Sample records for nigella sativa ns

  1. Cardiovascular benefits of black cumin (Nigella sativa).

    PubMed

    Shabana, Adel; El-Menyar, Ayman; Asim, Mohammad; Al-Azzeh, Hiba; Al Thani, Hassan

    2013-03-01

    Black Cumin (Nigella sativa), which belongs to the botanical family of Ranunculaceae, commonly grows in Eastern Europe, the Middle East, and Western Asia. Its ripe fruit contains tiny black seeds, known as "Al-Habba Al-Sauda" and "Al-Habba Al-Barakah" in Arabic and black seed or black cumin in English. Seeds of Nigella sativa are frequently used in folk medicine in the Middle East and some Asian countries for the promotion of good health and the treatment of many ailments. However, data for the cardiovascular benefits of black cumin are not well-established. We reviewed the literature from 1960 to March 2012 by using the following key words: "Nigella sativa," "black seeds," and "thymoquinone." Herein, we discussed the most relevant articles to find out the role of Nigella sativa in the cardiovascular diseases spectrum especially when there is a paucity of information and need of further studies in human to establish the utility of Nigella sativa in cardiovascular system protection.

  2. Nigella sativa relieves the deleterious effects of ischemia reperfusion injury on liver

    PubMed Central

    Yildiz, Fahrettin; Coban, Sacit; Terzi, Alpaslan; Ates, Mustafa; Aksoy, Nurten; Cakir, Hale; Ocak, Ali Riza; Bitiren, Muharrem

    2008-01-01

    AIM: To determine whether Nigella sativa prevents hepatic ischemia-reperfusion injury to the liver. METHODS: Thirty rats were divided into three groups as sham (Group 1), control (Group 2), and Nigella sativa (NS) treatment group (Group 3). All rats underwent hepatic ischemia for 45 min followed by 60 min period of reperfusion. Rats were intraperitoneally infused with only 0.9% saline solution in group 2. Rats in group 3 received NS (0.2 mL/kg) intraperitoneally, before ischemia and before reperfusion. Blood samples and liver tissues were harvested from the rats, and then the rats were sacrificed. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) levels were determined. Total antioxidant capacity (TAC), catalase (CAT), total oxidative status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) in hepatic tissue were measured. Also liver tissue histopathology was evaluated by light microscopy. RESULTS: The levels of liver enzymes in group 3 were significantly lower than those in the group 2. TAC in liver tissue was significantly higher in group 3 than in group 2. TOS, OSI and MPO in hepatic tissue were significantly lower in group 3 than the group 2. Histological tissue damage was milder in the NS treatment group than that in the control group. CONCLUSION: Our results suggest that Nigella sativa treatment protects the rat liver against to hepatic ischemia-reperfusion injury. PMID:18777598

  3. Nigella sativa L. as an alternative antibiotic feed supplement and effect on growth performance in weanling pigs

    USDA-ARS?s Scientific Manuscript database

    Nigella sativa L. (NS) is a plant containing bioactive constituents such as thymoquinone. Extracts of NS improve performance and reduce enteropathogen colonization in poultry and small ruminants, but studies with swine are lacking. Oral administration of NS extracts at doses equivalent to 0, 1.5, ...

  4. Neuropharmacological effects of Nigella sativa

    PubMed Central

    Beheshti, Farimah; Khazaei, Majid; Hosseini, Mahmoud

    2016-01-01

    Nigella sativa (NS) (Ranunculaceae family) is generally utilized as a therapeutic plant all over the world. The seeds of the plant have a long history of use in different frameworks of medicines and food. In Islamic literature, it is considered as one of the greatest forms of therapeutics. It has been widely used to treat nervous system diseases such as memory impairment, epilepsy, neurotoxicity, pain, etc. Additionally, this is uncovered that the majority of therapeutic properties of this plant are due to the presence of thymoquinone (TQ) which is a major bioactive component of the essential oil. Pharmacological studies have been done to evaluate the effects of NS on the central nervous system (CNS). The present review is an effort to provide a detailed scientific literature survey about pharmacological activities of the plant on nervous system. Our literature review showed that NS and its components can be considered as promising agents in the treatment of nervous system disorders. PMID:27247928

  5. Assessment of Nigella sativa extract as a potential antibiotic alternative feed supplement for weaned swine

    USDA-ARS?s Scientific Manuscript database

    New technologies are needed to help livestock producers maintain health and wellbeing of their animals while minimizing risks of disseminating antimicrobial resistant bacteria to humans or animals. Nigella sativa (NS) is a plant containing bioactive constituents, such as thymoquinone. Extracts of ...

  6. Nigella sativa and its active constituent thymoquinone in oral health

    PubMed Central

    AlAttas, Safia A.; Zahran, Fat’heya M.; Turkistany, Shereen A.

    2016-01-01

    In this review, we summarized published reports that investigated the role of Nigella sativa (NS) and its active constituent, thymoquinone (TQ) in oral health and disease management. The literature studies were preliminary and scanty, but the results revealed that black seed plants have a potential therapeutic effect for oral and dental diseases. Such results are encouraging for the incorporation of these plants in dental therapeutics and hygiene products. However, further detailed preclinical and clinical studies at the cellular and molecular levels are required to investigate the mechanisms of action of NS and its constituents, particularly TQ. PMID:26905343

  7. Effect of administering black cumin (Nigella sativa) toward postpartum mice (MusMusculus L.)

    NASA Astrophysics Data System (ADS)

    Imelda, F.; Darti, N. A.

    2018-03-01

    The period of childbirth is a period for the health provider monitoring that less monitoring can cause the mother to suffer a variety of problemsandcomplications during childbirth such as post-partum infections. This type of research was an experimental group P0: control group, treatment groups by administering Nigella sativa P1:2.6mg/day, P2:3.9mg/day, P3:5.2mg/day, and P4:6.5mg/day, which each group 5 samples. The average amount of leukocytes after given Nigella sativa 2.6mg/day for seven days (P1) which was 7:10±0:57 (x103cells/mm3), and at least in female mice after given Nigella sativa 6.5mg/day for sevendays (P4) which was 6.62±0.52 (x103cells/mm3). The average amount lymphocytes after given Nigella sativa 2.6mg/day for seven days (P1) which was 63.40±4.77 (x103cells/mm3), and least in female mice after given Nigella sativa 3.9 mg/day for seven days (P3) which was 47.00±14:58 (x103cells/mm3). Amount of monocytes after given Nigella sativa 5.2mg/day for seven days (P3) which was 5.40±0.55 (x103cells/mm3), and least in female mice after given Nigella sativa 2.6mg/day for seven days (P1) which was 4.80±1.30 (x103cells/mm3).

  8. Nigella sativa: reduces the risk of various maladies.

    PubMed

    Butt, Masood Sadiq; Sultan, Muhammad Tauseef

    2010-08-01

    Coinage of terms like nutraceuticals, functional, and pharma foods has diverted the attention of human beings to where they are seeking more natural cures. Though pharmaceutical drugs have been beneficial for human health and have cured various diseases but they also impart some side effects. Numerous plants have been tested for their therapeutic potential; Nigella sativa, commonly known as black cumin, is one of them. It possesses a nutritional dense profile as its fixed oil (lipid fraction), is rich in unsaturated fatty acids while essential oil contains thymoquinone and carvacrol as antioxidants. N. sativa seeds also contain proteins, alkaloids (nigellicines and nigelledine), and saponins (alpha-hederin) in substantial amounts. Recent pharmacological investigations suggested its potential role, especially for the amelioration of oxidative stress through free radical scavenging activity, the induction of apoptosis to cure various cancer lines, the reduction of blood glucose, and the prevention of complications from diabetes. It regulates hematological and serological aspects and can be effective in dyslipidemia and respiratory disorders. Moreover, its immunopotentiating and immunomodulating role brings balance in the immune system. Evidence is available supporting the utilization of Nigella sativa and its bioactive components in a daily diet for health improvement. This review is intended to focus on the composition of Nigella sativa and to elaborate its possible therapeutic roles as a functional food to prevent an array of maladies.

  9. Nigella sativa oil protects against tartrazine toxicity in male rats.

    PubMed

    Al-Seeni, Madeha N; El Rabey, Haddad A; Al-Hamed, Amani Mohammed; Zamazami, Mazin A

    2018-01-01

    This study aimed to evaluate the protective role of Nigella sativa oil against the adverse effects of tartrazine on male rats. 18 albino rats were divided randomly into four groups (n = 6). The first (G1) is the negative control, the second group (G2) is the positive control received 10 mg/kg b.w. tartrazine in the diet and the third (G3) received the same dose of tartrazine as in G2 and co-treated with Nigella sativa oil for 8 weeks. Tartrazine decreased total protein, antioxidants and high density lipoproteins, whereas increased liver enzyme, kidney function parameters, total cholesterol, triglycerides, low density lipoproteins and lipid peroxidation in the positive control group. In addition, it caused pathological changes in the tissues of liver, kidney, testes and stomach. Treating tartrazine supplemented rats of G3 with Nigella sativa oil for 8 weeks significantly improved all biochemical parameters and restored the tissues of kidney, stomach, testes and liver to normal. It could be concluded that N. sativa oil succeeded in protecting male rats against the adverse conditions resulted from tartrazine administration.

  10. Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles.

    PubMed

    Manju, Sivalingam; Malaikozhundan, Balasubramanian; Vijayakumar, Sekar; Shanthi, Sathappan; Jaishabanu, Ameeramja; Ekambaram, Perumal; Vaseeharan, Baskaralingam

    2016-02-01

    This study reports the biological synthesis of gold nanoparticles using essential oil of Nigella sativa (NsEO-AuNPs). The synthesized NsEO-AuNPs were characterized by UV-visible spectra, X-ray diffraction (XRD), FTIR and Transmission electron microscopy (TEM). UV-vis spectra of NsEO-AuNPs showed strong absorption peak at 540 nm. The X-ray diffraction analysis revealed crystalline nature of nanoparticle with distinctive facets (111, 200, 220 and 311 planes) of NsEO-AuNPs. The FTIR spectra recorded peaks at 3388, 2842, 1685, 1607, 1391 and 1018 cm(-1). TEM studies showed the spherical shape of nanoparticles and the particle size ranges between 15.6 and 28.4 nm. The antibacterial activity of NsEO-AuNPs was greater against Gram positive Staphylococcus aureus MTCC 9542 (16 mm) than Gram negative Vibrio harveyi MTCC 7771 (5 mm) at the concentration of 10 μg ml(-1). NsEO-AuNPs effectively inhibited the biofilm formation of S. aureus and V. harveyi by decreasing the hydrophobicity index (78% and 46% respectively). The in-vitro anti-lung cancer activity confirmed by MTT assay on the cell line of A549 carcinoma cells showed IC50 values of bulk Au at 87.2 μg ml(-1), N. sativa essential oil at 64.15 μg ml(-1) and NsEO-AuNPs at 28.37 μg ml(-1). The IC50 value showed that NsEO-AuNPs was highly effective in inhibiting the A549 lung cancer cells compared to bulk Au and N. sativa essential oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Mechanisms of the antihypertensive effects of Nigella sativa oil in L-NAME-induced hypertensive rats

    PubMed Central

    Jaarin, Kamsiah; Foong, Wai Dic; Yeoh, Min Hui; Kamarul, Zaman Yusoff Nik; Qodriyah, Haji Mohd Saad; Azman, Abdullah; Zuhair, Japar Sidik Fadhlullah; Juliana, Abdul Hamid; Kamisah, Yusof

    2015-01-01

    OBJECTIVES This study was conducted to determine whether the blood pressure-lowering effect of Nigella sativa might be mediated by its effects on nitric oxide, angiotensin-converting enzyme, heme oxygenase and oxidative stress markers. METHODS: Twenty-four adult male Sprague-Dawley rats were divided equally into 4 groups. One group served as the control (group 1), whereas the other three groups (groups 2-4) were administered L-NAME (25 mg/kg, intraperitoneally). Groups 3 and 4 were given oral nicardipine daily at a dose of 3 mg/kg and Nigella sativa oil at a dose of 2.5 mg/kg for 8 weeks, respectively, concomitantly with L-NAME administration. RESULTS Nigella sativa oil prevented the increase in systolic blood pressure in the L-NAME-treated rats. The blood pressure reduction was associated with a reduction in cardiac lipid peroxidation product, NADPH oxidase, angiotensin-converting enzyme activity and plasma nitric oxide, as well as with an increase in heme oxygenase-1 activity in the heart. The effects of Nigella sativa on blood pressure, lipid peroxidation product, nicotinamide adenine dinucleotide phosphate oxidase and angiotensin-converting enzyme were similar to those of nicardipine. In contrast, L-NAME had opposite effects on lipid peroxidation, angiotensin-converting enzyme and NO. CONCLUSION: The antihypertensive effect of Nigella sativa oil appears to be mediated by a reduction in cardiac oxidative stress and angiotensin-converting enzyme activity, an increase in cardiac heme oxygenase-1 activity and a prevention of plasma nitric oxide loss. Thus, Nigella sativa oil might be beneficial for controlling hypertension. PMID:26602523

  12. Apoptotic Effect of Nigella sativa on Human Lymphoma U937 Cells.

    PubMed

    Arslan, Belkis Atasever; Isik, Fatma Busra; Gur, Hazal; Ozen, Fatih; Catal, Tunc

    2017-10-01

    Nigella sativa is from botanical Ranunculaceae family and commonly known as black seed. Apoptotic effect of N. sativa and its apoptotic signaling pathways on U937 lymphoma cells are unknown. In this study, we investigated selective cytotoxic and apoptotic effects of N. sativa extract and its apoptotic mechanisms on U937 cells. In addition, we also studied selective cytotoxic activity of thymoquinone that is the most active essential oil of N. sativa . Our results showed that N. sativa extract has selective cytotoxicity and apoptotic effects on U937 cells but not ECV304 control cells. However, thymoquinone had no significant cytotoxicity against on both cells. N. sativa extract increased significantly caspase-3, BAD, and p53 gene expressions in U937 cells. N. sativa may have anticancer drug potential and trigger p53-induced apoptosis in U937 lymphoma cells. This is the first study showing the apoptotic effect of Nigella sativa extract on U937 cells. Abbreviations used: CI: Cytotoxicity index, DMEM: Dulbecco's Modified Eagle Medium, HL: Hodgkin's lymphoma, MTT: 3-(4,5-dimethy lthiazol-2yl)-2,5-diphenyl tetrazolium bromide, RPMI: Roswell Park Memorial Institute medium.

  13. Ameliorative Effect of Camel's Milk and Nigella Sativa Oil against Thioacetamide-induced Hepatorenal Damage in Rats.

    PubMed

    Ahmad, Aftab; Al-Abbasi, Fahad A; Sadath, Saida; Ali, Soad Shaker; Abuzinadah, Mohammed F; Alhadrami, Hani A; Mohammad Alghamdi, Anwar Ali; Aseeri, Ali H; Khan, Shah Alam; Husain, Asif

    2018-01-01

    Camel milk (CM) and Nigella sativa (NS) have been traditionally claimed to cure wide range of diseases and used as medicine in different part of world, particularly in Saudi Arabia. Several research studies have been published that proved beneficial effects of CM and NS. This study was undertaken to investigate the antihepatotxic potential of CM and NS oil (NSO) against thioacetamide (TAA)-induced hepato and nephrotoxicity in rats. Thirty female Albino Wistar rats were randomly divided in to six groups having five rats in each group. A single subcutaneous injection of TAA (100 mg/kg b. w.) was administered to all the rats in Group-II to VI on 1 st day to induce hepatorenal damage. Group I served as a normal control while Group II served as toxic control for comparison purpose. Experimental animals in Group III, IV, and V were supplemented with fresh CM, (250 mL/24 h/cage), NSO (2 mL/kg/day p. o.), and NSO + fresh CM, respectively. Group VI was treated with a polyherbal hepatoprotective Unani medicine Jigreen (2 mL/kg/day p. o.) for 21 days. TAA-induced hepatorenal damage and protective effects of CM and NSO were assessed by analyzing liver and kidney function tests in the serum. Histopathology of liver and kidney tissues was also carried out to corroborate the findings of biochemical investigation. The results indicated that the TAA intoxicated rats showed significant increase in the alanine transaminase, aspartate transaminase, gamma-glutamyl transpeptidase, alkaline phosphatase, lipid profile, urea, creatinine, uric acid, sodium, and potassium levels in serum. Treatment of rats with CM, NSO, and CM plus NSO combination and Jigreen significantly reversed the damage and brought down the serum biochemical parameters and lipid profile toward the normal levels. The histopathological studies also support the hepato and nephroprotective effects of CM and NSO. This study demonstrated the ameliorative effects of CM, NSO, and CM plus NSO combination against TAA

  14. Ameliorative Effect of Camel's Milk and Nigella Sativa Oil against Thioacetamide-induced Hepatorenal Damage in Rats

    PubMed Central

    Ahmad, Aftab; Al-Abbasi, Fahad A.; Sadath, Saida; Ali, Soad Shaker; Abuzinadah, Mohammed F.; Alhadrami, Hani A.; Mohammad Alghamdi, Anwar Ali; Aseeri, Ali H.; Khan, Shah Alam; Husain, Asif

    2018-01-01

    Background: Camel milk (CM) and Nigella sativa (NS) have been traditionally claimed to cure wide range of diseases and used as medicine in different part of world, particularly in Saudi Arabia. Several research studies have been published that proved beneficial effects of CM and NS. Objective: This study was undertaken to investigate the antihepatotxic potential of CM and NS oil (NSO) against thioacetamide (TAA)-induced hepato and nephrotoxicity in rats. Materials and Methods: Thirty female Albino Wistar rats were randomly divided in to six groups having five rats in each group. A single subcutaneous injection of TAA (100 mg/kg b. w.) was administered to all the rats in Group-II to VI on 1st day to induce hepatorenal damage. Group I served as a normal control while Group II served as toxic control for comparison purpose. Experimental animals in Group III, IV, and V were supplemented with fresh CM, (250 mL/24 h/cage), NSO (2 mL/kg/day p. o.), and NSO + fresh CM, respectively. Group VI was treated with a polyherbal hepatoprotective Unani medicine Jigreen (2 mL/kg/day p. o.) for 21 days. TAA-induced hepatorenal damage and protective effects of CM and NSO were assessed by analyzing liver and kidney function tests in the serum. Histopathology of liver and kidney tissues was also carried out to corroborate the findings of biochemical investigation. Results: The results indicated that the TAA intoxicated rats showed significant increase in the alanine transaminase, aspartate transaminase, gamma-glutamyl transpeptidase, alkaline phosphatase, lipid profile, urea, creatinine, uric acid, sodium, and potassium levels in serum. Treatment of rats with CM, NSO, and CM plus NSO combination and Jigreen significantly reversed the damage and brought down the serum biochemical parameters and lipid profile toward the normal levels. The histopathological studies also support the hepato and nephroprotective effects of CM and NSO. Conclusion: This study demonstrated the ameliorative

  15. Antioxidant property of Nigella sativa (black cumin) and Syzygium aromaticum (clove) in rats during aflatoxicosis.

    PubMed

    Abdel-Wahhab, M A; Aly, S E

    2005-01-01

    Aflatoxins, a group of closely related, extremely toxic mycotoxins produced by Aspergillus flavus and A. parasiticus, can occur as natural contaminants of foods and feeds. Aflatoxins have been shown to be hepatotoxic, carcinogenic, mutagenic and teratogenic to different animal species. Nigella sativa (black cumin) and Syzygium aromaticum (clove) oil are used for the treatment of inflammatory diseases and have antioxidant properties. The aim of this study was to investigate the ability of these volatile oils to scavenge free radicals generated during aflatoxicosis. Sixty male rats were divided into six treatment groups, including a control group, and the groups were treated for 30 days with Nigella sativa and Syzygium aromaticum oils with or without aflatoxin. Blood samples were collected at the end of the experimental period for haematological and biochemical analysis. The results indicated that exposure to aflatoxins resulted in haematological and biochemical changes typical for aflatoxicosis. Treatment with Nigella sativa and Syzygium aromaticum oil of rats fed an aflatoxin-contaminated diet resulted in significant protection against aflatoxicosis. Moreover, Nigella sativa oil was found to be more effective than Syzygium aromaticum oil in restoring the parameters that were altered by aflatoxin in rats. Copyright 2005 John Wiley & Sons, Ltd

  16. Nigella sativa seed extract attenuates the fatigue induced by exhaustive swimming in rats

    PubMed Central

    Rahman, Mahbubur; Yang, Dong Kwon; Kim, Gi-Beum; Lee, Sei-Jin; Kim, Shang-Jin

    2017-01-01

    In previous studies, Nigella sativa (NS) has been studied due to its various physiological and pharmacological activities. However, evidence on the effects of NS on physical fatigue following exhaustive swimming remains limited. In the present study, the authors evaluated the potential beneficial effects of NS against the fatigue activity following exhaustive swimming. Rats were orally administered with NS extract (2 g/kg/day) for 21 days, and the anti-fatigue effect was assessed by exhaustive swimming exercise. The presented results indicated that pre-treatment of NS extract significantly increased the time to exhaustion. In hemodynamic parameters, NS extract increased blood pO2 and O2sat, but decreased pCO2. For underlying mechanisms, NS extract protected depletion of energy, indicated by increased levels of blood pH, glucose and tissue glycogen contents, and decreased levels of blood lactate, tissue lactic dehydrogenase and creatine kinase, when the NS extract was pre-treated. In addition, the NS extract inhibited oxidative stress following exhaustive swimming, as reflected by the results of increased levels of superoxide dismutase and redox ratio, and decreased the level of malondialdehyde when the NS extract was pre-treated. Collectively, the present study demonstrated that NS extract has an anti-fatigue activity against exhaustive swimming by energy restoration and oxidative-stress defense. PMID:28413647

  17. Rat Plasma Oxidation Status After Nigella Sativa L. Botanical Treatment in CCL(4)-Treated Rats.

    PubMed

    Soleimani, Hengameh; Ranjbar, Akram; Baeeri, Maryam; Mohammadirad, Azadeh; Khorasani, Reza; Yasa, Narguess; Abdollahi, Mohammad

    2008-01-01

    ABSTRACT Nigella sativa Linn. (family Ranunculaceae), commonly known as black cumin, is native to the Mediterranean area and has been used for thousands of years as a health and beauty aid. The present study investigated the protective effects of Nigella sativa (NS) extract (NSE) and oil (NSO) on CCl(4)-induced nitrosative stress and protein oxidation in rat. CCl(4) (0.8 mg/kg) was used as an aid for induction of nitrosative stress. In vitro antioxidant potential was tested in the presence of 2,4-dinitrophenylhyrdazine (DPPH) as an organic nitrogen radical. Doses of 0.2, 0.3, and 1 mg/kg of the NS extract and oil were administered to CCL(4)-treated rats for 10 days. At the end of treatment, blood was taken from rats under anesthesia and plasma was separated. The concentration of nitric oxide (NO), total antioxidant power (TAP), carbonyl molecules (CM) as measure of protein oxidation (PO), tumor necrosis factor-alpha (TNF-alpha), and total thiol molecules (TTM) were measured in plasma. In vitro evaluation of antioxidant effects of NSE and NSO showed that the highest antioxidant activity (80%) was observed with the concentration of 10 and 20 mg/ml, respectively, that were equal to vitamin E (200 mg/ml). Administration of CCL(4) increased plasma PO, NO, TNF-alpha and decreased TAP and TTM. Both NSE and NSO showed significant protection against CCl(4)-induced changes in biochemical parameters, but not dose-dependently. Doses of 0.3 and 1 mg/kg were more effective than doses of 0.2 mg/kg for both NSE and NSO, but dose of 1 mg/kg was the most effective one. The results indicate the potential of NS in preventing CCL(4)-induced toxic nitrosative stress. It is concluded that NS has marked antioxidant potentials that may be beneficial in alleviating complications of many illnesses related to oxidative/nitrosative stress in humans, but preclinical safety measures should be completed before clinical trials.

  18. Phytochemistry, pharmacology, and therapeutic uses of black seed (Nigella sativa).

    PubMed

    Kooti, Wesam; Hasanzadeh-Noohi, Zahra; Sharafi-Ahvazi, Naim; Asadi-Samani, Majid; Ashtary-Larky, Damoon

    2016-10-01

    Black seed (Nigella sativa) is an annual flowering plant from Ranunculaceae family, native to southwest Asia. This plant has many food and medicinal uses. The use of its seeds and oil is common for treatment of many diseases, including rheumatoid arthritis, asthma, inflammatory diseases, diabetes and digestive diseases. The purpose of this study was to provide a comprehensive review on the scientific reports that have been published about N. sativa. The facts and statistics presented in this review article were gathered from the journals accessible in creditable databases such as Science Direct, Medline, PubMed, Scopus, EBSCO, EMBASE, SID and IranMedex. The keywords searched in Persian and English books on medicinal plants and traditional medicine, as well as the above reputable databases were "Black seed", "Nigella sativa", "therapeutic effect", and "medicinal plant". The results showed that N. sativa has many biological effects such as anti-inflammatory, anti-hyperlipidemic, anti-microbial, anti-cancer, anti-oxidant, anti-diabetic, anti-hypertensive, and wound healing activities. It also has effects on reproductive, digestive, immune and central nervous systems, such as anticonvulsant and analgesic activities. In summary, it can be used as a valuable plant for production of new drugs for treatment of many diseases. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  19. Penile erection responses of Nigella sativa seed extract on isolated rat corpus cavernosum

    NASA Astrophysics Data System (ADS)

    Aminyoto, M.; Ismail, S.

    2018-04-01

    Nigella sativa L. (NS) from Ranunculaceae family is known as black cumin in Indonesia. The seed has been used as an aphrodisiac in ethnobotanical studies and reported to have pharmacological activities such as antihypertensive through the relaxant effect of vascular smooth muscles but the direct effect to the blood vessels of the corpus cavernosum is still unknown. The purpose of this study was to examine the response of NS seed extract on penile erection in vitro. NS seeds were macerated in ethanol solvent for three days in room temperature and repeated for two times. Penile erection responses was assessed using isolated rat corpus cavernosum in Krebs-Henseleit solution, temperature 37°C, pH 7.4, aerated with carbogen gas. After acclimation, corpus cavernosum was contracted with a phenylephrine solution. Ethanolic extract of NS seeds or control solution were given after reaching the plateu phase of the highest contraction. This study showed that the contraction response of the corpus cavernosum decreased after addition of NS extract and this action was increased with the addition of the extract concentration. This study concluded that NS seed ethanol extract affects the penile erection response directly through the relaxation of blood vessels in the corpus cavernosum.

  20. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt

    PubMed Central

    Abdel-Moneim, Adel; Morsy, Basant M.; Mahmoud, Ayman M.; Abo-Seif, Mohamed A.; Zanaty, Mohamed I.

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture. PMID:27298610

  1. Beneficial therapeutic effects of Nigella sativa and/or Zingiber officinale in HCV patients in Egypt.

    PubMed

    Abdel-Moneim, Adel; Morsy, Basant M; Mahmoud, Ayman M; Abo-Seif, Mohamed A; Zanaty, Mohamed I

    2013-01-01

    Hepatitis C is a major global health burden and Egypt has the highest prevalence of hepatitis C virus (HCV) worldwide. The current study was designed to evaluate the beneficial therapeutic effects of ethanolic extracts of Nigella sativa, Zingiber officinale and their mixture in Egyptian HCV patients. Sixty volunteer patients with proven HCV and fifteen age matched healthy subjects were included in this study. Exclusion criteria included patients on interferon alpha (IFN-α) therapy, infection with hepatitis B virus, drug-induced liver diseases, advanced cirrhosis, hepatocellular carcinoma (HCC) or other malignancies, blood picture abnormalities and major severe illness. Liver function enzymes, albumin, total bilirubin, prothrombin time and concentration, international normalized ratio, alpha fetoprotein and viral load were all assessed at baseline and at the end of the study. Ethanolic extracts of Nigella sativa and Zingiber officinale were prepared and formulated into gelatinous capsules, each containing 500 mg of Nigella sativa and/or Zingiber officinale. Clinical response and incidence of adverse drug reactions were assessed initially, periodically, and at the end of the study. Both extracts as well as their mixture significantly ameliorated the altered viral load, alpha fetoprotein, liver function parameters; with more potent effect for the combined therapy. In conclusion, administration of Nigella sativa and/or Zingiber officinale ethanolic extracts to HCV patients exhibited potential therapeutic benefits via decreasing viral load and alleviating the altered liver function, with more potent effect offered by the mixture.

  2. Anticancer activities of Nigella sativa (black cumin).

    PubMed

    Khan, Md Asaduzzaman; Chen, Han-chun; Tania, Mousumi; Zhang, Dian-zheng

    2011-01-01

    Nigella sativa has been used as traditional medicine for centuries. The crude oil and thymoquinone (TQ) extracted from its seeds and oil are effective against many diseases like cancer, cardiovascular complications, diabetes, asthma, kidney disease etc. It is effective against cancer in blood system, lung, kidney, liver, prostate, breast, cervix, skin with much safety. The molecular mechanisms behind its anticancer role is still not clearly understood, however, some studies showed that TQ has antioxidant role and improves body's defense system, induces apoptosis and controls Akt pathway. Although the anti-cancer activity of N. sativa components was recognized thousands of years ago but proper scientific research with this important traditional medicine is a history of last 2∼3 decades. There are not so many research works done with this important traditional medicine and very few reports exist in the scientific database. In this article, we have summarized the actions of TQ and crude oil of N. sativa against different cancers with their molecular mechanisms.

  3. In Vivo Subacute Toxicity and Antidiabetic Effect of Aqueous Extract of Nigella sativa

    PubMed Central

    Kacimi, Ghouti; Haffaf, El-Mehdi; Aouichat-Bouguerra, Souhila

    2017-01-01

    Context. Nigella sativa seeds are usually used as traditional medicine for a wide range of therapeutic purposes. Objective. To investigate the subacute toxicity of NS aqueous extract and select its lowest dose to study its antidiabetic effect. Methods. 5 AqE.NS doses (2, 6.4, 21, 33, and 60 g/Kg) were daily administered to mice by gavage. Biochemical parameters measurements and histological study of the liver and the kidney were performed after 6 weeks of supplementation. Thereafter, and after inducing diabetes by alloxan, rats were treated by 2 g/Kg of AqE.NS during 8 weeks. Metabolic parameters were measured on sera. A horizontal electrophoresis of plasmatic lipoprotein was conducted. Glycogen, total lipids, and triglycerides were measured in the liver. TBARS were evaluated on adipose tissue, liver, and pancreas. Results. AqE.NS showed no variation in urea and albumin at the 5 doses, but hepatotoxicity from 21 g/Kg was confirmed by histopathological observations of the liver. In diabetic rats, AqE.NS significantly decreased glycemia, TG, T-cholesterol, LDL-c, and TBARS and showed a restored insulinemia and a significant increase in HDL-c. Results on the liver indicated a decrease in lipids and a possible glycogenogenesis. Conclusion. AqE.NS showed its safety at low doses and its evident antihyperglycemic, antihyperlipidemic, and antioxidant effect. PMID:29479371

  4. Effect of Nigella sativa (black seeds) against methotrexate-induced nephrotoxicity in mice.

    PubMed

    Ahmed, Jawad Hassan; Abdulmajeed, Isra Mohammed

    2017-01-01

    To evaluate the protective effect of Nigella sativa (NS) against nephrotoxicity of methotrexate (MTX) in mice. Four groups of Swiss albino male mice, eight in each group were used. The study was carried on between October 2014 and April 2015. Group 1 (control) were administered 0.3 ml distilled water orally daily for 21 days and injected with normal saline (0.25 ml) IP weekly. Group 2 (MTX group) were treated with MTX, 10 mg/kg IP weekly, while Group 3 were treated with 0.125 ml of NS oil by mouth daily and injected with normal saline (0.25 ml) IP weekly. Group 4 received 0.125 ml of NS oil by mouth daily and injected with 10 mg/kg MTX IP weekly. Oral treatments were administered using a special curved smooth tip nontraumatic metal needle and IP injections were given for 3 weeks at days 7, 14 and 21. Animals were sacrificed at day 23. Malondialdehyde (MDA) and glutathione (GSH) measurements were performed on kidney homogenate. Histopathology of the kidneys were prepared and examined. MTX has resulted in a small elevation in MDA and reduction in GSH levels in kidney homogenate which was returned back to control values when NS and MTX were administered in combination. Statistical significance was achieved with elevation of GSH by MTX and NS compared to MTX alone. MTX caused histopathological changes suggesting nephrotoxicity in 6 animals out of 8, while no changes were found in all animals treated with MTX and NS. NS is protective against MTX-induced nephrotoxicity.

  5. Protective but Non-Synergistic Effects of Nigella Sativa and Vitamin E against Cisplatin-Induced Renal Toxicity and Oxidative Stress in Wistar Rats.

    PubMed

    Busari, Abdulwasiu A; Adejare, Abdullahi A; Shodipe, Abiodun F; Oduniyi, Oludaisi A; Ismail-Badmus, Khadijah B; Oreagba, Ibrahim A

    2018-06-26

    Cisplatin is an anti-cancer drug that causes nephrotoxicity and oxidative stress. Extracts of Nigella sativa is nephroprotective. Vitamin E is also a potent antioxidant. This study sought to determine a possible synergistic effect of administering the two agents prior to cisplatin use on nephrotoxicity and oxidative stress. 48 male Wistar rats were randomly divided into 6 groups of 8 rats each. Group I served as the control. Group II received cisplatin without any treatment for 6 days. Groups III, IV, V and VI received 100 mg/kg Nigella sativa (NS), 200 mg/kg NS, 100 mg/kg Vitamin E and 200 mg/kg NS+100 mg/kg Vitamin E respectively for 5 days prior to 6 days administration of cisplatin. On the last day of the experiment, all the animals were sacrificed and serum samples collected for analysis. Cisplatin administration caused a significant increase in creatinine level (p<0.01), urea level (p<0.01), sodium concentration and malondialdehyde level (p<0.001). Pre-administration with NS caused a significant reduction in creatinine level (p<0.001), urea level (p<0.001), sodium concentration (p<0.001) and malondialdehyde (p<0.01) level. Pre-administration with vitamin E caused a significant reduction in creatinine level (p<0.001), urea level (p<0.01), sodium concentration (p<0.001) and malondialdehyde level. They both also caused a significant increase in superoxide dismutase, reduced glutathione and catalase (CAT) levels. The combination of NS and vitamin E however did not show significant synergistic effects. These results suggest that even though pre-administration of the two agents protect against renal toxicity and oxidative stress, the effects are however not collaborative. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Effect of black cumin (Nigella sativa) on cadmium-induced oxidative stress in the blood of rats.

    PubMed

    Kanter, Mehmet; Coskun, Omer; Gurel, Ahmet

    2005-12-01

    The protective effect of black cumin (Nigella sativa = NS) on cadmium-induced oxidative stress was studied in rats. The rats were randomly divided into three experimental groups: A (conrol), B (Cd treated), and C (Cd + NS treated), each containing 10 animals. The Cd-treated and Cd + NS-treated groups were injected subcutaneously daily with CdCl2 dissolved in isotonic NaCl in the amount of 2 mL/kg for 30 d, resulting in a dosage of 0.49 mg Cd/kg/d. The control group was injected with only isotonic NaCl (2 mL/kg/d) throughout the experiment (for 30 d). Three days prior to induction of CdCl2, the Cd + NS-treated group received a daily intraperitoneal injection of 0.2 mL/kg NS until the end of the study. Cd treatment increased significantly the malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also increased significantly the antioxidant levels (superoxide dismutase, glutathione peroxidase, and catalase) (p<0.05) compared to the control group. Cd + NS treatment decreased significantly the elevated malondialdehyde levels in plasma and erythrocyte (p<0.01 and p<0.05, respectively) and also reduced significantly the enhanced antioxidant levels (p<0.05). Cd treatment increased significantly the activity of iron levels (p<0.05) in the plasma compared to the control group. Cd + NS treatment decreased the activity of iron levels (p<0.05) in the plasma compared to the Cd-treated group. In the control group with no treatment, histology of erythrocytes was normal. In the Cd-treated group, there were remarkable membrane destruction and hemolytic changes in erythrocytes. In the Cd + NS-treated group, these changes were less than in the Cd-treated group. Our results show that N. sativa exerts a protective effect against cadmium toxicity.

  7. Comparative gastroprotective effects of natural honey, Nigella sativa and cimetidine against acetylsalicylic acid induced gastric ulcer in albino rats.

    PubMed

    Bukhari, Mulazim Hussain; Khalil, Javed; Qamar, Samina; Qamar, Zahid; Zahid, Muhammad; Ansari, Navid; Bakhshi, Irfan Manzoor

    2011-03-01

    Natural honey (NH) and Nigella sativa (NS) seeds have been in use as a natural remedy for over thousands of years in various parts of the world. The aim of this study was to assess the protective effects of NS (Nigella sativa) and NH (natural honey) on acetylsalicylic acid induced gastric ulcer in an experimental model with comparison to Cimetidine (CD). Experimental, case control study. Pharmacology and Pathology Department of King Edward Medical University, Lahore, from June to August 2007. The study was conducted on 100 male albino rats, divided into 5 groups, with 20 animals in each group. Group A was used as a control and treated with Gum Tragacanth (GT). Eighty animals of the other groups were given acetylsalicylic acid (0.2 gm/kg body weight for 3 days) to produce ulcers by gavage. Two animals from each group were sacrificed for the detection of gastric ulcers. The remaining 72 animals were equally divided in four groups (B, C, D and E). The rats in group B, C and D were given NS, NH, and CD respectively while those in E were kept as such. No gastric lesions were seen in control group A while all the animals in group E revealed gastric ulcers. The animals of group B, C and D showed healing effects in 15/18 (83%), 14/18 (78%) and 17/18 (94%) animals grossly; 13/18 (72%), 14/18 (78%) and 16/18 (89%) rats showed recovery on microscopic examination respectively. The healing effects were almost the same in all three groups therefore, the statistical difference was not significant among them (p =0.40 and 0.65) while significant from group E (p=0.0000075, 0.0000016 and 0.0000012 respectively). NS and NH are equally effective in healing of gastric ulcer similar to cimetidine. Further broad spectrum studies as well as clinical trials should be conducted before the use of these products as routine medicines.

  8. Nigella sativa Oil and Chromium Picolinate Ameliorate Fructose-Induced Hyperinsulinemia by Enhancing Insulin Signaling and Suppressing Insulin-Degrading Enzyme in Male Rats.

    PubMed

    Elseweidy, Mohamed Mahmoud; Amin, Rawia Sarhan; Atteia, Hebatallah Husseini; Aly, Maha Abdo

    2017-10-04

    In vivo and in vitro studies suggested that chromium enhances insulin sensitivity by promoting insulin receptor signaling. However, its effect on insulin clearance has not been yet identified. Nigella sativa, a widely used spice, possesses an antidiabetic activity. We, therefore, hypothesized that chromium picolinate may alter insulin clearance by modulating insulin-degrading enzyme (IDE) in insulin-resistant rats. We evaluated also the effect of Nigella sativa oil on insulin signaling and degradation with respect to chromium picolinate. To assess these hypotheses, insulin resistance was induced in 30 male Wistar albino rats through daily oral administration of high-fructose water (HFW, 20% w/v) for 45 days. These rats were then divided into three groups (n = 10/group). They were given either no treatment (control group) or Nigella sativa oil (500 mg/kg bw/day) or chromium picoloinate (200 μg/kg bw/day) orally along with HFW (20% w/v) for 45 days. Nigella sativa oil or chromium picolinate concurrent administration with HFW significantly decreased body weight, serum lipids, glucagon, insulin resistance, and hepatic IDE level but increased its mRNA expression and insulin receptor phosphorlyation as well as high-density lipoprotein cholesterol (HDL-C) level as compared to control group values, suggesting their potential as modulators for insulin signaling and clearance. However, Nigella sativa oil exerted better improvement in feeding efficacy ratio as well as the levels of glucagon, insulin, insulin resistance, hepatic IDE level and insulin receptor phosphorylation than chromium picolinate, suggesting its greater insulin sensitizing capacity. Our data, for the first time, prove that Nigella sativa oil and chromium picolinate monotherapy can reduce fructose-induced insulin resistance by reduction of hepatic IDE protein and activation of insulin receptor signaling.

  9. Cardio-protective and anti-cancer therapeutic potential of Nigella sativa

    PubMed Central

    Shafiq, Hammad; Ahmad, Asif; Masud, Tariq; Kaleem, Muhammad

    2014-01-01

    Nigella sativa is the miraculous plant having a lot of nutritional and medicinal benefits, and attracts large number of nutrition and pharmacological researchers. N. sativa seed composition shows that it is the blessing of nature and it contains and many bioactive compounds like thymoquinone, α-hederin, alkaloids, flavonoids, antioxidants, fatty acids many other compounds that have positive effects on curing of different diseases. Several medicinal properties of N. sativa like its anti-cancer, anti-inflammatory, anti-diabetic, antioxidant activities and many others are well acknowledged. However, this article focuses on activity of N. sativa against cardiovascular diseases and cancer. For gathering required data the authors went through vast number of articles using search engines like Science direct, ELSEVIER, Pub Med, Willey on Line Library and Google scholar and the findings were classified on the basis of relevance of the topic and were reviewed in the article. N. sativa is rich source of different biologically active compounds and is found effective in controlling number of cardiovascular diseases and various cancers both in vivo and in vitro studies. PMID:25859300

  10. Hepatoprotective and immunological functions of Nigella sativa seed oil against hypervitaminosis A in adult male rats.

    PubMed

    Al-Suhaimi, Ebtesam Abdullah

    2012-08-01

    The toxic effects of excess vitamin A (VA) intake deserve increased attention. Nigella sativa (NS) seed possesses physiological and pharmacological actions and protects against toxic agents. This work investigated the availability of NS seed oil as a protective agent against the effects of hypervitaminosis A (HVA) on liver function and immunity. Fifty adult albino rats were used and divided into five groups: (G1) control; (G2) experimental HVA rats administered extreme doses (10,000 IU/kg body weight) of VA oil orally, daily for 6 weeks; (G3) rats treated with NS seed oil (800 mg/kg) orally, daily for 6 weeks; (G4) HVA rats simultaneously treated with NS seed oil at the same doses and periods; and (G5) HVA recovery group. Liver function, immunoglobulin (IgG and IgM) levels, and lysosome activity were measured in serum. HVA rats revealed marked elevations in alanine aminotransferase and aspartate aminotransferase activities. This is the first study to demonstrate that NS seed oil possesses significant hepatoprotective activity against HVA. NS seed oil was a potent inducer of IgG and IgM in rat serum either alone or with high doses of VA. These findings may be considered the initial steps of the physiological and humoral immune responses for NS seed oil against HVA, but further studies examining longer periods are needed prior to recommending the use of NS seed oil as an alternative medicine for hepatic and immune diseases.

  11. Physical, chemical and sensory properties of brownies substituted with sweet potato flour (Ipomoea batatas L.) with addition of black cumin oil (Nigella sativa L.)

    NASA Astrophysics Data System (ADS)

    Ligarnasari, I. P.; Anam, C.; Sanjaya, A. P.

    2018-01-01

    Effect of addition black cumin oil on the physical (hardness) characteristics, chemical (water, ash, fat, protein, carbohydrate, antioxidant IC50, total phenol and active component) characteristics and sensory (flavor, taste, texture, overall) characteristics of brownies substituted sweet potato flour were investigated. Substituted brownies was added with 0.05%, 0.10%, 0.15%, 0.20% and 0.25% of nigella sativa oil. The result showed that water content, ash, protein, fat, total phenol were increased and carbohydrate, antioxidant IC50 was decreased by the addition of nigella sativa oil. Due to the sensory characteristics, panelist gave the high score for substituted brownies which was added 0.05% nigella sativa oil. The result showed that the best formula of substituted brownies which was added 0.05% of nigella sativa oil had 24.89% water content, 1.19% ash content, 7.54% protein content, 37.79% fat content, 53.06% carbohydrate contain, 1043.6 ppm IC50 antioxidant and 0.22% total phenol. The active component on the brownies using GCMS identification were palmitic acid, oleic acid, lauric acid, theobromine and vitamin E.

  12. The effects of Nigella sativa on thyroid function, serum Vascular Endothelial Growth Factor (VEGF) - 1, Nesfatin-1 and anthropometric features in patients with Hashimoto's thyroiditis: a randomized controlled trial.

    PubMed

    Farhangi, Mahdieh Abbasalizad; Dehghan, Parvin; Tajmiri, Siroos; Abbasi, Mehran Mesgari

    2016-11-16

    Hashimoto's thyroiditis is an autoimmune disorder and the most common cause of hypothyroidism. The use of Nigella sativa, a potent herbal medicine, continues to increase worldwide as an alternative treatment of several chronic diseases including hyperlipidemia, hypertension and type 2 diabetes mellitus (T2DM). The aim of the current study was to evaluate the effects of Nigella sativa on thyroid function, serum Vascular Endothelial Growth Factor (VEGF) - 1, Nesfatin-1 and anthropometric features in patients with Hashimoto's thyroiditis. Forty patients with Hashimoto's thyroiditis, aged between 22 and 50 years old, participated in the trial and were randomly allocated into two groups of intervention and control receiving powdered Nigella sativa or placebo daily for 8 weeks. Changes in anthropometric variables, dietary intakes, thyroid status, serum VEGF and Nesfatin-1 concentrations after 8 weeks were measured. Treatment with Nigella sativa significantly reduced body weight and body mass index (BMI). Serum concentrations of thyroid stimulating hormone (TSH) and anti-thyroid peroxidase (anti-TPO) antibodies decreased while serum T3 concentrations increased in Nigella sativa-treated group after 8 weeks. There was a significant reduction in serum VEGF concentrations in intervention group. None of these changes had been observed in placebo treated group. In stepwise multiple regression model, changes in waist to hip ratio (WHR) and thyroid hormones were significant predictors of changes in serum VEGF and Nesgfatin-1 values in Nigella sativa treated group (P < 0.05). Our data showed a potent beneficial effect of powdered Nigella sativa in improving thyroid status and anthropometric variables in patients with Hashimoto's thyroiditis. Moreover, Nigella sativa significantly reduced serum VEGF concentrations in these patients. Considering observed health- promoting effect of this medicinal plant in ameliorating the disease severity, it can be regarded as a useful

  13. Neuroprotective effects of chloroform and petroleum ether extracts of Nigella sativa seeds in stroke model of rat

    PubMed Central

    Akhtar, Mohammad; Maikiyo, Aliyu Muhammad; Najmi, Abul Kalam; Khanam, Razia; Mujeeb, Mohd; Aqil, Mohd

    2013-01-01

    PURPOSE: Stroke still remains a challenge for the researchers and scientists for developing ideal drug. Several new drugs are being evaluated showing excellent results in preclinical studies but when tested in clinical trials, they failed. Many herbal drugs in different indigenous system of medicine claim to have beneficial effects but not extensively evaluated for stroke (cerebral ischemia). AIM: The present study was undertaken to evaluate chloroform and petroleum ether extract of Nigella sativa seeds administered at a dose of 400 mg/kg, per orally for seven days in middle cerebral artery occluded (MCAO) rats for its neuroprotective role in cerebral ischemia. MATERIALS AND METHODS: Focal cerebral ischemia was induced by middle cerebral artery occlusion for two hours followed by reperfusion for 22 hours. After 24 hours, grip strength, locomotor activity tests were performed in different treatment groups of rats. After completing behavioral tests, animals were sacrificed; brains were removed for the measurement of infarct volume followed by the estimation of markers of oxidative stress. RESULTS: Both chloroform and petroleum ether extracts-pretreated rats showed improvement in locomotor activity and grip strength, reduced infarct volume when compared with MCAO rats. MCA occlusion resulted in the elevation of levels of thiobarbituric acid reactive substance (TBARS), while a reduction in the levels of glutathione (GSH) and antioxidant enzymes viz. superoxide dismutase (SOD) and catalase levels were observed. Pre-treatment of both extracts of Nigella sativa showed reduction in TBARS, elevation in glutathione, SOD, and catalase levels when compared with MCAO rats. CONCLUSION: The chloroform and petroleum ether extract of Nigella sativa showed the protective effects in cerebral ischemia. The present study confirms the antioxidant, free radical scavenging, and anti-inflammatory properties of Nigella sativa already reported. PMID:23833517

  14. The Protective Effects of Nigella sativa and Its Constituents on Induced Neurotoxicity

    PubMed Central

    Khazdair, Mohammad Reza

    2015-01-01

    Nigella sativa (N. sativa) is an annual plant and widely used as medicinal plant throughout the world. The seeds of the plant have been used traditionally in various disorders and as a spice to ranges of Persian foods. N. sativa has therapeutic effects on tracheal responsiveness (TR) and lung inflammation on induced toxicity by Sulfur mustard. N. sativa has been widely used in treatment of various nervous system disorders such as Alzheimer disease, epilepsy, and neurotoxicity. Most of the therapeutic properties of this plant are due to the presence of some phenolic compounds especially thymoquinone (TQ), which is major bioactive component of the essential oil. The present review is an effort to provide a comprehensive study of the literature on scientific researches of pharmacological activities of the seeds of this plant on induced neurotoxicity. PMID:26604923

  15. The protective effect of Nigella sativa against liver injury: a review.

    PubMed

    Mollazadeh, Hamid; Hosseinzadeh, Hossein

    2014-12-01

    Nigella sativa (Family Ranunculaceae) is a widely used medicinal plant throughout the world. N. sativa is referred in the Middle East as a part of an overall holistic approach to health. Pharmacological properties of N. sativa including immune stimulant, hypotensive, anti-inflammatory, anti-cancer, antioxidant, hypoglycemic, spasmolytic and bronchodilator have been shown. Reactive oxygen species (ROS) and oxidative stress are known as the major causes of many diseases such as liver injury and many substances and drugs can induce oxidative damage by generation of ROS in the body. Many pharmacological properties of N. sativa are known to be attributed to the presence of thymoquinone and its antioxidant effects. Thymoquinone protects liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and glutathione level, radical scavengering, increasing the activity of quinone reductase, catalase, superoxide dismutase and glutathione transferase, inhibition of NF-κB activity and inhibition of both cyclooxygenase and lipoxygenase. Therefore, this review aimed to highlight the roles of ROS in liver diseases and the mechanisms of N. sativa in prevention of liver injury.

