcome the coulomb barrier and fuse. The energy output from these pellet implosions will be in the range of tens of mega-joules (MJ). The 38Ar(n,2n)37Ar reaction will be useful to NIF scientists to measure important parameters such as target energy yield and areal density. In order to make these measurements precise, an accurate 38Ar(n,2n)37Ar cross section was necessary. The cross sections measured were: 74.9 +/- 3.8 millibarns (mb) at 13.3 +/- 0.01 MeV, 89.2 +/- 4.0 mb at 14.0 +/- 0.03 MeV, and 123.57 +/- 6.4 mb at 15.0 +/- 0.06 MeV. With anticipated energy yields in the tens of mega-joules per pellet implosion, the number of neutrons released is in the range of 1019 to 1020 neutrons per implosion. With such a large number of neutrons, minimizing the activation of the surrounding structure is very much of interest for the sake of personnel radiation safety. To benchmark the computer codes used to calculate the anticipated neutron activation of target bay concrete, samples were irradiated at the RTNS. Dose rates from each sample were recorded as a function of time after irradiation. These dose rates were compared to those calculated using the Monte Carlo code TART and the activation code ACAB. It was found that 95.8% of the comparisons agreed within the experimental uncertainty. The 40Ca(n,α)37Ar reaction was of interest for the detection of clandestine underground nuclear detonations. Since calcium is naturally abundant in the earth's crust, and since 37Ar is an inert gas and is not found naturally, the 40Ca(n, α) 37Ar reaction is a good candidate for detecting a nuclear detonation. An accurate cross section is needed to estimate the yield of the nuclear device. The average cross sections measured were: 175.6 +/- 9.2 millibarns (mb) at 13.2 +/- 0.6 MeV and 122.1 +/- 4.6 mb at 15.2 +/- 0.12 MeV. One of the current NIF pellet designs uses beryllium as the ablation layer, and the target positioner will be made of a beryllium/copper alloy. The reaction product, 10Be, from the 9Be(n,γ) 10Be reaction will be generated, although probably in very small quantities, during the lifetime of the NIF. This cross section has not been measured at 14 MeV, but should be measured to estimate the amount of 10Be produced at the NIF.

  11. Viscosity Control Experiment Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Heidi E.; Bradley, Paul Andrew

    Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modifymore » viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.

    The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge becamemore » whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.« less

  13. A near one-dimensional 2-shock indirectly driven implosion at convergence ratio 30

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve

    2017-10-01

    Inertial confinement fusion implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional multi-physics implosion simulations. The current understanding, based on simulations as well as experimental evidence, suggests that the principle reason for the disagreement is a breeching of the cold fuel assembly at stagnation which would otherwise completely confine the hot spot. 3-D simulations indicate a combination of low-mode symmetry swings and ablation-front hydrodynamic instability seeded by engineering features such as the capsule tent and fill tube lead to localized thinning and perforation of the stagnated fuel, resulting in a loss of hot spot pressure and energy. We describe a short series of experiments on the NIF designed specifically to avoid these issues in order to understand if, once they are removed, a suspended-fuel-layer deuterium-tritium implosion can achieve 1-D simulated performance. The particular implosion system combines a thick capsule shell with an elevated initial ablation temperature to minimize the ablation front perturbations from the engineering features, and incorporates a large ratio of hohlraum-to-capsule radius as a means to permit a higher degree of control over implosion symmetry. The resulting implosion at a convergence ratio of 30 was not perfectly spherically symmetric as observed by both neutron and time-resolved x-ray imaging diagnostics. However, the stagnation observables match closely the performance predicted by 1D simulations, including, when some hot spot motion is accounted for, the apparent ion temperature. We present this result along with the design for an upcoming 2-shock experiment to test whether this level of agreement with the 1D model can be achieved in the self-heating regime. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  14. Characterizing Hohlraum Plasma Conditions at the National Ignition Facility (NIF) Using X-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Barrios, Maria Alejandra

    2015-11-01

    Improved hohlraums will have a significant impact on increasing the likelihood of indirect drive ignition at the NIF. In indirect-drive Inertial Confinement Fusion (ICF), a high-Z hohlraum converts laser power into a tailored x-ray flux that drives the implosion of a spherical capsule filled with D-T fuel. The x-radiation drive to capsule coupling sets the velocity, adiabat, and symmetry of the implosion. Previous experiments in gas-filled hohlraums determined that the laser-hohlraum energy coupling is 20-25% less than modeled, therefore identifying energy loss mechanisms that reduce the efficacy of the hohlraum drive is central to improving implosion performance. Characterizing the plasma conditions, particularly the plasma electron temperature (Te) , is critical to understanding mechanism that affect the energy coupling such as the laser plasma interactions (LPI), hohlraum x-ray conversion efficiency, and dynamic drive symmetry. The first Te measurements inside a NIF hohlraum, presented here, were achieved using K-shell X-ray spectroscopy of an Mn-Co tracer dot. The dot is deposited on a thin-walled CH capsule, centered on the hohlraum symmetry axis below the laser entrance hole (LEH) of a bottom-truncated hohlraum. The hohlraum x-ray drive ablates the dot and causes it to flow upward, towards the LEH, entering the hot laser deposition region. An absolutely calibrated streaked spectrometer with a line of sight into the LEH records the temporal history of the Mn and Co X-ray emission. The measured (interstage) Lyα/ Heα line ratios for Co and Mn and the Mn-Heα/Co-Heα isoelectronic line ratio are used to infer the local plasma Te from the atomic physics code SCRAM. Time resovled x-ray images perpendicular to the hohlraum axis record the dot expansion and trajectory into the LEH region. The temporal evolution of the measured Te and dot trajectory are compared with simulations from radiation-hydrodynamic codes. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  15. First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Meezan, N. B.; Le Pape, S.; Divol, L.; Mackinnon, A. J.; Ho, D. D.; Hohenberger, M.; Jones, O. S.; Kyrala, G.; Milovich, J. L.; Pak, A.; Ralph, J. E.; Ross, J. S.; Benedetti, L. R.; Biener, J.; Bionta, R.; Bond, E.; Bradley, D.; Caggiano, J.; Callahan, D.; Cerjan, C.; Church, J.; Clark, D.; Döppner, T.; Dylla-Spears, R.; Eckart, M.; Edgell, D.; Field, J.; Fittinghoff, D. N.; Gatu Johnson, M.; Grim, G.; Guler, N.; Haan, S.; Hamza, A.; Hartouni, E. P.; Hatarik, R.; Herrmann, H. W.; Hinkel, D.; Hoover, D.; Huang, H.; Izumi, N.; Khan, S.; Kozioziemski, B.; Kroll, J.; Ma, T.; MacPhee, A.; McNaney, J.; Merrill, F.; Moody, J.; Nikroo, A.; Patel, P.; Robey, H. F.; Rygg, J. R.; Sater, J.; Sayre, D.; Schneider, M.; Sepke, S.; Stadermann, M.; Stoeffl, W.; Thomas, C.; Town, R. P. J.; Volegov, P. L.; Wild, C.; Wilde, C.; Woerner, E.; Yeamans, C.; Yoxall, B.; Kilkenny, J.; Landen, O. L.; Hsing, W.; Edwards, M. J.

    2015-05-01

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated in a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ˜3.5 ) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 ×1015 neutrons, with 20% calculated alpha heating at convergence ˜27 × .

  16. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    DOE PAGES

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; ...

    2016-09-07

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less

  17. Design options for reducing the impact of the fill-tube in ICF implosion experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Weber, Christopher R.; Berzak Hopkins, L. F.; Casey, D. T.; Clark, D. S.; Hammel, B. A.; Le Pape, S.; Macphee, A.; Milovich, J.; Pickworth, L. A.; Robey, H. F.; Smalyuk, V. A.; Stadermann, M.; Felker, S. J.; Nikroo, A.; Thomas, C. A.; Crippen, J.; Rice, N.

    2017-10-01

    Inertial Confinement Fusion (ICF) capsules on the National Ignition Facility (NIF) are filled with thermonuclear fuel through a fill-tube. When the capsule implodes, perturbations caused by the fill-tube allow ablator material to mix into the hot spot and reduce fusion performance. This talk will explore several design options that attempt to reduce this damaging effect. Reducing the diameter of the fill-tube and its entrance hole is the obvious course and has been tested in experiments. Simulations also show sensitivity to the amount of glue holding the fill-tube to the capsule and suggest that careful control of this feature can limit the amount of injected mass. Finally, an off-axis fill-tube reduces the initial squirt of material into the fuel and may be a way of further optimizing this engineering feature. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  18. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Shvydky, A.; Marozas, J. A.

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels bymore » ∼50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less

  19. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less

  20. The National Ignition Facility: Transition to a User Facility

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Atherton, J.; Lagin, L.; Larson, D.; Keane, C.; MacGowan, B.; Patterson, R.; Spaeth, M.; Van Wonterghem, B.; Wegner, P.; Kauffman, R.

    2016-03-01

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and has been transitioning to a user facility supporting ignition science, high energy density science (HEDS), national security applications, and fundamental science. The facility has achieved its design goal of 1.8 MJ and 500 TW of 3ω light on target, and has performed target experiments with 1.9 MJ at peak powers of 410 TW. The facility is on track to perform over 200 target shots this year in support of all of its user communities. The facility has nearly 60 diagnostic systems operational and has shown flexibility in laser pulse shape and performance to meet the requirements of its multiple users. Progress continues on its goal of demonstrating thermonuclear burn in the laboratory. It has performed over 40 indirect-drive experiments with cryogenic-layered capsules. New platforms are being developed for HEDS and fundamental science. Equation-of-state and material strength experiments have been done on a number of materials with pressures of over 50 MBars obtained in diamond, conditions never previously encountered in the laboratory and similar to those found in planetary interiors. Experiments are also in progress investigating radiation transport, hydrodynamic instabilities, and direct drive implosions. NIF continues to develop as an experimental facility. Advanced Radiographic Capability (ARC) is now being installed on NIF for producing high-energy radiographs of the imploded cores of ignition targets and for short pulse laser-plasma interaction experiments. One NIF beam is planned for conversion to two picosecond beams in 2014. Other new diagnostics such as x-ray Thomson scattering, low energy neutron spectrometer, and multi-layer reflecting x-ray optics are also planned. Incremental improvements in laser performance such as improved optics damage performance, beam balance, and back reflection control are being pursued.

  1. Using multiple secondary fusion products to evaluate fuel ρR, electron temperature, and mix in deuterium-filled implosions at the NIF

    DOE PAGES

    Rinderknecht, H. G.; Rosenberg, M. J.; Zylstra, A. B.; ...

    2015-08-25

    In deuterium-filled inertial confinement fusion implosions, the secondary fusion processes D( 3He,p) 4He and D(T,n) 4He occur, as the primary fusion products 3He and T react in flight with thermal deuterons. In implosions with moderate fuel areal density (~ 5–100 mg/cm 2), the secondary D- 3He reaction saturates, while the D-T reaction does not, and the combined information from these secondary products is used to constrain both the areal density and either the plasma electron temperature or changes in the composition due to mix of shell material into the fuel. The underlying theory of this technique is developed and appliedmore » to three classes of implosions on the National Ignition Facility: direct-drive exploding pushers, indirect-drive 1-shock and 2-shock implosions,and polar direct-drive implosions. In the 1- and 2-shock implosions, the electron temperature is inferred to be 0.65 x and 0.33 x the burn-averaged ion temperature, respectively. The inferred mixed mass in the polar direct-drive implosions is in agreement with measurements using alternative techniques.« less

  2. Comparison and analysis of the results of direct-driven targets implosion

    NASA Astrophysics Data System (ADS)

    Demchenko, N. N.; Dolgoleva, G. V.; Gus'kov, S. Yu; Kuchugov, P. A.; Rozanov, V. B.; Stepanov, R. V.; Zmitrenko, N. V.; Yakhin, R. A.

    2017-10-01

    The article presents calculation results, which were received for the implosion of the typical cryogenic thermonuclear direct-drive targets that are intended for use at the OMEGA facility, NIF and Russian laser facility. The compression and burning characteristics, which were obtained using various numerical codes of different scientific groups, are compared. The data indicate good agreement between the numerical results. Various sources of target irradiation inhomogeneity and their influence on the implosion parameters are considered. The nominal scales of these disturbances for various facilities are close to each other. The main negative effect on the efficiency of compression and burning is due to the accidental offset of the target from the center of the chamber.

  3. Higher Velocity High-Foot Implosions on the National Ignition Facility Laser

    NASA Astrophysics Data System (ADS)

    Callahan, Debra

    2014-10-01

    After the end of the National Ignition Campaign on the National Ignition Facility (NIF) laser, we began a campaign to test capsule performance using a modified laser pulse-shape that delivers higher power early in the pulse (``high foot''). This pulse-shape trades one-dimensional performance (peak compression) for increased hydrodynamic stability. The focus of the experiments this year have been to improve performance by increasing the implosion velocity using higher laser power/energy, depleted uranium hohlraums, and thinner capsules. While the mix of ablator material into the hotspot has been low for all of these implosions, the challenge has been to keep the implosion shape under control. As the peak laser power is increased, the plasma density in the hohlraum is increased - making it more and more challenging for the inner cone beams to reach the midplane of the hohlraum and resulting in an oblate implosion. Depleted uranium hohlraums have higher albedo than Au hohlraums, which leads to additional drive and improved implosion shape. Thinner ablators increase the velocity by reducing the amount of payload; thinner ablators also put less mass into the hohlraum which results in improved inner beam propagation. These techniques have allowed us to push the capsule to higher and higher velocity. In parallel with this effort, we are exploring other hohlraums such as the rugby shaped hohlraum to allow us to push these implosions further. This talk will summarize the progress of the high foot campaign in terms of both capsule and hohlraum performance. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Impact of flows on ion temperatures inferred from neutron spectra in asymmetrically driven OMEGA DT implosions

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Aappelbe, B.; Chittenden, J.; Walsh, C.; Knauer, J. P.; Glebov, V. Yu.; Forrest, C.; Marshall, F.; Michel, T.; Stoeckl, C.; Sangster, T. C.; Zylstra, A.

    2016-10-01

    Ion temperatures (Tion) in Inertial Confinement Fusion (ICF) experiments have traditionally been inferred from the broadening of primary neutron spectra. Directional motion (flow) of the fuel at burn, expected to arise due to asymmetries imposed by engineering features (such as stalks, fill tubes, tents, or capsule imperfections) or drive non-uniformity, also impacts broadening and may lead to artificially inflated ``Tion'' values. Flow due to low-mode asymmetries is expected to give rise to line-of-sight variations in measured Tion, as observed in OMEGA cryogenic DT implosions but not in similar experiments at the NIF. In this presentation we report on an OMEGA experiment with intentionally asymmetric drive, designed to test the ability to accurately predict and measure line-of-sight differences in apparent Tion due to low-mode asymmetry-seeded flows. The results provide insight into the complexity of hot-spot dynamics, which is a problem that must be mastered to achieve ICF ignition. This work was supported in part by LLE, the U.S. DoE (NNSA, NLUF) and LLNL.

  5. Beryllium Ignition Targets for Indirect Drive NIF Experiments

    NASA Astrophysics Data System (ADS)

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Salmonson, J. D.; Clark, D. S.; Milovich, J. L.; Marinak, M. M.; Callahan, D. A.

    2013-10-01

    Current NIF plastic capsules are under-performing, and alternate ablators are being investigated. Beryllium presents an attractive option, since it has lower opacity and therefore higher ablation rate, pressure, and velocity. Previous NIF Be designs assumed significantly better hohlraum performance than recently observed (e.g., 7.5 vs. 15-17% of back-scattered power and 1.0 vs. 0.85 main pulse's power multipliers) and employed less accurate atomic configuration models than currently used (XSN vs. DCA), and thus an updated design is required. We present a new, Rev. 6 Be ignition target design that employs the full NIF capacity (1.8 MJ, 520 TW) and uses a standard 5.75 mm gold hohlraum with 1.5 mg/cm3 of helium gas fill. The 1051 μm capsule features 180 μm of layered copper-doped (with the maximum of 3 atom-%) Be ablator and 90 μm of cryogenic deuterium-tritium fuel. The peak implosion velocity of 367 μm/ns results in 4.1 keV of no-burn ion temperature, 1.6 and 1.9 g/cm2 of fuel and total areal densities, respectively, and 20.6 MJ of fusion yield. The capsule demonstrates robust performance with surface/interface roughnesses up to 1.6 times larger that Rev. 3 specs. Work supported by the US Department of Energy.

  6. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.

    PubMed

    Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.

  7. Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation

    NASA Astrophysics Data System (ADS)

    Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.

    2014-05-01

    Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.

  8. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; ...

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D 3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+ 3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as l=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  9. In-flight observations of low-mode ρR asymmetries in NIF implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.

    2015-05-15

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D{sup 3}He gas-filled implosions at the National Ignition Facility produce energetic protons via D+{sup 3}He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3–5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳10%,more » which are interpreted as ℓ=2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained (“no-coast”), implying a significant time-dependent asymmetry in peak drive.« less

  10. Results from and Plans for the Development of the MARBLE Platform for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Fincke, J. R.; Cobble, J. A.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    Work is underway to develop the MARBLE ICF platform for use on OMEGA and NIF in experiments to quantify the influence of heterogeneous mix on fusion burn. This platform consists of a plastic (CH) capsule filled with a deuterated plastic foam (CD) with a density of a few tens of milligrams per cubic centimeter, with tritium gas filling the voids in the foam. In order to affect the morphology of the mix, engineered foams with voids of diameter up to 100 microns will be utilized. The degree of mix will be determined from the ratio of DT to DD neutron yield. Experiments have been performed on OMEGA and are planned for NIF to develop techniques and verify that with uniform fine-pore foam, these implosions behave like atomically mixed plastic and gas. Results will be reviewed and future experiments discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  11. LLE 2008 annual report, October 2007 - September 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-01-31

    The research program at the University of Rochester’s Laboratory for Laser Energetics (LLE) focuses on inertial confinement fusion (ICF) research supporting the goal of achieving ignition on the National Ignition Facility (NIF). This program includes the full use of the OMEGA EP Laser System. Within the National Ignition Campaign (NIC), LLE is the lead laboratory for the validation of the performance of cryogenic target implosions, essential to all forms of ICF ignition. LLE has taken responsibility for a number of critical elements within the Integrated Experimental Teams (IET’s) supporting the demonstration of indirect-drive ignition on the NIF and is themore » lead laboratory for the validation of the polardrive approach to ignition on the NIF. LLE is also developing, testing, and building a number of diagnostics to be deployed on the NIF for the NIC.« less

  12. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    PubMed

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  13. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE PAGES

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.; ...

    2016-07-07

    A record fuel hot-spot pressure P hs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure ismore » ~40% lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  14. Demonstration of fuel hot-spot pressure in excess of 50 Gbar for direct-drive, layered deuterium-tritium implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Goncharov, V. N.; Igumenshchev, I. V.

    A record fuel hot-spot pressure P hs = 56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility (NIF), these implosions achieved a Lawson parameter ~60% of the value required for ignition [A. Bose et al., Phys. Rev. E (in press)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure ismore » ~40% lower. Furthermore, three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Neal G.; Vu, M.; Kong, C.

    Capsule drive in National Ignition Facility (NIF) indirect drive implosions is generated by x-ray illumination from cylindrical hohlraums. The cylindrical hohlraum geometry is axially symmetric but not spherically symmetric causing capsule-fuel drive asymmetries. We hypothesize that fabricating capsules asymmetric in wall thickness (shimmed) may compensate for drive asymmetries and improve implosion symmetry. Simulations suggest that for high compression implosions Legendre mode P 4 hohlraum flux asymmetries are the most detrimental to implosion performance. General Atomics has developed a diamond turning method to form a GDP capsule outer surface to a Legendre mode P 4 profile. The P 4 shape requiresmore » full capsule surface coverage. Thus, in order to avoid tool-lathe interference flipping the capsule part way through the machining process is required. This flipping process risks misalignment of the capsule causing a vertical step feature on the capsule surface. Recent trials have proven this step feature height can be minimized to ~0.25 µm.« less

  16. In-flight observations of low-mode ρR asymmetries in NIF implosionsa)

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; Rygg, J. R.; Kritcher, A.; Rosenberg, M. J.; Rinderknecht, H. G.; Hicks, D. G.; Friedrich, S.; Bionta, R.; Meezan, N. B.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dewald, E. L.; Dixit, S.; Döppner, T.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moses, E.; Nagel, S. R.; Nikroo, A.; Parham, T.; Pak, A.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Robey, H. F.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Yeamans, C.; Zacharias, R.

    2015-05-01

    Charged-particle spectroscopy is used to assess implosion symmetry in ignition-scale indirect-drive implosions for the first time. Surrogate D3He gas-filled implosions at the National Ignition Facility produce energetic protons via D+3He fusion that are used to measure the implosion areal density (ρR) at the shock-bang time. By using protons produced several hundred ps before the main compression bang, the implosion is diagnosed in-flight at a convergence ratio of 3-5 just prior to peak velocity. This isolates acceleration-phase asymmetry growth. For many surrogate implosions, proton spectrometers placed at the north pole and equator reveal significant asymmetries with amplitudes routinely ≳ 10 % , which are interpreted as ℓ = 2 Legendre modes. With significant expected growth by stagnation, it is likely that these asymmetries would degrade the final implosion performance. X-ray self-emission images at stagnation show asymmetries that are positively correlated with the observed in-flight asymmetries and comparable in magnitude, contradicting growth models; this suggests that the hot-spot shape does not reflect the stagnated shell shape or that significant residual kinetic energy exists at stagnation. More prolate implosions are observed when the laser drive is sustained ("no-coast"), implying a significant time-dependent asymmetry in peak drive.

  17. Wetted foam liquid fuel ICF target experiments

    DOE PAGES

    Olson, R. E.; Leeper, R. J.; Yi, S. A.; ...

    2016-05-26

    We are developing a new NIF experimental platform that employs wetted foam liquid fuel layer ICF capsules. We will use the liquid fuel layer capsules in a NIF sub-scale experimental campaign to explore the relationship between hot spot convergence ratio (CR) and the predictability of hot spot formation. DT liquid layer ICF capsules allow for flexibility in hot spot CR via the adjustment of the initial cryogenic capsule temperature and, hence, DT vapor density. Our hypothesis is that the predictive capability of hot spot formation is robust and 1D-like for a relatively low CR hot spot (CR~15), but will becomemore » less reliable as hot spot CR is increased to CR>20. Simulations indicate that backing off on hot spot CR is an excellent way to reduce capsule instability growth and to improve robustness to low-mode x-ray flux asymmetries. In the initial experiments, we will test our hypothesis by measuring hot spot size, neutron yield, ion temperature, and burn width to infer hot spot pressure and compare to predictions for implosions with hot spot CR's in the range of 12 to 25. Larger scale experiments are also being designed, and we will advance from sub-scale to full-scale NIF experiments to determine if 1D-like behavior at low CR is retained as the scale-size is increased. The long-term objective is to develop a liquid fuel layer ICF capsule platform with robust thermonuclear burn, modest CR, and significant α-heating with burn propagation.« less

  18. Conceptual design of initial opacity experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Bailey, J. E.; Craxton, R. S.; Devolder, B. G.; Dodd, E. S.; Garcia, E. M.; Huffman, E. J.; Iglesias, C. A.; King, J. A.; Kline, J. L.; Liedahl, D. A.; McKenty, P. W.; Opachich, Y. P.; Rochau, G. A.; Ross, P. W.; Schneider, M. B.; Sherrill, M. E.; Wilson, B. G.; Zhang, R.; Perry, T. S.

    2017-02-01

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative-convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperatures eV and electron densities 21~\\text{cm}-3$ . The iron will be probed using continuum X-rays emitted in a ps, diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design, of the NIF beams deliver 500 kJ to the mm diameter hohlraum, and the remaining directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.

  19. Neutron peak velocity measurements at the National Ignition Facility (NIF) using novel quartz detectors

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Eckart, Mark; Hartouni, Edward; Hatarik, Robert; Moore, Alastair; Root, Jaben; Sayre, Daniel; Schlossberg, David; Waltz, Cory

    2017-10-01

    In mid-2017 the NIF implemented quartz based neutron time-of-flight (nToF) detectors which have a faster and narrower impulse response function (IRF) relative to traditional scintillator detectors. In this presentation we report on comparisons between fusion neutron first moments as measured by quartz and scintillator based detectors using DT layered implosions at the NIF. We report on the change in precision presaged by the quartz converter and quantify the change in both in shot, line-of-site velocity variability. as well as, shot-to-shot variation. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. LLNL-ABS-734511-DRAFT.

  20. Technique for Forming Solid D2 and D-T Layers for Shock Timing Experiments at the National Ignition Facility

    DOE PAGES

    Sater, J. D.; Espinosa-Loza, F.; Kozioziemski, B.; ...

    2016-07-11

    Capsule implosion experiments on the National Ignition Facility (NIF) are driven with a carefully tailored laser pulse that delivers a sequence of shocks to the ablator and fuel. In order to ensure the shocks converge at the desired position, the shock strength and velocity are measured in experimental platforms referred to as keyhole targets. We made shock measurements on capsules completely filled with liquid deuterium for the solid deuterium tritide (D-T) layer campaigns. Modeling has been used to extend these results to form an estimate of the shock properties in solid D-T layers. Furthermore, to verify and improve the surrogacymore » of the liquid-filled keyhole measurements, we have developed a technique to form a solid layer inside the keyhole capsule. The layer is typically uniform over a 400-μm-diameter area. This is sufficient to allow direct measurement of the shock velocity. This layering technique has been successfully applied to 13 experiments on the NIF. The technique may also be applicable to fast-igniter experiments since some proposed designs resemble keyhole targets. We discuss our method in detail and give representative results.« less

  1. Scaling of Liquid DT Layer Capsules to an ICF Burning Plasma

    NASA Astrophysics Data System (ADS)

    Olson, R. E.; Peterson, R. R.; Haines, B. M.; Yi, S. A.; Bradley, P. A.; Zylstra, A. B.; Kline, J. L.; Leeper, R. J.; Batha, S. H.

    2017-10-01

    Recent experiments at the NIF demonstrated cryogenic liquid DT layer ICF implosions. Unlike DT ice layer implosions, DT liquid layer designs can operate with low-to-moderate convergence ratio (12

  2. Measurements of Hard X-Ray Emission Suggest Absorption Along the Path of the Inner Beams in High Foot Implosion Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Ralph, Joseph; Pak, Arthur; Otto, Landen; Kritcher, Andrea; Ma, Tammy; Charles, Jarrott; Callahan, Debra; Hinkel, Denise; Berzak Hopkins, Laura; Moody, John; Khan, Shahab; Doeppner, Tilo; Rygg, Ryan; Hurricane, Omar

    2016-10-01

    The current high foot hohlraum design fielded on the National Ignition Facility is aimed at providing uniform x-ray drive to provide a spherical implosion by lowering the gas fill from 1.6 to 0.6 mg/cc and increasing the hohlraum width from 5.75 to 6.72 mm while maintaining the same 1.8 mm capsule diameter from previous designs. These changes are intended to improve beam propagation without the need for crossed beam energy transfer. Analysis of the measurements of hard x-ray emission from the gated x-ray detector (GXD) and the static x-ray imager (SXI) looking through the laser entrance hole indicate a significant fraction of the inner beam incident energy is absorbed in the high z blow-off region (either uranium or gold) before reaching the inner wall near the equator. Comparison of inner beam absorption in this region and its effect on the implosion symmetry measurements will be presented. Additionally, the sensitivity of this absorption feature and therefore the implosion symmetry to the pulse shape, hohlraum fill pressure and fraction of energy in beams depositing energy at the hohlraum equator will be discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. First high-convergence cryogenic implosion in a near-vacuum hohlraum

    DOE PAGES

    Berzak Hopkins, L.  F.; Meezan, N.  B.; Le Pape, S.; ...

    2015-04-29

    Recent experiments on the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] demonstrate that utilizing a near-vacuum hohlraum (low pressure gas-filled) is a viable option for high convergence cryogenic deuterium-tritium (DT) layered capsule implosions. This is made possible by using a dense ablator (high-density carbon), which shortens the drive duration needed to achieve high convergence: a measured 40% higher hohlraum efficiency than typical gas-filled hohlraums, which requires less laser energy going into the hohlraum, and an observed better symmetry control than anticipated by standard hydrodynamics simulations. The first series of near-vacuum hohlraum experiments culminated inmore » a 6.8 ns, 1.2 MJ laser pulse driving a 2-shock, high adiabat (α ~ 3.5) cryogenic DT layered high density carbon capsule. This resulted in one of the best performances so far on the NIF relative to laser energy, with a measured primary neutron yield of 1.8 X 10¹⁵ neutrons, with 20% calculated alpha heating at convergence ~27X.« less

  4. Enhancing Ignition Probability and Fusion Yield in NIF Indirect Drive Targets with Applied Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Perkins, L. John; Logan, B. Grant; Ho, Darwin; Zimmerman, George; Rhodes, Mark; Blackfield, Donald; Hawkins, Steven

    2017-10-01

    Imposed magnetic fields of tens of Tesla that increase to greater than 10 kT (100 MGauss) under capsule compression may relax conditions for ignition and propagating burn in indirect-drive ICF targets. This may allow attainment of ignition, or at least significant fusion energy yields, in presently-performing ICF targets on the National Ignition Facility that today are sub-marginal for thermonuclear burn through adverse hydrodynamic conditions at stagnation. Results of detailed 2D radiation-hydrodynamic-burn simulations applied to NIF capsule implosions with low-mode shape perturbations and residual kinetic energy loss indicate that such compressed fields may increase the probability for ignition through range reduction of fusion alpha particles, suppression of electron heat conduction and stabilization of higher-mode RT instabilities. Optimum initial applied fields are around 50 T. Off-line testing has been performed of a hohlraum coil and pulsed power supply that could be integrated on NIF; axial fields of 58T were obtained. Given the full plasma structure at capsule stagnation may be governed by 3-D resistive MHD, the formation of closed magnetic field lines might further augment ignition prospects. Experiments are now required to assess the potential of applied magnetic fields to NIF ICF ignition and burn. Work performed under auspices of U.S. DOE by LLNL under Contract DE-AC52-07NA27344.

  5. A comparison of hydro-instabilities in CH, HDC, and beryllium ablators on NIF

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Robey, H. F.; Ali, S.; Berzak Hopkins, L. F.; Casey, D. T.; Celliers, P. M.; Clark, D. S.; Felker, S. J.; Field, J. E.; Haan, S. W.; Hammel, B. A.; Hsing, W. W.; Kroll, J. J.; Landen, O. L.; Lepape, S.; Macphee, A. G.; Martinez, D.; Milovich, J.; Nikroo, A.; Pickworth, L.; Stadermann, M.; Weber, C. R.; Kline, J.; Loomis, E.; Yi, A.

    2017-10-01

    A comparison of the hydrodynamic growth in plastic, high-density carbon, and beryllium ablators will be presented in indirect-drive implosions on National Ignition Facility. This comparison is based on experimentally measured instabilities in all phases of implosions for the three ablators. The 2-D and 3-D perturbations were measured at the ablation-surface with the Hydrodynamic Growth Radiography platform. In the deceleration phase of implosions, innovative self-emission and ``self-backlight'' techniques were used. Results of the 3-D perturbation growth including engineering features will also be presented for convergence up to 20 and compared for the three ablators. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Machining of Two-Dimensional Sinusoidal Defects on Ignition-Type Capsules to Study Hydrodynamic Instability at the National Ignition Facility

    DOE PAGES

    Giraldez, E. M.; Hoppe Jr., M. L.; Hoover, D. E.; ...

    2016-07-07

    Hydrodynamic instability growth and its effects on capsule implosion performance are being studied at the National Ignition Facility (NIF). Experimental results have shown that low-mode instabilities are the primary culprit for yield degradation. Ignition type capsules with machined 2D sinusoidal defects were used to measure low-mode hydrodynamic instability growth in the acceleration phase of the capsule implosion. The capsules were imploded using ignition-relevant laser pulses and the ablation-front modulation growth was measured using x-ray radiography. The experimentally measured growth was in good agreement with simulations.

  7. Crystal and source characterization for the Crystal Backlighter Imager capability at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Krauland, C. M.; Hall, G. N.; Buscho, J. G.; Hibbard, R.; McCarville, T. J.; Lowe-Webb, R.; Ayers, S. L.; Kalantar, D.; Kohut, T.; Kemp, G. E.; Bradley, D. K.; Bell, P.; Landen, O. L.; Brewster, T. N.; Piston, K.

    2017-10-01

    The Crystal Backlighter Imager (CBI) is a very narrow bandwidth ( 10 eV) x-ray radiography system that uses Bragg reflection from a spherically-curved crystal at near normal incidence. This diagnostic has the capability to image late in an ICF implosion because it only requires the brightness of the backlighter to be larger than the capsule self-emission in that narrow bandwidth. While the limited bandwidth is advantageous for this reason, it also requires that the effective energy of the backlighter atomic line is known to 1 eV accuracy for proper crystal alignment. Any Doppler shift in the line energy must be understood for the imaging system to work. The work presented details characterization experiments done at the Jupiter Laser Facility with a Si (8 6 2) crystal that will be used with a Selenium backlighter in the NIF CBI diagnostic. We used the spherically-bent crystals to image a small ( 200 µm) He α source generated by the Janus laser on a Se foil. Scanning Bragg angles over multiple shots allowed us to map out the spectral line intensity distribution for optimal alignment in NIF. A subsequent Doppler shift measurement using CBI on NIF will also be presented with complementary HYDRA modeling for both experiments. Prepared by LLNL under Contract DE-AC52-07NA27344 and by General Atomics under Contract DE-NA0001808.

  8. Dilation x-ray imager a new∕faster gated x-ray imager for the NIF.

    PubMed

    Nagel, S R; Hilsabeck, T J; Bell, P M; Bradley, D K; Ayers, M J; Barrios, M A; Felker, B; Smith, R F; Collins, G W; Jones, O S; Kilkenny, J D; Chung, T; Piston, K; Raman, K S; Sammuli, B; Hares, J D; Dymoke-Bradshaw, A K L

    2012-10-01

    As the yield on implosion shots increases it is expected that the peak x-ray emission reduces to a duration with a FWHM as short as 20 ps for ∼7 × 10(18) neutron yield. However, the temporal resolution of currently used gated x-ray imagers on the NIF is 40-100 ps. We discuss the benefits of the higher temporal resolution for the NIF and present performance measurements for dilation x-ray imager, which utilizes pulse-dilation technology [T. J. Hilsabeck et al., Rev. Sci. Instrum. 81, 10E317 (2010)] to achieve x-ray imaging with temporal gate times below 10 ps. The measurements were conducted using the COMET laser, which is part of the Jupiter Laser Facility at the Lawrence Livermore National Laboratory.

  9. Mitigation of X-ray shadow seeding of hydrodynamic instabilities on inertial confinement fusion capsules using a reduced diameter fuel fill-tube

    NASA Astrophysics Data System (ADS)

    MacPhee, A. G.; Smalyuk, V. A.; Landen, O. L.; Weber, C. R.; Robey, H. F.; Alfonso, E. L.; Biener, J.; Bunn, T.; Crippen, J. W.; Farrell, M.; Felker, S.; Field, J. E.; Hsing, W. W.; Kong, C.; Milovich, J.; Moore, A.; Nikroo, A.; Rice, N.; Stadermann, M.; Wild, C.

    2018-05-01

    We report a reduced X-ray shadow imprint of hydrodynamic instabilities on the high-density carbon ablator surface of inertial confinement fusion (ICF) capsules using a reduced diameter fuel fill tube on the National Ignition Facility (NIF). The perturbation seed mass from hydrodynamic instabilities was reduced by approximately an order of magnitude by reducing both the diameter and wall thickness of the fill tube by ˜2×, consistent with analytical estimates. This work demonstrates a successful mitigation strategy for engineered features for ICF implosions on the NIF.

  10. Cryogenci DT and D2 Targets for Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T.C.; Betti, R.; Craxton, R.S.

    Ignition target designs for inertial confinement fusion on the National Ignition Facility (NIF) are based on a spherical ablator containing a solid, cryogenic-fuel layer of deuterium and tritium. The need for solid-fuel layers was recognized more than 30 years ago and considerable effort has resulted in the production of cryogenic targets that meet most of the critical fabrication tolerances for ignition on the NIf. Significant progress with the formation and characterization of cryogenic targets for both direct and x-ray drive will be described. Results from recent cryogenic implosions will also be presented.

  11. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    NASA Astrophysics Data System (ADS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  12. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianfa, E-mail: gu-jianfa@iapcm.ac.cn; Dai, Zhensheng, E-mail: dai-zhensheng@iapcm.ac.cn; Song, Peng

    2016-08-15

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and themore » final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.« less

  13. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and pR are determined in thin-shell inertial-confinement-fusion implosions

    DOE PAGES

    Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; ...

    2014-10-10

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (ρR) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ~1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in themore » filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120 keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF« less

  14. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  15. Observation of Compressible Plasma Mix in Cylindrically Convergent Implosions

    NASA Astrophysics Data System (ADS)

    Barnes, Cris W.; Batha, Steven H.; Lanier, Nicholas E.; Magelssen, Glenn R.; Tubbs, David L.; Dunne, A. M.; Rothman, Steven R.; Youngs, David L.