  16. Paracetamol-induced nephrotoxicity and oxidative stress in rats: the protective role of Nigella sativa.

    PubMed

    Canayakin, Dogukan; Bayir, Yasin; Kilic Baygutalp, Nurcan; Sezen Karaoglan, Esen; Atmaca, Hasan Tarik; Kocak Ozgeris, Fatma Betul; Keles, Mevlut Sait; Halici, Zekai

    2016-10-01

    Context Nigella sativa L. (Ranunculaceae) (NS) is traditionally used to treat many conditions such as inflammation. Objective This study evaluates the effects of NS seeds ethanol extract in paracetamol-induced acute nephrotoxicity in rats. Materials and methods Forty-eight female Wistar Albino rats were divided into eight groups: I = sham; II = sham + 1000 mg/kg NS; III = sham + 140 mg/kg (N-acetyl cysteine) NAC; IV = 2 g/kg paracetamol; V = 2 g/kg paracetamol + 140 mg/kg NAC; VI, VII and VIII = 2 g/kg paracetamol + 250, 500 and 1000 mg/kg NS, respectively. Paracetamol administration (oral) was carried out 1 h after NS and NAC administrations (oral), and all animals were sacrificed 24 h later. Results Paracetamol administration significantly increased serum urea (88.05 U/L) and creatinine (0.80 U/L) when compared with the sham group (49.80 and 0.31 U/L, respectively). However, serum urea level was reduced to 65.60, 56.00 and 54.18 U/L, with 250, 500 and 1000 mg/kg doses of the extract, respectively. Also, serum creatinine level was reduced to 0.64, 0.57 and 0.52 U/L with 250, 500 and 1000 mg/kg doses of the extract, respectively. NS administration increased superoxide dismutase and glutathione, and decreased malondialdehyde levels in the kidneys. Kidney histopathological examinations showed that NS administration antagonized paracetamol-induced kidney pathological damage. Discussion and conclusions The results suggest NS has a significant nephroprotective activity on paracetamol-induced nephrotoxicity. It may be suggested that the antiinflammatory and antioxidant effects of NS ethanolic extract originated from different compounds of its black seeds.

  17. Nigella sativa (black cumin) ameliorates potassium bromate-induced early events of carcinogenesis: diminution of oxidative stress.

    PubMed

    Khan, Naghma; Sharma, Sonia; Sultana, Sarwat

    2003-04-01

    Potassium bromate (KBrO3) is a potent nephrotoxic agent. In this paper, we report the chemopreventive effect of Nigella sativa (black cumin) on KBrO3-mediated renal oxidative stress, toxicity and tumor promotion response in rats. KBrO3 (125 mg/kg body weight, intraperitoneally) enhances lipid peroxidation, gamma-glutamyl transpeptidase, hydrogen peroxide and xanthine oxidase with reduction in the activities of renal antioxidant enzymes and renal glutathione content. A marked increase in blood urea nitrogen and serum creatinine has also been observed. KBrO3 treatment also enhances ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into renal DNA. Prophylaxis of rats orally with Nigella sativa extract (50 mg/kg body weight and 100 mg/kg body weight) resulted in a significant decrease in renal microsomal lipid peroxidation (P < 0.001), gamma-glutamyl transpeptidase (P < 0.001), H2O2 (P < 0.001) and xanthine oxidase (P < 0.05). There was significant recovery of renal glutathione content (P < 0.01) and antioxidant enzymes (P < 0.001). There was also reversal in the enhancement of blood urea nitrogen, serum creatinine, renal ODC activity and DNA synthesis (P < 0.001). Data suggest that Nigella sativa is a potent chemopreventive agent and may suppress KBrO3-mediated renal oxidative stress, toxicity and tumour promotion response in rats.

  18. Nigella sativa L. as an alternative antibiotic feed supplement and effect on growth performance in weanling pigs.

    PubMed

    Petrujkić, Branko T; Beier, Ross C; He, Haiqi; Genovese, Kenneth J; Swaggerty, Christina L; Hume, Michael E; Crippen, Tawni L; Harvey, Roger B; Anderson, Robin C; Nisbet, David J

    2018-06-01

    Nigella sativa L. (NS) is a plant containing bioactive constituents such as thymoquinone. Extracts of NS improve performance and reduce enteropathogen colonization in poultry and small ruminants, but studies with swine are lacking. In two different studies oral administration of NS extracts at doses equivalent to 0, 1.5 and 4.5 g kg -1 diet was assessed on piglet performance and intestinal carriage of wildtype Escherichia coli and Campylobacter, and Salmonella Typhimurium. Wildtype E. coli populations in the jejunal and rectal content collected 9 days after treatment began were decreased (P ≤ 0.05). Populations recovered from pigs treated with extract at 1.5 and 4.5 g kg -1 diet were 0.72-1.31 log 10 units lower than the controls (ranging from 6.05 to 6.61 log 10 CFU g -1 ). Wildtype Campylobacter and Salmonella Typhimurium were unaffected by NS treatment. Feed efficiency over the 9 days improved linearly (P < 0.05) from 3.88 with 0 NS-treated pigs to 1.47 and 1.41 with pigs treated with NS at 1.5 and 4.5 g kg -1 diet, respectively, possibly due to high glutamine/glutamic acid content of the NS extract. NS supplementation of weanling pigs improved feed efficiency and helped control intestinal E. coli during this vulnerable production phase. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Role of Nigella sativa and Its Constituent Thymoquinone on Chemotherapy-Induced Nephrotoxicity: Evidences from Experimental Animal Studies

    PubMed Central

    Cascella, Marco; Palma, Giuseppe; Barbieri, Antonio; Bimonte, Sabrina; Amruthraj, Nagoth Joseph; Muzio, Maria Rosaria; del Vecchio, Vitale; Rea, Domenica; Falco, Michela; Luciano, Antonio; Arra, Claudio; Cuomo, Arturo

    2017-01-01

    Background: Most chemotherapeutic drugs are known to cause nephrotoxicity. Therefore, new strategies have been considered to prevent chemotherapy-induced nephrotoxicity. It is of note that Nigella sativa (NS), or its isolated compound Thymoquinone (TQ), has a potential role in combating chemotherapy-induced nephrotoxicity. AIM: To analyze and report the outcome of experimental animal studies on the protective effects of NS/TQ on chemotherapy-associated kidney complications. Design: Standard systematic review and narrative synthesis. Data Sources: MEDLINE, EMBASE databases were searched for relevant articles published up to March 2017. Additionally, a manual search was performed. Criteria for a study’s inclusion were: conducted in animals, systematic reviews and meta-analysis, containing data on nephroprotective effects of NS/TQ compared to a placebo or other substance. All strains and genders were included. Results: The database search yielded 71 studies, of which 12 (cisplatin-induced nephrotoxicity 8; methotrexate-induced nephrotoxicity 1; doxorubicin-induced nephrotoxicity 2; ifosfamide-induced nephrotoxicity 1) were included in this review. Conclusions: Experimental animal studies showed the protective effect of NS, or TQ, on chemotherapy-induced nephrotoxicity. These effects are caused by decreasing lipid peroxidation and increasing activity of antioxidant enzymes in renal tissue of chemotherapy-treated animals. PMID:28629150

  20. Nigella sativa Oil Enhances the Spatial Working Memory Performance of Rats on a Radial Arm Maze

    PubMed Central

    Sahak, Mohamad Khairul Azali; Mohamed, Abdul Majid; Hashim, Noor Hashida; Hasan Adli, Durriyyah Sharifah

    2013-01-01

    Nigella sativa, an established historical and religion-based remedy for a wide range of health problems, is a herbal medicine known to have antioxidant and neuroprotective effects. This present study investigated the effect of Nigella sativa oil (NSO) administration on the spatial memory performance (SMP) of male adult rats using eight-arm radial arm maze (RAM). Twelve Sprague Dawley rats (7–9 weeks old) were force-fed daily with 6.0 μL/100 g body weight of Nigella sativa oil (NSO group; n = 6) or 0.1 mL/100 g body weight of corn oil (control) (CO group; n = 6) for a period of 20 consecutive weeks. For each weekly evaluation of SMP, one day food-deprived rats were tested by allowing each of them 3 minutes to explore the RAM for food as their rewards. Similar to the control group, the SMP of the treated group was not hindered, as indicated by the establishment of the reference and working memory components of the spatial memory. The results demonstrated that lesser mean numbers of error were observed for the NSO-treated group in both parameters as compared to the CO-treated group. NSO could therefore enhance the learning and memory abilities of the rats; there was a significant decrease in the overall mean number of working memory error (WME) in the NSO-treated group. PMID:24454487

  1. The relaxant effect of Nigella sativa on smooth muscles, its possible mechanisms and clinical applications

    PubMed Central

    Keyhanmanesh, Rana; Gholamnezhad, Zahra; Boskabady, Mohammad Hossien

    2014-01-01

    Nigella sativa (N. sativa) is a spice plant which has been traditionally used for culinary and medicinal purposes. Different therapeutic properties including the beneficial effects on asthma and dyspnea, digestive and gynecology disorders have been described for the seeds of N. sativa. There is evidence of the relaxant effects of this plant and some of its constituents on different types of smooth muscle including rabbit aorta, rabbit jejunum and trachea. The relaxant effect of N. sativa could be of therapeutic importance such as bronchodilation in asthma, vasodilation in hypertension and therapeutic effect on digestive or urogenital disorders. Therefore in the present article, the relaxant effects of N. sativa and its constituents on smooth muscles and its possible mechanisms as well as clinical application of this effect were reviewed. PMID:25859297

  2. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family.

    PubMed

    Ulasli, Mustafa; Gurses, Serdar A; Bayraktar, Recep; Yumrutas, Onder; Oztuzcu, Serdar; Igci, Mehri; Igci, Yusuf Ziya; Cakmak, Ecir Ali; Arslan, Ahmet

    2014-03-01

    Extracts of Anthemis hyalina (Ah), Nigella sativa (Ns) and peels of Citrus sinensis (Cs) have been used as folk medicine to fight antimicrobial diseases. To evaluate the effect of extracts of Ah, Ns and Cs on the replication of coronavirus (CoV) and on the expression of TRP genes during coronavirus infection, HeLa-CEACAM1a (HeLa-epithelial carcinoembryonic antigen-related cell adhesion molecule 1a) cells were inoculated with MHV-A59 (mouse hepatitis virus-A59) at moi of 30. 1/50 dilution of the extracts was found to be the safe active dose. ELISA kits were used to detect the human IL-8 levels. Total RNA was isolated from the infected cells and cDNA was synthesized. Fluidigm Dynamic Array nanofluidic chip 96.96 was used to analyze the mRNA expression of 21 TRP genes and two control genes. Data was analyzed using the BioMark digital array software. Determinations of relative gene expression values were carried out by using the 2(-∆∆Ct) method (normalized threshold cycle (Ct) value of sample minus normalized Ct value of control). TCID50/ml (tissue culture infectious dose that will produce cytopathic effect in 50% of the inoculated tissue culture cells) was found for treatments to determine the viral loads. The inflammatory cytokine IL-8 level was found to increase for both 24 and 48 h time points following Ns extract treatment. TRPA1, TRPC4, TRPM6, TRPM7, TRPM8 and TRPV4 were the genes which expression levels changed significantly after Ah, Ns or Cs extract treatments. The virus load decreased when any of the Ah, Ns or Cs extracts was added to the CoV infected cells with Ah extract treatment leading to undetectable virus load for both 6 and 8 hpi. Although all the extract treatments had an effect on IL-8 secretion, TRP gene expression and virus load after CoV infection, it was the Ah extract treatment that showed the biggest difference in virus load. Therefore Ah extract is the best candidate in our hands that contains potential treatment molecule(s).

  3. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa

    PubMed Central

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-01-01

    Background Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Methods Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Results Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. Conclusions The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis. PMID:27904421

  4. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    PubMed

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  5. Stability Study of Algerian Nigella sativa Seeds Stored under Different Conditions

    PubMed Central

    Ahamad Bustamam, Muhammad Safwan; Hadithon, Kamarul Arifin; Rukayadi, Yaya; Lajis, Nordin

    2017-01-01

    In a study to determine the stability of the main volatile constituents of Nigella sativa seeds stored under several conditions, eight storage conditions were established, based on the ecological abiotic effects of air, heat, and light. Six replicates each were prepared and analyzed with Headspace-Gas Chromatography-Mass Spectrometry (HS-GC-MS) for three time points at the initial (1st day (0)), 14th (1), and 28th (2) day of storage. A targeted multivariate analysis of Principal Component Analysis revealed that the stability of the main volatile constituents of the whole seeds was better than that of the ground seeds. Exposed seeds, whole or ground, were observed to experience higher decrement of the volatile composition. These ecofactors of air, heat, and light are suggested to be directly responsible for the loss of volatiles in N. sativa seeds, particularly of the ground seeds. PMID:28255502

  6. Nigella sativa L. seeds modulate mood, anxiety and cognition in healthy adolescent males.

    PubMed

    Bin Sayeed, Muhammad Shahdaat; Shams, Tahiatul; Fahim Hossain, Sarder; Rahman, Md Rezowanur; Mostofa, Agm; Fahim Kadir, Mohammad; Mahmood, Sharif; Asaduzzaman, Md

    2014-02-27

    Previous studies conducted on animals linked consumption of Nigella sativa L. seeds (NS) to decreased anxiety and improved memory. The present study, which was carried out at a boarding school in Bangladesh, was designed to examine probable effect of NS on mood, anxiety and cognition in adolescent human males. Forty-eight healthy adolescent human males aged between 14 to 17 years were randomly recruited as volunteers and were randomly split into two groups: A (n=24) and B (n=24). The treatment procedure for group A and B were one capsule of 500 mg placebo and 500 mg NS respectively once daily for four weeks. All the volunteers were assessed for cognition with modified California verbal learning test-II (CVLT-II), mood with Bond-Lader scale and anxiety with State-Trait Anxiety Inventory (STAI) at the beginning and after four weeks of either NS or placebo ingestion. No parameter showed statistically significant variation between A and B in measurements in the beginning, but after 4 weeks of one capsule of NS 500 mg intake, there was statistically significant variation of mood within group B but there was not statistically significant variation between group A and B. No significant variation was found in state anxiety within groups and between group A and B but in case of trait anxiety, significant variation was found within group B but not between group A and B. In case of CVLT II, there was significant variation within B in immediate short-term recall at trial 4 and 5 whereas this difference was found only in case of trial 5 between group A and B. Within group B, short term-free recall, long-term free recall and long-term cued recall had statistical difference whereas between group A and B long-term free recall and long-term cued recall had statistical difference. No parameters had significant variation within group A after placebo intake for 4 weeks. Over the 4 weeks study period, the use of NS as a nutritional supplement been observed to- stabilize mood, decrease

  7. The effect of fixed oil and water extracts of Nigella sativa on sickle cells: an in vitro study.

    PubMed

    Ibraheem, N K; Ahmed, J H; Hassan, M K

    2010-03-01

    Various drugs have been investigated in the treatment of sickle cell disease (SCD), such as hydroxyurea, piracetam and calcium antagonists. Most of these drugs are potentially toxic and are not suitable for long-term therapy. Recently, Nigella sativa (NS) has been reported to have calcium antagonist and antioxidant activities, both of which play a role in the management of the disease. This study aimed to investigate the in vitro antisickling effect of extracts from NS. Thirty-two patients with SCD, aged 7-47 years old, were recruited for the study. A total of 3 ml of venous blood was collected from each patient and divided into six tubes with heparin. The blood was mixed with 0.5 ml of either 0.1 percent, 0.05 percent or 0.01 percent v/v of the oil extract of NS. A slide was prepared by spreading a drop of treated blood, covered with a cover slide to ensure the complete deoxygenation condition. The separation of irreversibly sickled cells (ISCs) was performed on eight patients by a density gradient (Percoll-Renografin) centrifugation method. The 0.1 percent v/v concentration of the oil extract of NS resulted in an approximately 80 percent reduction in the formation of sickle cells. The 0.05 percent v/v concentration of NS produced an intermediate effect, while the 0.01 percent v/v concentration had no effect on the formation of sickle cells. The 0.1 percent v/v concentration of the fixed oil of NS led to a considerable reduction in the formation of ISCs. The fixed oil extracted from NS seeds has an in vitro antisickling activity.

  8. A review on therapeutic potential of Nigella sativa: A miracle herb

    PubMed Central

    Ahmad, Aftab; Husain, Asif; Mujeeb, Mohd; Khan, Shah Alam; Najmi, Abul Kalam; Siddique, Nasir Ali; Damanhouri, Zoheir A.; Anwar, Firoz

    2013-01-01

    Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant. PMID:23646296

  9. A review on therapeutic potential of Nigella sativa: A miracle herb.

    PubMed

    Ahmad, Aftab; Husain, Asif; Mujeeb, Mohd; Khan, Shah Alam; Najmi, Abul Kalam; Siddique, Nasir Ali; Damanhouri, Zoheir A; Anwar, Firoz

    2013-05-01

    Nigella sativa (N. sativa) (Family Ranunculaceae) is a widely used medicinal plant throughout the world. It is very popular in various traditional systems of medicine like Unani and Tibb, Ayurveda and Siddha. Seeds and oil have a long history of folklore usage in various systems of medicines and food. The seeds of N. sativa have been widely used in the treatment of different diseases and ailments. In Islamic literature, it is considered as one of the greatest forms of healing medicine. It has been recommended for using on regular basis in Tibb-e-Nabwi (Prophetic Medicine). It has been widely used as antihypertensive, liver tonics, diuretics, digestive, anti-diarrheal, appetite stimulant, analgesics, anti-bacterial and in skin disorders. Extensive studies on N. sativa have been carried out by various researchers and a wide spectrum of its pharmacological actions have been explored which may include antidiabetic, anticancer, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, bronchodilator, hepato-protective, renal protective, gastro-protective, antioxidant properties, etc. Due to its miraculous power of healing, N. sativa has got the place among the top ranked evidence based herbal medicines. This is also revealed that most of the therapeutic properties of this plant are due to the presence of thymoquinone which is major bioactive component of the essential oil. The present review is an effort to provide a detailed survey of the literature on scientific researches of pharmacognostical characteristics, chemical composition and pharmacological activities of the seeds of this plant.

  10. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats.

    PubMed

    Altan, Mehmet Fatih; Kanter, Mehmet; Donmez, Senayi; Kartal, Murat Emre; Buyukbas, Sadik

    2007-01-01

    Extracts of the seeds of Nigella sativa (NS), an annual herbaceous plant of the Ranunculaceae family, have been used for many years for therapeutic purposes, including their potential anti-diabetic properties. The aim of the present study was to test the hypothesis that combined treatment with NS and human parathyroid hormone (hPTH) is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, biomechanical behaviour and strength in insulin-dependent diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) at a single dose of 50mg/kg. The diabetic rats received NS (2ml/kg/day, i.p.), hPTH (6microg/kg/day, i.p.) or NS and hPTH combined for 4 weeks, starting 8 weeks after STZ injection. The beta-cells of the pancreatic islets of Langerhans were examined by immunohistochemical methods. In addition, bone sections of femora were processed for histomorphometry and biomechanical analysis. In diabetic rats, the beta-cells were essentially negative for insulin-immunoreactivity. NS treatment (alone or in combination with hPTH) significantly increased the area of insulin immunoreactive beta-cells in diabetic rats; however, hPTH treatment alone only led to a slightly increase in the insulin-immunoreactivity. These results suggest that NS might be used in a similar manner to insulin as a safe and effective therapy for diabetes and might be useful in the treatment of diabetic osteopenia.

  11. Protective Effects of Nigella sativa on Metabolic Syndrome in Menopausal Women

    PubMed Central

    Ibrahim, Ramlah Mohamad; Hamdan, Nurul Syima; Ismail, Maznah; Saini, Suraini Mohd; Abd Rashid, Saiful Nizam; Abd Latiff, Latiffah; Mahmud, Rozi

    2014-01-01

    Purpose: This study was conducted in menopausal women to determine the metabolic impact of Nigella sativa. Methods: Thirty subjects who were menopausal women within the age limit of 45-60 were participated in this study and randomly allotted into two experimental groups. The treatment group was orally administered with N. sativa seeds powder in the form of capsules at a dose of 1g per day after breakfast for period of two months and compared to control group given placebo. Anthropometric and biochemical parameters were measured at baseline, 1st month, 2nd month and a month after treatment completed to determine their body weight, serum lipid profile and fasting blood glucose (FBG). Results: The treatment group showed slight reduction with no significant difference in body weight changes of the respondents. However, significant (p<0.05) improvement was observed in total cholesterol (TC), triglycerides (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and blood glucose (p<0.05). Conclusion: These results suggested that treatment with N. sativa exert a protective effect by improving lipid profile and blood glucose which are in higher risk to be elevated during menopausal period. PMID:24409406

  12. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity.

    PubMed

    Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-11-01

    It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.

  13. Deodorizing Substance in Black Cumin (Nigella sativa L.) Seed Oil.

    PubMed

    Nakasugi, Toru; Murakawa, Takushi; Shibuya, Koji; Morimoto, Masanori

    2017-08-01

    A deodorizing substance in black cumin (Nigella sativa L.), a spice for curry and vegetable foods in Southwest Asia, was examined. The essential oil prepared from the seeds of this plant exhibited strong deodorizing activity against methyl mercaptan, which is a main factor in oral malodor. After purification with silica gel column chromatography, the active substance in black cumin seed oil was identified as thymoquinone. This monoterpenic quinone functions as the main deodorizing substance in this oil against methyl mercaptan. Metabolite analysis suggested that the deodorizing activity may be generated by the addition of a reactive quinone molecule to methyl mercaptan. In the present study, the menthane-type quinone and phenol derivatives exhibited deodorizing activities via this mechanism.

  14. Repellency to ticks (Acari: Ixodidae) of extracts of nigella sativa L.(Ranunculaceae) and the anti-inflammatory DogsBestFriend™

    USDA-ARS?s Scientific Manuscript database

    Motivated by observations that the canine anti-inflammatory cream DogsBestFriend™ (DBF) appeared to deter flies, mosquitoes, and ticks from treated animals, repellent efficacy bioassays using four species of ticks were conducted with three extracts of Nigella sativa L. (Ranunculaceae), a constituent...

  15. A review of Neuropharmacology Effects of Nigella sativa and Its Main Component, Thymoquinone.

    PubMed

    Javidi, Soheila; Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2016-08-01

    Neuropharmacology is the scientific study of drug effect on nervous system. In the last few years, different natural plants and their active constituents have been used in neurological therapy. The availability, lower price, and less toxic effects of herbal medicines compared with synthetic agents make them as simple and excellent choice in the treatment of nervous diseases. Nigella sativa, which belongs to the botanical family of Ranunculaceae, is a widely used medicinal plant all over the world. In traditional and modern medicines several beneficial properties have been attributed to N. sativa and its main component, thymoquinone (TQ). In this review, various studies in scientific databases regarding the neuropharmacological aspects of N. sativa and TQ have been introduced. Results of these studies showed that N. sativa and TQ have several properties including anticonvulsant, antidepressant, anxiolytic, anti-ischemic, analgesic, antipsychotic, and memory enhancer. Furthermore, its protective effects against neurodegenerative diseases such as Alzheimer, Parkinson and multiple sclerosis have been discussed. Although there are many studies indicating the beneficial actions of this plant in nervous system, the number of research projects relating to the human reports is rare. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. A review on the inhibitory potential of Nigella sativa against pathogenic and toxigenic fungi.

    PubMed

    Shokri, Hojjatollah

    2016-01-01

    Nigella sativa (N. sativa) grows in various parts of the world, particularly in Iran. It has been traditionally used as a folk remedy to treat a number of diseases. The seeds of this plant contain moisture, proteins, carbohydrates, crude fiber, alkaloids, saponins, ash, fixed oils and essential oil. The major components of the essential oil are thymoquinone, p-cymene, trans-anethole, 2-methyl-5(1-methyl ethyl)-Bicyclo[3.1.0]hex-2-en and γ-terpinene. So far, several pharmacological effects such as anti-oxidant, anti-inflammatory, anti-cancer and anti-microbial have been reported for N. sativa or its active compounds. Thymoquinone, thymohydroquinone and thymol are the most active constituents which have different beneficial properties. The oil, extracts and some of N. sativa active components possessed moderate in vitro and in vivo inhibitory activity against pathogenic yeasts, dermatophytes, non-dermatophytic filamentous fungi and aflatoxin-producing fungi. The main morphological changes of pathogenic and toxigenic fungi treated with N. sativa oil were observed in the cell wall, plasma membrane and membranous organelles, particularly in the nuclei and mitochondria. Although this review represents first step in the search for a new anti-fungal drug, the full potential of N. sativa as a fungitoxic agent has not been exploited and necessitates further investigations.

  17. The effects of Nigella sativa L. on obesity: A systematic review and meta-analysis.

    PubMed

    Namazi, Nazli; Larijani, Bagher; Ayati, Mohammad Hossein; Abdollahi, Mohammad

    2018-06-12

    Nigella sativa L. (N.sativa) is a traditional herbal medicine that has been used for centuries to treat rheumatoid arthritis, diabetes, asthma, and other metabolic disorders. Recently, anti-obesity characteristics of N.sativa have been indicated. The effects of N. sativa as a complementary therapy in obesity management remains controversial. We aimed to perform a meta-analysis on the effects of supplementation with N. sativa on some anthropometric indices in adult subjects. We searched PubMed/Medline, Cochrane Library, ISI Web of Science, and Scopus databases until June 2017 to identify relevant placebo-controlled clinical trials. Data was reported as weighted mean differences and standard deviations to show the magnitude of effects for N. sativa on body weight, body mass index (BMI) and waist circumference (WC). Findings of 11 studies revealed that N. sativa supplement reduced body weight (-2.11 kg, 95% CI: -3.61, -0.61, I 2 :72.4%), BMI (-1.16 kg/m 2 ; 95%CI: -1.81, -0.51; I 2 : 40.1%) and WC (-3.52 cm, 95%CI: -4.10, -2.92, I 2 =0%) significantly compared to placebo groups. Supplementation with N. sativa exerts a moderate effect on reduction in body weight, BMI and WC. However, due to the high heterogeneity for body weight and limited high quality studies, the findings should be declared by caution. No serious side effects were also reported following N. sativa supplementation. Further studies are needed to clarify the effects of N. sativa on other anthropometric indices. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The effect of Nigella sativa alone, and in combination with dexamethasone, on tracheal muscle responsiveness and lung inflammation in sulfur mustard exposed guinea pigs.

    PubMed

    Boskabady, Mohammad Hossein; Vahedi, Nassim; Amery, Sediqa; Khakzad, Mohammad Reza

    2011-09-02

    ETHNOMEDICAL RELEVANCE: The anti-inflammatory activity of both systemic and local administrations of essential oil from Nigella sativa L. has been shown. Therefore, the effect of Nigella sativa on tracheal responsiveness (TR) and lung inflammation of sulfur mustard (SM) exposed guinea pigs was examined. Guinea pigs were exposed to diluent solution (control group), inhaled SM (SME group), SME treated with Nigella sativa (SME+N), SME treated with dexamethasone (SME+D) and SME treated with both drugs (SME+N+D), (n=7 for each group). TR to methacholine, total white blood cell (WBC) and differential WBC count of lung lavage, and serum cytokines were measured 14 days post-exposure. The values of TR, eosinophil, monocyte, lymphocyte, interleukine-4 (IL-4) and interferon gamma (IFN-γ) of SME group were significantly higher than those of controls (p<0.05 to p<0.001). The TR in SME+N, SME+D and SME+N+D was significantly lower compared to that of SME group (p<0.01 for all cases). The percentage of eosinophil in SME+D, and the percentage of monocyte in SME+N+D (p<0.05 to p<0.01) were significantly lower than those in SME group. The neutrophil number was decreased in SME+N and SME+N+D groups compared to SME animals (p<0.05 to p<0.01). IL-4 levels in serum of SME+N (p<0.01), SME+D (p<0.05), SME+N+D (p<0.01) and IFN-γ in SME+N (p<0.05) were greater than those in SME animals. These results showed a preventive effect of Nigella sativa on TR and lung inflammation of SM exposed guinea pigs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Feeding of Nigella sativa during neonatal and juvenile growth improves learning and memory of rats

    PubMed Central

    Beheshti, Farimah; Hosseini, Mahmoud; Vafaee, Farzaneh; Shafei, Mohammad Naser; Soukhtanloo, Mohammad

    2015-01-01

    The positive roles of antioxidants on brain development and learning and memory have been suggested. Nigella sativa (NS) has been suggested to have antioxidant and neuroprotective effects. This study was done to investigate the effects of feeding by the hydro-alcoholic extract of NS during neonatal and juvenile growth on learning and memory of rats. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into four Groups including: (1) control; (2) NS 100 mg/kg (NS 100); (3) NS 200 mg/kg (NS 200); and (4) NS 400 mg/kg (NS 400). Rats in the control group (Group 1) received normal drinking water, whereas Groups 2, 3, and 4 received the same drinking water supplemented with the hydro-alcoholic extract of NS (100 mg/kg, 200 mg/kg, and 400 mg/kg, respectively) from the 1st day after birth through the first 8 weeks of life. After 8 weeks, 10 male offspring from each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) test. Finally, the brains were removed and total thiol groups and malondialdehyde (MDA) concentrations were determined. In the MWM, treatment by 400 mg/kg extract reduced both the time latency and the distance traveled to reach the platform compared to the control group (p < 0.05–p < 0.01). Both 200 mg/kg and 400 mg/kg of the extract increased the time spent in the target quadrant (p < 0.05–p < 0.01). In the PA test, the treatment of the animals by 200 mg/kg and 400 mg/kg of NS extract significantly increased the time latency for entering the dark compartment (p < 0.05–p < 0.001). Pretreatment of the animals with 400 mg/kg of NS extract decreased the MDA concentration in hippocampal tissues whereas it increased the thiol content compared to the control group (p < 0.001). These results allow us to propose that feeding of the rats by the hydro-alcoholic extract of NS during neonatal and juvenile growth has positive effects on learning and memory. The

  20. Microencapsulation of Nigella sativa oleoresin by spray drying for food and nutraceutical applications.

    PubMed

    Edris, Amr E; Kalemba, Danuta; Adamiec, Janusz; Piątkowski, Marcin

    2016-08-01

    Oleoresin of Nigella sativa L. (Black cumin) was obtained from the seeds using hexane extraction at room temperature. The oleoresin was emulsified in an aqueous solution containing gum Arabic/maltodextrin (1:1 w/w) and then encapsulated in powder form by spray drying. The characteristics of the obtained powder including moisture content, bulk density, wettability, morphology, encapsulation efficiency were evaluated. The effect of the spray drying on the chemical composition of the volatile oil fraction of N. sativa oleoresin was also evaluated using gas chromatographic-mass spectroscopic analysis. Results indicated that the encapsulation efficiency of the whole oleoresin in the powder can range from 84.2±1.5% to 96.2±0.2% depending on the conditions of extracting the surface oil from the powder. On the other hand the encapsulation efficiency of the volatile oil fraction was 86.2% ±4.7. The formulated N. sativa L. oleoresin powder can be used in the fortification of processed food and nutraceuticals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Anticancer activity of Nigella sativa (black seed) and its relationship with the thermal processing and quinone composition of the seed.

    PubMed

    Agbaria, Riad; Gabarin, Adi; Dahan, Arik; Ben-Shabat, Shimon

    2015-01-01

    The traditional preparation process of Nigella sativa (NS) oil starts with roasting of the seeds, an allegedly unnecessary step that was never skipped. The aims of this study were to investigate the role and boundaries of thermal processing of NS seeds in the preparation of therapeutic extracts and to elucidate the underlying mechanism. NS extracts obtained by various seed thermal processing methods were investigated in vitro for their antiproliferative activity in mouse colon carcinoma (MC38) cells and for their thymoquinone content. The effect of the different methods of thermal processing on the ability of the obtained NS oil to inhibit the nuclear factor kappa B (NF-κB) pathway was then investigated in Hodgkin's lymphoma (L428) cells. The different thermal processing protocols yielded three distinct patterns: heating the NS seeds to 50°C, 100°C, or 150°C produced oil with a strong ability to inhibit tumor cell growth; no heating or heating to 25°C had a mild antiproliferative effect; and heating to 200°C or 250°C had no effect. Similar patterns were obtained for the thymoquinone content of the corresponding oils, which showed an excellent correlation with the antiproliferative data. It is proposed that there is an oxidative transition mechanism between quinones after controlled thermal processing of the seeds. While NS oil from heated seeds delayed the expression of NF-κB transcription, non-heated seeds resulted in only 50% inhibition. The data indicate that controlled thermal processing of NS seeds (at 50°C-150°C) produces significantly higher anticancer activity associated with a higher thymoquinone oil content, and inhibits the NF-κB signaling pathway.

  2. Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds.

    PubMed

    Liu, X; Abd El-Aty, A M; Shim, J-H

    2011-10-01

    Nigella sativa L. (black cumin), commonly known as black seed, is a member of the Ranunculaceae family. This seed is used as a natural remedy in many Middle Eastern and Far Eastern countries. Extracts prepared from N. sativa have, for centuries, been used for medical purposes. Thus far, the organic compounds in N. sativa, including alkaloids, steroids, carbohydrates, flavonoids, fatty acids, etc. have been fairly well characterized. Herein, we summarize some new extraction techniques, including microwave assisted extraction (MAE) and supercritical extraction techniques (SFE), in addition to the classical method of hydrodistillation (HD), which have been employed for isolation and various analytical techniques used for the identification of secondary metabolites in black seed. We believe that some compounds contained in N. sativa remain to be identified, and that high-throughput screening could help to identify new compounds. A study addressing environmentally-friendly techniques that have minimal or no environmental effects is currently underway in our laboratory.

  3. Nigella sativa Relieves the Altered Insulin Receptor Signaling in Streptozotocin-Induced Diabetic Rats Fed with a High-Fat Diet.

    PubMed

    Balbaa, Mahmoud; El-Zeftawy, Marwa; Ghareeb, Doaa; Taha, Nabil; Mandour, Abdel Wahab

    2016-01-01

    The black cumin (Nigella sativa) "NS" or the black seeds have many pharmacological activities such as antioxidant, anticarcinogenic, antihypertensive, and antidiabetic properties. In this work, streptozotocin-induced diabetic rats fed with a high-fat diet were treated daily with NS oil (NSO) in order to study the effect on the blood glucose, lipid profile, oxidative stress parameters, and the gene expression of some insulin receptor-induced signaling molecules. This treatment was combined also with some drugs (metformin and glimepiride) and the insulin receptor inhibitor I-OMe-AG538. The administration of NSO significantly induced the gene expression of insulin receptor compared to rats that did not receive NSO. Also, it upregulated the expression of insulin-like growth factor-1 and phosphoinositide-3 kinase, whereas the expression of ADAM-17 was downregulated. The expression of ADAM-17 is corroborated by the analysis of TIMP-3 content. In addition, the NSO significantly reduced blood glucose level, components of the lipid profile, oxidative stress parameters, serum insulin/insulin receptor ratio, and the tumor necrosis factor-α, confirming that NSO has an antidiabetic activity. Thus, the daily NSO treatment in our rat model indicates that NSO has a potential in the management of diabetes as well as improvement of insulin-induced signaling.

  4. Cytogenetic studies on Nigella sativa seeds extract and thymoquinone on mouse cells infected with schistosomiasis using karyotyping.

    PubMed

    Aboul-Ela, Ezzat I

    2002-04-26

    The protective effect of Nigella sativa seed extract and its main constituents thymoquinone (TQ) was studied on mouse cells infected with schistosomiasis. Bone marrow cells in the in vivo experiments and spleen cells in the in vitro one were used to evaluate the potentially protective effect of these natural compounds on the induction of chromosomal aberrations. Karyotyping of the mice cells illustrated that the main abnormalities were gaps, fragments and deletions especially in chromosomes 2, 6 and some in chromosomes 13 and 14. Both N. sativa extract and TQ were considered as protective agents against the chromosomal aberrations induced as a result of schistosomiasis.

  5. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm

    PubMed Central

    Al-Shabib, Nasser A.; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F.; Tarasov, Vadim V.; Aliev, Gjumrakch

    2016-01-01

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative. PMID:27917856

  6. Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm.

    PubMed

    Al-Shabib, Nasser A; Husain, Fohad Mabood; Ahmed, Faheem; Khan, Rais Ahmad; Ahmad, Iqbal; Alsharaeh, Edreese; Khan, Mohd Shahnawaz; Hussain, Afzal; Rehman, Md Tabish; Yusuf, Mohammad; Hassan, Iftekhar; Khan, Javed Masood; Ashraf, Ghulam Md; Alsalme, Ali Mohammed; Al-Ajmi, Mohamed F; Tarasov, Vadim V; Aliev, Gjumrakch

    2016-12-05

    Bacterial spoilage of food products is regulated by density dependent communication system called quorum sensing (QS). QS control biofilm formation in numerous food pathogens and Biofilms formed on food surfaces act as carriers of bacterial contamination leading to spoilage of food and health hazards. Agents inhibiting or interfering with bacterial QS and biofilm are gaining importance as a novel class of next-generation food preservatives/packaging material. In the present study, Zinc nanostructures were synthesised using Nigella sativa seed extract (NS-ZnNPs). Synthesized nanostructures were characterized hexagonal wurtzite structure of size ~24 nm by UV-visible, XRD, FTIR and TEM. NS-ZnNPs demonstrated broad-spectrum QS inhibition in C. violaceum and P. aeruginosa biosensor strains. Synthesized nanostructures inhibited QS regulated functions of C. violaceum CVO26 (violacein) and elastase, protease, pyocyanin and alginate production in PAO1 significantly. NS-ZnNPs at sub-inhibitory concentrations inhibited the biofilm formation of four-food pathogens viz. C. violaceum 12472, PAO1, L. monocytogenes, E. coli. Moreover, NS-ZnNPs was found effective in inhibiting pre-formed mature biofilms of the four pathogens. Therefore, the broad-spectrum inhibition of QS and biofilm by biogenic Zinc oxide nanoparticles and it is envisaged that these nontoxic bioactive nanostructures can be used as food packaging material and/or as food preservative.

  7. Bioassay-guided Isolation of Neuroprotective Fatty Acids from Nigella sativa against 1-methyl-4-phenylpyridinium-induced Neurotoxicity

    PubMed Central

    Hosseinzadeh, Leila; Monaghash, Hoda; Ahmadi, Farahnaz; Ghiasvand, Nastaran; Shokoohinia, Yalda

    2017-01-01

    Objective: Parkinson's disease, a slowly progressive neurological disease, is associated with degeneration of the basal ganglia of the brain and a deficiency of the neurotransmitter dopamine. The main aspects of researches are the protection of normal neurons against degeneration. Fatty acids (FAs), the key structural elements of dietary lipids, are carboxylic straight chains and notable parameters in nutritional and industrial usefulness of a plant. Materials and Methods: Black cumin, a popular anti-inflammatory and antioxidant food seasoning, contains nonpolar constituents such as FAs which were extracted using hexane. Different fractions and subfractions were apt to cytoprotection against apoptosis and inflammation induced by 1-methyl-4-phenylpyridinium (MPP+) in rat pheochromocytoma cell line (PC12) as a neural cell death model. The experiment consisted of examination of cell viability assessment, mitochondrial membrane potential (MMP), caspase-3 and -9 activity, and measurement of cyclooxygenase (COX) activity. Results: MPP+ induced neurotoxicity in PC12 cells. Pretreatment with subfractions containing FA mixtures attenuated MPP+-mediated apoptosis partially dependent on the inhibition of caspase-3 and -9 activity and increasing the MMP. A mixture of linoleic acid, oleic acid, and palmitic acid also decreased the COX activity induced by MPP+ in PC12 cells. Conclusion: Our observation indicated that subtoxic concentration of FA from Nigella sativa may exert cytoprotective effects through their anti-apoptotic and anti-inflammation actions and could be regarded as a dietary supplement. SUMMARY MPP+ induced neurotoxicity in PC12 cellsNigella sativa contains bioactive fatty acidsPretreatment with fatty acids attenuated MPP+ mediated apoptosis through inhibition of caspase 3 and 9 activityA mixture of linoleic acid, oleic acid, and palmitic acid decreased the COX activity induced by MPP+ in PC12 cellsDue to cytoprotective, anti apoptotic and anti inflammation

  8. Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system.

    PubMed

    Shaaban, Hamdy A; Sadek, Zainab; Edris, Amr E; Saad-Hussein, Amal

    2015-01-01

    The Essential oil (EO) of Nigella sativa (black cumin) was extracted from the crude oil and the volatile constituents were characterized using gas chromatographic analysis. The EO was formulated in water-based microemulsion system and its antibacterial activity against six pathogenic bacteria was evaluated using the agar well diffusion method. This activity was compared with two other well known biologically active natural and synthetic antimicrobials namely eugenol and Ceftriaxone(®). Results showed that N. sativa EO microemulsion was highly effective against S. aureus, B. cereus and S. typhimurium even at the lowest tested concentration of that EO in the microemulsion (100.0 μg/well). Interestingly, the EO microemulsion showed higher antibacterial activity than Ceftriaxone solution against S. typhimurium at 400.0 μg/well and almost comparable activity against E. coli at 500.0 μg/well. No activity was detected for the EO microemulsion against L. monocytogenes and P. aeruginosa. Eugenol which was also formulated in microemulsion was less effective than N. sativa EO microemulsion except against P. aeruginosa. The synthetic antibiotic (Ceftriaxone) was effective against most of the six tested bacterial strains. This work is the first report revealing the formulation of N. sativa EO in microemulsion system and investigating its antibacterial activity. The results may offer potential application of that water-based microemulsion in controlling the prevalence of some pathogenic bacteria.

  9. Clinicobiochemical evaluation of turmeric with black pepper and nigella sativa in management of oral submucous fibrosis-a double-blind, randomized preliminary study.

    PubMed

    Pipalia, Pratik R; Annigeri, Rajeshwari G; Mehta, Ranjeeta

    2016-12-01

    To investigate the effectiveness of turmeric with black pepper and nigella sativa in oral submucous fibrosis (OSMF). Forty OSMF patients were randomly divided into two groups. The study was performed under a double-blind, randomized design. Group A received turmeric with black pepper and group B received nigella sativa for 3 months. Clinical evaluation was done every 15 days. Patients' serum superoxide dismutase (SOD) levels were assessed before and after treatment and also compared with healthy controls. The response to treatment was analyzed using analysis of variance, paired t test, and unpaired t test. After the treatment, groups A and B showed 3.85 ± 0.22 mm and 3.6 ± 0.07 mm improvement in mouth opening, respectively (P < .01); 87.90% and 78.91% reduction in burning sensation, respectively (P < .01); and +0.62 U/mL and +0.74 U/mL improvement in serum SOD levels, respectively (P < .05). The maximum mouth opening achieved was 8 mm in group A and 7 mm in group B. The mean pretreatment SOD level for controls and patients was 3.61 ± 0.24 U/mL in group A and 2.63 ± 0.18 U/mL in group B. Turmeric with black pepper and nigella sativa improved mouth opening, burning sensation, and SOD levels in the present OSMF study patients; however, further investigations are needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Methanol extract of Nigella sativa seed induces changes in the levels of neurotransmitter amino acids in male rat brain regions.

    PubMed

    El-Naggar, Tarek; Carretero, María Emilia; Arce, Carmen; Gómez-Serranillos, María Pilar

    2017-12-01

    Nigella sativa L. (Ranunculaceae) (NS) has been used for medicinal and culinary purposes. Different parts of the plant are used to treat many disorders. This study investigates the effects of NS methanol extract on brain neurotransmitter amino acid levels. We measured the changes in aspartate, glutamate, glycine and γ-aminobutyric acid in five brain regions of male Wistar rats after methanol extract treatment. Animals were injected intraperitoneally with saline solution (controls) or NS methanol extract (equivalent of 2.5 g/kg body weight) and sacrificed 1 h later or after administering 1 daily dose for 8 days. The neurotransmitters were measured in the hypothalamus, cortex, striatum, hippocampus and thalamus by HPLC. Results showed significant changes in amino acids compared to basal values. Glutamate increased significantly (16-36%) in the regions analyzed except the striatum. Aspartate in the hypothalamus (50 and 76%) and glycine in hippocampus (32 and 25%), thalamus (66 and 29%) and striatum (75 and 48%) also increased with the two treatment intervals. γ-Aminobutyric acid significantly increased in the hippocampus (38 and 32%) and thalamus (22 and 40%) but decreased in the cortex and hypothalamus although in striatum only after eight days of treatment (24%). Our results suggest that injected methanol extract modifies amino acid levels in the rat brain regions. These results could be of interest since some neurodegenerative diseases are related to amino acid level imbalances in the central nervous system, suggesting the prospect for therapeutic use of NS against these disorders.

  11. Essential oils of Nigella sativa protects Artemia from the pathogenic effect of Vibrio parahaemolyticus Dahv2.

    PubMed

    Manju, Sivalingam; Malaikozhundan, Balasubramanian; Withyachumnarnkul, Boonsirm; Vaseeharan, Baskaralingam

    2016-05-01

    The anti-Vibrio activity of essential oils (EOs) of nine medicinal plants was tested against 28 Vibrio spp. isolated from diseased Fenneropenaeus indicus. EO of Nigella sativa exhibited anti-Vibrio activity against all Vibrio spp. and greater inhibition was noted for the isolate V2 which was identified as Vibrio parahaemolyticus Dahv2. Further, EO of N. sativa effectively inhibited V. parahaemolyticus Dahv2 with an inhibition zone of 23.9mm at 101.2μgml(-1). Moreover, EO of N. sativa revealed anti-biofilm activity at 101.2μgml(-1) against V. parahaemolyticus Dahv2 and inhibited the growth of V. parahaemolyticus Dahv2 at 100μgml(-1).In vivo experimental infection studies showed that the survival of Artemia spp. infected with V. parahaemolyticus Dahv2 at 1×10(3)cfuml(-1) was only 40%. However, the survival of Artemia spp. was significantly increased after challenge with 100μgml(-1) of EO of N. sativa. EO of N. sativa showed higher anti-oxidant potential and total phenol content than other EOs tested. The anti-oxidant activity of EO of N. sativa was highly correlated to their total phenolic contents (r=0.836, P<0.05). This observation suggests that EO of N. sativa protected the Artemia spp. after experimental infection of V. parahaemolyticus Dahv2. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. GC-MS characterisation and antibacterial activity evaluation of Nigella sativa oil against diverse strains of Salmonella.

    PubMed

    Sarwar, Arslan; Latif, Zakia

    2015-01-01

    Salmonella resistance is becoming a worldwide serious health issue in these days; therefore, it is an urgent need to develop some alternative approaches to overcome this problem. Twenty bacterial strains were isolated and purified from different environmental sources and confirmed as Salmonella by morphological and biochemical analyses. Further confirmation was done by 16s rRNA sequencing. Antibiotic susceptibility test was performed by well diffusion assay against different concentrations of Ceftriaxone and Ciprofloxacin. The behaviour of both antibiotics was different against diverse strains of Salmonella. Salmonella strains resistant to both antibiotics were analysed for antibacterial activity of natural extracts of Nigella sativa (black seeds). N. sativa oil was found to be more effective against Salmonella species for which even Ceftriaxone and Ciprofloxacin were ineffective. Gas chromatography and mass spectrometry analysis of N. sativa oil was also accomplished, exhibiting 10 compounds including thymoquinone, p-cymene, cis-carveol, thymol, α-phellandrene, α-pinene, β-pinene, trans-anethole, α-longipinene and longifolene.

  13. Roles of p53 and caspases in induction of apoptosis in MCF- 7 breast cancer cells treated with a methanolic extract of Nigella sativa seeds.

    PubMed

    Alhazmi, Mohammed I; Hasan, Tarique N; Shafi, Gowhar; Al-Assaf, Abdullah H; Alfawaz, Mohammed A; Alshatwi, Ali A

    2014-01-01

    Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The IC50 was calculated using a Cell Titer Blue® viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. The IC50 of MCF-7 cells was 62.8 μL/mL. When MCF-7 cells were exposed to 50 μL/mL and 100 μL/mL NS for 24 h, 48 h and 72 h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

  14. A randomised controlled trial on hypolipidemic effects of Nigella Sativa seeds powder in menopausal women

    PubMed Central

    2014-01-01

    Background The risk of cardiovascular diseases (CVD) is increased tremendously among menopausal women, and there is an increasing demand for alternative therapies for managing factors like dyslipidemia that contribute to CVD development. Methods In this study, Nigella sativa was evaluated for its hypolipidemic effects among menopausal women. In a randomised trial, hyperlipidemic menopausal women were assigned to treatment (n = 19) or placebo groups (n = 18), and given N. sativa or placebo for two months after their informed consents were sought. At baseline, blood samples were taken and at one month intervals thereafter until one month after the end of the study. Results The results showed that N. sativa significantly improved lipid profiles of menopausal women (decreased total cholesterol, low density lipoprotein cholesterol and triglyceride, and increased high density lipoprotein cholesterol) more than the placebo treatment over 2 months of intervention. One month after cessation of treatment, the lipid profiles in the N. sativa-treated group tended to change towards the pretreatment levels. Conclusions N. sativa is thought to have multiple mechanisms of action and is cost-effective. Therefore, it could be used by menopausal women to remedy hypercholesterolemia, with likely more benefits than with single pharmacological agents that may cause side effects. The use of N. sativa as an alternative therapy for hypercholesterolemia could have profound impact on the management of CVD among menopausal women especially in countries where it is readily available. PMID:24685020

  15. Finding Novel Antibiotic Substances from Medicinal Plants - Antimicrobial Properties of Nigella Sativa Directed against Multidrug-resistant Bacteria.

    PubMed

    Bakal, Seher Nancy; Bereswill, Stefan; Heimesaat, Markus M

    2017-03-01

    The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori , and Escherichia coli . However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains.