    2000-10-01

    An understanding of hydrodynamic mix in convergent geometry will be of key importance in the development of a robust ignition/burn capability on NIF, LMJ and future pulsed power machines. We have made use of the OMEGA laser facility at the University of Rochester to investigate directly the mix evolution in a convergent geometry, compressible plasma regime. The experiments comprise a plastic cylindrical shell imploded by direct laser irradiation. The cylindrical shell surrounds a lower density plastic foam which provides sufficient back pressure to allow the implosion to stagnate at a sufficiently high radius to permit quantitative radiographic diagnosis of the interface evolution near turnaround. The susceptibility to mix of the shell-foam interface is varied by choosing different density material for the inner shell surface (thus varying the Atwood number). This allows the study of shock-induced Richtmyer-Meshkov growth during the coasting phase, and Rayleigh-Taylor growth during the stagnation phase. The experimental results will be described along with calculational predictions using various radiation hydrodynamics codes and turbulent mix models.

  16. Mix and hydrodynamic instabilities on NIF

    NASA Astrophysics Data System (ADS)

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; Clark, D. S.; Döppner, T.; Haan, S. W.; Hammel, B. A.; MacPhee, A. G.; Martinez, D.; Milovich, J. L.; Peterson, J. L.; Pickworth, L.; Pino, J. E.; Raman, K.; Tipton, R.; Weber, C. R.; Baker, K. L.; Bachmann, B.; Berzak Hopkins, L. F.; Bond, E.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C.; Dixit, S. N.; Edwards, M. J.; Felker, S.; Field, J. E.; Fittinghoff, D. N.; Gharibyan, N.; Grim, G. P.; Hamza, A. V.; Hatarik, R.; Hohenberger, M.; Hsing, W. W.; Hurricane, O. A.; Jancaitis, K. S.; Jones, O. S.; Khan, S.; Kroll, J. J.; Lafortune, K. N.; Landen, O. L.; Ma, T.; MacGowan, B. J.; Masse, L.; Moore, A. S.; Nagel, S. R.; Nikroo, A.; Pak, A.; Patel, P. K.; Remington, B. A.; Sayre, D. B.; Spears, B. K.; Stadermann, M.; Tommasini, R.; Widmayer, C. C.; Yeamans, C. B.; Crippen, J.; Farrell, M.; Giraldez, E.; Rice, N.; Wilde, C. H.; Volegov, P. L.; Gatu Johnson, M.

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. In the deceleration phase of implosions, several experimental platforms were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.

  17. Mix and hydrodynamic instabilities on NIF

    DOE PAGES

    Smalyuk, V. A.; Robey, H. F.; Casey, D. T.; ...

    2017-06-01

    Several new platforms have been developed to experimentally measure hydrodynamic instabilities in all phases of indirect-drive, inertial confinement fusion implosions on National Ignition Facility. At the ablation front, instability growth of pre-imposed modulations was measured with a face-on, x-ray radiography platform in the linear regime using the Hydrodynamic Growth Radiography (HGR) platform. Modulation growth of "native roughness" modulations and engineering features (fill tubes and capsule support membranes) were measured in conditions relevant to layered DT implosions. A new experimental platform was developed to measure instability growth at the ablator-ice interface. Here in the deceleration phase of implosions, several experimental platformsmore » were developed to measure both low-mode asymmetries and high-mode perturbations near peak compression with x-ray and nuclear techniques. In one innovative technique, the self-emission from the hot spot was enhanced with argon dopant to "self-backlight" the shell in-flight. To stabilize instability growth, new "adiabat-shaping" techniques were developed using the HGR platform and applied in layered DT implosions.« less

  18. Symmetry tuning for DIME Campaign

    NASA Astrophysics Data System (ADS)

    Krasheninnikova, Natalia; Schmitt, Mark; Tregillis, Ian; Bradley, P.; Cobble, J.; Kyrala, G.; Murphy, T.; Obrey, K.; Hsu, S.; Shah, R.; Batha, S.; Craxton, S.; McKenty, P.

    2012-10-01

    Defect Induced Mix Experiment (DIME) investigates the effects of 4 pi as well as surface feature-driven mix on the directly driven ICF capsule implosion. To minimize the effects of the laser-drive asymmetry, beam pointings, pulse shape, and the energy distribution between the lasers need to be optimized for a particular capsule and shot energy. In support of the DIME experimental campaigns on OMEGA and NIF, symmetry tuning was performed with the rad-hydro code HYDRA. To assess the impact on the symmetry, synthetic radiographs and self-emission images were examined and compared with the experimental results from OMEGA and NIF shots. The dynamics of the capsules imploded under polar direct drive conditions were compared with symmetrically driven ones and the effects of cross-beam transfer and the laser imprinting on the symmetry were also investigated. Work performed by Los Alamos National Laboratory under contract DE-AC52-06NA25396 for the National Nuclear Security Administration of the U.S. Department of Energy.

  19. 3D Simulations of the ``Keyhole'' Hohlraum for Shock Timing on NIF

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Marinak, M. M.; Munro, D. H.; Jones, O. S.

    2007-11-01

    Ignition implosions planned for the National Ignition Facility (NIF) require a pulse shape with a carefully designed series of steps, which launch a series of shocks through the ablator and DT fuel. The relative timing of these shocks must be tuned to better than +/- 100ps to maintain the DT fuel on a sufficiently low adiabat. To meet these requirements, pre-ignition tuning experiments using a modified hohlraum geometry are being planned. This modified geometry, known as the ``keyhole'' hohlraum, adds a re-entrant gold cone, which passes through the hohlraum and capsule walls, to provide an optical line-of-sight to directly measure the shocks as they break out of the ablator. In order to assess the surrogacy of this modified geometry, 3D simulations using HYDRA [1] have been performed. The drive conditions and the resulting effect on shock timing in the keyhole hohlraum will be compared with the corresponding results for the standard ignition hohlraum. [1] M.M. Marinak, et al., Phys. Plasmas 8, 2275 (2001).

  20. Detecting fiducials affected by trombone delay in ARC and the main laser alignment at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul A. S.; Bliss, Erlan S.; Miller Kamm, Victoria; Leach, Richard R.; Roberts, Randy; Rushford, Michael C.; Lowe-Webb, Roger; Wilhelmsen, Karl

    2015-09-01

    Four of the 192 beams of the National Ignition Facility (NIF) are currently being diverted into the Advanced Radiographic Capability (ARC) system to generate a sequence of short (1-50 picoseconds) 1053 nm laser pulses. When focused onto high Z wires in vacuum, these pulses create high energy x-ray pulses capable of penetrating the dense, imploding fusion fuel plasma during ignition scale experiments. The transmitted x-rays imaged with x-ray diagnostics can create movie radiographs that are expected to provide unprecedented insight into the implosion dynamics. The resulting images will serve as a diagnostic for tuning the experimental parameters towards successful fusion reactions. Beam delays introduced into the ARC pulses via independent, free-space optical trombones create the desired x-ray image sequence, or movie. However, these beam delays cause optical distortion of various alignment fiducials viewed by alignment sensors in the NIF and ARC beamlines. This work describes how the position of circular alignment fiducials is estimated in the presence of distortion.

  1. Saturation of multi-laser beams laser-plasma instabilities from stochastic ion heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michel, P.; Williams, E. A.; Divol, L.

    2013-05-15

    Cross-beam energy transfer (CBET) has been used as a tool on the National Ignition Facility (NIF) since the first energetics experiments in 2009 to control the energy deposition in ignition hohlraums and tune the implosion symmetry. As large amounts of power are transferred between laser beams at the entrance holes of NIF hohlraums, the presence of many overlapping beat waves can lead to stochastic ion heating in the regions where laser beams overlap [P. Michel et al., Phys. Rev. Lett. 109, 195004 (2012)]. This increases the ion acoustic velocity and modifies the ion acoustic waves’ dispersion relation, thus reducing themore » plasma response to the beat waves and the efficiency of CBET. This pushes the plasma oscillations driven by CBET in a regime where the phase velocities are much smaller than both the electron and ion thermal velocities. CBET gains are derived for this new regime and generalized to the case of multi ion species plasmas.« less

  2. High-Performance Cryogenic Designs for OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Collins, T. J. B.; Marozas, J. A.; Regan, S. P.; Betti, R.; Boehly, T. R.; Campbell, E. M.; Froula, D. H.; Igumenshchev, I. V.; McCrory, R. L.; Myatt, J. F.; Radha, P. B.; Sangster, T. C.; Shvydky, A.

    2016-10-01

    The main advantage of laser symmetric direct drive (SDD) is a significantly higher coupled drive laser energy to the hot-spot internal energy at stagnation compared to that of laser indirect drive. Because of coupling losses resulting from cross-beam energy transfer (CBET), however, reaching ignition conditions on the NIF with SDD requires designs with excessively large in-flight aspect ratios ( 30). Results of cryogenic implosions performed on OMEGA show that such designs are unstable to short-scale nonuniformity growth during shell implosion. Several CBET reduction strategies have been proposed in the past. This talk will discuss high-performing designs using several CBET-mitigation techniques, including using drive laser beams smaller than the target size and wavelength detuning. Designs that are predicted to reach alpha burning regimes as well as a gain of 10 to 40 at the NIF-scale will be presented. Hydrodynamically scaled OMEGA designs with similar CBET-reduction techniques will also be discussed. This material is based upon work supported by the Department Of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Exploring the dynamics of kinetic/multi-ion effects and ion-electron equilibration rates in ICF plasmas at OMEGA

    NASA Astrophysics Data System (ADS)

    Sio, H.

    2017-10-01

    During the last few years, an increasing number of experiments have shown that kinetic and multi-ion-fluid effects do impact the performance of an ICF implosion. Observations include: increasing yield degradation as the implosion becomes more kinetic; thermal decoupling between ion species; anomalous yield scaling for different fuel mixtures; ion diffusion; and fuel stratification. The common theme in these experiments is that the results are based on time-integrated nuclear observables that are affected by an accumulation of effects throughout the implosion, which complicate interpretation of the data. A natural extension of these studies is therefore to conduct time-resolved measurements of multiple nuclear-burn histories to explore the dynamics of kinetic/multi-ion effects in the fuel and their impact on the implosion performance. This was accomplished through simultaneous, high-precision measurements of the relative timing of the onset, bang time and duration of DD, D3He, DT and T3He burn from T3He (with trace D) or D3He gas-filled implosions using the new Particle X-ray Temporal Diagnostic (PXTD) on OMEGA. As the different reactions have different temperature sensitivities, Ti(t) was determined from the data. Uniquely to the PXTD, several x-ray emission histories (in different energy bands) were also measured, from which a spatially averaged Te(t) was also determined. The inferred Ti(t) and Te(t) data have been used to experimentally explore ion-electron equilibration rates and the Coulomb Logarithm for various plasma conditions. Finally, the implementation and use of PXTD, which represents a significant advance at OMEGA, have laid the foundation for implementing a Te(t) measurement in support of the main cryogenic DT programs at OMEGA and the NIF. This work was supported in part by the US DOE, LLE, LLNL, and DOE NNSA SSGF.

  4. Measurement of high-pressure shock waves in cryogenic deuterium-tritium ice layered capsule implosions on NIF.

    PubMed

    Robey, H F; Moody, J D; Celliers, P M; Ross, J S; Ralph, J; Le Pape, S; Berzak Hopkins, L; Parham, T; Sater, J; Mapoles, E R; Holunga, D M; Walters, C F; Haid, B J; Kozioziemski, B J; Dylla-Spears, R J; Krauter, K G; Frieders, G; Ross, G; Bowers, M W; Strozzi, D J; Yoxall, B E; Hamza, A V; Dzenitis, B; Bhandarkar, S D; Young, B; Van Wonterghem, B M; Atherton, L J; Landen, O L; Edwards, M J; Boehly, T R

    2013-08-09

    The first measurements of multiple, high-pressure shock waves in cryogenic deuterium-tritium (DT) ice layered capsule implosions on the National Ignition Facility have been performed. The strength and relative timing of these shocks must be adjusted to very high precision in order to keep the DT fuel entropy low and compressibility high. All previous measurements of shock timing in inertial confinement fusion implosions [T. R. Boehly et al., Phys. Rev. Lett. 106, 195005 (2011), H. F. Robey et al., Phys. Rev. Lett. 108, 215004 (2012)] have been performed in surrogate targets, where the solid DT ice shell and central DT gas regions were replaced with a continuous liquid deuterium (D2) fill. This report presents the first experimental validation of the assumptions underlying this surrogate technique.

  5. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    DOE PAGES

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; ...

    2014-06-04

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energymore » uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.« less

  6. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; Knauer, J.; Rinderknecht, H. G.

    2016-11-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.

  7. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    DOE PAGES

    Kabadi, N. V.; Sio, H.; Glebov, V.; ...

    2016-08-09

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF’s absolute sensitivity to neutrons. At Omega pTOF’s sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At themore » NIF pTOF’s sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. As a result, some possible causes of this variability are ruled out.« less

  8. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabadi, N. V.; Sio, H.; Glebov, V.

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF’s absolute sensitivity to neutrons. At Omega pTOF’s sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At themore » NIF pTOF’s sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. As a result, some possible causes of this variability are ruled out.« less

  9. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility.

    PubMed

    Kabadi, N V; Sio, H; Glebov, V; Gatu Johnson, M; MacPhee, A; Frenje, J A; Li, C K; Seguin, F; Petrasso, R; Forrest, C; Knauer, J; Rinderknecht, H G

    2016-11-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.

  10. Analysis of fusion neutron spectral widths in high-foot implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, Gary; Caggiano, Joseph; Callahan, Debra; Casey, Daniel; Cerjan, Charles; Clark, Daniel; Tilo, Doeppner; Eckart, Mark; Field, John; Frenje, Lars; Gatu-Johnson, Maria; Hartouni, Edward; Hatarik, Robert; Hurricane, Omar; Kilkenny, Joseph; Knauer, James; Ma, Tammy; Mannion, Owen; Munro, David; Park, Hye-Sook; Sayre, Daniel; Spears, Brian; Yeamans, Charles

    2015-11-01

    We present the latest results of thermal temperature analyses of cryogenically layered deuterium-tritium implosions at the NIF using data from the ``High Foot'' campaign. Data from new analysis methods and interpreted in the context of new theoretical developments will be reported. These data will include DD and DT apparent ion temperatures, their uniformity with direction, inferred plasma thermal temperature, as well as the magnitude of non-thermal contributions to the spectral widths. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  11. Disposable blast shields for use on NIF imaging diagnostics

    NASA Astrophysics Data System (ADS)

    Smith, Cal A.; Wang, Karen M.; Masters, Nathan

    2015-08-01

    The NIFs 192 lasers can deliver 2 MJ of energy to Target Chamber Center (TCC) to produce environments not available in any other experimental laboratory. The NIFs ability to deliver such intense energy to a small volume causes harsh consequences to experimental equipment and supporting diagnostics such as holhraums, support packages, target positioners, diagnostic equipment, and laser optics. Of these, the hohlraum and support packages are typically quickly vaporized and transformed into an expanding shell of high-hypersonic gases referred to as debris wind. During an experimental event such as fusion implosion, the target diagnostic components used to measure key observables in the experiment are subjected to extreme pressures and impact shocks due to incident debris wind loading. As diagnostics are positioned closer to TCC, the diagnostic pinhole stacks and other components along the diagnostic structure become more likely to be at or above the yield strength of the materials commonly used. In particular, the pinhole stack components and data recording instruments behind the pinholes are the most costly to replace. Thus, a conceptual configuration for a pinhole shield is proposed, analyzed, and tested with the intent of mitigating damage to the pinhole stack and imaging equipment and allowing immediate re-use of this diagnostic equipment. This pinhole shield would be a replaceable window that can be replaced quickly by inserting and removing it before and after each experimental laser shot, which will allow NIF to benefit from significant material and labor costs.

  12. Multi-Fluid Interpenetration Mixing in X-ray and Directly Laser driven ICF Capsule Implosions

    NASA Astrophysics Data System (ADS)

    Wilson, Douglas

    2003-10-01

    Mix between a surrounding shell and the fuel leads to degradation in ICF capsule performance. Both indirectly (X-ray) and directly laser driven implosions provide a wealth of data to test mix models. One model, the multi-fluid interpenetration mix model of Scannapieco and Cheng (Phys. Lett. A., 299, 49, 2002), was implemented in an ICF code and applied to a wide variety of experiments (e.g. J. D. Kilkenny et al., Proc. Conf Plasm. Phys. Contr. Nuc. Fus. Res. 3, 29(1988), P. Amendt, R. E. Turner, O. L. Landen, Phy. Rev. Lett., 89, 165001 (2002), or Li et al., Phy. Rev. Lett, 89, 165002 (2002)). With its single adjustable parameter fixed, it replicates well the yield degradation with increasing convergence ratio for both directly and indirectly driven capsules. Often, but not always the ion temperatures with mixing are calculated to be higher than in an unmixed implosion, agreeing with observations. Comparison with measured directly driven implosion yield rates ( from the neutron temporal diagnostic or NTD) shows mixing increases rapidly during the burn. The model also reproduces the decrease of the fuel "rho-r" with fill gas pressure, measured by observing escaping deuterons or secondary neutrons. The mix model assumes fully atomically mixed constituents, but when experiments with deuterated plastic layers and 3He fuel are modeled, less that full atomic mix is appropriate. Applying the mix model to the ablator - solid DT interface in indirectly driven ignition capsules for the NIF or LMJ suggests that the capsules will ignite, but that burn after ignition may be somewhat degraded. Situations in which the Scannapieco and Cheng model fails to agree with experiments can guide us to improvements or the development of other models. Some directly driven symmetric implosions suggest that in highly mixed situations, a higher value of the mix parameter may needed. Others show the model underestimating the fuel burn temperature. This work was performed by the Los Alamos National Laboratory under DOE contract number W-7405-Eng-36.

  13. Nuclear Diagnostics at the National Ignition Facility, 2013-2015

    NASA Astrophysics Data System (ADS)

    Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.

    2016-05-01

    The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced quantities required to understand NIF experimental results.

  14. Symmetry control using beam phasing in ~0.2 NIF scale high temperature Hohlraum experiment on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delamater, Norman D; Wilson, Goug C; Kyrala, George A

    2009-01-01

    Results are shown from recent experiments at the Omega laser facility, using 40 Omega beams driving the hohlraum with 3 cones from each side and up to 19.5 kJ of laser energy. Beam phasing is achieved by decreasing the energy separately in each of the three cones, by 3 kJ, for a total drive energy of 16.5kJ. This results in a more asymmetric drive, which will vary the shape of the imploded symmetry capsule core from round to oblate or prolate in a systematic and controlled manner. These results would be the first demonstration of beam phasing for implosions inmore » such 'high temperature' (275 eV) hohlraums at Omega. Dante measurements confirmed the predicted peak drive temperatures of 275 eV. Implosion core time dependent x-ray images were obtained from framing camera data which show the expected change in symmetry due to beam phasing and which also agree well with post processed hydro code calculations. Time resolved hard x-ray data has been obtained and it was found that the hard x-rays are correlated mainly with the low angle 21{sup o} degree cone.« less

  15. Direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics: charting the path to thermonuclear ignition

    NASA Astrophysics Data System (ADS)

    McCrory, R. L.; Regan, S. P.; Loucks, S. J.; Meyerhofer, D. D.; Skupsky, S.; Betti, R.; Boehly, T. R.; Craxton, R. S.; Collins, T. J. B.; Delettrez, J. A.; Edgell, D.; Epstein, R.; Fletcher, K. A.; Freeman, C.; Frenje, J. A.; Glebov, V. Yu.; Goncharov, V. N.; Harding, D. R.; Igumenshchev, I. V.; Keck, R. L.; Kilkenny, J. D.; Knauer, J. P.; Li, C. K.; Marciante, J.; Marozas, J. A.; Marshall, F. J.; Maximov, A. V.; McKenty, P. W.; Myatt, J.; Padalino, S.; Petrasso, R. D.; Radha, P. B.; Sangster, T. C.; Séguin, F. H.; Seka, W.; Smalyuk, V. A.; Soures, J. M.; Stoeckl, C.; Yaakobi, B.; Zuegel, J. D.

    2005-10-01

    Significant theoretical and experimental progress continues to be made at the University of Rochester's Laboratory for Laser Energetics (LLE), charting the path to direct-drive inertial confinement fusion (ICF) ignition. Direct drive offers the potential for higher-gain implosions than x-ray drive and is a leading candidate for an inertial fusion energy power plant. LLE's direct-drive ICF ignition target designs for the National Ignition Facility (NIF) are based on hot-spot ignition. A cryogenic target with a spherical DT-ice layer, within or without a foam matrix, enclosed by a thin plastic shell, will be directly irradiated with ~1.5 MJ of laser energy. Cryogenic and plastic/foam (surrogate-cryogenic) targets that are hydrodynamically scaled from these ignition target designs are imploded on the 60-beam, 30 kJ, UV OMEGA laser system to validate the key target physics issues, including energy coupling, hydrodynamic instabilities and implosion symmetry. Prospects for direct-drive ignition on the NIF are extremely favourable, even while it is in its x-ray-drive irradiation configuration, with the development of the polar-direct-drive concept. A high-energy petawatt capability is being constructed at LLE next to the existing 60-beam OMEGA compression facility. This OMEGA EP (extended performance) laser will add two short-pulse, 2.6 kJ beams to the OMEGA laser system to backlight direct-drive ICF implosions and study fast-ignition physics with focused intensities up to 6 × 1020 W cm-2.

  16. On the importance of minimizing "coast-time" in x-ray driven inertially confined fusion implosions

    NASA Astrophysics Data System (ADS)

    Hurricane, O. A.; Kritcher, A.; Callahan, D. A.; Landen, O.; Patel, P. K.; Springer, P. T.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kline, J.; Le Pape, S.; Ma, T.; MacPhee, A. G.; Moore, A.; Pak, A.; Park, H.-S.; Ralph, J.; Salmonson, J. D.; Widmann, K.

    2017-09-01

    By the time an inertially confined fusion (ICF) implosion has converged a factor of 20, its surface area has shrunk 400 × , making it an inefficient x-ray energy absorber. So, ICF implosions are traditionally designed to have the laser drive shut off at a time, toff, well before bang-time, tBT, for a coast-time of t coast = t B T - t o f f > 1 ns. High-foot implosions on NIF showed a strong dependence of many key ICF performance quantities on reduced coast-time (by extending the duration of laser power after the peak power is first reached), most notably stagnation pressure and fusion yield. Herein we show that the ablation pressure, pabl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing tcoast boosts pabl by as much as ˜ 2 × prior to stagnation thus increasing fuel and hot-spot compression and implosion speed. One-dimensional simulations are used to track hydrodynamic characteristics for implosions with various coast-times and various assumed rates of hohlraum cooling after toff to illustrate how the late-time conditions exterior to the implosion can impact the fusion performance. A simple rocket model-like analytic theory demonstrates that reducing coast-time can lead to a ˜ 15 % higher implosion velocity because the reduction in x-ray absorption efficiency at late-time is somewhat compensated by small ( ˜ 5 % - 10 %) ablator mass remaining. Together with the increased ablation pressure, the additional implosion speed for short coast-time implosions can boost the stagnation pressure by ˜ 2 × as compared to a longer coast-time version of the same implosion. Four key dimensionless parameters are identified and we find that reducing coast-time to as little as 500 ps still provides some benefit. Finally, we show how the high-foot implosion data is consistent with the above mentioned picture.

  17. On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions

    DOE PAGES

    Hurricane, O. A.; Kritcher, A.; Callahan, D. A.; ...

    2017-09-01

    By the time an inertially confined fusion (ICF) implosion has converged a factor of 20, its surface area has shrunk 400×, making it an inefficient x-ray energy absorber. So, ICF implosions are traditionally designed to have the laser drive shut off at a time, t off, well before bang-time, t BT, for a coast-time of t coast = t BT – t off > 1 ns. High-foot implosions on NIF showed a strong dependence of many key ICF performance quantities on reduced coast-time (by extending the duration of laser power after the peak power is first reached), most notably stagnationmore » pressure and fusion yield. Herein we show that the ablation pressure, p abl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing t coast boosts p abl by as much as ~2× prior to stagnation thus increasing fuel and hot-spot compression and implosion speed. One-dimensional simulations are used to track hydrodynamic characteristics for implosions with various coast-times and various assumed rates of hohlraum cooling after t off to illustrate how the late-time conditions exterior to the implosion can impact the fusion performance. A simple rocket model-like analytic theory demonstrates that reducing coast-time can lead to a ~15% higher implosion velocity because the reduction in x-ray absorption efficiency at late-time is somewhat compensated by small (~5%–10%) ablator mass remaining. Together with the increased ablation pressure, the additional implosion speed for short coast-time implosions can boost the stagnation pressure by ~2× as compared to a longer coast-time version of the same implosion. Four key dimensionless parameters are identified and we find that reducing coast-time to as little as 500 ps still provides some benefit. Lastly, we show how the high-foot implosion data is consistent with the above mentioned picture.« less

  18. On the importance of minimizing “coast-time” in x-ray driven inertially confined fusion implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.; Kritcher, A.; Callahan, D. A.

    By the time an inertially confined fusion (ICF) implosion has converged a factor of 20, its surface area has shrunk 400×, making it an inefficient x-ray energy absorber. So, ICF implosions are traditionally designed to have the laser drive shut off at a time, t off, well before bang-time, t BT, for a coast-time of t coast = t BT – t off > 1 ns. High-foot implosions on NIF showed a strong dependence of many key ICF performance quantities on reduced coast-time (by extending the duration of laser power after the peak power is first reached), most notably stagnationmore » pressure and fusion yield. Herein we show that the ablation pressure, p abl, which drives high-foot implosions, is essentially triangular in temporal shape, and that reducing t coast boosts p abl by as much as ~2× prior to stagnation thus increasing fuel and hot-spot compression and implosion speed. One-dimensional simulations are used to track hydrodynamic characteristics for implosions with various coast-times and various assumed rates of hohlraum cooling after t off to illustrate how the late-time conditions exterior to the implosion can impact the fusion performance. A simple rocket model-like analytic theory demonstrates that reducing coast-time can lead to a ~15% higher implosion velocity because the reduction in x-ray absorption efficiency at late-time is somewhat compensated by small (~5%–10%) ablator mass remaining. Together with the increased ablation pressure, the additional implosion speed for short coast-time implosions can boost the stagnation pressure by ~2× as compared to a longer coast-time version of the same implosion. Four key dimensionless parameters are identified and we find that reducing coast-time to as little as 500 ps still provides some benefit. Lastly, we show how the high-foot implosion data is consistent with the above mentioned picture.« less

  19. A new symmetry model for hohlraum-driven capsule implosion experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Jones, O.; Rygg, R.; Tomasini, R.; Eder, D.; Kritcher, A.; Milovich, J.; Peterson, L.; Thomas, C.; Barrios, M.; Benedetti, R.; Doeppner, T.; Ma, T.; Nagel, S.; Pak, A.; Field, J.; Izumi, N.; Glenn, S.; Town, R.; Bradley, D.

    2016-03-01

    We have developed a new model for predicting the time-dependent radiation drive asymmetry in laser-heated hohlraums. The model consists of integrated Hydra capsule-hohlraum calculations coupled to a separate model for calculating the crossbeam energy transfer between the inner and outer cones of the National Ignition Facility (NIF) indirect drive configuration. The time- dependent crossbeam transfer model parameters were adjusted in order to best match the P2 component of the shape of the inflight shell inferred from backlit radiographs of the capsule taken when the shell was at a radius of 150-250 μm. The adjusted model correctly predicts the observed inflight P2 and P4 components of the shape of the inflight shell, and also the P2 component of the shape of the hotspot inferred from x-ray self-emission images at the time of peak emission. It also correctly captures the scaling of the inflight P4 as the hohlraum length is varied. We then applied the newly benchmarked model to quantify the improved symmetry of the N130331 layered deuterium- tritium (DT) experiment in a re-optimized longer hohlraum.

  20. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF.

    PubMed

    Zylstra, A B; Gatu Johnson, M; Frenje, J A; Séguin, F H; Rinderknecht, H G; Rosenberg, M J; Sio, H W; Li, C K; Petrasso, R D; McCluskey, M; Mastrosimone, D; Glebov, V Yu; Forrest, C; Stoeckl, C; Sangster, T C

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ~±10% accuracy, and mean neutron energy to ~±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ~±25-40 km/s.

  1. Measurement of inflight shell areal density perturbations in NIF capsule implosions near peak velocity

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Pickworth, L.; Smalyuk, V.; Macphee, A.; Scott, H. A.; Robey, H.; Barrios, M.; Regan, S. P.

    2015-11-01

    Quantitative measurements of shell-RhoR perturbations in capsules near peak implosion velocity (PV) are challenging. An external backlighter samples both sides of the shell, unless a re-entrant cone is used (potentially perturbing implosion). Emission from the hot core, after shock-stagnation and prior to PV, has been used as a self-backlighter, providing a means to sample one side of the capsule. Adding high-Z gas (~ 1% Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at photon energies ~ 8 keV over nominal fills. From images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer, we infer the growth at PV of imposed perturbations (100 nm amplitude, mode 40). Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. A compact neutron spectrometer for characterizing inertial confinement fusion implosions at OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Zylstra, A. B.; Gatu Johnson, M.; Frenje, J. A.; Séguin, F. H.; Rinderknecht, H. G.; Rosenberg, M. J.; Sio, H. W.; Li, C. K.; Petrasso, R. D.; McCluskey, M.; Mastrosimone, D.; Glebov, V. Yu.; Forrest, C.; Stoeckl, C.; Sangster, T. C.

    2014-06-01

    A compact spectrometer for measurements of the primary deuterium-tritium neutron spectrum has been designed and implemented on the OMEGA laser facility [T. Boehly et al., Opt. Commun. 133, 495 (1997)]. This instrument uses the recoil spectrometry technique, where neutrons produced in an implosion elastically scatter protons in a plastic foil, which are subsequently detected by a proton spectrometer. This diagnostic is currently capable of measuring the yield to ˜±10% accuracy, and mean neutron energy to ˜±50 keV precision. As these compact spectrometers can be readily placed at several locations around an implosion, effects of residual fuel bulk flows during burn can be measured. Future improvements to reduce the neutron energy uncertainty to ±15-20 keV are discussed, which will enable measurements of fuel velocities to an accuracy of ˜±25-40 km/s.

  3. Conceptual design of initial opacity experiments on the national ignition facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heeter, R.  F.; Bailey, J.  E.; Craxton, R.  S.

    Accurate models of X-ray absorption and re-emission in partly stripped ions are necessary to calculate the structure of stars, the performance of hohlraums for inertial confinement fusion and many other systems in high-energy-density plasma physics. Despite theoretical progress, a persistent discrepancy exists with recent experiments at the Sandia Z facility studying iron in conditions characteristic of the solar radiative–convective transition region. The increased iron opacity measured at Z could help resolve a longstanding issue with the standard solar model, but requires a radical departure for opacity theory. To replicate the Z measurements, an opacity experiment has been designed for the National Facility (NIF). The design uses established techniques scaled to NIF. A laser-heated hohlraum will produce X-ray-heated uniform iron plasmas in local thermodynamic equilibrium (LTE) at temperaturesmore » $${\\geqslant}150$$ eV and electron densities$${\\geqslant}7\\times 10^{21}~\\text{cm}^{-3}$$. The iron will be probed using continuum X-rays emitted in a$${\\sim}200$$ ps,$${\\sim}200~\\unicode[STIX]{x03BC}\\text{m}$$diameter source from a 2 mm diameter polystyrene (CH) capsule implosion. In this design,$2/3$$of the NIF beams deliver 500 kJ to the$${\\sim}6$$ mm diameter hohlraum, and the remaining$$1/3$directly drive the CH capsule with 200 kJ. Calculations indicate this capsule backlighter should outshine the iron sample, delivering a point-projection transmission opacity measurement to a time-integrated X-ray spectrometer viewing down the hohlraum axis. Preliminary experiments to develop the backlighter and hohlraum are underway, informing simulated measurements to guide the final design.« less

  4. Results from MARBLE DT Experiments on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Cooley, J. H.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2017-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first experiments using deuterated foam and tritium gas have been performed. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  5. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    PubMed

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  6. Implosion symmetry and ρR measurements on the National Ignition Facility from nascent 27-31 MeV tertiary protons (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Petrasso, Richard D.

    1997-01-01

    Tertiary protons with birth energies from ˜27 to 30.8 MeV result from the implosion of ignition-scale inertial confinement fusion targets, such as those planned for the National Ignition Facility (NIF). Measurement of the tertiaries' slowing can provide a determination of the imploded areal density of the fuel capsule, as well as implosion asymmetry that results from anisotropy of the areal density and plasma temperature. In order to determine the utility of tertiaries for all phases of the NIF, we analyze three representative cases: a gas capsule (0.7 kJ yield); a cryogenic fuel capsule that fails to ignite (15 kJ); and a cryogenic fuel capsule that ignites and burns (13 000 kJ). In each case, tertiaries escape from the capsule and convey critical information about implosion dynamics. In addition, we show that for some gas-capsule implosions anticipated on OMEGA, tertiaries may be the only species of energetic charged particles that can determine the fuel areal density. Presently, we are building a charge-coupled device (CCD)-based charged particle spectrometer for OMEGA and for NOVA. In addition to the tertiaries, the spectrometers are sensitive to a variety of the energetic charged particles, such as knock-on protons, deuterons, and tritons, and 3He-burnup protons. In fact the latter set of charged particles will usually be the dominant signal. We will describe the basic features of the spectrometers and the measured response of the CCDs to 1-5 MeV protons, 1-5 MeV alphas, and 14 MeV neutrons (and associated gammas), the latter constitute the principal source of noise. This work is done in collaboration with C. K. Li, D. Hicks, and F. Seguin of MIT; with B. Burke of LL/MIT; with M. Cable, S. Pollaine, S. Haan, T. Bernat, T. Phillips, and J. Kilkenny of LLNL; with J, Knauer, S. Cremer, C. Verdon, and B. Kremens of University of Rochester; and with C. Ruiz and R. Leeper of SNL. This work is supported in part by LLNL Subcontract B313875 and University of Rochester Subcontract 410025-G.

  7. Shock timing measurements in DT ice layers

    NASA Astrophysics Data System (ADS)

    Robey, H. F.; Celliers, P. M.; Moody, J. D.; Sater, J.; Parham, T.; Kozioziemski, B.; Dylla-Spears, R. J.; Ross, J. S.; Lepape, S.; Ralph, J. E.; Berzak Hopkins, L. F.; Kroll, J. J.; Yoxall, B. E.; Hamza, A. V.; Boehly, T. R.; Nikroo, A.; Landen, O. L.; Edwards, M. J.

    2013-10-01

    Shock timing experiments on the National Ignition Facility (NIF) are routinely conducted using the keyhole target geometry, in which the strength and timing of multiple shocks are measured in a liquid-deuterium (D2) filled capsule interior. These targets have recently been modified to improve the surrogacy to ignition implosions by replacing the standard, continuous liquid D2 capsule fill with a deuterium-tritium (DT) ice layer with a central DT gas fill. These experiments remove any possible material surrogacy difference between D2 and DT as well as incorporating the physics of multiple shock release and recompression events from an ice layer of finite thickness, an effect that is absent in the liquid-filled targets. Experimental results and comparisons with numerical simulation are presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  8. First shock tuning and backscatter measurements for large case-to-capsule ratio beryllium targets

    NASA Astrophysics Data System (ADS)

    Loomis, Eric; Yi, Austin; Kline, John; Kyrala, George; Simakov, Andrei; Wilson, Doug; Ralph, Joe; Dewald, Eduard; Strozzi, David; Celliers, Peter; Millot, Marius; Tommasini, Riccardo

    2016-10-01

    The current under performance of target implosions on the National Ignition Facility (NIF) has necessitated scaling back from high convergence ratio to access regimes of reduced physics uncertainties. These regimes, we expect, are more predictable by existing radiation hydrodynamics codes giving us a better starting point for isolating key physics questions. One key question is the lack of predictable in-flight and hot spot shape due to a complex hohlraum radiation environment. To achieve more predictable, shape tunable implosions we have designed and fielded a large 4.2 case-to-capsule ratio (CCR) target at the NIF using 6.72 mm diameter Au hohlraums and 1.6 mm diameter Cu-doped Be capsules. Simulations show that at these dimensions during a 10 ns 3-shock laser pulse reaching 270 eV hohlraum temperatures, the interaction between hohlraum and capsule plasma, which at lower CCR lead to beam propagation impedance by artificial plasma stagnation, are reduced. In this talk we will present measurements of early time drive symmetry using two-axis line-imaging velocimetry (VISAR) and streaked radiography measuring velocity of the imploding shell and their comparisons to post-shot calculations using the code HYDRA (Lawrence Livermore National Laboratory).

  9. Visualizing density perturbations in the capsule shell in NIF implosions near peak velocity

    NASA Astrophysics Data System (ADS)

    Pickworth, L. A.; Hammel, B. A.; Smalyuk, V. A.; Macphee, A.; Scott, H. A.; Robey, H. F.; Field, J.; Barrios, M.; Regan, S. P.

    2016-10-01

    Engineering features on the capsule (surface roughness, support structures, etc.) can introduce outer surface perturbations that are ultimately detrimental to the performance of the capsule. Recent experiments have assessed minimal support structures and alternate pulse shapes using a re-entrant cone and back lighter that is perturbing to the implosion below radii of 500 μ m. Emission from the hot core, after shock-stagnation and prior to peak velocity (PV), has been used as a self-backlighter, providing a means to sample one side of the capsule at smaller radii. Adding high-Z gas ( 1 % Ar) to the capsule fill in Symcaps (4He), has produced a continuum backlighter with significant increase in emission at hv 8 keV over nominal fills. High-resolution imaging diagnostics with photon energy selectivity form 2D images of the transmitted self-emission, above and below the K-edge of an internally doped Cu layer. We can infer from these images the growth at PV of outer surface perturbations. Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-ABS-697620.

  10. Cherenkov radiation conversion and collection considerations for a gamma bang time/reaction history diagnostic for the NIF.

    PubMed

    Herrmann, Hans W; Mack, Joseph M; Young, Carlton S; Malone, Robert M; Stoeffl, Wolfgang; Horsfield, Colin J

    2008-10-01

    Bang time and reaction history measurements are fundamental components of diagnosing inertial confinement fusion (ICF) implosions and will be essential contributors to diagnosing attempts at ignition on the National Ignition Facility (NIF). Fusion gammas provide a direct measure of fusion interaction rate without being compromised by Doppler spreading. Gamma-based gas Cherenkov detectors that convert fusion gamma rays to optical Cherenkov photons for collection by fast recording systems have been developed and fielded at Omega. These systems have established their usefulness in illuminating ICF physics in several experimental campaigns. Bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF system design requirements. A comprehensive, validated numerical study of candidate systems is providing essential information needed to make a down selection based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF logistics. This paper presents basic design considerations arising from the two-step conversion process from gamma rays to relativistic electrons to UV/visible Cherenkov radiation.

  11. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target

    NASA Astrophysics Data System (ADS)

    Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E. M.; He, Xian-Tu

    2017-03-01

    Octahedral spherical hohlraums with a single laser ring at an injection angle of 55∘ are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55∘ are reported and compared to that observed with cylindrical hohlraums with injection angles of 28 .5∘ and 55∘, similar to that of the NIF. Significant LPI is observed with the laser injection of 28 .5∘ in the cylindrical hohlraum where the propagation path is similar to the 55∘ injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35 -μ m incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

  12. Experimental demonstration of low laser-plasma instabilities in gas-filled spherical hohlraums at laser injection angle designed for ignition target.

    PubMed

    Lan, Ke; Li, Zhichao; Xie, Xufei; Chen, Yao-Hua; Zheng, Chunyang; Zhai, Chuanlei; Hao, Liang; Yang, Dong; Huo, Wen Yi; Ren, Guoli; Peng, Xiaoshi; Xu, Tao; Li, Yulong; Li, Sanwei; Yang, Zhiwen; Guo, Liang; Hou, Lifei; Liu, Yonggang; Wei, Huiyue; Liu, Xiangming; Cha, Weiyi; Jiang, Xiaohua; Mei, Yu; Li, Yukun; Deng, Keli; Yuan, Zheng; Zhan, Xiayu; Zhang, Haijun; Jiang, Baibin; Zhang, Wei; Deng, Xuewei; Liu, Jie; Du, Kai; Ding, Yongkun; Wei, Xiaofeng; Zheng, Wanguo; Chen, Xiaodong; Campbell, E M; He, Xian-Tu

    2017-03-01

    Octahedral spherical hohlraums with a single laser ring at an injection angle of 55^{∘} are attractive concepts for laser indirect drive due to the potential for achieving the x-ray drive symmetry required for high convergence implosions. Laser-plasma instabilities, however, are a concern given the long laser propagation path in such hohlraums. Significant stimulated Raman scattering has been observed in cylindrical hohlraums with similar laser propagation paths during the ignition campaign on the National Ignition Facility (NIF). In this Rapid Communication, experiments demonstrating low levels of laser-driven plasma instability (LPI) in spherical hohlraums with a laser injection angle of 55^{∘} are reported and compared to that observed with cylindrical hohlraums with injection angles of 28.5^{∘} and 55^{∘}, similar to that of the NIF. Significant LPI is observed with the laser injection of 28.5^{∘} in the cylindrical hohlraum where the propagation path is similar to the 55^{∘} injection angle for the spherical hohlraum. The experiments are performed on the SGIII laser facility with a total 0.35-μm incident energy of 93 kJ in a 3 nsec pulse. These experiments demonstrate the role of hohlraum geometry in LPI and demonstrate the need for systematic experiments for choosing the optimal configuration for ignition studies with indirect drive inertial confinement fusion.

  13. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Milovich, J. L.; Dewald, E. L.; Pak, A.; Michel, P.; Town, R. P. J.; Bradley, D. K.; Landen, O.; Edwards, M. J.

    2016-03-01

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or "picket") period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time. However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P2), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the "Rev5" CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.

  14. Early-time radiation flux symmetry optimization and its effect on gas-filled hohlraum ignition targets on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milovich, J. L., E-mail: milovich1@llnl.gov; Dewald, E. L.; Pak, A.

    2016-03-15

    Achieving ignition on the National Ignition Facility (NIF) is tied to our ability to control and minimize deviations from sphericity of the capsule implosion. Low-mode asymmetries of the hot spot result from the combined effect of radiation drive asymmetries throughout the laser pulse and initial roughness on the capsule surface. In this paper, we report on simulations and experiments designed to assess, measure, and correct the drive asymmetries produced by the early-time (≈first 2 ns or “picket”) period of the laser pulse. The drive asymmetry during the picket is commonly thought to introduce distortions in the hot-spot shape at ignition time.more » However, a more subtle effect not previously considered is that it also leads to an asymmetry in shock velocity and timing, thereby increasing the fuel adiabat and reducing the margin for ignition. It is shown via hydrodynamic simulations that minimizing this effect requires that the early-time asymmetry be kept below 7.5% in the second Legendre mode (P{sub 2}), thus keeping the loss of performance margin below ≈10% for a layered implosion. Asymmetries during the picket of the laser pulse are measured using the instantaneous self-emission of a high-Z re-emission sphere in place of an ignition capsule in a hohlraum with large azimuthal diagnostic windows. Three dimensional simulations using the code HYDRA (to capture the effect of non-azimuthal hohlraum features) coupled to a cross-beam energy transfer model [Michel et al., Phys. Plasmas 17, 056305 (2010)] are used to establish the surrogacy of the re-emit target and to assess the early-time drive symmetry. Calculations using this model exhibit the same sensitivity to variations in the relative input powers between the different cones of NIF beams as measured for the “Rev5” CH target [Haan et al., Phys Plasmas 18, 051001 (2011)] and reported by Dewald et al. [Phys. Rev. Lett. 111, 235001 (2013)]. The same methodology applied to recently improved implosions using different hohlraum geometries and picket powers show good agreement with experimental data.« less

  15. Indirect drive ignition at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  16. Indirect drive ignition at the National Ignition Facility

    DOE PAGES

    Meezan, N. B.; Edwards, M. J.; Hurricane, O. A.; ...

    2016-10-27

    This article reviews scientific results from the pursuit of indirect drive ignition on the National Ignition Facility (NIF) and describes the program's forward looking research directions. In indirect drive on the NIF, laser beams heat an x-ray enclosure called a hohlraum that surrounds a spherical pellet. X-ray radiation ablates the surface of the pellet, imploding a thin shell of deuterium/tritium (DT) that must accelerate to high velocity (v > 350 km s -1) and compress by a factor of several thousand. Since 2009, substantial progress has been made in understanding the major challenges to ignition: Rayleigh Taylor (RT) instability seededmore » by target imperfections; and low-mode asymmetries in the hohlraum x-ray drive, exacerbated by laser-plasma instabilities (LPI). Requirements on velocity, symmetry, and compression have been demonstrated separately on the NIF but have not been achieved simultaneously. We now know that the RT instability, seeded mainly by the capsule support tent, severely degraded DT implosions from 2009–2012. Experiments using a 'high-foot' drive with demonstrated lower RT growth improved the thermonuclear yield by a factor of 10, resulting in yield amplification due to alpha particle heating by more than a factor of 2. However, large time dependent drive asymmetry in the LPI-dominated hohlraums remains unchanged, preventing further improvements. High fidelity 3D hydrodynamic calculations explain these results. In conclusion, future research efforts focus on improved capsule mounting techniques and on hohlraums with little LPI and controllable symmetry. In parallel, we are pursuing improvements to the basic physics models used in the design codes through focused physics experiments.« less

  17. A plasma amplifier to combine multiple beams at NIF

    NASA Astrophysics Data System (ADS)

    Kirkwood, R. K.; Turnbull, D. P.; Chapman, T.; Wilks, S. C.; Rosen, M. D.; London, R. A.; Pickworth, L. A.; Colaitis, A.; Dunlop, W. H.; Poole, P.; Moody, J. D.; Strozzi, D. J.; Michel, P. A.; Divol, L.; Landen, O. L.; MacGowan, B. J.; Van Wonterghem, B. M.; Fournier, K. B.; Blue, B. E.

    2018-05-01

    Combining laser beams in a plasma is enabled by seeded stimulated Brillouin scattering which allows cross-beam energy transfer (CBET) to occur and re-distributes the energy between beams that cross with different incident angles and small differences in wavelength [Kirkwood et al. Phys. Plasmas 4, 1800 (1997)]. Indirect-drive implosions at the National Ignition Facility (NIF) [Haynam et al. Appl. Opt. 46, 3276-3303 (2007)] have controlled drive symmetry by using plasma amplifiers to transfer energy between beams [Kirkwood et al., Plasma Phys. Controlled Fusion 55, 103001 (2013); Lindl et al., Phys. Plasmas 21, 020501 (2014); and Hurricane et al. Nature 506, 343-348 (2014)]. In this work, we show that the existing models are well enough validated by experiments to allow a design of a plasma beam combiner that, once optimized, is expected to produce a pulse of light in a single beam with the energy greatly enhanced over existing sources. The scheme combines up to 61 NIF beams with 120 kJ of available energy into a single f/20 beam with a 1 ns pulse duration and a 351 nm wavelength by both resonant and off-resonance CBET. Initial experiments are also described that have already succeeded in producing a 4 kJ, 1 ns pulse in a single beam by combination of up to eight incident pump beams containing <1.1 kJ/beam, which are maintained near resonance for CBET in a plasma that is formed by 60 pre-heating beams [Kirkwood et al., Nat. Phys. 14, 80 (2018)].

  18. Polar tent for reduced perturbation of NIF ignition capsules

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.; Pickworth, L.; Stadermann, M.; Field, J.; Robey, H.; Scott, H. A.; Smalyuk, V.

    2016-10-01

    In simulations, a tent that contacts the capsule near the poles and departs tangential to the capsule surface greatly reduces the capsule perturbation, and the resulting mass injected into the hot-spot, compared to current capsule support methods. Target fabrication appears feasible with a layered tent (43-nm polyimide + 8-nm C) for increased stiffness. We are planning quantitative measurements of the resulting shell- ρR perturbation near peak implosion velocity (PV) using enhanced self-emission backlighting, achieved by adding 1% Ar to the capsule fill in Symcaps (4He + H). Layered DT implosions are also planned for an integrated test of capsule performance. We will describe the design and simulation predictions. Prepared by LLNL under Contract DE-AC52-07NA27344.

  19. Understanding Yield Anomalies in ICF Implosions via Fully Kinetic Simulations

    NASA Astrophysics Data System (ADS)

    Taitano, William

    2017-10-01

    In the quest towards ICF ignition, plasma kinetic effects are among prime candidates for explaining some significant discrepancies between experimental observations and rad-hydro simulations. To assess their importance, high-fidelity fully kinetic simulations of ICF capsule implosions are needed. Owing to the extremely multi-scale nature of the problem, kinetic codes have to overcome nontrivial numerical and algorithmic challenges, and very few options are currently available. Here, we present resolutions of some long-standing yield discrepancy conundrums using a novel, LANL-developed, 1D-2V Vlasov-Fokker-Planck code iFP. iFP possesses an unprecedented fidelity and features fully implicit time-stepping, exact mass, momentum, and energy conservation, and optimal grid adaptation in phase space, all of which are critically important for ensuring long-time numerical accuracy of the implosion simulations. Specifically, we concentrate on several anomalous yield degradation instances observed in Omega campaigns, with the so-called ``Rygg effect'', or an anomalous yield scaling with the fuel composition, being a prime example. Understanding the physical mechanisms responsible for such degradations in non-ignition-grade Omega experiments is of great interest, as such experiments are often used for platform and diagnostic development, which are then used in ignition-grade experiments on NIF. In the case of Rygg's experiments, effects of a kinetic stratification of fuel ions on the yield have been previously proposed as the anomaly explanation, studied with a kinetic code FPION, and found unimportant. We have revisited this issue with iFP and obtained excellent yield-over-clean agreement with the original Rygg results, and several subsequent experiments. This validates iFP and confirms that the kinetic fuel stratification is indeed at the root of the observed yield degradation. This work was sponsored by the Metropolis Postdoctoral Fellowship, LDRD office, Thermonuclear Burn Initiative of ASC, and the LANL Institutional Computing. This work was performed under the NNSA of the USDOE at LANL under contract DE-AC52-06NA25396.

  20. A technique for extending by ~10 3 the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA a)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sio, H.; Séguin, F. H.; Frenje, J. A.

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D 3He-, D 2-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10 2 for obtaining the spectral shape, and by 10 3 for mean energy (ρR) measurement, corresponding to proton fluences of 10 8 and 10 9 cm -2, respectively. Finally, using this new technique, ρR asymmetries can be measuredmore » during both shock and compression burn (proton yield ~10 8 and ~10 12, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±~10 mg/cm 2.« less

  1. Characterizing high energy spectra of NIF ignition Hohlraums using a differentially filtered high energy multipinhole x-ray imager.

    PubMed

    Park, Hye-Sook; Dewald, E D; Glenzer, S; Kalantar, D H; Kilkenny, J D; MacGowan, B J; Maddox, B R; Milovich, J L; Prasad, R R; Remington, B A; Robey, H F; Thomas, C A

    2010-10-01

    Understanding hot electron distributions generated inside Hohlraums is important to the national ignition campaign for controlling implosion symmetry and sources of preheat. While direct imaging of hot electrons is difficult, their spatial distribution and spectrum can be deduced by detecting high energy x-rays generated as they interact with target materials. We used an array of 18 pinholes with four independent filter combinations to image entire Hohlraums with a magnification of 0.87× during the Hohlraum energetics campaign on NIF. Comparing our results with Hohlraum simulations indicates that the characteristic 10-40 keV hot electrons are mainly generated from backscattered laser-plasma interactions rather than from Hohlraum hydrodynamics.

  2. X-ray source development for EXAFS measurements on the National Ignition Facility.

    PubMed

    Coppari, F; Thorn, D B; Kemp, G E; Craxton, R S; Garcia, E M; Ping, Y; Eggert, J H; Schneider, M B

    2017-08-01

    Extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first time on the NIF laser, and the requirements for optimization have been established.

  3. Mix Model Comparison of Low Feed-Through Implosions

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; MacLaren, S.; Greenough, J.; Casey, D.; Dewald, E.; Dittrich, T.; Khan, S.; Ma, T.; Sacks, R.; Salmonson, J.; Smalyuk, V.; Tipton, R.; Kyrala, G.

    2016-10-01

    The CD Mix campaign previously demonstrated the use of nuclear diagnostics to study the mix of separated reactants in plastic capsule implosions at the NIF. Recently, the separated reactants technique has been applied to the Two Shock (TS) implosion platform, which is designed to minimize this feed-through and isolate local mix at the gas-ablator interface and produce core yields in good agreement with 1D clean simulations. The effects of both inner surface roughness and convergence ratio have been probed. The TT, DT, and DD neutron signals respectively give information about core gas performance, gas-shell atomic mix, and heating of the shell. In this talk, we describe efforts to model these implosions using high-resolution 2D ARES simulations. Various methods of interfacial mix will be considered, including the Reynolds-Averaged Navier Stokes (RANS) KL method as well as and a multicomponent enhanced diffusivity model with species, thermal, and pressure gradient terms. We also give predictions of a upcoming campaign to investigate Mid-Z mixing by adding a Ge dopant to the CD layer. LLNL-ABS-697251 This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Development of the Pushered Single Shell Experimental Platform on NIF

    NASA Astrophysics Data System (ADS)

    Salmonson, Jay; Dewald, Eduard; Graziani, Frank; MacLaren, Stephan; Pino, Jesse; Ralph, Joseph; Sacks, Ryan; Smalyuk, Vladimir; Tipton, Robert

    2017-10-01

    The goal of the Pushered Single Shell (PSS) experimental campaign is to study mix of partially ionized ablator material into the hotspot. To do this we use a uniformly Si doped plastic capsule, the inner few microns of which can be doped with a few percent Ge. To diagnose mix, we use separated reactants; deuterating the inner Ge-doped layer, CD/Ge, while putting Tritium into the Hydrogen capsule fill gas. Mix is then inferred by measuring the neutron yields from DD, DT, and TT reactions. In order to accentuate the cooling of the hot-spot due to Bremsstrahlung radiation when Ge is present, we required high hot-spot ion temperatures: 3 keV. This, in turn, requires a fast, symmetric implosion. Using the Two-Shock campaign as a starting point, we increased the capsule radius by 25% to 844 μm and the peak laser power by over 10% to 475 TW. We also used a low, 0.3 mg/cc, He fill in the hohlraum to maintain control over implosion symmetry. This paper will describe the sequence of keyhole, 1DConA, 2DConA, and Symcap experiments we performed over the last year to tune the PSS implosions. We were successful in achieving our design goals; the PSS is the fastest CH capsule implosion in the laboratory, with peak velocity 400 μm, a round hot-spot, with hotspot P2 = 0 within errors, and a hot-spot ion temperature 3.5 keV. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  5. National direct-drive program on OMEGA and the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Goncharov, V. N.; Regan, S. P.; Campbell, E. M.; Sangster, T. C.; Radha, P. B.; Myatt, J. F.; Froula, D. H.; Betti, R.; Boehly, T. R.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Forrest, C. J.; Glebov, V. Yu; Harding, D. R.; Hu, S. X.; Igumenshchev, I. V.; Marshall, F. J.; McCrory, R. L.; Michel, D. T.; Seka, W.; Shvydky, A.; Stoeckl, C.; Theobald, W.; Gatu-Johnson, M.

    2017-01-01

    A major advantage of the laser direct-drive (DD) approach to ignition is the increased fraction of laser drive energy coupled to the hot spot and relaxed hot-spot requirements for the peak pressure and convergence ratios relative to the indirect-drive approach at equivalent laser energy. With the goal of a successful ignition demonstration using DD, the recently established national strategy has several elements and involves multiple national and international institutions. These elements include the experimental demonstration on OMEGA cryogenic implosions of hot-spot conditions relevant for ignition at MJ-scale energies available at the National Ignition Facility (NIF) and developing an understanding of laser-plasma interactions and laser coupling using DD experiments on the NIF. DD designs require reaching central stagnation pressures in excess of 100 Gbar. The current experiments on OMEGA have achieved inferred peak pressures of 56 Gbar (Regan et al 2016 Phys. Rev. Lett. 117 025001). Extensive analysis of the cryogenic target experiments and two- and three-dimensional simulations suggest that power balance, target offset, and target quality are the main limiting factors in target performance. In addition, cross-beam energy transfer (CBET) has been identified as the main mechanism reducing laser coupling. Reaching the goal of demonstrating hydrodynamic equivalence on OMEGA includes improving laser power balance, target position, and target quality at shot time. CBET must also be significantly reduced and several strategies have been identified to address this issue.

  6. Validating Inertial Confinement Fusion (ICF) predictive capability using perturbed capsules

    NASA Astrophysics Data System (ADS)

    Schmitt, Mark; Magelssen, Glenn; Tregillis, Ian; Hsu, Scott; Bradley, Paul; Dodd, Evan; Cobble, James; Flippo, Kirk; Offerman, Dustin; Obrey, Kimberly; Wang, Yi-Ming; Watt, Robert; Wilke, Mark; Wysocki, Frederick; Batha, Steven

    2009-11-01

    Achieving ignition on NIF is a monumental step on the path toward utilizing fusion as a controlled energy source. Obtaining robust ignition requires accurate ICF models to predict the degradation of ignition caused by heterogeneities in capsule construction and irradiation. LANL has embarked on a project to induce controlled defects in capsules to validate our ability to predict their effects on fusion burn. These efforts include the validation of feature-driven hydrodynamics and mix in a convergent geometry. This capability is needed to determine the performance of capsules imploded under less-than-optimum conditions on future IFE facilities. LANL's recently initiated Defect Implosion Experiments (DIME) conducted at Rochester's Omega facility are providing input for these efforts. Recent simulation and experimental results will be shown.

  7. Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)

    DOE PAGES

    Regan, S. P.; Epstein, R.; Hammel, B. A.; ...

    2012-03-30

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less

  8. Hot-spot mix in ignition-scale implosions on the NIF [Hot-spot mix in ignition-scale implosions on the National Ignition Facility (NIF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regan, S. P.; Epstein, R.; Hammel, B. A.

    Ignition of an inertial confinement fusion (ICF) target depends on the formation of a central hot spot with sufficient temperature and areal density. Radiative and conductive losses from the hot spot can be enhanced by hydrodynamic instabilities. The concentric spherical layers of current National Ignition Facility (NIF) ignition targets consist of a plastic ablator surrounding 2 a thin shell of cryogenic thermonuclear fuel (i.e., hydrogen isotopes), with fuel vapor filling the interior volume. The Rev. 5 ablator is doped with Ge to minimize preheat of the ablator closest to the DT ice caused by Au M-band emission from the hohlraummore » x-ray drive. Richtmyer–Meshkov and Rayleigh–Taylor hydrodynamic instabilities seeded by high-mode (50 < t < 200) ablator-surface perturbations can cause Ge-doped ablator to mix into the interior of the shell at the end of the acceleration phase. As the shell decelerates, it compresses the fuel vapor, forming a hot spot. K-shell line emission from the ionized Ge that has penetrated into the hot spot provides an experimental signature of hot-spot mix. The Ge emission from tritium–hydrogen–deuterium (THD) and DT cryogenic targets and gas-filled plastic shell capsules, which replace the THD layer with a massequivalent CH layer, was examined. The inferred amount of hot-spot mix mass, estimated from the Ge K-shell line brightness using a detailed atomic physics code, is typically below the 75 ng allowance for hot-spot mix. Furthermore, predictions of a simple mix model, based on linear growth of the measured surface-mass modulations, are consistent with the experimental results.« less

  9. Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics

    NASA Astrophysics Data System (ADS)

    Buchoff, Michael; Hammer, Jim

    2015-11-01

    One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. A 2D and 3D Code Comparison of Turbulent Mixing in Spherical Implosions

    NASA Astrophysics Data System (ADS)

    Flaig, Markus; Thornber, Ben; Grieves, Brian; Youngs, David; Williams, Robin; Clark, Dan; Weber, Chris

    2016-10-01

    Turbulent mixing due to Richtmyer-Meshkov and Rayleigh-Taylor instabilities has proven to be a major obstacle on the way to achieving ignition in inertial confinement fusion (ICF) implosions. Numerical simulations are an important tool for understanding the mixing process, however, the results of such simulations depend on the choice of grid geometry and the numerical scheme used. In order to clarify this issue, we compare the simulation codes FLASH, TURMOIL, HYDRA, MIRANDA and FLAMENCO for the problem of the growth of single- and multi-mode perturbations on the inner interface of a dense imploding shell. We consider two setups: A single-shock setup with a convergence ratio of 4, as well as a higher convergence multi-shock setup that mimics a typical NIF mixcap experiment. We employ both singlemode and ICF-like broadband perturbations. We find good agreement between all codes concerning the evolution of the mix layer width, however, the are differences in the small scale mixing. We also develop a Bell-Plesset model that is able to predict the mix layer width and find excellent agreement with the simulation results. This work was supported by resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government.

  11. A review of laser-plasma interaction physics of indirect-drive fusion

    NASA Astrophysics Data System (ADS)

    Kirkwood, R. K.; Moody, J. D.; Kline, J.; Dewald, E.; Glenzer, S.; Divol, L.; Michel, P.; Hinkel, D.; Berger, R.; Williams, E.; Milovich, J.; Yin, L.; Rose, H.; MacGowan, B.; Landen, O.; Rosen, M.; Lindl, J.

    2013-10-01

    The National Ignition Facility (NIF) has been designed, constructed and has recently begun operation to investigate the ignition of nuclear fusion with a laser with up to 1.8 MJ of energy per pulse. The concept for fusion ignition on the NIF, as first proposed in 1990, was based on an indirectly driven spherical capsule of fuel in a high-Z hohlraum cavity filled with low-Z gas (Lindl et al 2004 Phys. Plasmas 11 339). The incident laser energy is converted to x-rays with keV energy on the hohlraums interior wall. The x-rays then impinge on the surface of the capsule, imploding it and producing the fuel conditions needed for ignition. It was recognized at the inception that this approach would potentially be susceptible to scattering of the incident light by the plasma created in the gas and the ablated material in the hohlraum interior. Prior to initial NIF operations, expectations for laser-plasma interaction (LPI) in ignition-scale experiments were based on experimentally benchmarked simulations and models of the plasma effects that had been carried out as part of the original proposal for NIF and expanded during the 13-year design and construction period. The studies developed the understanding of the stimulated Brillouin scatter, stimulated Raman scatter and filamentation that can be driven by the intense beams. These processes produce scatter primarily in both the forward and backward direction, and by both individual beams and collective interaction of multiple beams. Processes such as hot electron production and plasma formation and transport were also studied. The understanding of the processes so developed was the basis for the design and planning of the recent experiments in the ignition campaign at NIF, and not only indicated that the plasma instabilities could be controlled to maximize coupling, but predicted that, for the first time, they would be beneficial in controlling drive symmetry. The understanding is also now a critical component in the worldwide effort to produce a fusion energy source with a laser (Lindl et al 2011 Nucl. Fusion 51 094024, Collins et al 2012 Phys. Plasmas 19 056308) and has recently received its most critical test yet with the inception of the NIF experiments with ignition-scale indirect-drive targets (Landen et al 2010 Phys. Plasmas 17 056301, Edwards et al 2011 Phys. Plasmas 18 051003, Glenzer et al 2011 Phys. Rev. Lett. 106 085004, Haan et al 2011 Phys. Plasmas 18 051001, Landen et al 2011 Phys. Plasmas 18 051001, Lindl et al 2011 Nucl. Fusion 51 094024). In this paper, the data obtained in the first complete series of coupling experiments in ignition-scale hohlraums is reviewed and compared with the preceding work on the physics of LPIs with the goal of recognizing aspects of our understanding that are confirmed by these experiments and recognizing and motivating areas that need further modeling. Understanding these hohlraum coupling experiments is critical as they are only the first step in a campaign to study indirectly driven implosions under the conditions of ignition by inertial confinement at NIF, and in the near future they are likely to further influence ignition plans and experimental designs.

  12. Hot spot formation and stagnation properties in simulations of direct-drive NIF implosions

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Obenschain, Stephen P.

    2016-05-01

    We investigate different proposed methods of increasing the hot spot energy and radius in inertial confinement fusion implosions. In particular, shock mistiming (preferentially heating the inner edge of the target's fuel) and increasing the initial vapor gas density are investigated as possible control mechanisms. We find that only the latter is effective in substantially increasing the hot spot energy and dimensions while achieving ignition. In all cases an increase in the hot spot energy is accompanied by a decrease in the hot spot energy density (pressure) and both the yield and the gain of the target drop substantially. 2D simulations of increased vapor density targets predict an increase in the robustness of the target with respect to surface perturbations but are accompanied by significant yield degradation.

  13. Species separation and modification of neutron diagnostics in inertial-confinement fusion

    NASA Astrophysics Data System (ADS)

    Inglebert, A.; Canaud, B.; Larroche, O.

    2014-09-01

    The different behaviours of deuterium (D) and tritium (T) in the hot spot of marginally igniting cryogenic DT inertial-confinement fusion (ICF) targets are investigated with an ion Fokker-Planck model. With respect to an equivalent single-species model, a higher density and a higher temperature are found for T in the stagnation phase of the target implosion. In addition, the stagnating hot spot is found to be less dense but hotter than in the single-species case. As a result, the fusion reaction yield in the hot spot is significantly increased. Fusion neutron diagnostics of the implosion find a larger ion temperature as deduced from DT reactions than from DD reactions, in good agreement with NIF experimental results. ICF target designs should thus definitely take ion-kinetic effects into account.

  14. A Computational Study of Re-emission Balls Proposed for the NIF Ignition Symmetry Campaign

    NASA Astrophysics Data System (ADS)

    Meeker, D. J.; Amendt, P.; Dewald, E.; Edwards, M. J.; Milovich, J.; Suter, L.

    2006-10-01

    Re-emission balls are high-Z spheres used as surrogates for ICF ignition capsules to detect and correct early-time asymmetries of radiation flux at the target. Emission from these balls mimics the incoming flux due to their high albedo, providing a useful symmetry diagnostic. Experiments on Nova by LANL [1] and LLNL used bismuth (Bi) as the surrogate, selected for its high albedo and insensitivity to the fluorescence of the gold hohlraum wall. We are studying the applicability of these capsules to the NIF symmetry campaign as a potential tuning mechanism to achieve the accuracies required for symmetric implosions. We will describe 2-D simulations that predict the emission of the Bi ball as a function of time, frequency, and spatial distribution, as well as quantifying surrogacy of re- emission balls. Using several tuning examples, we will show the resolution expected from this diagnostic. Suggestions for extending this technique to longer times will be discussed as well as describing 3-D effects from diagnostic viewing ports and an opposing hole to eliminate competing wall emission. [1] Delamater, Phys. Rev. E 53, 5240 (1996), Magelssen, Phys. Rev. E 57, 4663 (1998)

  15. Demonstration of Efficient Core Heating of Magnetized Fast Ignition in FIREX project

    NASA Astrophysics Data System (ADS)

    Johzaki, Tomoyuki

    2017-10-01

    Extensive theoretical and experimental research in the FIREX ``I project over the past decade revealed that the large angular divergence of the laser generated electron beam is one of the most critical problems inhibiting efficient core heating in electron-driven fast ignition. To solve this problem, beam guiding using externally applied kilo-tesla class magnetic field was proposed, and its feasibility has recently been numerically demonstrated. In 2016, integrated experiments at ILE Osaka University demonstrated core heating efficiencies reaching > 5 % and heated core temperatures of 1.7 keV. In these experiments, a kilo-tesla class magnetic field was applied to a cone-attached Cu(II) oleate spherical solid target by using a laser-driven capacitor-coil. The target was then imploded by G-XII laser and heated by the PW-class LFEX laser. The heating efficiency was evaluated by measuring the number of Cu-K- α photons emitted. The heated core temperature was estimated by the X-ray intensity ratio of Cu Li-like and He-like emission lines. To understand the detailed dynamics of the core heating process, we carried out integrated simulations using the FI3 code system. Effects of magnetic fields on the implosion and electron beam transport, detailed core heating dynamics, and the resultant heating efficiency and core temperature will be presented. I will also discuss the prospect for an ignition-scale design of magnetized fast ignition using a solid ball target. This work is partially supported by JSPA KAKENHI Grant Number JP16H02245, JP26400532, JP15K21767, JP26400532, JP16K05638 and is performed with the support and the auspices of the NIFS Collaboration Research program (NIFS12KUGK057, NIFS15KUGK087).

  16. The Magnetic Recoil Spectrometer for time-resolved neutron measurements (MRSt) at the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Frenje, J. A.; Wink, C. W.; Gatu Johnson, M.; Lahmann, B.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Hilsabeck, T. J.; Kilkenny, J. D.; Bionta, R.; Casey, D. T.; Khater, H. Y.; Forrest, C. J.; Glebov, V. Yu.; Sorce, C.; Hares, J. D.; Siegmund, O. H. W.

    2017-10-01

    The next-generation Magnetic Recoil Spectrometer, called MRSt, will provide time-resolved measurements of the DT-neutron spectrum. These measurements will provide critical information about the time evolution of the fuel assembly, hot-spot formation, and nuclear burn in Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). The neutron spectrum in the energy range 12-16 MeV will be measured with high accuracy ( 5%), unprecedented energy resolution ( 100 keV) and, for the first time ever, time resolution ( 20 ps). An overview of the physics motivation, conceptual design for meeting these performance requirements, and the status of the offline tests for critical components will be presented. This work was supported in part by the U.S. DOE, LLNL, and LLE.

  17. X-ray source development for EXAFS measurements on the National Ignition Facility

    DOE PAGES

    Coppari, F.; Thorn, D. B.; Kemp, G. E.; ...

    2017-08-28

    We present that extended X-ray absorption Fine Structure (EXAFS) measurements require a bright, spectrally smooth, and broad-band x-ray source. In a laser facility, such an x-ray source can be generated by a laser-driven capsule implosion. In order to optimize the x-ray emission, different capsule types and laser irradiations have been tested at the National Ignition Facility (NIF). A crystal spectrometer is used to disperse the x-rays and high efficiency image plate detectors are used to measure the absorption spectra in transmission geometry. Finally, EXAFS measurements at the K-edge of iron at ambient conditions have been obtained for the first timemore » on the NIF laser, and the requirements for optimization have been established.« less

  18. Using X-ray Thomson Scattering to Characterize Highly Compressed, Near-Degenerate Plasmas at the NIF

    NASA Astrophysics Data System (ADS)

    Doeppner, Tilo; Kraus, D.; Neumayer, P.; Bachmann, B.; Divol, L.; Kritcher, A. L.; Landen, O. L.; Fletcher, L.; Glenzer, S. H.; Falcone, R. W.; MacDonald, M. J.; Saunders, A.; Witte, B.; Redmer, R.; Chapman, D.; Baggott, R.; Gericke, D. O.; Yi, S. A.

    2017-10-01

    We are developing x-ray Thomson scattering for implosion experiments at the National Ignition Facility to characterize plasma conditions in plastic and beryllium capsules near stagnation, reaching more than 20x compression and electron densities of 1025 cm-3, corresponding to a Fermi energy of 170 eV. Using a zinc He- α x-ray source at 9 keV, experiments at a large scattering angle of 120° measure non-collective scattering spectra with high sensitivity to K-shell ionization, and find higher charge states than predicted by widely used ionization models. Reducing the scattering angle to 30° probes the collective scattering regime with sensitivity to collisions and conductivity. We will discuss recent results and future plans. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. The Marble Experiment: Overview and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  20. Progress in hohlraum physics for the National Ignition Facilitya)

    NASA Astrophysics Data System (ADS)

    Moody, J. D.; Callahan, D. A.; Hinkel, D. E.; Amendt, P. A.; Baker, K. L.; Bradley, D.; Celliers, P. M.; Dewald, E. L.; Divol, L.; Döppner, T.; Eder, D. C.; Edwards, M. J.; Jones, O.; Haan, S. W.; Ho, D.; Hopkins, L. B.; Izumi, N.; Kalantar, D.; Kauffman, R. L.; Kilkenny, J. D.; Landen, O.; Lasinski, B.; LePape, S.; Ma, T.; MacGowan, B. J.; MacLaren, S. A.; Mackinnon, A. J.; Meeker, D.; Meezan, N.; Michel, P.; Milovich, J. L.; Munro, D.; Pak, A. E.; Rosen, M.; Ralph, J.; Robey, H. F.; Ross, J. S.; Schneider, M. B.; Strozzi, D.; Storm, E.; Thomas, C.; Town, R. P. J.; Widmann, K. L.; Kline, J.; Kyrala, G.; Nikroo, A.; Boehly, T.; Moore, A. S.; Glenzer, S. H.

    2014-05-01

    Advances in hohlraums for inertial confinement fusion at the National Ignition Facility (NIF) were made this past year in hohlraum efficiency, dynamic shape control, and hot electron and x-ray preheat control. Recent experiments are exploring hohlraum behavior over a large landscape of parameters by changing the hohlraum shape, gas-fill, and laser pulse. Radiation hydrodynamic modeling, which uses measured backscatter, shows that gas-filled hohlraums utilize between 60% and 75% of the laser power to match the measured bang-time, whereas near-vacuum hohlraums utilize 98%. Experiments seem to be pointing to deficiencies in the hohlraum (instead of capsule) modeling to explain most of the inefficiency in gas-filled targets. Experiments have begun quantifying the Cross Beam Energy Transfer (CBET) rate at several points in time for hohlraum experiments that utilize CBET for implosion symmetry. These measurements will allow better control of the dynamic implosion symmetry for these targets. New techniques are being developed to measure the hot electron energy and energy spectra generated at both early and late time. Rugby hohlraums offer a target which requires little to no CBET and may be less vulnerable to undesirable dynamic symmetry "swings." A method for detecting the effect of the energetic electrons on the fuel offers a direct measure of the hot electron effects as well as a means to test energetic electron mitigation methods. At higher hohlraum radiation temperatures (including near vacuum hohlraums), the increased hard x-rays (1.8-4 keV) may pose an x-ray preheat problem. Future experiments will explore controlling these x-rays with advanced wall materials.

  1. Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, B K; Glenzer, S; Edwards, M J

    The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called themore » experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.« less

  2. Performance metrics for inertial confinement fusion implosions: Aspects of the technical framework for measuring progress in the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Brian K.; Glenzer, S.; Edwards, M. J.