  16. The effect of Nigella sativa Linn. seed on memory, attention and cognition in healthy human volunteers.

    PubMed

    Bin Sayeed, Muhammad Shahdaat; Asaduzzaman, Md; Morshed, Helal; Hossain, Md Monir; Kadir, Mohammad Fahim; Rahman, Md Rezowanur

    2013-07-30

    Experimental evidences have demonstrated that Nigella sativa Linn. seed (NS) has positive modulation effects on aged rats with memory impairments, prevents against hippocampal pyramidal cell loss and enhances consolidation of recall capability of stored information and spatial memory in rats. NS has neuroprotective, nephroprotective, lung protective, cardioprotective, hepatoprotective activities as established by previous studies on animals. Several clinical trials with NS on human have also demonstrated beneficial effect. The present study was designed to investigate the effects of NS on memory, attention and cognition in healthy elderly volunteers. Furthermore, safety profile of NS was assessed during the nine-week study period. Forty elderly volunteers were recruited and divided randomly into group A and group B--each consisting of 20 volunteers. The treatment procedure for group A was 500 mg NS capsule twice daily for nine weeks and Group B received placebo instead of NS in the similar manner. All the volunteers were assessed for neuropsychological state and safety profile twice before treatment and after nine weeks. The neuropsychological tests were logical memory test, digit span test, Rey-Osterrieth complex figure test, letter cancellation test, trail making test and stroop test. Safety profile was assessed by measuring biochemical markers of Cardiac (total cholesterol, triglycerides and high density lipoprotein cholesterol, very low density lipoprotein, low density lipoprotein cholesterol, creatine kinase-MB); Liver (aspartate aminotransferase, alanin aminotransferase, alkaline phosphatase, total protein, albumin, bilirubin) and Kidney (creatinine and blood urea nitrogen) through using commercial kits. There was significant difference (p<0.05) in the score of logical memory test-I and II, total score of digit span, 30 min delayed-recall, percent score in Rey-Osterrieth complex figure test, time taken to complete letter cancellation test, time taken in trail

  17. Nigella sativa L. and its bioactive constituents as hepatoprotectant: a review.

    PubMed

    Tabassum, Heena; Ahmad, Asad; Ahmad, Iffat Zareen

    2018-04-26

    The pharmacological properties of Nigella sativa L. are well attributed to the presence of bioactive compounds, mainly, thymoquinone (TQ), thymol (THY) and α hederin and their antioxidant effects. TQ,THY and alpha-hederin (α-hederin) provide protection to liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and (GSH) level, radical scavenging, increasing the activity of quinone reductase, catalase, superoxide dismutase(SOD) and glutathione transferase (GST), inhibition of NF-κB activity and inhibition of both (COX) and (LOX) protects liver from injuries. The main aim of this literature review is to reflect the relevant role of ROS in inducing hepatic diseases and also the preventive role of N. sativa L. in hepatic diseases. The present article is directed towards highlighting the beneficial contribution of researchers to explore the pharmacological actions with therapeutic potential of this precious natural herb and its bioactive compounds pertaining to the hepatoprotective effects. We systematically searched for research literature through well-framed review question and presented the data in the tabular forms for the convenience of the readers. Two hundred forty-one papers were embodied in this review, oxidative effect and the reactive oxygen species (ROS) are known to be the major causes of many diseases such as hepatic cancer. Many drugs and chemicals have shown to incite oxidative damage by generation of ROS in the body. Therefore, this review intent to focus the role of ROS in liver diseases and the mechanisms through which N. sativa prevents hepatic diseases. The mechanisms by which N. sativa impede progression in chronic liver diseases should be used as a preventive medicine in patients with hepatic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Induced chromosomal aberrations in somatic cells of Nigella sativa L. by mitomycin C.

    PubMed

    Kumar, P; Nizam, J

    1978-01-01

    A cytological study was carried out on root tips of Nigella sativa L. by treatment with Mitomycin C at 0.001% for six time intervals (10, 15, 20, 30, 40, and 50 min). The chromosomal abnormalities were increasingly proportionate to the increase in time of treatment. The seedlings treated with a 0.001% concentration of Mitomycin C for 10 min. did not show any significant effect. At other time intervals, the effect was observed to be quite significant. Beyond 40 min. treatment almost all the cells would become sticky. Thirty minutes' treatment showed significant effect, inducing various types of chromosomal aberrations in the anaphase, such as bridges and fragments of 34.13% and 48.07%, respectively.

  19. Finding Novel Antibiotic Substances from Medicinal Plants – Antimicrobial Properties of Nigella Sativa Directed against Multidrug-resistant Bacteria

    PubMed Central

    Bakal, Seher Nancy; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori, and Escherichia coli. However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains. PMID:28386474

  20. Immunomodulatory and therapeutic properties of the Nigella sativa L. seed.

    PubMed

    Salem, Mohamed Labib

    2005-12-01

    A larger number of medicinal plants and their purified constituents have been shown beneficial therapeutic potentials. Seeds of Nigella sativa, a dicotyledon of the Ranunculaceae family, have been employed for thousands of years as a spice and food preservative. The oil and seed constituents, in particular thymoquinine (TQ), have shown potential medicinal properties in traditional medicine. In view of the recent literature, this article lists and discusses different immunomodulatory and immunotherapeutic potentials for the crude oil of N. sativa seeds and its active ingredients. The published findings provide clear evidence that both the oil and its active ingredients, in particular TQ, possess reproducible anti-oxidant effects through enhancing the oxidant scavenger system, which as a consequence lead to antitoxic effects induced by several insults. The oil and TQ have shown also potent anti-inflammatory effects on several inflammation-based models including experimental encephalomyelitis, colitis, peritonitis, oedama, and arthritis through suppression of the inflammatory mediators prostaglandins and leukotriens. The oil and certain active ingredients showed beneficial immunomodulatory properties, augmenting the T cell- and natural killer cell-mediated immune responses. Most importantly, both the oil and its active ingredients expressed anti-microbial and anti-tumor properties toward different microbes and cancers. Coupling these beneficial effects with its use in folk medicine, N. sativa seed is a promising source for active ingredients that would be with potential therapeutic modalities in different clinical settings. The efficacy of the active ingredients, however, should be measured by the nature of the disease. Given their potent immunomodulatory effects, further studies are urgently required to explore bystander effects of TQ on the professional antigen presenting cells, including macrophages and dendritic cells, as well as its modulatory effects upon Th1

  1. Protection by Nigella sativa against carbon tetrachloride-induced downregulation of hepatic cytochrome P450 isozymes in rats.

    PubMed

    Ibrahim, Zein S; Ishizuka, Mayumi; Soliman, Mohamed; ElBohi, Khlood; Sobhy, Wageh; Muzandu, Kaampwe; Elkattawy, Azza M; Sakamoto, Kentaro Q; Fujita, Shoichi

    2008-11-01

    Nigella sativa (family Ranunculaceae) is an annual plant that has been traditionally used on the Indian subcontinent and in Middle Eastern countries. In this study, we investigated the effect of N. sativa oil on the drug-metabolizing cytochrome P450 (CYP) enzymes and whether it has a protective effect against the acute hepatotoxicity of CCl4. Intraperitoneal injection of rats with CCl4 drastically decreased CYP2E1, CYP2B, CYP3A2, CYP2C11, and CYP1A2 mRNA and protein expressions. Oral administration of 1 ml/kg N. sativa oil every day for one week prior to CCl4 injection alleviated CCl4-induced suppression of CYP2B, CYP3A2, CYP2C11, and CYP1A2. Moreover, CCl4 increased iNOS and TNFalpha mRNA, while N. sativa oil administration for one week prior to CCl4 injection downregulated the CCl4-induced iNOS mRNA and up-regulated IL-10 mRNA. These results indicate that N. sativa oil administration has a protective effect against the CCl4-mediated suppression of hepatic CYPs and that this protective effect is partly due to the downregulation of NO production and up-regulation of the anti-inflammatory IL-10.

  2. Amino acid composition and biological effects of supplementing broad bean and corn proteins with Nigella sativa (black cumin) cake protein.

    PubMed

    al-Gaby, A M

    1998-10-01

    The biological effects of supplementing broad bean (Vicia faba) or corn (Zea maize) meal protein with black cumin (Nigella sativa) cake protein as well as their amino acid composition were investigated. The percentage of total protein content of Nigella cake was 22.7%. Lysine is existent in abundant amounts in faba meal protein, while leucine is the most abundant in corn meal protein (chemical score = 156) and valine is higher in Nagella cake protein. compared with rats fed sole corn or faba meal protein, substitution of 25% of corn or faba meal protein with Nigella cake protein in the diet remarkably raised the growth rate of rats and resulted in significant higher levels of rat total serum lipids and triglycerides. Also, the supplemented diet caused significant increases in serum total protein and its two fractions albumin and globulin and insignificantly increase the activity of serum phosphatases and transaminases within normal ranges. The supplementation did not have any adverse nutritional effects in the levels of lipid fractions in the serum.

  3. Hypoglycemic Effect of Lipoic Acid, Carnitine and Nigella Sativa in Diabetic Rat Model

    PubMed Central

    Salama, Ragaa Hamdy Mohamed

    2011-01-01

    Objectives Evaluation of therapeutic potentials of α-lipoic acid (α-LA), L-carnitine, Nigella sativa (N. sativa) or combination of them in carbohydrate and lipid metabolism of DM type I. Methods Rat model of diabetes was induced by single i.p injection of Streptozocin (STZ) 65 mg/kg. The rats were randomly assigned to 6 groups (G): healthy reference (HR), diabetic (DM), DM treated with α-lipoic acid, DM treated with L-carnitine, DM treated with N. sativa, and DM treated with combination of the 3 compounds. After 30 days from onset of diabetes, serum and tissue homogenate were obtained for evaluation of glucose metabolism as fasting blood glucose, insulin, insulin sensitivity, HOMA, C-peptide, and pyruvate dehydrogenase (PDH) activity. For lipid metabolism evaluation, total cholesterol and triacylglycerol (TG) were determined. Markers of antioxidants and oxidative status as total antioxidant capacity (TAC), glutathione-S-transeferase (GST), 8-hydroxy-2-deoxyguanosine (8-OH-dG) were measured. Results Either α-LA or N. sativa significantly reduced the elevated blood glucose level. The combination of 3 compounds significantly increased the level of insulin and C-peptide. Also, increased the antioxidant activity measured by TAC and decreased the oxidative damage of DNA as measured by 8-OH-dG. HOMA- β increased in G3 and G6 compared to G2. However, the decrease in TG, and total cholesterol levels were non-significant in all groups. Conclusion Combination of α-LA, L-carnitine and N. sativa will contribute significantly in improvement of the carbohydrate metabolism and to less extent lipid metabolism in diabetic rats, thus increasing the rate of success in management of DM. Also, this combination will have implications in clinical studies and clinical applications. PMID:23267290

  4. Hypoglycemic effect of lipoic Acid, carnitine and nigella sativa in diabetic rat model.

    PubMed

    Salama, Ragaa Hamdy Mohamed

    2011-07-01

    Evaluation of therapeutic potentials of α-lipoic acid (α-LA), L-carnitine, Nigella sativa (N. sativa) or combination of them in carbohydrate and lipid metabolism of DM type I. Rat model of diabetes was induced by single i.p injection of Streptozocin (STZ) 65 mg/kg. The rats were randomly assigned to 6 groups (G): healthy reference (HR), diabetic (DM), DM treated with α-lipoic acid, DM treated with L-carnitine, DM treated with N. sativa, and DM treated with combination of the 3 compounds. After 30 days from onset of diabetes, serum and tissue homogenate were obtained for evaluation of glucose metabolism as fasting blood glucose, insulin, insulin sensitivity, HOMA, C-peptide, and pyruvate dehydrogenase (PDH) activity. For lipid metabolism evaluation, total cholesterol and triacylglycerol (TG) were determined. Markers of antioxidants and oxidative status as total antioxidant capacity (TAC), glutathione-S-transeferase (GST), 8-hydroxy-2-deoxyguanosine (8-OH-dG) were measured. Either α-LA or N. sativa significantly reduced the elevated blood glucose level. The combination of 3 compounds significantly increased the level of insulin and C-peptide. Also, increased the antioxidant activity measured by TAC and decreased the oxidative damage of DNA as measured by 8-OH-dG. HOMA- β increased in G3 and G6 compared to G2. However, the decrease in TG, and total cholesterol levels were non-significant in all groups. Combination of α-LA, L-carnitine and N. sativa will contribute significantly in improvement of the carbohydrate metabolism and to less extent lipid metabolism in diabetic rats, thus increasing the rate of success in management of DM. Also, this combination will have implications in clinical studies and clinical applications.

  5. Prophylactic and immune modulatory influences of Nigella sativa Linn. in broilers exposed to biological challenge

    PubMed Central

    Soliman, Essam S.; Hamad, Rania T.; Ahmed, Amira

    2017-01-01

    Background and Aim: Prophylaxis and disease prevention is an essential strategy among biorisk management in poultry farms that stimulate and maintain the birds’ immunity. The aim of this study was to investigate the prophylactic, and immune-stimulant influence of Nigella sativa Linn. in broilers under biological stress. Materials and Methods: A total of 250 1-day-old (ross) chicks were divided into 5 groups; four of which were supplemented with 1.4%, 2.8%, 4.2%, and 5.6% N. sativa Linn., respectively. The four supplemented groups were challenged with Escherichia coli O157:H7 1.5×108 at a 14th day old. A total of 1050 samples (150 serum, 150 swab, and 750 organ samples) were collected and examined. Results: A highly significant increase (p<0.01) in 5.6% N. sativa Linn. supplemented group in performance traits (body weight, weight gain, and performance index), biochemical parameters (proteinogram, liver enzymes, and creatinine), immunoglobulins concentration, and immune organs’ weight. Meanwile, liver showed improvement of histoarchitecture without fibrosis. Heart showed a mild pericarditis with a mild degree of hydropic degeneration. Bursa, thymus, and spleen showed lymphoid hyperplasia. Conclusion: A concentration of 5.6% N. sativa Linn. in broiler’s feed can improve the immune response and subsequent resistance of broilers against diseases. PMID:29391685

  6. Hepatoprotective effects of Nigella sativa L and Urtica dioica L on lipid peroxidation, antioxidant enzyme systems and liver enzymes in carbon tetrachloride-treated rats

    PubMed Central

    Kanter, Mehmet; Coskun, Omer; Budancamanak, Mustafa

    2005-01-01

    AIM: To investigate the effects of Nigella sativa L (NS) and Urtica dioica L (UD) on lipid peroxidation, antioxidant enzyme systems and liver enzymes in CCl4-treated rats. METHODS: Fifty-six healthy male Wistar albino rats were used in this study. The rats were randomly allotted into one of the four experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated) and D (CCl4+UD+NS treated), each containing 14 animals. All groups received CCl4 (0.8 mL/kg of body weight, sc, twice a week for 60 d). In addition, B, C and D groups also received daily i.p. injections of 0.2 mL/kg NS or/and 2 mL/kg UD oils for 60 d. Group A, on the other hand, received only 2 mL/kg normal saline solution for 60 d. Blood samples for the biochemical analysis were taken by cardiac puncture from randomly chosen-seven rats in each treatment group at beginning and on the 60th d of the experiment. RESULTS: The CCl4 treatment for 60 d increased the lipid peroxidation and liver enzymes, and also decreased the antioxidant enzyme levels. NS or UD treatment (alone or combination) for 60 d decreased the elevated lipid peroxidation and liver enzyme levels and also increased the reduced antioxidant enzyme levels. The weight of rats decreased in group A, and increased in groups B, C and D. CONCLUSION: NS and UD decrease the lipid per-oxidation and liver enzymes, and increase the anti-oxidant defense system activity in the CCl4-treated rats. PMID:16425366

  7. Hepatic Regeneration and Reno-Protection by Fish oil, Nigella sativa Oil and Combined Fish Oil/Nigella sativa Volatiles in CCl4 Treated Rats.

    PubMed

    Al-Okbi, Sahar Y; Mohamed, Doha A; Hamed, Thanaa E; Edris, Amr E; Fouda, Karem

    2018-03-01

    The aim of the present research was to investigate the effect of fish oil, crude Nigella sative oil and combined fish oil/Nigella sative volatile oil as hepato-regenerative and renal protective supplements. The oils were administered as emulsions to rat model with liver injury induced by CCl 4 . Plasma activities of transaminases (AST and ALT) were evaluated as liver function indicators, while plasma creatinine and urea and creatinine clearance were determined as markers of kidney function. Plasma malondialdehyde (MDA), nitrite (NO) and tumor necrosis factor-α (TNF-α) were estimated to assess the exposure to oxidative stress and subsequent inflammation. Liver fat was extracted and their fatty acids´ methyl esters were determined using gas chromatography. Results showed that plasma activities of AST and ALT were significantly higher in CCl 4 control group compared to control healthy group. Plasma levels of creatinine and urea increased significantly in CCl 4 control, while creatinine clearance was reduced significantly in the same group. All rat treated groups given the three oil emulsions showed improvement in liver function pointing to the initiation of liver regeneration. The combination of fish oil/Nigella sative volatiles showed the most promising regenerative activity. Oxidative stress and inflammation which were increased significantly in CCl 4 control group showed improvement on administration of the three different oil emulsions. Fatty acids methyl ester of liver fat revealed that rats treated with fish oil/Nigella sative volatile oil presented the highest content of unsaturated fatty acids (45.52% ± 0.81) while fish oil showed the highest saturated fatty acids (53.28% ± 1.68). Conclusion; Oral administration of oil emulsions of native fish oil, Nigella sative crude oil and combined fish oil/Nigella sative volatile oil reduced liver and kidney injury in rat model of CCl 4 through exerting anti-inflammatory and antioxidant activity. Fish oil/Nigella

  8. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil.

    PubMed

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Tan, Chin Ping; Muhialdin, Belal J; Alhelli, Amaal M; Meor Hussin, Anis Shobirin

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.

  9. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil

    PubMed Central

    Mohammed, Nameer Khairullah; Abd Manap, Mohd Yazid; Muhialdin, Belal J.; Alhelli, Amaal M.

    2016-01-01

    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE. PMID:27642353

  10. Effects of Nigella sativa L. and Urtica dioica L. on selected mineral status and hematological values in CCl4-treated rats.

    PubMed

    Meral, Ismail; Kanter, Mehmet

    2003-01-01

    This study was designed to investigate the effects of Nigella sativa L. (NS), known as black seed, or/and Urtica dioica L. (UD), known as stinging nettle root, treatments on serum Na, K, Cl, and Ca levels and some hematological values of CCl4-treated rats. Sixty healthy male Sprague-Dawley rats, weighing 250-300 g, were randomly allotted into 1 of 4 experimental groups: A (CCl4-only treated), B (CCl4+UD treated), C (CCl4+NS treated), and D (CCl4+UD+NS treated), each containing 15 animals. All groups received CCl4 (0.8 mL/kg of body weight, subcutaneously, twice a week for 90 d starting d 1). In addition, B, C, and D groups also received the daily ip injection of 0.2 mL/kg NS and/or 2 mL/kg UD oils for 45 d starting d 46. Group A, on the other hand, received only 2 mL/kg normal saline solution for 45 d starting d 46. Blood samples for the biochemical analysis were taken by cardiac puncture from five randomly chosen rats in each treatment group at the beginning, d 45, and d 90 of the experiment. The CCl4 treatment for 45 d significantly (p<0.05) increased the serum K and Ca and decreased (p<0.05) the red blood cell count (RBC), white blood cell count (WBC), packed cell volume (PCV), and Hb levels without changing (p>0.05) the serum Na and Cl levels. NS or UD treatments (alone or combination) for 45 d starting d 46 significantly (p<0.05) decreased the elevated serum K and Ca levels and also increased (p<0.05) the reduced RBC, WBC, PCV, and Hb levels. It is concluded that NS and/or UD treatments might ameliorate the CCl4-induced disturbances of anemia, some minerals, and body's defense mechanism in CCl4-treated rats.

  11. Black Seed (Nigella Sativa) and its Constituent Thymoquinone as an Antidote or a Protective Agent Against Natural or Chemical Toxicities

    PubMed Central

    Tavakkoli, Alireza; Ahmadi, Ali; Razavi, Bibi Marjan; Hosseinzadeh, Hossein

    2017-01-01

    Nigella sativa (N. sativa), which belongs to the botanical family of Ranunculaceae, is a widely used medicinal plant all over the world. N. sativa seeds and oil have been used in the treatment of different diseases. Various studies on N. sativa have been carried out and a broad spectrum of its pharmacological actions have been established which include antioxidant, antidiabetic, anticancer, antitussive, immunomodulator, analgesic, antimicrobial, anti-inflammatory, spasmolytic, and bronchodilator. This is also indicated that the majority of the therapeutic effects of N. sativa are due to the presence of thymoquinone (TQ) that is the main bioactive constituent of the essential oil. According to several lines of evidence, the protective effects of this plant and its main constituent in different tissues including brain, heart, liver, kidney, and lung have been proved against some toxic agents either natural or chemical toxins in animal studies. In this review article, several in-vitro and animal studies in scientific databases which investigate the antidotal and protective effects of N. sativa and its main constituents against natural and chemical induced toxicities are introduced. Because human reports are rare, further studies are required to determine the efficacy of this plant as an antidote or protective agent in human intoxication. PMID:29844772

  12. Effects of Bread with Nigella Sativa on Lipid Profiles, Apolipoproteins and Inflammatory Factor in Metabolic Syndrome Patients

    PubMed Central

    2016-01-01

    Nigella sativa (N.sativa) has been used in traditional medicine and many studies have been performed in different communities in order to reveal the effects of it on medical disorders and chronic diseases. The aim of this study was to investigate the effects of bread with N. Sativa on lipid profiles, apolipoproteins, and inflammatory factors in metabolic syndrome (MetS) patients. A randomized, double-blind, cross-over and clinical trial was conducted in 51 MetS patients of both sexes with age group of 20-65 years old in Chaloos, north of Iran. Patients were randomly divided in two groups. In phase 1, intervention group (A, n = 27) received daily a bread with N. sativa and wheat bran and control group (B, n = 24) received the same bread without N. sativa for 2 months. After 2 weeks of wash out period, phase 2 was started with switch the intervention between two groups. Measuring of lipid profiles, apolipoproteins and inflammatory factor was performed for all patients before and after two phases. In this study, treatment, sequence and time effects of intervention were evaluated and revealed that consumption of bread with N. sativa has no significant treatment and time effects on triglyceride (TG), cholesterol (CHOL), low density lipoprotein (LDL), high density lipoprotein (HDL), apolipoprotein (APO)-A, APO-B and high-sensitivity C-reactive protein (p > 0.05). Sequence effect was significant on CHOL, LDL, APO-A, and APO-B (p < 0.05) but was not significant on other parameters (p > 0.05). Consumption of bread with N. sativa has no a significant effect on lipid profiles, apolipoproteins and inflammatory factor in MetS patients. PMID:27152298

  13. Protective effect of Nigella sativa extract and thymoquinone on serum/glucose deprivation-induced PC12 cells death.

    PubMed

    Mousavi, S H; Tayarani-Najaran, Z; Asghari, M; Sadeghnia, H R

    2010-05-01

    The serum/glucose deprivation (SGD)-induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. (family Ranunculaceae) and its active component thymoquinone (TQ) has been known as a source of antioxidants. In the present study, the protective effects of N. sativa and TQ on cell viability and reactive oxygen species (ROS) production in cultured PC12 cells were investigated under SGD conditions. PC12 cells were cultured in DMEM medium containing 10% (v/v) fetal bovine serum, 100 units/ml penicillin, and 100 microg/ml streptomycin. Cells were seeded overnight and then deprived of serum/glucose for 6 and 18 h. Cells were pretreated with different concentrations of N. sativa extract (15.62-250 microg/ml) and TQ (1.17-150 microM) for 2 h. Cell viability was quantitated by MTT assay. Intracellular ROS production was measured by flow cytometry using 2',7'-dichlorofluorescin diacetate (DCF-DA) as a probe. SGD induced significant cells toxicity after 6, 18, or 24 h (P < 0.001). Pretreatment with N. sativa (15.62-250 microg/ml) and TQ (1.17-37.5 microM) reduced SGD-induced cytotoxicity in PC12 cells after 6 and 18 h. A significant increase in intracellular ROS production was seen following SGD (P < 0.001). N. sativa (250 microg/ml, P < 0.01) and TQ (2.34, 4.68, 9.37 microM, P < 0.01) pretreatment reversed the increased ROS production following ischemic insult. The experimental results suggest that N. sativa extract and TQ protects the PC12 cells against SGD-induced cytotoxicity via antioxidant mechanisms. Our findings might raise the possibility of potential therapeutic application of N. sativa extract and TQ for managing cerebral ischemic and neurodegenerative disorders.

  14. Evaluation of antimicrobial and anti-inflammatory activities of seed extracts from six Nigella species.

    PubMed

    Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav

    2009-04-01

    Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.

  15. Effects of separate and concurrent supplementation of Nano-sized clinoptilolite and Nigella sativa on oxidative stress, anti-oxidative parameters and body weight in rats with type 2 diabetes.

    PubMed

    Omidi, Hossein; Khorram, Sirus; Mesgari, Mehran; Asghari-Jafarabadi, Mohammad; Tarighat-Esfanjani, Ali

    2017-12-01

    The objective of this study was to investigate the effects of separate and concurrent supplementation of natural nano-sized clinoptilolite (NCLN) and Nigella sativa (NS) on oxidative stress (OS), anti-oxidative parameters and body weight (BW) in high-fat-diet (HFD)/streptozotocin (STZ)-induced diabetic rats. In this experimental study, 42 male Wistar rats were divided into diabetic (n=36) and non-diabetic (n=6) groups. The diabetic group (DG) was fed with a HFD for one month, then injected with intra-peritoneal single dose STZ (35 mg/kg BW). The DG was divided into 4 subgroups: [1] control (DC), [2] NS 1%/food, [3] NCLN 2%/food, [4] NS 1%/food + NCLN 2%/food. At the end of the 7th week, malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) levels and total antioxidant capacity (TAC) were measured. The MDA level was decreased in the NCLN (p = 0.011) and NCLN+NS (p = 0.007) groups compared to the DC group. The GPX level increased in the NS and NCLN groups compared to the DC group (p = 0.014 and p = 0.034). In addition, the level of TAC demonstrated increase in the untreated DG and NS groups, as compared to the normal control (NC) group (p DC  = 0.031 and p NS  = 0.024). Moreover, in the NS+NCLN group, the level of SOD decreased in comparison to the NS and NCLN groups (p < 0.01). At the end of the 7th week, BW decreased in the diabetic subgroups in comparison to the NC group. Treatment with NS and/or NS+NCLN insignificantly prevented severe weight loss in the fifth week of the treatment. According to results, separate supplementation of NS and NCLN was more beneficent on anti-oxidative parameters than concurrent supplementation of NS and NCLN. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Oral and intraperitoneal LD50 of thymoquinone, an active principle of Nigella sativa, in mice and rats.

    PubMed

    Al-Ali, Amein; Alkhawajah, Abdul Aziz; Randhawa, Mohammad Akram; Shaikh, Nisar Ahmed

    2008-01-01

    Thymoquinone is the major active principle of Nigella sativa (N. sativa) and constitutes about 30% of its volatile oil or ether extract. N. sativa oil and seed are commonly used as a natural remedy for many ailments. Using modern scientific techniques, a number of pharmacological actions of N. sativa have been investigated including immunostimulant, anti-inflammatory, anticancer, antioxidant, antihistaminic, antiasthmatic, hypoglycemic, antimicrobial and antiparasitic. There are only few reports regarding the toxicity of thymoquinone. The present study was carried out to determine LD50 of thymoquinone both in mice and rats, orally as well as intraperitoneall, by the method of Miller and Tainter. Autopsy and histopathology of liver, kidney, heart and lungs were also determined. The LD50 in mice after intraperitoneal injection was determined to be 104.7 mg/kg (89.7-119.7, 95% confidence interval) and after oral ingestion was 870.9 mg/kg (647.1-1094.8, 95% confidence interval). Whereas, LD50 in rats after intraperitoneal injection was determined to be 57.5 mg/kg (45.6-69.4, 95% confidence intervals) and after oral ingestion was 794.3 mg/kg (469.8-1118.8, 95% confidence intervals). The LD50 values presented here after intraperitoneal injection and oral gavages are 10-15 times and 100-150 times greater than doses of thymoquinone reported for its anti-inflammatory, anti-oxidant and anti-cancer effects. Thymoquinone is a relatively safe compound, particularly when given orally to experimental animals.

  17. Cancer chemopreventive potential of volatile oil from black cumin seeds, Nigella sativa L., in a rat multi-organ carcinogenesis bioassay.

    PubMed

    Salim, Elsayed I

    2010-09-01

    Nigella sativa (N. sativa) is a herbal plant of the Ranunculaceae family that has been widely used for various medicinal and nutritional purposes. Volatile oil extracts along with its major constituents, such as thymoquinone, have recently attracted considerable attention for their antioxidant, immunoprotective and antitumor properties. The present study was conducted to assess the chemopreventive potential of crude oils in N. sativa on tumor formation using a well-established rat multi-organ carcinogenesis model featuring initial treatment with five different carcinogens. Post-initiation administration of 1000 or 4000 ppm N. sativa volatile oil in the diet of male Wistar rats for 30 weeks significantly reduced malignant and benign colon tumor sizes, incidences and multiplicities. The treatment also significantly decreased the incidences and multiplicities of tumors in the lungs and in different parts of the alimentary canal, particularly the esophagus and forestomach. Bromodeoxyuridine labeling indices, reflecting cell proliferation were significantly decreased in various organs and lesions after treatment with the two doses of N. sativa. The plasma levels of insulin growth factor, triglycerides and prostaglandin E2 were also altered. The findings show, for the first time, that N. sativa administration exerts potent inhibitory effects on rat tumor development and on cellular proliferation in multiple organ sites. In particular, the ability to significantly inhibit murine colon, lung, esophageal and forestomach tumors was demonstrated in the post-initiation phase, with no evidence of clinical side effects. The mechanisms are likely to be related to suppression of cell proliferation.

  18. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    PubMed Central

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85%) and oleic acid (1.64%–18.97%). Thymoquinone (0.72%–21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. PMID:28814830

  19. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    PubMed

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P <0.05) higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  20. Adriamycin-induced oxidative stress is prevented by mixed hydro-alcoholic extract of Nigella sativa and Curcuma longa in rat kidney.

    PubMed

    Mohebbati, Reza; Shafei, Mohammad Naser; Soukhtanloo, Mohammad; Mohammadian Roshan, Noema; Khajavi Rad, Abolfazl; Anaeigoudari, Akbar; Hosseinian, Sara; Karimi, Sareh; Beheshti, Farimah

    2016-01-01

    Inflammation and oxidative stress is considered to have a crucial role in induction of nephropathy. Curcuma longa (C. longa) and Nigella sativa (N. sativa) have anti-inflammatory and antioxidant effects. This study was designed to investigate the effect of mixed hydro-alcoholic extract of N.sativa and C. longa on the oxidative stress induced by Adriamycin (ADR) in rat kidney. The animals were divided into 6 groups: control (CO), ADR, Adriamycin+ Vitamin C (ADR+VIT C), C. longa extract+ Adriamycin (C.LE+ADR), N. sativa extract+ Adriamycin (N.SE+ADR) and C. longa extract+ N. sativa extract + Adriamycin (N.S+C.L+ADR). ADR (5mg/kg) was injected intravenously, whereas VITC (100mg/kg) and extract of C. longa (1000mg/kg) and N. sativa (200mg/kg) were administrated orally. Finally, the renal tissue, urine and blood samples were collected and submitted to measure of redox markers, osmolarity and renal index. The renal content of total thiol and superoxide dismutase (SOD) activity significantly decreased and Malondialdehyde (MDA) concentration increased in Adriamycin group compared to control group. The renal content of total thiol and SOD activity significantly enhanced and MDA concentration reduced in treated-mixed extract of C. longa and N. sativa along with ADR group compared to ADR group. The mixed extract did not restore increased renal index percentage induced by ADR. There also was no significant difference in urine and serum osmolarity between the groups. hydro-alcoholic extracts of N.sativa and C.longa led to an improvement in ADR-induced oxidative stress and mixed administration of the extracts enhanced the aforementioned therapeutic effect.

  1. Effects of Nigella sativa supplementation on blood parameters and anthropometric indices in adults: A systematic review on clinical trials

    PubMed Central

    Mohtashami, Alireza; Entezari, Mohammad Hasan

    2016-01-01

    Background: Nigella sativa (N. sativa) has been used in traditional medicine and several studies have been performed in the last decades to reveal the effects of it on different medical disorders such as diabetes, dyslipidemia, hypertension, and obesity. We evaluated the effects of N. sativa supplementation on lipid profiles, glycemic control, blood pressure (BP), and some anthropometric indices in humans. Materials and Methods: A search on published studies was done by using databases including PubMed, Google Scholar, Thomas Reuters Web of Science, and Cochrane. Medical subject headings (MeSH) terms searched included “N. sativa,” “Black seed,” “Black cumin,” “kalonji,” and “Triglycerides,” “Cholesterol,” “Lipoproteins,” “LDL,” “Lipoproteins,” “HDL,” “Blood glucose,” “Hemoglobin A,” “Glycosylated,” “Blood pressure,” “Body mass index,” “Waist circumference”. Initially 515 articles were extracted. Four hundred ninety-two papers that were unrelated, reviews, animal studies, and combined and duplicated studies were excluded, 23 articles were eligible for this review. Results: After analyzing 23 articles including 1531 participants, these results were achieved: In 4 trials, N. sativa reduced BP, but in 5 trials it could not. Fasting blood sugar (FBS) was reduced significantly in 13 studies. In addition, N. sativa reduced levels of glycosylated hemoglobin (HbA1c). Although weight and waist circumference (WC) in 2 articles were reduced significantly, in 6 articles they were not. Fluctuation in lipid profile in the articles was very controversial, being significant in many of them but not in others. Conclusion: Our systematic review revealed that N. sativa supplementation might be effective in glycemic control in humans. PMID:27904549

  2. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics.

    PubMed

    Farag, Mohamed A; Gad, Haidy A; Heiss, Andreas G; Wessjohann, Ludger A

    2014-05-15

    Nigella sativa, commonly known as black cumin seed, is a popular herbal supplement that contains numerous phytochemicals including terpenoids, saponins, flavonoids, alkaloids. Only a few of the ca. 15 species in the genus Nigella have been characterized in terms of phytochemical or pharmacological properties. Here, large scale metabolic profiling including UPLC-PDA-MS and GC-MS with further multivariate analysis was utilized to classify 6 Nigella species. Under optimized conditions, we were able to annotate 52 metabolites including 8 saponins, 10 flavonoids, 6 phenolics, 10 alkaloids, and 18 fatty acids. Major peaks in UPLC-MS spectra contributing to the discrimination among species were assigned as kaempferol glycosidic conjugates, with kaempferol-3-O-[glucopyranosyl-(1→2)-galactopyranosyl-(1→2)-glucopyranoside, identified as potential taxonomic marker for N. sativa. Compared with GC-MS, UPLC-MS was found much more efficient in Nigella sample classification based on genetic and geographical origin. Nevertheless, both GC-MS and UPLC-MS support the remote position of Nigella nigellastrum in relation to the other taxa. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cancer chemopreventive potential of volatile oil from black cumin seeds, Nigella sativa L., in a rat multi-organ carcinogenesis bioassay

    PubMed Central

    SALIM, ELSAYED I.

    2010-01-01

    Nigella sativa (N. sativa) is a herbal plant of the Ranunculaceae family that has been widely used for various medicinal and nutritional purposes. Volatile oil extracts along with its major constituents, such as thymoquinone, have recently attracted considerable attention for their antioxidant, immunoprotective and antitumor properties. The present study was conducted to assess the chemopreventive potential of crude oils in N. sativa on tumor formation using a well-established rat multi-organ carcinogenesis model featuring initial treatment with five different carcinogens. Post-initiation administration of 1000 or 4000 ppm N. sativa volatile oil in the diet of male Wistar rats for 30 weeks significantly reduced malignant and benign colon tumor sizes, incidences and multiplicities. The treatment also significantly decreased the incidences and multiplicities of tumors in the lungs and in different parts of the alimentary canal, particularly the esophagus and forestomach. Bromodeoxyuridine labeling indices, reflecting cell proliferation were significantly decreased in various organs and lesions after treatment with the two doses of N. sativa. The plasma levels of insulin growth factor, triglycerides and prostaglandin E2 were also altered. The findings show, for the first time, that N. sativa administration exerts potent inhibitory effects on rat tumor development and on cellular proliferation in multiple organ sites. In particular, the ability to significantly inhibit murine colon, lung, esophageal and forestomach tumors was demonstrated in the post-initiation phase, with no evidence of clinical side effects. The mechanisms are likely to be related to suppression of cell proliferation. PMID:22966405

  4. Effect of Nigella sativa fixed and essential oils on antioxidant status, hepatic enzymes, and immunity in streptozotocin induced diabetes mellitus

    PubMed Central

    2014-01-01

    Background Nigella sativa fixed (NSFO) and essential (NSEO) oils have been used to treat diabetes mellitus and its complications. Present study was undertaken to explore and validate these folkloric uses. Methods Sprague dawley rats having streptozotocin (STZ) induced diabetes mellitus were used to assess the role of NSFO and NSEO in the management of diabetes complications. Parameters investigated were antioxidant potential, oxidative stress, and the immunity by in vivo experiments. Results The results indicated that STZ decreased the glutathione contents (25.72%), while NSFO and NSEO increased the trait significantly (P < 0.05). Experimental diets increased the tocopherol contents (P < 0.01) and enhanced the expression of hepatic enzymes (P < 0.01). Correlation matrix further indicated that antioxidant potential is positively associated (P < 0.05) responsible for the modulation of hepatic enzymes and the decrease of the nitric oxide production thus controlling the diabetes complications. Conclusions Overall, results of present study supported the traditional use of N. sativa and its derived products as a treatment for hyperglycemia and allied abnormalities. Moreover, N. sativa fixed and essential oils significantly ameliorate free radicals and improve antioxidant capacity thus reducing the risk of diabetic complications. PMID:24939518

  5. Proapoptotic and Antimetastatic Properties of Supercritical CO2 Extract of Nigella sativa Linn. Against Breast Cancer Cells

    PubMed Central

    Baharetha, Hussein M.; Nassar, Zeyad D.; Aisha, Abdalrahim F.; Ahamed, Mohamed B. Khadeer; Al-Suede, Foaud Saleih R.; Kadir, Mohd Omar Abd; Ismail, Zhari

    2013-01-01

    Abstract Nigella sativa, commonly referred as black cumin, is a popular spice that has been used since the ancient Egyptians. It has traditionally been used for treatment of various human ailments ranging from fever to intestinal disturbances to cancer. This study investigated the apoptotic, antimetastatic, and anticancer activities of supercritical carbon dioxide (SC-CO2) extracts of the seeds of N. sativa Linn. against estrogen-dependent human breast cancer cells (MCF-7). Twelve extracts were prepared from N. sativa seeds using the SC-CO2 extraction method by varying pressure and temperature. Extracts were analyzed using FTIR and UV-Vis spectrometry. Cytotoxicity of the extracts was evaluated on various human cancer and normal cell lines. Of the 12 extracts, 1 extract (A3) that was prepared at 60°C and 2500 psi (∼17.24 MPa) showed selective antiproliferative activity against MCF-7 cells with an IC50 of 53.34±2.15 μg/mL. Induction of apoptosis was confirmed by evaluating caspases activities and observing the cells under a scanning electron microscope. In vitro antimetastatic properties of A3 were investigated by colony formation, cell migration, and cell invasion assays. The elevated levels of caspases in A3 treated MCF-7 cells suggest that A3 is proapoptotic. Further nuclear condensation and fragmentation studies confirmed that A3 induces cytotoxicity through the apoptosis pathway. A3 also demonstrated remarkable inhibition in migration and invasion assays of MCF-7 cells at subcytotoxic concentrations. Thus, this study highlights the therapeutic potentials of SC-CO2 extract of N. sativa in targeting breast cancer. PMID:24328702

  6. Black Cumin (Nigella sativa) and Its Active Constituent, Thymoquinone: An Overview on the Analgesic and Anti-inflammatory Effects.

    PubMed

    Amin, Bahareh; Hosseinzadeh, Hossein

    2016-01-01

    For many centuries, seeds of Nigella sativa (black cumin), a dicotyledon of the Ranunculaceae family, have been used as a seasoning spice and food additive in the Middle East and Mediterranean areas. Traditionally, the plant is used for asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness, and gastrointestinal disturbances. The literature regarding the biological activities of seeds of this plant is extensive, citing bronchodilative, anti-inflammatory, antinociceptive, antibacterial, hypotensive, hypolipidemic, cytotoxic, antidiabetic, and hepatoprotective effects. The active ingredients of N. sativa are mainly concentrated in the fixed or essential oil of seeds, which are responsible for most health benefits. This review will provide all updated reported activities of this plant with an emphasis on the antinociceptive and anti-inflammatory effects. Results of various studies have demonstrated that the oil, extracts, and their active ingredients, in particular, thymoquinone, possess antinociceptive and anti-inflammatory effects, supporting the common folk perception of N. Sativa as a potent analgesic and anti-inflammatory agent. Many protective properties are attributed to reproducible radical scavenging activity as well as an interaction with numerous molecular targets involved in inflammation, including proinflammatory enzymes and cytokines. However, there is a need for further investigations to find out the precise mechanisms responsible for the antinociceptive and anti-inflammatory effects of this plant and its active constituents. Georg Thieme Verlag KG Stuttgart · New York.

  7. The hepatoprotective activity of olive oil and Nigella sativa oil against CCl4 induced hepatotoxicity in male rats.

    PubMed

    Al-Seeni, Madeha N; El Rabey, Haddad A; Zamzami, Mazin A; Alnefayee, Abeer M

    2016-11-04

    Liver disease is the major cause of serious health problem leading to morbidity and mortality worldwide and the problem has increased in search for hepatotherapeutic agents from plants. The present study was designed to compare the probable hepatoprotective activity of olive oil and N. sativa oil on CCl 4 induced liver damage in male rats. Forty males of a new model of albino rats (Wistar strain) (175-205 g) were divided into four groups. The 1st Group (G1) was the negative control group, the remaining rats were injected with CCl 4 (1 ml/kg body weight) with equal amount of olive oil on the 1st and 4th day of every week for 4 weeks. The 2nd group (G2) was the positive control, the 3rd group (G3) and the fourth group (G4) were treated orally with N. sativa oil and olive oils using stomach tube. The positive control group showed an increase in hepatic enzymes, total bilirubin, creatinine, uric acid, lipid peroxide total cholesterol, triglyceride, low density lipoprotein, very low density lipoproteins, interleukin-6, and a decrease in antioxidant enzymes, high density lipoprotein cholesterol, a decrease in total protein and albumin an when compared with negative control group. Histology of the CCl 4 treated group revealed inflammation and damage of liver cells. Treating the hepatotoxic rats with olive oil and N. sativa oil showed a significant improvement in all biochemical tests compared with the positive CCl 4 control group. In addition, the liver tissues of olive oil treated group showed mild improvement in inflammatory infiltration and in N. sativa oil treated group showed normal hepatocytes with no evidence of inflammation. This study revealed that olive oil and N. sativa oil have a protective effect against CCl 4 -induced hepatotoxicity in male rats. Nigella sativa oil was more effective than olive oil.

  8. Evaluation of antifungal activities of the essential oil and various extracts of Nigella sativa and its main component, thymoquinone against pathogenic dermatophyte strains.

    PubMed

    Mahmoudvand, H; Sepahvand, A; Jahanbakhsh, S; Ezatpour, B; Ayatollahi Mousavi, S A

    2014-12-01

    Plant extracts and plant-derived compounds are valuable sources as folk medicine for the treatment and prevention of a wide range of diseases including infectious diseases. In the present study, the antifungal activities of the essential oil and various extracts Nigella sativa and its active principle, thymoquinone against Trichophyton mentagrophytes, Microsporum canis and Microsporum gypseum as pathogenic dermatophyte strains have been evaluated. In addition, the cytotoxic effects of N. sativa against murine macrophage cells were determined. In this study, the antifungal activity was studied by disk diffusion method and assessment of minimum inhibitory concentration (MIC) of extracts using broth macrodilution method. In addition, the cytotoxic activity of N. sativa was evaluated by colorimetric assay (MTT). The components of the N. sativa essential oil were also identified by gas chromatography/mass spectroscopy (GC/MS) analysis. The results showed that the essential oil and various extracts of N. sativa particularly thymoquinone have potent antifungal effects on T. mentagrophytes, M. canis and M. gypseum as pathogenic dermatophyte strains. In the assessment of the cytotoxicity activity, it could be observed that N. sativa had no significant cytotoxicity in the murine macrophages at low concentrations. While, thymoquinone in comparison with essential oil and various extracts of N. sativa showed higher cytotoxicity on murine macrophage cells. In the GC/MS analysis, thymoquinone (42.4%), p-cymene (14.1%), carvacrol (10.3%) and longifolene (6.1%) were found to be the major components of N. sativa essential oil. The findings of this study suggest a first step in the search of new antidermatophytic drugs and aid the use of N. sativa seeds in the traditional medicine for dermatophytic infections. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Evaluation of Antioxidant and Antibacterial Potentials of Nigella sativa L. Suspension Cultures under Elicitation.

    PubMed

    Chaudhry, Hera; Fatima, Nida; Ahmad, Iffat Zareen

    2015-01-01

    Nigella sativa L. (family Ranunculaceae) is an annual herb of immense medicinal properties because of its major active components (i.e., thymoquinone (TQ), thymohydroquinone (THQ), and thymol (THY)). Plant tissue culture techniques like elicitation, Agrobacterium mediated transformation, hairy root culture, and so on, are applied for substantial metabolite production. This study enumerates the antibacterial and antioxidant potentials of N. sativa epicotyl suspension cultures under biotic and abiotic elicitation along with concentration optimization of the elicitors for enhanced TQ and THY production. Cultures under different concentrations of pectin and manganese chloride (MnCl2) elicitation (i.e., 5 mg/L, 10 mg/L, and 15 mg/L) showed that the control, MnCl2 10 mg/L, and pectin 15 mg/L suspension extracts greatly inhibited the growth of E. coli, S. typhimurium, and S. aureus (MIC against E. coli, i.e., 2.35 ± 0.8, 2.4 ± 0.2, and 2.46 ± 0.5, resp.). Elicitation decreased SOD enzyme activity whereas CAT enzyme activity increased remarkably under MnCl2 elicitation. MnCl2 10 mg/L and pectin 15 mg/L elicitation enhanced the DPPH radical inhibition ability, but ferric scavenging activity was comparable to the control. TQ and THY were quantified by LC-MS/MS in the cultures with high bioactive properties revealing maximum content under MnCl2 10 mg/L elicitation. Therefore, MnCl2 elicitation can be undertaken on large scale for sustainable metabolite production.

  10. An active principle of Nigella sativa L., thymoquinone, showing significant antimicrobial activity against anaerobic bacteria.

    PubMed

    Randhawa, Mohammad Akram; Alenazy, Awwad Khalaf; Alrowaili, Majed Gorayan; Basha, Jamith

    2017-01-01

    Thymoquinone (TQ) is the major active principle of Nigella sativa seed (black seed) and is known to control many fungi, bacteria, and some viruses. However, the activity of TQ against anaerobic bacteria is not well demonstrated. Anaerobic bacteria can cause severe infections, including diarrhea, aspiration pneumonia, and brain abscess, particularly in immunodeficient individuals. The present study aimed to investigate the in vitro antimicrobial activity of TQ against some anaerobic pathogens in comparison to metronidazole. Standard, ATCC, strains of four anaerobic bacteria ( Clostridium difficile , Clostridium perfringens , Bacteroides fragilis , and Bacteroides thetaiotaomicron ), were initially isolated on special Brucella agar base (with hemin and vitamin K). Then, minimum inhibitory concentrations (MICs) of TQ and metronidazole were determined against these anaerobes when grown in Brucella agar, using serial agar dilution method according to the recommended guidelines for anaerobic organisms instructed by the Clinical and Laboratory Standards Institute. TQ showed a significant antimicrobial activity against anaerobic bacteria although much weaker than metronidazole. MICs of TQ and metronidazole against various anaerobic human pathogens tested were found to be between 10-160 mg/L and 0.19-6.25 mg/L, respectively. TQ controlled the anaerobic human pathogenic bacteria, which supports the use of N. sativa in the treatment of diarrhea in folk medicine. Further investigations are in need for determination of the synergistic effect of TQ in combination with metronidazole and the activity of derivatives of TQ against anaerobic infections.

  11. Nigella sativa improves glucose homeostasis and serum lipids in type 2 diabetes: A systematic review and meta-analysis.