    The National Ignition Campaign (NIC) uses non-igniting 'tritium hydrogen deuterium (THD)' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off-nominal implosions. We will focus on the development of an experimental implosion performance metricmore » called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.« less

  3. Design of Initial Opacity Platform at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Heeter, R. F.; Ahmed, M. F.; Ayers, S. L.; Emig, J. A.; Iglesias, C. A.; Liedahl, D. A.; Schneider, M. B.; Wilson, B. G.; Huffman, E. J.; King, J. A.; Opachich, Y. P.; Ross, P. W.; Bailey, J. E.; Rochau, G. A.; Craxton, R. S.; Garcia, E. M.; McKenty, P. W.; Zhang, R.; Cardenas, T.; Devolder, B. G.; Dodd, E. S.; Kline, J. L.; Sherrill, M. E.; Perry, T. S.

    2016-10-01

    The absorption and re-emission of x-rays by partly stripped ions plays a critical role in stars and in many laboratory plasmas. A NIF Opacity Platform has been designed to resolve a persistent disagreement between theory and experiments on the Sandia Z facility, studying iron in conditions closely related to the solar radiation-convection transition boundary. A laser heated hohlraum ``oven'' will produce iron plasmas at temperatures >150 eV and electron densities >=7x1021/cm3, and be probed with continuum X-rays from a capsule implosion backlighter source. The resulting X-ray transmission spectra will be recorded on a specially designed Opacity Spectrometer. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  4. Early-Time Symmetry Tuning in the Presence of Cross-Beam Energy Transfer in ICF Experiments on the National Ignition Facility

    DOE PAGES

    Dewald, E. L.; Milovich, J. L.; Michel, P.; ...

    2013-12-01

    At the National Ignition Facility (NIF) we have successfully tuned the early time (~2 ns) lowest order Legendre mode (P 2) of the incoming radiation drive asymmetry of indirectly driven ignition capsule implosions by varying the inner power cone fraction. The measured P 2/P 0 sensitivity vs come fraction is similar to calculations, but a significant -15 to -20% P 2/P 0 offset was observed. This can be explained by a considerable early time laser energy transfer from the outer to the inner beams during the laser burn-through of the Laser Entrance Hole (LEH) windows and hohlraum fill gas whenmore » the LEH plasma is still dense and relatively cold.« less

  5. The 27.3 meter neutron time-of-flight system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Grim, G. P.; Morgan, G. L.; Aragonez, R.; Archuleta, T. N.; Bower, D. E.; Danly, C. R.; Drury, O. B.; Dzenitis, J. M.; Fatherley, V. E.; Felker, B.; Fittinghoff, D. N.; Guler, N.; Merrill, F. E.; Oertel, J. A.; Wilde, C. H.; Wilke, M. D.

    2013-09-01

    One of the scientific goals of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, Livermore CA, is to obtain thermonuclear ignition by compressing 2.2 mm diameter capsules filed with deuterium and tritium to densities approaching 1000 g/cm3 and temperatures in excess of 4 keV. Thefusion reaction d + t --> n + a results in a 14.03 MeV neutron providing a source of diagnostic particles to characterize the implosion. The spectrum of neutrons emanating from the assembly may be used to infer the fusion yield, plasma ion temperature, and fuel areal density, all key diagnostic quantities of implosion quality. The neutron time-of-flight (nToF) system co-located along the Neutron Imaging System line-of-site, (NIToF), is a set of 4 scintillation detectors located approximately 27.3 m from the implosion source. Neutron spectral information is inferred using arrival time at the detector. The NIToF system is described below, including the hardware elements, calibration data, analysis methods, and an example of its basic performance characteristics.

  6. A technique for extending by ∼10{sup 3} the dynamic range of compact proton spectrometers for diagnosing ICF implosions on the National Ignition Facility and OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sio, H., E-mail: hsio@mit.edu; Séguin, F. H.; Frenje, J. A.

    Wedge Range Filter (WRF) proton spectrometers are routinely used on OMEGA and the NIF for diagnosing ρR and ρR asymmetries in direct- and indirect-drive implosions of D{sup 3}He-, D{sub 2}-, and DT-gas-filled capsules. By measuring the optical opacity distribution in CR-39 due to proton tracks in high-yield applications, as opposed to counting individual tracks, WRF dynamic range can be extended by 10{sup 2} for obtaining the spectral shape, and by 10{sup 3} for mean energy (ρR) measurement, corresponding to proton fluences of 10{sup 8} and 10{sup 9} cm{sup −2}, respectively. Using this new technique, ρR asymmetries can be measured duringmore » both shock and compression burn (proton yield ∼10{sup 8} and ∼10{sup 12}, respectively) in 2-shock National Ignition Facility implosions with the standard WRF accuracy of ±∼10 mg/cm{sup 2}.« less

  7. Present Status and Prospects of FIREX Project

    NASA Astrophysics Data System (ADS)

    Mima, K.

    2008-07-01

    The goal of the first phase of Fast Ignition Realization EXperiment (FIREX) project (FIREX-I) is to demonstrate ignition temperature of 5-10 keV, followed by the second phase to demonstrate ignition and burn. Since starting FIREX-I project, plasma physics study in ILE has been devoted to increase the coupling efficiency and to improve compression performance. The heating efficiency can be increased by the following two ways. 1) A previous experiments indicate that the coupling of heating laser to imploded plasmas increases with coating a low-density. foam used in the experiment, low-Z plastic foam is desired for efficient electron transport. (Lei et al. 2006). 2) Electrons generated in the inner surface of the double cone will return by sheathe potential generated between two cones. A 2-D PIC simulation indicates that hot electron confinement is improved by a factor of 1.7 (Nakamura et al. 2007). Further optimization of cone geometry by 2-D simulation will be presented in the workshop. The implosion performance can be improved by three ways. 1) Low-Z plastic layer coating on the outer surface of the cone: The 2D hydro-simulation PINOCO predicts that the target areal density increases by a factor of 2. 2) Br doped plastic layer on a fuel pellet may significantly moderate the Rayleigh-Taylor instability (Fujioka et al. 2004), making implosion more stable. 3) Reducing vapor gas pressure in a pellet is necessary to suppress strength of a jet that will destroy the cone tip. (Stephens et al. 2005). As for the cryogenic target fabrication, R&D of fabricating foam cryogenic cine shell target are under development by the joint group between Osaka Univ. and NIFS. The amplifier system of the heating laser LFEX is completed in March 2008. The amplification test has demonstrated laser energy of 3 kJ/beam at 3nm bandwidth. The equivalent 12 kJ in 4 beams meets the specification of LFEX. The large tiled gratings for pulse compressor are completed and installed. The short pulse laser will be delivered on a target in September, 2008. The fully integrated fast ignition experiments is scheduled on February 2009 until the end of 2010. If subsequent FIREX-II will start as proposed, the ignition and burn will be demonstrated in parallel to that at NIF and LMJ, providing a scientific database of both central and fast ignition.

  8. ICF Gamma-Ray measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans; Kim, Y.; Hoffman, N. M.; Batha, S. H.; Stoeffl, W.; Church, J. A.; Sayre, D. B.; Liebman, J. A.; Cerjan, C. J.; Carpenter, A. C.; Grafil, E. M.; Khater, H. Y.; Horsfield, C. J.; Rubery, M.

    2013-10-01

    The primary objective of the NIF Gamma Reaction History (GRH) diagnostic is to provide bang time and burn width information in order to constrain implosion simulation parameters such as shell velocity and confinement time. This is accomplished by measuring DT fusion gamma-rays with energy-thresholded Gas Cherenkov detectors that convert MeV gamma-rays into UV/visible photons for high-bandwidth optical detection. Burn-weighted CH ablator areal density is also inferred based on measurement of the 12C(n,n') gammas emitted at 4.44 MeV from DT neutrons inelastically scattering off carbon nuclei as they pass through the plastic ablator. This requires that the four independent GRH gas cells be set to differing Cherenkov thresholds (e.g., 2.9, 4.5, 8 & 10 MeV) in order to be able to unfold the primary spectral components predicted to be in the gamma ray energy spectrum (i.e., DT γ 27Al & 28Si (n,n') γ from the thermo-mechanical package (TMP); and 12C(n,n' γ from the ablator). The GRH response to 12C(n,n') γ is calibrated in-situ by placing a known areal density of carbon in the form of a puck placed ~6 cm from a DT exploding pusher implosion. Comparisons between inferred gamma fluences and simulations based on the nuclear cross sections databases will be presented. Supported by US DOE NNSA.

  9. The neutron imaging diagnostic at NIF (invited).

    PubMed

    Merrill, F E; Bower, D; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H; Wilson, D C

    2012-10-01

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  10. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    DOE PAGES

    Millot, M.; Celliers, P. M.; Sterne, P. A.; ...

    2018-04-18

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less

  11. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.

    2018-04-01

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.

  12. Development of a polar direct drive platform for mix and burn experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Kyrala, G. A.; Krasheninnikova, N. S.; Bradley, P. A.; Cobble, J. A.; Tregillis, I. L.; Obrey, K. A. D.; Baumgaertel, J. A.; Hsu, S. C.; Shah, R. C.; Hakel, P.; Kline, J. L.; Schmitt, M. J.; Kanzleiter, R. J.; Batha, S. H.; Wallace, R. J.; Bhandarkar, S.; Fitzsimmons, P.; Hoppe, M.; Nikroo, A.; McKenty, P.

    2016-03-01

    Capsules driven with polar drive [1, 2] on the National Ignition Facility [3] are being used [4] to study mix in convergent geometry. In preparation for experiments that will utilize deuterated plastic shells with a pure tritium fill, hydrogen-filled capsules with copper- doped deuterated layers have been imploded on NIF to provide spectroscopic and nuclear measurements of capsule performance. Experiments have shown that the mix region, when composed of shell material doped with about 1% copper (by atom), reaches temperatures of about 2 keV, while undoped mixed regions reach about 3 keV. Based on the yield from these implosions, we estimate the thickness of CD that mixed into the gas as between about 0.25 and 0.43 μm of the inner capsule surface, corresponding to about 5 to 9 μg of material. Using 5 atm of tritium as the fill gas should result in over 1013 DT neutrons being produced, which is sufficient for neutron imaging [5].

  13. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millot, M.; Celliers, P. M.; Sterne, P. A.

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less

  14. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  15. Measuring symmetry of implosions in cryogenic Hohlraums at the NIF using gated x-ray detectors (invited).

    PubMed

    Kyrala, G A; Dixit, S; Glenzer, S; Kalantar, D; Bradley, D; Izumi, N; Meezan, N; Landen, O L; Callahan, D; Weber, S V; Holder, J P; Glenn, S; Edwards, M J; Bell, P; Kimbrough, J; Koch, J; Prasad, R; Suter, L; Kline, J L; Kilkenny, J

    2010-10-01

    Ignition of imploding inertial confinement capsules requires, among other things, controlling the symmetry with high accuracy and fidelity. We have used gated x-ray imaging, with 10 μm and 70 ps resolution, to detect the x-ray emission from the imploded core of symmetry capsules at the National Ignition Facility. The measurements are used to characterize the time dependent symmetry and the x-ray bang time of the implosion from two orthogonal directions. These measurements were one of the primary diagnostics used to tune the parameters of the laser and Hohlraum to vary the symmetry and x-ray bang time of the implosion of cryogenically cooled ignition scale deuterium/helium filled plastic capsules. Here, we will report on the successful measurements performed with up to 1.2 MJ of laser energy in a fully integrated cryogenics gas-filled ignition-scale Hohlraum and capsule illuminated with 192 smoothed laser beams. We will describe the technique, the accuracy of the technique, and the results of the variation in symmetry with tuning parameters, and explain how that set was used to predictably tune the implosion symmetry as the laser energy, the laser cone wavelength separation, and the Hohlraum size were increased to ignition scales. We will also describe how to apply that technique to cryogenically layered tritium-hydrogen-deuterium capsules.

  16. Optical beam classification using deep learning: a comparison with rule- and feature-based classification

    NASA Astrophysics Data System (ADS)

    Alom, Md. Zahangir; Awwal, Abdul A. S.; Lowe-Webb, Roger; Taha, Tarek M.

    2017-08-01

    Deep-learning methods are gaining popularity because of their state-of-the-art performance in image classification tasks. In this paper, we explore classification of laser-beam images from the National Ignition Facility (NIF) using a novel deeplearning approach. NIF is the world's largest, most energetic laser. It has nearly 40,000 optics that precisely guide, reflect, amplify, and focus 192 laser beams onto a fusion target. NIF utilizes four petawatt lasers called the Advanced Radiographic Capability (ARC) to produce backlighting X-ray illumination to capture implosion dynamics of NIF experiments with picosecond temporal resolution. In the current operational configuration, four independent short-pulse ARC beams are created and combined in a split-beam configuration in each of two NIF apertures at the entry of the pre-amplifier. The subaperture beams then propagate through the NIF beampath up to the ARC compressor. Each ARC beamlet is separately compressed with a dedicated set of four gratings and recombined as sub-apertures for transport to the parabola vessel, where the beams are focused using parabolic mirrors and pointed to the target. Small angular errors in the compressor gratings can cause the sub-aperture beams to diverge from one another and prevent accurate alignment through the transport section between the compressor and parabolic mirrors. This is an off-normal condition that must be detected and corrected. The goal of the off-normal check is to determine whether the ARC beamlets are sufficiently overlapped into a merged single spot or diverged into two distinct spots. Thus, the objective of the current work is three-fold: developing a simple algorithm to perform off-normal classification, exploring the use of Convolutional Neural Network (CNN) for the same task, and understanding the inter-relationship of the two approaches. The CNN recognition results are compared with other machine-learning approaches, such as Deep Neural Network (DNN) and Support Vector Machine (SVM). The experimental results show around 96% classification accuracy using CNN; the CNN approach also provides comparable recognition results compared to the present feature-based off-normal detection. The feature-based solution was developed to capture the expertise of a human expert in classifying the images. The misclassified results are further studied to explain the differences and discover any discrepancies or inconsistencies in current classification.

  17. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  18. Enhanced electron/fuel-ion equilibration through impurity ions: Studies applicable to NIF and Omega

    NASA Astrophysics Data System (ADS)

    Petrasso, R. D.; Sio, H.; Kabadi, N.; Lahmann, B.; Simpson, R.; Parker, C.; Frenje, J.; Gatu Johnson, M.; Li, C. K.; Seguin, F. H.; Rinderknecht, H.; Casey, D.; Grabowski, P.; Graziani, F.; Taitano, W.; Le, A.; Chacon, L.; Hoffman, N.; Kagan, G.; Simakov, A.; Zylstra, A.; Rosenberg, M.; Betti, R.; Srinivasan, B.; Mancini, R.

    2017-10-01

    In shock-driven exploding-pushers, a platform used extensively to study multi-species and kinetic effects, electrons and fuel ions are far out of equilibrium, as reflected by very different temperatures. However, impurity ions, even in small quantities, can couple effectively to the electrons, because of a Z2 dependence, and in turn, impurity ions can then strongly couple to the fuel ions. Through this mechanism, electrons and fuel-ions can equilibrate much faster than they otherwise would. This is a quantitative issue, depending upon the amount and Z of the impurity. For NIF and Omega, we consider the role of this process. Coupled non-linear equations, reflecting the temperatures of the three species, are solved for a range of conditions. Consideration is also given to ablatively driven implosions, since impurities can similarly affect the equilibration. This work was supported in part by DOE/NNSA DE-NA0002949 and DE-NA0002726.

  19. Impact of temperature-velocity distribution on fusion neutron peak shape

    DOE PAGES

    Munro, D. H.; Field, J. E.; Hatarik, R.; ...

    2017-02-21

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences amongmore » several lines of sight. Finally, this paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.« less

  20. Impact of temperature-velocity distribution on fusion neutron peak shape

    NASA Astrophysics Data System (ADS)

    Munro, D. H.; Field, J. E.; Hatarik, R.; Peterson, J. L.; Hartouni, E. P.; Spears, B. K.; Kilkenny, J. D.

    2017-05-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility (NIF), yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to the bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This paper will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radiation-hydrodynamics simulations of implosions.

  1. Symmetry control strategies in low gas-fill hohlraum

    NASA Astrophysics Data System (ADS)

    Goyon, Clement; Le Pape, S.; Berzak Hopkins, L. F.; Divol, L.; Meezan, N. B.; Dewald, E.; Ho, D. D.; Weber, C.; Khan, S. F.; Ma, T.; Milovich, J. L.; Moore, A. S.; Benedetti, R.; Pak, A. E.; Ross, J. S.; Nagel, S. R.; Grim, G. P.; Volegov, P.; Biener, J.; Nikroo, A.; Callahan, D. A.; Hurricane, O. A.; Hsing, W. W.; Town, R. P.; Edwards, M. J.

    2017-10-01

    The primary neutron yield record, to-date, for an ICF implosion on the NIF (1.47*1016) has been achieved using a doped HDC capsule (D =1.82 mm) in an unlined DU hohlraum (D =6.20 mm, L = 11.3 mm) filled with a low He gas-fill (0.3 mg/cc). This platform uses a new ``drooping'' pulse designed to keep high remaining mass and short coasting time. Prior to the high convergence (27x) cryogenic DT implosion, our ability to tune hot spot symmetry using this new pulse was tested at lower convergence (15x) using DD gas-filled capsules. Hot spot symmetry was tuned using beam pointing, gas-fill density, and power balance between outer and inner beams. The main metrics to assess the efficiency of each change are the implosion shape (time resolved X-ray emission of the hot spot) and DD neutron yield. In addition, we will describe the irradiation pattern obtained in each case using X-ray (soft and hard) diagnostics and the laser coupling to the hohlraum. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  2. Results from the MARBLE Campaign on the National Ignition Facility: Implosion of Foam-Filled Capsules for Studying Thermonuclear Burn in the Presence of Heterogeneous Mix

    NASA Astrophysics Data System (ADS)

    Murphy, T. J.; Douglas, M. R.; Cardenas, T.; Devolder, B. G.; Fincke, J. R.; Gunderson, M. A.; Haines, B. M.; Hamilton, C. E.; Kim, Y. H.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Shah, R. C.; Smidt, J. M.

    2016-10-01

    The MARBLE campaign on NIF investigates the effect of heterogeneous mix on thermonuclear burn for comparison to a probability distribution function (PDF) burn model. MARBLE utilizes plastic capsules filled with deuterated plastic foam and tritium gas. The ratio of DT to DD neutron yield is indicative of the degree to which the foam and the gas atomically mix. Platform development experiments have been performed to understand the behavior of the foam and of the gas separately using two types of capsule. The first uses partially deuterated foam and hydrogen gas fill to understand the burn in the foam. The second uses undeuterated foam and deuterium gas fill to understand the dynamics of the gas. Experiments using deuterated foam and tritium gas are planned. Results of these experiments, and the implications for our understanding of thermonuclear burn in heterogeneously mixed separated reactant experiments will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  3. Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.

    2014-10-01

    Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  4. The National Ignition Facility (NIF) and High Energy Density Science Research at LLNL (Briefing Charts)

    DTIC Science & Technology

    2013-06-21

    neutron activation detectors (FNADS) 2013-049951s2.ppt Detector locations • Average rR ~ 1 g/cm2 • ~ 50% variations Motivates new 2D backlit imaging...of the implosion Motivates Compton radiography for stagnated fuel shape g/cm2 DrR rR map from neutron Activation Detectors (90Zr(n,2n)  89Zr...high energy cosmic rays Oxford Univ./LLNL LLNL Novel phases of compressed diamond Synthesis of elements heavier than iron 1545 Neutron flux in

  5. High Performance Capsule Implosions on the Omega Laser Facility with Rugby Hohlraums

    NASA Astrophysics Data System (ADS)

    Robey, Harry F.

    2009-11-01

    Rugby-shaped hohlraums have been proposed as a method for x-ray drive enhancement for indirectly-driven capsule implosions [1]. This concept has recently been tested in a series of shots on the OMEGA laser facility at the Laboratory for Laser Energetics at the University of Rochester. In this talk, experimental results are presented comparing the performance of D2-filled capsules between standard cylindrical Au hohlraums and rugby-shaped hohlraums. Not only did the rugby hohlraums demonstrate 18% more x-ray drive energy as compared with the cylinders, but the high-performance design of these implosions (both cylinder and rugby) also provided 20X more DD neutrons than any previous indirectly-driven campaign on Omega (and 3X more than ever achieved on Nova implosions driven with nearly twice the laser energy). This increase in performance enables, for the first time, a measurement of the neutron burn history of an indirectly-driven implosion. Previous DD neutron yields had been too low to register this key measurement of capsule performance and the effects of dynamic mix. A wealth of additional data on the fuel areal density from the suite of charged particle diagnostics was obtained on a subset of the shots that used D^3He rather than D2 fuel. Comparisons of the experimental results with numerical simulations are shown to be in excellent agreement. The design techniques employed in this campaign, e.g., smaller NIF-like laser entrance holes and hohlraum case-to-capsule ratios, provide added confidence in the pursuit of ignition on the National Ignition Facility. [4pt] [1] P. Amendt, C. Cerjan, D. E. Hinkel, J. L. Milovich, H.-S. Park, and H. F. Robey, ``Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement'', Phys. Plasmas 15, 012702 (2008).

  6. Modeling the National Ignition Facility neutron imaging system.

    PubMed

    Wilson, D C; Grim, G P; Tregillis, I L; Wilke, M D; Patel, M V; Sepke, S M; Morgan, G L; Hatarik, R; Loomis, E N; Wilde, C H; Oertel, J A; Fatherley, V E; Clark, D D; Fittinghoff, D N; Bower, D E; Schmitt, M J; Marinak, M M; Munro, D H; Merrill, F E; Moran, M J; Wang, T-S F; Danly, C R; Hilko, R A; Batha, S H; Frank, M; Buckles, R

    2010-10-01

    Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution.

  7. Hugoniot and release measurements in diamond shocked up to 26 Mbar [Hugoniot and release measurements in diamond shocked up to 25 Mbar

    DOE PAGES

    Gregor, M. C.; Fratanduono, D. E.; McCoy, C. A.; ...

    2017-04-26

    The equation of state of carbon at extreme pressures is of interest to studies of planetary ice giants and white dwarfs and to inertial con nement fusion (ICF) because diamond is used as an ablator material at the National Ignition Facility (NIF). Knowledge of both the high-pressure shock and release responses of diamond are needed to accurately model an ICF implosion and design ignition targets. This article presents Hugoniot and release data for both single-crystal diamond and the high-density carbon (HDC), comprised of nanometer-scale grains, used as a NIF ablator. Experiments were performed at the Omega Laser Facility where diamondmore » was shock-compressed to multimegabar pressures and then released into reference materials with known Hugoniots (quartz, polystyrene, silica aerogel, and liquid deuterium). Impedance matching between diamond and the standards provided the data to constrain diamond release models. Hugoniot data were obtained by impedance matching with a quartz standard and results indicate that the HDC, which is ultrananocrystalline and ~4% less dense, has a sti er Hugoniot as compared to single-crystal diamond. Accuracy of the HDC data were improved using a non-steady waves correction [D. E. Fratanduono et al., J. Appl. Phys. 116, 033517 (2014)] to determine shock velocity pro les in the opaque HDC samples.« less

  8. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Liu, Jie

    2016-10-01

    We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot rhoR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot rhoR requirement is remarkably reduced for achieving self-heating. In NIF high-foot implosions, it is observed that the x-ray enhancement factors are less than unity, which is not self-consistent and is caused by assuming Te =Ti. And from this non-consistency, we could infer that ion-electron non-equilibrium exists in the high-foot implosions and the ion temperature could be 9% larger than the equilibrium temperature.

  9. Compression Dynamics of an Indirect Drive Fast Ignition Target

    NASA Astrophysics Data System (ADS)

    Stephens, R. B.; Hatchett, S. A.; Turner, R. E.; Tanaka, K. A.; Kodama, R.; Soures, J.

    2002-11-01

    We have compared the compression of an indirectly driven cone-in-shell target, a type proposed for the fast ignition concept, with models. The experimental parameters -500 μm diameter plastic shell with 60 μm thick wall were a 1/5 scale realization of a fast ignition target designed for NIF (absorbing 180 kJ for compression and ˜30 kJ for ignition, and yielding ˜30 MJ) [1]. The implosion was backlit with 6.4 keV x-rays, and observed with a framing camera which captured the implosion from ˜2.6 to 3.3 ns after the onset. The collapsing structure was very similar to model predictions except that non-thermal m-band emissions from the hohlraum penetrated the shell and vaporized gold off the reentrant cone. This could be eliminated by changing the hohlraum composition. [1] S. Hatchett, et al., 5th Wkshp on Fast Ignition of Fusion Targets (Satellite Wkshp, 28th EPS Conf. on Contr. Fusion and Plasma Phys.), Madeira, Portugal (2001).

  10. Ion temperature measurements of indirect-drive implosions with the neutron time-of-flight detector on SG-III laser facility

    NASA Astrophysics Data System (ADS)

    Chen, Zhongjing; Zhang, Xing; Pu, Yudong; Yan, Ji; Huang, Tianxuan; Jiang, Wei; Yu, Bo; Chen, Bolun; Tang, Qi; Song, Zifeng; Chen, Jiabin; Zhan, Xiayu; Liu, Zhongjie; Xie, Xufei; Jiang, Shaoen; Liu, Shenye

    2018-02-01

    The accuracy of the determination of the burn-averaged ion temperature of inertial confinement fusion implosions depends on the unfold process, including deconvolution and convolution methods, and the function, i.e., the detector response, used to fit the signals measured by neutron time-of-flight (nToF) detectors. The function given by Murphy et al. [Rev. Sci. Instrum. 68(1), 610-613 (1997)] has been widely used in Nova, Omega, and NIF. There are two components, i.e., fast and slow, and the contribution of scattered neutrons has not been dedicatedly considered. In this work, a new function, based on Murphy's function has been employed to unfold nToF signals. The contribution of scattered neutrons is easily included by the convolution of a Gaussian response function and an exponential decay. The ion temperature is measured by nToF with the new function. Good agreement with the ion temperature determined by the deconvolution method has been achieved.

  11. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    NASA Astrophysics Data System (ADS)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  12. Simulations of super-ellipse hohlraum targets as a path to high neutron yields

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Amendt, Peter; Storm, Erik; Robey, Harry; Haan, Steve; Landen, Otto; Meezan, Nathan; Lindl, John

    2017-10-01

    Recently neutron yields in excess of 1016 have been achieved at the National Ignition Facility (NIF) using a low-density gas fill hohlraum and a subscale high-density-carbon capsule. The laser power used was near the current maximum level allowed on the inner cones of the NIF laser. While more energy can be extracted from the laser to provide additional improvement on the neutron yield, a more efficient design is desired. A new effort has begun to investigate alternatives to the current cylinder-shaped hohlraum for driving larger capsules (1.1 mm outer radius). If these new hohlraums can preserve the implosion symmetry, the additional absorbed energy is expected to provide a path to high neutron yield and potential ignition. Super-ellipse hohlraums, a generalization of an earlier rugby hohlraum design, have the advantage of a larger waist diameter and reduced parasitic energy losses from the corners of cylindrical hohlraums while still being able to produce the required capsule drive at the current energy and power limits available at the NIF. We will present plausible designs of these hohlraums based on the Lamé mathematical construction, and discuss their prospects to reach high neutron gains. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. The Ignition Physics Campaign on NIF: Status and Progress

    NASA Astrophysics Data System (ADS)

    Edwards, M. J.; Ignition Team

    2016-03-01

    We have made significant progress in ICF implosion performance on NIF since the 2011 IFSA. Employing a 3-shock, high adiabat CH (“High-Foot”) design, total neutron yields have increased 10-fold to 6.3 x1015 (a yield of ∼ 17 kJ, which is greater than the energy invested in the DT fuel ∼ 12kJ). At that level, the yield from alpha self-heating is essentially equivalent to the compression yield, indicating that we are close to the alpha self-heating regime. Low adiabat, 4-shock High Density Carbon (HDC) capsules have been imploded in conventional gas-filled hohlraums, and employing a 6 ns, 2-shock pulse, HDC capsules were imploded in near-vacuum hohlraums with overall coupling ∼ 98%. Both the 4- and 2-shock HDC capsules had very low mix and high yield over simulated performance. Rugby holraums have demonstrated uniform x-ray drive with minimal Cross Beam Energy Transfer (CBET), and we have made good progress in measuring and modelling growth of ablation front hydro instabilities.

  14. Use of 41Ar production to measure ablator areal density in NIF beryllium implosions

    DOE PAGES

    Wilson, Douglas Carl; Cassata, W. S.; Sepke, S. M.; ...

    2017-02-06

    For the first time, 41Ar produced by the (n,Υ) reaction from 40Ar in the beryllium shell of a DT filled Inertial Confinement Fusion capsule has been measured. Ar is co-deposited with beryllium in the sputter deposition of the capsule shell. Combined with a measurement of the neutron yield, the radioactive 41Ar then quantifies the areal density of beryllium during the DT neutron production. Here, the measured 1.15 ± 0.17 × 10 +8 atoms of 41Ar are 2.5 times that from the best post-shot calculation, suggesting that the Ar and Be areal densities are correspondingly higher than those calculated. Possible explanationsmore » are that (1) the beryllium shell is compressed more than calculated, (2) beryllium has mixed into the cold DT ice, or more likely (3) less beryllium is ablated than calculated. Since only one DT filled beryllium capsule has been fielded at NIF, these results can be confirmed and expanded in the future.« less

  15. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies andmore » that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.« less

  16. Integrated modeling of cryogenic layered highfoot experiments at the NIF

    NASA Astrophysics Data System (ADS)

    Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.; Hurricane, O. A.; Clark, D.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Haan, S.; Berzak Hopkins, L. F.; Jones, O.; Landen, O.; Ma, T.; Meezan, N.; Milovich, J. L.; Pak, A. E.; Park, H.-S.; Patel, P. K.; Ralph, J.; Robey, H. F.; Salmonson, J. D.; Sepke, S.; Spears, B.; Springer, P. T.; Thomas, C. A.; Town, R.; Celliers, P. M.; Edwards, M. J.

    2016-05-01

    Integrated radiation hydrodynamic modeling in two dimensions, including the hohlraum and capsule, of layered cryogenic HighFoot Deuterium-Tritium (DT) implosions on the NIF successfully predicts important data trends. The model consists of a semi-empirical fit to low mode asymmetries and radiation drive multipliers to match shock trajectories, one dimensional inflight radiography, and time of peak neutron production. Application of the model across the HighFoot shot series, over a range of powers, laser energies, laser wavelengths, and target thicknesses predicts the neutron yield to within a factor of two for most shots. The Deuterium-Deuterium ion temperatures and the DT down scattered ratios, ratio of (10-12)/(13-15) MeV neutrons, roughly agree with data at peak fuel velocities <340 km/s and deviate at higher peak velocities, potentially due to flows and neutron scattering differences stemming from 3D or capsule support tent effects. These calculations show a significant amount alpha heating, 1-2.5× for shots where the experimental yield is within a factor of two, which has been achieved by increasing the fuel kinetic energy. This level of alpha heating is consistent with a dynamic hot spot model that is matched to experimental data and as determined from scaling of the yield with peak fuel velocity. These calculations also show that low mode asymmetries become more important as the fuel velocity is increased, and that improving these low mode asymmetries can result in an increase in the yield by a factor of several.

  17. In search of late time evolution self-similar scaling laws of Rayleigh-Taylor and Richtmyer-Meshkov hydrodynamic instabilities - recent theorical advance and NIF Discovery-Science experiments

    NASA Astrophysics Data System (ADS)

    Shvarts, Dov

    2017-10-01

    Hydrodynamic instabilities, and the mixing that they cause, are of crucial importance in describing many phenomena, from very large scales such as stellar explosions (supernovae) to very small scales, such as inertial confinement fusion (ICF) implosions. Such mixing causes the ejection of stellar core material in supernovae, and impedes attempts at ICF ignition. The Rayleigh-Taylor instability (RTI) occurs at an accelerated interface between two fluids with the lower density accelerating the higher density fluid. The Richtmyer-Meshkov (RM) instability occurs when a shock wave passes an interface between the two fluids of different density. In the RTI, buoyancy causes ``bubbles'' of the light fluid to rise through (penetrate) the denser fluid, while ``spikes'' of the heavy fluid sink through (penetrate) the lighter fluid. With realistic multi-mode initial conditions, in the deep nonlinear regime, the mixing zone width, H, and its internal structure, progress through an inverse cascade of spatial scales, reaching an asymptotic self-similar evolution: hRT =αRT Agt2 for RT and hRM =αRM tθ for RM. While this characteristic behavior has been known for years, the self-similar parameters αRT and θRM and their dependence on dimensionality and density ratio have continued to be intensively studied and a relatively wide distribution of those values have emerged. This talk will describe recent theoretical advances in the description of this turbulent mixing evolution that sheds light on the spread in αRT and θRM. Results of new and specially designed experiments, done by scientists from several laboratories, were performed recently using NIF, the only facility that is powerful enough to reach the self-similar regime, for quantitative testing of this theoretical advance, will be presented.

  18. Method of Moments Applied to the Analysis of Precision Spectra from the Neutron Time-of- flight Diagnostics at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hatarik, Robert; Caggiano, J. A.; Callahan, D.; Casey, D.; Clark, D.; Doeppner, T.; Eckart, M.; Field, J.; Frenje, J.; Gatu Johnson, M.; Grim, G.; Hartouni, E.; Hurricane, O.; Kilkenny, J.; Knauer, J.; Ma, T.; Mannion, O.; Munro, D.; Sayre, D.; Spears, B.

    2015-11-01

    The method of moments was introduced by Pearson as a process for estimating the population distributions from which a set of ``random variables'' are measured. These moments are compared with a parameterization of the distributions, or of the same quantities generated by simulations of the process. Most diagnostics processes extract scalar parameters depending on the moments of spectra derived from analytic solutions to the fusion rate, necessarily based on simplifying assumptions of the confined plasma. The precision of the TOF spectra, and the nature of the implosions at the NIF require the inclusion of factors beyond the traditional analysis and require the addition of higher order moments to describe the data. This talk will present a diagnostic process for extracting the moments of the neutron energy spectrum for a comparison with theoretical considerations as well as simulations of the implosions. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Electron temperature from x-ray continuum measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Jarrott, Leonard; Bachmann, Benjamin; Benedetti, Robin; Izumi, Nobuhiko; Khan, Shahab; Landen, Otto; Ma, Tammy; Nagel, Sabrina; Pak, Arthur; Patel, Prav; Schneider, Marilyn; Springer, Paul; LLNL Collaboration

    2017-10-01

    We report on measurements of the electron temperature within the hot spot of inertially confined, layered implosions on the NIF using a titanium differential filtering x-ray diagnostic. The electron temperature from x-ray emission is insensitive to non-thermal velocity flows as is the case with ion temperature measurements and is thus a critical parameter in interpreting stagnated hot spot conditions. Here we discuss measurements using titanium filters ranging from 10 μm to 1mm in thickness with a sensitivity band of 10-30keV coupled with penumbral pinholes. The use of larger pinhole diameters increases x-ray fluence improving sensitivity of photon energies with minimal attenuation from the compressed fuel/shell. This diagnostic has been fielded on a series of cryogenic shots with DT ion temperatures ranging from 2-5keV. Analysis of the measurement will be presented along with a comparison against simulated electron temperatures and x-ray spectra as well as a comparison to DT ion temperature measurements. This work was performed under the auspices of U.S. DoE by LLNL under Contract No. DE-AC52-07NA27344.

  20. Comparison of plastic, high-density carbon, and beryllium as NIF ablators

    NASA Astrophysics Data System (ADS)

    Kritcher, Andrea

    2017-10-01

    An effort is underway to compare the three principal ablators for National Ignition Facility (NIF) implosions: plastic (CH), High Density Carbon (HDC), and beryllium (Be). This presentation will summarize the comparison and discuss in more detail the issues pertaining to hohlraum performance and symmetry. Several aspects of the hohlraum design are affected by the ablator properties, as the ablator constrains the first shock and determines the overall pulse length. HDC targets can utilize shorter pulse lengths due to the thinner, higher density shell, and should be less susceptible to late time wall motion. However, HDC requires a larger picket energy to ensure adequate melt, leading to increased late time wall movement. Be is intermediate to CH and HDC in both these regards, and has more ablated material in the hohlraum. These tradeoffs as well as other design choices for currently fielded campaigns are assessed in this work. To assess consistently the radiation drive and symmetry, integrated postshot simulations of the hohlraum and capsule were done for each design using the same methodology. The simulation results are compared to experimental data. Using this post-shot model, we make a projection of the relative plausible performance that can be achieved, while maintaining adequate symmetry, using the full NIF laser, i.e. 1.8 MJ/500 TW Full NIF Equivalent (FNE). The hydrodynamic stability of the different ablators is also an important consideration and will be presented for the current platforms and projection to FNE. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. The National Ignition Facility (NIF) as a User Facility

    NASA Astrophysics Data System (ADS)

    Keane, Christopher; NIF Team

    2013-10-01

    The National Ignition Facility (NIF) has made significant progress towards operation as a user facility. Through June 2013, NIF conducted over 1200 experiments in support of ICF, HED science, and development of facility capabilities. The NIF laser has met or achieved all specifications and a wide variety of diagnostic and target fabrication capabilities are in place. A NIF User Group and associated Executive Board have been formed. Two User Group meetings have been conducted since formation of the User Group. NIF experiments in fundamental science have provided important new results. NIF ramp compression experiments have been conducted using diamond and iron, with EOS results obtained at pressures up to approximately 50 Mbar and 8 Mbar, respectively. Initial experiments in supernova hydrodynamics, the fundamental physics of the Rayleigh-Taylor instability, and equation of state in the Gbar pressure regime have also been conducted. This presentation will discuss the fundamental science program at NIF, including the proposal solicitation and scientific review processes and other aspects of user facility operation. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  2. Experiments to measure ablative Richtmyer-Meshkov growth of Gaussian bumps in plastic capsules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Eric; Batha, Steve; Sedillo, Tom

    2010-06-02

    Growth of hydrodynamic instabilities at the interfaces of inertial confinement fusion capsules (ICF) due to ablator and fuel non-uniformities have been of primary concern to the ICF program since its inception. To achieve thermonuclear ignition at Megajoule class laser systems such as the NIF, targets must be designed for high implosion velocities, which requires higher in-flight aspect ratios (IFAR) and diminished shell stability. Controlling capsule perturbations is thus of the utmost importance. Recent simulations have shown that features on the outer surface of an ICF capsule as small as 10 microns wide and 100's of nanometers tall such as bumps,more » divots, or even dust particles can profoundly impact capsule performance by leading to material jetting or mix into the hotspot. Recent x-ray images of implosions on the NIF may be evidence of such mixing. Unfortunately, our ability to accurately predict these effects is uncertain due to disagreement between equation of state (EOS) models. In light of this, we have begun a campaign to measure the growth of isolated defects (Gaussian bumps) due to ablative Richtmyer-Meshkov in CH capsules to validate these models. The platform that has been developed uses halfraums with radiation temperatures near 75 eV (Rev. 4 foot-level) driven by 15-20 beams from the Omega laser (Laboratory for Laser Energetics, University of Rochester, NY), which sends a ~2.5 Mbar shock into a planar CH foil. Gaussian-shaped bumps (20 microns wide, 4-7 microns tall) are deposited onto the ablation side of the target. On-axis radiography with a saran (Cl He α - 2.8 keV) backlighter is used to measure bump evolution prior to shock breakout. Shock speed measurements will also be made with Omega's active shock breakout (ASBO) and streaked optical pyrometery (SOP) diagnostics in conjunction with filtered x-ray photodiode arrays (DANTE) to determine drive conditions in the target. These data will be used to discriminate between EOS models so that one may be selected to design the shape and intensity of the foot in an ignition-level drive pulse so that bump amplitude is minimized by the time the shell begins to accelerate.« less

  3. Time-resolved Measurements of ICF Capsule Ablator Properties by Streaked X-Ray Radiography

    NASA Astrophysics Data System (ADS)

    Hicks, Damien

    2008-11-01

    Determining the capsule ablator thickness and peak laser or x-ray drive pressure required to optimize fuel compression is a critical part of ensuring ICF ignition on the NIF. If too little ablator is burned off, the implosion velocity will be too low for adequate final compression; if too much ablator is burned off, the fuel will be preheated or the shell will be broken up by growth of hydrodynamic instabilities, again compromising compression. Avoiding such failure modes requires having an accurate, in-flight measure of the implosion velocity, areal density, and remaining mass of the ablator near peak velocity. We present a new technique which achieves simultaneous time-resolved measurements of all these parameters in a single, area-backlit, x-ray streaked radiograph. This is accomplished by tomographic inversion of the radiograph to determine the radial density profile at each time step; scalar quantities such as the average position, areal density, and mass of the ablator can then be calculated by taking moments of this density profile. Details of the successful demonstration of this technique using backlit Cu-doped Be capsule implosions at the Omega facility will be presented. This work was performed under the auspices of the U.S.Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and in collaboration with Brian Spears, David Braun, Peter Celliers, Gilbert Collins, and Otto Landen at LLNL and Rick Olson at SNL.

  4. The national ignition facility: path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2007-08-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the US nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  5. Hydrodynamic instability experiments with three-dimensional modulations at the National Ignition Facility

    DOE PAGES

    Smalyuk, V. A.; Weber, S. V.; Casey, D. T.; ...

    2015-06-18

    The first hydrodynamic instability growth measurements with three-dimensional (3D) surface-roughness modulations were performed on CH shell spherical implosions at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)]. The initial capsule outer-surface amplitudes were increased approximately four times, compared with the standard specifications, to increase the signal-to-noise ratio, helping to qualify a technique for measuring small 3D modulations. The instability growth measurements were performed using x-ray through-foil radiography based on time-resolved pinhole imaging. Averaging over 15 similar images significantly increased the signal-to-noise ratio, making possible a comparison with 3Dmore » simulations. At a convergence ratio of ~2.4, the measured modulation levels were ~3 times larger than those simulated based on the growth of the known imposed initial surface modulations. Several hypotheses are discussed, including increased instability growth due to modulations of the oxygen content in the bulk of the capsule. In conclusion, future experiments will be focused on measurements with standard 3D ‘native-roughness’ capsules as well as with deliberately imposed oxygen modulations.« less

  6. Comparison of plastic, high density carbon, and beryllium as indirect drive NIF ablators

    NASA Astrophysics Data System (ADS)

    Kritcher, A. L.; Clark, D.; Haan, S.; Yi, S. A.; Zylstra, A. B.; Callahan, D. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Hurricane, O. A.; Landen, O. L.; MacLaren, S. A.; Meezan, N. B.; Patel, P. K.; Ralph, J.; Thomas, C. A.; Town, R.; Edwards, M. J.

    2018-05-01

    Detailed radiation hydrodynamic simulations calibrated to experimental data have been used to compare the relative strengths and weaknesses of three candidate indirect drive ablator materials now tested at the NIF: plastic, high density carbon or diamond, and beryllium. We apply a common simulation methodology to several currently fielded ablator platforms to benchmark the model and extrapolate designs to the full NIF envelope to compare on a more equal footing. This paper focuses on modeling of the hohlraum energetics which accurately reproduced measured changes in symmetry when changes to the hohlraum environment were made within a given platform. Calculations suggest that all three ablator materials can achieve a symmetric implosion at a capsule outer radius of ˜1100 μm, a laser energy of 1.8 MJ, and a DT ice mass of 185 μg. However, there is more uncertainty in the symmetry predictions for the plastic and beryllium designs. Scaled diamond designs had the most calculated margin for achieving symmetry and the highest fuel absorbed energy at the same scale compared to plastic or beryllium. A comparison of the relative hydrodynamic stability was made using ultra-high resolution capsule simulations and the two dimensional radiation fluxes described in this work [Clark et al., Phys. Plasmas 25, 032703 (2018)]. These simulations, which include low and high mode perturbations, suggest that diamond is currently the most promising for achieving higher yields in the near future followed by plastic, and more data are required to understand beryllium.

  7. Shielding Design for the South Pole nToF Diagnostic at the NIF

    NASA Astrophysics Data System (ADS)

    Khater, Hesham; Sitaraman, Shiva; Hall, James; Hatarik, Robert; Caggiano, Joseph; Waltz, Cory

    2017-09-01

    Neutron time of flight (nToF) detectors are fielded at the National Ignition Facility (NIF) to measure neutron yield, ion temperature, and downscattering in the cold fuel for D-T implosions. Anisotropically assembled cold fuel may generate different nToF data when measured by detectors located at the Target Chamber equator and poles. A collimated nToF line of sight has been fielded near the Target Chamber South Pole (SP) to examine any possible anisotropy in the cold fuel. The SP nToF detector is located in the lowest floor level of the NIF's Target Bay and at a distance of 18 m from the Target Chamber Center. The detector utilizes a solid bibenzyl scintillator and four photomultiplier tubes. The line of sight includes a port collimator that is attached to the Target Chamber and a bore hole collimator in the concrete floor above the detector. In addition, a beam line get lost hole is constructed in the Target Bay floor to minimize the backscattered radiation at the detector location. Initial measurements indicated the need for installation of additional shielding to eliminate gamma background during the period before arrival of the 14.1 MeV neutrons to the detector. A set of MCNP Monte Carlo simulations with the full Target Bay model were conducted to provide an estimate of the expected neutron and gamma backgrounds during D-T shots. A new shielding scheme is designed to reduce the gamma background by an order of magnitude.

  8. Progress of LMJ-relevant implosions experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M.-C.; Gauthier, P.; Park, H. S.; Robey, H.; Ross, J.; Amendt, P.; Girard, F.; Villette, B.; Reverdin, C.; Loiseau, P.; Caillaud, T.; Landoas, O.; Li, C. K.; Petrasso, R.; Seguin, F.; Rosenberg, M.; Renaudin, P.

    2013-11-01

    In preparation of the first ignition attempts on the Laser Mégajoule (LMJ), an experimental program is being pursued on OMEGA to investigate LMJ-relevant hohlraums. First, radiation temperature levels close to 300 eV were recently achieved in reduced-scale hohlraums with modest backscatter losses. Regarding the baseline target design for fusion experiments on LMJ, an extensive experimental database has also been collected for scaled implosions experiments in both empty and gas-filled rugby-shaped hohlraums. We acquired a full picture of hohlraum energetics and implosion dynamics. Not only did the rugby hohlraums show significantly higher x-ray drive energy over the cylindrical hohlraums, but symmetry control by power balance was demonstrated, as well as high-performance D2 implosions enabling the use of a complete suite of neutrons diagnostics. Charged particle diagnostics provide complementary insights into the physics of these x-ray driven implosions. An overview of these results demonstrates our ability to control the key parameters driving the implosion, lending more confidence in extrapolations to ignition-scale targets.

  9. The national ignition facility: Path to ignition in the laboratory

    NASA Astrophysics Data System (ADS)

    Moses, E. I.; Bonanno, R. E.; Haynam, C. A.; Kauffman, R. L.; MacGowan, B. J.; Patterson, R. W., Jr.; Sawicki, R. H.; van Wonterghem, B. M.

    2006-06-01

    The National Ignition Facility (NIF) is a 192-beam laser facility presently under construction at LLNL. When completed, NIF will be a 1.8-MJ, 500-TW ultraviolet laser system. Its missions are to obtain fusion ignition and to perform high energy density experiments in support of the U.S. nuclear weapons stockpile. Four of the NIF beams have been commissioned to demonstrate laser performance and to commission the target area including target and beam alignment and laser timing. During this time, NIF demonstrated on a single-beam basis that it will meet its performance goals and demonstrated its precision and flexibility for pulse shaping, pointing, timing and beam conditioning. It also performed four important experiments for Inertial Confinement Fusion and High Energy Density Science. Presently, the project is installing production hardware to complete the project in 2009 with the goal to begin ignition experiments in 2010. An integrated plan has been developed including the NIF operations, user equipment such as diagnostics and cryogenic target capability, and experiments and calculations to meet this goal. This talk will provide NIF status, the plan to complete NIF, and the path to ignition.

  10. The One-Dimensional Cryogenic Implosion Campaign on OMEGA: Modeling, Experiments, and a Statistical Approach to Predict and Understand Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Betti, R.

    2017-10-01

    The 1-D campaign on OMEGA is aimed at validating a novel approach to design cryogenic implosion experiments and provide valuable data to improve the accuracy of 1-D physics models. This new design methodology is being tested first on low-convergence, high-adiabat (α 6 to 7) implosions and will subsequently be applied to implosions with increasing convergence up to the level required for a hydro-equivalent demonstration of ignition. This design procedure assumes that the hydrodynamic codes used in implosion designs lack the necessary physics and that measurements of implosion properties are imperfect. It also assumes that while the measurements may have significant systematic errors, the shot-to-shot variations are small and that cryogenic implosion data are reproducible as observed on OMEGA. One of the goals of the 1-D campaign is to find a mapping of the data to the code results and use the mapping relations to design future implosions. In the 1-D campaign, this predictive methodology was used to design eight implosions using a simple two-shock pulse design, leading to pre-shot predictions of yields within 5% and ion temperatures within 4% of the experimental values. These implosions have also produced the highest neutron yield of 1014 in OMEGA cryogenic implosion experiments with an areal density of 100 mg/cm2. Furthermore, the results from this campaign have been used to test the validity of the 1-D physics models used in the radiation-hydrodynamics codes. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DENA0001944 and LLNL under Contract DE-AC52-07NA27344. * In collaboration with J.P. Knauer, V. Gopalaswamy, D. Patel, K.M. Woo, K.S. Anderson, A. Bose, A.R. Christopherson, V.Yu. Glebov, F.J. Marshall, S.P. Regan, P.B. Radha, C. Stoeckl, and E.M. Campbell.

  11. Implosion dynamics measurements at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Olson, R. E.; Callahan, D. A.; Döppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Frenje, J. A.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P.; Izumi, N.; Kalantar, D. H.; Khan, S. F.; Kline, J. L.; Kroll, J. J.; Kyrala, G. A.; Ma, T.; MacPhee, A. G.; McNaney, J. M.; Moody, J. D.; Moran, M. J.; Nathan, B. R.; Nikroo, A.; Opachich, Y. P.; Petrasso, R. D.; Prasad, R. R.; Ralph, J. E.; Robey, H. F.; Rinderknecht, H. G.; Rygg, J. R.; Salmonson, J. D.; Schneider, M. B.; Simanovskaia, N.; Spears, B. K.; Tommasini, R.; Widmann, K.; Zylstra, A. B.; Collins, G. W.; Landen, O. L.; Kilkenny, J. D.; Hsing, W. W.; MacGowan, B. J.; Atherton, L. J.; Edwards, M. J.

    2012-12-01

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% ± 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel ρR on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 μm (˜10%) thicker targets and laser powers at or beyond facility limits.

  12. Implosion dynamics measurements at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, D. G.; Meezan, N. B.; Dewald, E. L.

    2012-12-15

    Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used tomore » establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.« less

  13. Optimization of the NIF ignition point design hohlraum

    NASA Astrophysics Data System (ADS)

    Callahan, D. A.; Hinkel, D. E.; Berger, R. L.; Divol, L.; Dixit, S. N.; Edwards, M. J.; Haan, S. W.; Jones, O. S.; Lindl, J. D.; Meezan, N. B.; Michel, P. A.; Pollaine, S. M.; Suter, L. J.; Town, R. P. J.; Bradley, P. A.

    2008-05-01

    In preparation for the start of NIF ignition experiments, we have designed a porfolio of targets that span the temperature range that is consistent with initial NIF operations: 300 eV, 285 eV, and 270 eV. Because these targets are quite complicated, we have developed a plan for choosing the optimum hohlraum for the first ignition attempt that is based on this portfolio of designs coupled with early NIF experiements using 96 beams. These early experiments will measure the laser plasma instabilities of the candidate designs and will demonstrate our ability to tune symmetry in these designs. These experimental results, coupled with the theory and simulations that went into the designs, will allow us to choose the optimal hohlraum for the first NIF ignition attempt.

  14. Late-time mixing and turbulent behavior in high-energy-density shear experiments at high Atwood numbers

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk

    2017-10-01

    The LANL Shear experiments on the NIF are designed to study the Kelvin-Helmholtz instability (KHI), which is the predominate mechanism for generating vorticity, leading to turbulence and mixing at high Reynolds numbers. The KHI is pervasive, as velocity sheared and density-stratified flows abound, from accretion disks of a black holes to the fuel capsule in an ICF implosion. The NIF laser has opened up a new class of long-lived planar HED fluid instability experiments that can scale fluid experiments over impressive orders of magnitude in pressure (up to > Mbar), temperature (>105 K) and space (<10s of μm) and still recover classical fluid instability behavior, and elucidate mixing and plasma effects. The reproducibility allows for the unique capability in an HED experiment to directly measure values comparable to those in the mix model, the Besnard-Harlow-Rauenzahn (BHR[3]) model implemented in the LANL hydro-code RAGE, like the mixedness parameter, b, and the turbulent kinetic energy using the observed coherent features. We have acquired time histories of 4 tracer materials and 3 surface finishes spanning dynamic Atwood numbers from 0.63 to 0.88 and developed Reynolds numbers around 106. When the shocks cross, the layer is exposed to extreme shear forces and evolves into KHI rollers from an unseeded (but naturally broadband) surface. Two sets of data are acquired for each material type: an edge-view and a plan-view, through the plane of the material. The results hint at plasma physics effects in the layer. The edge-view is compared to BHR calculations, to understand mixing and layer growth. The BHR model matches the evolution and asymptotic behavior of the layer, and the initial scale-length used for the model correlates well to initial surface roughness, even when the surface is artificially roughened, forcing the layer's evolution from coherent to disordered. This work performed under the auspices of the U.S. Department of Energy by LANL under contract DE-AC52-06NA25396.

  15. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    NASA Astrophysics Data System (ADS)

    Hansen, E. C.; Barnak, D. H.; Betti, R.; Campbell, E. M.; Chang, P.-Y.; Davies, J. R.; Glebov, V. Yu; Knauer, J. P.; Peebles, J.; Regan, S. P.; Sefkow, A. B.

    2018-05-01

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1D code LILAC was used to model the central region of the implosion, and results were compared to 2D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysis shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.

  16. Subscale HDC implosions driven at high radiation temperature using advanced hohlraums

    NASA Astrophysics Data System (ADS)

    Ho, D.; Amendt, P.; Jones, O.; Berzak Hopkins, L.; Le Pape, S.

    2017-10-01

    Implosions using HDC ablators have received increased attention because of shorter pulse length and can access higher implosion velocity than CH ablators. Recent HDC midscale (979 m radius) implosion experiments have achieved DT neutron yields of 1.5e16. Our 2D simulations show that subscale (890 m radius) HDC capsules can achieve robust high-yield performance if driven at high enough radiation temperature 330 eV, because the penalty for less fuel mass can be offset by higher implosion velocity. To achieve 330 eV will likely require the use of innovative hohlraum concepts, e.g., subscale rugby-shaped hohlraum using 1.3 MJ of laser energy without incurring a risk of high laser backscatter. Radiation symmetry is currently under study. Confidence in our modeling of HDC implosions is high in part because our 2D modeling of recent HDC implosions experiments show good agreement with data. Work performed under auspices of U.S. DOE by LLNL under 15-ERD-058.

  17. Cryogenic target system for hydrogen layering

    DOE PAGES

    Parham, T.; Kozioziemski, B.; Atkinson, D.; ...

    2015-11-24

    Here, a cryogenic target positioning system was designed and installed on the National Ignition Facility (NIF) target chamber. This instrument incorporates the ability to fill, form, and characterize the NIF targets with hydrogen isotopes needed for ignition experiments inside the NIF target bay then transport and position them in the target chamber. This effort brought to fruition years of research in growing and metrologizing high-quality hydrogen fuel layers and landed it in an especially demanding operations environment in the NIF facility. D-T (deuterium-tritium) layers for NIF ignition experiments have extremely tight specifications and must be grown in a very highlymore » constrained environment: a NIF ignition target inside a cryogenic target positioner inside the NIF target bay. Exquisite control of temperature, pressure, contaminant level, and thermal uniformity are necessary throughout seed formation and layer growth to create an essentially-groove-free single crystal layer.« less

  18. ICF target 2D modeling using Monte Carlo SNB electron thermal transport in DRACO

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey; Cao, Duc; Moses, Gregory

    2016-10-01

    The iSNB (implicit Schurtz Nicolai Busquet multigroup diffusion electron thermal transport method is adapted into a Monte Carlo (MC) transport method to better model angular and long mean free path non-local effects. The MC model was first implemented in the 1D LILAC code to verify consistency with the iSNB model. Implementation of the MC SNB model in the 2D DRACO code enables higher fidelity non-local thermal transport modeling in 2D implosions such as polar drive experiments on NIF. The final step is to optimize the MC model by hybridizing it with a MC version of the iSNB diffusion method. The hybrid method will combine the efficiency of a diffusion method in intermediate mean free path regions with the accuracy of a transport method in long mean free path regions allowing for improved computational efficiency while maintaining accuracy. Work to date on the method will be presented. This work was supported by Sandia National Laboratories and the Univ. of Rochester Laboratory for Laser Energetics.

  19. Quantifying design trade-offs of beryllium targets on NIF

    NASA Astrophysics Data System (ADS)

    Yi, S. A.; Zylstra, A. B.; Kline, J. L.; Loomis, E. N.; Kyrala, G. A.; Shah, R. C.; Perry, T. S.; Kanzleiter, R. J.; Batha, S. H.; MacLaren, S. A.; Ralph, J. E.; Masse, L. P.; Salmonson, J. D.; Tipton, R. E.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    An important determinant of target performance is implosion kinetic energy, which scales with the capsule size. The maximum achievable performance for a given laser is thus related to the largest capsule that can be imploded symmetrically, constrained by drive uniformity. A limiting factor for symmetric radiation drive is the ratio of hohlraum to capsule radii, or case-to-capsule ratio (CCR). For a fixed laser energy, a larger hohlraum allows for driving bigger capsules symmetrically at the cost of reduced peak radiation temperature (Tr). Beryllium ablators may thus allow for unique target design trade-offs due to their higher ablation efficiency at lower Tr. By utilizing larger hohlraum sizes than most modern NIF designs, beryllium capsules thus have the potential to operate in unique regions of the target design parameter space. We present design simulations of beryllium targets with a large CCR = 4.3 3.7 . These are scaled surrogates of large hohlraum low Tr beryllium targets, with the goal of quantifying symmetry tunability as a function of CCR. This work performed under the auspices of the U.S. DOE by LANL under contract DE-AC52- 06NA25396, and by LLNL under Contract DE-AC52-07NA27344.

  20. The national ignition facility high-energy ultraviolet laser system

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2004-09-01

    The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500 TW, ultraviolet laser system together with a 10-m diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will allow the study of physical processes at temperatures approaching 10 8 K and 10 11 Bar, conditions that exist naturally only in the interior of stars, planets and in nuclear weapons. NIF is now entering the first phases of its laser commissioning program. The first four beams of the NIF laser system have generated 106 kJ of infrared light and over 10 kJ at the third harmonic (351 nm). NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This paper provides a detailed look the NIF laser systems, the significant laser and optical systems breakthroughs that were developed, the results of recent laser commissioning shots, and plans for commissioning diagnostics for experiments on NIF.

  1. The physics basis for ignition using indirect-drive targets on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J.

    2004-02-01

    The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlraum and hydrodynamic constraints on indirect-drive ignition, the target physics program was divided into the Hohlraum and Laser-Plasma Physics (HLP) program and the Hydrodynamically Equivalent Physics (HEP) program. The HLP program addresses laser-plasma coupling, x-ray generation and transport, and the development of energy-efficient hohlraums that provide the appropriate spectral, temporal, and spatial x-ray drive. The HEP experiments address the issues of hydrodynamic instability and mix, as well as the effects of flux asymmetry on capsules that are scaled as closely as possible to ignition capsules (hydrodynamic equivalence). The HEP program also addresses other capsule physics issues associated with ignition, such as energy gain and energy loss to the fuel during implosion in the absence of alpha-particle deposition. The results from the Nova and Omega experiments approach the NIF requirements for most of the important ignition capsule parameters, including drive temperature, drive symmetry, and hydrodynamic instability. This paper starts with a review of the NIF target designs that have formed the motivation for the goals of the target physics program. Following that are theoretical and experimental results from Nova and Omega relevant to the requirements of those targets. Some elements of this work were covered in a 1995 review of indirect-drive [J. D. Lindl, ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain,'' Phys. Plasmas 2, 3933 (1995)]. In order to present as complete a picture as possible of the research that has been carried out on indirect drive, key elements of that earlier review are also covered here, along with a review of work carried out since 1995.

  2. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E. C.; Barnak, D. H.; Betti, R.

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less

  3. Measuring implosion velocities in experiments and simulations of laser-driven cylindrical implosions on the OMEGA laser

    DOE PAGES

    Hansen, E. C.; Barnak, D. H.; Betti, R.; ...

    2018-04-04

    Laser-driven magnetized liner inertial fusion (MagLIF) on OMEGA involves cylindrical implosions, a preheat beam, and an applied magnetic field. Initial experiments excluded the preheat beam and magnetic field to better characterize the implosion. X-ray self-emission as measured by framing cameras was used to determine the shell trajectory. The 1-D code LILAC was used to model the central region of the implosion, and results were compared to 2-D simulations from the HYDRA code. Post-processing of simulation output with SPECT3D and Yorick produced synthetic x-ray images that were used to compare the simulation results with the x-ray framing camera data. Quantitative analysismore » shows that higher measured neutron yields correlate with higher implosion velocities. The future goal is to further analyze the x-ray images to characterize the uniformity of the implosions and apply these analysis techniques to integrated laser-driven MagLIF shots to better understand the effects of preheat and the magnetic field.« less

  4. Pressure signature and evaluation of hammer pulses during underwater implosion in confining environments.

    PubMed

    Gupta, Sachin; Matos, Helio; Shukla, Arun; LeBlanc, James M

    2016-08-01

    The fluid structure interaction phenomenon occurring in confined implosions is investigated using high-speed three-dimensional digital image correlation (DIC) experiments. Aluminum tubular specimens are placed inside a confining cylindrical structure that is partially open to a pressurized environment. These specimens are hydrostatically loaded until they naturally implode. The implosion event is viewed, and recorded, through an acrylic window on the confining structure. The velocities captured through DIC are synchronized with the pressure histories to understand the effects of confining environment on the implosion process. Experiments show that collapse of the implodable volume inside the confining tube leads to strong oscillating water hammer waves. The study also reveals that the increasing collapse pressure leads to faster implosions. Both peak and average structural velocities increase linearly with increasing collapse pressure. The effects of the confining environment are better seen in relatively lower collapse pressure implosion experiments in which a long deceleration phase is observed following the peak velocity until wall contact initiates. Additionally, the behavior of the confining environment can be viewed and understood through classical water hammer theory. A one-degree-of-freedom theoretical model was created to predict the impulse pressure history for the particular problem studied.

  5. The expression of nifB gene from Herbaspirillum seropedicae is dependent upon the NifA and RpoN proteins.

    PubMed

    Rego, Fabiane G M; Pedrosa, Fábio O; Chubatsu, Leda S; Yates, M Geoffrey; Wassem, Roseli; Steffens, Maria B R; Rigo, Liu U; Souza, Emanuel M

    2006-12-01

    The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a -24/-12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.

  6. Beryllium implosion experiments at high case-to-capsule ratio on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Zylstra, Alex; Yi, Austin; Kline, John; Kyrala, George; Loomis, Eric; Perry, Ted; Shah, Rahul; Batha, Steve; MacLaren, Steve; Ralph, Joe; Salmonson, Jay; Masse, Laurent; Nikroo, Abbas; Stadermann, Michael; Callahan, Debbie; Hurricane, Omar; Rice, Neal; Huang, Haibo; Kong, Casey

    2017-10-01

    Using beryllium as an ablator material has several potential advantages for inertial fusion because of its low opacity and thus higher ablation rate. This could enable novel designs taking advantage of the reduced ablation-front growth rate, or operating at lower radiation temperature. To investigate the integrated performance of beryllium implosions, we conducted a tuning campaign leading into DT layered implosions using a 900um radius capsule in a 6.72mm diameter hohlraum (case-to-capsule ratio CCR=3.7); the large CCR enables direct study of the 1-D implosion performance. The tuning campaign shots demonstrate excellent control over the shock timing and implosion symmetry at this CCR. Performance data from the DT experiments will also be discussed. This work was performed under the auspices of the U.S. DoE by LANL under contract DE-AC52-06NA52396.

  7. Research Performance Progress Report: Diverging Supernova Explosion Experiments on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plewa, Tomasz

    2016-10-25

    The aim of this project was to design a series of blast-wave driven Rayleigh-Taylor (RT) experiments on the National Ignition Facility (NIF). The experiments of this kind are relevant to mixing in core-collapse supernovae (ccSNe) and have the potential to address previously unanswered questions in high-energy density physics (HEDP) and astrophysics. The unmatched laser power of the NIF laser offers a unique chance to observe and study “new physics” like the mass extensions observed in HEDP RT experiments performed on the Omega laser [1], which might be linked to self-generated magnetic fields [2] and so far could not be reproducedmore » by numerical simulations. Moreover, NIF is currently the only facility that offers the possibility to execute a diverging RT experiment, which would allow to observe processes such as inter-shell penetration via turbulent mixing and shock-proximity effects (distortion of the shock by RT spikes).« less

  8. Developing one-dimensional implosions for inertial confinement fusion science

    DOE PAGES

    Kline, John L.; Yi, Sunghwan A.; Simakov, Andrei Nikolaevich; ...

    2016-12-12

    Experiments on the National Ignition Facility show that multi-dimensional effects currently dominate the implosion performance. Low mode implosion symmetry and hydrodynamic instabilities seeded by capsule mounting features appear to be two key limiting factors for implosion performance. One reason these factors have a large impact on the performance of inertial confinement fusion implosions is the high convergence required to achieve high fusion gains. To tackle these problems, a predictable implosion platform is needed meaning experiments must trade-off high gain for performance. LANL has adopted three main approaches to develop a one-dimensional (1D) implosion platform where 1D means measured yield overmore » the 1D clean calculation. A high adiabat, low convergence platform is being developed using beryllium capsules enabling larger case-to-capsule ratios to improve symmetry. The second approach is liquid fuel layers using wetted foam targets. With liquid fuel layers, the implosion convergence can be controlled via the initial vapor pressure set by the target fielding temperature. The last method is double shell targets. For double shells, the smaller inner shell houses the DT fuel and the convergence of this cavity is relatively small compared to hot spot ignition. However, double shell targets have a different set of trade-off versus advantages. As a result, details for each of these approaches are described.« less

  9. Addressing Common Technical challenges in Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Donald A.

    2016-09-22

    The implosion phase for Inertial Confinement Fusion (ICF) occurs from initiation of the drive until just before stagnation. Evolution of the shell and fusion fuel during the implosion phase is affected by the initial conditions of the target, the drive history. Poor performing implosions are a result of the behavior that occurs during the implosion phase such as low mode asymmetries, mixing of the ablator into the fuel, and the hydrodynamic evolution of initial target features and defects such as the shell mounting hardware. The ultimate results of these effects can only be measured at stagnation. However, studying the implosionmore » phase can be effective for understanding and mitigating these effects and for of ultimately improving the performance of ICF implosions. As the ICF program moves towards the 2020 milestone to “determine the efficacy of ignition”, it will be important to understand the physics that occurs during the implosion phase. This will require both focused and integrated experiments. Focused experiments will provide the understanding and the evidence needed to support any determination concerning the efficacy of ignition.« less

  10. Capsule Performance Optimization for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Landen, Otto

    2009-11-01

    The overall goal of the capsule performance optimization campaign is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. This will be accomplished using a variety of targets that will set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix. The targets include high Z re-emission spheres setting foot symmetry through foot cone power balance [1], liquid Deuterium-filled ``keyhole'' targets setting shock speed and timing through the laser power profile [2], symmetry capsules setting peak cone power balance and hohlraum length [3], and streaked x-ray backlit imploding capsules setting ablator thickness [4]. We will show how results from successful tuning technique demonstration shots performed at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design meet the required sensitivity and accuracy. We will also present estimates of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors, and show that these get reduced after a number of shots and iterations to meet an acceptable level of residual uncertainty. Finally, we will present results from upcoming tuning technique validation shots performed at NIF at near full-scale. Prepared by LLNL under Contract DE-AC52-07NA27344. [4pt] [1] E. Dewald, et. al. Rev. Sci. Instrum. 79 (2008) 10E903. [0pt] [2] T.R. Boehly, et. al., Phys. Plasmas 16 (2009) 056302. [0pt] [3] G. Kyrala, et. al., BAPS 53 (2008) 247. [0pt] [4] D. Hicks, et. al., BAPS 53 (2008) 2.

  11. Expression of the nifA gene of Herbaspirillum seropedicae: role of the NtrC and NifA binding sites and of the -24/-12 promoter element.

    PubMed

    Souza, E M; Pedrosa, F O; Rigo, L U; Machado, H B; Yates, M G

    2000-06-01

    The nifA promoter of Herbaspirillum seropedicae contains potential NtrC, NifA and IHF binding sites together with a -12/-24 sigma(N)-dependent promoter. This region has now been investigated by deletion mutagenesis for the effect of NtrC and NifA on the expression of a nifA::lacZ fusion. A 5' end to the RNA was identified at position 641, 12 bp downstream from the -12/-24 promoter. Footprinting experiments showed that the G residues at positions -26 and -9 are hypermethylated, and that the region from -10 to +10 is partially melted under nitrogen-fixing conditions, confirming that this is the active nifA promoter. In H. seropedicae nifA expression from the sigma(N)-dependent promoter is repressed by fixed nitrogen but not by oxygen and is probably activated by the NtrC protein. NifA protein is apparently not essential for nifA expression but it can still bind the NifA upstream activating sequence.

  12. Thinshell symmetry surrogates for the National Ignition Facility: A rocket equation analysis

    NASA Astrophysics Data System (ADS)

    Amendt, Peter; Shestakov, A. I.; Landen, O. L.; Bradley, D. K.; Pollaine, S. M.; Suter, L. J.; Turner, R. E.

    2001-06-01

    Several techniques for inferring the degree of flux symmetry in indirectly driven cylindrical hohlraums have been developed over the past several years for eventual application to the National Ignition Facility (NIF) [Paisner et al., Laser Focus World 30, 75 (1994)]. These methods use various ignition capsule surrogates, including non-cryogenic imploded capsules [Hauer et al., Phys. Plasmas 2, 2488 (1995)], backlit aerogel foamballs [Amendt et al., Rev. Sci. Instrum. 66, 785 (1995)], reemission balls [Delamater, Magelssen, and Hauer, Phys. Rev. E 53, 5240 (1996)], and backlit thinshells [Pollaine et al., Phys. Plasmas 8, 2357 (2001)]. Recent attention has focussed on the backlit thinshells as a promising means for detecting higher-order Legendre flux asymmetries, e.g., P6 and P8, which are predicted to be important sources of target performance degradation on the NIF for levels greater than 1% [Haan et al., Phys. Plasmas 2, 2490 (1995)]. A key property of backlit thinshells is the strong amplification of modal flux asymmetry imprinting with shell convergence. A simple single-parameter analytic description based on a rocket model is presented which explores the degree of linearity of the shell response to an imposed flux asymmetry. Convergence and mass ablation effects introduce a modest level of nonlinearity in the shell response. The effect of target fabrication irregularities on shell distortion is assessed with the rocket model and particular sensitivity to shell thickness variations is shown. The model can be used to relate an observed or simulated backlit implosion trajectory to an ablation pressure asymmetry history. Ascertaining this history is an important element for readily establishing the degree of surrogacy of a symmetry target for a NIF ignition capsule.

  13. Asymetrically driven implosion experiment on the Laser MégaJoule

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Seytor, Patricia; Tassin, Veronique; Rosch, Rudolf; Villette, Bruno

    2017-10-01

    We report on the results of the first implosion experiments performed on the Laser MégaJoule (LMJ) facility. Their main purpose was to study implosion with large polar asymmetries of incident radiative flux on a capsule, while preserving azimuthal symmetry, in the context of ICF. In these experiments, one quad of LMJ is focused axially on a gold shield inside a hohlraum. The shield effectively divides the hohlraum in two compartments, and a capsule placed in the second compartment is indirectly driven by the x-ray flux generated in the first one. The subsequent asymmetric implosion is backlit by an x-ray source generated by another quad of LMJ and imaged with an x-ray microscope coupled to a framing camera. Time-gated x-ray radiographs of the imploding capsule and diode array measurements of the hohlraum x-ray emission are found to be in good agreement with FCI2 radiative hydrodynamics simulations.

  14. Ignition and Inertial Confinement Fusion at The National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Moses, Edward I.

    2016-10-01

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear bum in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm3-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIP's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY20l0 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

  15. Demonstration of a time-integrated short line of sight neutron imaging system for inertial confinement fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Fatherley, V. E.

    2015-12-15

    The Neutron Imaging System (NIS) is an important diagnostic for understanding implosions of deuterium-tritium capsules at the National Ignition Facility. While the detectors for the existing system must be positioned 28 m from the source to produce sufficient imaging magnification and resolution, recent testing of a new short line of sight neutron imaging system has shown sufficient resolution to allow reconstruction of the source image with quality similar to that of the existing NIS on a 11.6 m line of sight. The new system used the existing pinhole aperture array and a stack of detectors composed of 2 mm thickmore » high-density polyethylene converter material followed by an image plate. In these detectors, neutrons enter the converter material and interact with protons, which recoil and deposit energy within the thin active layer of the image plate through ionization losses. The described system produces time-integrated images for all neutron energies passing through the pinhole. We present details of the measurement scheme for this novel technique to produce energy-integrated neutron images as well as source reconstruction results from recent experiments at NIF.« less

  16. Polar-direct-drive experiments with contoured-shell targets on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.

    Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.

  17. Polar-direct-drive experiments with contoured-shell targets on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.

    Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. Fusion yields were increased by more than a factor of ∼2 without increasing the energy of the laser by the use of contoured shells.

  18. Polar-direct-drive experiments with contoured-shell targets on OMEGA

    DOE PAGES

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.; ...