    PubMed

    Daryabeygi-Khotbehsara, Reza; Golzarand, Mahdieh; Ghaffari, Mohammad Payam; Djafarian, Kurosh

    2017-12-01

    Global prevalence of type 2 diabetes (T2D) is very high and is currently growing alarmingly. With respect to recent researchers' attention to the potential role of herbal medicine in disease prevention and management, the present meta-analysis review investigates the effectiveness of Nigella sativa (N. sativa), a popular herb, in T2D. Literature search was conducted covering PubMed/Medline, Scopus, and Cochrane Registry of Clinical Trials up to February 2017 to obtain the relevant published intervention studies. Study selection, quality rating and data extraction of studies were investigated by two independent reviewers. Heterogeneity was assessed using I-squared (I 2 ) statistics test. Subgroup analysis was done to assess type of N. sativa supplement as source of heterogeneity. Effect sizes of eligible studies were pooled using STATA software version 12 (STATA corp, College Station, TX, USA). Seven trials were included in the meta-analysis of glycemic and serum lipid profile end points. Supplementation with N. sativa significantly improved fasting blood sugar (FBS) [-17.84mg/dl, 95% CI: -21.19 to -14.49, p<0.001], HbA1c [-0.71%, 95% CI: -1.04 to -0.39, p<0.001], total-cholesterol (TC) [WMD: -22.99mg/dl, 95% CI: -32.16 to -13.83, p<0.001] and LDL-cholesterol (LDL-c) [-22.38mg/dl, 95% CI: -33.60 to -11.15, p<0.001]. The overall effects for triglyceride (TG) [-6.80mg/dl, 95% CI: -33.59 to 19.99, p=0.61] and HDL-cholesterol (HDL-c) [0.37mg/dl, 95% CI: -1.59 to 2.33, p=0.71] were insignificant. Subgroup analysis revealed significant reduction on TG with N. sativa seed oil [-14.8mg/dl, 95% CI: -23.1 to -6.5, p<0.001], while TG was increased with seed powder [29.4mg/dl, 95% CI: 16.9-42.0, p<0.001]. All measures, but HbA1c, showed no evidence of publication bias. Although, the meta-analysis conducted included a few number of studies, but has shown promising results on the effectiveness of N. sativa on glucose homeostasis and serum lipids. Current findings suggest N

  12. Thymoquinone, a bioactive component of Nigella sativa, normalizes insulin secretion from pancreatic β-cells under glucose overload via regulation of malonyl-CoA

    PubMed Central

    Gray, Joshua P.; Zayasbazan Burgos, Delaine; Yuan, Tao; Seeram, Navindra; Rebar, Rebecca; Follmer, Rebecca

    2015-01-01

    Thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone) is a major bioactive component of Nigella sativa, a plant used in traditional medicine to treat a variety of symptoms, including elevated blood glucose levels in type 2 diabetic patients. Normalization of elevated blood glucose depends on both glucose disposal by peripheral tissues and glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. We employed clonal β-cells and rodent islets to investigate the effects of thymoquinone (TQ) and Nigella sativa extracts (NSEs) on GSIS and cataplerotic metabolic pathways implicated in the regulation of GSIS. TQ and NSE regulated NAD(P)H/NAD(P)+ ratios via a quinone-dependent redox cycling mechanism. TQ content was positively correlated with the degree of redox cycling activity of NSE extracts, suggesting that TQ is a major component engaged in mediating NSE-dependent redox cycling. Both acute and chronic exposure to TQ and NSE enhanced GSIS and were associated with the ability of TQ and NSE to increase the ATP/ADP ratio. Furthermore, TQ ameliorated the impairment of GSIS following chronic exposure of β-cells to glucose overload. This protective action was associated with the TQ-dependent normalization of chronic accumulation of malonyl-CoA, elevation of acetyl-CoA carboxylase (ACC), fatty acid synthase, and fatty acid-binding proteins following chronic glucose overload. Together, these data suggest that TQ modulates the β-cell redox circuitry and enhances the sensitivity of β-cell metabolic pathways to glucose and GSIS under normal conditions as well as under hyperglycemia. This action is associated with the ability of TQ to regulate carbohydrate-to-lipid flux via downregulation of ACC and malonyl-CoA. PMID:26786775

  13. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L.

    NASA Astrophysics Data System (ADS)

    Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi

    2017-01-01

    Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.

  14. Elucidation of mechanisms of actions of thymoquinone-enriched methanolic and volatile oil extracts from Nigella sativa against cardiovascular risk parameters in experimental hyperlipidemia.

    PubMed

    Ahmad, Shafeeque; Beg, Zafarul H

    2013-06-13

    Nigella sativa belonging to the Ranunculaceae family has been reported to use for thousands of years as protective and curative traditional medicine against a number of diseases. GC-MS analysis of methanolic extract (ME) and volatile oil (VO) extracted from Nigella sativa seed oil was performed by two different mass spectrometry libraries, WIlEY8 and NIST05s. The cholesterol lowering and antioxidant actions of VO and ME fractions were investigated in atherogenic suspension fed rats. In this study, four groups of male Wistar rats were used: normolipidemic control (NLP-C), hyperlipidemic control (HLP-C), methanolic extract (HLP-ME) and volatile oil treated (HLP-VO) groups for 30 days of duration. P value < 0.05 was assumed as significant data in groups. Administration of atherogenic suspension to male Wistar rats for 30 days resulted in a marked increase of plasma triglycerides and total cholesterol, and significant change in plasma lipoprotein levels along with a decrease in antioxidant arylesterase activity in hyperlipidemic control (HLP-C) group. The oral feeding of 100 mg ME or 20 mg VO per rat/day effectively reduced the plasma triglycerides to near normal level, while high density lipoprotein cholesterol and its subfraction along with arylesterase activity levels were significantly increased. The test fractions elicited a significant decrease in hepatic HMG-CoA reductase activity. The fractions significantly blocked the ex vivo basal and in vitro maximal formation of conjugated diene and malondialdehyde, and lengthened the lag times of low density lipoprotein, small dense low density lipoprotein and large buoyant low density lipoprotein. ME possessing ω-6 linoleic acid along with palmitic acid active compounds was more effective than VO extract containing thymol and isothymol phenolic antioxidant compounds, thymoquinone phenolic compound common to the both extracts, via reduction in hepatic HMG-CoA reductase activity as well as antioxidant mechanisms. The both

  15. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods.

    PubMed

    Kokoska, L; Havlik, J; Valterova, I; Sovova, H; Sajfrtova, M; Jankovska, I

    2008-12-01

    Nigella sativa L. seed essential oils obtained by hydrodistillation (HD), dry steam distillation (SD), steam distillation of crude oils obtained by solvent extraction (SE-SD), and supercritical fluid extraction (SFE-SD) were tested for their antibacterial activities, using the broth microdilution method and subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the essential oils tested differed markedly in their chemical compositions and antimicrobial activities. The oils obtained by HD and SD were dominated by p-cymene, whereas the major constituent identified in both volatile fractions obtained by SD of extracted oils was thymoquinone (ranging between 0.36 and 0.38 g/ml, whereas in oils obtained by HD and SD, it constituted only 0.03 and 0.05 g/ml, respectively). Both oils distilled directly from seeds showed lower antimicrobial activity (MICs > or = 256 and 32 microg/ml for HD and SD, respectively) than those obtained by SE-SD and SFE-SD (MICs > or = 4 microg/ml). All oil samples were significantly more active against gram-positive than against gram-negative bacteria. Thymoquinone exhibited potent growth-inhibiting activity against gram-positive bacteria, with MICs ranging from 8 to 64 microg/ml.

  16. Study on the effect of black cumin (Nigella sativa Linn.) on experimental renal ischemia-reperfusion injury in rats.

    PubMed

    Mousavi, Ghafour

    2015-08-01

    To evaluate the effect of Black cumin (Nigella sativa Linn.) pre-treatment on renal ischemia/reperfusion (I/R) induced injury in the rats. A total of 40 male Wistar rats were randomly allocated into five equal groups including Sham, I/R model and three I/R+ Black cumin (0.5, 1 and 2%)-treated groups. I/R groups' kidneys were subjected to 60 min of global ischemia at 37°C followed by 24 h of reperfusion. At the end of reperfusion period, the rats were euthanized. Superoxide dismutase, catalase and glutathione peroxidase activities as well as reduced glutathione and renal malondialdehyde contents were determined in renal tissues. Kidney function tests and histopathological examination were also performed. High serum creatinine, blood urea nitrogen and uric acid as well as malondialhehyde (MDA) levels, and low antioxidant enzyme activities were observed in I/R rats compared to the sham rats. Pre-treatment with Black cumin for three weeks prior to IR operation improved renal function and reduced I/R induced renal inflammation and oxidative injury. These biochemical observations were supported by histopathological test of kidney sections. Black cumin significantly prevented renal ischemia/reperfusion induced functional and histological injuries.

  17. Protective effects of black cumin (Nigella sativa) oil on TNBS-induced experimental colitis in rats.

    PubMed

    Isik, F; Tunali Akbay, Tugba; Yarat, A; Genc, Z; Pisiriciler, R; Caliskan-Ak, E; Cetinel, S; Altıntas, A; Sener, G

    2011-03-01

    The pathogenesis and treatment of ulcerative colitis remain poorly understood. The aim of the present study is to investigate the effects of black cumin (Nigella sativa) oil on rats with colitis. Experimental colitis was induced with 1 mL trinitrobenzene sulfonic acid (TNBS) in 40% ethanol by intracolonic administration with 8-cm-long cannula under ether anesthesia to rats in colitis group and colitis + black cumin oil group. Rats in the control group were given saline at the same volume by intracolonic administration. Black cumin oil (BCO, Origo "100% natural Black Cumin Seed Oil," Turkey) was given to colitis + black cumin oil group by oral administration during 3 days, 5 min after colitis induction. Saline was given to control and colitis groups at the same volume by oral administration. At the end of the experiment, macroscopic lesions were scored and the degree of oxidant damage was evaluated by colonic total protein, sialic acid, malondialdehyde, and glutathione levels, collagen content, and tissue factor, superoxide dismutase, and myeloperoxidase activities. Tissues were also examined by histological and cytological analysis. Proinflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6], lactate dehydrogenase activity, and triglyceride and cholesterol levels were analyzed in blood samples. We found that black cumin oil decreased the proinflammatory cytokines, lactate dehydrogenase, triglyceride, and cholesterol, which were increased in colitis. BCO, by preventing inflammatory status in the blood, partly protected colonic tissue against experimental ulcerative colitis.

  18. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines.

    PubMed

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2016-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own.

  19. Influence of Nigella sativa seeds, Rosmarinus officinalis leaves and their combination on growth performance, immune response and rumen metabolism in Dorper lambs.

    PubMed

    Odhaib, Kifah Jumaah; Adeyemi, Kazeem Dauda; Ahmed, Muideen Adewale; Jahromi, Muhammad Faseleh; Jusoh, Shokri; Samsudin, Anjas Asmara; Alimon, Abdul Razak; Yaakub, Halimatun; Sazili, Awis Qurni

    2018-06-01

    The objective of this study was to determine the effects of dietary supplementation of Nigella sativa L. seeds, Rosmarinus officinalis L. leaves and their combination on rumen metabolism, nutrient intake and digestibility, growth performance, immune response and blood metabolites in Dorper lambs. Twenty-four entire male Dorper lambs (18.68 ± 0.6 kg, 4-5 months old) were randomly assigned to a concentrate mixture containing on a dry matter basis either, no supplement (control, T1), 1% R. officinalis leaves (T2), 1% N. sativa seeds (T3) or 1% R. officinalis leaves +1% N. sativa seeds (T4). The lambs had ad libitum access to urea-treated rice straw (UTRS) and were raised for 90 days. Supplemented lambs had greater (P < 0.05) intake of DM and UTRS than the control lambs. The T4 lambs had lower (P < 0.05) nutrient digestibility than those fed other treatments. Total and daily weight gain was greater (P < 0.05) in T2 lambs than those fed other diets. The T3 and T4 lambs had greater (P < 0.05) ruminal pH than the T1 and T2 lambs. Supplemented lambs had lower (P < 0.05) ruminal total volatile fatty acids, acetate, propionate, NH 3 -N and C18:0 than the control lambs. The T4 lambs had lower (P < 0.05) population of Fibrobacter succinogenes, Ruminococcus albus, methanogens and total protozoa compared with those fed other diets. Supplemented lambs had lower (P < 0.05) neutrophils, basophils and serum urea and greater (P < 0.05) serum IgA and IgG compared with the control lambs. The current results emphasised the variation in the efficacy of medicinal plants in ruminant nutrition.

  20. Inhibitory effect of gamma radiation and Nigella sativa seeds oil on growth, spore germination and toxin production of fungi

    NASA Astrophysics Data System (ADS)

    Zeinab, E. M. EL-Bazza; Hala, A. Farrag; Mohie, E. D. Z. EL-Fouly; Seham, Y. M. EL-Tablawy

    2001-02-01

    Twenty samples of Nigella sativa seeds (Black cumin) were purchased from different localities in Egypt. The mold viable count ranged from 1.7×10 1 to 9.8×10 3 c.f.u. Sixty six molds were isolated belonging to six genera Aspergillus, Penicillium, Rhizopus, Mucor, Alternaria and Fusarium. Exposure of seeds samples to different radiation doses showed that a dose level of 6.0 kGy could be considered as a sufficient dose for decontamination of the tested samples. Seven radioresistant isolates were identified as Rhizopus oryzae, Rhizopus stolonifer, Penicillium chrysogenum and Penicillium corylophillum. All the herb samples were found to be free from aflatoxins B 1, B 2, G 1, G 2 and ochratoxin A. One mold isolate was identified as Aspergillus flavus could produce aflatoxin B 1 and G 1. None of the isolated radioresistant strains could produce mycotoxins. The water activities of seeds were slightly decreased by the storage time and the seeds needed to be stored at relative humidity not more than 85%. The addition of extract volatile and fixed oil from tested seeds to the medium stimulated the growth of isolated Aspergillus sp.

  1. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.

    PubMed

    Amooaghaie, Rayhaneh; Saeri, Mohammad Reza; Azizi, Morteza

    2015-10-01

    Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Protective effect of thymoquinone, the main component of Nigella Sativa, against diazinon cardio-toxicity in rats.

    PubMed

    Danaei, Gholam Hassan; Memar, Bahram; Ataee, Ramin; Karami, Mohammad

    2018-04-12

    Several studies have shown that oxidative stress and cell damage can occur at very early stages of diazinon (DZN) exposure. The present study was designed to determine the beneficial effect of thymoquinone (Thy), the main component of Nigella sativa (black seed or black cumin), against DZN cardio-toxicity in rats. In the present experimental study, 48 male Wistar rats were randomly divided into six groups: control (corn oil gavages), DZN gavages (20 mg/kg/day), Thy gavages (10 mg/kg/day) and Thy + DVN gavages (2.5, 5 and 10 mg/kg/day). Treatments were continued for 28 days, then the animals were anesthetized by ether and superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lactate dehydrogenize (LDH) and glutathione peroxide (GPX) activity was evaluated. In addition, glutathione (GSH) and malondialdehyde (MDA) the heart tissue and creatinephosphokinase-MB (CPK-MB) and troponin (TPI) levels and cholinesterase activity in the blood were evaluated. DZN-induced oxidative damage and elevated the levels of the cardiac markers CK-MB, TPI, MDA and LDH and decreased SOD, CAT and cholinesterase activity and GSH level compared with the control group. Treatment with Thy reduced DZN cardio-toxicity and cholinesterase activity. The success of Thy supplementation against DZN toxicity can be attributed to the antioxidant effects of its constituents. Administration of Thy as a natural antioxidant decreased DZN cardio-toxicity and improved cholinesterase activity in rats through the mechanism of free radical scavenging.

  3. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses.

    PubMed

    Botnick, Ilan; Xue, Wentao; Bar, Einat; Ibdah, Mwafaq; Schwartz, Amnon; Joel, Daniel M; Lev, Efraim; Fait, Aaron; Lewinsohn, Efraim

    2012-08-24

    Black cumin (Nigella sativa L., Ranunculaceae) is an annual herb commonly used in the Middle East, India and nowadays gaining worldwide acceptance. Historical and traditional uses are extensively documented in ancient texts and historical documents. Black cumin seeds and oil are commonly used as a traditional tonic and remedy for many ailments as well as in confectionery and bakery. Little is known however about the mechanisms that allow the accumulation and localization of its active components in the seed. Chemical and anatomical evidence indicates the presence of active compounds in seed coats. Seed volatiles consist largely of olefinic and oxygenated monoterpenes, mainly p-cymene, thymohydroquinone, thymoquinone, γ-terpinene and α-thujene, with lower levels of sesquiterpenes, mainly longifolene. Monoterpene composition changes during seed maturation. γ-Terpinene and α-thujene are the major monoterpenes accumulated in immature seeds, and the former is gradually replaced by p-cymene, carvacrol, thymo-hydroquinone and thymoquinone upon seed development. These compounds, as well as the indazole alkaloids nigellidine and nigellicine, are almost exclusively accumulated in the seed coat. In contrast, organic and amino acids are primarily accumulated in the inner seed tissues. Sugars and sugar alcohols, as well as the amino alkaloid dopamine and the saponin α-hederin accumulate both in the seed coats and the inner seed tissues at different ratios. Chemical analyses shed light to the ample traditional and historical uses of this plant.

  4. Nigella sativa oil attenuates chronic nephrotoxicity induced by oral sodium nitrite: Effects on tissue fibrosis and apoptosis.

    PubMed

    Al-Gayyar, Mohammed M H; Hassan, Hanan M; Alyoussef, Abdullah; Abbas, Ahmed; Darweish, Mohamed M; El-Hawwary, Amany A

    2016-03-01

    Sodium nitrite, a food preservative, has been reported to increase oxidative stress indicators such as lipid peroxidation, which can affect different organs including the kidney. Here, we investigated the toxic effects of oral sodium nitrite on kidney function in rats and evaluated potential protective effects of Nigella sativa oil (NSO). Seventy adult male Sprague-Dawley rats received 80 mg/kg sodium nitrite orally in the presence or absence of NSO (2.5, 5, and 10 ml/kg) for 12 weeks. Morphological changes were assessed by hematoxylin and eosin, Mallory trichome, and periodic acid-Schiff staining. Renal tissues were used for measurements of oxidative stress markers, C-reactive protein, cytochrome C oxidase, transforming growth factor (TGF)-beta1, monocyte chemotactic protein (MCP)-1, pJNK/JNK, and caspase-3. NSO significantly reduced sodium nitrite-induced elevation in serum urea and creatinine, as well as increasing normal appearance of renal tissue. NSO also prevented reductions in glycogen levels caused by sodium nitrite alone. Moreover, NSO treatment resulted in dose-dependent significant reductions in fibrosis markers after sodium nitrite-induced 3- and 2.7-fold increase in MCP-1 and TGF-beta1, respectively. Finally, NSO partially reduced the elevated caspase-3 and pJNK/JNK. NSO ameliorates sodium nitrite-induced nephrotoxicity through blocking oxidative stress, attenuation of fibrosis/inflammation, restoration of glycogen level, amelioration of cytochrome C oxidase, and inhibition of apoptosis.

  5. Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits.

    PubMed

    Abdel-Daim, Mohamed M; Ghazy, Emad W

    2015-03-01

    Oxytetracycline (OTC) is a broad spectrum antibiotic widely used for treatment of a wide range of infections. However, its improper human and animal use leads to toxic effects, including hepatonephrotoxicity. Our objective was to evaluate protective effects of Nigella sativa oil (NSO) and/or ascorbic acid (AA), against OTC-induced hepatonephrotoxicity in rabbits. Forty male white New Zealand rabbits were divided into 5 groups of eight each. The 1(st) group (control) was given saline. The 2(nd) group was given OTC (200 mg/kg, orally). The 3(rd) and 4(th) groups were orally administered NSO and AA (2 ml/kg and 200 mg/kg respectively) 1 hr before OTC administration at the same dose regimen used for the 2(nd) group. Both NSO and AA were given in combination for the 5(th) group along with OTC administration. Serum biochemical parameters related to liver and kidney injury were evaluated, and lipid peroxidation as well as antioxidant markers in hepatic and renal tissues were examined. OTC-treated animals revealed significant alterations in serum biochemical hepato-renal injury markers, and showed a markedly increase in hepato-renal lipid peroxidation and inhibition in tissue antioxidant biomarkers. NSO and AA protect against OTC-induced serum and tissue biochemical alterations when each of them is used alone or in combination along with OTC treatment. Furthermore, both NSO and AA produced synergetic hepatoprotective and antioxidant properties. The present study revealed the preventive role of NSO and/or AA against the toxic effects of OTC through their free radical-scavenging and potent antioxidant activities.

  6. Nigella sativa amliorates inflammation and demyelination in the experimental autoimmune encephalomyelitis-induced Wistar rats

    PubMed Central

    Noor, Neveen A; Fahmy, Heba M; Mohammed, Faten F; Elsayed, Anwar A; Radwan, Nasr M

    2015-01-01

    Multiple sclerosis (MS) is the major, immune-mediated, demyelinating neurodegenerative disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model of MS. The aim of the present study was to investigate the protective and ameliorative effects of N. sativa seeds (2.8 g/kg body weight) in EAE-induced Wistar rats. EAE-induced rats were divided into: 1- EAE-induced rats (“EAE” group). 2- “N. sativa + EAE” group received daily oral administration of N. sativa 2 weeks prior EAE induction until the end of the experiment. 3- “EAE + N. sativa” group received daily oral administration of N. sativa after the appearance of first clinical signs until the end of the experiment. All animals were decapitated at the 28th day post EAE-induction. EAE was investigated using histopathological, immunohistochemical and ultrastructural examinations in addition to determination of some oxidative stress parameters in the cerebellum and medulla. N. sativa suppressed inflammation observed in EAE-induced rats. In addition, N. sativa enhanced remyelination in the cerebellum. Moreover, N. sativa reduced the expression of transforming growth factor beta 1 (TGF β1). N. sativa seeds could provide a promising agent effective in both the protection and treatment of EAE. PMID:26261504

  7. Effect of different levels of feed added black seed (Nigella sativa L.) on the performance of broiler chicks.

    PubMed

    Durrani, F R; Chand, N; Zaka, K; Sultan, A; Khattak, F M; Durrani, Z

    2007-11-15

    The study was conducted to investigate the effect of different levels of feed added black seed (Nigella sativa L.) on the overall performance and immunity of broiler chicks at NWFP Agricultural University, Peshawar in May 2005. Four experimental rations designated as A, B, C and D having black seed at the rate of 0, 20, 30 and 40 g kg(-1) feed were fed to 160 broiler chicks, randomly distributed into 16 replicates, so as to have 4 replicates per group and 10 chicks per replicate. The experiment was lasted for 35 days. Average weight gain, feed consumption, feed efficiency, dressing percentage, weight of different body organs (breast, thigh, intestine), giblets (liver, gizzard), abdominal fat weight, antibody titer against ND, IB and IBD were used as criteria of response. Economics for each group was calculated at the end of experimental period. It was found that group D receiving 40 g kg(-1) of black seed in the feed had a significant (p < 0.05) effect on mean body weight gain, feed intake, feed conversion ratio, dressing percentage and weight of different body organs (breast and thigh). Non significant (p > 0.05) effect was observed in gizzard, intestine, weight of abdominal fat and feed cost. Antibody titer against ND and IBD were higher in group D, however high antibody titer against IB was recorded in group C. Return per unit of feed cost and gross return were significantly (p < 0.05) effected by group D.

  8. Protective effect of thymoquinone, the active constituent of Nigella sativa fixed oil, against ethanol toxicity in rats

    PubMed Central

    Hosseini, Sayed Masoud; Taghiabadi, Elahe; Abnous, Khalil; Hariri, Alireza Timcheh; Pourbakhsh, Hamed; Hosseinzadeh, Hossein

    2017-01-01

    Objective(s): Long term consumption of ethanol may induce damage to many organs. Ethanol induces its noxious effects through reactive oxygen species production, and lipid peroxidation and apoptosis induction in different tissues and cell types. Previous experiments have indicated the antioxidant characteristics of thymoquinone, the active constituent of Nigella sativa fixed oil, against biologically dangerous reactive oxygen species. This experiment was planned to evaluate the protective effect of thymoquinone against subchronic ethanol toxicity in rats. Materials and Methods: Experiments were performed on six groups. Each group consisted of six animals, including control group (saline, gavage), ethanol-receiving group (3 g/kg/day, gavage), thymoquinone (2.5, 5, 10 mg/Kg/day, intraperitoneally (IP)) plus ethanol and thymoquinone (10 mg/Kg/day, IP) groups. Treatments were carried out in four weeks. Results: Thymoquinone reduced the ethanol-induced increase in the lipid peroxidation and severity of histopathological alteration in liver and kidney tissues. In addition it improved the levels of proinflammatory cytokines in liver tissue. Furthermore, thymoquinone corrected the liver enzymes level including alanine transaminase, aspartate transaminase and alkaline phosphatase in serum and glutathione content in liver and kidney tissues. Other experiments such as Western blot analysis and quantitative real-time RT-PCR revealed that thymoquinone suppressed the expression of Bax/Bcl-2 ratio (both protein and mRNA level), and caspases activation pursuant to ethanol toxicity. Conclusion: This study indicates that thymoquinone may have preventive effects against ethanol toxicity in the liver and kidney tissue through reduction in lipid peroxidation and inflammation, and also interrupting apoptosis. PMID:29085585

  9. Supplementation of Nigella sativa fixed and essential oil mediates potassium bromate induced oxidative stress and multiple organ toxicity.

    PubMed

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Ahmad, Rabia Shabeer; Pasha, Imran; Ahmad, Atif Nisar; Qayyum, Mir Muhammad Nasir

    2012-01-01

    The plants and their functional ingredients hold potential to cure various maladies and number of plants hold therapeutic potential. The present research was designed study the health promoting potential of black cumin (Nigella sativa) fixed oil (BCFO) and essential oil (BCEO) against oxidative stress with special reference to multiple organ toxicity. For the purpose, thirty rats (Strain: Sprague Dawley) were procured and divided into three groups (10 rats/group). The groups were fed on their respective diets i.e. D1 (control), D2 (BCFO @ 4.0%) and D3 (BCEO @ 0.30%) for a period of 56 days. Mild oxidative stress was induced with the help of potassium bromate injection @ 45 mg/Kg body weight. Furthermore, the levels of cardiac and liver enzymes were assayed. The results indicated that oxidative stress increased the activities of cardiac and liver enzymes. However, supplementation of BCFO and BCEO was effective in reducing the abnormal values of enzymes. Elevated levels of lactate dehydrogenase (LDH), CPK and CPK-MB were reduced from 456 to 231, 176 to 122 and 45 to 36mg/dL, respectively. Similarly, liver enzymes were also reduced. However, the results revealed that BCEO supplementation @ 0.30% is more effectual in ameliorating the multiple organ toxicity in oxidative stressed animal modelling. In the nutshell, it can be assumed that black cumin essential oil is more effective in reducing the extent of potassium bromate induced multiple organ toxicity (cardiac and liver enzymes imbalance) that will ultimately helpful in reducing the extent of myocardial and liver necrosis.

  10. Studies on optical and electrical properties of green synthesized TiO2@Ag core-shell nanocomposite material

    NASA Astrophysics Data System (ADS)

    Ganapathy, M.; Senthilkumar, N.; Vimalan, M.; Jeysekaran, R.; Vetha Potheher, I.

    2018-04-01

    Newly adopted green approach has been used to synthesize pure titanium dioxide (TiO2) nanoparticles (NPs) and silver deposited titanium dioxide (TiO2@Ag) core–shell nanocomposite (CSNC) from Nigella Sativa (black cumin) seed extract for the first time. The phytochemicals available in Nigella Sativa (NS) seed extract acts as reducing agent in the formation of nanoparticles as well as nanocomposite. The morphology, crystal structure, particle size and phase composition of green synthesized TiO2 NPs and TiO2@Ag CSNC are investigated by High Resolution Transmission Electron Microscopy (HRTEM), Field Emission Scanning Electron Microscopy (FESEM), Powder x-ray diffraction (PXRD), FT–Raman and Fourier Transform Infrared spectroscopy (FT-IR). The red shift in (from 333 nm to 342 nm) UV–Vis spectrum confirmed the deposition of Ag on TiO2. The reduced intensity peaks of Photoluminescence spectra (PL) also indicate the deposition of Ag on TiO2. Further the electrical properties of pure TiO2 and TiO2@Ag CSNC have studied by dielectric studies and ac conductivity measurements. The dielectric constant and the dielectric loss of TiO2@Ag CSNC are better than pure TiO2. From these improved results, the green synthesized TiO2@Ag CSNC from NS seed extract is may be a suitable material for device fabrication in the visible region.

  11. The impact of black seed oil on tramadol-induced hepatotoxicity: Immunohistochemical and ultrastructural study.

    PubMed

    Omar, Nesreen Moustafa; Mohammed, Mohammed Amin

    2017-06-01

    The natural herb, black seed (Nigella Sativa; NS) is one of the most important elements of folk medicine. The aim was to evaluate the impact of Nigella Sativa Oil (NSO) on the changes induced by tramadol in rat liver. Twenty four albino rats were used. given intraperitoneal and oral saline for 30days. TR-group: given intraperitoneal tramadol (20, 40, 80mg/kg/day) in the first, middle and last 10days of the experiment, respectively. TR+NS group: administered intraperitoneal tramadol in similar doses to TR-group plus oral NSO (4ml/kg/day) for 30days. Immunohistochemical, electron microscopic, biochemical and statistical studies were performed. TR-group displayed disarranged hepatic architecture, hepatic congestion, hemorrhage and necrosis. Apoptotic hepatocytes, mononuclear cellular infiltration and a significant increase in the number of anti-CD68 positive cells were observed. Ultrastructurally, hepatocytes showed shrunken nuclei, swollen mitochondria, many lysosomes and autophagic vacuoles. Activated Ito and Von Kupffer cells were also demonstrated. Elevated serum levels of AST, ALT, ALP and bilirubin were noticed. NSO administration resulted in preservation of hepatic histoarchitecture and ultrastructure and significant reductions in the number of anti-CD68 positive cells and serum levels of liver seromarkers. In conclusion, NSO administration could mitigate the alterations induced by tramadol in rat liver. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Evaluation of therapeutic effect of omega-6 linoleic acid and thymoquinone enriched extracts from Nigella sativa oil in the mitigation of lipidemic oxidative stress in rats.

    PubMed

    Ahmad, Shafeeque; Beg, Zafarul H

    2016-06-01

    Nigella sativa belongs to the Ranunculaceae family. The therapeutic role of methanolic extract (ME) and volatile oil (VO) fractionated from N. sativa seed oil was investigated for antiperoxidative and antioxidant effects in atherogenic suspension fed rats. We examined the protective effects of ME and VO on the enzymatic and nonenzymatic antioxidants status in erythrocytes and the livers of atherogenic suspension fed rats. As a marker of lipid peroxidation, we estimated the conjugated diene, lipid hydroperoxide, and malondialdehyde concentrations in plasma in the following groups of rats: normolipidemic control, hyperlipidemic control, hyperlipidemic methanolic extract, and hyperlipidemic volatile oil. ME 500 mg or VO 100 mg/kg body weight of male rat was orally administrated for 30 d. Pretreatment of hyperlipidemic rats with these test extracts resulted in a significant decrease (P < 0.001) in the level of lipid peroxidation markers, conjugated diene, lipid hydroperoxide, and malondialdehyde (16-50%) compared to the hyperlipidemic control rats. In addition, ME and VO significantly (P < 0.001) elevated the hepatic and erythrocyte superoxide dismutase, catalase, and glutathione reductase activities (19-58%) compared to the hyperlipidemic rats. In liver homogenate of hyperlipidemic-ME and hyperlipidemic-VO, the glutathione-S-transferase activity was protected by 93% and 89%, and in erythrocytes, the glutathione peroxidase activity was protected by 90% and 77%, respectively. Interestingly, reduced glutathione level and activities of ATPases were protected to near normal levels. Pretreatment of rats with the test extracts replenished effectively (P < 0.001) the plasma total antioxidant power by an average of 88% against free radicals. The lipidemic oxidative stress was effectively mitigated by antiperoxidative activities of ME and VO. Thus, these test extracts, especially ME, may be used as antioxidant as well as hypolipidemic agents in the form of natural food

  13. Evaluation of the protective effect of Nigella sativa extract and its primary active component thymoquinone against DMBA-induced breast cancer in female rats

    PubMed Central

    Linjawi, Sabah A. A.; Hassanane, Mahrosa M.; Ahmed, Ekram S.

    2013-01-01

    Introduction The historical use of black cumin seed (Nigella sativa) dates back centuries, being embedded in Arabian culture and having a long history of unsurpassed medicinal value with versatility to treat a wide range of ailments. Thymoquinone (TQ) is now known to be the primary active constituent of black cumin seed oil (BCS oil) responsible for its medicinal effects and also showing promise for treatment of cancer. Material and methods In the current study, we have studied the effects of TQ and BCS oil on tumor markers (MDA, LDH, ALP and AST), histopathological alterations and the regulation of several genes (Brca1, Brca2, Id-1 and P53 mutation) related to breast cancer in female rats induced by 7,12-dimethylbenz[a]anthracene (DMBA) treatment. Rats received a single dose (65 mg/kg b.w.) of DMBA via an intragastric tube to induce breast cancer. Animals that received DMBA were treated orally with 1, 5, 10 mg/kg of TQ or BCS oil via an intragastric tube three times per week for 4 months. Results We found that TQ and then BCS reduced the rate of tumor markers (levels of MDA and LDH as well as ALP and AST activities), inhibited the histopathological alterations and decreased the expression of the Brca1, Brca2, Id-1 and P53 mutations in mammary tissues of female rats induced by DMBA treatment. Conclusions The results suggest that TQ and BCS oil exert a protective effect against breast carcinogens. The antioxidant property of TQ and BCS oil is mediated by their actions and investigating other underlying mechanisms merits further studies. PMID:25861310

  14. Thymoquinone, an active constituent of Nigella sativa seeds, binds with bilirubin and protects mice from hyperbilirubinemia and cyclophosphamide-induced hepatotoxicity.

    PubMed

    Laskar, Amaj A; Khan, Masood A; Rahmani, Arshad H; Fatima, Sana; Younus, Hina

    2016-08-01

    Some reports indicate that thymoquinone (TQ), the main constituent of Nigella sativa seeds, is hepatoprotective. The aim of this study was to determine whether TQ is able to bind directly to bilirubin, and whether TQ or liposomal formulation of TQ (Lip-TQ) can reduce cyclophosphamide (CYP)-induced liver toxicity, serum bilirubin level in mice. The binding of TQ with bilirubin was studied by UV-VIS, fluorescence and Near-UV CD spectroscopy. Inhibition of binding of bilirubin to erythrocytes by TQ was also examined. To increase the in vivo efficacy, Lip-TQ was prepared and used against CYP-induced toxicity. The protective role of TQ or Lip-TQ against CYP-induced toxicity was assessed by determining the liver function parameters, the levels of superoxide dismutase (SOD) and catalase (CAT), and histological studies. It was found that TQ binds to bilirubin and significantly inhibits the binding of bilirubin to erythrocytes. Lip-TQ (10 mg/kg) significantly reduced the levels of aspartate transaminase (AST) from 254 ± 48 to 66 ± 18 IU/L (P < 0.001), alanine transaminase (ALT) from 142 ± 28 to 47.8 ± 16 IU/L (P < 0.05) and serum bilirubin from 2.8 ± 0.50 to 1.24 ± 0.30 mg/dl (P < 0.05). Treatment with Lip-TQ reduced the CYP-induced inflammation and hemorrhage in liver tissues. Moreover, treatment with free or Lip-TQ protected the activity of SOD and CAT in CYP-injected mice. Therefore, TQ can reduce the level of bilirubin in systemic circulation in disease conditions that lead to hyperbilirubinemia and liver toxicity and hence may be used as a supplement in the treatment of liver ailments. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells.

    PubMed

    Hosseini, Azar; Shafiee-Nick, Reza; Mousavi, Seyed Hadi

    2014-12-01

    The use of doxorubicin (DOX) is limited by its dose-dependent cardio toxicity in which reactive Oxygen Species (ROS) play an important role in the pathological process. The aim of this study was to evaluate the protective effect of three medicinal plants, Nigella sativa (N), Glycyrrhiza glabra (G) and Zingiber officinale (Z), and their combination (NGZ), against DOX-induced apoptosis and death in H9c2 cells. The cells were incubated with different concentrations of each extract or NGZ for 4 hr which continued in the presence or absence of 5µM doxorubicin for 24 hr. Cell viability and the apoptotic rate were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and propidium iodide (PI) staining assays, respectively. The level of ROS and lipid peroxidation were measured by fluorimetric methods. Treatment with doxorubicin increased ROS generation, enhanced malondialdehyde (MDA) formation, and induced apoptosis. Co-treatment of the cells with each herb extract increased viability of cells dose-dependently with a maximum protection effect of about 30%, and their potencies were N>G>Z. The combination of the threshold dose of each extract (NGZ) produced a similar effect, which was increased dose-dependently to a maximum protection of 70%. These effects were correlated with the effects of NGZ on ROS and MDA. All of the extracts have some protective effects against DOX-induced toxicity in cardiomyocytes with similar efficacies, but with different potencies. However, NGZ produced much higher protective effect via reducing oxidative stress and inhibiting of apoptotic induction processes. Further investigations are needed to determine the effects of NGZ on DOX chemotherapy.

  16. Combination of Nigella sativa with Glycyrrhiza glabra and Zingiber officinale augments their protective effects on doxorubicin-induced toxicity in h9c2 cells

    PubMed Central

    Hosseini, Azar; Shafiee-Nick, Reza; Mousavi, Seyed Hadi

    2014-01-01

    Objective(s): The use of doxorubicin (DOX) is limited by its dose-dependent cardio toxicity in which reactive Oxygen Species (ROS) play an important role in the pathological process. The aim of this study was to evaluate the protective effect of three medicinal plants, Nigella sativa (N), Glycyrrhiza glabra (G) and Zingiber officinale (Z), and their combination (NGZ), against DOX-induced apoptosis and death in H9c2 cells. Materials and Methods: The cells were incubated with different concentrations of each extract or NGZ for 4 hr which continued in the presence or absence of 5µM doxorubicin for 24 hr. Cell viability and the apoptotic rate were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) and propidium iodide (PI) staining assays, respectively. The level of ROS and lipid peroxidation were measured by fluorimetric methods. Results: Treatment with doxorubicin increased ROS generation, enhanced malondialdehyde (MDA) formation, and induced apoptosis. Co-treatment of the cells with each herb extract increased viability of cells dose-dependently with a maximum protection effect of about 30%, and their potencies were N>G>Z. The combination of the threshold dose of each extract (NGZ) produced a similar effect, which was increased dose-dependently to a maximum protection of 70%. These effects were correlated with the effects of NGZ on ROS and MDA. Conclusion: All of the extracts have some protective effects against DOX-induced toxicity in cardiomyocytes with similar efficacies, but with different potencies. However, NGZ produced much higher protective effect via reducing oxidative stress and inhibiting of apoptotic induction processes. Further investigations are needed to determine the effects of NGZ on DOX chemotherapy. PMID:25859303

  17. Effect of Alpha-Hederin, the active constituent of Nigella sativa, on miRNA-126, IL-13 mRNA levels and inflammation of lungs in ovalbumin-sensitized male rats

    PubMed Central

    Fallahi, Maryam; Keyhanmanesh, Rana; Khamaneh, Amir Mahdi; Ebrahimi Saadatlou, Mohammad Ali; Saadat, Saeideh; Ebrahimi, Hadi

    2016-01-01

    Objective: In previous studies the therapeutic effects of Nigella sativa have been demonstrated on asthmatic animals. In the present study, the preventive effect of single dose of alpha-hederin, its active constituent, has been evaluated on lung inflammation and some inflammatory mediators in lungs of ovalbumin sensitized rat in order to elicit its mechanism. Materials and Methods: Forty rats were randomly grouped in 4 groups; control (C), sensitized (S), sensitized pretreated groups with thymoquinone (3 mg/kg i.p., S+TQ) and alpha-hederin (0.02 mg/kg i.p., S+AH). Levels of IL-13 mRNA and miRNA-126 in lung tissue and its pathological changes in each group were assessed. Results: Elevated levels of miRNA-126, IL-13 mRNA and pathological changes were observed in the sensitized group compared to the control group (p<0.001 to p<0.05). All of these factors were significantly reduced in S+TQ and S+AH groups in comparison to S group (p<0.001 to p<0.05). Although alpha-hederin decreased the levels of miRNA-126, IL-13 mRNA and pathological changes in comparison with thymoquinone, the results were statistically not significant. Conclusion: The results suggested that alpha-hederin had preventive effect on sensitized rats like thymoquinone. It may intervene in miRNA-126 expression, which consequently could interfere with IL-13 secretion pathway leading to a reduction in inflammatory responses. PMID:27247924

  18. The efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk

    NASA Astrophysics Data System (ADS)

    Rachman, P. N. R.; Akrom; Darmawan, E.

    2017-11-01

    Metabolic syndrome is a conditions caused by metabolic abnormalities include central obesity, atherogenic dyslipidemia, hypertension, and insulin resistance. HbA1c examination is required to study the long-term glycemic status and to prevent diabetic complications of metabolic syndrome. The purpose of this study is to determine the efficacy of black cumin seed (Nigella sativa) oil and hypoglycemic drug combination to reduce HbA1c level in patients with metabolic syndrome risk. This research performed using an experimental randomized single - blind controlled trial design. A total of 99 outpatients at the Jetis I Public Health Center, Yogyakarta, Indonesia with metabolic syndrome risk were divided into three groups: The control group received placebo and two treatment groups received black seed oil orally at dose of 1.5 mL/day and 3 mL/day, respectively, for 20 days. The clinical conditions such as blood pressure, pulse rate, BMI, blood glucose serum and HbA1c levels were examined on day 0 and 21. The results obtained were analyzed with one-way ANOVA test. The mean of HbA1c levels of all groups before treatment was higher than the normal values and there was no significant difference in HbA1c value on day 0. Administration of 1.5 and 3 mL/day of black seed oil for 20 days decreased (p<0.05) HbA1c levels. It can be concluded that administration of black cumin seed oil and hypoglycemic drug combination for 20 days in patients at risk of metabolic syndrome may reduce to HbA1c levels.

  19. Short and long term modulation of tissue minerals concentrations following oral administration of black cumin (Nigella sativa L.) seed oil to laboratory rats.

    PubMed

    Basheer, Irum; Qureshi, Irfan Zia

    2018-01-15

    Nigella sativa, or commonly called black cumin is a small herb of family Ranunculaceae is a well-known medicinal plant but its effects on tissue mineral concentrations of animal bodies is unknown. To study the effect of oral administration of fixed oil of black cumin seeds on tissues mineral content using laboratory rats as experimental model. Experimental animals were exposed to two oral doses of seed oil (60 and 120 ml kg -1 body weight). Short- and long term experiments lasted 24 h and 60 days respectively, with three replicates each. Oil extracted from black cumin seeds was subjected to GC-MS to identify chemical components. Following the wet digestion in nitric acid, samples of whole blood and organs of rats were subjected to atomic absorption spectrophotometry for determination of elements concentrations. Data were compared statistically at p < .05. Compared to control, Cr, Mn, Ni, Cu, Zn showed decrease, whereas Co, Na, Mg and K demonstrated increase, but Ca showed both increase and decrease in most of the tissues upon short term exposure to low and high doses of black cumin oil. During long term exposure, Cr, Fe, Mn, Cu exhibited decrease; Co, Na, Mg and Ca concentrations demonstrated an upregulation, whereas Ni and Zn showed increase and decrease in most of the tissues. Comparison of short term with long term experiments at low dose revealed increases in Fe, Zn, Cu, Mg, K and Ca, a decrease in Cr, Mn, Ni and Cu in most tissues, but both increase and decrease in Na. At high dose, an increase occurred in Fe, Ni, Zn, K, Ca, Mg, a decrease in Cr, while both increase and decrease in Cu, Co and Na concentrations. Our study demonstrates that oral administration of black cumin seeds oil to laboratory rats significantly alters tissue trace elements and electrolytes concentrations. The study appears beneficial but indicates modulatory role of black cumin oil as regards mineral metabolism with far reaching implications in health and disease. Copyright © 2017

  20. Molecular characterization and bio-functional property determination using SDS-PAGE and RP-HPLC of protein fractions from two Nigella species.

    PubMed

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Alodat, Moh'd; Al-Mahasneh, Majdi A; Gammoh, Sana; Ereifej, Khalil; Almajwal, Ali; Kubow, Stan

    2017-09-01

    This study aimed to investigate the molecular and bio-functional properties of protein fractions from Nigella damascena and Nigella arvensis, including the albumin, globulin, glutein-1, glutein-2 and prolamin fractions. Protein subunits were not observed in globulin and prolamin fractions. No peaks appeared in RP-HPLC chromatograms of globulin for either species. Two predominant peaks were observed in the RP-HPLC profiles of all protein fractions. Proteins separated by RP-HPLC have potential inhibitory and antioxidant activities in all fractions. Optimum ACE-inhibitory and antioxidant activities of proteins separated by RP-HPLC were observed in glutein-2 and albumin, respectively, for both species. For pepsin and combined pepsin-trypsin hydrolyses, the highest degree of hydrolysis (DH) was obtained in glutein-2 fraction of Nigella arvensis. Highest ACE-inhibitory activity of hydrolyzed protein fractions was found at 4h via pepsin hydrolysis in globulin fraction of Nigella damascena. Highest antioxidant activities of hydrolyzed protein fractions were found in glutelin-2 for both species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. An overview on hepatoprotective effects of thymoquinone.

    PubMed

    Noorbakhsh, Mohammad-Foad; Hayati, Farzad; Samarghandian, Saeed; Shaterzadeh-Yazdi, Hanieh; Farkhondeh, Tahereh

    2018-02-20

    Liver as an essential organ has an important function in metabolism and waste secretion from the body. Disorders of this organ may caused by several reasons such as high alcoholic consumption, various chemical or microbial agents and various hepatic cancers. Reactive and oxidative stress and oxygen species (ROS) are introduced the main mechanisms of these hepatic injuries. The seeds of Nigella sativa (Family Ranunculaceae) which is known as black seed, is widely used as a medicinal herb for cure or prevention of many of diseases such as liver problems. Thymoquinone (TQ) as a bioactive phytochemical constituent of Nigella sativa has hepatoprotective effects against of injures through different mechanisms including radical scavenging. This review describes protective role and related mechanism of TQ against liver injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. New food allergies in a European non-Mediterranean region: is Cannabis sativa to blame?

    PubMed

    Ebo, D G; Swerts, S; Sabato, V; Hagendorens, M M; Bridts, C H; Jorens, P G; De Clerck, L S

    2013-01-01

    Allergy to fruit and vegetables exhibit geographic variation regarding the severity of symptoms and depending on the sensitization profile of the patient. These sensitization profiles and routes remain incompletely understood. Cannabis is a very popular drug and derived from Cannabis sativa, a plant containing lipid transfer proteins (LTP) also known as important allergens in plant and fruit allergies. In this study we sought to elucidate a potential connection between C. sativa allergy and plant food allergies. A case-control study involving 21 patients consulting for plant food allergies. Twelve patients were cannabis allergic and 9 had a pollen or latex allergy without cannabis allergy. Testing for cannabis IgE implied measurement of specific IgE, skin testing and basophil activation tests. Allergen component analysis was performed with a microarray technique. Plant food allergy in patients with documented cannabis allergy had more severe reactions than patients without cannabis allergy and frequently implied fruits and vegetables that are not observed in a (birch) pollen-related food syndrome. With the exception of 1 patient with cannabis allergy, all were sensitized to nonspecific (ns)-LTP. Our data suggest that illicit cannabis abuse can result in cannabis allergy with sensitization to ns-LTP. This sensitization might result in various plant-food allergies. Additional collaborative studies in different geographical areas are needed to further elucidate on this hypothesis. Copyright © 2013 S. Karger AG, Basel.

  3. Sensibility of male rats fertility against olive oil, Nigella sativa oil and pomegranate extract.

    PubMed

    Mansour, Sherif W; Sangi, Sibghatullah; Harsha, Sree; Khaleel, Mueen A; Ibrahim, A R N

    2013-07-01

    To clarify the modulatory effects of daily consumption of pomegranate extract (PE), olive oil (OO) and Nagilla sativa oil (NSO) on antioxidant activity, sperm quality and pituitary-testicular axis of adult male wistar rats. Thirty-two adult male Wistar rats were divided into four equal groups, eight rats each. Using rat gastric tubes, 1.0 mL distilled water, 1.0 mL PE, 0.4 mL NSO and 0.4 mL OO were orally administered daily for 6 weeks in the first, second, third and fourth groups, respectively. Reproductive organs, body weight, sperm criteria, testosterone, FSH, LH, inhibin-B, lipid peroxidation, and antioxidant enzyme activities were investigated. At the end of the study protocol, analyses occurred at the same time. Data were analysed by ANOVA test and P<0.05 was considered to be a significant value. In all studied groups, malondialdehyde level was significantly decreased accompanied with an increases in glutathione peroxidase and glutathione. Rats treated with PE showed an increase in catalase activities accompanied with an increase in sperm concentration which was also observed in NSO group. In PE treated group, sperm motility was also increased accompanied with decreased abnormal sperm rate. NSO, OO and PE treated groups shows an insignificant effect on testosterone, inhibin-B, FSH and LH in comparison with control group. These results show that administration of PE, NSO and OO could modify sperm characteristics and antioxidant activity of adult male wistar rats.

  4. Dilatonic parallelizable NS-NS backgrounds

    NASA Astrophysics Data System (ADS)

    Kawano, Teruhiko; Yamaguchi, Satoshi

    2003-08-01

    We complete the classification of parallelizable NS-NS backgrounds in type II supergravity by adding the dilatonic case to the result of Figueroa-O'Farrill on the non-dilatonic case. We also study the supersymmetry of these parallelizable backgrounds. It is shown that all the dilatonic parallelizable backgrounds have sixteen supersymmetries.

  5. Dengue virus NS2 and NS4: Minor proteins, mammoth roles.

    PubMed

    Gopala Reddy, Sindhoora Bhargavi; Chin, Wei-Xin; Shivananju, Nanjunda Swamy

    2018-04-17

    Despite the ever-increasing global incidence of dengue fever, there are no specific chemotherapy regimens for its treatment. Structural studies on dengue virus (DENV) proteins have revealed potential drug targets. Major DENV proteins such as the envelope protein and non-structural (NS) proteins 3 and 5 have been extensively investigated in antiviral studies, but with limited success in vitro. However, the minor NS proteins NS2 and NS4 have remained relatively underreported. Emerging evidence indicating their indispensable roles in virus propagation and host immunomodulation should encourage us to target these proteins for drug discovery. This review covers current knowledge on DENV NS2 and NS4 proteins from structural and functional perspectives and assesses their potential as targets for antiviral design. Antiviral targets in NS2A include surface-exposed transmembrane regions involved in pathogenesis, while those in NS2B include protease-binding sites in a conserved hydrophilic domain. Ideal drug targets in NS4A include helix α4 and the PEPEKQR sequence, which are essential for NS4A-2K cleavage and NS4A-NS4B association, respectively. In NS4B, the cytoplasmic loop connecting helices α5 and α7 is an attractive target for antiviral design owing to its role in dimerization and NS4B-NS3 interaction. Findings implicating NS2A, NS2B, and NS4A in membrane-modulation and viroporin-like activities indicate an opportunity to target these proteins by disrupting their association with membrane lipids. Despite the lack of 3D structural data, recent topological findings and progress in structure-prediction methods should be sufficient impetus for targeting NS2 and NS4 for drug design. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa.