    2016-01-28

    Polar-driven direct-drive experiments recently performed on the OMEGA Laser System have demonstrated the efficacy of using a target with a contoured shell with varying thickness to improve the symmetry and fusion performance of the implosion. The polar-driven contoured-shell implosions have substantially reduced low mode perturbations compared to polar-driven spherical-shell implosions as diagnosed by x-ray radiographs up to shell stagnation. As a result, fusion yields were increased by more than a factor of ~2 without increasing the energy of the laser by the use of contoured shells.

  19. Fuel gain exceeding unity in an inertially confined fusion implosion.

    PubMed

    Hurricane, O A; Callahan, D A; Casey, D T; Celliers, P M; Cerjan, C; Dewald, E L; Dittrich, T R; Döppner, T; Hinkel, D E; Berzak Hopkins, L F; Kline, J L; Le Pape, S; Ma, T; MacPhee, A G; Milovich, J L; Pak, A; Park, H-S; Patel, P K; Remington, B A; Salmonson, J D; Springer, P T; Tommasini, R

    2014-02-20

    Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.

  20. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications.

    PubMed

    Hu, S X; Collins, L A; Boehly, T R; Kress, J D; Goncharov, V N; Skupsky, S

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ∼20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.

  1. First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications

    NASA Astrophysics Data System (ADS)

    Hu, S. X.; Collins, L. A.; Boehly, T. R.; Kress, J. D.; Goncharov, V. N.; Skupsky, S.

    2014-04-01

    Thermal conductivity (κ) of both the ablator materials and deuterium-tritium (DT) fuel plays an important role in understanding and designing inertial confinement fusion (ICF) implosions. The extensively used Spitzer model for thermal conduction in ideal plasmas breaks down for high-density, low-temperature shells that are compressed by shocks and spherical convergence in imploding targets. A variety of thermal-conductivity models have been proposed for ICF hydrodynamic simulations of such coupled and degenerate plasmas. The accuracy of these κ models for DT plasmas has recently been tested against first-principles calculations using the quantum molecular-dynamics (QMD) method; although mainly for high densities (ρ > 100 g/cm3), large discrepancies in κ have been identified for the peak-compression conditions in ICF. To cover the wide range of density-temperature conditions undergone by ICF imploding fuel shells, we have performed QMD calculations of κ for a variety of deuterium densities of ρ = 1.0 to 673.518 g/cm3, at temperatures varying from T = 5 × 103 K to T = 8 × 106 K. The resulting κQMD of deuterium is fitted with a polynomial function of the coupling and degeneracy parameters Γ and θ, which can then be used in hydrodynamic simulation codes. Compared with the "hybrid" Spitzer-Lee-More model currently adopted in our hydrocode lilac, the hydrosimulations using the fitted κQMD have shown up to ˜20% variations in predicting target performance for different ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility (NIF). The lower the adiabat of an imploding shell, the more variations in predicting target performance using κQMD. Moreover, the use of κQMD also modifies the shock conditions and the density-temperature profiles of the imploding shell at early implosion stage, which predominantly affects the final target performance. This is in contrast to the previous speculation that κQMD changes mainly the inside ablation process during the hot-spot formation of an ICF implosion.

  2. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  3. Higher velocity, high-foot implosions on the National Ignition Facility laser

    DOE PAGES

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.; ...

    2015-05-15

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1e15 neutrons, the total yield ~ v⁹˙⁴. This increase is considerably faster than the expected dependence for implosions without alpha heating ( ~v⁵˙⁹) and is additional evidence that these experiments have significant alpha heating.« less

  4. A simple method to prevent hard X-ray-induced preheating effects inside the cone tip in indirect-drive fast ignition implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Dongxiao; Shan, Lianqiang; Zhou, Weimin

    During fast-ignition implosions, preheating of inside the cone tip caused by hard X-rays can strongly affect the generation and transport of hot electrons in the cone. Although indirect-drive implosions have a higher implosion symmetry, they cause stronger preheating effects than direct-drive implosions. To control the preheating of the cone tip, we propose the use of indirect-drive fast-ignition targets with thicker tips. Experiments carried out at the ShenGuang-III prototype laser facility confirmed that thicker tips are effective for controlling preheating. Moreover, these results were consistent with those of 1D radiation hydrodynamic simulations.

  5. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  6. Inertial Conference Fusion Semiannual Report October 1999 - March 2000, Volume 1, Number 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miguel, Al; Carpenter, Jason; Cassady, Cindy

    2000-03-01

    This first issue of the ''ICF Semiannual Report'' contains articles whose diverse subjects attest to the broad technical and scientific challenges that are at the forefront of the ICF program at LLNL. The first article describes the progress being made at solving the surface roughness problem on capsule mandrels. All NIF capsule options, except machined beryllium, require a mandrel upon which the ablator is deposited. This mandrel sets the baseline sphericity of the final capsule. Problems involving defects in the mandrel have been overcome using various techniques so that 2-mm-size mandrels can now be made that meet the NIF designmore » specification. The second article validates and provides a detailed numerical investigation of the shadowgraph technique currently used to diagnose the surface roughness of a fuel ice layer inside of a transparent capsule. It is crucial for the success of the indirect-drive ignition targets that the techniques used to characterize ice-surface roughness be well understood. This study identifies methods for analyzing the bright band that give an accurate measure of the ice-surface roughness. The third article describes a series of realistic laser and target modifications that can lead to 3-4 times more energy coupling and 10 times greater yield from a NIF indirect-drive ignition target. Target modifications include using various mixtures of rare-earth and other high-Z metals as hohlraum wall material and adjusting the laser-entrance-hole size and the case-to-capsule size ratio. Each option is numerically examined separately and together. The fourth article reviews how detailed x-ray and Thomson scattering measurements from a high-density and high-temperature gasbag plasma are used to test spectroscopic modeling techniques. There is good agreement between the model and experimental dielectronic capture satellite intensities. However, improvements are required in the modeling of inner shell collisionally populated satellite states. These improvements can have important implications for the interpretation of inertial confinement fusion capsule implosions. The fifth article reports on experiments using the OMEGA laser that investigate symmetry control in hohlraums. The experiments explore a control method where different pointings are used for different groups of beams and the beams are staggered in time. This gives a dynamic beam pointing adjustment during the laser pulse. Measurements of the capsule symmetry show agreement with simulations and show the ability to control low-mode drive asymmetries. The sixth article reports on the observation of an intense high-energy proton beam produced by irradiating a thin-foil target with the petawatt laser. This experiment is important for understanding new mechanisms of ion acceleration using high-intensity short-pulse lasers. Proton beams of the type observed here could be of interest for applications ranging from medicine to fast ignition.« less

  7. BOOK REVIEW: Inertial confinement fusion: The quest for ignition and energy gain using indirect drive

    NASA Astrophysics Data System (ADS)

    Yamanaka, C.

    1999-06-01

    Inertial confinement fusion (ICF) is an alternative way to control fusion which is based on scaling down a thermonuclear explosion to a small size, applicable for power production, a kind of thermonuclear internal combustion engine. This book extends many interesting topics concerning the research and development on ICF of the last 25 years. It provides a systematic development of the physics basis and also various experimental data on radiation driven implosion. This is a landmark treatise presented at the right time. It is based on the article ``Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain'' by J.D. Lindl, published in Physics of Plasmas, Vol. 2, November 1995, pp. 3933-4024. As is well known, in the United States of America research on the target physics basis for indirect drive remained largely classified until 1994. The indirect drive approaches were closely related to nuclear weapons research at Lawrence Livermore and Los Alamos National Laboratories. In Japan and other countries, inertial confinement fusion research for civil energy has been successfully performed to achieve DT fuel pellet compression up to 1000 times normal density, and indirect drive concepts, such as the `Cannon Ball' scheme, also prevailed at several international conferences. In these circumstances the international fusion community proposed the Madrid Manifesto in 1988, which urged openness of ICF information to promote international collaboration on civil energy research for the future resources of the human race. This proposal was also supported by some of the US scientists. The United States Department of Energy revised its classification guidelines for ICF six years after the Madrid Manifesto. This first book from the USA treating target physics issues, covering topics from implosion dynamics to hydrodynamic stability, ignition physics, high-gain target design and the scope for energy applications is enthusiastically welcomed. The author joined Lawrence Livermore National Laboratory in 1972 to perform intensive theoretical and computational research on implosion and ignition. He was awarded the Edward Teller Medal in 1993. One therefore expects the topics to be treated with authority, and this expectation is well fulfilled. The general treatment throughout the book is to begin with the basic physics of implosion and show how its development leads to an explanation of many fundamental ideas about implosion, via direct drive or indirect drive, particularly ideas associated with radiation transport. This approach is generally successful, with the reader immediately able to relate the theoretical treatments to physical problems. One danger in this approach, however, is that fundamental concepts in implosion often become stressed within the framework of indirect radiation drive of hohlraum targets oriented towards research in the National Ignition Facility. The references in this book to Livermore or Los Alamos internal documents are not yet publicly available, because many are in the process of review for declassification. The reader will have to become accustomed to this situation, which has lasted for a long time but now seems to be gradually improving. The treatise is composed of 13 chapters, including 271 illustrations. An overview of ICF and the historical development of indirect drive in the ICF programme are described in Chapters 1 and 2. Direct drive and indirect drive have different features. The choice of which to use is a very interesting issue. The former has a higher laser-target coupling efficiency but is less uniform in laser irradiation due to discrete beams of lasers. Beam smoothing techniques have a key role in direct drive. The indirect drive by soft X rays which are generated at the inner surface of a hohlraum can have a higher uniform irradiation to reduce the growth of perturbations due to Rayleigh-Taylor (RT) instabilities. The soft X ray drive has much higher ablation rates and is less sensitive to hot electron preheat. A potential disadvantage of indirect drive is the larger scale length of the plasma travelled by the laser beam from the inlet hole to the hohlraum wall. Parametric instabilities in hohlraums have problems because of energy loss and coupling. One of the most important issues for indirect drive is a radiation drive concept which is essentially independent of the driver, such as laser or particle beam. The historical progress of ICF in the USA mainly depended upon the resolution of the fusion database for weaponry. This was a reason to choose indirect drive as the main scheme. Several structures of hohlraum target are described which for a long time were closed to the public. As the minimum energy for ignition depends strongly on the achievable implosion velocity, a great deal of benefit is derived from operating at the highest possible hohlraum temperature and in-flight aspect ratio (IFAR). The conclusion of Chapters 3, 4 and 5 is that achieving an implosion velocity of 3 × 107cm/s with an IFAR-30 Fermi degenerated shell would require a minimum drive temperature of about 200 eV. The hydrodynamic instability, ignition threshold and capsule gain are discussed in Chapter 6. The RT hydrodynamic instability began at the upper limit of the IFAR and hence at the peak implosion velocity. The growth rate of the instability in the acceleration phase was found to be suppressed by the ablation flow at Osaka. Instability during the deceleration phase was primarily stabilized by electron conduction. The combined effects of acceleration, feed-through and deceleration show that the principal modes contributing to perturbations in the fuel have spherical harmonic mode numbers less than about 30-40. The higher modes are rapidly reduced by rarefaction. The lower modes are killed by so-called `fire polishing'. The target uniformity and irradiation uniformity are very effective at suppressing instabilities. The maximum number of e-foldings sets the upper limit of the implosion velocity. This gives the threshold energy of ignition. The minimum capsule energy for ignition for indirect drive is compared with Nuckoll's projections for direct drive. The estimation depends strongly upon the effects of hydrodynamic instability and symmetry in the compressed fuel volume. If the margin of energy is 2, the necessary capsule absorbed energy is about 90 kJ with a radiation temperature of 300 eV. The coupling between driver and capsule is 10-15%, and the driver energy is 0.6-0.9 MJ. The scaling laws for the capsule absorbed power, radius and pulse length with a certain IFAR are given. It is concluded (Chapter 6) that the optimum strategy for gain is operation at the minimum implosion velocity consistent with the desired capsule size and yield, because at the excess implosion velocity the capsules tend to ignite earlier than the optimal point in the compression process. The most crucial issues for the hohlraum target are the coupling efficiency and hohlraum radiation uniformity. Various kinds of devices for hohlraum structures and double cone irradiation schemes have been investigated. These technological developments are energetically described. The implosion symmetry reproducibility (Chapters 7 and 8) for the Precision Nova advanced system meets the requirement of 1% uniformity for ignition experiment time averaged flux. Combined tests of symmetry and hydrodynamic instability as well as the hohlraum plasma conditions estimating the simulated Brillouin scattering (SBS) and simulated Raman scattering (SRS) effects and their influence on the hot electron preheat are summarized in Chapters 9, 10 and 11. The tolerable fraction of hot electrons for keeping the DT fuel preheat at approximately the Fermi specific energy indicates that direct drive capsules are 3 to 4 times larger than the indirect drive capsules. As a conclusion, Chapters 12 and 13 are proudly devoted to the National Ignition Facility and ignition targets. The NIF has a 192 beam, frequency tripled Nd:glass laser system with routine target energies and powers of 1.8 MJ and 500 TW, appropriately pulse shaped. The 192 beams are clustered in groups of 4, so that there are effectively 8 spots in each of the inner cones, and 16 in the outer cones in the hohlraum. Each cluster of 4 beams combines to form an effective f/8 optic. Various kinds of target design are described, for instance, a baseline design 300 eV hohlraum capsule, which absorbs 1.35 MJ of light, an ignition point hydrocarbon (CH) capsule, which is aimed at determining the requirements for symmetry, stability and ignition, and a lower temperature 250 eV capsule with a beryllium ablator, which provides a trade-off between hydroinstabilities and laser-plasma effects. The NIF baseline capsule designs absorb 150 kJ, of which about 25 kJ ends up in the compressed fuel. The central temperature increases to 10 keV when the capsule produces 400 kJ. The fuel energy gain is about 16 at ignition, or when the alpha particle deposition is about 3 times the initial energy delivered to the compressed fuel. The NIF baseline targets are then expected to yield up to 15 MJ and a fuel gain of about 600. Estimates based on NOVA experiments and modelling indicate that SBS, SRS and other plasma hazard processes can be kept within acceptable limits. If these are not attained, the ultimate recourse is to increase the hohlraum size, reduce the laser intensity and reduce the drive temperature to that of the 250 eV design, which has significantly less plasma. The remaining uncertainties can be mitigated by changes in the target design. The author has confidence ignition will be achieved in NIF, which seems to be strongly supported by the Centurion-Halite underground nuclear experiments demonstrating the excellent performance and the basic feasibility of achieving high gain. He thoughtfully adds a comment that developments in direct drive have reached the point where this approach also looks quite promising. NIF will be able to shift rapidly ( <= 1 d) between indirect drive and direct drive. Finally, the short last chapter (Chapter 13) gives an overview on the greatest potential for future ICF power plants. In a book review, questions are usually asked about the readers the book is primarily intended for, whether the book is written at the appropriate level for those readers and whether there are other books that achieve similar objectives. The last section of the Preface states that this book provides an in-depth analysis of theoretical and experimental work on indirect drive ICF classified up to 1994, as well as work carried out throughout the world. It is intended to serve as a reference guide for researchers in the field. Each topic covered contains enough introductory material that the book can also be used at the graduate level by students or newly interested researchers. Most of the laser technology and diagnostic development are not covered at all. To this reviewer that statement is a succinct summary of what the book achieves. Working fusion physicists, particularly in ICF, will find the book to be both instructive and enjoyable. As a secondary market, the book could well be used as a text for a graduate course in laser plasma physics, although some parts are like review papers. As to which books cover some of the same material, W.L. Kruer published Physics of Laser Plasma Interactions (Addison-Wesley, Redwood City, CA, 1988), which is suitable as a textbook for graduate students and also for the plasma physicist in general and C. Yamanaka published Introduction to Laser Fusion (Harwood Academic, Chur, 1991), which is the only book treating implosion physics, lasers, target design and diagnostics prior to the USDOE's declassification. As for the Handbook of Plasma Physics series (edited by M.N. Rosenbluth and R.Z. Sagdeev), Vol. 3, Physics of Laser Plasma (edited by A.H. Rubenchik and S. Witkowski) (Elsevier Science, Amsterdam, 1991) comes to mind. However, this last book is larger, and covers somewhat diverse topics. The typography of the book presently under review is also much to be preferred. In summary, I would strongly recommend the book by Lindl to my colleagues in plasma physics, particularly to those engaged in ICF.

  8. Ignition at NIF: Where we have been, and where we are going

    NASA Astrophysics Data System (ADS)

    Rosen, Mordecai

    2014-10-01

    This talk reviews results from the past several years in the pursuit of indirect-drive ignition on the National Ignition Facility (NIF), and summarizes ideas and plans for moving forward. We describe the challenging issues encountered by the low-adiabat (``low foot''), ``ignition point design'' approach, such as: hydrodynamic instability growth and ensuing mix of the CH ablator into the DT hot spot; very high convergence implosions with resultant imperfect symmetry; possible other issues such as hot electron preheat. The complex interplay among these issues is a key theme. We describe the progress that has been made in the understanding and diagnosis of these issues. We present the results from the high-adiabat (``high foot'') approach, with its property of relative hydrodynamic stability when compared to the low foot approach, its somewhat reduced convergence ratio, and its achievement of entering the alpha heating regime, an important milestone on the road to ignition. Paths forward towards ignition include excursions from the present approaches in pulse shape, hohlraum, and choice of ablator. Further pulse shaping can lower the adiabat of the high foot approach and lead to higher performance if it continues to retain its hydrodynamic stability properties. Conversely, pulse shaping can provide for ``adiabat-shaping'' for the low foot approach for it to try to attain better stability. A plethora of hohlraum approaches (size, shape, materials, gas fills) can improve the zero-order drive, as well as the low-mode shape of the implosion. Diagnosing, and then correcting, the time dependence of the symmetry is also a key issue. A variety of ablator materials, along with carefully engineering the drive spectrum, can increase implosion velocity. The high-density carbon ablator has shown promising results in this regard. Some combinations of these developments may allow for an operating space that has a relatively short pulse, in a near vacuum hohlraum. That combination has shown, to date, much better coupling efficiency, and a much lower level of laser plasma instabilities (thus, less electron preheat), than the longer pulse, full gas-fill, ignition hohlraums. Advances in modeling, experimental platforms, and diagnostic techniques developed over the past several years have been key enabling technologies in moving towards ignition, and we anticipate further advances as well. We gratefully acknowledge the dedicated efforts of many hundreds of personnel across the globe who have participated in the laser construction, operation, target fabrication, and all aspects of the target physics program, that have taken us this far towards ignition. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    NASA Astrophysics Data System (ADS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  10. Final Report. Grant DOE DE-FG02-04ER54768

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betti, Riccardo

    The magnetized spherical implosion campaign funded by this grant is summarized in this progress report. The main goal of this grant was to improve the seed eld generator MIFEDS (Magneto- Inertial Fusion Energy Delivery System) on the OMEGA laser to enable experiments at high elds (> 8 T) and to carry out magnetized spherical implosion experiments to study the e ect of magnetic elds on the fusion yield. New experiments were carried out in the last budget period to study the e ect of higher elds and shaped laser pulses. These new experiments improved the magnetized implosion database and allowedmore » us to improve the con dence of our conclusions with respect to the e ect of magnetic elds on implosion performance. The main conclusion is that adding magnetic eld leads to a 30% higher neutron yield, but using seed magnetic eld higher than 8 T does not further increase the neutron yield. A further conclusion is that the yield enhancement due to the magnetic eld is approximately independent of the laser pulse shape.« less

  11. Gas-filled Rugby hohlraum energetics and implosions experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, Alexis; Philippe, F.; Tassin, V.; Seytor, P.; Monteil, M. C.; Villette, B.; Reverdin, C.

    2010-11-01

    Recent experiments [1,2] have validated the x-ray drive enhancement provided by rugby-shaped hohlraums over cylinders in the indirect drive (ID) approach to inertial confinement fusion (ICF). This class of hohlraum is the baseline design for the Laser Mégajoule program, is also applicable to the National Ignition Facility and could therefore benefit ID Inertial Fusion Energy studies. We have carried out a serie of energetics and implosions experiments with OMEGA ``scale 1'' rugby hohlraums [1,2]. For empty hohlraums these experiments provide complementary measurements of backscattered light along 42 cone, as well as detailed drive history. In the case of gas-filled rugby hohlraums we have also study implosion performance (symmetry, yield, bangtime, hotspot spectra...) using a high contrast shaped pulse leading to a different implosion regime and for a range of capsule convergence ratios. These results will be compared with FCI2 hydrocodes calculations and future experimental campaigns will be suggested. [4pt] [1] F. Philippe et al., Phys. Rev. Lett. 104, 035004 (2010). [0pt] [2] H. Robey et al., Phys. Plasnas 17, 056313 (2010).

  12. National Ignition Facility, High-Energy-Density and Inertial Confinement Fusion, Peer-Review Panel (PRP) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, C. J.

    2014-01-28

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is operated as a National Nuclear Security Administration (NNSA) user facility in accordance with Department of Energy (DOE) best practices, including peer-reviewed experiments, regular external reviews of performance, and the use of a management structure that facilitates user and stakeholder feedback. NIF facility time is managed using processes similar to those in other DOE science facilities and is tailored to meet the mix of missions and customers that NIF supports. The NIF Governance Plan describes the process for allocating facility time on NIF and for creating the shot schedule.more » It also includes the flow of responsibility from entity to entity. The plan works to ensure that NIF meets its mission goals using the principles of scientific peer review, including transparency and cooperation among the sponsor, the NIF staff, and the various user communities. The NIF Governance Plan, dated September 28, 2012, was accepted and signed by LLNL Director Parney Albright, NIF Director Ed Moses, and Don Cook and Thomas D’Agostino of NNSA. Figure 1 shows the organizational structure for NIF Governance.« less

  13. Planar Two-Plasmon-Decay Experiments at Polar-Direct-Drive Ignition-Relevant Scale Lengths at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.; Solodov, A. A.; Seka, W.; Myatt, J. F.; Regan, S. P.; Hohenberger, M.; Epstein, R.; Collins, T. J. B.; Turnbull, D. P.; Ralph, J. E.; Barrios, M. A.; Moody, J. D.

    2015-11-01

    Results from the first experiments at the National Ignition Facility (NIF) to probe two-plasmon -decay (TPD) hot-electron production at scale lengths relevant to polar-direct-drive (PDD) ignition are reported. The irradiation on one side of a planar CH foil generated a plasma at the quarter-critical surface with a predicted density gradient scale length of Ln ~ 600 μm , a measured electron temperature of Te ~ 3 . 5 to 4.0 keV, an overlapped laser intensity of I ~ 6 ×1014 W/cm2, and a predicted TPD threshold parameter of η ~ 4 . The hard x-ray spectrum and the Kα emission from a buried Mo layer were measured to infer the hot-electron temperature and the fraction of total laser energy converted to TPD hot electrons. Optical emission at ω/2 correlated with the time-dependent hard x-ray signal confirms that TPD is responsible for the hot-electron generation. The effect of laser beam angle of incidence on TPD hot-electron generation was assessed, and the data show that the beam angle of incidence did not have a strong effect. These results will be used to benchmark simulations of TPD hot-electron production at conditions relevant to PDD ignition-scale implosions. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Monte Carlo Modeling of Non-Local Electron Conduction in High Energy Density Plasmas

    NASA Astrophysics Data System (ADS)

    Chenhall, Jeffrey John

    The implicit SNB (iSNB) non-local multigroup thermal electron conduction method of Schurtz et. al. [Phys. Plasmas 7, 4238 (2000)] and Cao et. al. [Phys. Plasmas 22, 082308 (2015)] is adapted into an electron thermal transport Monte Carlo (ETTMC) transport method to better model higher order angular and long mean free path non-local effects. The ETTMC model is used to simulate the electron thermal transport within inertial confinement fusion (ICF) type problems. The new model aims to improve upon the currently used iSNB, in particular by using finite particle ranges in comparison to the exponential solution of a diffusion method and by improved higher order angular modeling. The new method has been implemented in the 1D LILAC and 2D DRACO multiphysics production codes developed by the University of Rochester Laboratory for Laser Energetics. The ETTMC model is compared to iSNB for several direct drive ICF type simulations: Omega shot 60303 a shock timing experiment, Omega shot 59529 a shock timing experiment, Omega shot 68951 a cryogenic target implosion and a NIF polar direct drive phase plate design. Overall, the ETTMC method performs at least as well as the iSNB method and predicts lower preheating ahead of the shock fronts. This research was supported by University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories and the University of Wisconsin-Madison Foundation.

  15. Large Survey of Neutron Spectrum Moments Due to ICF Drive Asymmetry

    NASA Astrophysics Data System (ADS)

    Field, J. E.; Munro, D.; Spears, B.; Peterson, J. L.; Brandon, S.; Gaffney, J. A.; Hammer, J.; Langer, S.; Nora, R. C.; Springer, P.; ICF Workflow Collaboration Collaboration

    2016-10-01

    We have recently completed the largest HYDRA simulation survey to date ( 60 , 000 runs) of drive asymmetry on the new Trinity computer at LANL. The 2D simulations covered a large space of credible perturbations to the drive of ICF implosions on the NIF. Cumulants of the produced birth energy spectrum for DD and DT reaction neutrons were tallied using new methods. Comparison of the experimental spectra with our map of predicted spectra from simulation should provide a wealth of information about the burning plasma region. We report on our results, highlighting areas of agreement (and disagreement) with experimental spectra. We also identify features in the predicted spectra that might be amenable to measurement with improved diagnostics. Prepared by LLNL under Contract DE-AC52-07NA27344. IM release #: LLNL-PROC-697321.

  16. Convergent Geometry Foam Buffered Direct Drive Experiments*

    NASA Astrophysics Data System (ADS)

    Watt, R. G.; Wilson, D. C.; Hollis, R. V.; Gobby, P. L.; Chrien, R. E.; Mason, R. J.; Kopp, R. A.; Willi, O.; Iwase, A.; Barringer, L. H.; Gaillard, R.; Kalantar, D. H.; Lerche, R. A.; MacGowan, B.; Nelson, M.; Phillips, T.; Knauer, J. P.; McKenty, P. W.

    1996-11-01

    A serious concern for directly driven ICF implosions is the asymmetry imparted to the capsule by laser drive non-uniformities, particularly the ``early time imprint'' remaining despite the use of random phase plates and smoothing with spectral dispersion. The use of a foam buffer has been proposed as a means to reduce this imprint. Two types of convergent geometry tests of the technique to correct static nonuniformities have been studied to date; cylindrical implosions at the Trident and Vulcan lasers, and spherical implosions at the NOVA laser, all using 527 nm laser drive. Cylindrical implosions used end on x-ray backlighter imaging of inner surface disruption due an intentional hole in the drive footprint, using 50 mg/cc acyrlate foam with a thin Au preheat layer. Spherical implosions used 50 mg/cc polystyrene foam plus Au to study yield and imploded core symmetry of capsules with and without a foam buffer, in comparison to ``clean 1D'' calculations. For thick enough layers, all cases showed improvement. Details of the experiments and theoretical unpinnings will be shown. *Work performed under US DOE Contract No. W-7405-Eng-36.

  17. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGES

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; ...

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  18. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  19. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  20. Simulation and assessment of ion kinetic effects in a direct-drive capsule implosion experiment

    DOE PAGES

    Le, Ari Yitzchak; Kwan, Thomas J. T.; Schmitt, Mark J.; ...

    2016-10-24

    The first simulations employing a kinetic treatment of both fuel and shell ions to model inertial confinement fusion experiments are presented, including results showing the importance of kinetic physics processes in altering fusion burn. A pair of direct drive capsule implosions performed at the OMEGA facility with two different gas fills of deuterium, tritium, and helium-3 are analyzed. During implosion shock convergence, highly non-Maxwellian ion velocity distributions and separations in the density and temperature amongst the ion species are observed. Finally, diffusion of fuel into the capsule shell is identified as a principal process that degrades fusion burn performance.

  1. Rugby and elliptical-shaped hohlraums experiments on the OMEGA laser facility

    NASA Astrophysics Data System (ADS)

    Tassin, Veronique; Monteil, Marie-Christine; Depierreux, Sylvie; Masson-Laborde, Paul-Edouard; Philippe, Franck; Seytor, Patricia; Fremerye, Pascale; Villette, Bruno

    2017-10-01

    We are pursuing on the OMEGA laser facility indirect drive implosions experiments in gas-filled rugby-shaped hohlraums in preparation for implosion plateforms on LMJ. The question of the precise wall shape of rugby hohlraum has been addressed as part of future megajoule-scale ignition designs. Calculations show that elliptical-shaped holhraum is more efficient than spherical-shaped hohlraum. There is less wall hydrodynamics and less absorption for the inner cone, provided a better control of time-dependent symmetry swings. In this context, we have conducted a series of experiments on the OMEGA laser facility. The goal of these experiments was therefore to characterize energetics with a complete set of laser-plasma interaction measurements and capsule implosion in gas-filled elliptical-shaped hohlraum with comparison with spherical-shaped hohlraum. Experiments results are discussed and compared to FCI2 radiation hydrodynamics simulations.

  2. Systematic Fuel Cavity Asymmetries in Directly Driven Inertial Confinement Fusion Implosions

    DOE PAGES

    Shah, Rahul C.; Haines, Brian Michael; Wysocki, Frederick Joseph; ...

    2017-03-30

    Here, we present narrow-band self-emission x-ray images from a titanium tracer layer placed at the fuel-shell interface in 60-laser-beam implosion experiments at the OMEGA facility. The images are acquired during deceleration with inferred convergences of ~9-14. Novel here is that a systematically observed asymmetry of the emission is linked, using full sphere 3D implosion modeling, to performance-limiting low mode asymmetry of the drive.

  3. First beryllium capsule implosions on the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.

    2016-05-15

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

  4. First beryllium capsule implosions on the National Ignition Facility

    DOE PAGES

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; ...

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosionmore » shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.« less

  5. Large-scale 3D simulations of ICF and HEDP targets

    NASA Astrophysics Data System (ADS)

    Marinak, Michael M.

    2000-10-01

    The radiation hydrodynamics code HYDRA continues to be developed and applied to 3D simulations of a variety of targets for both inertial confinement fusion (ICF) and high energy density physics. Several packages have been added enabling this code to perform ICF target simulations with similar accuracy as two-dimensional codes of long-time historical use. These include a laser ray trace and deposition package, a heavy ion deposition package, implicit Monte Carlo photonics, and non-LTE opacities, derived from XSN or the linearized response matrix approach.(R. More, T. Kato, Phys. Rev. Lett. 81, 814 (1998), S. Libby, F. Graziani, R. More, T. Kato, Proceedings of the 13th International Conference on Laser Interactions and Related Plasma Phenomena, (AIP, New York, 1997).) LTE opacities can also be calculated for arbitrary mixtures online by combining tabular values generated by different opacity codes. Thermonuclear burn, charged particle transport, neutron energy deposition, electron-ion coupling and conduction, and multigroup radiation diffusion packages are also installed. HYDRA can employ ALE hydrodynamics; a number of grid motion algorithms are available. Multi-material flows are resolved using material interface reconstruction. Results from large-scale simulations run on up to 1680 processors, using a combination of massively parallel processing and symmetric multiprocessing, will be described. A large solid angle simulation of Rayleigh-Taylor instability growth in a NIF ignition capsule has resolved simultaneously the full spectrum of the most dangerous modes that grow from surface roughness. Simulations of a NIF hohlraum illuminated with the initial 96 beam configuration have also been performed. The effect of the hohlraum’s 3D intrinsic drive asymmetry on the capsule implosion will be considered. We will also discuss results from a Nova experiment in which a copper sphere is crushed by a planar shock. Several interacting hydrodynamic instabilities, including the Widnall instability, cause breakup of the resulting vortex ring.

  6. A near one-dimensional indirectly driven implosion at convergence ratio 30

    NASA Astrophysics Data System (ADS)

    MacLaren, S. A.; Masse, L. P.; Czajka, C. E.; Khan, S. F.; Kyrala, G. A.; Ma, T.; Ralph, J. E.; Salmonson, J. D.; Bachmann, B.; Benedetti, L. R.; Bhandarkar, S. D.; Bradley, P. A.; Hatarik, R.; Herrmann, H. W.; Mariscal, D. A.; Millot, M.; Patel, P. K.; Pino, J. E.; Ratledge, M.; Rice, N. G.; Tipton, R. E.; Tommasini, R.; Yeamans, C. B.

    2018-05-01

    Inertial confinement fusion cryogenic-layered implosions at the National Ignition Facility, while successfully demonstrating self-heating due to alpha-particle deposition, have fallen short of the performance predicted by one-dimensional (1D) multi-physics implosion simulations. The current understanding, from experimental evidence as well as simulations, suggests that engineering features such as the capsule tent and fill tube, as well as time-dependent low-mode asymmetry, are to blame for the lack of agreement. A short series of experiments designed specifically to avoid these degradations to the implosion are described here in order to understand if, once they are removed, a high-convergence cryogenic-layered deuterium-tritium implosion can achieve the 1D simulated performance. The result is a cryogenic layered implosion, round at stagnation, that matches closely the performance predicted by 1D simulations. This agreement can then be exploited to examine the sensitivity of approximations in the model to the constraints imposed by the data.

  7. A Platform for X-Ray Thomson Scattering Measurements of Radiation Hydrodynamics Experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Lefevre, Heath; Ma, Kevin; Belancourt, Patrick; MacDonald, Michael; Doeppner, Tilo; Keiter, Paul; Kuranz, Carolyn

    2017-10-01

    A recent experiment on the National Ignition Facility (NIF) radiographed the evolution of the Rayleigh-Taylor (RT) instability under high and low drive cases. This experiment showed that under a high drive the growth rate of the RT instability is reduced relative to the low drive case. The high drive launches a radiative shock, increases the temperature of the post-shock region, and ablates the spikes, which reduces the RT growth rate. The plasma parameters must be measured to validate this claim. We present a target design for making X-Ray Thomson Scattering (XRTS) measurements on radiation hydrodynamics experiments on NIF to measure the electron temperature of the shocked region in the above cases. Specifically, we show that a previously fielded NIF radiation hydrodynamics platform can be modified to allow sufficient signal and temperature resolution for XRTS measurements. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956 and the National Science Foundation through the Basic Plasma Science and Engineering program.

  8. Pleiades Experiments on the NIF: Phase II-C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benstead, James; Morton, John; Guymer, Thomas

    2015-06-08

    Pleiades was a radiation transport campaign fielded at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) between 2011 and 2014. The primary goals of the campaign were to develop and characterise a reproducible ~350eV x-ray drive and to constrain a number of material data properties required to successfully model the propagation of radiation through two low-density foam materials. A further goal involved the development and qualification of diagnostics for future radiation transport experiments at NIF. Pleiades was a collaborative campaign involving teams from both AWE and the Los Alamos National Laboratory (LANL).

  9. Validating Hydrodynamic Growth in National Ignition Facility Implosions

    NASA Astrophysics Data System (ADS)

    Peterson, J. Luc

    2014-10-01

    The hydrodynamic growth of capsule imperfections can threaten the success of inertial confinement fusion implosions. Therefore, it is important to design implosions that are robust to hydrodynamic instabilities. However, the numerical simulation of interacting Rayleigh-Taylor and Richtmyer-Meshkov growth in these implosions is sensitive to modeling uncertainties such as radiation drive and material equations of state, the effects of which are especially apparent at high mode number (small perturbation wavelength) and high convergence ratio (small capsule radius). A series of validation experiments were conducted at the National Ignition Facility to test the ability to model hydrodynamic growth in spherically converging ignition-relevant implosions. These experiments on the Hydro-Growth Radiography platform constituted direct measurements of the growth of pre-imposed imperfections up to Legendre mode 160 and a convergence ratio of greater than four using two different laser drives: a ``low-foot'' drive used during the National Ignition Campaign and a larger adiabat ``high-foot'' drive that is modeled to be relatively more robust to ablation front hydrodynamic growth. We will discuss these experiments and how their results compare to numerical simulations and analytic theories of hydrodynamic growth, as well as their implications for the modeling of future designs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Host-guest complexes of 2-hydroxypropyl-β-cyclodextrin/β-cyclodextrin and nifedipine: 1H NMR, molecular modeling, and dissolution studies

    NASA Astrophysics Data System (ADS)

    de Araújo, Márcia Valéria Gaspar; Vieira, João Victor Francisco; da Silva, Caroline W. P.; Barison, Andersson; Andrade, George Ricardo Santana; da Costa, Nivan Bezerra; Barboza, Fernanda Malaquias; Nadal, Jessica Mendes; Novatski, Andressa; Farago, Paulo Vitor; Zawadzki, Sônia Faria

    2017-12-01

    Nifedipine (NIF) is a hydrophobic drug widely used for treating cardiovascular diseases. This calcium channel blocker can present a higher apparent solubility by its inclusion into different cyclodextrins (CDs) as host-guest complexes. This paper focused on the structural investigation and dissolution behavior of inclusion complexes prepared with 2-hydroxypropyl-β-cyclodextrin (HPβCD) or β-cyclodextrin (βCD) and NIF. Drug amorphization was observed for HPβCD/NIF and βCD/NIF inclusion complexes by X-ray diffractometry (XRD). The sharp endothermic peak of NIF was not observed for these both host-guest complexes by differential scanning calorimetry (DSC). These results of XRD and DSC provide evidences of complexation between drug and the investigated CDs. 1H and saturation transfer difference nuclear magnetic resonance studies revealed the enhancement in the signal at 2.27 ppm for HPβCD/NIF and βCD/NIF inclusion complexes that corresponded to the methyl groups of NIF from the non-aromatic ring. This result suggested that non-aromatic ring of NIF was inserted into HPβCD and βCD cavities. Considering the mathematical simulations, it was observed that the inclusion process can occur in the both NH-in or NH-out forms. However, since it was used aqueous medium, it is possible to indicate that the obtained host-guest complexes HPβCD/NIF and βCD/NIF are in NH-in form which corresponded to the previous results obtained by 1H NMR experiments. Dissolution assays demonstrated that NIF inclusion complexes improved the drug release nevertheless without changing its biexponential release behavior. These host-guest complexes can be further used as feasible NIF carriers in solid dosage forms.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callahan, D. A.; Hurricane, O. A.; Hinkel, D. E.

    By increasing the velocity in “high foot” implosions [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014); Hurricane et al., Nature 506, 343 (2014); Hurricane et al., Phys. Plasmas 21, 056314 (2014)] on the National Ignition Facility laser, we have nearly doubled the neutron yield and the hotspot pressure as compared to the implosions reported upon last year. The implosion velocity has been increased using a combination of the laser (higher power and energy), the hohlraum (depleted uranium wall material with higher opacity and lower specific heat than gold hohlraums), andmore » the capsule (thinner capsules with less mass). We find that the neutron yield from these experiments scales systematically with a velocity-like parameter of the square root of the laser energy divided by the ablator mass. By connecting this parameter with the inferred implosion velocity (v), we find that for shots with primary yield >1 × 10{sup 15} neutrons, the total yield ∼ v{sup 9.4}. This increase is considerably faster than the expected dependence for implosions without alpha heating (∼v{sup 5.9}) and is additional evidence that these experiments have significant alpha heating.« less

  12. Investigation of Electric and Self-Generated Magnetic Fields in Implosion Experiments on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Nilson, P. M.; Goncharov, V. N.; Li, C. K.; Zylstra, A. B.; Petrasso, R. D.

    2013-10-01

    Electric and self-generated magnetic fields in direct-drive implosion experiments on the OMEGA laser were investigated using proton radiography. The experiments use plastic-shell targets with various surface defects (glue spot, wire, and stalk mount) to seed perturbations and generate localized electromagnetic fields at the ablation surface and in the plasma corona surrounding the targets. Proton radiographs show features from these perturbations and quasi-spherical multiple shell structures around the capsules at earlier times of implosions (up to ~700 ps for a 1-ns laser pulse) indicating the development of the fields. Two-dimensional magnetohydrodynamic simulations of these experiments predict the growth of magnetic fields up to several MG. The simulated distributions of electromagnetic fields were used to produce proton images, which show good agreement with experimental radiographs. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  13. Modeling down-scattered neutron images from cryogenic fuel implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Casey, Dan; Callahan, Debra; Clark, Dan; Fittinghoff, David; Grim, Gary; Hatchett, Steve; Hinkel, Denise; Jones, Ogden; Kritcher, Andrea; Seek, Scott; Suter, Larry; Merrill, Frank; Wilson, Doug

    2016-10-01

    In experiments with cryogenic deuterium-tritium (DT) fuel layers at the National Ignition Facility (NIF), an important technique for visualizing the stagnated fuel assembly is to image the 6-12 MeV neutrons created by scatters of the 14 MeV hotspot neutrons in the surrounding cold fuel. However, such down-scattered neutron images are difficult to interpret without a model of the fuel assembly, because of the nontrivial neutron kinematics involved in forming the images. For example, the dominant scattering modes are at angles other than forward scattering and the 14 MeV neutron fluence is not uniform. Therefore, the intensity patterns in these images usually do not correspond in a simple way to patterns in the fuel distribution, even for simple fuel distributions. We describe our efforts to model synthetic images from ICF design simulations with data from the National Ignition Campaign and after. We discuss the insight this gives, both to understand how well the models are predicting fuel asymmetries and to inform how to optimize the diagnostic for the types of fuel distributions being predicted. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Hotspot electron temperature from x-ray continuum measurements on the NIF

    NASA Astrophysics Data System (ADS)

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; Izumi, N.; Khan, S. F.; Ma, T.; Nagel, S. R.; Landen, O. L.; Pak, A.; Patel, P. K.; Schneider, M.; Scott, H. A.

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  15. Hotspot electron temperature from x-ray continuum measurements on the NIF.

    PubMed

    Jarrott, L C; Benedetti, L R; Chen, H; Izumi, N; Khan, S F; Ma, T; Nagel, S R; Landen, O L; Pak, A; Patel, P K; Schneider, M; Scott, H A

    2016-11-01

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for the hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. This new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.

  16. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, R. W., E-mail: rwlemke@sandia.gov; Dolan, D. H.; Dalton, D. G.

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  17. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  18. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE PAGES

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; ...

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  19. Applications and results of X-ray spectroscopy in implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Regan, S. P.; Hammel, B. A.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Bradley, D. K.; Callahan, D. A.; Cerjan, C.; Collins, G. W.; Dixit, S. N.; Döppner, T.; Edwards, M. J.; Farley, D. R.; Fournier, K. B.; Glenn, S.; Glenzer, S. H.; Golovkin, I. E.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Key, M. H.; Kilkenny, J. D.; Kline, J. L.; Kyrala, G. A.; Landen, O. L.; Ma, T.; MacFarlane, J. J.; Mackinnon, A. J.; Mancini, R. C.; McCrory, R. L.; Meyerhofer, D. D.; Meezan, N. B.; Nikroo, A.; Park, H.-S.; Patel, P. K.; Ralph, J. E.; Remington, B. A.; Sangster, T. C.; Smalyuk, V. A.; Springer, P. T.; Town, R. P. J.; Tucker, J. L.

    2017-03-01

    Current inertial confinement fusion experiments on the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] are attempting to demonstrate thermonuclear ignition using x-ray drive by imploding spherical targets containing hydrogen-isotope fuel in the form of a thin cryogenic layer surrounding a central volume of fuel vapor [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The fuel is contained within a plastic ablator layer with small concentrations of one or more mid-Z elements, e.g., Ge or Cu. The capsule implodes, driven by intense x-ray emission from the inner surface of a hohlraum enclosure irradiated by the NIF laser, and fusion reactions occur in the central hot spot near the time of peak compression. Ignition will occur if the hot spot within the compressed fuel layer attains a high-enough areal density to retain enough of the reaction product energy to reach nuclear reaction temperatures within the inertial hydrodynamic disassembly time of the fuel mass [J. Lindl, Phys. Plasmas 2, 3933 (1995)]. The primary purpose of the ablator dopants is to shield the ablator surface adjacent to the DT ice from heating by the hohlraum x-ray drive [S. W. Haan et al., Phys. Plasmas 18, 051001 (2011)]. Simulations predicted that these dopants would produce characteristic K-shell emission if ablator material mixed into the hot spot [B. A. Hammel et al., High Energy Density Phys. 6, 171 (2010)]. In NIF ignition experiments, emission and absorption features from these dopants appear in x-ray spectra measured with the hot-spot x-ray spectrometer in Supersnout II [S. P. Regan et al., "Hot-Spot X-Ray Spectrometer for the National Ignition Facility," to be submitted to Review of Scientific Instruments]. These include K-shell emission lines from the hot spot (driven primarily by inner-shell collisional ionization and dielectronic recombination) and photoionization edges, fluorescence, and absorption lines caused by the absorption of the hot-spot continuum in the shell. These features provide diagnostics of the central hot spot and the compressed shell, plus a measure of the shell mass that has mixed into the hot spot [S. P. Regan et al., Phys. Plasmas 19, 056307 (2012)] and evidence locating the origin of the mixed shell mass in the imploding ablator [S. P. Regan et al., Phys. Rev. Lett. 111, 045001 (2013)]. Spectra are analyzed and interpreted using detailed atomic models (including radiation-transport effects) to determine the characteristic temperatures, densities, and sizes of the emitting regions. A mix diagnostic based on enhanced continuum x-ray production, relative to neutron yield, provides sensitivity to the undoped shell material mixed into the hot spot [T. Ma et al., Phys. Rev. Lett., 111, 085004 (2013)]. Together, these mix-mass measurements confirm that mix is a serious impediment to ignition. The spectroscopy and atomic physics of shell dopants have become essential in confronting this impediment and will be described.

  20. Convergent ablation measurements with gas-filled rugby hohlraum on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Galmiche, D.

    2016-03-01

    Convergent ablation experiments with gas-filled rugby hohlraum were performed for the first time on the OMEGA laser facility. A time resolved 1D streaked radiography of capsule implosion is acquired in the direction perpendicular to hohlraum axis, whereas a 2D gated radiography is acquired at the same time along the hohlraum axis on a x-ray framing camera. The implosion trajectory has been measured for various kinds of uniformly doped ablators, including germanium-doped and silicon-doped polymers (CH), at two different doping fraction (2% and 4% at.). Our experiments aimed also at measuring the implosion performance of laminated capsules. A laminated ablator is constituted by thin alternate layers of un-doped and doped CH. It has been previously shown in planar geometry that laminated ablators could mitigate Rayleigh Taylor growth at ablation front. Our results confirm that the implosion of a capsule constituted with a uniform or laminated ablator behaves similarly, in accordance with post-shot simulations performed with the CEA hydrocode FCI2.

  1. High-foot Implosion Workshop (March 22-24, 2016) Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O.

    From March 22-24, 2016 at Workshop was held at Lawrence Livermore National Laboratory bringing together international experts in inertial confinement fusion research for the purpose of discussing the results from the ‘high-foot implosion campaign.’ The Workshop topics covered a retrospective of the first two years of experiments, a discussion of our best present understanding of what the data and our models imply, a discussion about remaining mysteries that are not understood at this time, and a discussion of our strategy moving forward. The material herein contains information from published and unpublished sources and is distributed solely for the purposes ofmore » this Workshop. Key assessments and conclusions resulting from the Workshop are: “The high foot campaign is extremely well documented and the interested reader is urged to go directly to the peer-reviewed journal literature for details.” – D. Haynes (LANL) “Overall progress in understanding of fuel and hot-spot properties near peak burn is excellent.” – V. Goncharov (LLE) “I would say that given the constraints of using the same hohlraum and similar capsule designs to the National Ignition Campaign, the High Foot Campaign achieved as much as could be expected. Indeed the demonstration of significant alpha particle heating remains a landmark achievement.” – J. Chittenden (Imperial College) “One of the principal points of discussion at the meeting was the importance of the roll over in inferred pressure that occurs with reducing coast time for different ablator thicknesses and the idea of repeating shot N140819 to confirm this. I would be very interested to see a return to the High Foot platform as a way to exercise the improved radiographic capabilities such as the curved crystal imaging system and as a way to examine the hypothesis of ‘burn truncation by aneurism.’ ” – J. Chittenden (Imperial College) “It is clear from the quality of the data presented during this workshop that the High-Foot experimental series has been a success. It has fulfilled the original goal of being an implosion platform that could separate the low-mode effects from the high-mode effects. Just because we now know when the High-Foot implosions break, it does not mean that they have served their purpose. This will be a very useful platform to study hohlraum coupling, to determine if controlling shape reduces residual kinetic energy, and testing hypotheses of how the hot-spot assembles.” – J. Knauer (LLE) “The LLNL "base camp" strategy for hohlraums was finally presented. Goals are to understand the safe operating space for the hohlraum and to find designs with good enough symmetry inside NIF's envelope, varying the CCR, pulse length and capsule designs. LLNL has a draft set of drive asymmetry requirements.” – P. Gauthier (CEA)« less

  2. Investigation of trailing mass in Z-pinch implosions and comparison to experiment

    NASA Astrophysics Data System (ADS)

    Yu, Edmund

    2007-11-01

    Wire-array Z pinches represent efficient, high-power x-ray sources with application to inertial confinement fusion, high energy density plasmas, and laboratory astrophysics. The first stage of a wire-array Z pinch is described by a mass ablation phase, during which stationary wires cook off material, which is then accelerated radially inwards by the JxB force. The mass injection rate varies axially and azimuthally, so that once the ablation phase concludes, the subsequent implosion is highly 3D in nature. In particular, a network of trailing mass and current is left behind the imploding plasma sheath, which can significantly affect pinch performance. In this work we focus on the implosion phase, electing to model the mass ablation via a mass injection scheme. Such a scheme has a number of injection parameters, but this freedom also allows us to gain understanding into the nature of the trailing mass network. For instance, a new result illustrates the role of azimuthal correlation. For an implosion which is 100% azimuthally correlated (corresponding to an azimuthally symmetric 2D r-z problem), current is forced to flow on the imploding plasma sheath, resulting in strong Rayleigh-Taylor (RT) growth. If, however, the implosion is not azimuthally symmetric, the additional azimuthal degree of freedom opens up new conducting paths of lower magnetic energy through the trailing mass network, effectively reducing RT growth. Consequently the 3D implosion experiences lower RT growth than the 2D r-z equivalent, and actually results in a more shell-like implosion. A second major goal of this work is to constrain the injection parameters by comparison to a well-diagnosed experimental data set, in which array mass was varied. In collaboration with R. Lemke, M. Desjarlais, M. Cuneo, C. Jennings, D. Sinars, E. Waisman

  3. Proton deflectometry characterization of Biermann-Battery field advection

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Moore, Alastair; Meezan, Nathan; Eder, Dave; Kane, Jave; Strozzi, David; Wilks, Scott; Rinderknecht, Hans; Zylstra, Alex; Fujioka, Shinsuke; Kemp, Gregory; Moody, John

    2017-10-01

    Laser-foil interactions are well known to produce azimuthal magnetic fields around the laser spot due to the orthogonal density and temperature gradients that develop near the foil surface (the Biermann-Battery effect). Simulations show that these fields produced inside hohlraums used for indirect drive experiments at the National Ignition Facility (NIF); however, modeling these fields and their advection is very computationally expensive on the temporal and spatial scales relevant for typical NIF hohlraum experiments ( 10 ns, few mm). The hohlraum geometry also makes directly probing the fields somewhat challenging, limiting the available experimental data on these fields under NIF conditions. In particular, the relative contributions of frozen-in and Nernst advection of the field away from the hohlraum wall is not currently well understood. We have developed a new target platform for direct measurements of the field topology in a NIF-relevant configuration. Using a single cone of NIF, a 2.5 mm long, 5.4 mm diameter Au ring is illuminated with a similar beam geometry to that of one ring of beams in a full-scale hohlraum experiment. The ring target has no end caps, providing a clear line of sight for probing through the ring. A D3He filled exploding pusher placed 5 cm below the ring is illuminated by an additional 60 beams of NIF to produce protons, some of which propagate through the ring. Work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344 and under LDRD support from LLNL.

  4. Replicating the Z iron opacity experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; Ross, P. W.; Kline, J. L.; Flippo, K. A.; Sherrill, M. E.; Dodd, E. S.; DeVolder, B. G.; Cardenas, T.; Archuleta, T. N.; Craxton, R. S.; Zhang, R.; McKenty, P. W.; Garcia, E. M.; Huffman, E. J.; King, J. A.; Ahmed, M. F.; Emig, J. A.; Ayers, S. L.; Barrios, M. A.; May, M. J.; Schneider, M. B.; Liedahl, D. A.; Wilson, B. G.; Urbatsch, T. J.; Iglesias, C. A.; Bailey, J. E.; Rochau, G. A.

    2017-06-01

    X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity of iron at a temperature of ∼160 eV and an electron density of ∼7 × 1021 cm-3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.

  5. [Effects of rice straw returning on the community structure and diversity of nitrogen-fixing gene (nifH) in paddy soil].

    PubMed

    Zhang, Miao-miao; Liu, Yi; Sheng, Rong; Qin, Hong-ling; Wu, Yan-zheng; Wei, Wen-xue

    2013-08-01

    Taking a long-term fertilization experiment in Taoyuan Agro-ecosystem Research Station under Chinese Academy of Sciences as the platform, and selecting four treatments (no fertilization, CK; rice straw returning, C; nitrogen, phosphorus and potassium fertilization, NPK; and NPK+C) as the objects, soil samples were collected at the tillering, booting and maturing stages of rice, and the abundance, composition and diversity of nifH-containing bacterial community were measured by real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP), aimed to understand the effects of rice straw returning on the nifH-containing bacterial community in paddy soil. Compared with CK, treatments NPK+C and NPK increased the abundance of nifH-containing microorganisms significantly (except at tillering stage), and NPK+C had the highest abundance of nifH-containing microorganisms. Under the effects of long-term fertilization, the composition of nifH gene community in CK differed obviously from that in the other three treatments. The nifH composition had definite difference between C and NPK, but less difference between NPK and NPK+C. Long-term fertilization did not induce significant changes in nifH diversity. Therefore, long-term rice straw returning not only induced the changes of nifH gene community composition, but also resulted in a significant increase in the abundance of nifH-containing community, and hence, the increase of soil nitrogen fixing capacity.

  6. New and improved CH implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Doeppner, T.; Kritcher, A. L.; Ralph, J. E.; Jarrott, L. C.; Albert, F.; Benedetti, L. R.; Field, J. E.; Goyon, C. S.; Hohenberger, M.; Izumi, N.; Milovich, J. L.; Bachmann, B.; Casey, D. T.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2017-10-01

    Improvements to the hohlraum for CH implosions have resulted in near-record hot spot pressures, 225 Gbar. Implosion symmetry and laser energy coupling are improved by using a hohlraum that, compared to the previous high gas-fill hohlraum, is longer, larger, at lower gas fill density, and is fielded at zero wavelength separation to minimize cross-beam energy transfer. With a capsule at 90% of its original size in this hohlraum, implosion symmetry changes from oblate to prolate, at 33% cone fraction. Simulations highlight improved inner beam propagation as the cause of this symmetry change. These implosions have produced the highest yield for CH ablators at modest power and energy, i.e., 360 TW and 1.4 MJ. Upcoming experiments focus on continued improvement in shape as well as an increase in implosion velocity. Further, results and future plans on an increase in capsule size to improve margin will also be presented. Work performed under the auspices of the U.S. D.O.E. by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  7. Evidence for Stratification of Deuterium-Tritium Fuel in Inertial Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Manuel, M. J.-E.; Rinderknecht, H. G.; Sinenian, N.; Séguin, F. H.; Li, C. K.; Petrasso, R. D.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu; Meyerhofer, D. D.; Sangster, T. C.; McNabb, D. P.; Amendt, P. A.; Boyd, R. N.; Rygg, J. R.; Herrmann, H. W.; Kim, Y. H.; Bacher, A. D.

    2012-02-01

    Measurements of the D(d,p)T (dd) and T(t,2n)He4 (tt) reaction yields have been compared with those of the D(t,n)He4 (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility.

  8. Evidence for stratification of deuterium-tritium fuel in inertial confinement fusion implosions.

    PubMed

    Casey, D T; Frenje, J A; Johnson, M Gatu; Manuel, M J-E; Rinderknecht, H G; Sinenian, N; Séguin, F H; Li, C K; Petrasso, R D; Radha, P B; Delettrez, J A; Glebov, V Yu; Meyerhofer, D D; Sangster, T C; McNabb, D P; Amendt, P A; Boyd, R N; Rygg, J R; Herrmann, H W; Kim, Y H; Bacher, A D

    2012-02-17

    Measurements of the D(d,p)T (dd) and T(t,2n)(4)He (tt) reaction yields have been compared with those of the D(t,n)(4)He (dt) reaction yield, using deuterium-tritium gas-filled inertial confinement fusion capsule implosions. In these experiments, carried out on the OMEGA laser, absolute spectral measurements of dd protons and tt neutrons were obtained. From these measurements, it was concluded that the dd yield is anomalously low and the tt yield is anomalously high relative to the dt yield, an observation that we conjecture to be caused by a stratification of the fuel in the implosion core. This effect may be present in ignition experiments planned on the National Ignition Facility.

  9. Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Casner, A.; Jalinaud, T.; Masse, L.; Galmiche, D.

    2015-10-01

    Indirect-drive implosions experiments were conducted on the Omega Laser Facility to test the performance of uniformly doped plastic ablators for Inertial Confinement Fusion. The first convergent ablation measurements in gas-filled rugby hohlraums are reported. Ignition relevant limb velocities in the range from 150 to 300 μm .n s-1 have been reached by varying the laser drive energy and the initial capsule aspect ratio. The measured capsule trajectory and implosion velocity are in good agreement with 2D integrated simulations and a zero-dimensional modeling of the implosions. We demonstrate experimentally the scaling law for the maximum implosion velocity predicted by the improved rocket model [Y. Saillard, Nucl. Fusion 46, 1017 (2006)] in the high-ablation regime case.

  10. Computational Studies of X-ray Framing Cameras for the National Ignition Facility

    DTIC Science & Technology

    2013-06-01

    Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 USA Abstract The NIF is the world’s most powerful laser facility and is...a phosphor screen where the output is recorded. The x-ray framing cameras have provided excellent information. As the yields at NIF have increased...experiments on the NIF . The basic operation of these cameras is shown in Fig. 1. Incident photons generate photoelectrons both in the pores of the MCP and

  11. National Ignition Facility Laser System Performance

    DOE PAGES

    Spaeth, Mary L.; Manes, Kenneth R.; Bowers, M.; ...

    2017-03-23

    The National Ignition Facility (NIF) laser is the culmination of more than 40 years of work at Lawrence Livermore National Laboratory dedicated to the delivery of laser systems capable of driving experiments for the study of high-energy-density physics. Although NIF was designed to support a number of missions, it was clear from the beginning that its biggest challenge was to meet the requirements for pursuit of inertial confinement fusion. Meeting the Project Completion Criteria for NIF in 2009 and for the National Ignition Campaign (NIC) in 2012 included meeting the NIF Functional Requirements and Primary Criteria that were established formore » the project in 1994. Finally, during NIC and as NIF transitioned to a user facility, its goals were expanded to include requirements defined by the broader user community as well as by laser system designers and operators.« less

  12. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    NASA Astrophysics Data System (ADS)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  13. Implosion spectroscopy in Rugby hohlraums on OMEGA

    NASA Astrophysics Data System (ADS)

    Philippe, Franck; Tassin, Veronique; Bitaud, Laurent; Seytor, Patricia; Reverdin, Charles

    2014-10-01

    The rugby hohlraum concept has been validated in previous experiments on the OMEGA laser facility. This new hohlraum type can now be used as a well-characterized experimental platform to study indirect drive implosion, at higher radiation temperatures than would be feasible at this scale with classical cylindrical hohlraums. Recent experiments have focused on the late stages of implosion and hotspot behavior. The capsules included both a thin buried Titanium tracer layer, 0-3 microns from the inner surface, Argon dopant in the deuterium gas fuel and Germanium doped CH shells, providing a variety of spectral signatures of the plasma conditions in different parts of the target. X-ray spectroscopy and imaging were used to study compression, Rayleigh-Taylor instabilities growth at the inner surface and mix between the shell and gas.

  14. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Hinkel, D. E.; Berzak Hopkins, L. F.; Ma, T.; Ralph, J. E.; Albert, F.; Benedetti, L. R.; Celliers, P. M.; Döppner, T.; Goyon, C. S.; Izumi, N.; Jarrott, L. C.; Khan, S. F.; Kline, J. L.; Kritcher, A. L.; Kyrala, G. A.; Nagel, S. R.; Pak, A. E.; Patel, P.; Rosen, M. D.; Rygg, J. R.; Schneider, M. B.; Turnbull, D. P.; Yeamans, C. B.; Callahan, D. A.; Hurricane, O. A.

    2016-11-01

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4 ×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  15. Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility.

    PubMed

    Hinkel, D E; Berzak Hopkins, L F; Ma, T; Ralph, J E; Albert, F; Benedetti, L R; Celliers, P M; Döppner, T; Goyon, C S; Izumi, N; Jarrott, L C; Khan, S F; Kline, J L; Kritcher, A L; Kyrala, G A; Nagel, S R; Pak, A E; Patel, P; Rosen, M D; Rygg, J R; Schneider, M B; Turnbull, D P; Yeamans, C B; Callahan, D A; Hurricane, O A

    2016-11-25

    Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

  16. Advances in compact proton spectrometers for inertial-confinement fusion and plasma nuclear science.

    PubMed

    Seguin, F H; Sinenian, N; Rosenberg, M; Zylstra, A; Manuel, M J-E; Sio, H; Waugh, C; Rinderknecht, H G; Johnson, M Gatu; Frenje, J; Li, C K; Petrasso, R; Sangster, T C; Roberts, S

    2012-10-01

    Compact wedge-range-filter proton spectrometers cover proton energies ∼3-20 MeV. They have been used at the OMEGA laser facility for more than a decade for measuring spectra of primary D(3)He protons in D(3)He implosions, secondary D(3)He protons in DD implosions, and ablator protons in DT implosions; they are now being used also at the National Ignition Facility. The spectra are used to determine proton yields, shell areal density at shock-bang time and compression-bang time, fuel areal density, and implosion symmetry. There have been changes in fabrication and in analysis algorithms, resulting in a wider energy range, better accuracy and precision, and better robustness for survivability with indirect-drive inertial-confinement-fusion experiments.

  17. X-Ray Diffraction on NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eggert, J H; Wark, J

    2012-02-15

    The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics andmore » techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.« less

  18. Three-Dimensional Simulations of Flat-Foil Laser-Imprint Experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Shvydky, A.; Radha, P. B.; Rosenberg, M. J.; Anderson, K. S.; Goncharov, V. N.; Marozas, J. A.; Marshall, F. J.; McKenty, P. W.; Regan, S. P.; Sangster, T. C.; Hohenberger, M.; di Nicola, J. M.; Koning, J. M.; Marinak, M. M.; Masse, L.; Karasik, M.

    2017-10-01

    Control of shell nonuniformities imprinted by the laser and amplified by hydrodynamic instabilities in the imploding target is critical for the success of direct-drive ignition at the National Ignition Facility (NIF). To measure a level of imprint and its reduction by the NIF smoothing by spectral dispersion (SSD), we performed experiments that employed flat CH foils driven with a single NIF beam with either no SSD or the NIF indirect-drive SSD applied to the laser pulse. Face-on x-ray radiography was used to measure optical depth variations, from which the amplitudes of the foil areal-density modulations were obtained. Results of 3-D, radiation-hydrodynamic code HYDRA simulations of the growth of the imprint-seeded perturbations are presented and compared with the experimental data. This work was supported by the U.S. Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract Number DE-AC52-07NA27344.

  19. Replicating the Z iron opacity experiments on the NIF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, T. S.; Heeter, R. F.; Opachich, Y. P.

    Here, X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity ofmore » iron at a temperature of ~160 eV and an electron density of ~7 x 10 21 cm -3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.« less

  20. Replicating the Z iron opacity experiments on the NIF

    DOE PAGES

    Perry, T. S.; Heeter, R. F.; Opachich, Y. P.; ...

    2017-05-12

    Here, X-ray opacity is a crucial factor of all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in the simulation codes. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment, casting doubt on the validity of the opacity models. Therefore, a new experimental opacity platform is being developed on the National Ignition Facility (NIF) not only to verify the Z-machine experimental results but also to extend the experiments to other temperatures and densities. The first experiments will be directed towards measuring the opacity ofmore » iron at a temperature of ~160 eV and an electron density of ~7 x 10 21 cm -3. Preliminary experiments on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule and also a hohlraum that can heat the opacity sample to the desired conditions. The first of these iron opacity experiments is expected to be performed in 2017.« less

  1. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    NASA Astrophysics Data System (ADS)

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.; Zylstra, A. B.; Bacher, A.; Brune, C. R.; Bionta, R. M.; Craxton, R. S.; Ellison, C. L.; Farrell, M.; Frenje, J. A.; Garbett, W.; Garcia, E. M.; Grim, G. P.; Hartouni, E.; Hatarik, R.; Herrmann, H. W.; Hohensee, M.; Holunga, D. M.; Hoppe, M.; Jackson, M.; Kabadi, N.; Khan, S. F.; Kilkenny, J. D.; Kohut, T. R.; Lahmann, B.; Le, H. P.; Li, C. K.; Masse, L.; McKenty, P. W.; McNabb, D. P.; Nikroo, A.; Parham, T. G.; Parker, C. E.; Petrasso, R. D.; Pino, J.; Remington, B.; Rice, N. G.; Rinderknecht, H. G.; Rosenberg, M. J.; Sanchez, J.; Sayre, D. B.; Schoff, M. E.; Shuldberg, C. M.; Séguin, F. H.; Sio, H.; Walters, Z. B.; Whitley, H. D.

    2018-05-01

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T2/3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at a set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2/3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.

  2. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    DOE PAGES

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.; ...

    2018-05-09

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T 2/ 3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at amore » set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2-3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D-3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.« less

  3. Optimization of a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications in nucleosynthesis experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatu Johnson, M.; Casey, D. T.; Hohenberger, M.

    Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T 2/ 3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at amore » set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2-3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D-3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.« less

  4. Precision shock tuning on the national ignition facility.

    PubMed

    Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J; Boehly, T R; Landen, O L; Eggert, J H; Hicks, D; Le Pape, S; Farley, D R; Bowers, M W; Krauter, K G; Munro, D H; Jones, O S; Milovich, J L; Clark, D; Spears, B K; Town, R P J; Haan, S W; Dixit, S; Schneider, M B; Dewald, E L; Widmann, K; Moody, J D; Döppner, T D; Radousky, H B; Nikroo, A; Kroll, J J; Hamza, A V; Horner, J B; Bhandarkar, S D; Dzenitis, E; Alger, E; Giraldez, E; Castro, C; Moreno, K; Haynam, C; LaFortune, K N; Widmayer, C; Shaw, M; Jancaitis, K; Parham, T; Holunga, D M; Walters, C F; Haid, B; Malsbury, T; Trummer, D; Coffee, K R; Burr, B; Berzins, L V; Choate, C; Brereton, S J; Azevedo, S; Chandrasekaran, H; Glenzer, S; Caggiano, J A; Knauer, J P; Frenje, J A; Casey, D T; Johnson, M Gatu; Séguin, F H; Young, B K; Edwards, M J; Van Wonterghem, B M; Kilkenny, J; MacGowan, B J; Atherton, J; Lindl, J D; Meyerhofer, D D; Moses, E

    2012-05-25

    Ignition implosions on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] are underway with the goal of compressing deuterium-tritium fuel to a sufficiently high areal density (ρR) to sustain a self-propagating burn wave required for fusion power gain greater than unity. These implosions are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision to keep the fuel entropy and adiabat low and ρR high. The first series of precision tuning experiments on the National Ignition Facility, which use optical diagnostics to directly measure the strength and timing of all four shocks inside a hohlraum-driven, cryogenic liquid-deuterium-filled capsule interior have now been performed. The results of these experiments are presented demonstrating a significant decrease in adiabat over previously untuned implosions. The impact of the improved shock timing is confirmed in related deuterium-tritium layered capsule implosions, which show the highest fuel compression (ρR~1.0 g/cm(2)) measured to date, exceeding the previous record [V. Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] by more than a factor of 3. The experiments also clearly reveal an issue with the 4th shock velocity, which is observed to be 20% slower than predictions from numerical simulation.

  5. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA

    NASA Astrophysics Data System (ADS)

    Bose, A.; Betti, R.; Mangino, D.; Woo, K. M.; Patel, D.; Christopherson, A. R.; Gopalaswamy, V.; Mannion, O. M.; Regan, S. P.; Goncharov, V. N.; Edgell, D. H.; Forrest, C. J.; Frenje, J. A.; Gatu Johnson, M.; Yu Glebov, V.; Igumenshchev, I. V.; Knauer, J. P.; Marshall, F. J.; Radha, P. B.; Shah, R.; Stoeckl, C.; Theobald, W.; Sangster, T. C.; Shvarts, D.; Campbell, E. M.

    2018-06-01

    This paper describes a technique for identifying trends in performance degradation for inertial confinement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA which achieved inferred hot-spot pressures ≈56 ± 7 Gbar [Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid-modes. This suggests that in addition to low modes, which can cause a degradation of the stagnation pressure, mid-modes are present which reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. It is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase in the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [Bose et al., Phys. Rev. E 94, 011201(R) (2016)].

  6. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA

    DOE PAGES

    Bose, A.; Betti, R.; Mangino, D.; ...

    2018-05-29

    This paper describes a technique for identifying trends in performance degradation for inertial con finement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA that achieved inferred hot-spot pressures ≈56 ± 7 Gbar [S. Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid modes. This suggests that in addition to low modes, that can cause amore » degradation of the stagnation pressure, mid modes are present that reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. Finally, it is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase of the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [A. Bose et al., Phys. Rev. E 94, 011201(R) (2016)].« less

  7. Analysis of trends in experimental observables: Reconstruction of the implosion dynamics and implications for fusion yield extrapolation for direct-drive cryogenic targets on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, A.; Betti, R.; Mangino, D.

    This paper describes a technique for identifying trends in performance degradation for inertial con finement fusion implosion experiments. It is based on reconstruction of the implosion core with a combination of low- and mid-mode asymmetries. This technique was applied to an ensemble of hydro-equivalent deuterium-tritium implosions on OMEGA that achieved inferred hot-spot pressures ≈56 ± 7 Gbar [S. Regan et al., Phys. Rev. Lett. 117, 025001 (2016)]. All the experimental observables pertaining to the core could be reconstructed simultaneously with the same combination of low and mid modes. This suggests that in addition to low modes, that can cause amore » degradation of the stagnation pressure, mid modes are present that reduce the size of the neutron and x-ray producing volume. The systematic analysis shows that asymmetries can cause an overestimation of the total areal density in these implosions. Finally, it is also found that an improvement in implosion symmetry resulting from correction of either the systematic mid or low modes would result in an increase of the hot-spot pressure from 56 Gbar to ≈ 80 Gbar and could produce a burning plasma when the implosion core is extrapolated to an equivalent 1.9 MJ symmetric direct illumination [A. Bose et al., Phys. Rev. E 94, 011201(R) (2016)].« less

  8. Improving cryogenic deuterium–tritium implosion performance on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.

    2013-05-15

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented.more » The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.« less

  9. Improving cryogenic deuterium tritium implosion performance on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangster, T. C.; Goncharov, V. N.; Betti, R.

    2013-01-01

    A flexible direct-drive target platform is used to implode cryogenic deuterium–tritium (DT) capsules on the OMEGA laser [Boehly et al., Opt. Commun. 133, 495 (1997)]. The goal of these experiments is to demonstrate ignition hydrodynamically equivalent performance where the laser drive intensity, the implosion velocity, the fuel adiabat, and the in-flight aspect ratio (IFAR) are the same as those for a 1.5-MJ target [Goncharov et al., Phys. Rev. Lett. 104, 165001 (2010)] designed to ignite on the National Ignition Facility [Hogan et al., Nucl. Fusion 41, 567 (2001)]. The results from a series of 29 cryogenic DT implosions are presented.more » The implosions were designed to span a broad region of design space to study target performance as a function of shell stability (adiabat) and implosion velocity. Ablation-front perturbation growth appears to limit target performance at high implosion velocities. Target outer-surface defects associated with contaminant gases in the DT fuel are identified as the dominant perturbation source at the ablation surface; performance degradation is confirmed by 2D hydrodynamic simulations that include these defects. A trend in the value of the Lawson criterion [Betti et al., Phys. Plasmas 17, 058102 (2010)] for each of the implosions in adiabat–IFAR space suggests the existence of a stability boundary that leads to ablator mixing into the hot spot for the most ignition-equivalent designs.« less

  10. Assessment of the impact that the capsule fill tube has on implosions conducted with high density carbon ablators

    NASA Astrophysics Data System (ADS)

    Pak, Arthur; Benedetti, L. R.; Berzak Hopkins, L. F.; Clark, D.; Divol, L.; Dewald, E. L.; Fittinghoff, D.; Izumi, N.; Khan, S. F.; Landen, O.; Lepape, S.; Ma, T.; Marley, E.; Nagel, S.; Volegov, P.; Weber, C.; Bradley, D. K.; Callahan, D.; Grim, G.; Hurricane, O. A.; Patel, P.; Schneider, M. B.; Edwards, M. J.

    2017-10-01

    In recent inertial confinement implosion experiments conducted at the National Ignition Facility, bright and spatially localized x-ray emission within the hot spot at stagnation has been observed. This emission is associated with higher Z ablator material that is injected into the hot spot by the hydrodynamic perturbation induced by the 5-10 um diameter capsule fill tube. The reactivity of the DT fuel and subsequent yield of the implosion are strongly dependent on the density, temperature, and confinement time achieved throughout the stagnation of the implosion. Radiative losses from higher Z ablator material that mixes into the hot spot as well as non-uniformities in the compression and confinement induced by the fill tube perturbation can degrade the yield of the implosion. This work will examine the impact to conditions at stagnation that results from the fill tube perturbation. This assessment will be based from a pair of experiments conducted with a high density carbon ablator where the only deliberate change was reduction in fill tube diameter from 10 to 5 um. An estimate of the radiative losses and impact on performance from ablator mix injected into the hot spot by the fill tube perturbation will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  12. Direct-drive Energetics of laser-Heated Foam Liners for Hohlraums

    NASA Astrophysics Data System (ADS)

    Moore, Alastair; Thomas, Cliff; Baker, Kevin; Morton, John; Baumann, Ted; Biener, Monika; Bhandarkar, Suhas; Hinkel, Denise; Jones, Oggie; Meezan, Nathan; Moody, John; Nikroo, Abbas; Rosen, Mordy; Hsing, Warren

    2016-10-01

    Lining the walls of a high-Z hohlraum cavity with a low-density foam is predicted to mitigate the challenge presented by hohlraum wall expansion. Once heated, wall material quickly fills the cavity and can impede laser beam propagation. To avoid this, ignition hohlraums are typically filled with a gas or irradiated with a short (< 10 ns) laser pulse. A gas-fill has the disadvantage that it can cause laser plasma instabilities (LPI), while a short laser pulse limits the design space to reach low-adiabat implosions. Foam-liners offer a potential route to reduce wall motion in a low gas-fill hohlraum with little LPI. Results from quasi 1-D experiments performed at the NIF are presented These characterize the x-ray conversion efficiency, backscattered laser energy and heat propagation in a 250 μm thick Ta2O5 or ZnO foam-liners spanning a range of densities from underdense to overdense, when irradiated at up to 4.9 x 1014 W/cm2 is incident on a planar foam sample, backed by a Au foil and generates a radiation temperature of up to 240eV - conditions equivalent to a single outer cone beam-spot in an ignition hohlraum. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Demonstration of Ion Kinetic Effects in Inertial Confinement Fusion Implosions and Investigation of Magnetic Reconnection Using Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Rosenberg, M. J.