    PubMed

    Guo, Tian-Tian; Zhang, Jian-Chun; Zhang, Hai; Liu, Qing-Chao; Zhao, Yong; Hou, Yu-Fei; Bai, Lu; Zhang, Li; Liu, Xue-Qiang; Liu, Xue-Ying; Zhang, Sheng-Yong; Bai, Nai-Sheng

    2017-08-01

    In this paper, 17 compounds (1-17) were isolated from the leaves of Hemp (Cannabis sativa f. sativa). Among the isolates, two were determined to be new spirans: cannabispirketal (1), and α-cannabispiranol 4'-O-β-D-glucopyranose (2) by 1D and 2D NMR spectroscopy, LC-MS, and HRESIMS. The known compounds 7, 8, 10, 13, 15, and 16 were isolated from Hemp (C. sativa f. sativa) for the first time. Furthermore, compounds 8 and 13 were isolated from the nature for the first time. All isolated compounds were evaluated for cytotoxicity on different tissue-derived passage cancer cell lines through cell viability and apoptosis assay. Among these compounds, compounds 5, 9 and 16 exhibited a broad-spectrum antitumor effect via inhibiting cell proliferation and promoting apoptosis. These results obtained have provided valuable clues to the understanding of the cytotoxic profile for these isolated compounds from Hemp (C. sativa f. sativa).

  7. Plant speciation in continental island floras as exemplified by Nigella in the Aegean Archipelago.

    PubMed

    Comes, Hans Peter; Tribsch, Andreas; Bittkau, Christiane

    2008-09-27

    Continental shelf island systems, created by rising sea levels, provide a premier setting for studying the effects of geographical isolation on non-adaptive radiation and allopatric speciation brought about by genetic drift. The Aegean Archipelago forms a highly fragmented complex of mostly continental shelf islands that have become disconnected from each other and the mainland in relatively recent geological times (ca <5.2 Ma). These ecologically fairly homogenous islands thus provide a suitable biogeographic context for assessing the relative influences of past range fragmentation, colonization, gene flow and drift on taxon diversification. Indeed, recent molecular biogeographic studies on the Aegean Nigella arvensis complex, combining phylogenetic, phylogeographic and population level approaches, exemplify the importance of allopatry and genetic drift coupled with restricted gene flow in driving plant speciation in this continental archipelago at different temporal and spatial scales. While the recent (Late Pleistocene) radiation of Aegean Nigella, as well as possible instances of incipient speciation (in the Cyclades), is shown to be strongly conditioned by (palaeo)geographic factors (including changes in sea level), shifts in breeding system (selfing) and associated isolating mechanisms have also contributed to this radiation. By contrast, founder event speciation has probably played only a minor role, perhaps reflecting a migratory situation typical for continental archipelagos characterized by niche pre-emption because of a long established resident flora. Overall, surveys of neutral molecular markers in Aegean Nigella have so far revealed population genetic processes that conform remarkably well to predictions raised by genetic drift theory. The challenge is now to gain more direct insights into the relative importance of the role of genetic drift, as opposed to natural selection, in the phenotypic and reproductive divergence among these Aegean plant

  8. Interference of transcription across H-NS binding sites and repression by H-NS.

    PubMed

    Rangarajan, Aathmaja Anandhi; Schnetz, Karin

    2018-05-01

    Nucleoid-associated protein H-NS represses transcription by forming extended DNA-H-NS complexes. Repression by H-NS operates mostly at the level of transcription initiation. Less is known about how DNA-H-NS complexes interfere with transcription elongation. In vitro H-NS has been shown to enhance RNA polymerase pausing and to promote Rho-dependent termination, while in vivo inhibition of Rho resulted in a decrease of the genome occupancy by H-NS. Here we show that transcription directed across H-NS binding regions relieves H-NS (and H-NS/StpA) mediated repression of promoters in these regions. Further, we observed a correlation of transcription across the H-NS-bound region and de-repression. The data suggest that the transcribing RNA polymerase is able to remodel the H-NS complex and/or dislodge H-NS from the DNA and thus relieve repression. Such an interference of transcription and H-NS mediated repression may imply that poorly transcribed AT-rich loci are prone to be repressed by H-NS, while efficiently transcribed loci escape repression. © 2018 John Wiley & Sons Ltd.

  9. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Characterization of Cannabis sativa allergens.

    PubMed

    Nayak, Ajay P; Green, Brett J; Sussman, Gordon; Berlin, Noam; Lata, Hemant; Chandra, Suman; ElSohly, Mahmoud A; Hettick, Justin M; Beezhold, Donald H

    2013-07-01

    Allergic sensitization to Cannabis sativa is rarely reported, but the increasing consumption of marijuana has resulted in an increase in the number of individuals who become sensitized. To date, little is known about the causal allergens associated with C sativa. To characterize marijuana allergens in different components of the C sativa plant using serum IgE from marijuana sensitized patients. Serum samples from 23 patients with a positive skin prick test result to a crude C sativa extract were evaluated. IgE reactivity was variable between patients and C sativa extracts. IgE reactivity to C sativa proteins in Western blots was heterogeneous and ranged from 10 to 70 kDa. Putative allergens derived from 2-dimensional gels were identified. Prominent IgE reactive bands included a 23-kDa oxygen-evolving enhancer protein 2 and a 50-kDa protein identified to be the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. Additional proteins were identified in the proteomic analysis, including those from adenosine triphosphate synthase, glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, and luminal binding protein (heat shock protein 70), suggesting these proteins are potential allergens. Deglycosylation studies helped refine protein allergen identification and demonstrated significant IgE antibodies against plant oligosaccharides that could help explain cross-reactivity. Identification and characterization of allergens from C sativa may be helpful in further understanding allergic sensitization to this plant species. Copyright © 2013 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. Antagonism between curcumin and the topoisomerase II inhibitor etoposide

    PubMed Central

    Saleh, Ekram M.; El-awady, Raafat A; Eissa, Nadia A.; Abdel-Rahman, Wael M.

    2012-01-01

    The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. Conclusions: Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their

  12. Could GRB170817A be really correlated to an NS-NS merging?

    NASA Astrophysics Data System (ADS)

    Fargion, D.; Khlopov, M. Yu.; Oliva, P.

    The exciting development of gravitational wave (GW) astronomy in the correlation of LIGO and VIRGO detection of GW signals makes possible to expect registration of effects of not only binary black hole (BH) coalescence but also binary neutron star (NS) merging accompanied by electromagnetic (gamma ray burst; GRB) signal. Here we consider the possibility that an NS, merging in an NS-NS or NS-BH system might be (soon) observed in correlation with any LIGO-VIRGO GWs detection. We analyze as an example the recent case of the short GRB170817A observed by Fermi and integral. The associated optical transient (OT) source in NGC4993 implies a rare near source, a consequent averaged large rate of such events (almost) compatible with expected NS-NS merging rate. However the expected beamed GRB (or short GRB) may be mostly aligned to a different direction than ours. Therefore, even soft GRB photons, spread more than hard ones, might be hardly able to shower to us. Nevertheless, a prompt spiraling electron turbine jet in largest magnetic fields, at the base of the NS-NS collapse, might shine by its tangential synchrotron radiation in spread way with its skimming photons shining in large open disk. The consequent solid angle for such soft disk gamma radiation may be large enough to be nevertheless often observed.

  13. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata....

  14. Opioid dependence and substitution therapy: thymoquinone as potential novel supplement therapy for better outcome for methadone maintenance therapy substitution therapy

    PubMed Central

    Adnan, Liyana Hazwani Mohd; Bakar, Nor Hidayah Abu; Mohamad, Nasir

    2014-01-01

    Methadone is widely being used for opioid substitution therapy. However, the administration of methadone to opioid dependent individual is frequently accompanied by withdrawal syndrome and chemical dependency develops. Other than that, it is also difficult to retain patients in the treatment programme making their retention rates are decreasing over time. This article is written to higlights the potential use of prophetic medicines, Nigella sativa, as a supplement for opioid dependent receiving methadone. It focuses on the potential role of N. sativa and its major active compound, Thymoquinone (TQ) as a calcium channel blocking agent to reduce withdrawal syndrome and opioid dependency. PMID:25859295

  15. The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development.

    PubMed

    Luo, Dahai; Vasudevan, Subhash G; Lescar, Julien

    2015-06-01

    The flavivirus NS3 protein is associated with the endoplasmic reticulum membrane via its close interaction with the central hydrophilic region of the NS2B integral membrane protein. The multiple roles played by the NS2B-NS3 protein in the virus life cycle makes it an attractive target for antiviral drug discovery. The N-terminal region of NS3 and its cofactor NS2B constitute the protease that cleaves the viral polyprotein. The NS3 C-terminal domain possesses RNA helicase, nucleoside and RNA triphosphatase activities and is involved both in viral RNA replication and virus particle formation. In addition, NS2B-NS3 serves as a hub for the assembly of the flavivirus replication complex and also modulates viral pathogenesis and the host immune response. Here, we review biochemical and structural advances on the NS2B-NS3 protein, including the network of interactions it forms with NS5 and NS4B and highlight recent drug development efforts targeting this protein. This article forms part of a symposium in Antiviral Research on flavivirus drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy.

    PubMed

    Ipci, Kagan; Oktemer, Tugba; Muluk, Nuray Bayar; Şahin, Ethem; Altıntoprak, Niyazi; Bafaqeeh, Sameer Ali; Kurt, Yasemin; Mladina, Ranko; Šubarić, Marin; Cingi, Cemal

    2016-09-01

    Some alternative products instead of immunotherapy are used in patients with allergic rhinitis (AR). In this paper, alternative products to treat allergic rhinitis and alternative routes for allergy immunotherapy are reviewed. Alternative products and methods used instead of immunotherapy are tea therapy, acupuncture, Nigella sativa, cinnamon bark, Spanish needle, acerola, capsaicin (Capsicum annum), allergen-absorbing ointment, and cellulose powder. N. sativa has been used in AR treatment due to its anti-inflammatory effects. N. sativa oil also inhibits the cyclooxygenase and 5-lipoxygenase pathways of arachidonic acid metabolism. The beneficial effects of N. sativa seed supplementation on the symptoms of AR may be due to its antihistaminic properties. To improve the efficacy of immunotherapy, some measures are taken regarding known immunotherapy applications and alternative routes of intralymphatic immunotherapy and epicutaneous immunotherapy are used. There are alternative routes and products to improve the efficacy of immunotherapy.

  17. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies.

    PubMed

    O'Rourke, Jamie A; Fu, Fengli; Bucciarelli, Bruna; Yang, S Sam; Samac, Deborah A; Lamb, JoAnn F S; Monteros, Maria J; Graham, Michelle A; Gronwald, John W; Krom, Nick; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Vance, Carroll P

    2015-07-07

    Alfalfa (Medicago sativa L.) is the primary forage legume crop species in the United States and plays essential economic and ecological roles in agricultural systems across the country. Modern alfalfa is the result of hybridization between tetraploid M. sativa ssp. sativa and M. sativa ssp. falcata. Due to its large and complex genome, there are few genomic resources available for alfalfa improvement. A de novo transcriptome assembly from two alfalfa subspecies, M. sativa ssp. sativa (B47) and M. sativa ssp. falcata (F56) was developed using Illumina RNA-seq technology. Transcripts from roots, nitrogen-fixing root nodules, leaves, flowers, elongating stem internodes, and post-elongation stem internodes were assembled into the Medicago sativa Gene Index 1.2 (MSGI 1.2) representing 112,626 unique transcript sequences. Nodule-specific and transcripts involved in cell wall biosynthesis were identified. Statistical analyses identified 20,447 transcripts differentially expressed between the two subspecies. Pair-wise comparisons of each tissue combination identified 58,932 sequences differentially expressed in B47 and 69,143 sequences differentially expressed in F56. Comparing transcript abundance in floral tissues of B47 and F56 identified expression differences in sequences involved in anthocyanin and carotenoid synthesis, which determine flower pigmentation. Single nucleotide polymorphisms (SNPs) unique to each M. sativa subspecies (110,241) were identified. The Medicago sativa Gene Index 1.2 increases the expressed sequence data available for alfalfa by ninefold and can be expanded as additional experiments are performed. The MSGI 1.2 transcriptome sequences, annotations, expression profiles, and SNPs were assembled into the Alfalfa Gene Index and Expression Database (AGED) at http://plantgrn.noble.org/AGED/ , a publicly available genomic resource for alfalfa improvement and legume research.

  18. Implications of PSR J0737-3039B for the Galactic NS-NS binary merger rate

    NASA Astrophysics Data System (ADS)

    Kim, Chunglee; Perera, Benetge Bhakthi Pranama; McLaughlin, Maura A.

    2015-03-01

    The Double Pulsar (PSR J0737-3039) is the only neutron star-neutron star (NS-NS) binary in which both NSs have been detectable as radio pulsars. The Double Pulsar has been assumed to dominate the Galactic NS-NS binary merger rate R_g among all known systems, solely based on the properties of the first-born, recycled pulsar (PSR J0737-3039A, or A) with an assumption for the beaming correction factor of 6. In this work, we carefully correct observational biases for the second-born, non-recycled pulsar (PSR J0737-0737B, or B) and estimate the contribution from the Double Pulsar on R_g using constraints available from both A and B. Observational constraints from the B pulsar favour a small beaming correction factor for A (˜2), which is consistent with a bipolar model. Considering known NS-NS binaries with the best observational constraints, including both A and B, we obtain R_g=21_{-14}^{+28} Myr-1 at 95 per cent confidence from our reference model. We expect the detection rate of gravitational waves from NS-NS inspirals for the advanced ground-based gravitational-wave detectors is to be 8^{+10}_{-5} yr-1 at 95 per cent confidence. Within several years, gravitational-wave detections relevant to NS-NS inspirals will provide us useful information to improve pulsar population models.

  19. Progress on New Hepatitis C Virus Targets: NS2 and NS5A

    NASA Astrophysics Data System (ADS)

    Marcotrigiano, Joseph

    Hepatitis C virus (HCV) is a major global health problem, affecting about 170 million people worldwide. Chronic infection can lead to cirrhosis and liver cancer. The replication machine of HCV is a multi-subunit membrane associated complex, consisting of nonstructural proteins (NS2-5B), which replicate the viral RNA genome. The structures of NS5A and NS2 were recently determined. NS5A is an essential replicase component that also modulates numerous cellular processes ranging from innate immunity to cell growth and survival. The structure reveals a novel protein fold, a new zinc coordination motif, a disulfide bond and a dimer interface. Analysis of molecular surfaces suggests the location of the membrane interaction surface of NS5A, as well as hypothetical protein and RNA binding sites. NS2 is one of two virally encoded proteases that are required for processing the viral polyprotein into the mature nonstructural proteins. NS2 is a dimeric cysteine protease with two composite active sites. For each active site, the catalytic histidine and glutamate residues are contributed by one monomer and the nucleophilic cysteine by the other. The C-terminal residues remain coordinated in the two active sites, predicting an inactive post-cleavage form. The structure also reveals possible sites of membrane interaction, a rare cis-proline residue, and highly conserved dimer contacts. The novel features of both structures have changed the current view of HCV polyprotein replication and present new opportunities for antiviral drug design.

  20. Conformational flexibility of DENV NS2B/NS3pro: from the inhibitor effect to the serotype influence

    NASA Astrophysics Data System (ADS)

    Piccirillo, Erika; Merget, Benjamin; Sotriffer, Christoph A.; do Amaral, Antonia T.

    2016-03-01

    The dengue virus (DENV) has four well-known serotypes, namely DENV1 to DENV4, which together cause 50-100 million infections worldwide each year. DENV NS2B/NS3pro is a protease recognized as a valid target for DENV antiviral drug discovery. However, NS2B/NS3pro conformational flexibility, involving in particular the NS2B region, is not yet completely understood and, hence, a big challenge for any virtual screening (VS) campaign. Molecular dynamics (MD) simulations were performed in this study to explore the DENV3 NS2B/NS3pro binding-site flexibility and obtain guidelines for further VS studies. MD simulations were done with and without the Bz-nKRR-H inhibitor, showing that the NS2B region stays close to the NS3pro core even in the ligand-free structure. Binding-site conformational states obtained from the simulations were clustered and further analysed using GRID/PCA, identifying four conformations of potential importance for VS studies. A virtual screening applied to a set of 31 peptide-based DENV NS2B/NS3pro inhibitors, taken from literature, illustrated that selective alternative pharmacophore models can be constructed based on conformations derived from MD simulations. For the first time, the NS2B/NS3pro binding-site flexibility was evaluated for all DENV serotypes using homology models followed by MD simulations. Interestingly, the number of NS2B/NS3pro conformational states differed depending on the serotype. Binding-site differences could be identified that may be crucial to subsequent VS studies.

  1. Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors.

    PubMed

    Takahashi, Hirotaka; Takahashi, Chikako; Moreland, Nicole J; Chang, Young-Tae; Sawasaki, Tatsuya; Ryo, Akihide; Vasudevan, Subhash G; Suzuki, Youichi; Yamamoto, Naoki

    2012-12-01

    Whereas the dengue virus (DENV) non-structural (NS) proteins NS3 and NS5 have been shown to interact in vitro and in vivo, the biological relevance of this interaction in viral replication has not been fully clarified. Here, we first applied a simple and robust in vitro assay based on AlphaScreen technology in combination with the wheat-germ cell-free protein production system to detect the DENV-2 NS3-NS5 interaction in a 384-well plate. The cell-free-synthesized NS3 and NS5 recombinant proteins were soluble and in possession of their respective enzymatic activities in vitro. In addition, AlphaScreen assays using the recombinant proteins detected a specific interaction between NS3 and NS5 with a robust Z' factor of 0.71. By employing the AlphaScreen assay, we found that both the N-terminal protease and C-terminal helicase domains of NS3 are required for its association with NS5. Furthermore, a competition assay revealed that the binding of full-length NS3 to NS5 was significantly inhibited by the addition of an excess of NS3 protease or helicase domains. Our results demonstrate that the AlphaScreen assay can be used to discover novel antiviral agents targeting the interactions between DENV NS proteins. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes.

    PubMed

    Gibbs, Alan C; Steele, Ruth; Liu, Gaohua; Tounge, Brett A; Montelione, Gaetano T

    2018-03-13

    Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19 F and 1 H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.

  3. Discovery and SAR studies of methionine-proline anilides as dengue virus NS2B-NS3 protease inhibitors.

    PubMed

    Zhou, Guo-Chun; Weng, Zhibing; Shao, Xiaoxia; Liu, Fang; Nie, Xin; Liu, Jinsong; Wang, Decai; Wang, Chunguang; Guo, Kai

    2013-12-15

    A series of methionine-proline dipeptide derivatives and their analogues were designed, synthesized and assayed against the serotype 2 dengue virus NS2B-NS3 protease, and methionine-proline anilides 1 and 2 were found to be the most active DENV 2 NS2B-NS3 competitive inhibitors with Ki values of 4.9 and 10.5 μM. The structure and activity relationship and the molecular docking revealed that L-proline, L-methionine and p-nitroaniline in 1 and 2 are the important characters in blocking the active site of NS2B-NS3 protease. Our current results suggest that the title dipeptidic scaffold represents a promising structural core to discover a new class of active NS2B-NS3 competitive inhibitors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    PubMed Central

    2011-01-01

    Background The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. Results We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. Conclusions We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy. PMID:22014111

  5. Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen.

    PubMed

    Le Breton, Marc; Meyniel-Schicklin, Laurène; Deloire, Alexandre; Coutard, Bruno; Canard, Bruno; de Lamballerie, Xavier; Andre, Patrice; Rabourdin-Combe, Chantal; Lotteau, Vincent; Davoust, Nathalie

    2011-10-20

    The genus Flavivirus encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle. We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation. We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.

  6. The Medicago sativa Gene Index 1.2: A web-accessible expression atlas of two Medicago sativa sub-species

    USDA-ARS?s Scientific Manuscript database

    Alfalfa is an important crop, both financially and ecologically, in the agricultural system of the United States. Using Illumina RNA-seq technology we have developed a de-novo transcriptome assembly from two Medicago sativa sub-species, sativa (B47) and falcata (F56). These two genotypes have proven...

  7. The subtle central effect of nutraceuticals: Is it placebo or nocebo?

    PubMed

    Al-Gareeb, Ali I

    2015-01-01

    Herbal medicines are often perceived by the general public as a "soft" alternative to Western Medicine, but the use of these substances can be risky since they can induce nocebo effect. The aim was to evaluate the nocebo effects of Nigella sativa oil, garlic and coenzyme Q10 (CoQ10) on the integrative function of the central nervous system and psychomotor performance. This is a randomized, double-blind, controlled, and prospective study conducted in the Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq during February 2013. A total of 160 medical students participated in this study were randomly assigned equally to one of the following groups: Group A: Received single dose of N. sativa oil (500 ml capsule); Group B: Received single dose of garlic (500 mg capsule); Group C: Received single dose of CoQ10 (120 mg capsule) and; Group D: received single dose of matching oral placebo (300 mg starch capsule). For all participants, reaction time and flicker fusion threshold were measured by the Leeds psychomotor performance test battery before and after 3 h of taking the drugs. Neither placebo nor nutraceuticals exerted significant effect on total reaction time. Although the recognition reaction time is insignificantly reduced by 2.77% (placebo), 5.83% (Nigella sativa), 7.21% (garlic) and 12.64% (CoQ10) from the pretreatment values, they are adversely affect the motor reaction time to reach the significant level in subjects pretreated with Garlic (P = 0.02). Nutraceuticals are not free from nocebo effect on psychomotor performance.

  8. Occurrence of transgenic feral alfalfa (Medicago sativa subsp. sativa L.) in alfalfa seed production areas in the United States

    USDA-ARS?s Scientific Manuscript database

    Genetically-engineered glyphosate-resistant alfalfa (Medicago sativa subsp. sativa) was commercialized in 2011. The potential risk of transgene dispersal into the environment is not clearly understood for alfalfa, a perennial crop that is cross-pollinated by insects. We gathered data on feral and tr...

  9. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    PubMed

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  10. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease

    PubMed Central

    Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749

  11. The complete chloroplast genomes of Cannabis sativa and Humulus lupulus.

    PubMed

    Vergara, Daniela; White, Kristin H; Keepers, Kyle G; Kane, Nolan C

    2016-09-01

    Cannabis and Humulus are sister genera comprising the entirety of the Cannabaceae sensu stricto, including C. sativa L. (marijuana, hemp), and H. lupulus L. (hops) as two economically important crops. These two plants have been used by humans for many purposes including as a fiber, food, medicine, or inebriant in the case of C. sativa, and as a flavoring component in beer brewing in the case of H. lupulus. In this study, we report the complete chloroplast genomes for two distinct hemp varieties of C. sativa, Italian "Carmagnola" and Russian "Dagestani", and one Czech variety of H. lupulus "Saazer". Both C. sativa genomes are 153 871 bp in length, while the H. lupulus genome is 153 751 bp. The genomes from the two C. sativa varieties differ in 16 single nucleotide polymorphisms (SNPs), while the H. lupulus genome differs in 1722 SNPs from both C. sativa cultivars.

  12. Highly potent non-peptidic inhibitors of the HCV NS3/NS4A serine protease.

    PubMed

    Sperandio, David; Gangloff, Anthony R; Litvak, Joane; Goldsmith, Richard; Hataye, Jason M; Wang, Vivian R; Shelton, Emma J; Elrod, Kyle; Janc, James W; Clark, James M; Rice, Ken; Weinheimer, Steve; Yeung, Kap-Sun; Meanwell, Nicholas A; Hernandez, Dennis; Staab, Andrew J; Venables, Brian L; Spencer, Jeffrey R

    2002-11-04

    Screening of a diverse set of bisbenzimidazoles for inhibition of the hepatitis C virus (HCV) serine protease NS3/NS4A led to the identification of a potent Zn(2+)-dependent inhibitor (1). Optimization of this screening hit afforded a 10-fold more potent inhibitor (46) under Zn(2+) conditions (K(i)=27nM). This compound (46) binds also to NS3/NS4A in a Zn(2+) independent fashion (K(i)=1microM). The SAR of this class of compounds under Zn(2+) conditions is highly divergent compared to the SAR in the absence of Zn(2+), suggesting two distinct binding modes.

  13. Replacement of the respiratory syncytial virus nonstructural proteins NS1 and NS2 by the V protein of parainfluenza virus 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Kim C.; He, Biao; Teng, Michael N.

    2007-11-10

    Paramyxoviruses have been shown to produce proteins that inhibit interferon production and signaling. For human respiratory syncytial virus (RSV), the nonstructural NS1 and NS2 proteins have been shown to have interferon antagonist activity through an unknown mechanism. To understand further the functions of NS1 and NS2, we generated recombinant RSV in which both NS1 and NS2 were replaced by the PIV5 V protein, which has well-characterized IFN antagonist activities ({delta}NS1/2-V). Expression of V was able to partially inhibit IFN responses in {delta}NS1/2-V-infected cells. In addition, the replication kinetics of {delta}NS1/2-V were intermediate between {delta}NS1/2 and wild-type (rA2) in A549 cells.more » However, expression of V did not affect the ability of {delta}NS1/2-V to activate IRF3 nuclear translocation and IFN{beta} transcription. These data indicate that V was able to replace some of the IFN inhibitory functions of the RSV NS1 and NS2 proteins, but also that NS1 and NS2 have functions in viral replication beyond IFN antagonism.« less

  14. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: inhibition kinetics and docking studies.

    PubMed

    de Sousa, Lorena Ramos Freitas; Wu, Hongmei; Nebo, Liliane; Fernandes, João Batista; da Silva, Maria Fátima das Graças Fernandes; Kiefer, Werner; Kanitz, Manuel; Bodem, Jochen; Diederich, Wibke E; Schirmeister, Tanja; Vieira, Paulo Cezar

    2015-02-01

    NS2B-NS3 is a serine protease of the Dengue virus considered a key target in the search for new antiviral drugs. In this study flavonoids were found to be inhibitors of NS2B-NS3 proteases of the Dengue virus serotypes 2 and 3 with IC50 values ranging from 15 to 44 μM. Agathisflavone (1) and myricetin (4) turned out to be noncompetitive inhibitors of dengue virus serotype 2 NS2B-NS3 protease with Ki values of 11 and 4.7 μM, respectively. Docking studies propose a binding mode of the flavonoids in a specific allosteric binding site of the enzyme. Analysis of biomolecular interactions of quercetin (5) with NT647-NHS-labeled Dengue virus serotype 3 NS2B-NS3 protease by microscale thermophoresis experiments, yielded a dissociation constant KD of 20 μM. Our results help to understand the mechanism of inhibition of the Dengue virus serine protease by flavonoids, which is essential for the development of improved inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mutagenesis of Dengue Virus Protein NS2A Revealed a Novel Domain Responsible for Virus-Induced Cytopathic Effect and Interactions between NS2A and NS2B Transmembrane Segments.

    PubMed

    Wu, Ren-Huang; Tsai, Ming-Han; Tsai, Kuen-Nan; Tian, Jia Ni; Wu, Jian-Sung; Wu, Su-Ying; Chern, Jyh-Haur; Chen, Chun-Hong; Yueh, Andrew

    2017-06-15

    The NS2A protein of dengue virus (DENV) has eight predicted transmembrane segments (pTMS1 to -8) and participates in RNA replication, virion assembly, and host antiviral response. However, the roles of specific amino acid residues within the pTMS regions of NS2A during the viral life cycle are not clear. Here, we explore the function of DENV NS2A by introducing a series of alanine substitutions into the N-terminal half (pTMS1 to -4) of the protein in the context of a DENV infectious clone or subgenomic replicon. Six NS2A mutants (NM5, -7, -9, and -17 to -19) around pTMS1 and -2 displayed a novel phenotype showing a >1,000-fold reduction in virus yield, an absence of plaque formation despite wild-type-like replicon activity, and infectious-virus-like particle yields. HEK-293 cells infected with the six NS2A mutant viruses failed to cause a virus-induced cytopathic effect (CPE) by MitoCapture staining, cell proliferation, and lactate dehydrogenase release assays. Sequencing analyses of pseudorevertant viruses derived from lethal-mutant viruses revealed two consensus reversion mutations, leucine to phenylalanine at codon 181 (L181F) within pTMS7 of NS2A and isoleucine to threonine at codon 114 (I114T) within NS2B. The introduction of an NS2A-L181F mutation into the lethal (NM15, -16, -25, and -33) and CPE-defective (NM7, -9, and -19) mutants substantially rescued virus infectivity and virus-induced CPE, respectively, whereas the NS2B-L114T mutation rescued the NM16, -25, and -33 mutants. In conclusion, the results revealed the essential roles of the N-terminal half of NS2A in RNA replication and virus-induced CPE. Intramolecular interactions between pTMSs of NS2A and intermolecular interactions between the NS2A and NS2B proteins were also implicated. IMPORTANCE The characterization of the N-terminal (current study) and C-terminal halves of DENV NS2A is the most comprehensive mutagenesis study to date to investigate the function of NS2A during the flaviviral life cycle

  16. Complete Mitochondrial Genome of Eruca sativa Mill. (Garden Rocket)

    PubMed Central

    Yang, Qing; Chang, Shengxin; Chen, Jianmei; Hu, Maolong; Guan, Rongzhan

    2014-01-01

    Eruca sativa (Cruciferae family) is an ancient crop of great economic and agronomic importance. Here, the complete mitochondrial genome of Eruca sativa was sequenced and annotated. The circular molecule is 247 696 bp long, with a G+C content of 45.07%, containing 33 protein-coding genes, three rRNA genes, and 18 tRNA genes. The Eruca sativa mitochondrial genome may be divided into six master circles and four subgenomic molecules via three pairwise large repeats, resulting in a more dynamic structure of the Eruca sativa mtDNA compared with other cruciferous mitotypes. Comparison with the Brassica napus MtDNA revealed that most of the genes with known function are conserved between these two mitotypes except for the ccmFN2 and rrn18 genes, and 27 point mutations were scattered in the 14 protein-coding genes. Evolutionary relationships analysis suggested that Eruca sativa is more closely related to the Brassica species and to Raphanus sativus than to Arabidopsis thaliana. PMID:25157569

  17. Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyun; Ren, Jinhong; Nocadello, Salvatore

    Zika flavivirus infection during pregnancy appears to produce higher risk of microcephaly, and also causes multiple neurological problems such as Guillain–Barré syndrome. The Zika virus is now widespread in Central and South America, and is anticipated to become an increasing risk in the southern United States. With continuing global travel and the spread of the mosquito vector, the exposure is expected to accelerate, but there are no currently approved treatments against the Zika virus. The Zika NS2B/NS3 protease is an attractive drug target due to its essential role in viral replication. Our studies have identified several compounds with inhibitory activitymore » (IC50) and binding affinity (KD) of ~5–10 μM against the Zika NS2B-NS3 protease from testing 71 HCV NS3/NS4A inhibitors that were initially discovered by high-throughput screening of 40,967 compounds. Competition surface plasmon resonance studies and mechanism of inhibition analyses by enzyme kinetics subsequently determined the best compound to be a competitive inhibitor with a Ki value of 9.5 μM. We also determined the X-ray structure of the Zika NS2B-NS3 protease in a “pre-open conformation”, a conformation never observed before for any flavivirus proteases. This provides the foundation for new structure-based inhibitor design.« less

  18. Characterisation of divergent flavivirus NS3 and NS5 protein sequences detected in Rhipicephalus microplus ticks from Brazil

    PubMed Central

    Maruyama, Sandra Regina; Castro-Jorge, Luiza Antunes; Ribeiro, José Marcos Chaves; Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Brandão, Lucinda Giampietro; Rodrigues, Aline Rezende; Okada, Marcos Ituo; Abrão, Emiliana Pereira; Ferreira, Beatriz Rossetti; da Fonseca, Benedito Antonio Lopes; de Miranda-Santos, Isabel Kinney Ferreira

    2013-01-01

    Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen. PMID:24626302

  19. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyazaki, Masaya; Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp; Hasegawa, Hideki

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while themore » physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.« less

  20. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    NASA Astrophysics Data System (ADS)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  1. hnRNP A2/B1 interacts with influenza A viral protein NS1 and inhibits virus replication potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nuclear export

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yimeng; Zhou, Jianhong; Du, Yuchun, E-mail: ydu@uark.edu

    The NS1 protein of influenza viruses is a major virulence factor and exerts its function through interacting with viral/cellular RNAs and proteins. In this study, we identified heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) as an interacting partner of NS1 proteins by a proteomic method. Knockdown of hnRNP A2/B1 by small interfering RNA (siRNA) resulted in higher levels of NS vRNA, NS1 mRNA, and NS1 protein in the virus-infected cells. In addition, we demonstrated that hnRNP A2/B1 proteins are associated with NS1 and NS2 mRNAs and that knockdown of hnRNP A2/B1 promotes transport of NS1 mRNA from the nucleus to themore » cytoplasm in the infected cells. Lastly, we showed that knockdown of hnRNP A2/B1 leads to enhanced virus replication. Our results suggest that hnRNP A2/B1 plays an inhibitory role in the replication of influenza A virus in host cells potentially through suppressing NS1 RNA/protein levels and NS1 mRNA nucleocytoplasmic translocation. - Highlights: • Cellular protein hnRNP A2/B1 interacts with influenza viral protein NS1. • hnRNP A2/B1 suppresses the levels of NS1 protein, vRNA and mRNA in infected cells. • hnRNP A2/B1 protein is associated with NS1 and NS2 mRNAs. • hnRNP A2/B1 inhibits the nuclear export of NS1 mRNAs. • hnRNP A2/B1 inhibits influenza virus replication.« less

  2. Two complete chloroplast genome sequences of Cannabis sativa varieties.

    PubMed

    Oh, Hyehyun; Seo, Boyoung; Lee, Seunghwan; Ahn, Dong-Ha; Jo, Euna; Park, Jin-Kyoung; Min, Gi-Sik

    2016-07-01

    In this study, we determined the complete chloroplast (cp) genomes from two varieties of Cannabis sativa. The genome sizes were 153,848 bp (the Korean non-drug variety, Cheungsam) and 153,854 bp (the African variety, Yoruba Nigeria). The genome structures were identical with 131 individual genes [86 protein-coding genes (PCGs), eight rRNA, and 37 tRNA genes]. Further, except for the presence of an intron in the rps3 genes of two C. sativa varieties, the cp genomes of C. sativa had conservative features similar to that of all known species in the order Rosales. To verify the position of C. sativa within the order Rosales, we conducted phylogenetic analysis by using concatenated sequences of all PCGs from 17 complete cp genomes. The resulting tree strongly supported monophyly of Rosales. Further, the family Cannabaceae, represented by C. sativa, showed close relationship with the family Moraceae. The phylogenetic relationship outlined in our study is well congruent with those previously shown for the order Rosales.

  3. [Ttextual research of Cannabis sativa varieties and medicinal part].

    PubMed

    Wei, Yingfang; Wang, Huadong; Guo, Shanshan; Yan, Jie; Long, Fei

    2010-07-01

    To determine the medicinal part and varieties of Cannabis Sativa through herbal textual research to Provide bibliographic reference for clinical application. Herbal textual research of C. Sativa from ancient herbal works and modern data analysis. Through the herbal textual research, the plant of the C. sativa, for Fructus Cannabis used now is identical with that described in ancient herbal literatures. People did not make a sharp distinction on medicinal part of C. sativa in the early stage literatures, female inflorescence and unripe fruit, fruit and kernel of seed were all used. Since Taohongjing realized the toxicity ofpericarp, all the herbal and prescription works indicate that the pericarp shall be removed before usage and only the kernel can be used. However, in modem literatures, both fruit and kernel can be used as medicinal part. The plants for Fructus Cannabis described in modern and ancient literatures are identical. The base of the original plant is the same either in ancient or modern. And the toxicity of the fruit is more than that of the kernel. The kernel is the exact medicinal part of C. Sativa.

  4. Essential oils in the ranunculaceae family: chemical composition of hydrodistilled oils from Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum seeds.

    PubMed

    Kokoska, Ladislav; Urbanova, Klara; Kloucek, Pavel; Nedorostova, Lenka; Polesna, Lucie; Malik, Jan; Jiros, Pavel; Havlik, Jaroslav; Vadlejch, Jaroslav; Valterova, Irena

    2012-01-01

    In this study, we analyzed the chemical composition of volatile oils hydrodistilled from seeds of Consolida regalis, Delphinium elatum, Nigella hispanica, and N. nigellastrum using GC and GC/MS. In C. regalis, octadecenoic (77.79%) and hexadecanoic acid (8.34%) were the main constituents. Similarly, the oils from D. elatum and N. hispanica seeds consisted chiefly of octadecadienoic (42.83 and 35.58%, resp.), hexadecanoic (23.87 and 28.59%, resp.), and octadecenoic acid (21.67 and 19.76%, resp.). Contrastingly, the monoterpene hydrocarbons α-pinene (34.67%) and β-pinene (36.42%) were the main components of N. nigellastrum essential oil. Our results confirm the presence of essential oils in the family Ranunculaceae and suggest chemotaxonomical relationships within the representatives of the genera Consolida, Delphinium, and Nigella. In addition, the presence of various bioactive constituents such as linoleic acid, (-)-β-pinene, squalene, or carotol in seeds of D. elatum, N. hispanica, and N. nigellastrum indicates a possible industrial use of these plants. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  5. The subtle central effect of nutraceuticals: Is it placebo or nocebo?

    PubMed Central

    Al-Gareeb, Ali I.

    2015-01-01

    Background: Herbal medicines are often perceived by the general public as a “soft” alternative to Western Medicine, but the use of these substances can be risky since they can induce nocebo effect. Aim: The aim was to evaluate the nocebo effects of Nigella sativa oil, garlic and coenzyme Q10 (CoQ10) on the integrative function of the central nervous system and psychomotor performance. Materials and Methods: This is a randomized, double-blind, controlled, and prospective study conducted in the Department of Pharmacology, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq during February 2013. A total of 160 medical students participated in this study were randomly assigned equally to one of the following groups: Group A: Received single dose of N. sativa oil (500 ml capsule); Group B: Received single dose of garlic (500 mg capsule); Group C: Received single dose of CoQ10 (120 mg capsule) and; Group D: received single dose of matching oral placebo (300 mg starch capsule). For all participants, reaction time and flicker fusion threshold were measured by the Leeds psychomotor performance test battery before and after 3 h of taking the drugs Results: Neither placebo nor nutraceuticals exerted significant effect on total reaction time. Although the recognition reaction time is insignificantly reduced by 2.77% (placebo), 5.83% (Nigella sativa), 7.21% (garlic) and 12.64% (CoQ10) from the pretreatment values, they are adversely affect the motor reaction time to reach the significant level in subjects pretreated with Garlic (P = 0.02). Conclusion: Nutraceuticals are not free from nocebo effect on psychomotor performance. PMID:26401411

  6. Spin Complicates Eccentric BH-NS Mergers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-08-01

    When a neutron star (NS) has a glancing encounter with a black hole (BH), its spin has a significant effect on the outcome, according to new simulations run by William East of Stanford University and his collaborators. Spotting an Eccentric Merger. In a traditional BH-NS merger, the two objects orbit each other quasi-circularly as they spiral in. But there's another kind of merger that's possible in high-density environments like galactic nuclei or globular clusters: a dynamical capture merger, in which a NS and BH pass each other just close enough that the gravity of the black hole "catches" the NS, leading the two objects to merge with very eccentric orbits. During an eccentric merger, the NS can be torn apart -- at which point some fraction of the tidally-disrupted material will escape the system, while some fraction instead accretes back onto the BH. Knowing these fractions is important for being able to model the expected electromagnetic signatures for the merger: the unbound material can power transients like kilonovae, whereas the accreting material may be the cause of short gamma-ray bursts. The amount of material available for events like these would change their observable strengths. Testing the Effects of Spin. To see whether NS spin has an impact on the behavior of the merger, East and collaborators use a general-relativistic hydrodynamic code to simulate the glancing encounter of a BH and a NS with dimensionless spin between a=0 (non-spinning) and a=0.756 (rotation period of 1 ms). They also vary the separation of the first encounter. The group finds that changing the NS's spin can change a number of outcomes of the merger. To start with, it can affect whether the NS is captured by the BH, or if the encounter is glancing and then both objects carry on their merry way. And if the NS is trapped by the BH and torn apart, then the higher the NS's spin, the more matter outside of the BH ends up unbound, instead of getting trapped into an accretion disk

  7. Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion.

    PubMed

    Azzubaidi, Marwan Saad; Saxena, Anil Kumar; Talib, Norlelawati Abi; Ahmed, Qamar Uddin; Dogarai, Bashar Bello

    2012-01-01

    The fixed oil of black cumin seeds, Nigella sativa L. (NSO), has shown considerable antioxidant and anti-inflammatory activities. Chronic cerebral hypoperfusion has been linked to neurodegenerative disorders including Alzheimer's disease (AD) and its subsequent cognitive impairment in which oxidative stress and neuroinflammation are the principal culprits. Cerebrovascular hypoperfusion was experimentally achieved by bilateral common carotid arteries occlusion (2VO) in rats. Morris water maze (MWM) test was employed to assess the effects of NSO on spatial cognitive function before and after 2VO intervention. Rats were divided into long-term memory (LTM) and short-term memory (STM) groups, each was further subdivided into 3 subgroups: sham control, untreated 2VO and NSO treated 2VO group. All subgroups were tested with MWM at the tenth postoperative week. Working memory test results for both sham control and NSO treated groups showed significantly lower escape latency time and total distance travelled than untreated 2VO group. Similarly, LTM and STM MWM tests for sham control and NSO treated groups revealed significantly better maze test performance as compared to untreated 2VO group. Sham control and NSO treated 2VO groups demonstrated superior probe memory test performance as compared to untreated 2VO group. The fixed oil of Nigella sativa seeds has demonstrated noticeable spatial cognitive preservation in rats challenged with chronic cerebral hypoperfusion which indicates a promising prospective neuroprotective effect.

  8. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host

  9. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Arcy, Allan, E-mail: allan.darcy@novartis.com; Chaillet, Maxime; Schiering, Nikolaus

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but maymore » also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.« less

  10. Performance of commercial dengue NS1 ELISA and molecular analysis of NS1 gene of dengue viruses obtained during surveillance in Indonesia.

    PubMed

    Aryati, Aryati; Trimarsanto, Hidayat; Yohan, Benediktus; Wardhani, Puspa; Fahri, Sukmal; Sasmono, R Tedjo

    2013-12-29

    Early diagnosis of dengue infection is crucial for better management of the disease. Diagnostic tests based on the detection of dengue virus (DENV) Non Structural Protein 1 (NS1) antigen are commercially available with different sensitivities and specificities observed in various settings. Dengue is endemic in Indonesia and clinicians are increasingly using the NS1 detection for dengue confirmation. This study described the performance of Panbio Dengue Early NS1 and IgM Capture ELISA assays for dengue detection during our surveillance in eight cities in Indonesia as well as the genetic diversity of DENV NS1 genes and its relationship with the NS1 detection. The NS1 and IgM/IgG ELISA assays were used for screening and confirmation of dengue infection during surveillance in 2010-2012. Collected serum samples (n = 440) were subjected to RT-PCR and virus isolation, in which 188 samples were confirmed for dengue infection. The positivity of the ELISA assays were correlated with the RT-PCR results to obtain the sensitivity of the assays. The NS1 genes of 48 Indonesian virus isolates were sequenced and their genetic characteristics were studied. Using molecular data as gold standard, the sensitivity of NS1 ELISA assay for samples from Indonesia was 56.4% while IgM ELISA was 73.7%. When both NS1 and IgM results were combined, the sensitivity increased to 89.4%. The NS1 sensitivity varied when correlated with city/geographical origins and DENV serotype, in which the lowest sensitivity was observed for DENV-4 (19.0%). NS1 sensitivity was higher in primary (67.6%) compared to secondary infection (48.2%). The specificity of NS1 assay for non-dengue samples were 100%. The NS1 gene sequence analysis of 48 isolates revealed the presence of polymorphisms of the NS1 genes which apparently did not influence the NS1 sensitivity. We observed a relatively low sensitivity of NS1 ELISA for dengue detection on RT-PCR-positive dengue samples. The detection rate increased significantly

  11. Rationalizing meat consumption. The 4Ns.

    PubMed

    Piazza, Jared; Ruby, Matthew B; Loughnan, Steve; Luong, Mischel; Kulik, Juliana; Watkins, Hanne M; Seigerman, Mirra

    2015-08-01

    Recent theorizing suggests that the 4Ns - that is, the belief that eating meat is natural, normal, necessary, and nice - are common rationalizations people use to defend their choice of eating meat. However, such theorizing has yet to be subjected to empirical testing. Six studies were conducted on the 4Ns. Studies 1a and 1b demonstrated that the 4N classification captures the vast majority (83%-91%) of justifications people naturally offer in defense of eating meat. In Study 2, individuals who endorsed the 4Ns tended also to objectify (dementalize) animals and included fewer animals in their circle of moral concern, and this was true independent of social dominance orientation. Subsequent studies (Studies 3-5) showed that individuals who endorsed the 4Ns tend not to be motivated by ethical concerns when making food choices, are less involved in animal-welfare advocacy, less driven to restrict animal products from their diet, less proud of their animal-product decisions, tend to endorse Speciesist attitudes, tend to consume meat and animal products more frequently, and are highly committed to eating meat. Furthermore, omnivores who strongly endorsed the 4Ns tended to experience less guilt about their animal-product decisions, highlighting the guilt-alleviating function of the 4Ns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. GESPA: classifying nsSNPs to predict disease association.

    PubMed

    Khurana, Jay K; Reeder, Jay E; Shrimpton, Antony E; Thakar, Juilee

    2015-07-25

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are the most common DNA sequence variation associated with disease in humans. Thus determining the clinical significance of each nsSNP is of great importance. Potential detrimental nsSNPs may be identified by genetic association studies or by functional analysis in the laboratory, both of which are expensive and time consuming. Existing computational methods lack accuracy and features to facilitate nsSNP classification for clinical use. We developed the GESPA (GEnomic Single nucleotide Polymorphism Analyzer) program to predict the pathogenicity and disease phenotype of nsSNPs. GESPA is a user-friendly software package for classifying disease association of nsSNPs. It allows flexibility in acceptable input formats and predicts the pathogenicity of a given nsSNP by assessing the conservation of amino acids in orthologs and paralogs and supplementing this information with data from medical literature. The development and testing of GESPA was performed using the humsavar, ClinVar and humvar datasets. Additionally, GESPA also predicts the disease phenotype associated with a nsSNP with high accuracy, a feature unavailable in existing software. GESPA's overall accuracy exceeds existing computational methods for predicting nsSNP pathogenicity. The usability of GESPA is enhanced by fast SQL-based cloud storage and retrieval of data. GESPA is a novel bioinformatics tool to determine the pathogenicity and phenotypes of nsSNPs. We anticipate that GESPA will become a useful clinical framework for predicting the disease association of nsSNPs. The program, executable jar file, source code, GPL 3.0 license, user guide, and test data with instructions are available at http://sourceforge.net/projects/gespa.

  13. TFaNS-Tone Fan Noise Design/Prediction System: Users' Manual TFaNS Version 1.5

    NASA Technical Reports Server (NTRS)

    Topol, David A.; Huff, Dennis L. (Technical Monitor)

    2003-01-01

    TFaNS is the Tone Fan Noise Design/Prediction System developed by Pratt & Whitney under contract to NASA Glenn. The purpose of this system is to predict tone noise emanating from a fan stage including the effects of reflection and transmission by the rotor and stator and by the duct inlet and nozzle. The first version of this design system was developed under a previous NASA contract. Several improvements have been made to TFaNS. This users' manual shows how to run this new system. TFaNS consists of the codes that compute the acoustic properties (reflection and transmission coefficients) of the various elements and writes them to files, CUP3D Fan Noise Coupling Code that reads these files, solves the coupling problem, and outputs the desired noise predictions, and AWAKEN CFD/Measured Wake Postprocessor which reformats CFD wake predictions and/or measured wake data so they can be used by the system. This report provides information on code input and file structure essential for potential users of TFaNS.

  14. Modulatory effects of some natural products on hepatotoxicity induced by combination of sodium valproate and paracetamol in rats.

    PubMed

    Zaky, Hanan S; Gad, Amany M; Nemr, Ekram; Hassan, Wedad; Abd El-Raouf, Ola M; Ali, Aza A

    2018-05-25

    Possible hepatoprotective effect of Curcuma longa and/or Nigella sativa against hepatotoxicity induced by coadministration of sodium valproate (SV) and paracetamol was studied. Rats were divided into 10 groups, control groups 1, 2, 3, and 4 received vehicles, C. longa (200 mg/kg, p.o.), N. sativa (250 mg/kg, p.o.), or both herbs for 21 days, respectively. Toxicity groups 5, 6, and 7 received SV (300 mg/kg, i.p.), paracetamol (1000 mg/kg, p.o.) for the last 4 days or both for 21 days, respectively. Protection groups 8, 9, and 10 received C. longa, N. sativa, or both, respectively, 1 h before the administration of both the drugs for 21 days. SV and/or paracetamol significantly increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, relative liver/body weight ratio, malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), and caspase-3 (Casp-3) while significantly decreased albumin, total protein, glutathione (GSH) reduced, GSH peroxidase, and superoxide dismutase (SOD). Preadministration of C. longa and/or N. sativa caused protective effect against the hepatotoxicity induced by both drugs. © 2018 Wiley Periodicals, Inc.