    2016-10-01

    Shock-driven laser inertial confinement fusion (ICF) implosions have demonstrated the presence of ion kinetic effects in ICF implosions and also have been used as a proton source to probe the strongly driven reconnection of MG magnetic fields in laser-generated plasmas. Ion kinetic effects arise during the shock-convergence phase of ICF implosions when the mean free path for ion-ion collisions (λii) approaches the size of the hot-fuel region (Rfuel) and may impact hot-spot formation and the possibility of ignition. To isolate and study ion kinetic effects, the ratio of N - K =λii /Rfuel was varied in D3He-filled, shock-driven implosions at the Omega Laser Facility and the National Ignition Facility, from hydrodynamic-like conditions (NK 0.01) to strongly kinetic conditions (NK 10). A strong trend of decreasing fusion yields relative to the predictions of hydrodynamic models is observed as NK increases from 0.1 to 10. Hydrodynamics simulations that include basic models of the kinetic effects that are likely to be present in these experiments-namely, ion diffusion and Knudsen-layer reduction of the fusion reactivity-are better able to capture the experimental results. This type of implosion has also been used as a source of monoenergetic 15-MeV protons to image magnetic fields driven to reconnect in laser-produced plasmas at conditions similar to those encountered at the Earth's magnetopause. These experiments demonstrate that for both symmetric and asymmetric magnetic-reconnection configurations, when plasma flows are much stronger than the nominal Alfvén speed, the rate of magnetic-flux annihilation is determined by the flow velocity and is largely insensitive to initial plasma conditions. This work was supported by the Department of Energy Grant Number DENA0001857.

  14. Direct drive: Simulations and results from the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicatemore » that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  15. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    NASA Astrophysics Data System (ADS)

    Simpson, R.; Danly, C.; Glebov, V. Yu.; Hurlbut, C.; Merrill, F. E.; Volegov, P. L.; Wilde, C.

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  16. Solid polystyrene and deuterated polystyrene light output response to fast neutrons.

    PubMed

    Simpson, R; Danly, C; Glebov, V Yu; Hurlbut, C; Merrill, F E; Volegov, P L; Wilde, C

    2016-04-01

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize a deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.

  17. Solid polystyrene and deuterated polystyrene light output response to fast neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, R., E-mail: raspberry@lanl.gov; Danly, C.; Merrill, F. E.

    The Neutron Imaging System has proven to be an important diagnostic in studying DT implosion characteristics at the National Ignition Facility. The current system depends on a polystyrene scintillating fiber array, which detects fusion neutrons born in the DT hotspot as well as neutrons that have scattered to lower energies in the surrounding cold fuel. Increasing neutron yields at NIF, as well as a desire to resolve three-dimensional information about the fuel assembly, have provided the impetus to build and install two additional next-generation neutron imaging systems. We are currently investigating a novel neutron imaging system that will utilize amore » deuterated polystyrene (CD) fiber array instead of standard hydrogen-based polystyrene (CH). Studies of deuterated xylene or deuterated benzene liquid scintillator show an improvement in imaging resolution by a factor of two [L. Disdier et al., Rev. Sci. Instrum. 75, 2134 (2004)], but also a reduction in light output [V. Bildstein et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 188 (2013); M. I. Ojaruega, Ph.D. thesis, University of Michigan, 2009; M. T. Febbraro, Ph.D. thesis, University of Michigan, 2014] as compared to standard plastic. Tests of the relative light output of deuterated polystyrene and standard polystyrene were completed using 14 MeV fusion neutrons generated through implosions of deuterium-tritium filled capsules at the OMEGA laser facility. In addition, we collected data of the relative response of these two scintillators to a wide energy range of neutrons (1-800 MeV) at the Weapons Neutrons Research Facility. Results of these measurements are presented.« less

  18. Magnetized HDC ignition capsules for yield enhancement and implosion magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Zimmerman, G.; Ho, D.; Perkins, J.; Logan, G.; Hawkins, S.; Rhodes, M.

    2014-10-01

    Imposing a magnetic field on capsules can turn capsules that fail, because of low 1-D margin, into igniting capsules that give yield in the MegaJoule range. The imposed magnetic field can be amplified by up to O(103) as it is being compressed by the imploding shell, e.g. if the initial field is 50 T, then the field in the hot spot of the assembled configuration can reach >104 T. (We are currently designing hardware that can provide a field in the 50 T range inside NIF hohlraums.) With this highly compressed field strength, the gyro radius of alpha particles becomes smaller than the hot spot size. Consequently, the heating of the hot spot becomes more efficient. The imposed field can also prevent hot electrons in the holhraum from reaching the capsule. We choose capsules with high-density carbon (HDC) ablators for this study. HDC capsules have good 1-D performance and also have short pulses (10 ns or less), allowing the use of low gas-filled or near-vacuum hohlraums which provide high coupling efficiency. We describe a 2-D simulation of a 3-shock HDC capsule. We will show detailed magnetohydrodynamic evolution of the implosion. HDC capsules with 2-shock pulses have low margin because of their high adiabat, and it is difficult to achieve ignition in realistic 2-D simulations. The improvement in performance for 2-shock magnetized capsules will be presented. This work was supported by LLNL Laboratory Directed Research and Development LDRD 14-ER-028 under Contract DE-AC52-07NA27344.

  19. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciricosta, O.; Scott, H.; Durey, P.

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present in this paper an improved 2D model for mix spectroscopy which can be used tomore » retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. Finally, we show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.« less

  20. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    DOE PAGES

    Ciricosta, O.; Scott, H.; Durey, P.; ...

    2017-11-06

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present in this paper an improved 2D model for mix spectroscopy which can be used tomore » retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. Finally, we show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.« less

  1. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ciricosta, O.; Scott, H.; Durey, P.; Hammel, B. A.; Epstein, R.; Preston, T. R.; Regan, S. P.; Vinko, S. M.; Woolsey, N. C.; Wark, J. S.

    2017-11-01

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present here an improved 2D model for mix spectroscopy which can be used to retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. We show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.

  2. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.

    2013-08-01

    Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.

  3. National NIF Diagnostic Program Fiscal Year 2002 Second Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGowan, B

    Since October 2001 the development of the facility diagnostics for NIF has been funded by the NIF Director through the National NIF Diagnostic Program (NNDP). The current emphasis of the NNDP is on diagnostics for the early NIF quad scheduled to be available for experiment commissioning in FY03. During the past six months the NNDP has set in place processes for funding diagnostics, developing requirements for diagnostics, design reviews and monthly status reporting. Those processes are described in an interim management plan for diagnostics (''National NIF Diagnostic Program Interim Plan'', NIF-0081315, April 2002) and a draft Program Execution Plan (''Programmore » Execution Plan for the National NlF Diagnostic Program'', NIF-0072083, October 2001) and documents cited therein. Work has been funded at Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Naval Research Laboratory (NRL), Sandia National Laboratories (SNL), Bechtel Nevada at Los Alamos and Santa Barbara. There are no major technical risks with the early diagnostics. The main concerns relate to integration of the diagnostics into the facility, all such issues are being worked. This report is organized to show the schedule and budget status and a summary of Change Control Board actions for the past six months. The following sections then provide short descriptions of the status of each diagnostic. Where design reviews or requirements documents are cited, the documents are available on the Diagnostics file server or on request.« less

  4. Hotspot electron temperature from x-ray continuum measurements on the NIF

    DOE PAGES

    Jarrott, L. C.; Benedetti, L. R.; Chen, H.; ...

    2016-08-24

    We report on measurements of the electron temperature in the hotspot of inertially confined, layered, spherical implosions on the National Ignition Facility using a differential filtering diagnostic. Measurements of the DT and DD ion temperatures using neutron time-of-flight detectors are complicated by the contribution of hot spot motion to the peak width, which produce an apparent temperature higher than the thermal temperature. The electron temperature is not sensitive to this non-thermal velocity and is thus a valuable input to interpreting the stagnated hot spot conditions. Here we show that the current differential filtering diagnostic provides insufficient temperature resolution for themore » hot spot temperatures of interest. We then propose a new differential filter configuration utilizing larger pinhole size to increase spectral fluence, as well as thicker filtration. In conclusion, this new configuration will improve measurement uncertainty by more than a factor of three, allowing for a more accurate hotspot temperature.« less

  5. Plasma kinetic effects on atomistic mix in one dimension and at structured interfaces (II)

    NASA Astrophysics Data System (ADS)

    Albright, Brian; Yin, Lin; Cooley, James; Haack, Jeffrey; Douglas, Melissa

    2017-10-01

    The Marble campaign seeks to develop a platform for studying mix evolution in turbulent, inhomogeneous, high-energy-density plasmas at the NIF. Marble capsules contain engineered CD foams, the pores of which are filled with hydrogen and tritium. During implosion, hydrodynamic stirring and plasma diffusivity mix tritium fuel into the surrounding CD plasma, leading to both DD and DT fusion neutron production. In this presentation, building upon prior work, kinetic particle-in-cell simulations using the VPIC code are used to examine kinetic effects on thermonuclear burn in Marble-like settings. Departures from Maxwellian distributions are observed near the interface and TN burn rates and inferred temperatures from synthetic neutron time of flight diagnostics are compared with those from treating the background species as Maxwellian. Work performed under the auspices of the U.S. DOE by the Los Alamos National Security, LLC Los Alamos National Laboratory and supported by the ASC and Science programs.

  6. Effect of Nonlocal Electron Transport in Both Directions on the Symmetry of Polar-Drive--Ignition Targets

    NASA Astrophysics Data System (ADS)

    Delettrez, J. A.; Collins, T. J. B.; Shvydky, A.; Moses, G.; Cao, D.; Marinak, M. M.

    2012-10-01

    A nonlocal, multigroup diffusion model for thermal electron transportfootnotetextG. P. Schurtz, Ph. D. Nicola"i, and M. Busquet, Phys. Plasmas 7, 4238 (2000). has been added to the 2-D hydrodynamic code DRACO. This model has been applied to simulations of polar-drive (PD) NIF ignition designs. Previous simulations were carried out with a constant flux-limiter model in both the radial and transverse directions. Due to the nonsymmetry of PD illumination, these implosions suffer from low-mode nonuniformities that affect their performance. Nonlocal electron transport in both directions is expected to reduce these nonuniformities. The 2-D thermal electron flux from simulations, using either the nonlocal model or the standard flux-limited approach, will be compared and the effect of the nonlocal transport model on the growth of the nonuniformities and on target performance will be presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  7. Impact of temperature-velocity distribution on fusion neutron peak shape

    NASA Astrophysics Data System (ADS)

    Munro, David

    2016-10-01

    Doppler broadening of the 14 MeV DT and 2.45 MeV DD fusion neutron lines has long been our best measure of temperature in a burning plasma. At the National Ignition Facility yields are high enough and our neutron spectrometers accurate enough that we see finer details of the peak shape. For example, we can measure the shift of the peak due to bulk motion of the plasma, and we see indications of non-thermal broadening, skew, and kurtosis of the peak caused by the variations of temperature and fluid velocity during burn. We can also distinguish spectral differences among several lines of sight. This talk will review the theory of fusion neutron line shape, show examples of non-Gaussian line shapes and directional variations in NIF data, and describe detailed spectral shapes we see in radhydro implosion simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Theodore Sonne; Dodd, Evan S.; DeVolder, Barbara Gloria

    X-ray opacity is a crucial factor in all radiation-hydrodynamics calculations, yet it is one of the least validated of the material properties in simulation codes for high-energy-density plasmas. Recent opacity experiments at the Sandia Z-machine have shown up to factors of two discrepancies between theory and experiment for various mid-Z elements (Fe, Cr, Ni). These discrepancies raise doubts regarding the accuracy of the opacity models which are used in ICF and stewardship as well as in astrophysics. Therefore, a new experimental opacity platform has been developed on the National Ignition Facility (NIF), not only to verify the Z-machine experimental results,more » but also to extend the experiments to other temperatures and densities. Within the context of the national opacity strategy, the first NIF experiments were directed towards measuring the opacity of iron at a temperature of ~160 eV and an electron density of ~7xl021 cm-3(Anchor 1). The Z data agree with theory at these conditions, providing a reference point for validation of the NIF platform. Development shots on NIF have demonstrated the ability to create a sufficiently bright point backlighter using an imploding plastic capsule, and also a combined hohlraum, sample and laser drive able to produce iron plasmas at the desired conditions. Spectrometer qualification has been completed, albeit with additional improvements planned, and the first iron absorption spectra have now been obtained.« less

  9. Neutron imaging with bubble chambers for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Ghilea, Marian C.

    One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated by heating and compressing a fuel target, typically in the form of a pellet that contains deuterium and tritium, relying on the inertia of the fuel mass to provide confinement. In inertial confinement fusion experiments, it is important to distinguish failure mechanisms of the imploding capsule and unambiguously diagnose compression and hot spot formation in the fuel. Neutron imaging provides such a technique and bubble chambers are capable of generating higher resolution images than other types of neutron detectors. This thesis explores the use of a liquid bubble chamber to record high yield 14.1 MeV neutrons resulting from deuterium-tritium fusion reactions on ICF experiments. A design tool to deconvolve and reconstruct penumbral and pinhole neutron images was created, using an original ray tracing concept to simulate the neutron images. The design tool proved that misalignment and aperture fabrication errors can significantly decrease the resolution of the reconstructed neutron image. A theoretical model to describe the mechanism of bubble formation was developed. A bubble chamber for neutron imaging with Freon 115 as active medium was designed and implemented for the OMEGA laser system. High neutron yields resulting from deuterium-tritium capsule implosions were recorded. The bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The research done in here shows that bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility (NIF).

  10. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE PAGES

    Stoeckl, C.; Boni, R.; Ehrne, F.; ...

    2016-05-10

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  11. Neutron temporal diagnostic for high-yield deuterium–tritium cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C.; Boni, R.; Ehrne, F.

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic deuterium–tritium (DT) implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ∼16 m to a streak camera inmore » a well-shielded location. An ∼200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ∼40 ± 10 ps was measured in a dedicated experiment using hard x-rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. The measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  12. Neutron temporal diagnostic for high-yield deuterium-tritium cryogenic implosions on OMEGA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C.; Boni, R.; Ehrne, F.

    A next-generation neutron temporal diagnostic (NTD) capable of recording high-quality data for the highest anticipated yield cryogenic DT implosion experiments was recently installed at the Omega Laser Facility. A high-quality measurement of the neutron production width is required to determine the hot-spot pressure achieved in inertial confinement fusion experiments—a key metric in assessing the quality of these implosions. The design of this NTD is based on a fast-rise-time plastic scintillator, which converts the neutron kinetic energy to 350- to 450-nm-wavelength light. The light from the scintillator inside the nose-cone assembly is relayed ~16 m to a streak camera in amore » well-shielded location. An ~200× reduction in neutron background was observed during the first high-yield DT cryogenic implosions compared to the current NTD installation on OMEGA. An impulse response of ~40±10 ps was measured in a dedicated experiment using hard x rays from a planar target irradiated with a 10-ps short pulse from the OMEGA EP laser. Furthermore, the measured instrument response includes contributions from the scintillator rise time, optical relay, and streak camera.« less

  13. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGES

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; ...

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalantar, D.

    This document provides information on the distribution of unconverted light in the National Ignition Facility (NIF) target chamber with the wedged final focus lens that has been adopted by the NIF project. It includes a comparison of the wedged lens configuration with the color separation grating (CSG). There are significant benefits to the wedged lens design as it greatly simplifies experiment design.

  15. NIF Rugby High Foot Campaign from the design side

    NASA Astrophysics Data System (ADS)

    Leidinger, J.-P.; Callahan, D. A.; Berzak-Hopkins, L. F.; Ralph, J. E.; Amendt, P.; Hinkel, D. E.; Michel, P.; Moody, J. D.; Ross, J. S.; Rygg, J. R.; Celliers, P.; Clouët, J.-F.; Dewald, E. L.; Kaiser, P.; Khan, S.; Kritcher, A. L.; Liberatore, S.; Marion, D.; Masson-Laborde, P.-E.; Milovich, J. L.; Morice, O.; Pak, A. E.; Poujade, O.; Strozzi, D.; Hurricane, O. A.

    2016-05-01

    The NIF Rugby High Foot campaign results, with 8 shots to date, are compared with the 2D FCI2 design simulations. A special emphasis is placed on the predictive features and on those areas where some work is still required to achieve the best possible modelling of these MJ-class experiments.

  16. Recent advances in automatic alignment system for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Wilhelmsen, Karl; Awwal, Abdul A. S.; Kalantar, Dan; Leach, Richard; Lowe-Webb, Roger; McGuigan, David; Miller Kamm, Vicki

    2011-03-01

    The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automatically steer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. Handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

  17. Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, A.; Divol, L.; Kritcher, A. L.; Ma, T.; Ralph, J. E.; Bachmann, B.; Benedetti, L. R.; Casey, D. T.; Celliers, P. M.; Dewald, E. L.; Döppner, T.; Field, J. E.; Fratanduono, D. E.; Berzak Hopkins, L. F.; Izumi, N.; Khan, S. F.; Landen, O. L.; Kyrala, G. A.; LePape, S.; Millot, M.; Milovich, J. L.; Moore, A. S.; Nagel, S. R.; Park, H.-S.; Rygg, J. R.; Bradley, D. K.; Callahan, D. A.; Hinkel, D. E.; Hsing, W. W.; Hurricane, O. A.; Meezan, N. B.; Moody, J. D.; Patel, P.; Robey, H. F.; Schneider, M. B.; Town, R. P. J.; Edwards, M. J.

    2017-05-01

    This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10% to -5%, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additional negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ˜2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. These data indicate that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.

  18. Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, A.; Divol, L.; Kritcher, A. L.

    This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less

  19. Examining the radiation drive asymmetries present in the high foot series of implosion experiments at the National Ignition Facility

    DOE PAGES

    Pak, A.; Divol, L.; Kritcher, A. L.; ...

    2017-03-24

    This paper details and examines the origins of radiation drive asymmetries present during the initial High Foot implosion experiments. Such asymmetries are expected to reduce the stagnation pressure and the resulting yield of these experiments by several times. Analysis of reemission and dual axis shock timing experiments indicates that a flux asymmetry, with a P2/P0 amplitude that varies from -10 to -5 %, is present during the first shock of the implosion. This first shock asymmetry can be corrected through adjustments to the laser cone fraction. A thin shell model and more detailed radiation hydrodynamic calculations indicate that an additionalmore » negative P2/P0 asymmetry during the second or portions of the third shock is required to reach the observed amount of asymmetry in the shape of the ablator at peak implosion velocity. In conjunction with symmetry data from the x-ray self emission produced at stagnation, these models also indicate that after the initially negative P2/P0 flux asymmetry, the capsule experiences a positive P2/P0 flux asymmetry that develops at or before ~2 ns into the peak of the laser power. Here, direct evidence for this inference, using measurements of the x-ray emission produced by the lasers irradiating the hohlraum, is presented. This data indicates that the reduction in the transmitted inner laser cone energy results from impeded propagation through the plasma associated with the ablation of the capsule target. This paper also correlates measurements of the outer cone laser deposition location with variations in the observed x-ray self emission shape from experiments conducted with nominally the same input conditions.« less

  20. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  1. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE PAGES

    Zylstra, A. B.; Frenje, J. A.; Séguin, F. H.; ...

    2014-11-03

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D 3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D 3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2x higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was usedmore » to infer the areal density (pR) and the shell center-of-mass radius (R cm) from the downshift of the shock-produced D 3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time. This result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  2. Exploration of kinetic and multiple-ion-fluids effects in D3He and T3He gas-filled ICF implosions using multiple nuclear reaction histories

    NASA Astrophysics Data System (ADS)

    Sio, Hong; Rinderknecht, Hans; Rosenberg, Michael; Zylstra, Alex; Séguin, Fredrick; Gatu Johnson, Maria; Li, Chikang; Petrasso, Richard; Hoffman, Nelson; Kagan, Krigory; Molvig, Kim; Amendt, Peter; Bellei, Claudio; Wilks, Scott; Stoeckl, Christian; Glebov, Vladimir; Betti, Riccardo; Sangster, Thomas; Katz, Joseph

    2014-10-01

    To explore kinetic and multi-ion-fluid effects in D3He and T3He gas-filled shock-driven implosions, multiple nuclear reaction histories were measured using the upgraded Particle Temporal Diagnostic (PTD) on OMEGA. For D3He gas-filled implosions, the relative timing of the DD and D3He reaction histories were measured with 20 ps precision. For T3He gas-filled implosions (with 1-2% deuterium), the relative timing of the DT and D3He reaction histories were measured with 10 ps precision. The observed differences between the reaction histories on these two OMEGA experiments are contrasted to 1-D single-ion hydro simulations for different gas-fill pressure and gas mixture. This work is supported in part by the U.S. DOE, LLNL, LLE, and NNSA SSGF.

  3. Competing effects of collisional ionization and radiative cooling in inertially confined plasmas

    NASA Astrophysics Data System (ADS)

    Woolsey, N. C.; Hammel, B. A.; Keane, C. J.; Back, C. A.; Moreno, J. C.; Nash, J. K.; Calisti, A.; Mossé, C.; Stamm, R.; Talin, B.; Asfaw, A.; Klein, L. S.; Lee, R. W.

    1998-04-01

    We describe an experimental investigation, a detailed analysis of the Ar XVII 1s2 1S-1s3p 1P (Heβ) line shape formed in a high-energy-density implosion, and report on one-dimensional radiation-hydrodynamics simulation of the implosion. In this experiment trace quantities of argon are doped into a lower-Z gas-filled core of a plastic microsphere. The dopant level is controlled to ensure that the Heβ transition is optically thin and easily observable. Then the observed line shape is used to derive electron temperatures (Te) and electron densities (ne). The high-energy density plasma, with Te approaching 1 keV and ne=1024 cm-3, is created by placing the microsphere in a gold cylindrical enclosure, the interior of which is directly irradiated by a high-energy laser; the x rays produced by this laser-gold interaction indirectly implode the microsphere. Central to the interpretation of the hydrodynamics of the implosions is the characterization and understanding of the formation of these plasmas. To develop an understanding of the plasma and its temporal evolution, time-resolved Te and ne measurements are extracted using techniques that are independent of the plasma hydrodynamics. Comparing spectroscopic diagnostics with measurements derived from other diagnostic methods, we find the spectroscopic measurements to be reliable and further we find that the experiment-to-experiment comparison shows that these implosions are reproducible.

  4. Developmental rearrangement of cyanobacterial nif genes: nucleotide sequence, open reading frames, and cytochrome P-450 homology of the Anabaena sp. strain PCC 7120 nifD element.

    PubMed Central

    Lammers, P J; McLaughlin, S; Papin, S; Trujillo-Provencio, C; Ryncarz, A J

    1990-01-01

    An 11-kbp DNA element of unknown function interrupts the nifD gene in vegetative cells of Anabaena sp. strain PCC 7120. In developing heterocysts the nifD element excises from the chromosome via site-specific recombination between short repeat sequences that flank the element. The nucleotide sequence of the nifH-proximal half of the element was determined to elucidate the genetic potential of the element. Four open reading frames with the same relative orientation as the nifD element-encoded xisA gene were identified in the sequenced region. Each of the open reading frames was preceded by a reasonable ribosome-binding site and had biased codon utilization preferences consistent with low levels of expression. Open reading frame 3 was highly homologous with three cytochrome P-450 omega-hydroxylase proteins and showed regional homology to functionally significant domains common to the cytochrome P-450 superfamily. The sequence encoding open reading frame 2 was the most highly conserved portion of the sequenced region based on heterologous hybridization experiments with three genera of heterocystous cyanobacteria. Images PMID:2123860

  5. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamy, H.; Hamann, F.; Lassalle, F.

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1{mu}s rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim ofmore » giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-{theta} simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.« less

  6. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    NASA Astrophysics Data System (ADS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  7. ARES Modeling of High-foot Implosions (NNSA Milestone #5466)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurricane, O. A.

    ARES “capsule only” simulations demonstrated results of applying an ASC code to a suite of high-foot ICF implosion experiments. While a capability to apply an asymmetric FDS drive to the capsule-only model using add-on Python routines exists, it was not exercised here. The ARES simulation results resemble the results from HYDRA simulations documented in A. Kritcher, et al., Phys. Plasmas, 23, 052709 (2016); namely, 1D simulation and data are in reasonable agreement for the lowest velocity experiments, but diverge from each other at higher velocities.

  8. Wavefront control of high-power laser beams in the National Ignition Facility (NIF)

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard A.; Bliss, Erlan S.; Winters, Scott; Sacks, Richard A.; Feldman, Mark; Grey, Andrew; Koch, Jeffrey A.; Stolz, Christopher J.; Toeppen, John S.; Van Atta, Lewis; Woods, Bruce W.

    2000-04-01

    The use of lasers as the driver for inertial confinement fusion and weapons physics experiments is based on their ability to produce high-energy short pulses in a beam with low divergence. Indeed, the focusability of high quality laser beams far exceeds alternate technologies and is a major factor in the rationale for building high power lasers for such applications. The National Ignition Facility (NIF) is a large, 192-beam, high-power laser facility under construction at the Lawrence Livermore National Laboratory for fusion and weapons physics experiments. Its uncorrected minimum focal spot size is limited by laser system aberrations. The NIF includes a Wavefront Control System to correct these aberrations to yield a focal spot small enough for its applications. Sources of aberrations to be corrected include prompt pump-induced distortions in the laser amplifiers, previous-shot thermal distortions, beam off-axis effects, and gravity, mounting, and coating-induced optic distortions. Aberrations from gas density variations and optic-manufacturing figure errors are also partially corrected. This paper provides an overview of the NIF Wavefront Control System and describes the target spot size performance improvement it affords. It describes provisions made to accommodate the NIF's high fluence (laser beam and flashlamp), large wavefront correction range, wavefront temporal bandwidth, temperature and humidity variations, cleanliness requirements, and exception handling requirements (e.g. wavefront out-of-limits conditions).

  9. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes.

    PubMed

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-08-27

    Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fifteen nitrogen fixation (nif) genes, including three nifH, one nifD, one nifK, four nifB, two nifE, two nifN, one nifX and one nifV. Of the 15 nif genes, eight nif genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) and two non-nif genes (orf1 and hesA) form a complete nif gene cluster. In addition to the nif genes, there are nitrogenase-like genes, including two nifH-like genes and five pairs of nifDK-like genes. IS elements on the flanking regions of nif and nif-like genes imply that these genes might have been obtained by horizontal gene transfer. Phylogenies of the concatenated 8 nif gene (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) products suggest that P. sabinae T27 is closely related to Frankia. RT-PCR analysis showed that the complete nif gene cluster is organized as an operon. We demonstrated that the complete nif gene cluster under the control of σ70-dependent promoter enabled Escherichia coli JM109 to fix nitrogen. Also, here for the first time we demonstrated that unlike nif genes, the transcriptions of nifHDK-like genes were not regulated by ammonium and oxygen, and nifH-like or nifD-like gene could not restore the nitrogenase activity of Klebsiella pneumonia nifH- and nifD- mutant strains, respectively, suggesting that nifHDK-like genes were not involved in nitrogen fixation. Our data and analysis reveal the contents and distribution of nif and nif-like genes and contribute to the study of evolutionary history of nitrogen fixation in Paenibacillus. For the first time we demonstrated that the transcriptions of nifHDK-like genes were not regulated by ammonium and oxygen and nifHDK-like genes were not involved in nitrogen fixation.

  10. Nitrogenase (nifH) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments

    PubMed Central

    Turk-Kubo, Kendra A.; Achilles, Katherine M.; Serros, Tracy R. C.; Ochiai, Mari; Montoya, Joseph P.; Zehr, Jonathan P.

    2012-01-01

    The Tropical North Atlantic (TNAtl) plays a critical role in the marine nitrogen cycle, as it supports high rates of biological nitrogen (N2) fixation, yet it is unclear whether this process is limited by the availability of iron (Fe), phosphate (P) or is co-limited by both. In order to investigate the impact of nutrient limitation on the N2-fixing microorganisms (diazotrophs) in the TNAtl, trace metal clean nutrient amendment experiments were conducted, and the expression of nitrogenase (nifH) in cyanobacterial diazotrophs in response to the addition of Fe, P, or Fe+P was measured using quantitative PCR. To provide context, N2 fixation rates associated with the <10 μm community and diel nifH expression in natural cyanobacterial populations were measured. In the western TNAtl, nifH expression in Crocosphaera, Trichodesmium, and Richelia was stimulated by Fe and Fe+P additions, but not by P, implying that diazotrophs may be Fe-limited in this region. In the eastern TNAtl, nifH expression in unicellular cyanobacteria UCYN-A and Crocosphaera was stimulated by P, implying P-limitation. In equatorial waters, nifH expression in Trichodesmium was highest in Fe+P treatments, implying co-limitation in this region. Nutrient additions did not measurably stimulate N2 fixation rates in the <10 μm fraction in most of the experiments, even when upregulation of nifH expression was evident. These results demonstrate the utility of using gene expression to investigate the physiological state of natural populations of microorganisms, while underscoring the complexity of nutrient limitation on diazotrophy, and providing evidence that diazotroph populations are slow to respond to the addition of limiting nutrients and may be limited by different nutrients on basin-wide spatial scales. This has important implications for our current understanding of controls on N2 fixation in the TNAtl and may partially explain why it appears to be intermittently limited by Fe, P, or both. PMID:23130017

  11. Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF

    NASA Astrophysics Data System (ADS)

    Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden

    2007-11-01

    Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)

  12. An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.; Key, M.; Britten, J.; Beach, R.; Beer, G.; Brown, C.; Bryan, S.; Caird, J.; Carlson, T.; Crane, J.; Dawson, J.; Erlandson, A. C.; Fittinghoff, D.; Hermann, M.; Hoaglan, C.; Iyer, A.; Jones, L., II; Jovanovic, I.; Komashko, A.; Landen, O.; Liao, Z.; Molander, W.; Mitchell, S.; Moses, E.; Nielsen, N.; Nguyen, H.-H.; Nissen, J.; Payne, S.; Pennington, D.; Risinger, L.; Rushford, M.; Skulina, K.; Spaeth, M.; Stuart, B.; Tietbohl, G.; Wattellier, B.

    2004-12-01

    The technical challenges and motivations for high-energy, short-pulse generation with NIF and possibly other large-scale Nd : glass lasers are reviewed. High-energy short-pulse generation (multi-kilojoule, picosecond pulses) will be possible via the adaptation of chirped pulse amplification laser techniques on NIF. Development of metre-scale, high-efficiency, high-damage-threshold final optics is a key technical challenge. In addition, deployment of high energy petawatt (HEPW) pulses on NIF is constrained by existing laser infrastructure and requires new, compact compressor designs and short-pulse, fibre-based, seed-laser systems. The key motivations for HEPW pulses on NIF is briefly outlined and includes high-energy, x-ray radiography, proton beam radiography, proton isochoric heating and tests of the fast ignitor concept for inertial confinement fusion.

  13. Fast-Ion Spectrometry of ICF Implosions and Laser-Foil Experiments at the Omega and MTW Laser Facilities

    NASA Astrophysics Data System (ADS)

    Sinenian, Nareg

    Fast ions generated from laser-plasma interactions (LPI) have been used to study inertial confinement fusion (ICF) implosions and laser-foil interactions. LPI, which vary in nature depending on the wavelength and intensity of the driver, generate hot electrons with temperatures ranging from tens to thousands of kilo-electron-volts. These electrons, which accelerate the ions measured in this work, can be either detrimental or essential to implosion performance depending on the ICF scheme employed. In direct-drive hot-spot ignition, hot electrons can preheat the fuel and raise the adiabat, potentially degrading compression in the implosion. The amount of preheat depends on the hot-electron source characteristics and the time duration over which electrons can deposit energy into the fuel. This time duration is prescribed by the evolution of a sheath that surrounds the implosion and traps electrons. Fast-ion measurements have been used to develop a circuit model that describes the time decay of the sheath voltage for typical OMEGA implosions. In the context of electron fast ignition, the produced fast ions are considered a loss channel that has been characterized for the first time. These ions have also been used as a diagnostic tool to infer the temperature of the hot electrons in fast-ignition experiments. It has also been shown that the hot-electron temperature scales with laser intensity as expected, but is enhanced by a factor of 2-3. This enhancement is possibly due to relativistic effects and leads to poor implosion performance. Finally, fast-ion generation by ultra-intense lasers has also been studied using planar targets. The mean and maximum energies of protons and heavy ions has been measured, and it has been shown that a two-temperature hot-electron distribution affects the energies of heavy ions and protons. This work is important for advanced fusion concepts that utilize ion beams and also has applications in medicine. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)

  14. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusiona)

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Greenly, J. B.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Ryutov, D. D.; Davis, J.-P.; Flicker, D. G.; Blue, B. E.; Tomlinson, K.; Schroen, D.; Stamm, R. M.; Smith, G. E.; Moore, J. K.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; Lopez, M. R.; Porter, J. L.; Matzen, M. K.

    2013-05-01

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless ("quasi-isentropic") liner compression. Third, we present "micro-Ḃ" measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density "precursor" plasma to the axis of symmetry.

  15. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of eithermore » 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.« less

  16. Molecular evolution of the nif gene cluster carrying nifI1 and nifI2 genes in the Gram-positive phototrophic bacterium Heliobacterium chlorum.

    PubMed

    Enkh-Amgalan, Jigjiddorj; Kawasaki, Hiroko; Seki, Tatsuji

    2006-01-01

    A major nif cluster was detected in the strictly anaerobic, Gram-positive phototrophic bacterium Heliobacterium chlorum. The cluster consisted of 11 genes arranged within a 10 kb region in the order nifI1, nifI2, nifH, nifD, nifK, nifE, nifN, nifX, fdx, nifB and nifV. The phylogenetic position of Hbt. chlorum was the same in the NifH, NifD, NifK, NifE and NifN trees; Hbt. chlorum formed a cluster with Desulfitobacterium hafniense, the closest neighbour of heliobacteria based on the 16S rRNA phylogeny, and two species of the genus Geobacter belonging to the Deltaproteobacteria. Two nifI genes, known to occur in the nif clusters of methanogenic archaea between nifH and nifD, were found upstream of the nifH gene of Hbt. chlorum. The organization of the nif operon and the phylogeny of individual and concatenated gene products showed that the Hbt. chlorum nif operon carrying nifI genes upstream of the nifH gene was an intermediate between the nif operon with nifI downstream of nifH (group II and III of the nitrogenase classification) and the nif operon lacking nifI (group I). Thus, the phylogenetic position of Hbt. chlorum nitrogenase may reflect an evolutionary stage of a divergence of the two nitrogenase groups, with group I consisting of the aerobic diazotrophs and group II consisting of strictly anaerobic prokaryotes.

  17. Direct drive: Simulations and results from the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  18. Direct drive: Simulations and results from the National Ignition Facility

    DOE PAGES

    Radha, P. B.; Hohenberger, M.; Edgell, D. H.; ...

    2016-04-19

    Here, the direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivitymore » analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.« less

  19. Advanced Concepts Theory Annual Report 1989

    DTIC Science & Technology

    1990-03-29

    kinetic energy to x-ray conversion and are being evaluated using nickel array implosion calculations. iv o Maxwell Laboratory aluminum array implosion...general, we need to evaluate the degree of machine PRS decoupling produced by runaway electrons, and the existence of a corona may be a relevant aspect of...the tools necessary to carry out data analysis and interpretation and (4) promote the design and evaluation of new experiments and new improved loads

  20. The National Ignition Facility Status and Plans for Laser Fusion and High Energy Density Experimental Studies

    NASA Astrophysics Data System (ADS)

    Wuest, Craig R.

    2001-03-01

    The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory is 192-beam, 1.8 Megajoule, 500 Terawatt, 351 nm laser for inertial confinement fusion and high energy density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency to provide an experimental test bed for the US Stockpile Stewardship Program to ensure the country’s nuclear deterrent without underground nuclear testing. The experimental program for NIF will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% of the shots will be dedicated to basic science research. Additionally, most of the shots on NIF will be conducted in unclassified configurations that will allow participation from the greater scientific community in planned applied physics experiments. This presentation will provide a look at the status of the construction project as well as a description of the scientific uses of NIF. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Top