  15. Cannabis sativa allergy: looking through the fog.

    PubMed

    Decuyper, I I; Van Gasse, A L; Cop, N; Sabato, V; Faber, M A; Mertens, C; Bridts, C H; Hagendorens, M M; De Clerck, L; Rihs, H P; Ebo, D G

    2017-02-01

    IgE-mediated Cannabis (C. sativa, marihuana) allergy seems to be on the rise. Both active and passive exposure to cannabis allergens may trigger a C. sativa sensitization and/or allergy. The clinical presentation of a C. sativa allergy varies from mild to life-threatening reactions and often seems to depend on the route of exposure. In addition, sensitization to cannabis allergens can result in various cross-allergies, mostly for plant foods. This clinical entity, designated as the 'cannabis-fruit/vegetable syndrome', might also imply cross-reactivity with tobacco, natural latex and plant-food-derived alcoholic beverages. Hitherto, these cross-allergies are predominantly reported in Europe and appear mainly to rely upon cross-reactivity between nonspecific lipid transfer proteins or thaumatin-like proteins present in C. sativa and their homologues, ubiquitously distributed throughout plant kingdom. At present, diagnosis of cannabis-related allergies predominantly rests upon a thorough history completed with skin testing using native extracts from crushed buds and leaves. However, quantification of specific IgE antibodies and basophil activation tests can also be helpful to establish correct diagnosis. In the absence of a cure, treatment comprises absolute avoidance measures. Whether avoidance of further use will halt the extension of related cross-allergies remains uncertain. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. The emerging biofuel crop Camelina sativa retains a highly undifferentiated hexaploid genome structure

    PubMed Central

    Kagale, Sateesh; Koh, Chushin; Nixon, John; Bollina, Venkatesh; Clarke, Wayne E.; Tuteja, Reetu; Spillane, Charles; Robinson, Stephen J.; Links, Matthew G.; Clarke, Carling; Higgins, Erin E.; Huebert, Terry; Sharpe, Andrew G.; Parkin, Isobel A. P.

    2014-01-01

    Camelina sativa is an oilseed with desirable agronomic and oil-quality attributes for a viable industrial oil platform crop. Here we generate the first chromosome-scale high-quality reference genome sequence for C. sativa and annotated 89,418 protein-coding genes, representing a whole-genome triplication event relative to the crucifer model Arabidopsis thaliana. C. sativa represents the first crop species to be sequenced from lineage I of the Brassicaceae. The well-preserved hexaploid genome structure of C. sativa surprisingly mirrors those of economically important amphidiploid Brassica crop species from lineage II as well as wheat and cotton. The three genomes of C. sativa show no evidence of fractionation bias and limited expression-level bias, both characteristics commonly associated with polyploid evolution. The highly undifferentiated polyploid genome of C. sativa presents significant consequences for breeding and genetic manipulation of this industrial oil crop. PMID:24759634

  17. Feeding a sub-ns-risetime rectangular pulse onto a rod-shaped resistive high-voltage divider in risetime <2 ns

    NASA Astrophysics Data System (ADS)

    Zeng, Zhengzhong; Ma, Lianying

    2004-01-01

    A simple and effective bridge-type feeding network consisting only of ordinary resistors and conductive wires is designed and tested which launches a 0.8 ns risetime, 40 ns width, and kV-level rectangular pulse from a coaxial cable onto a rod-shaped resistive high-voltage divider with risetime <2 ns with no significant distortion.

  18. Identification of drug resistance and immune-driven variations in hepatitis C virus (HCV) NS3/4A, NS5A and NS5B regions reveals a new approach toward personalized medicine.

    PubMed

    Ikram, Aqsa; Obaid, Ayesha; Awan, Faryal Mehwish; Hanif, Rumeza; Naz, Anam; Paracha, Rehan Zafar; Ali, Amjad; Janjua, Hussnain Ahmed

    2017-01-01

    Cellular immune responses (T cell responses) during hepatitis C virus (HCV) infection are significant factors for determining the outcome of infection. HCV adapts to host immune responses by inducing mutations in its genome at specific sites that are important for HLA processing/presentation. Moreover, HCV also adapts to resist potential drugs that are used to restrict its replication, such as direct-acting antivirals (DAAs). Although DAAs have significantly reduced disease burden, resistance to these drugs is still a challenge for the treatment of HCV infection. Recently, drug resistance mutations (DRMs) observed in HCV proteins (NS3/4A, NS5A and NS5B) have heightened concern that the emergence of drug resistance may compromise the effectiveness of DAAs. Therefore, the NS3/4A, NS5A and NS5B drug resistance variations were investigated in this study, and their prevalence was examined in a large number of protein sequences from all HCV genotypes. Furthermore, potential CD4 + and CD8 + T cell epitopes were predicted and their overlap with genetic variations was explored. The findings revealed that many reported DRMs within NS3/4A, NS5A and NS5B are not drug-induced; rather, they are already present in HCV strains, as they were also detected in HCV-naïve patients. This study highlights several hot spots in which HLA and drug selective pressure overlap. Interestingly, these overlapping mutations were frequently observed among many HCV genotypes. This study implicates that knowledge of the host HLA type and HCV subtype/genotype can provide important information in defining personalized therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.

    PubMed

    Schöne, Tobias; Grimm, Lena Lisbeth; Sakai, Naoki; Zhang, Linlin; Hilgenfeld, Rolf; Peters, Thomas

    2017-10-01

    West Nile virus (WNV) belongs to the genus Flavivirus of the family Flaviviridae. This mosquito-borne virus that is highly pathogenic to humans has been evolving into a global threat during the past two decades. Despite many efforts, neither antiviral drugs nor vaccines are available. The viral protease NS2B-NS3 pro is essential for viral replication, and therefore it is considered a prime drug target. However, success in the development of specific NS2B-NS3 pro inhibitors had been moderate so far. In the search for new structural motifs with binding affinity for NS2B-NS3 pro , we have screened a fragment library, the Maybridge Ro5 library, employing saturation transfer difference (STD) NMR experiments as readout. About 30% of 429 fragments showed binding to NS2B-NS3 pro . Subsequent STD-NMR competition experiments using the known active site fragment A as reporter ligand yielded 14 competitively binding fragments, and 22 fragments not competing with A. In a fluorophore-based protease assay, all of these fragments showed inhibition in the micromolar range. Interestingly, 10 of these 22 fragments showed a notable increase of STD intensities in the presence of compound A suggesting cooperative binding. The most promising non-competitive inhibitors 1 and 2 (IC 50 ∼ 500 μM) share a structural motif that may guide the development of novel second-site (potentially allosteric) inhibitors of NS2B-NS3 pro . To identify the matching protein binding site, chemical shift perturbation studies employing 1 H, 15 N-TROSY-HSQC experiments with uniformly 2 H, 15 N-labeled protease were performed in the presence of 1, and in the concomitant absence or presence of A. The data suggest that 1 interacts with Met 52* of NS2B, identifying a secondary site adjacent to the binding site of A. Therefore, our study paves the way for the synthesis of novel bidentate NS2B-NS3 pro inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Chemotaxonomic features associated with flavonoids of cannabinoid-free cannabis (Cannabis sativa subsp. sativa L.) in relation to hops (Humulus lupulus L.).

    PubMed

    Vanhoenacker, Gerd; Van Rompaey, Philippe; De Keukeleire, Denis; Sandra, Pat

    2002-02-01

    The major flavonoids present in the leaves and flowers of the cannabinoid-free cannabis (Cannabis sativa subsp. sativa L.) cultivars Felina and Futura are orientin (1), vitexin (2), luteolin-7-O-beta-D-glucuronide (3), and apigenin-7-O-beta-D-glucuronide (4), while prenylated flavonoids, to which the potent estrogenicity of hops (Humilus lupulus L.) is associated, are absent. The different composition of flavonoids has chemotaxonomic value.

  1. Development of Loop-Mediated Isothermal Amplification (LAMP) Assay for Rapid Detection of Cannabis sativa.

    PubMed

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2016-07-01

    In many parts of the world, the possession and cultivation of Cannabis sativa L. are restricted by law. As chemical or morphological analyses cannot identify the plant in some cases, a simple yet accurate DNA-based method for identifying C. sativa is desired. We have developed a loop-mediated isothermal amplification (LAMP) assay for the rapid identification of C. sativa. By optimizing the conditions for the LAMP reaction that targets a highly conserved region of tetrahydrocannabinolic acid (THCA) synthase gene, C. sativa was identified within 50 min at 60-66°C. The detection limit was the same as or higher than that of conventional PCR. The LAMP assay detected all 21 specimens of C. sativa, showing high specificity. Using a simple protocol, the identification of C. sativa could be accomplished within 90 min from sample treatment to detection without use of special equipment. A rapid, sensitive, highly specific, and convenient method for detecting and identifying C. sativa has been developed and is applicable to forensic investigations and industrial quality control.

  2. Species identification of Cannabis sativa using real-time quantitative PCR (qPCR).

    PubMed

    Johnson, Christopher E; Premasuthan, Amritha; Satkoski Trask, Jessica; Kanthaswamy, Sree

    2013-03-01

    Most narcotics-related cases in the United States involve Cannabis sativa. Material is typically identified based on the cystolithic hairs on the leaves and with chemical tests to identify of the presence of cannabinoids. Suspect seeds are germinated into a viable plant so that morphological and chemical tests can be conducted. Seed germination, however, causes undue analytical delays. DNA analyses that involve the chloroplast and nuclear genomes have been developed for identification of C. sativa materials, but they require several nanograms of template DNA. Using the trnL 3' exon-trnF intragenic spacer regions within the C. sativa chloroplast, we have developed a real-time quantitative PCR assay that is capable of identifying picogram amounts of chloroplast DNA for species determination of suspected C. sativa material. This assay provides forensic science laboratories with a quick and reliable method to identify an unknown sample as C. sativa. © 2013 American Academy of Forensic Sciences.

  3. Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways

    PubMed Central

    Rahmani, Arshad H.; Alzohairy, Mohammad A.; Khan, Masood A.; Aly, Salah M.

    2014-01-01

    The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancer shows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancer. Black seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ) have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways. PMID:24959190

  4. Thymoquinone: an emerging natural drug with a wide range of medical applications

    PubMed Central

    Khader, Mohannad; Eckl, Peter M

    2014-01-01

    Nigella sativa has attracted healers in ancient civilizations and researchers in recent times. Traditionally, it has been used in different forms to treat many diseases including asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness and influenza. Experimentally, it has been demonstrated that N. sativa extracts and the main constituent of their volatile oil, thymoquinone, possess antioxidant, anti-inflammatory and hepatoprotective properties. In this review we aimed at summarizing the most recent investigations related to a few and most important effects of thymoquinone. It is concluded that thymoquinone has evidently proved its activity as hepatoprotective, anti-inflammatory, antioxidant, cytotoxic and anti-cancer chemical, with specific mechanisms of action, which provide support to consider this compound as an emerging drug. Further research is required to make thymoquinone a pharmaceutical preparation ready for clinical trials. PMID:25859298

  5. Substrate inhibition kinetic model for West Nile virus NS2B-NS3 protease.

    PubMed

    Tomlinson, Suzanne M; Watowich, Stanley J

    2008-11-11

    West Nile virus (WNV) has recently emerged in North America as a significant disease threat to humans and animals. Unfortunately, no approved antiviral drugs exist to combat WNV or other members of the genus Flavivirus in humans. The WNV NS2B-NS3 protease has been one of the primary targets for anti-WNV drug discovery and design since it is required for virus replication. As part of our efforts to develop effective WNV inhibitors, we reexamined the reaction kinetics of the NS2B-NS3 protease and the inhibition mechanisms of newly discovered inhibitors. The WNV protease showed substrate inhibition in assays utilizing fluorophore-linked peptide substrates GRR, GKR, and DFASGKR. Moreover, a substrate inhibition reaction step was required to accurately model kinetic data generated from protease assays with a peptide inhibitor. The substrate inhibition model suggested that peptide substrates could bind to two binding sites on the protease. Reaction product analogues also showed inhibition of the protease, demonstrating product inhibition in addition to and distinct from substrate inhibition. We propose that small peptide substrates and inhibitors may interact with protease residues that form either the P3-P1 binding surface (i.e., the S3-S1 sites) or the P1'-P3' interaction surface (i.e., the S1'-S3' sites). Optimization of substrate analogue inhibitors that target these two independent sites may lead to novel anti-WNV drugs.

  6. Flavonoid from Carica papaya inhibits NS2B-NS3 protease and prevents Dengue 2 viral assembly.

    PubMed

    Senthilvel, Padmanaban; Lavanya, Pandian; Kumar, Kalavathi Murugan; Swetha, Rayapadi; Anitha, Parimelzaghan; Bag, Susmita; Sarveswari, Sundaramoorthy; Vijayakumar, Vijayaparthasarathi; Ramaiah, Sudha; Anbarasu, Anand

    2013-01-01

    Dengue virus belongs to the virus family Flaviviridae. Dengue hemorrhagic disease caused by dengue virus is a public health problem worldwide. The viral non structural 2B and 3 (NS2B-NS3) protease complex is crucial for virus replication and hence, it is considered to be a good anti-viral target. Leaf extracts from Carica papaya is generally prescribed for patients with dengue fever, but there are no scientific evidences for its anti-dengue activity; hence we intended to investigate the anti-viral activity of compounds present in the leaves of Carica papaya against dengue 2 virus (DENV-2). We analysed the anti-dengue activities of the extracts from Carica papaya by using bioinformatics tools. Interestingly, we find the flavonoid quercetin with highest binding energy against NS2B-NS3 protease which is evident by the formation of six hydrogen bonds with the amino acid residues at the binding site of the receptor. Our results suggest that the flavonoids from Carica papaya have significant anti-dengue activities. ADME - Absorption, distribution, metabolism and excretion, BBB - Blood brain barrier, CYP - Cytochrome P450, DENV - - Dengue virus, DHF - Dengue hemorrhagic fever, DSS - Dengue shock syndrome, GCMS - - Gas chromatography- Mass spectrometry, MOLCAD - Molecular Computer Aided Design, NS - Non structural, PDB - Protein data bank, PMF - Potential Mean Force.

  7. [Sensitization to Castanea sativa pollen and pollinosis in northern Extremadura (Spain)].

    PubMed

    Cosmes Martín, P M; Moreno Ancillo, A; Domínguez Noche, C; Gutiérrez Vivas, A; Belmonte Soler, J; Roure Nolla, J M

    2005-01-01

    Castanea sativa pollen allergy has generally been considered to be uncommon and clinically insignificant. In our geographical area (Plasencia, Cáceres, Spain) Castanea sativa pollen is a major pollen. To determine the atmospheric fluctuations and prevalence of patients sensitized to Castanea pollen in our region and to compare this sensitization with sensitizations to other pollens. Patients with respiratory symptoms attending our outpatient clinic for the first time in 2003 were studied. The patients underwent skin prick tests with commercial extracts of a battery of inhalants including Castanea sativa pollen. Serologic specific IgE to Castanea sativa pollen was determined using the CAP system (Pharmacia and Upjohn, Uppsala, Sweden). Airborne pollen counts in our city were obtained using Cour collection apparatus over a 4-year period (2000 to 2003). The most predominant pollens detected were (mean of the maximal weekly concentrations over 4 years in pollen grains/m3): Quercus 968, Poacea 660, Olea 325, Platanus 229, Pinus 126, Cupresaceae 117, Plantago 109, Alnus 41, Populus 40, Castanea 32. We studied 346 patients (mean age: 24.1 years). In 210 patients with a diagnosis of pollinosis, the percentages of sensitization were: Dactylis glomerata 80.4%, Olea europea 71.9%, Fraxinus excelsior 68%, Plantago lanceolata 62.8%, Chenopodium album 60.9%, Robinia pseudoacacia 49%, Artemisia vulgaris 43.8%, Platanus acerifolia 36.6%, Parietaria judaica 36.1%, Populus nigra 32.3%, Betula alba 27.6%, Quercus ilex 21.4%, Alnus glutinosa 20.9%, Cupressus arizonica 7.6% and Castanea sativa 7.1%. Fifteen patients were sensitized to Castanea sativa and 14 had seasonal rhinoconjunctivitis and asthma. Ten patients had serum specific IgE to Castanea pollen (maximum value: 17.4 Ku/l). Castanea pollen is present in our area in large amounts from the 23rd to the 28th weeks of the year, with a peak pollen count in the 25th week. The most important allergenic pollens in northern Extremadura

  8. Extended substrate specificity and first potent irreversible inhibitor/activity-based probe design for Zika virus NS2B-NS3 protease.

    PubMed

    Rut, Wioletta; Zhang, Linlin; Kasperkiewicz, Paulina; Poreba, Marcin; Hilgenfeld, Rolf; Drąg, Marcin

    2017-03-01

    Zika virus is spread by Aedes mosquitoes and is linked to acute neurological disorders, especially to microcephaly in newborn children and Guillan-Barré Syndrome. The NS2B-NS3 protease of this virus is responsible for polyprotein processing and therefore considered an attractive drug target. In this study, we have used the Hybrid Combinatorial Substrate Library (HyCoSuL) approach to determine the substrate specificity of ZIKV NS2B-NS3 protease in the P4-P1 positions using natural and a large spectrum of unnatural amino acids. Obtained data demonstrate a high level of specificity of the S3-S1 subsites, especially for basic amino acids. However, the S4 site exhibits a very broad preference toward natural and unnatural amino acids with selected D-amino acids being favored over L enantiomers. This information was used for the design of a very potent phosphonate inhibitor/activity-based probe of ZIKV NS2B-NS3 protease. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes

    PubMed Central

    2010-01-01

    Background Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. Results In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. Conclusions There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should

  10. Anthracene-based Inhibitors of Dengue Virus NS2B-NS3 Protease†

    PubMed Central

    Tomlinson, Suzanne M.; Watowich, Stanley J.

    2010-01-01

    Summary Dengue virus (DENV) is a mosquito-borne flavivirus that has strained global healthcare systems throughout tropical and subtropical regions of the world. In addition to plaguing developing nations, it has re-emerged in several developed countries with recent outbreaks in the USA (CDC, 2010), Australia (Hanna et al., 2009), Taiwan (Kuan et al., 2010) and France (La Ruche et al., 2010). DENV infection can cause significant disease, including dengue fever, dengue hemorrhagic fever, dengue shock syndrome, and death. There are no approved vaccines or antiviral therapies to prevent or treat dengue-related illnesses. However, the viral NS2B-NS3 protease complex provides a strategic target for antiviral drug development since NS3 protease activity is required for virus replication. Recently, we reported two compounds with inhibitory activity against the DENV protease in vitro and antiviral activity against dengue 2 (DEN2V) in cell culture (Tomlinson et al., 2009a). Analogs of one of the lead compounds were purchased, tested in protease inhibition assays, and the data evaluated with detailed kinetic analyses. A structure activity relationship (SAR) identified key atomic determinants (i.e. functional groups) important for inhibitory activity. Four “second series” analogs were selected and tested to validate our SAR and structural models. Here, we report improvements to inhibitory activity ranging between ~2- and 60-fold, resulting in selective low micromolar dengue protease inhibitors. PMID:21185332

  11. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.

    PubMed

    Su, Xun-Cheng; Ozawa, Kiyoshi; Yagi, Hiromasa; Lim, Siew P; Wen, Daying; Ekonomiuk, Dariusz; Huang, Danzhi; Keller, Thomas H; Sonntag, Sebastian; Caflisch, Amedeo; Vasudevan, Subhash G; Otting, Gottfried

    2009-08-01

    The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2B-NS3 protease which were discovered using high-throughput in vitro screening. Binding to the substrate-binding sites S1 and S3 is confirmed by intermolecular NOEs and comparison with the binding mode of a previously identified low molecular mass inhibitor. Our results show that all these inhibitors act by occupying the substrate-binding site of the protease rather than by an allosteric mechanism. In addition, the NS2B polypeptide chain was found to be positioned near the substrate-binding site, as observed previously in crystal structures of the protease in complex with peptide inhibitors or bovine pancreatic trypsin inhibitor. This indicates that the new low molecular mass compounds, although inhibiting the protease, also promote the proteolytically active conformation of NS2B, which is very different from the crystal structure of the protein without inhibitor.

  12. PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins.

    PubMed

    Li, Lili; Zhao, Hui; Liu, Ping; Li, Chunfeng; Quanquin, Natalie; Ji, Xue; Sun, Nina; Du, Peishuang; Qin, Cheng-Feng; Lu, Ning; Cheng, Genhong

    2018-06-19

    Zika virus infection stimulates a type I interferon (IFN) response in host cells, which suppresses viral replication. Type I IFNs exert antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). To screen for antiviral ISGs that restricted Zika virus replication, we individually knocked out 21 ISGs in A549 lung cancer cells and identified PARP12 as a strong inhibitor of Zika virus replication. Our findings suggest that PARP12 mediated the ADP-ribosylation of NS1 and NS3, nonstructural viral proteins that are involved in viral replication and modulating host defense responses. This modification of NS1 and NS3 triggered their proteasome-mediated degradation. These data increase our understanding of the antiviral activity of PARP12 and suggest a molecular basis for the potential development of therapeutics against Zika virus. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Prevalence of sensitization to Cannabis sativa. Lipid-transfer and thaumatin-like proteins are relevant allergens.

    PubMed

    Larramendi, Carlos H; López-Matas, M Ángeles; Ferrer, Angel; Huertas, Angel Julio; Pagán, Juan Antonio; Navarro, Luis Ángel; García-Abujeta, José Luis; Andreu, Carmen; Carnés, Jerónimo

    2013-01-01

    Although allergy to Cannabis sativa was first reported over 40 years ago, the allergenicity has scarcely been studied. The objectives of this study were to investigate the frequency of sensitization to this plant, to analyze the clinical characteristics and allergenic profile of sensitized individuals and to identify the allergens involved. Five hundred and forty-five individuals in Spain attending allergy clinics with respiratory or cutaneous symptoms underwent a skin-prick test (SPT) with C. sativa leaf extract. The extract was characterized by SDS-PAGE and 2-dimensional electrophoresis. Specific IgE to C. sativa was measured in positive SPT individuals. The clinical and allergenic profiles of sensitized individuals were investigated and the most-recognized allergens sequenced and characterized by liquid chromatography-mass spectrometry/mass spectrometry. Of this preselected population, 44 individuals had positive SPT to C. sativa (prevalence 8.1%). Prevalence was higher in individuals who were C. sativa smokers (14.6%). Two individuals reported mild symptoms with C. sativa. Twenty-one individuals from 32 available sera (65.6%) had positive specific IgE to C. sativa. Twelve sera recognized at least 6 different bands in a molecular-weight range of between 10 and 60 kDa. Six of them recognized a 10-kDa band, identified as a lipid transfer protein (LTP) and 8 recognized a 38-kDa band, identified as a thaumatin-like protein. There is a high prevalence of sensitization to C. sativa leaves. The clinical symptoms directly attributed to C. sativa were uncommon and mild. The sensitization profile observed suggests that C. sativa sensitization may be mediated by two mechanisms, i.e. cross-reactivity, mainly with LTP and thaumatin-like protein, and exposure-related 'de novo' sensitization. Copyright © 2013 S. Karger AG, Basel.

  14. Identification of IgE- binding pollen protein from Cannabis sativa in pollen-hypersensitive patients from north Pakistan.

    PubMed

    Choudhary, Shazia; Murad, Sheeba; Hayat, Muhammad Qasim; Shakoor, Zahid; Arshad, Muhammad

    2017-01-01

    Cannabis sativa (C.sativa) is well-known for its medicinal, industrial and recreational use. However, allergies in relation to Cannabis sativa (C.sativa) are rarely reported. C. sativa is one of the common weeds found in Pakistan and its pollen grains are common in spring and fall season. Although categorized as an aeroallergen, there are limited number of reports regarding allergenic potential in C. sativa. Therefore, the current study is aimed at exploring the IgE- binding potential among the C. sativa pollen in local pollen allergic patients. Initial screening of C. sativa sensitized individuals was carried out by dot blot from the sera of pollen allergic patients. Proteins from the pollen grains were extracted and resolved on 10% gel. Eight bands were visible on gel however only one protein fragment i.e. of 14KDa size was found to bind to IgE as analyzed through protein gel blot analysis. Strong IgE affinity of a 14 kDa protein fragment from C. sativa pollen extract suggests its allergenic potential. Further study is required to find the exact nature of this protein fragment.

  15. Exploring the Lead Compounds for Zika Virus NS2B-NS3 Protein: an e-Pharmacophore-Based Approach.

    PubMed

    Rohini, K; Agarwal, Pratika; Preethi, B; Shanthi, V; Ramanathan, K

    2018-06-18

    The rapid spread of the Zika virus and its association with the abnormal brain development constitute a global health emergency. With a continuing spread of the mosquito vector, the exposure is expected to accelerate in the coming years. Despite number of efforts, there is still no proper vaccine or medicine to combat this virus. Of note, the NS2B-NS3 protein is proven to be the potential target for the Zika virus therapeutics. Hence, e-pharmacophore-based drug design strategy was employed to identify potent inhibitors of NS2B-NS3 protein from ASINEX database consisting of 467,802 molecules. A 3D e-pharmacophore model was generated using PHASE module of Schrödinger Suite. The generated model consists of one hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings (R), ADDRR. The model was further evaluated for its ability to screen actives using enrichment analysis. Subsequently, high-throughput virtual screening protocol was employed, and the resultant hit molecules were also examined for its binding free energies and ADME properties using Prime MM-GBSA and Qikprop module of Schrodinger packages, respectively. Finally, the screened hit molecule was subjected to molecular dynamics simulation to examine its stability. Overall, the results from our analysis suggest that compound BAS 19192837 could be a potent inhibitor for the NS2B-NS3 protein of the Zika virus. It is also noteworthy to mention that our results are in good agreement with literature evidences. We hope that this result is of immense importance in designing potential drug molecules to combat the spread of Zika virus in the near future.

  16. Identification and subcellular localization of porcine deltacoronavirus accessory protein NS6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Puxian; Fang, Liurong; Liu, Xiaorong

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteric coronavirus. Accessory proteins are genus-specific for coronavirus, and two putative accessory proteins, NS6 and NS7, are predicted to be encoded by PDCoV; however, this remains to be confirmed experimentally. Here, we identified the leader-body junction sites of NS6 subgenomic RNA (sgRNA) and found that the actual transcription regulatory sequence (TRS) utilized by NS6 is non-canonical and is located upstream of the predicted TRS. Using the purified NS6 from an Escherichia coli expression system, we obtained two anti-NS6 monoclonal antibodies that could detect the predicted NS6 in cells infected with PDCoV or transfectedmore » with NS6-expressing plasmids. Further studies revealed that NS6 is always localized in the cytoplasm of PDCoV-infected cells, mainly co-localizing with the endoplasmic reticulum (ER) and ER-Golgi intermediate compartments, as well as partially with the Golgi apparatus. Together, our results identify the NS6 sgRNA and demonstrate its expression in PDCoV-infected cells. -- Highlights: •The leader-body fusion site of NS6 sgRNA is identified. •NS6 sgRNA uses a non-canonical transcription regulatory sequence (TRS). •NS6 can be expressed in PDCoV-infected cell. •NS6 predominantly localize to the ER complex and ER-Golgi intermediate compartment.« less

  17. Delayed and highly specific antibody response to nonstructural protein 1 (NS1) revealed during natural human ZIKV infection by NS1-based capture ELISA.

    PubMed

    Gao, Xiujie; Wen, Yingfen; Wang, Jian; Hong, Wenxin; Li, Chunlin; Zhao, Lingzhai; Yin, Chibiao; Jin, Xia; Zhang, Fuchun; Yu, Lei

    2018-06-14

    Zika virus (ZIKV) had spread rapidly in the past few years in southern hemisphere where dengue virus (DENV) had caused epidemic problems for over half a century. The high degree of cross-reactivity of Envelope (E) protein specific antibody responses between ZIKV and DENV made it challenging to perform differential diagnosis between the two infections using standard ELISA method for E protein. Using an IgG capture ELISA, we investigated the kinetics of nonstructural protein 1 (NS1) antibody response during natural ZIKV infection and the cross-reactivity to NS1 proteins using convalescent sera obtained from patients infected by either DENV or ZIKV. The analyses of the sequential serum samples from ZIKV infected individuals showed NS1 specific Abs appeared 2 weeks later than E specific Abs. Notably, human sera from ZIKV infected individuals did not contain cross-reactivity to NS1 proteins of any of the four DENV serotypes. Furthermore, four out of five NS1-specific monoclonal antibodies (mAbs) isolated from ZIKV infected individuals did not bind to DENV NS1 proteins. Only limited amount of cross-reactivity to ZIKV NS1 was displayed in 108 DENV1 immune sera at 1:100 dilution. The high degree of NS1-specific Abs in both ZIKV and DENV infection revealed here suggest that NS1-based diagnostics would significantly improve the differential diagnosis between DENV and ZIKV infections.

  18. Pharmacology of Marihuana (Cannabis sativa)

    ERIC Educational Resources Information Center

    Maickel, Roger P.

    1973-01-01

    A detailed discussion of marihuana (Cannabis sativa) providing the modes of use, history, chemistry, and physiologic properties of the drug. Cites research results relating to the pharmacologic effects of marihuana. These effects are categorized into five areas: behavioral, cardiovascular-respiratory, central nervous system, toxicity-toxicology,…

  19. Nonstructural proteins nsP3 and nsP4 of Ross River and O'Nyong-nyong viruses: sequence and comparison with those of other alphaviruses.

    PubMed

    Strauss, E G; Levinson, R; Rice, C M; Dalrymple, J; Strauss, J H

    1988-05-01

    We have sequenced the nsP3 and nsP4 region of two alphaviruses, Ross River virus and O'Nyong-nyong virus, in order to examine these viruses for the presence or absence of an opal termination codon present between nsP3 and nsP4 in many alphaviruses. We found that Ross River virus possesses an in-phase opal termination codon between nsP3 and nsP4, whereas in O'Nyong-nyong virus this termination codon is replaced by an arginine codon. Previous studies have shown that two other alphaviruses, Sindbis virus and Middelburg virus, possess an opal termination codon separating nsP3 and nsP4 [E.G. Strauss, C.M. Rice, and J.H. Strauss (1983), Proc. Natl. Acad. Sci. USA 80, 5271-5275], whereas Semliki Forest virus possesses an arginine codon in lieu of the opal codon [K. Takkinen (1986), Nucleic Acids Res. 14, 5667-5682]. Thus, of the five alphaviruses examined to date, three possess the opal codon and two do not. Production of nsP4 requires readthrough of the opal codon in those alphaviruses that possess this termination codon and the function of the termination codon may be to regulate the amount of nsP4 produced. It is an open question then as to whether alphaviruses with no termination codon use other mechanisms to regulate the activity of this gene. The nsP4s of these five alphaviruses are highly conserved, sharing 71-76% amino acid sequence similarity, and all five contain the Gly-Asp-Asp motif found in many RNA virus replicases. The nsP3s are somewhat less conserved, sharing 52-73% amino acid sequence similarity throughout most of the protein, but each possesses a nonconserved C-terminal domain of 134 to 246 amino acids of unknown function.

  20. Further theoretical insight into the reaction mechanism of the hepatitis C NS3/NS4A serine protease

    NASA Astrophysics Data System (ADS)

    Martínez-González, José Ángel; Rodríguez, Alex; Puyuelo, María Pilar; González, Miguel; Martínez, Rodrigo

    2015-01-01

    The main reactions of the hepatitis C virus NS3/NS4A serine protease are studied using the second-order Møller-Plesset ab initio method and rather large basis sets to correct the previously reported AM1/CHARMM22 potential energy surfaces. The reaction efficiencies measured for the different substrates are explained in terms of the tetrahedral intermediate formation step (the rate-limiting process). The energies of the barrier and the corresponding intermediate are so close that the possibility of a concerted mechanism is open (especially for the NS5A/5B substrate). This is in contrast to the suggested general reaction mechanism of serine proteases, where a two-step mechanism is postulated.

  1. Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses.

    PubMed Central

    Ahlquist, P; Strauss, E G; Rice, C M; Strauss, J H; Haseloff, J; Zimmern, D

    1985-01-01

    Although the genetic organization of tobacco mosaic virus (TMV) differs considerably from that of the tripartite viruses (alfalfa mosaic virus [AlMV] and brome mosaic virus [BMV]), all of these RNA plant viruses share three domains of homology among their nonstructural proteins. One such domain, common to the AlMV and BMV 2a proteins and the readthrough portion of TMV p183, is also homologous to the readthrough protein nsP4 of Sindbis virus (Haseloff et al., Proc. Natl. Acad. Sci. U.S.A. 81:4358-4362, 1984). Two more domains are conserved among the AlMV and BMV 1a proteins and TMV p126. We show here that these domains have homology with portions of the Sindbis proteins nsP1 and nsP2, respectively. These results strengthen the view that the four viruses share mechanistic similarities in their replication strategies and may be evolutionarily related. These results also suggest that either the AlMV 1a, BMV 1a, and TMV p126 proteins are multifunctional or Sindbis proteins nsP1 and nsP2 function together as subunits in a single complex. PMID:3968720

  2. Why develop O. sativa x O. rufipogon chromosome segment substitution line libraries?

    USDA-ARS?s Scientific Manuscript database

    Transgressive variation has been observed in rice (Oryza sativa) as an increase in grain yield in advanced backcross mapping populations derived from crosses between several adapted O. sativa varieties and a single accession (IRGC105491) of the ancestral parent, O. rufipogon. The phenomena of hybrid...

  3. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors.

    PubMed

    Li, Kuohan; Phoo, Wint Wint; Luo, Dahai

    2014-04-01

    Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.

  5. Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses.

    PubMed

    Shiryaev, Sergey A; Kozlov, Igor A; Ratnikov, Boris I; Smith, Jeffrey W; Lebl, Michal; Strongin, Alex Y

    2007-02-01

    Regulated proteolysis of the polyprotein precursor by the NS2B-NS3 protease is required for the propagation of infectious virions. Unless the structural and functional parameters of NS2B-NS3 are precisely determined, an understanding of its functional role and the design of flaviviral inhibitors will be exceedingly difficult. Our objectives were to define the substrate recognition pattern of the NS2B-NS3 protease of West Nile and Dengue virises (WNV and DV respectively). To accomplish our goals, we used an efficient, 96-well plate format, method for the synthesis of 9-mer peptide substrates with the general P4-P3-P2-P1-P1'-P2'-P3'-P4'-Gly structure. The N-terminus and the constant C-terminal Gly of the peptides were tagged with a fluorescent tag and with a biotin tag respectively. The synthesis was followed by the proteolytic cleavage of the synthesized, tagged peptides. Because of the strict requirement for the presence of basic amino acid residues at the P1 and the P2 substrate positions, the analysis of approx. 300 peptide sequences was sufficient for an adequate representation of the cleavage preferences of the WNV and DV proteinases. Our results disclosed the strict substrate specificity of the WNV protease for which the (K/R)(K/R)R/GG amino acid motifs was optimal. The DV protease was less selective and it tolerated well the presence of a number of amino acid residue types at either the P1' or the P2' site, as long as the other position was occupied by a glycine residue. We believe that our data represent a valuable biochemical resource and a solid foundation to support the design of selective substrates and synthetic inhibitors of flaviviral proteinases.

  6. Inhibitory effect of marine green algal extracts on germination of Lactuca sativa seeds.

    PubMed

    Choi, Jae-Suk; Choi, In Soon

    2016-03-01

    The allelopathic potential of nine green seaweed species was examined based on germination and seedling growth of lettuce (Lactuca sativa L.). Out of nine methanol extracts, Capsosiphon fulvescens and Monostroma nitidum extracts completely inhibited germination of L. sativa at 4 mg/filter paper after 24 hr of treatment. Water extracts of these seaweeds generally showed low anti-germination activities than methanol extracts. Of the nine water extracts, Enteromorpha linza extract completely inhibited L. sativa germination at 16 mg/filter paper after 24 hrs. To identify the primary active compounds, C. fulvescens. powder was successively fractionated according to polarity, and the main active agents against L. sativa were determined to be lipids (0.0% germination at 0.5 mg of lipids/paper disc). According to these results, extracts of C. fulvescens can be used to develop natural herbicidal agents and manage terrestrial weeds.

  7. Synthesis and disulfide bond connectivity-activity studies of a kalata B1-inspired cyclopeptide against dengue NS2B-NS3 protease.

    PubMed

    Gao, Yaojun; Cui, Taian; Lam, Yulin

    2010-02-01

    Kalata B1 is a plant protein with remarkable thermal, chemical and enzymatic stability. Its potential applications could be centered on the possibility of using its cyclic structure and cystine knot motif as a scaffold for the design of stable pharmaceuticals. To discover potent dengue NS2B-NS3 protease inhibitors, we have prepared various kalata B1 analogues by varying the amino acid sequence. Mass spectrometric and biochemical investigations of these analogues revealed a cyclopeptide whose two fully oxidized forms are substrate-competitive inhibitors of the dengue viral NS2B-NS3 protease. Both oxidized forms showed potent inhibition with K(i) of 1.39+/-0.35 and 3.03+/-0.75 microM, respectively. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  8. A Hypersensitivity-Like Response to Meloidogyne graminicola in Rice (Oryza sativa).

    PubMed

    Phan, Ngan Thi; De Waele, Dirk; Lorieux, Mathias; Xiong, Lizhong; Bellafiore, Stephane

    2018-04-01

    Meloidogyne graminicola is a major plant-parasitic nematode affecting rice cultivation in Asia. Resistance to this nematode was found in the African rice genotypes Oryza glaberrima and O. longistaminata; however, due to interspecific hybrid sterility, the introgression of resistance genes in the widely consumed O. sativa varieties remains challenging. Recently, resistance was found in O. sativa and, here, we report for the first time the histological and genetic characterization of the resistance to M. graminicola in Zhonghua 11, an O. sativa variety. Bright-light microscopy and fluorescence observations of the root tissue of this variety revealed that the root cells surrounding the nematode displayed a hypersensitivity-like reaction with necrotic cells at early stages of infection when nematodes are migrating in the root's mesoderm. An accumulation of presumably phenolic compounds in the nematodes' neighboring root cells was also observed. In addition, at a later stage of infection, not only were few feeding sites observed but also the giant cells were underdeveloped, underlining an incompatible interaction. Furthermore, we generated a hybrid O. sativa population by crossing Zhonghua 11 with the susceptible O. sativa variety IR64 in order to describe the genetic background of this resistance. Our data suggested that the resistance to M. graminicola infection was qualitative rather than quantitative and, therefore, major resistance genes must be involved in this infection process. The full characterization of the defense mechanism and the preliminary study of the genetic inheritance of novel sources of resistance to Meloidogyne spp. in rice constitute a major step toward their use in crop breeding.

  9. Development of male sterile Eruca sativa carrying a Raphanus sativus/Brassica oleracea cybrid cytoplasm.

    PubMed

    Nothnagel, Thomas; Klocke, Evelyn; Schrader, Otto; Linke, Bettina; Budahn, Holger

    2016-02-01

    Alloplasmic male sterile breeding lines of Eruca sativa were developed by intergeneric hybridization with CMS- Brassica oleracea, followed by recurrent backcrosses and determination of the breeding value. Male sterile breeding lines of rocket salad (Eruca sativa) were developed by intergeneric hybridization with cytoplasmic male sterile (CMS) cauliflower (Brassica oleracea) followed by recurrent backcrosses. Five amphidiploid F1 plants (2n = 2x = 20, CE), achieved by manual crosses and embryo rescue, showed an intermediate habit. The plants were completely male sterile and lacked seed set after pollination with the Eruca parent. Allotetraploid F1-hybrid plants (4n = 4x = 40, CCEE) obtained after colchicine treatment were backcrossed six times with pollen of the Eruca parent to select alloplasmic diploid E. sativa lines. The hybrid status and the nucleo-cytoplasmic constellation were continuously controlled by RAPD and Southern analysis during subsequent backcrosses. The ploidy level was investigated by flow cytometry and chromosome analysis. Premeiotic (sporophytic) and postmeiotic (pollen abortive) defects during the anther development were observed in the alloplasmic E. sativus plants in comparison to the CMS-cauliflower donor. No further incompatibilities were noticed between the CMS-inducing cybrid cytoplasm and the E. sativa nuclear genome. The final alloplasmic E. sativa lines were diploid with 2n = 2x = 22 chromosomes and revealed complete male sterility and restored female fertility. Plant vigor and yield potential of the CMS-E. sativa BC5 lines were comparable to the parental E. sativus line. In conclusion, the employed cybrid-cytoplasm has been proven as a vital source of CMS for E. sativa. The developed lines are directly applicable for hybrid breeding of rocket salad.

  10. The effect of hydroalcoholic extract of Cannabis Sativa on appetite hormone in rat.

    PubMed

    Mazidi, Mohsen; Baghban Taraghdari, Sara; Rezaee, Peyman; Kamgar, Maryam; Jomezadeh, Mohammad Reza; Akbarieh Hasani, Omid; Soukhtanloo, Mohammad; Hosseini, Mahmoud; Gholamnezhad, Zahra; Rakhshandeh, Hassan; Norouzy, Abdolreza; Esmaily, Habibollah; Patterson, Michael; Nematy, Mohsen

    2014-12-01

    Ghrelin is an orexigenic peptide which is secreted from stomach. Cannabis sativa is known as an orexigenic herb in Iranian traditional medicine. Little evidence is published about its effect on energy intake and its mechanism. In the current study, the possible effect of hydroalcoholic extract of C. sativa on appetite and ghrelin is evaluated. Thirty male Wistar rats were randomly divided into five groups. Two control groups were selected, the first group received 0.5 mL water per day (vehicle group) and another group did not receive anything (control group). The other three groups were treated daily with 50, 100 or 150 mg/kg of C. sativa for 7 days, respectively. Daily energy intake of the rats was calculated for 10 days prior to the> intervention and for the 7 day intervention. To investigate changes in plasma ghrelin as a potential mechanism, an orexigenic dose (150 mg/kg) of C. sativa or distilled water (vehicle) was fed to two separate groups of six rats by gavage. Total ghrelin levels in plasma were measured for 3 h post-gavage. There was no significant difference in energy intake between control and vehicle groups. Treatment with 100 and 150 mg/kg of the extract significantly increased energy intake vs the other groups (p<0.05). Total ghrelin levels were significantly elevated in the C. sativa group vs vehicle 30 and 60 min post-gavage. This study showed that C. sativa had both positive and dose-related effects on appetite of rats. Future studies are warranted to evaluate the orexigenic effect of this plant in human.

  11. Sensitization and allergy to Cannabis sativa leaves in a population of tomato (Lycopersicon esculentum)-sensitized patients.

    PubMed

    de Larramendi, Carlos Hernando; Carnés, Jerónimo; García-Abujeta, José Luís; García-Endrino, Ana; Muñoz-Palomino, Elena; Huertas, Angel Julio; Fernández-Caldas, Enrique; Ferrer, Angel

    2008-01-01

    Cases of allergy to Cannabis sativa have occasionally been reported, but both the allergenic profile and eventual cross-reactivity pattern remain unknown. To analyze the allergenic profile of a population of patients from Spain sensitized to C. sativa and to characterize the C. sativa leaf extract. A total of 32 subjects were enrolled in the study: group A, 10 individuals sensitized to tomato, reporting reactions by contact or inhalation to Cannabis; group B, 14 individuals sensitized to tomato, without reactions to Cannabis; group C, 8 individuals not sensitized to tomato and without reactions to Cannabis. Sensitivity to Cannabis, tomato and peach peel, Platanus hybrida and Artemisia vulgaris pollen extracts was measured by skin tests and specific IgE. Individual immunoblots and inhibition experiments with a pool of sera were conducted. All tomato-sensitized subjects (and 1 negative) had positive skin tests to C. sativa leaves and hashish. Specific IgE to C. sativa and peach peel was more common than to tomato. Immunoblot experiments showed 2 prominent bands of 10 and 14 kDa and 2 weakly recognized bands of 30 and 45 kDa. Tomato, peach and A. vulgaris extracts inhibited most of the bands present in C. sativa. P. hybrida inhibited only the high-molecular-weight bands. Sensitization to C. sativa with or without symptoms is frequent among patients in Spain sensitized to tomato. C. sativa leaves are a potential allergenic source and their allergens may cross-react with other allergenic sources from plants (fruit peels and pollen). (c) 2008 S. Karger AG, Basel

  12. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    PubMed

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  13. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  14. Toxicity of some plant extracts against vector of lymphatic filariasis, Culex pipiens.

    PubMed

    Hasaballah, Ahmed I

    2015-04-01

    Many insecticides are generally used as larvicides to control Culex pipiens, vector of lymphatic filariasis. This study was undertaken to evaluate the larvicidal activity of some potential larvicidal plants extracts against C. pipiens larvae. The toxic effects of both ethanolic and petroleum ether plant extracts were evaluated under laboratory conditions against 3rd instar larvae of C. pipiens. Forty ethanolic and petroleum ether extracts of 10 plants namely Echinochloa stagninum, Phragmites australis, Eichhornia crassipes, Rhizophora mucronata, Cichorium intybus, Ocimum basilicum, Origanum majorana, Azadirachta indica, Rosmarinus officinalis and Nigella sativa. On the basis of LC50, the toxic effect of the plant extracts tested varied depending on the plant species, part, solvent used in extraction and the extract concentrations. The petroleum ether extraction was more effective against mosquito as compared with ethanolic extraction. The most effective plant extract was A. indica followed by Ph. australis, N. sativa, C. intybus, R. officinalis, O. basilicum, O. majorana, E. stagninum, Rh. Mucronata and E. crassipes.

  15. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease

    PubMed Central

    Liu, Binbin; Zhang, Jing; Koetzner, Cheri A.; Jones, Susan A.; Lin, Qishan

    2017-01-01

    The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis

  16. The influenza virus NS1 protein as a therapeutic target.

    PubMed

    Engel, Daniel A

    2013-09-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2'-5' oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN-β mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The influenza virus NS1 protein as a therapeutic target

    PubMed Central

    Engel, Daniel A.

    2015-01-01

    Nonstructural protein 1 (NS1) of influenza A virus plays a central role in virus replication and blockade of the host innate immune response, and is therefore being considered as a potential therapeutic target. The primary function of NS1 is to dampen the host interferon (IFN) response through several distinct molecular mechanisms that are triggered by interactions with dsRNA or specific cellular proteins. Sequestration of dsRNA by NS1 results in inhibition of the 2’-5’ oligoadenylate synthetase/RNase L antiviral pathway, and also inhibition of dsRNA-dependent signaling required for new IFN production. Binding of NS1 to the E3 ubiquitin ligase TRIM25 prevents activation of RIG-I signaling and subsequent IFN induction. Cellular RNA processing is also targeted by NS1, through recognition of cleavage and polyadenylation specificity factor 30 (CPSF30), leading to inhibition of IFN- mRNA processing as well as that of other cellular mRNAs. In addition NS1 binds to and inhibits cellular protein kinase R (PKR), thus blocking an important arm of the IFN system. Many additional proteins have been reported to interact with NS1, either directly or indirectly, which may serve its anti-IFN and additional functions, including the regulation of viral and host gene expression, signaling pathways and viral pathogenesis. Many of these interactions are potential targets for small-molecule intervention. Structural, biochemical and functional studies have resulted in hypotheses for drug discovery approaches that are beginning to bear experimental fruit, such as targeting the dsRNA-NS1 interaction, which could lead to restoration of innate immune function and inhibition of virus replication. This review describes biochemical, cell-based and nucleic acid-based approaches to identifying NS1 antagonists. PMID:23796981

  18. [Bioinformatics analysis of mosquito densovirus nostructure protein NS1].

    PubMed

    Dong, Yun-qiao; Ma, Wen-li; Gu, Jin-bao; Zheng, Wen-ling

    2009-12-01

    To analyze and predict the structure and function of mosquito densovirus (MDV) nostructual protein1 (NS1). Using different bioinformatics software, the EXPASY pmtparam tool, ClustalX1.83, Bioedit, MEGA3.1, ScanProsite, and Motifscan, respectively to comparatively analyze and predict the physic-chemical parameters, homology, evolutionary relation, secondary structure and main functional motifs of NS1. MDV NS1 protein was a unstable hydrophilic protein and the amino acid sequence was highly conserved which had a relatively closer evolutionary distance with infectious hypodermal and hematopoietic necrosis virus (IHHNV). MDV NS1 has a specific domain of superfamily 3 helicase of small DNA viruses. This domain contains the NTP-binding region with a metal ion-dependent ATPase activity. A virus replication roller rolling-circle replication(RCR) initiation domain was found near the N terminal of this protein. This protien has the biological function of single stranded incision enzyme. The bioinformatics prediction results suggest that MDV NS1 protein plays a key role in viral replication, packaging, and the other stages of viral life.

  19. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells.

    PubMed

    Dong, Wang; Lv, Huifang; Wang, Yifan; Li, Xiaomeng; Li, Cheng; Wang, Lu; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-06-01

    Infection with classical swine fever virus (CSFV) results in highly significant economic losses; this infection is characterized by being highly contagious and accompanied by hyperthermia and systemic bleeding. Oxidative stress (OS) plays a critical role in the pathological process of viral infection. The function of the nonstructural protein 5A (NS5A) in the pathogenesis of CSFV has not been completely understood. Here, OS and the inflammatory response were studied with NS5A and substitution mutants in swine testicular (ST) cells. ST cell lines stably expressing CSFV NS5A or substitution mutants were established. Reactive oxygen species (ROS) production, antioxidant protein expression and inflammatory response were analyzed by quantitative real-time PCR (qRT-PCR), ELISA and flow cytometry analysis. The results showed that CSFV NS5A did not increase ROS production or the antioxidant protein (Trx, HO-1 and PRDX-6) expression in ST cells. However, NS5A inhibited cyclooxygenase-2 (COX-2) expression, a pro-inflammatory protein related to OS. Further studies have shown that NS5A mutants S15A and S92A increased ROS production and inhibited antioxidant protein expression. S15A, S81A and T274A affected the inflammatory response. This study suggested that CSFV NS5A did not induce OS, and amino acids Ser15 and Ser92 of CSFV NS5A were essential for inhibiting OS. Additionally, Ser15, Ser81 and Thr274 played important roles in the inflammatory response in ST cells. These observations provided insight into the function of CSFV NS5A and the mechanism of CSFV persistent infection in ST cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting

    PubMed Central

    Firth, Andrew E; Atkins, John F

    2009-01-01

    Japanese encephalitis, West Nile, Usutu and Murray Valley encephalitis viruses form a tight subgroup within the larger Flavivirus genus. These viruses utilize a single-polyprotein expression strategy, resulting in ~10 mature proteins. Plotting the conservation at synonymous sites along the polyprotein coding sequence reveals strong conservation peaks at the very 5' end of the coding sequence, and also at the 5' end of the sequence encoding the NS2A protein. Such peaks are generally indicative of functionally important non-coding sequence elements. The second peak corresponds to a predicted stable pseudoknot structure whose biological importance is supported by compensatory mutations that preserve the structure. The pseudoknot is preceded by a conserved slippery heptanucleotide (Y CCU UUU), thus forming a classical stimulatory motif for -1 ribosomal frameshifting. We hypothesize, therefore, that the functional importance of the pseudoknot is to stimulate a portion of ribosomes to shift -1 nt into a short (45 codon), conserved, overlapping open reading frame, termed foo. Since cleavage at the NS1-NS2A boundary is known to require synthesis of NS2A in cis, the resulting transframe fusion protein is predicted to be NS1-NS2AN-term-FOO. We hypothesize that this may explain the origin of the previously identified NS1 'extension' protein in JEV-group flaviviruses, known as NS1'. PMID:19196463

  1. A Novel Role of Eruca sativa Mill. (Rocket) Extract: Antiplatelet (NF-κB Inhibition) and Antithrombotic Activities

    PubMed Central

    Fuentes, Eduardo; Alarcón, Marcelo; Fuentes, Manuel; Carrasco, Gilda; Palomo, Iván

    2014-01-01

    Background: Epidemiological studies have shown the prevention of cardiovascular diseases through the regular consumption of vegetables. Eruca sativa Mill., commonly known as rocket, is a leafy vegetable that has anti-inflammatory activity. However, its antiplatelet and antithrombotic activities have not been described. Methods: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL), was evaluated on human platelets: (i) P-selectin expression by flow cytometry; (ii) platelet aggregation induced by ADP, collagen and arachidonic acid; (iii) IL-1β, TGF-β1, CCL5 and thromboxane B2 release; and (iv) activation of NF-κB and PKA by western blot. Furthermore, (v) antithrombotic activity (200 mg/kg) and (vi) bleeding time in murine models were evaluated. Results: Eruca sativa Mill. aqueous extract (0.1 to 1 mg/mL) inhibited P-selectin expression and platelet aggregation induced by ADP. The release of platelet inflammatory mediators (IL-1β, TGF-β1, CCL5 and thromboxane B2) induced by ADP was inhibited by Eruca sativa Mill. aqueous extract. Furthermore, Eruca sativa Mill. aqueous extract inhibited NF-κB activation. Finally, in murine models, Eruca sativa Mill. aqueous extract showed significant antithrombotic activity and a slight effect on bleeding time. Conclusion: Eruca sativa Mill. presents antiplatelet and antithrombotic activity. PMID:25514563

  2. Purification of glucosinolates from Camelina sativa seeds

    USDA-ARS?s Scientific Manuscript database

    Camelina sativa L. Crantz defatted seed press cake contains a number of phytochemicals, including the flavonoid rutin (quercetin 3-O-rutinoside), an acylated quercetin glycoside, and three glucosinolates: glucoarabin (9-(methylsulfinyl)nonyl-glucosinolate) glucocamelinin (10-(methylsulfinyl)decyl-gl...

  3. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice.

    PubMed

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the "open-arm" were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity.

  4. TOXICITY OF METHYL-TERT BYTYL ETHER (MTBE) TO PLANTS (AVENA SATIVA, ZEA MAYS, TRITICUM AESTIVUM, AND LACTUCA SATIVA)

    EPA Science Inventory

    Effects of Methyl tert-butyl ether (MTBE) on the germination of seeds and growth of the plant were studied in some laboratory experiments. Test plants were wild oat (Avena sative), sweet corn (Zea mays), wheat (Triticum aestivum), and lettuce (Lactuca sativa). Seed germination,...

  5. Characterization of NS5A and NS5B Resistance-Associated Substitutions from Genotype 1 Hepatitis C Virus Infected Patients in a Portuguese Cohort.

    PubMed

    Brandão, Ruben; Marcelino, Rute; Gonçalves, Fátima; Diogo, Isabel; Carvalho, Ana; Cabanas, Joaquim; Costa, Inês; Brogueira, Pedro; Ventura, Fernando; Miranda, Ana; Mansinho, Kamal; Gomes, Perpétua

    2018-04-26

    This study is focused on the prevalent NS5 coding region resistance-associated substitutions (RASs) in DAA-naive genotype (GT)1 HCV-infected patients and their potential impact on success rates. Plasma RNA from 81 GT1 HCV-infected patients was extracted prior to an in-house nested RT-PCR of the NS5 coding region, which is followed by Sanger population sequencing. NS5A RASs were present in 28.4% (23/81) of all GT1-infected patients with 9.9% (8/81) having the Y93C/H mutation. NS5B RASs showed a prevalence of 14.8% (12/81) and were only detected in GT1b. Overall 38.3% (31/81) of all GT1 HCV-infected patients presented baseline RASs. The obtained data supports the usefulness of resistance testing prior to treatment since a statistically significant association was found between treatment failure and the baseline presence of specific NS5 RASs known as Y93C/H ( p = 0.04).

  6. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus

    PubMed Central

    Zhu, Shaomei; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre

    2016-01-01

    ABSTRACT A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. IMPORTANCE HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model

  7. Infection of Common Marmosets with GB Virus B Chimeric Virus Encoding the Major Nonstructural Proteins NS2 to NS4A of Hepatitis C Virus.

    PubMed

    Zhu, Shaomei; Li, Tingting; Liu, Bochao; Xu, Yuxia; Sun, Yachun; Wang, Yilin; Wang, Yuanzhan; Shuai, Lifang; Chen, Zixuan; Allain, Jean-Pierre; Li, Chengyao

    2016-09-15

    A lack of immunocompetent-small-primate models has been an obstacle for developing hepatitis C virus (HCV) vaccines and affordable antiviral drugs. In this study, HCV/GB virus B (GBV-B) chimeric virus carrying the major nonstructural proteins NS2 to NS4A (HCV NS2 to -4A chimera) was produced and used to infect common marmosets, since HCV NS2 to NS4A proteins are critical proteases and major antigens. Seven marmosets were inoculated intrahepatically with HCV NS2 to -4A chimera RNA for primary infection or intravenously injected with chimera-containing serum for passage infection. Three animals used as controls were injected with phosphate-buffered saline (PBS) or GBV-B, respectively. Six of seven HCV NS2 to -4A chimera-infected marmosets exhibited consistent viremia and one showed transient viremia during the course of follow-up detection. All six infected animals with persistent circulating viremia presented characteristics typical of viral hepatitis, including viral RNA and proteins in hepatocytes and histopathological changes in liver tissue. Viremia was consistently detected for 5 to 54 weeks of follow-up. FK506 immunosuppression facilitated the establishment of persistent chimera infection in marmosets. An animal with chimera infection spontaneously cleared the virus in blood 7 weeks following the first inoculation, but viral-RNA persistence, low-level viral protein, and mild necroinflammation remained in liver tissue. The specific antibody and T-cell response to HCV NS3 in this viremia-resolved marmoset was boosted by rechallenging, but no viremia was detected during 57 weeks of follow-up. The chimera-infected marmosets described can be used as a suitable small-primate animal model for studying novel antiviral drugs and T-cell-based vaccines against HCV infection. HCV infection causes approximately 70% of chronic hepatitis and is frequently associated with primary liver cancer globally. Chimpanzees have been used as a reliable primate model for HCV infection

  8. The possible existence of Pop III NS-BH binary and its detectability

    NASA Astrophysics Data System (ADS)

    Kinugawa, Tomoya; Nakamura, Takashi; Nakano, Hiroyuki

    2017-02-01

    In the population synthesis simulations of Pop III stars, many BH (black hole)-BH binaries with merger time less than the age of the Universe (τH) are formed, while NS (neutron star)-BH binaries are not. The reason is that Pop III stars have no metal so that no mass loss is expected. Then, in the final supernova explosion to NS, much mass is lost so that the semimajor axis becomes too large for Pop III NS-BH binaries to merge within τH . However it is almost established that the kick velocity of the order of 200 ‑500  km s‑1 exists for NS from the observation of the proper motion of the pulsar. Therefore, the semimajor axis of the half of NS-BH binaries can be smaller than that of the previous argument for Pop III NS-BH binaries to decrease the merging time. We perform population synthesis Monte Carlo simulations of Pop III NS-BH binaries including the kick of NS and find that the event rate of Pop III NS-BH merger rate is 1  Gpc‑3 yr‑1 . This suggests that there is a good chance of detecting Pop III NS-BH mergers in O2 (Observation run 2) of Advanced LIGO and Advanced Virgo from this autumn.

  9. Fast hepatitis C virus RNA elimination and NS5A redistribution by NS5A inhibitors studied by a multiplex assay approach.

    PubMed

    Liu, Dandan; Ji, Juan; Ndongwe, Tanya P; Michailidis, Eleftherios; Rice, Charles M; Ralston, Robert; Sarafianos, Stefan G

    2015-01-01

    While earlier therapeutic strategies for the treatment of hepatitis C virus (HCV) infection relied exclusively on interferon (IFN) and ribavirin (RBV), four direct-acting antiviral agents (DAAs) have now been approved, aiming for an interferon-free strategy with a short treatment duration and fewer side effects. To facilitate studies on the mechanism of action (MOA) and efficacy of DAAs, we established a multiplex assay approach, which employs flow cytometry, a Gaussia luciferase reporter system, Western blot analysis, reverse transcription-quantitative PCR (RT-qPCR), a limited dilution assay (50% tissue culture infectious dose [TCID50]), and an image profiling assay that follows the NS5A redistribution in response to drug treatment. We used this approach to compare the relative potency of various DAAs and the kinetics of their antiviral effects as a potential preclinical measure of their potential clinical utility. We evaluated the NS5A inhibitors ledipasvir (LDV) and daclatasvir (DCV), the NS3/4A inhibitor danoprevir (DNV), and the NS5B inhibitor sofosbuvir (SOF). In terms of kinetics, our data demonstrate that the NS5A inhibitor LDV, followed closely by DCV, has the fastest effect on suppression of viral proteins and RNA and on redistribution of NS5A. In terms of MOA, LDV has a more pronounced effect than DCV on the viral replication, assembly, and infectivity of released virus. Our approach can be used to facilitate the study of the biological processes involved in HCV replication and help identify optimal drug combinations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Anxiolytic property of hydro-alcohol extract of Lactuca sativa and its effect on behavioral activities of mice

    PubMed Central

    Harsha, Singapura Nagesh; Anilakumar, Kandangath Raghavan

    2013-01-01

    Lactuca sativa, belonging to the Asteraceae family, is a leafy vegetable known for its medicinal properties. This study aimed to understand the mechanism of Lactuca sativa extract with respect to pharmacological action.We investigated the anxiolytic effects of hydro-alcoholic extract of leaves of Lactuca sativa on mice. The behavioral tests performed on mice models to assess anti-anxiety properties were: open field test (OFT), elevated plus maze test (EPM), elevated T maze test, and marble burying test. Increased locomotor activity and time spent in the “open-arm” were observed in extract fed group. Malondialdehyde (MDA) and nitrite levels were decreased, catalase and glutathione levels were increased in Lactuca sativa treated mice. The data obtained in the present study suggests that the extract of Lactuca sativa can afford significant protection against anxiolytic activity. PMID:23554792

  11. Interactome Analysis of NS1 Protein Encoded by Influenza A H7N9 Virus Reveals an Inhibitory Role of NS1 in Host mRNA Maturation.

    PubMed

    Kuo, Rei-Lin; Chen, Chi-Jene; Tam, Ee-Hong; Huang, Chung-Guei; Li, Li-Hsin; Li, Zong-Hua; Su, Pei-Chia; Liu, Hao-Ping; Wu, Chih-Ching

    2018-04-06

    Influenza A virus infections can result in severe respiratory diseases. The H7N9 subtype of avian influenza A virus has been transmitted to humans and caused severe disease and death. Nonstructural protein 1 (NS1) of influenza A virus is a virulence determinant during viral infection. To elucidate the functions of the NS1 encoded by influenza A H7N9 virus (H7N9 NS1), interaction partners of H7N9 NS1 in human cells were identified with immunoprecipitation followed by SDS-PAGE coupled with liquid chromatography-tandem mass spectrometry (GeLC-MS/MS). We identified 36 cellular proteins as the interacting partners of the H7N9 NS1, and they are involved in RNA processing, mRNA splicing via spliceosome, and the mRNA surveillance pathway. Two of the interacting partners, cleavage and polyadenylation specificity factor subunit 2 (CPSF2) and CPSF7, were confirmed to interact with H7N9 NS1 using coimmunoprecipitation and immunoblotting based on the previous finding that the two proteins are involved in pre-mRNA polyadenylation machinery. Furthermore, we illustrate that overexpression of H7N9 NS1, as well as infection by the influenza A H7N9 virus, interfered with pre-mRNA polyadenylation in host cells. This study comprehensively profiled the interactome of H7N9 NS1 in host cells, and the results demonstrate a novel endotype for H7N9 NS1 in inhibiting host mRNA maturation.

  12. Analyses of Old “Prokaryotic” Proteins Indicate Functional Diversification in Arabidopsis and Oryza sativa

    PubMed Central

    Singh, Anupama; Jethva, Minesh; Singla-Pareek, Sneh L.; Pareek, Ashwani; Kushwaha, Hemant R.

    2016-01-01

    During evolution, various processes such as duplication, divergence, recombination, and many other events leads to the evolution of new genes with novel functions. These evolutionary events, thus significantly impact the evolution of cellular, physiological, morphological, and other phenotypic trait of organisms. While evolving, eukaryotes have acquired large number of genes from the earlier prokaryotes. This work is focused upon identification of old “prokaryotic” proteins in Arabidopsis and Oryza sativa genome, further highlighting their possible role(s) in the two genomes. Our results suggest that with respect to their genome size, the fraction of old “prokaryotic” proteins is higher in Arabidopsis than in Oryza sativa. The large fractions of such proteins encoding genes were found to be localized in various endo-symbiotic organelles. The domain architecture of the old “prokaryotic” proteins revealed similar distribution in both Arabidopsis and Oryza sativa genomes showing their conserved evolution. In Oryza sativa, the old “prokaryotic” proteins were more involved in developmental processes, might be due to constant man-made selection pressure for better agronomic traits/productivity. While in Arabidopsis, these proteins were involved in metabolic functions. Overall, the analysis indicates the distinct pattern of evolution of old “prokaryotic” proteins in Arabidopsis and Oryza sativa. PMID:27014324

  13. Evolutionary processes in a continental island system: molecular phylogeography of the Aegean Nigella arvensis alliance (Ranunculaceae) inferred from chloroplast DNA.

    PubMed

    Bittkau, C; Comes, H P

    2005-11-01

    Continental shelf island systems, created by rising sea levels, provide a premier setting for studying the effects of past fragmentation, dispersal, and genetic drift on taxon diversification. We used phylogeographical (nested clade) and population genetic analyses to elucidate the relative roles of these processes in the evolutionary history of the Aegean Nigella arvensis alliance (= 'coenospecies'). We surveyed chloroplast DNA (cpDNA) variation in 455 individuals from 47 populations (nine taxa) of the alliance throughout its core range in the Aegean Archipelago and surrounding mainland areas of Greece and Turkey. The study revealed the presence of three major lineages, with largely nonoverlapping distributions in the Western, Central, and Eastern Aegean. There is evidence supporting the idea that these major lineages evolved in situ from a widespread (pan-Aegean) ancestral stock as a result of multiple fragmentation events, possibly due to the influence of post-Messinian sea flooding, Pleistocene eustatic changes and corresponding climate fluctuations. Over-sea dispersal and founder events appear to have played a rather insignificant role in the group's history. Rather, all analytical approaches identified the alliance as an organism group with poor seed dispersal capabilities and a susceptibility to genetic drift. In particular, we inferred that the observed level of cpDNA differentiation between Kikladian island populations of Nigella degenii largely reflects population history, (viz. Holocene island fragmentation) and genetic drift in the near absence of seed flow since their time of common ancestry. Overall, our cpDNA data for the N. arvensis alliance in general, and N. degenii in particular, indicate that historical events were important in determining the phylogeographical patterns seen, and that genetic drift has historically been relatively more influential on population structure than has cytoplasmic gene flow.

  14. Genetic identification of female Cannabis sativa plants at early developmental stage.

    PubMed

    Techen, Natascha; Chandra, Suman; Lata, Hemant; Elsohly, Mahmoud A; Khan, Ikhlas A

    2010-11-01

    Sequence-characterized amplified region (SCAR) markers were used to identify female plants at an early developmental stage in four different varieties of Cannabis sativa. Using the cetyl trimethylammonium bromide (CTAB) method, DNA was isolated from two-week-old plants of three drug-type varieties (Terbag W1, Terbag K2, and Terbag MX) and one fiber-type variety (Terbag Fedora A7) of C. sativa grown under controlled environmental conditions through seeds. Attempts to use MADC2 (male-associated DNA from Cannabis sativa) primers as a marker to identify the sex of Cannabis sativa plants were successful. Amplification of genomic DNA using MADC2-F and MADC2-R primers produced two distinct fragments, one with a size of approximately 450 bp for female plants and one for male plants with a size of approximately 300 bp. After harvesting the tissues for DNA extraction, plants were subjected to a flowering photoperiod (i.e., 12-h light cycle), and the appearance of flowers was compared with the DNA analysis. The results of the molecular analysis were found to be concordant with the appearance of male or female flowers. The results of this study represent a quick and reliable technique for the identification of sex in Cannabis plants using SCAR markers at a very early developmental stage. © Georg Thieme Verlag KG Stuttgart · New York.

  15. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  16. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa.

    PubMed

    Kamran, Muhammad Aqeel; Syed, Jabir Hussain; Eqani, Syed Ali Musstjab Akber Shah; Munis, Muhammad Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    Microbe-assisted phyto-remediation approach is widely applied and appropriate choice to reduce the environmental risk of heavy metals originated from contaminated soils. The present study was designed to screen out the nested belongings of Eruca sativa plants and Pseudomonas putida (ATCC 39213) at varying cadmium (Cd) levels and their potential to deal with Cd uptake from soils. We carried out pot trial experiment by examining the soil containing E. sativa seedlings either treated with P. putida and/or untreated plants subjected to three different levels (ppm) of Cd (i.e., 150, 250, and 500). In all studied cases, we observed an increase in Cd uptake for E. sativa plants inoculated with P. putida than those of un-inoculated plants. Cd toxicity was assessed by recording different parameters including stunted shoot growth, poor rooting, and Cd residual levels in the plants that were not inoculated with P. putida. Significant difference (p < 0.05) of different growth parameters for inoculated vs non-inoculated plants was observed at all given treatments. However, among the different treatments, E. sativa exhibited increased values for different growth parameters (except proline contents) at lower Cd levels than those of their corresponding higher levels, shoot length (up to 27 %), root length (up to 32 %), whole fresh plant (up to 40 %), dry weight (up to 22 %), and chlorophyll contents (up to 26 %). Despite the hyperaccumulation of Cd in whole plant of E. sativa, P. putida improved the plant growth at varying levels of Cd supply than those of associated non-inoculated plants. Present results indicated that inoculation with P. putida enhanced the Cd uptake potential of E. sativa and favors the healthy growth under Cd stress.

  17. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1.

    PubMed

    Arias-Mireles, Bryan H; de Rozieres, Cyrus M; Ly, Kevin; Joseph, Simpson

    2018-05-25

    Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.

  18. Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping

    PubMed Central

    Wang, Xiaoming; Kudrna, David A.; Pan, Yonglong; Wang, Hao; Liu, Lin; Lin, Haiyan; Zhang, Jianwei; Song, Xiang; Goicoechea, Jose Luis; Wing, Rod A.; Zhang, Qifa; Luo, Meizhong

    2014-01-01

    Bacterial artificial chromosome (BAC) physical maps embedding a large number of BAC end sequences (BESs) were generated for Oryza sativa ssp. indica varieties Minghui 63 (MH63) and Zhenshan 97 (ZS97) and were compared with the genome sequences of O. sativa spp. japonica cv. Nipponbare and O. sativa ssp. indica cv. 93-11. The comparisons exhibited substantial diversities in terms of large structural variations and small substitutions and indels. Genome-wide BAC-sized and contig-sized structural variations were detected, and the shared variations were analyzed. In the expansion regions of the Nipponbare reference sequence, in comparison to the MH63 and ZS97 physical maps, as well as to the previously constructed 93-11 physical map, the amounts and types of the repeat contents, and the outputs of gene ontology analysis, were significantly different from those of the whole genome. Using the physical maps of four wild Oryza species from OMAP (http://www.omap.org) as a control, we detected many conserved and divergent regions related to the evolution process of O. sativa. Between the BESs of MH63 and ZS97 and the two reference sequences, a total of 1532 polymorphic simple sequence repeats (SSRs), 71,383 SNPs, 1767 multiple nucleotide polymorphisms, 6340 insertions, and 9137 deletions were identified. This study provides independent whole-genome resources for intra- and intersubspecies comparisons and functional genomics studies in O. sativa. Both the comparative physical maps and the GBrowse, which integrated the QTL and molecular markers from GRAMENE (http://www.gramene.org) with our physical maps and analysis results, are open to the public through our Web site (http://gresource.hzau.edu.cn/resource/resource.html). PMID:24424778

  19. AGILE Observations of the Gravitational-wave Source GW170817: Constraining Gamma-Ray Emission from an NS-NS Coalescence

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Tavani, M.; Donnarumma, I.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Ursi, A.; Piano, G.; Pilia, M.; Cardillo, M.; Parmiggiani, N.; Giuliani, A.; Pittori, C.; Longo, F.; Lucarelli, F.; Minervini, G.; Feroci, M.; Argan, A.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Fioretti, V.; Trois, A.; Del Monte, E.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Colafrancesco, S.; Costa, E.; D'Amico, F.; Ferrari, A.; Giommi, P.; Morselli, A.; Paoletti, F.; Pellizzoni, A.; Picozza, P.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; Baroncelli, L.; Zollino, G.

    2017-12-01

    The LIGO-Virgo Collaboration (LVC) detected, on 2017 August 17, an exceptional gravitational-wave (GW) event temporally consistent within ˜ 1.7 {{s}} with the GRB 1708117A observed by Fermi-GBM and INTEGRAL. The event turns out to be compatible with a neutron star-neutron star (NS-NS) coalescence that subsequently produced a radio/optical/X-ray transient detected at later times. We report the main results of the observations by the AGILE satellite of the GW170817 localization region (LR) and its electromagnetic (EM) counterpart. At the LVC detection time T 0, the GW170817 LR was occulted by the Earth. The AGILE instrument collected useful data before and after the GW/GRB event because in its spinning observation mode it can scan a given source many times per hour. The earliest exposure of the GW170817 LR by the gamma-ray imaging detector started about 935 s after T 0. No significant X-ray or gamma-ray emission was detected from the LR that was repeatedly exposed over timescales of minutes, hours, and days before and after GW170817, also considering Mini-calorimeter and Super-AGILE data. Our measurements are among the earliest ones obtained by space satellites on GW170817 and provide useful constraints on the precursor and delayed emission properties of the NS-NS coalescence event. We can exclude with high confidence the existence of an X-ray/gamma-ray emitting magnetar-like object with a large magnetic field of {10}15 {{G}}. Our data are particularly significant during the early stage of evolution of the EM remnant.

  20. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins.

    PubMed

    Turkington, Hannah L; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin; Hale, Benjamin G

    2018-03-01

    Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or pandemics. The

  1. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins

    PubMed Central

    Turkington, Hannah L.; Juozapaitis, Mindaugas; Tsolakos, Nikos; Corrales-Aguilar, Eugenia; Schwemmle, Martin

    2017-01-01

    ABSTRACT Recently, two influenza A virus (FLUAV) genomes were identified in Central and South American bats. These sequences exhibit notable divergence from classical FLUAV counterparts, and functionally, bat FLUAV glycoproteins lack canonical receptor binding and destroying activity. Nevertheless, other features that distinguish these viruses from classical FLUAVs have yet to be explored. Here, we studied the viral nonstructural protein NS1, a virulence factor that modulates host signaling to promote efficient propagation. Like all FLUAV NS1 proteins, bat FLUAV NS1s bind double-stranded RNA and act as interferon antagonists. Unexpectedly, we found that bat FLUAV NS1s are unique in being unable to bind host p85β, a regulatory subunit of the cellular metabolism-regulating enzyme, phosphoinositide 3-kinase (PI3K). Furthermore, neither bat FLUAV NS1 alone nor infection with a chimeric bat FLUAV efficiently activates Akt, a PI3K effector. Structure-guided mutagenesis revealed that the bat FLUAV NS1-p85β interaction can be reengineered (in a strain-specific manner) by changing two to four NS1 residues (96L, 99M, 100I, and 145T), thereby creating a hydrophobic patch. Notably, ameliorated p85β-binding is insufficient for bat FLUAV NS1 to activate PI3K, and a chimeric bat FLUAV expressing NS1 with engineered hydrophobic patch mutations exhibits cell-type-dependent, but species-independent, propagation phenotypes. We hypothesize that bat FLUAV hijacking of PI3K in the natural bat host has been selected against, perhaps because genes in this metabolic pathway were differentially shaped by evolution to suit the unique energy use strategies of this flying mammal. These data expand our understanding of the enigmatic functional divergence between bat FLUAVs and classical mammalian and avian FLUAVs. IMPORTANCE The potential for novel influenza A viruses to establish infections in humans from animals is a source of continuous concern due to possible severe outbreaks or

  2. [Clinical significance of NS1-BP expression in esophageal squamous cell carcinoma].

    PubMed

    Ren, K; Qian, D; Wang, Y W; Pang, Q S; Zhang, W C; Yuan, Z Y; Wang, P

    2018-01-23

    Objective: To investigate the clinical significance of NS1-BP expression in patients with esophageal squamous cell carcinoma (ESCC), and to study the roles of NS1-BP in proliferation and apoptosis of ESCC cells. Methods: A total of 98 tumor tissues and 30 adjacent normal tissues from 98 ESCC patients were used as study group and control group, and these samples were collected in Sun Yat-Sen University Cancer Center between 2002 and 2008. In addition, 46 ESCC tissues which were collected in Cancer Institute and Hospital of Tianjin Medical University were used as validation group. Expression of mucosal NS1-BP was detected by immunohistochemistry. Kaplan-Meier curve and log-rank test were used to analyze the survival rate. Multivariate Cox proportional hazard model was used to analyze the prognostic factors. Furthermore, NS1-BP was over expressed or knocked down in ESCC cells by transient transfection. Protein levels of c-Myc were detected by western blot. Cell viability and apoptosis was analyzed by MTT assay and flow cytometry. Results: Among all of tested samples, NS1-BP were down-regulated in 9 out of 30 non-tumorous normal esophageal tissues (30.0%) and 85 out of 144 ESCC tissues (59.0%), respectively, showing a statistically significant difference ( P =0.012). In the study group, three-year disease-free survival rate of NS1-BP high expression group (53.2%) was significantly higher than that of NS1-BP low expression group (27.6%; P =0.009). In the validation group, the three-year disease-free survival rates were 57.8% and 25.5% in NS1-BP high and low levels groups, respectively, showing a similar results ( P =0.016). Importantly, multivariate analyses showed that low expression of NS1-BP was an independent predictor for chemoradiotherapy sensitivity and shorter disease-free survival time in ESCC patients( P <0.05 for all). Furthermore, overexpressed NS1-BP in TE-1 cells repressed c-Myc expression, inhibited cell proliferation and promoted apoptosis. In contrast

  3. Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds.

    PubMed

    Leonel, Camyla Alves; Lima, William Gustavo; Dos Santos, Michelli; Ferraz, Ariane Coelho; Taranto, Alex Gutterres; de Magalhães, José Carlos; Dos Santos, Luciana Lara; Ferreira, Jaqueline Maria Siqueira

    2018-03-01

    Dengue virus (DENV) infection can lead to a wide range of clinical manifestations, including fatal hemorrhagic complications. There is a need to find effective pharmacotherapies to treat this disease due to the lack of specific immunotherapies and antiviral drugs. That said, the DENV NS2B/NS3pro protease complex is essential in both the viral multiplication cycle and in disease pathogenesis, and is considered a promising target for new antiviral therapies. Here, we performed a systematic review to evaluate the pharmacophoric characteristics of promising compounds against NS2B/NS3pro reported in the past 10 years. Online searches in the PUBMED/MEDLINE and SCOPUS databases resulted in 165 articles. Eight studies, which evaluated 3,384,268 molecules exhibiting protease inhibition activity, were included in this review. These studies evaluated anti-dengue activity in vitro and the IC 50 and EC 50 values were provided. Most compounds exhibited non-competitive inhibition. Cytotoxicity was evaluated in BHK-21, Vero, and LLC-MK2 cells, and the CC 50 values obtained ranged from < 1.0 to 780.5 µM. Several groups were associated with biological activity against dengue, including nitro, catechol, halogen and ammonium quaternaries. Thus, these groups seem to be potential pharmacophores that can be further investigated to treat dengue infections.

  4. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo.

    PubMed

    Yuan, Shuofeng; Chan, Jasper Fuk-Woo; den-Haan, Helena; Chik, Kenn Ka-Heng; Zhang, Anna Jinxia; Chan, Chris Chung-Sing; Poon, Vincent Kwok-Man; Yip, Cyril Chik-Yan; Mak, Winger Wing-Nga; Zhu, Zheng; Zou, Zijiao; Tee, Kah-Meng; Cai, Jian-Piao; Chan, Kwok-Hung; de la Peña, Jorge; Pérez-Sánchez, Horacio; Cerón-Carrasco, José Pedro; Yuen, Kwok-Yung

    2017-09-01

    Zika virus (ZIKV) infection may be associated with severe complications in fetuses and adults, but treatment options are limited. We performed an in silico structure-based screening of a large chemical library to identify potential ZIKV NS2B-NS3 protease inhibitors. Clinically approved drugs belonging to different drug classes were selected among the 100 primary hit compounds with the highest predicted binding affinities to ZIKV NS2B-NS3-protease for validation studies. ZIKV NS2B-NS3 protease inhibitory activity was validated in most of the selected drugs and in vitro anti-ZIKV activity was identified in two of them (novobiocin and lopinavir-ritonavir). Molecular docking and molecular dynamics simulations predicted that novobiocin bound to ZIKV NS2B-NS3-protease with high stability. Dexamethasone-immunosuppressed mice with disseminated ZIKV infection and novobiocin treatment had significantly (P < 0.05) higher survival rate (100% vs 0%), lower mean blood and tissue viral loads, and less severe histopathological changes than untreated controls. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of ZIKV. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Construction of plasmid, bacterial expression, purification, and assay of dengue virus type 2 NS5 methyltransferase.

    PubMed

    Boonyasuppayakorn, Siwaporn; Padmanabhan, Radhakrishnan

    2014-01-01

    Dengue virus (DENV), a member of mosquito-borne flavivirus, causes self-limiting dengue fever as well as life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its positive sense RNA genome has a cap at the 5'-end and no poly(A) tail at the 3'-end. The viral RNA encodes a single polyprotein, C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5. The polyprotein is processed into 3 structural proteins (C, prM, and E) and 7 nonstructural (NS) proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). NS3 and NS5 are multifunctional enzymes performing various tasks in viral life cycle. The N-terminal domain of NS5 has distinct GTP and S-adenosylmethionine (SAM) binding sites. The role of GTP binding site is implicated in guanylyltransferase (GTase) activity of NS5. The SAM binding site is involved in both N-7 and 2'-O-methyltransferase (MTase) activities involved in formation of type I cap. The C-terminal domain of NS5 catalyzes RNA-dependent RNA polymerase (RdRp) activity involved in RNA synthesis. We describe the construction of the MTase domain of NS5 in an E. coli expression vector, purification of the enzyme, and conditions for enzymatic assays of N7- and 2'O-methyltransferase activities that yield the final type I 5'-capped RNA ((7Me)GpppA2'OMe-RNA).

  6. Comparison of somatic embryogenesis in Medicago sativa and Medicago truncatula.

    PubMed

    Hoori, F; Ehsanpour, A A; Mostajeran, A

    2007-02-01

    In this study, the regeneration through embryogenesis of two species of Medicago were studied. Seeds of Medicago sativa cv. Rehnani and M. truncatula line A17 were grown on MS medium. After 4-6 weeks, segments of leaf and stem from two species were transferred to MS medium containing 2 mg L(-1) NAA, 2,4-D and Kinetin. The results indicated that callus formation from leaf explants of M. sativa was higher than M. trancatula. In the next stage, media with different combinations of auxin, cytokinin or ethinyl estradiol were provided for regeneration. Then in two stages, explants of leaf and stem of two species were transferred on these media. Results after 3-6 weeks showed that in medium containing NAA and TDZ, stem pieces ofM. sativa produced shoots while leaf pieces on NAA and ethinyl estradiol formed roots. Leaf explants of M. truncatula in the medium containing NAA and BAP, produced somatic embryos. Also in media with auxin and ethinyl estradiol, somatic embryos were formed on calli of two species. Ethinyl estradiol and auxin together can induce somatic embryogenesis and root production on calli and stem or leaf explants.

  7. Antiviral Activity and Resistance Analysis of NS3/4A Protease Inhibitor Grazoprevir and NS5A Inhibitor Elbasvir in Hepatitis C Virus GT4 Replicons.

    PubMed

    Asante-Appiah, Ernest; Curry, Stephanie; McMonagle, Patricia; Ingravallo, Paul; Chase, Robert; Nickle, David; Qiu, Ping; Howe, Anita; Lahser, Frederick C

    2017-07-01

    Although genotype 4 (GT4)-infected patients represent a minor overall percentage of the global hepatitis C virus (HCV)-infected population, the high prevalence of the genotype in specific geographic regions coupled with substantial sequence diversity makes it an important genotype to study for antiviral drug discovery and development. We evaluated two direct-acting antiviral agents-grazoprevir, an HCV NS3/4A protease inhibitor, and elbasvir, an HCV NS5A inhibitor-in GT4 replicons prior to clinical studies in this genotype. Following a bioinformatics analysis of available GT4 sequences, a set of replicons bearing representative GT4 clinical isolates was generated. For grazoprevir, the 50% effective concentration (EC 50 ) against the replicon bearing the reference GT4a (ED43) NS3 protease and NS4A was 0.7 nM. The median EC 50 for grazoprevir against chimeric replicons encoding NS3/4A sequences from GT4 clinical isolates was 0.2 nM (range, 0.11 to 0.33 nM; n = 5). The difficulty in establishing replicons bearing NS3/4A resistance-associated substitutions was substantially overcome with the identification of a G162R adaptive substitution in NS3. Single NS3 substitutions D168A/V identified from de novo resistance selection studies reduced grazoprevir antiviral activity by 137- and 47-fold, respectively, in the background of the G162R replicon. For elbasvir, the EC 50 against the replicon bearing the reference full-length GT4a (ED43) NS5A gene was 0.0002 nM. The median EC 50 for elbasvir against chimeric replicons bearing clinical isolates from GT4 was 0.0007 nM (range, 0.0002 to 34 nM; n = 14). De novo resistance selection studies in GT4 demonstrated a high propensity to suppress the emergence of amino acid substitutions that confer high-potency reductions to elbasvir. Phenotypic characterization of the NS5A amino acid substitutions identified (L30F, L30S, M31V, and Y93H) indicated that they conferred 15-, 4-, 2.5-, and 7.5-fold potency losses, respectively, to elbasvir

  8. Crystal structure of full-length Zika virus NS5 protein reveals a conformation similar to Japanese encephalitis virus NS5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Anup K.; Cyr, Matthew; Longenecker, Kenton

    The rapid spread of the recentZika virus(ZIKV) epidemic across various countries in the American continent poses a major health hazard for the unborn fetuses of pregnant women. To date, there is no effective medical intervention. The nonstructural protein 5 ofZika virus(ZIKV-NS5) is critical for ZIKV replication through the 5'-RNA capping and RNA polymerase activities present in its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains, respectively. The crystal structure of the full-length ZIKV-NS5 protein has been determined at 3.05 Å resolution from a crystal belonging to space groupP2 12 12 and containing two protein molecules in the asymmetricmore » unit. The structure is similar to that reported for the NS5 protein fromJapanese encephalitis virusand suggests opportunities for structure-based drug design targeting either its MTase or RdRp domain.« less

  9. The effect of glycosylation on cytotoxicity of Ibaraki virus nonstructural protein NS3

    PubMed Central

    URATA, Maho; WATANABE, Rie; IWATA, Hiroyuki

    2015-01-01

    The cytotoxicity of Ibaraki virus nonstructural protein NS3 was confirmed, and the contribution of glycosylation to this activity was examined by using glycosylation mutants of NS3 generated by site-directed mutagenesis. The expression of NS3 resulted in leakage of lactate dehydrogenase to the culture supernatant, suggesting the cytotoxicity of this protein. The lack of glycosylation impaired the transport of NS3 to the plasma membrane and resulted in reduced cytotoxicity. Combined with the previous observation that NS3 glycosylation was specifically observed in mammalian cells (Urata et al., Virus Research 2014), it was suggested that the alteration of NS3 cytotoxicity through modulating glycosylation is one of the strategies to achieve host specific pathogenisity of Ibaraki virus between mammals and vector arthropods. PMID:26178820

  10. Oral administration of thymoquinone mitigates the effect of cisplatin on brush border membrane enzymes, energy metabolism and antioxidant system in rat intestine.

    PubMed

    Shahid, Faaiza; Farooqui, Zeba; Abidi, Subuhi; Parwez, Iqbal; Khan, Farah

    2017-10-01

    Cisplatin (CP) is a widely used chemotherapeutic agent that elicits severe gastrointestinal toxicity. Nigella sativa, a member of family Ranunculaceae, is one of the most revered medicinal plant known for its numerous health benefits. Thymoquinone (TQ), a major bioactive component derived from the volatile oil of Nigella sativa seeds, has been shown to improve gastrointestinal functions in animal models of acute gastric/intestinal injury. In view of this, the aim of the present study was to investigate the protective effect of TQ on CP induced toxicity in rat intestine and to elucidate the mechanism underlying these effects. Rats were divided into four groups viz. control, CP, TQ and CP+TQ. Animals in CP+TQ and TQ groups were orally administered TQ (1.5mg/kg bwt) with and without a single intraperitoneal dose of CP (6mg/kg bwt) respectively. The effect of TQ was determined on CP induced alterations in the activities of brush border membrane (BBM), carbohydrate metabolism, and antioxidant defense enzymes in rat intestine. TQ administration significantly mitigated CP induced decline in the specific activities of BBM marker enzymes, both in the mucosal homogenates and in the BBM vesicles (BBMV) prepared from intestinal mucosa. Furthermore, TQ administration restored the redox and metabolic status of intestinal mucosal tissue in CP treated rats. The biochemical results were supported by histopathological findings that showed extensive damage to intestine in CP treated rats and markedly preserved intestinal histoarchitecture in CP and TQ co-treated group. The biochemical and histological data suggest a protective effect of TQ against CP-induced gastrointestinal damage. Thus, TQ may have a potential for clinical application to counteract the accompanying gastrointestinal toxicity in CP chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Virtual screening of commercial cyclic peptides as NS2B-NS3 protease inhibitor of dengue virus serotype 2 through molecular docking simulation

    NASA Astrophysics Data System (ADS)

    Nasution, M. A. F.; Aini, R. N.; Tambunan, U. S. F.

    2017-04-01

    A disease caused by dengue virus infection has become one of the major health problems in the world, particularly in Asia, Africa, and South America. This disease has become endemic in more than 100 countries, and approximately 100 million cases occur each year with 2.5 billion people or 40% of the world population at risk of having this virus infection. Therefore, we need an antiviral drug that can inhibit the activity of the enzymes that involved in the virus replication in the body. Lately, the peptide-based drug design has been developed and proved to have interesting pharmacological properties. This study uses commercially cyclic peptides that have already marketed. The purpose of this study is to screen the commercial cyclic peptides that can be used as an inhibitor of the NS2B-NS3 protease of dengue virus serotype 2 (DENV-2) through molecular docking simulations. Inhibition of NS3 protease enzyme can lead to enzymatic inhibition activity so the formed polyprotein from the translation of RNA cannot be cut into pieces and remain in the long strand form. Consequently, proteins that are vital for the sustainability of dengue virus replication cannot be formed. This research resulted in [alpha]-ANF (1-28), rat, Brain Natriuretic Peptide, porcine, Atrial Natriuretic Factor (3-28) (human) and Atrial Natriuretic Peptide (126-150) (rat) as the best drug candidate for inhibiting the NS2B-NS3 protease of DENV-2.

  12. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3

    PubMed Central

    Zheng, Fengwei; Lu, Guoliang; Li, Ling

    2017-01-01

    ABSTRACT The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a “closed” global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo. Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through

  13. Evaluation of topical black seed oil in the treatment of allergic rhinitis.

    PubMed

    Alsamarai, Abdulghani Mohamed; Abdulsatar, Mohamed; Ahmed Alobaidi, Amina Hamed

    2014-03-01

    Allergic rhinitis (AR) is the most common manifestation of atopic reaction to inhaled allergens. It is a chronic inflammatory disease which may first appear at any age, but the onset is usually during childhood or adolescence. Up to date there is no curative treatment for this disorder and most of the drugs that were used for treatment only can induce symptomatic relief and some of them have side effect and can cause withdrawal symptoms. To evaluate the therapeutic efficacy of the Nigella sativa (NS) extract as treatment approach for allergic rhinitis. A total of 68 patients with AR were included in the study, of them 19 patients were with mild symptoms, 28 patients were with moderate symptoms and 21 patients were with severe symptoms. Each group was subdivided into active and control subgroups. To prove that the patient's symptoms were allergic in nature, skin test was performed for all patients. Any individual with negative skin test was excluded. The individuals in the active group received N. sativa oil and the control group individuals received ordinary food oil in the form of nasal drops for 6 weeks. After the 6 weeks treatment course, 100% of the patients in the mild active group became symptoms free; while in moderate active group 68.7% became symptoms free and 25% were improved; while in severe active group 58.3% became symptoms free and 25% were improved. In addition, 92.1% of total patients in the active group demonstrated improvement in their symptoms or were symptoms free, while the corresponding value was 30.1% in the control group (P=0.000). At the end of 6 weeks of treatment with topical use, the improvement in tolerability of allergen exposure in active group became 55.2% which was significant (P=0.006) as compared with control group which was accounted for 20% at the same time. Topical application of black seed oil was effective in the treatment of allergic rhinitis, with minimal side effects.

  14. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).

    PubMed

    Hong, Jie; Rico, Cyren M; Zhao, Lijuan; Adeleye, Adeyemi S; Keller, Arturo A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-01-01

    The increased production and use of nanoparticles (NPs) has generated concerns about their impact on living organisms. In this study, nCu, bulk Cu, nCuO, bulk CuO, Cu(OH)2 (CuPRO 2005, Kocide 3000), and CuCl2 were exposed for 15 days to 10 days-old hydroponically grown lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Each compound was applied at 0, 5, 10, and 20 mg L(-1). At harvest, we measured the size of the plants and determined the concentration of Cu, macro and microelements by using ICP-OES. Catalase and ascorbate peroxidase activity was also determined. Results showed that all Cu NPs/compounds reduced the root length by 49% in both plant species. All Cu NPs/compounds increased Cu, P, and S (>100%, >50%, and >20%, respectively) in alfalfa shoots and decreased P and Fe in lettuce shoot (>50% and >50%, respectively, excluding Fe in CuCl2 treatment). Biochemical assays showed reduced catalase activity in alfalfa (root and shoot) and increased ascorbate peroxidase activity in roots of both plant species. Results suggest that Cu NPs/compounds not only reduced the size of the plants but altered nutrient content and enzyme activity in both plant species.

  15. The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions.

    PubMed

    Yates, Christopher M; Sternberg, Michael J E

    2013-11-01

    Non-synonymous single nucleotide polymorphisms (nsSNPs) are single base changes leading to a change to the amino acid sequence of the encoded protein. Many of these variants are associated with disease, so nsSNPs have been well studied, with studies looking at the effects of nsSNPs on individual proteins, for example, on stability and enzyme active sites. In recent years, the impact of nsSNPs upon protein-protein interactions has also been investigated, giving a greater insight into the mechanisms by which nsSNPs can lead to disease. In this review, we summarize these studies, looking at the various mechanisms by which nsSNPs can affect protein-protein interactions. We focus on structural changes that can impair interaction, changes to disorder, gain of interaction, and post-translational modifications before looking at some examples of nsSNPs at human-pathogen protein-protein interfaces and the analysis of nsSNPs from a network perspective. © 2013.

  16. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda.

    PubMed

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus ( OV ). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus . Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis , some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with ( OV infection (using positive skin snips), we observe that ( OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda.

  17. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda

    PubMed Central

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus (OV). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus. Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis, some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with (OV infection (using positive skin snips), we observe that (OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda. PMID:29138647

  18. Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides

    PubMed Central

    Chukkapalli, Vineela; Berger, Kristi L.; Kelly, Sean M.; Thomas, Meryl; Deiters, Alexander; Randall, Glenn

    2014-01-01

    Combinations of direct-acting antivirals (DAAs) against the hepatitis C virus (HCV) have the potential to revolutionize the HCV therapeutic regime. An integral component of DAA combination therapies are HCV NS5A inhibitors. It has previously been proposed that NS5A DAAs inhibit two functions of NS5A: RNA replication and virion assembly. In this study, we characterize the impact of a prototype NS5A DAA, daclatasvir (DCV), on HCV replication compartment formation. DCV impaired HCV replicase localization and NS5A motility. In order to characterize the mechanism behind altered HCV replicase localization, we examined the impact of DCV on the interaction of NS5A with its essential cellular cofactor, phosphatidylinositol-4-kinase III α (PI4KA). We observed that DCV does not inhibit PI4KA directly, nor does it impair early events of the NS5A-PI4KA interaction that can occur when NS5A is expressed alone. NS5A functions that are unaffected by DCV include PI4KA binding, as determined by co-immunoprecipitation, and a basal accumulation of the PI4KA product, PI4P. However, DCV impairs late steps in PI4KA activation that requires NS5A expressed in the context of the HCV polyprotein. These NS5A functions include hyper-stimulation of PI4P levels and appropriate replication compartment formation. The data are most consistent with a model wherein DCV inhibits conformational changes in the NS5A protein or protein complex formations that occur in the context of HCV polyprotein expression and stimulate PI4P hyper-accumulation and replication compartment formation. PMID:25546252

  19. Production of recombinant dengue non-structural 1 (NS1) proteins from clinical virus isolates.

    PubMed

    Yohan, Benediktus; Wardhani, Puspa; Aryati; Trimarsanto, Hidayat; Sasmono, R Tedjo

    2017-01-01

    Dengue is a febrile disease caused by infection of dengue virus (DENV). Early diagnosis of dengue infection is important for better management of the disease. The DENV Non-Structural Protein 1 (NS1) antigen has been routinely used for the early dengue detection. In dengue epidemic countries such as Indonesia, clinicians are increasingly relying on the NS1 detection for confirmation of dengue infection. Various NS1 diagnostic tests are commercially available, however different sensitivities and specificities were observed in various settings. This study was aimed to generate dengue NS1 recombinant protein for the development of dengue diagnostic tests. Four Indonesian DENV isolates were used as the source of the NS1 gene cloning, expression, and purification in bacterial expression system. Recombinant NS1 proteins were successfully purified and their antigenicities were assessed. Immunization of mice with recombinant proteins observed the immunogenicity of the NS1 protein. The generated recombinant proteins can be potentially used in the development of NS1 diagnostic test. With minimal modifications, this method can be used for producing NS1 recombinant proteins from isolates obtained from other geographical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  1. A single residue mutation in Hha preserving structure and binding to H-NS results in loss of H-NS mediated gene repression properties.

    PubMed

    Cordeiro, Tiago N; Garcia, Jesús; Pons, José-Ignacio; Aznar, Sonia; Juárez, Antonio; Pons, Miquel

    2008-09-03

    In this study, we report that a single mutation of cysteine 18 to isoleucine (C18I) in Escherichia coli Hha abolishes the repression of the hemolysin operon observed in the wild-type protein. The phenotype also includes a significant decrease in the growth rate of E. coli cells at low ionic strength. Other substitutions at this position (C18A, C18S) have no observable effects in E. coli growth or hemolysin repression. All mutants are stable and well folded and bind H-NS in vitro with similar affinities suggesting that Cys 18 is not directly involved in H-NS binding but this position is essential for the activity of the H-NS/Hha heterocomplexes in the regulation of gene expression.

  2. In-silico identification and evaluation of plant flavonoids as dengue NS2B/NS3 protease inhibitors using molecular docking and simulation approach.

    PubMed

    Qamar, Muhammad Tahirul; Ashfaq, Usman Ali; Tusleem, Kishver; Mumtaz, Arooj; Tariq, Quratulain; Goheer, Alina; Ahmed, Bilal

    2017-11-01

    Dengue infection is prevailing among the people not only from the developing countries but also from the developed countries due to its high morbidity rate around the globe. Hence, due to the unavailability of any suitable vaccine for rigorous dengue virus (DENV), the only mode of its treatment is prevention. The circumstances require an urgent development of efficient and practical treatment to deal with these serotypes. The severe effects and cost of synthetic vaccines simulated researchers to find anti-viral agents from medicinal plants. Flavonoids present in medicinal plants, holds anti-viral activity and can be used as vaccine against viruses. Therefore, present study was planned to find anti-viral potential of 2500 flavonoids inhibitors against the DENVNS2B/NS3 protease through computational screening which can hinder the viral replication within the host cell. By using molecular docking, it was revealed that flavonoids showed strong and stable bonding in the binding pocket of DENV NS2B/NS3 protease and had strong interactions with catalytic triad. Drug capability and anti-dengue potential of the flavonoids was also evaluated by using different bioinformatics tools. Some flavonoids effectively blocked the catalytic triad of DENV NS2B/NS3 protease and also passed through drug ability evaluation. It can be concluded from this study that these flavonoids could act as potential inhibitors to stop the replication of DENV and there is a need to study the action of these molecules in-vitro to confirm their action and other properties.

  3. Gelatin nanoparticles enhance delivery of hepatitis C virus recombinant NS2 gene

    PubMed Central

    George, Marina A.; El-Shorbagy, Haidan M.; Bassiony, Heba; Farroh, Khaled Y.; Youssef, Tareq; Salaheldin, Taher A.

    2017-01-01

    Background Development of an effective non-viral vaccine against hepatitis C virus infection is of a great importance. Gelatin nanoparticles (Gel.NPs) have an attention and promising approach as a viable carrier for delivery of vaccine, gene, drug and other biomolecules in the body. Aim of work The present study aimed to develop stable Gel.NPs conjugated with nonstructural protein 2 (NS2) gene of Hepatitis C Virus genotype 4a (HCV4a) as a safe and an efficient vaccine delivery system. Methods and results Gel.NPs were synthesized and characterized (size: 150±2 nm and zeta potential +17.6 mv). NS2 gene was successfully cloned and expressed into E. coli M15 using pQE-30 vector. Antigenicity of the recombinant NS2 protein was confirmed by Western blotting to verify the efficiency of NS2 as a possible vaccine. Then NS2 gene was conjugated to gelatin nanoparticles and a successful conjugation was confirmed by labeling and imaging using Confocal Laser Scanning Microscope (CLSM). Interestingly, the transformation of the conjugated NS2/Gel.NPs complex into E. coli DH5-α was 50% more efficient than transformation with the gene alone. In addition, conjugated NS2/Gel.NPs with ratio 1:100 (w/w) showed higher transformation efficiency into E. coli DH5-α than the other ratios (1:50 and 2:50). Conclusion Gel.NPs effectively enhanced the gene delivery in bacterial cells without affecting the structure of NS2 gene and could be used as a safe, easy, rapid, cost-effective and non-viral vaccine delivery system for HCV. PMID:28746382

  4. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components

    PubMed Central

    Beatty, P. Robert

    2017-01-01

    Dengue virus (DENV) is the most prevalent, medically important mosquito-borne virus. Disease ranges from uncomplicated dengue to life-threatening disease, characterized by endothelial dysfunction and vascular leakage. Previously, we demonstrated that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability in a systemic mouse model and human pulmonary endothelial cells, where NS1 disrupts the endothelial glycocalyx-like layer. NS1 also triggers release of inflammatory cytokines from PBMCs via TLR4. Here, we examined the relative contributions of inflammatory mediators and endothelial cell-intrinsic pathways. In vivo, we demonstrated that DENV NS1 but not the closely-related West Nile virus NS1 triggers localized vascular leak in the dorsal dermis of wild-type C57BL/6 mice. In vitro, we showed that human dermal endothelial cells exposed to DENV NS1 do not produce inflammatory cytokines (TNF-α, IL-6, IL-8) and that blocking these cytokines does not affect DENV NS1-induced endothelial hyperpermeability. Further, we demonstrated that DENV NS1 induces vascular leak in TLR4- or TNF-α receptor-deficient mice at similar levels to wild-type animals. Finally, we blocked DENV NS1-induced vascular leak in vivo using inhibitors targeting molecules involved in glycocalyx disruption. Taken together, these data indicate that DENV NS1-induced endothelial cell-intrinsic vascular leak is independent of inflammatory cytokines but dependent on endothelial glycocalyx components. PMID:29121099

  5. Conclusions and future directions for the REiNS International Collaboration

    PubMed Central

    Blakeley, Jaishri O.; Dombi, Eva; Fisher, Michael J.; Hanemann, Clemens O.; Walsh, Karin S.; Wolters, Pamela L.; Plotkin, Scott R.

    2013-01-01

    The Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration was established with the goal to develop consensus recommendations for the use of endpoints in neurofibromatosis (NF) clinical trials. This supplement includes the first series of REiNS recommendations for the use of patient-reported, functional, and visual outcomes, and for the evaluation of imaging response in NF clinical trials. Recommendations for neurocognitive outcome measures, the use of whole-body MRI in NF, the evaluation of potential biomarkers of disease, and the comprehensive evaluation of functional and patient-reported outcomes in NF are in development. The REiNS recommendations are made based on current knowledge. Experience with the use of the recommended endpoints in clinical trials, development of new tools and technologies, new knowledge of the natural history of NF, and advances in the methods used to analyze endpoints will likely lead to modifications of the currently proposed guidelines, which will be shared with the NF research community through the REiNS Web site www.reinscollaboration.org. Due to the clinical complexity of NF, there is a need to seek expertise from multiple medical disciplines, regulatory agencies, and industry to develop trial endpoints and designs, which will lead to the identification and approval of effective treatments for NF tumor and nontumor manifestations. The REiNS Collaboration welcomes anyone interested in providing his or her expertise toward this effort. PMID:24249805

  6. Alfalfa (Medicago sativa L.).

    PubMed

    Fu, Chunxiang; Hernandez, Timothy; Zhou, Chuanen; Wang, Zeng-Yu

    2015-01-01

    Alfalfa (Medicago sativa L.) is a high-quality forage crop widely grown throughout the world. This chapter describes an efficient protocol that allows for the generation of large number of transgenic alfalfa plants by sonication-assisted Agrobacterium-mediated transformation. Binary vectors carrying different selectable marker genes that confer resistance to phosphinothricin (bar), kanamycin (npt II), or hygromycin (hph) were used to generate transgenic alfalfa plants. Intact trifoliates collected from clonally propagated plants in the greenhouse were sterilized with bleach and then inoculated with Agrobacterium strain EHA105. More than 80 % of infected leaf pieces could produce rooted transgenic plants in 4-5 months after Agrobacterium-mediated transformation.

  7. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.

    PubMed

    Kamran, Muhammad Aqeel; Eqani, Syed Ali Musstjab Akber Shah; Bibi, Sadia; Xu, Ren-Kou; Amna; Monis, Muhammad Farooq Hussain; Katsoyiannis, Athanasios; Bokhari, Habib; Chaudhary, Hassan Javed

    2016-04-01

    Phytoremediation potential of plants can be enhanced in association with microbes. Further, many plant growth-promoting rhizobacteria can improve growth under stress. The present study was conducted to investigate the effect of Pseudomonas putida (P. putida) on nickel (Ni) uptake and on growth of Eruca sativa (E. sativa). Three different levels of Ni (low; 150 ug/g, medium; 250 ug/g and high; 500 ug/g) were applied to the soil containing E. sativa seedlings, with or without P. putida. Ni-toxicity was measured by metamorphic parameters including shoot length, root length, biomass, chlorophyll and proline and Ni contents. Inoculation with P. putida increased 34% and 41% in root and shoot length and 38% and 24% in fresh, dry weight respectively, as compared to non-inoculated plants. Similarly, Ni uptake increased by up to 46% following P. putida inoculation as compared to non-inoculated plants. Indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity in the growing media enhanced growth and Ni uptake in E. sativa. The present results offer insight on Plant Growth Promoting Rhizobacteria (PGPR), such as P. putida, for the potential to enhance the plant growth by inhibiting the adverse effects of Ni in E. sativa. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The structure of Zika virus NS5 reveals a conserved domain conformation

    DOE PAGES

    Wang, Boxiao; Tan, Xiao -Feng; Thurmond, Stephanie; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has imposed a serious threat to public health. Here we report the crystal structure of the ZIKV NS5 protein in complex with S-adenosyl-L-homocysteine, in which the tandem methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains stack into one of the two alternative conformations of flavivirus NS5 proteins. In conclusion, the activity of this NS5 protein is verified through a de novo RdRp assay on a subgenomic ZIKV RNA template. Importantly, our structural analysis leads to the identification of a potential drug-binding site of ZIKV NS5, which might facilitate the development of novel antiviralsmore » for ZIKV.« less

  9. Identification of potential hit compounds for Dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations.

    PubMed

    Wichapong, K; Nueangaudom, A; Pianwanit, S; Sippl, W; Kokpol, S

    2013-09-01

    Dengue virus (DV) infections are a serious public health problem and there is currently no vaccine or drug treatment. NS2B/NS3 protease, an essential enzyme for viral replication, is one of the promising targets in the search for drugs against DV. In this research work, virtual screening (VS) was carried out on four multi-conformational databases using several criteria. Firstly, molecular dynamics simulations of the NS2B/NS3 protease and four known inhibitors, which reveal an importance of both electrostatic and van der Waals interactions in stabilizing the ligand-enzyme interaction, were used to generate three different pharmacophore models (a structure-based, a static and a dynamic). Subsequently, these three models were employed for pharmacophore search in the VS. Secondly, compounds passing the first criterion were further reduced using the Lipinski's rule of five to keep only compounds with drug-like properties. Thirdly, molecular docking calculations were performed to remove compounds with unsuitable ligand-enzyme interactions. Finally, binding free energy of each compound was calculated. Compounds having better energy than the known inhibitors were selected and thus 20 potential hits were obtained.

  10. The Spectral Signatures Of BH Versus NS Sources

    NASA Astrophysics Data System (ADS)

    Seifina, E.; Titarchuk, L.

    2011-09-01

    We present a comparative analysis of spectral properties of Black Hole (BH) and Neutron Star (NS) X-ray binaries during transition events observed with BeppoSAX and RXTE satellites. In particular, we investigated the behavior of Comptonized component of X-ray spectra when object evolves from the low to high spectral states. The basic models to fit X-ray spectra of these objects are upscattering models (so called BMC and COMPTB models) which are the first principal models. These models taking into account both dynamical and thermal Comptonization and allow to study separate contributions of thermal component and Comptonization component (bulk and thermal effect of Comptonization processes). Specifically, we tested quite a few observations of BHs (GRS 1915+105 and SS 433) and NSs (4U 1728-34 and GX 3+1) applying BMC and COMPTB models. In this way it was found a crucial difference in behavior of photon index vs mass accretion rate (mdot) for BHs and NSs. Namely, we revealed the stability of the photon index around typical value of Gamma=2 versus mdot (or electron temperature) during spectral evolution of NS sources. This stability effect was previously suggested for a number of other neutron binaries (see Farinelli and Titarchuk, 2011). This intrinsic property of NS is fundamentally different from that in BH binary sources for which the index demonstrates monotonic growth with mass accretion rate followed by its saturation at high values of mdot. These index-mass accretion rate behavior during X-ray spectral transition events can be considered as signatures, which allow to differ NS from BH.

  11. Utility of dengue NS1 antigen rapid diagnostic test for use in difficult to reach areas and its comparison with dengue NS1 ELISA and qRT-PCR.

    PubMed

    Shukla, Mohan K; Singh, Neeru; Sharma, Ravendra K; Barde, Pradip V

    2017-07-01

    The objective of this study was to demonstrate the utility of dengue virus (DENV) non structural protein 1 (NS1) based rapid diagnostic test (RDT) for use in tribal and difficult to reach areas for early dengue (DEN) diagnosis in acute phase patients and evaluate its sensitivity and specificity against DENV NS1 enzyme linked immune sorbent assay (ELISA) and real time reverse transcriptase polymerase chain reaction (qRT-PCR). The DENV NS1 RDT was used for preliminary diagnosis during outbreaks in difficult to reach rural and tribal areas. The diagnosis was confirmed by DENV NS1 ELISA in the laboratory. The samples were also tested and serotyped by qRT-PCR. The results were evaluated using statistical tests. The DENV NS1 RDT showed 99.2% sensitivity and 96.0% specificity when analyzed using DENV NS1 ELISA as standard. The specificity and sensitivity of the RDT when compared with qRT-PCR was 93.6% and 91.1%, respectively. The serotype specific evaluation showed more than 90% sensitivity and specificity for DENV-1, 2, and 3. The RDT proved a good diagnostic tool in difficult to reach rural and tribal areas. Further evaluation studies with different commercially available RDTs in different field conditions are essential, that will help clinicians and patients for treatment and programme managers for timely intervention. © 2017 Wiley Periodicals, Inc.

  12. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes

    PubMed Central

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches. PMID:26789284

  13. H-NS Facilitates Sequence Diversification of Horizontally Transferred DNAs during Their Integration in Host Chromosomes.

    PubMed

    Higashi, Koichi; Tobe, Toru; Kanai, Akinori; Uyar, Ebru; Ishikawa, Shu; Suzuki, Yutaka; Ogasawara, Naotake; Kurokawa, Ken; Oshima, Taku

    2016-01-01

    Bacteria can acquire new traits through horizontal gene transfer. Inappropriate expression of transferred genes, however, can disrupt the physiology of the host bacteria. To reduce this risk, Escherichia coli expresses the nucleoid-associated protein, H-NS, which preferentially binds to horizontally transferred genes to control their expression. Once expression is optimized, the horizontally transferred genes may actually contribute to E. coli survival in new habitats. Therefore, we investigated whether and how H-NS contributes to this optimization process. A comparison of H-NS binding profiles on common chromosomal segments of three E. coli strains belonging to different phylogenetic groups indicated that the positions of H-NS-bound regions have been conserved in E. coli strains. The sequences of the H-NS-bound regions appear to have diverged more so than H-NS-unbound regions only when H-NS-bound regions are located upstream or in coding regions of genes. Because these regions generally contain regulatory elements for gene expression, sequence divergence in these regions may be associated with alteration of gene expression. Indeed, nucleotide substitutions in H-NS-bound regions of the ybdO promoter and coding regions have diversified the potential for H-NS-independent negative regulation among E. coli strains. The ybdO expression in these strains was still negatively regulated by H-NS, which reduced the effect of H-NS-independent regulation under normal growth conditions. Hence, we propose that, during E. coli evolution, the conservation of H-NS binding sites resulted in the diversification of the regulation of horizontally transferred genes, which may have facilitated E. coli adaptation to new ecological niches.

  14. Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus, a Deltapartitivirus, and a Marafivirus.

    PubMed

    Kim, Hyein; Park, Dongbin; Hahn, Yoonsoo

    2018-01-05

    Genomic RNA molecules of plant RNA viruses are often co-isolated with the host RNAs, and their sequences can be detected in plant transcriptome datasets. Here, an alfalfa (Medicago sativa) transcriptome dataset was analyzed and three new RNA viruses were identified, which were named Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), and Medicago sativa marafivirus 1 (MsMV1). The RNA-dependent RNA polymerases of MsAPV1, MsDPV1, and MsMV1 showed about 68%, 58%, and 46% amino acid sequence identity, respectively, with their closest virus species. Sequence similarity and phylogenetic analyses indicated that MsAPV1, MsDPV1, and MsMV1 were novel RNA virus species that belong to the genus Alphapartitivirus of the family Partitiviridae, the genus Deltapartitivirus of the family Partitiviridae, and the genus Marafivirus of the family Tymoviridae, respectively. The bioinformatics procedure applied in this study may facilitate the identification of novel RNA viruses from plant transcriptome data. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structural Insights into the Regulation of Foreign Genes in Salmonella by the Hha/H-NS Complex*

    PubMed Central

    Ali, Sabrina S.; Whitney, John C.; Stevenson, James; Robinson, Howard; Howell, P. Lynne; Navarre, William Wiley

    2013-01-01

    The bacterial nucleoid-associated proteins Hha and H-NS jointly repress horizontally acquired genes in Salmonella, including essential virulence loci encoded within Salmonella pathogenicity islands. Hha is known to interact with the N-terminal dimerization domain of H-NS; however, the manner in which this interaction enhances transcriptional silencing is not understood. To further understand this process, we solved the x-ray crystal structure of Hha in complex with the N-terminal dimerization domain of H-NS (H-NS(1–46)) to 3.2 Å resolution. Two monomers of Hha bind to symmetrical sites on either side of the H-NS(1–46) dimer. Disruption of the Hha/H-NS interaction by the H-NS site-specific mutation I11A results in increased expression of the Hha/H-NS co-regulated gene hilA without affecting the expression levels of proV, a target gene repressed by H-NS in an Hha-independent fashion. Examination of the structure revealed a cluster of conserved basic amino acids that protrude from the surface of Hha on the opposite side of the Hha/H-NS(1–46) interface. Hha mutants with a diminished positively charged surface maintain the ability to interact with H-NS but can no longer regulate hilA. Increased expression of the hilA locus did not correspond to significant depletion of H-NS at the promoter region in chromatin immunoprecipitation assays. However, in vitro, we find Hha improves H-NS binding to target DNA fragments. Taken together, our results show for the first time how Hha and H-NS interact to direct transcriptional repression and reveal that a positively charged surface of Hha enhances the silencing activity of H-NS nucleoprotein filaments. PMID:23515315

  16. Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition.

    PubMed

    Koliopoulos, Marios G; Lethier, Mathilde; van der Veen, Annemarthe G; Haubrich, Kevin; Hennig, Janosch; Kowalinski, Eva; Stevens, Rebecca V; Martin, Stephen R; Reis E Sousa, Caetano; Cusack, Stephen; Rittinger, Katrin

    2018-05-08

    RIG-I is a viral RNA sensor that induces the production of type I interferon (IFN) in response to infection with a variety of viruses. Modification of RIG-I with K63-linked poly-ubiquitin chains, synthesised by TRIM25, is crucial for activation of the RIG-I/MAVS signalling pathway. TRIM25 activity is targeted by influenza A virus non-structural protein 1 (NS1) to suppress IFN production and prevent an efficient host immune response. Here we present structures of the human TRIM25 coiled-coil-PRYSPRY module and of complexes between the TRIM25 coiled-coil domain and NS1. These structures show that binding of NS1 interferes with the correct positioning of the PRYSPRY domain of TRIM25 required for substrate ubiquitination and provide a mechanistic explanation for how NS1 suppresses RIG-I ubiquitination and hence downstream signalling. In contrast, the formation of unanchored K63-linked poly-ubiquitin chains is unchanged by NS1 binding, indicating that RING dimerisation of TRIM25 is not affected by NS1.

  17. Melatonin and vitamin C exacerbate Cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

    PubMed

    Alagbonsi, Isiaka A; Olayaki, Luqman A; Salman, Toyin M

    2016-05-01

    The mechanisms involved in the spermatotoxic effect of Cannabis sativa are inconclusive. The involvement of oxidative stress in male factor infertility has been well documented, and the antioxidative potential of melatonin and vitamin C in many oxidative stress conditions has been well reported. This study sought to investigate whether melatonin and vitamin C will ameliorate C. sativa-induced spermatotoxicity or not. Fifty-five (55) male albino rats (250-300 g) were randomly divided in a blinded fashion into five oral treatment groups as follows: group I (control, n=5) received 1 mL/kg of 10% ethanol for 30 days; groups IIa, IIb, and IIc (n=5 each) received 2 mg/kg C. sativa for 20, 30, and 40 days, respectively; groups IIIa, IIIb, and IIIc (n=5 each) received a combination of 2 mg/kg C. sativa and 4 mg/kg melatonin for 20, 30, and 40 days, respectively; groups IVa, IVb, and IVc (n=5 each) received a combination of 2 mg/kg C. sativa and 1.25 g/kg vitamin C for 20, 30, and 40 days, respectively; group V (n=5) received a combination of 2 mg/kg C. sativa, 4 mg/kg melatonin, and 1.25 g/kg vitamin C for 30 days. Cannabis treatments reduced the Johnsen score, sperm count, motility, morphology, paired testicular/body weight ratio, and total antioxidant capacity, but increased lactate dehydrogenase activity. In addition, supplementation of cannabis-treated rats with either melatonin or vitamin C exacerbates the effect of cannabis on those parameters, whereas combination of melatonin and vitamin C reversed the trend to the level comparable to control. This study further showed the gonadotoxic effect of C. sativa, which could be mediated by oxidative stress. It also showed that melatonin and vitamin C exacerbate C. sativa-induced testicular damage when administered separately but ameliorate it when combined in rats.

  18. BOREAS Level-2 NS001 TMS Imagery: Reflectance and Temperature in BSQ Format

    NASA Technical Reports Server (NTRS)

    Lobitz, Brad; Spanner, Michael; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Strub, Richard

    2000-01-01

    For BOREAS, the NS001 TMS images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fPAR and LAI. Collection of the NS001 images occurred over the study areas during the 1994 field campaigns. The level-2 NS001 data are atmospherically corrected versions of some of the best original NS001 imagery and cover the dates of 19-Apr-1994, 07-Jun-1994, 21-Jul-1994, 08-Aug-1994, and 16-Sep-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 INS data in an NS001 scan model. The data are provided in binary image format files.

  19. Comparative Analysis of Disruption Tolerant Network Routing Simulations in the One and NS-3

    DTIC Science & Technology

    2017-12-01

    real systems with less work compared to ns-2. In order to meet the design goals of ns-3, the entire code structure changed to a modular design . As a...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3...Thesis 03-23-2016 to 12-15-2017 4. TITLE AND SUBTITLE COMPARATIVE ANALYSIS OF DISRUPTION TOLERANT NETWORK ROUTING SIMULATIONS IN THE ONE AND NS-3 5

  20. Purification and crystallization of dengue and West Nile virus NS2B-NS3 complexes.

    PubMed

    D'Arcy, Allan; Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B-NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  1. Protective immunity to Japanese encephalitis virus associated with anti-NS1 antibodies in a mouse model.

    PubMed

    Li, Yize; Counor, Dorian; Lu, Peng; Duong, Veasna; Yu, Yongxin; Deubel, Vincent

    2012-07-24

    Japanese encephalitis virus (JEV) is a major mosquito-borne pathogen that causes viral encephalitis throughout Asia. Vaccination with an inactive JEV particle or attenuated virus is an efficient preventative measure for controlling infection. Flavivirus NS1 protein is a glycoprotein secreted during viral replication that plays multiple roles in the viral life cycle and pathogenesis. Utilizing JEV NS1 as an antigen in viral vectors induces a limited protective immune response against infection. Previous studies using E. coli-expressed JEV NS1 to immunize mice induced protection against lethal challenge; however, the protection mechanism through cellular and humoral immune responses was not described. JEV NS1 was expressed in and purified from Drosophila S2 cells in a native glycosylated multimeric form, which induced T-cell and antibody responses in immunized C3H/HeN mice. Mice vaccinated with 1 μg NS1 with or without water-in-oil adjuvant were partially protected against viral challenge and higher protection was observed in mice with higher antibody titers. IgG1 was preferentially elicited by an adjuvanted NS1 protein, whereas a larger load of IFN-γ was produced in splenocytes from mice immunized with aqueous NS1. Mice that passively received anti-NS1 mouse polyclonal immune sera were protected, and this phenomenon was dose-dependent, whereas protection was low or delayed after the passive transfer of anti-NS1 MAbs. The purified NS1 subunit induced protective immunity in relation with anti-NS1 IgG1 antibodies. NS1 protein efficiently stimulated Th1-cell proliferation and IFN-γ production. Protection against lethal challenge was elicited by passive transfer of anti-NS1 antisera, suggesting that anti-NS1 antibodies play a substantial role in anti-viral immunity.

  2. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  3. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  4. Discovery of Dengue Virus NS4B Inhibitors

    PubMed Central

    Wang, Qing-Yin; Dong, Hongping; Zou, Bin; Karuna, Ratna; Wan, Kah Fei; Zou, Jing; Susila, Agatha; Yip, Andy; Shan, Chao; Yeo, Kim Long; Xu, Haoying; Ding, Mei; Chan, Wai Ling; Gu, Feng; Seah, Peck Gee; Liu, Wei; Lakshminarayana, Suresh B.; Kang, CongBao; Lescar, Julien; Blasco, Francesca; Smith, Paul W.

    2015-01-01

    ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our

  5. Molecular Mechanism by Which a Potent Hepatitis C Virus NS3-NS4A Protease Inhibitor Overcomes Emergence of Resistance

    PubMed Central

    O'Meara, Jeff A.; Lemke, Christopher T.; Godbout, Cédrickx; Kukolj, George; Lagacé, Lisette; Moreau, Benoît; Thibeault, Diane; White, Peter W.; Llinàs-Brunet, Montse

    2013-01-01

    Although optimizing the resistance profile of an inhibitor can be challenging, it is potentially important for improving the long term effectiveness of antiviral therapy. This work describes our rational approach toward the identification of a macrocyclic acylsulfonamide that is a potent inhibitor of the NS3-NS4A proteases of all hepatitis C virus genotypes and of a panel of genotype 1-resistant variants. The enhanced potency of this compound versus variants D168V and R155K facilitated x-ray determination of the inhibitor-variant complexes. In turn, these structural studies revealed a complex molecular basis of resistance and rationalized how such compounds are able to circumvent these mechanisms. PMID:23271737

  6. Characterization of two novel cold-inducible K3 dehydrin genes from alfalfa (Medicago sativa spp. sativa L.).

    PubMed

    Dubé, Marie-Pier; Castonguay, Yves; Cloutier, Jean; Michaud, Josée; Bertrand, Annick

    2013-03-01

    Dehydrin defines a complex family of intrinsically disordered proteins with potential adaptive value with regard to freeze-induced cell dehydration. Search within an expressed sequence tags library from cDNAs of cold-acclimated crowns of alfalfa (Medicago sativa spp. sativa L.) identified transcripts putatively encoding K(3)-type dehydrins. Analysis of full-length coding sequences unveiled two highly homologous sequence variants, K(3)-A and K(3)-B. An increase in the frequency of genotypes yielding positive genomic amplification of the K(3)-dehydrin variants in response to selection for superior tolerance to freezing and the induction of their expression at low temperature strongly support a link with cold adaptation. The presence of multiple allelic forms within single genotypes and independent segregation indicate that the two K(3) dehydrin variants are encoded by distinct genes located at unlinked loci. The co-inheritance of the K(3)-A dehydrin with a Y(2)K(4) dehydrin restriction fragment length polymorphism with a demonstrated impact on freezing tolerance suggests the presence of a genome domain where these functionally related genes are located. These results provide additional evidence that dehydrin play important roles with regard to tolerance to subfreezing temperatures. They also underscore the value of recurrent selection to help identify variants within a large multigene family in allopolyploid species like alfalfa.

  7. Rough Interface Effects on N-S Proximity-Contact Systems

    NASA Astrophysics Data System (ADS)

    Nagato, Yasushi; Nagai, Katsuhiko

    2003-03-01

    We discuss the influence of atomic scale roughness of the interface on the properties of the N-S contact systems. To treat the interface roughness effects we extend our previous quasi-classical theory of the rough surface effect and construct a formal solution for the quasi-classical Green's function. We apply the formulation to N-S systems with two-dimensional anisotropic dx2-y2 superconductor and calculate the self-consistent pair potential and the density of states at the interface.

  8. Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).

    PubMed

    He, Ling; Xiao, Deyou; Feng, Jianguo; Yao, Chenguo; Tang, Liling

    2017-02-01

    The application of nanosecond pulsed electric fields (nsPEFs) is a novel method to induce the death of cancer cells. NsPEFs could directly function on the cell membrane and activate the apoptosis pathways, then induce apoptosis in various cell lines. However, the nsPEFs-inducing-apoptosis action sites and the exact pathways are not clear now. In this study, nsPEFs were applied to the human liver cancer cells HepG2 with different parameters. By apoptosis assay, morphological observation, detecting the mitochondrial membrane potential (ΔΨ m ), intracellular calcium ion concentration ([Ca 2+ ]i) and the expressions of key apoptosis factors, we demonstrated that nsPEFs could induce the morphology of cell apoptosis, the change in ΔΨ m , [Ca 2+ ]i and the upregulation of some key apoptosis factors, which revealed the responses of liver cancer cells and indicated that cells may undergo apoptosis through the mitochondria-dependent pathway after nsPEFs were applied.

  9. Extracellular lipids of Camelina sativa: characterization of chloroform-extractable waxes from aerial and subterranean surfaces.

    PubMed

    Razeq, Fakhria M; Kosma, Dylan K; Rowland, Owen; Molina, Isabel

    2014-10-01

    Camelina sativa (L.) Crantz is an emerging low input, stress tolerant crop with seed oil composition suitable for biofuel and bioproduct production. The chemical compositions and ultrastructural features of surface waxes from C. sativa aerial cuticles, seeds, and roots were analyzed using gas chromatography and microscopy. Alkanes, primary fatty alcohols, and free fatty acids were common components of all analyzed organs. A particular feature of leaf waxes was the presence of alkyl esters of long-chain fatty acids and very long-chain fatty alcohols, ranging from C38 to C50 and dominated by C42, C44 and C46 homologues. Stem waxes were mainly composed of non-sterol pentacyclic triterpenes. Flowers accumulated significant amounts of methyl-branched iso-alkanes (C29 and C31 total carbon number) in addition to straight-chain alkanes. Seed waxes were mostly primary fatty alcohols of up to 32 carbons in length and unbranched C29 and C31 alkanes. The total amount of identified wax components extracted by rapid chloroform dipping of roots was 280μgg(-1) (fresh weight), and included alkyl hydroxycinnamates, predominantly alkyl coumarates and alkyl caffeates. This study provides qualitative and quantitative information on the waxes of C. sativa root, shoot, and seed boundary tissues, allowing the relative activities of wax biosynthetic pathways in each respective plant organ to be assessed. This detailed description of the protective surface waxes of C. sativa may provide insights into its drought-tolerant and pathogen-resistant properties, and also identifies C. sativa as a potential source of renewable high-value natural products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Structure and sequence based functional annotation of Zika virus NS2b protein: Computational insights.

    PubMed

    Aguilera-Pesantes, Daniel; Méndez, Miguel A

    2017-10-28

    While Zika virus (ZIKV) outbreaks are a growing concern for global health, a deep understanding about the virus is lacking. Here we report a contribution to the basic science on the virus- a detailed computational analysis of the non structural protein NS2b. This protein acts as a cofactor for the NS3 protease (NS3Pro) domain that is important on the viral life cycle, and is an interesting target for drug development. We found that ZIKV NS2b cofactor is highly similar to other virus within the Flavivirus genus, especially to West Nile Virus, suggesting that it is completely necessary for the protease complex activity. Furthermore, the ZIKV NS2b has an important role to the function and stability of the ZIKV NS3 protease domain even when presents a low conservation score. In addition, ZIKV NS2b is mostly rigid, which could imply a non dynamic nature in substrate recognition. Finally, by performing a computational alanine scanning mutagenesis, we found that residues Gly 52 and Asp 83 in the NS2b could be important in substrate recognition. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Naturally occurring mutations associated with resistance to HCV NS5B polymerase and NS3 protease inhibitors in treatment-naïve patients with chronic hepatitis C.

    PubMed

    Costantino, Angela; Spada, Enea; Equestre, Michele; Bruni, Roberto; Tritarelli, Elena; Coppola, Nicola; Sagnelli, Caterina; Sagnelli, Evangelista; Ciccaglione, Anna Rita

    2015-11-14

    The detection of baseline resistance mutations to new direct-acting antivirals (DAAs) in HCV chronically infected treatment-naïve patients could be important for their management and outcome prevision. In this study, we investigated the presence of mutations, which have been previously reported to be associated with resistance to DAAs in HCV polymerase (NS5B) and HCV protease (NS3) regions, in sera of treatment-naïve patients. HCV RNA from 152 naïve patients (84 % Italian and 16 % immigrants from various countries) infected with different HCV genotypes (21,1a; 21, 1b; 2, 2a; 60, 2c; 22, 3a; 25, 4d and 1, 4k) was evaluated for sequence analysis. Amplification and sequencing of fragments in the NS5B (nt 8256-8640) and NS3 (nt 3420-3960) regions of HCV genome were carried out for 152 and 28 patients, respectively. The polymorphism C316N/H in NS5B region, associated with resistance to sofosbuvir, was detected in 9 of the 21 (43 %) analysed sequences from genotype 1b-infected patients. Naturally occurring mutations V36L, and M175L in the NS3 protease region were observed in 100 % of patients infected with subtype 2c and 4. A relevant proportion of treatment naïve genotype 1b infected patients evaluated in this study harboured N316 polymorphism and might poorly respond to sofosbuvir treatment. As sofosbuvir has been approved for treatment of HCV chronic infection in USA and Europe including Italy, pre-treatment testing for N316 polymorphism on genotype 1b naïve patients should be considered for this drug.

  12. Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli

    PubMed Central

    Hong, Seok Hoon; Wang, Xiaoxue; Wood, Thomas K.

    2010-01-01

    Summary The global regulator H‐NS of Escherichia coli controls genes related to stress response, biofilm formation and virulence by recognizing curved DNA and by silencing acquired genes. Here, we rewired H‐NS to control biofilm formation using protein engineering; H‐NS variant K57N was obtained that reduces biofilm formation 10‐fold compared with wild‐type H‐NS (wild‐type H‐NS increases biofilm formation whereas H‐NS K57N reduces it). Whole‐transcriptome analysis revealed that H‐NS K57N represses biofilm formation through its interaction with the nucleoid‐associated proteins Cnu and StpA and in the absence of these proteins, H‐NS K57N was unable to reduce biofilm formation. Significantly, H‐NS K57N enhanced the excision of defective prophage Rac while wild‐type H‐NS represses excision, and H‐NS controlled only Rac excision among the nine resident E. coli K‐12 prophages. Rac prophage excision not only led to the change in biofilm formation but also resulted in cell lysis through the expression of toxin HokD. Hence, the H‐NS regulatory system may be evolved through a single‐amino‐acid change in its N‐terminal oligomerization domain to control biofilm formation, prophage excision and apoptosis. PMID:21255333

  13. Phyotoxicity of diesel soil contamination on the germination of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Lewu, Francis Bayo; Zharare, Godfrey Elijah

    2015-11-01

    Phytotoxic effect of diesel contaminated soil on germination rate of Lactuca sativa and Ipomoea batatas, at two concentrations ranges (0-6ml and 0-30ml), were investigated and compared. Diesel soil contamination was simulated and soil samples were taken from contaminated soil at 1, 5,10, 15, 25, 50, 75 and 100 days should be after planting. The result showed that in both plant species, diesel inhibited germination in a concentration dependent manner, Also, the influence of diesel contamination diminished with increased time duration; suggesting possible reduction in diesel toxicity over time. However, germination of lettuce was significant and negatively correlated (r2 = -0.941) with diesel contamination as compared to sweet potato (r2 = -0.638).Critical concentration of diesel in relation to seed germination of L. sativa was lower than vegetative germination of I. batatas, indicating that germination of I. batatas was less sensitive to diesel contamination as compared to L. sativa.

  14. Testing the toxicity of metals, phenol, effluents, and receiving waters by root elongation in Lactuca sativa L.

    PubMed

    Lyu, Jie; Park, Jihae; Kumar Pandey, Lalit; Choi, Soyeon; Lee, Hojun; De Saeger, Jonas; Depuydt, Stephen; Han, Taejun

    2018-03-01

    Phytotoxicity tests using higher plants are among the most simple, sensitive, and cost-effective of the methods available for ecotoxicity testing. In the present study, a hydroponic-based phytotoxicity test using seeds of Lactuca sativa was used to evaluate the water quality of receiving waters and effluents near two industrial sites (Soyo and Daejon) in Korea with respect to the toxicity of 10 metals (As, Cd, Cr, Cu, Fe, Pb, Mn, Hg, Ni, Zn) and phenol, and of the receiving waters and effluents themselves. First, the L. sativa hydroponic bioassay was used to determine whether the receiving water or effluents were toxic; then, the responsible toxicant was identified. The results obtained with the L. sativa bioassay ranked the EC 50 toxicities of the investigated metal ions and phenol as: Cd > Ni > Cu > Zn > Hg > phenol > As > Mn > Cr > Pb > Fe. We found that Zn was the toxicant principally responsible for toxicity in Daejeon effluents. The Daejeon field effluent had a higher Zn concentration than permitted by the effluent discharge criteria of the Ministry of Environment of Korea. Our conclusion on the importance of Zn toxicity was supported by the results of the L. sativa hydroponic assay, which showed that the concentration of Zn required to inhibit root elongation in L. sativa by 50% (EC 50 ) was higher in the Daejeon field effluent than that of pure Zn. More importantly, we proved that the L. sativa hydroponic test method can be applied not only as an alternative tool for determining whether a given waste is acceptable for discharge into public water bodies, but also as an alternative method for measuring the safety of aquatic environments using EC 20 values, with respect to the water pollutants investigated (i.e., Cd, Cr, Cu, Pb, Mn, Hg, Ni, Zn, and phenol). Copyright © 2017. Published by Elsevier Inc.

  15. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    PubMed Central

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  16. Biofunctional properties of Eruca sativa Miller (rocket salad) hydroalcoholic extract.

    PubMed

    Sultan, Khushbakht; Zakir, Muhammad; Khan, Haroon; Rauf, Abdur; Akber, Noor Ul; Khan, Murad Ali

    2016-01-01

    Eruca sativa Miller is a worldwide common alimentary plant (rocket leaves). The aim of this study was to correlate the potential in vitro scavenging activity of the E. sativa hydroalcoholic extract (HAE) with its in vivo hypoglycaemic effect. In DDPH free radical (DFR) and ferric-reducing antioxidant power assays, HAE in a concentration dependent manner (25-100 μg/mL) displayed a strong scavenging activity with maximum effect of 88% and 75% at 100 μg/mL, respectively. Daily administration of HAE (50 mg/kg; p.o.) in the in vivo model of alloxan-induced diabetic rabbits for 28 days showed significant reduction in glycaemia, also supported by recovery of body weight. In conclusion, our results give preliminary information on the potential use of this plant as a nutraceutical, useful to control and/or prevent a hyperglycaemic status.

  17. The 2NS Translocation from Aegilops ventricosa Confers Resistance to the Triticum Pathotype of Magnaporthe oryzae

    PubMed Central

    Cruz, C.D.; Peterson, G.L.; Bockus, W.W.; Kankanala, P.; Dubcovsky, J.; Jordan, K.W.; Akhunov, E.; Chumley, F.; Baldelomar, F.D.; Valent, B.

    2016-01-01

    Wheat blast is a serious disease caused by the fungus Magnaporthe oryzae (Triticum pathotype) (MoT). The objective of this study was to determine the effect of the 2NS translocation from Aegilops ventricosa (Zhuk.) Chennav on wheat head and leaf blast resistance. Disease phenotyping experiments were conducted in growth chamber, greenhouse, and field environments. Among 418 cultivars of wheat (Triticum aestivum L.), those with 2NS had 50.4 to 72.3% less head blast than those without 2NS when inoculated with an older MoT isolate under growth chamber conditions. When inoculated with recently collected isolates, cultivars with 2NS had 64.0 to 80.5% less head blast. Under greenhouse conditions when lines were inoculated with an older MoT isolate, those with 2NS had a significant head blast reduction. With newer isolates, not all lines with 2NS showed a significant reduction in head blast, suggesting that the genetic background and/or environment may influence the expression of any resistance conferred by 2NS. However, when near-isogenic lines (NILs) with and without 2NS were planted in the field, there was strong evidence that 2NS conferred resistance to head blast. Results from foliar inoculations suggest that the resistance to head infection that is imparted by the 2NS translocation does not confer resistance to foliar disease. In conclusion, the 2NS translocation was associated with significant reductions in head blast in both spring and winter wheat. PMID:27814405

  18. Discovery of the Ubiquitous Cation NS+ in Space Confirmed by Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Lefloch, B.; Agúndez, M.; Bailleux, S.; Margulès, L.; Roueff, E.; Bachiller, R.; Marcelino, N.; Tercero, B.; Vastel, C.; Caux, E.

    2018-02-01

    We report the detection in space of a new molecular species that has been characterized spectroscopically and fully identified from astrophysical data. The observations were carried out with the IRAM 30 m telescope. The molecule is ubiquitous as its J=2\\to 1 transition has been found in cold molecular clouds, prestellar cores, and shocks. However, it is not found in the hot cores of Orion-KL and in the carbon-rich evolved star IRC+10216. Three rotational transitions in perfect harmonic relation J\\prime =2/3/5 have been identified in the prestellar core B1b. The molecule has a 1Σ electronic ground state and its J=2\\to 1 transition presents the hyperfine structure characteristic of a molecule containing a nucleus with spin 1. A careful analysis of possible carriers shows that the best candidate is NS+. The derived rotational constant agrees within 0.3%–0.7% with ab initio calculations. NS+ was also produced in the laboratory to unambiguously validate the astrophysical assignment. The observed rotational frequencies and determined molecular constants confirm the discovery of the nitrogen sulfide cation in space. The chemistry of NS+ and related nitrogen-bearing species has been analyzed by means of a time-dependent gas-phase model. The model reproduces well the observed NS/NS+ abundance ratio, in the range 30–50, and indicates that NS+ is formed by reactions of the neutral atoms N and S with the cations SH+ and NH+, respectively.

  19. Hepatitis C virus NS3 helicase forms oligomeric structures that exhibit optimal DNA unwinding activity in vitro.

    PubMed

    Sikora, Bartek; Chen, Yingfeng; Lichti, Cheryl F; Harrison, Melody K; Jennings, Thomas A; Tang, Yong; Tackett, Alan J; Jordan, John B; Sakon, Joshua; Cameron, Craig E; Raney, Kevin D

    2008-04-25

    HCV NS3 helicase exhibits activity toward DNA and RNA substrates. The DNA helicase activity of NS3 has been proposed to be optimal when multiple NS3 molecules are bound to the same substrate molecule. NS3 catalyzes little or no measurable DNA unwinding under single cycle conditions in which the concentration of substrate exceeds the concentration of enzyme by 5-fold. However, when NS3 (100 nm) is equimolar with the substrate, a small burst amplitude of approximately 8 nm is observed. The burst amplitude increases as the enzyme concentration increases, consistent with the idea that multiple molecules are needed for optimal unwinding. Protein-protein interactions may facilitate optimal activity, so the oligomeric properties of the enzyme were investigated. Chemical cross-linking indicates that full-length NS3 forms higher order oligomers much more readily than the NS3 helicase domain. Dynamic light scattering indicates that full-length NS3 exists as an oligomer, whereas NS3 helicase domain exists in a monomeric form in solution. Size exclusion chromatography also indicates that full-length NS3 behaves as an oligomer in solution, whereas the NS3 helicase domain behaves as a monomer. When NS3 was passed through a small pore filter capable of removing protein aggregates, greater than 95% of the protein and the DNA unwinding activity was removed from solution. In contrast, only approximately 10% of NS3 helicase domain and approximately 20% of the associated DNA unwinding activity was removed from solution after passage through the small pore filter. The results indicate that the optimally active form of full-length NS3 is part of an oligomeric species in vitro.

  20. Structure-based design of NS2 mutants for attenuated influenza A virus vaccines.

    PubMed

    Akarsu, Hatice; Iwatsuki-Horimoto, Kiyoko; Noda, Takeshi; Kawakami, Eiryo; Katsura, Hiroaki; Baudin, Florence; Horimoto, Taisuke; Kawaoka, Yoshihiro

    2011-01-01

    We previously characterised the matrix 1 (M1)-binding domain of the influenza A virus NS2/nuclear export protein (NEP), reporting a critical role for the tryptophan (W78) residue that is surrounded by a cluster of glutamate residues in the C-terminal region that interacts with the M1 protein (Akarsu et al., 2003). To gain further insight into the functional role of this interaction, here we used reverse genetics to generate a series of A/WSN/33 (H1N1)-based NS2/NEP mutants for W78 or the C-terminal glutamate residues and assessed their effect on virus growth. We found that simultaneous mutations at three positions (E67S/E74S/E75S) of NS2/NEP were important for inhibition of influenza viral polymerase activity, although the W78S mutant and other glutamate mutants with single substitutions were not. In addition, double and triple substitutions in the NS2/NEP glutamine residues, which resulted in the addition of seven amino acids to the C-terminus of NS1 due to gene overlapping, resulted in virus attenuation in mice. Animal studies with this mutant suggest a potential benefit to incorporating these NS mutations into live vaccines. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity

    PubMed Central

    Allonso, Diego; Andrade, Iamara S.; Conde, Jonas N.; Coelho, Diego R.; Rocha, Daniele C. P.; da Silva, Manuela L.; Ventura, Gustavo T.

    2015-01-01

    ABSTRACT Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. IMPORTANCE Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the

  2. Dengue Virus NS1 Protein Modulates Cellular Energy Metabolism by Increasing Glyceraldehyde-3-Phosphate Dehydrogenase Activity.

    PubMed

    Allonso, Diego; Andrade, Iamara S; Conde, Jonas N; Coelho, Diego R; Rocha, Daniele C P; da Silva, Manuela L; Ventura, Gustavo T; Silva, Emiliana M; Mohana-Borges, Ronaldo

    2015-12-01

    Dengue is one of the main public health concerns worldwide. Recent estimates indicate that over 390 million people are infected annually with the dengue virus (DENV), resulting in thousands of deaths. Among the DENV nonstructural proteins, the NS1 protein is the only one whose function during replication is still unknown. NS1 is a 46- to 55-kDa glycoprotein commonly found as both a membrane-associated homodimer and a soluble hexameric barrel-shaped lipoprotein. Despite its role in the pathogenic process, NS1 is essential for proper RNA accumulation and virus production. In the present study, we identified that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interacts with intracellular NS1. Molecular docking revealed that this interaction occurs through the hydrophobic protrusion of NS1 and the hydrophobic residues located at the opposite side of the catalytic site. Moreover, addition of purified recombinant NS1 enhanced the glycolytic activity of GAPDH in vitro. Interestingly, we observed that DENV infection promoted the relocalization of GAPDH to the perinuclear region, where NS1 is commonly found. Both DENV infection and expression of NS1 itself resulted in increased GAPDH activity. Our findings indicate that the NS1 protein acts to increase glycolytic flux and, consequently, energy production, which is consistent with the recent finding that DENV induces and requires glycolysis for proper replication. This is the first report to propose that NS1 is an important modulator of cellular energy metabolism. The data presented here provide new insights that may be useful for further drug design and the development of alternative antiviral therapies against DENV. Dengue represents a serious public health problem worldwide and is caused by infection with dengue virus (DENV). Estimates indicate that half of the global population is at risk of infection, with almost 400 million cases occurring per year. The NS1 glycoprotein is found in both the intracellular and the

  3. The Enigmatic Alphavirus Non-Structural Protein 3 (nsP3) Revealing Its Secrets at Last

    PubMed Central

    Götte, Benjamin; Liu, Lifeng

    2018-01-01

    Alphaviruses encode 4 non-structural proteins (nsPs), most of which have well-understood functions in capping and membrane association (nsP1), polyprotein processing and RNA helicase activity (nsP2) and as RNA-dependent RNA polymerase (nsP4). The function of nsP3 has been more difficult to pin down and it has long been referred to as the more enigmatic of the nsPs. The protein comprises three domains, an N-terminal macro domain, a central zinc-binding domain and a C-terminal hypervariable domain (HVD). In this article, we review old and new literature about the functions of the three domains. Much progress in recent years has contributed to a picture of nsP3, particularly through its HVD as a hub for interactions with host cell molecules, with multiple effects on the biology of the host cell at early points in infection. These and many future discoveries will provide targets for anti-viral therapies as well as strategies for modification of vectors for vaccine and oncolytic interventions. PMID:29495654

  4. Toxicity Effect of Cr Stress on Seed Germination and Seedling Growth in Lactuca Sativa

    NASA Astrophysics Data System (ADS)

    Ma, Wan Zheng; Ma, Wan Min; Du, Ying Ying; Dan, Qiong Peng; Yin, Bing; Dai, Shan Shan; Hao, Xiang

    2018-03-01

    The impact of Cr6+ on the growth of lactuca sativa in Greenhouse Cucumber was investigated. The seeds of lacuna sativa Italian bolting resistance lettuce were treated by different Cr6+ concentration to study the effects on its seed germination and seedling growth. The results showed that the seed germination rate, vigor index of seedlings decreased with increment of Cr6+ concentration to varying degrees, and vigor germination, vigor index, raw weight, root length significantly lower. The absorption of lettuce seedlings on different nutrient elements is impacted by the concentration of Cr6+.

  5. Wild parsnip (Pastinaca sativa)-induced photosensitization in goats and horses

    USDA-ARS?s Scientific Manuscript database

    Wild parsnip (Pastinaca sativa is a European biennial weed that was inadvertently introduced and has subsequently spread through many parts of North America. Though it is generally considered a nuisance as it displaces beneficial forages. It has also been sporadically associated with photosensitiza...

  6. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new

  7. A segment of rbcL gene as a potential tool for forensic discrimination of Cannabis sativa seized at Rio de Janeiro, Brazil.

    PubMed

    Mello, I C T; Ribeiro, A S D; Dias, V H G; Silva, R; Sabino, B D; Garrido, R G; Seldin, L; de Moura Neto, Rodrigo Soares

    2016-03-01

    Cannabis sativa, known by the common name marijuana, is the psychoactive drug most widely distributed in the world. Identification of Cannabis cultivars may be useful for association to illegal crops, which may reveal trafficking routes and related criminal groups. This study provides evidence for the performance of a segment of the rbcL gene, through genetic signature, as a tool for identification for C. sativa samples apprehended by the Rio de Janeiro Police, Brazil. The PCR amplified and further sequenced the fragment of approximately 561 bp of 24 samples of C. sativa rbcL gene and showed the same nucleotide sequences, suggesting a possible genetic similarity or identical varieties. Comparing with other Cannabaceae family sequences, we have found 99% of similarity between the Rio de Janeiro sequence and three other C. sativa rbcL genes. These findings suggest that the fragment utilized at this study is efficient in identifying C. sativa samples, therefore, useful in genetic discrimination of samples seized in forensic cases.

  8. Lead phytoextraction from printed circuit computer boards by Lolium perenne L. and Medicago sativa L.

    PubMed

    Díaz Martínez, María Esther; Argumedo-Delira, Rosalba; Sánchez Viveros, Gabriela; Alarcón, Alejandro; Trejo-Téllez, Libia Iris

    2018-04-16

    This work assessed the ability of Lolium perenne and Medicago sativa for extracting lead (Pb) from particulate printed circuit computer boards (PCB) mixed in sand with the following concentrations: 0.5, 1.0 and 1.5 g of PCB, and including a control treatment without PCB. The PCB were obtained from computers, and grinded in two particle sizes: 0.0594 mm (PCB1) and 0.0706 mm (PCB2). The PCB particle sizes at their corresponding concentrations were applied to L. perenne and M. sativa by using three experimental assays. In assay II, PCB2 affected the biomass production for both plants. For assay III, the PCB1 increased the biomass of M. sativa (236.5%) and L. perenne (142.2%) when applying either 0.5 or 1.0 g, respectively. In regards to phytoextraction, assay I showed the highest Pb-extraction by roots of L. perenne (4.7%) when exposed to 1.5 g of PCB1. At assay I, L. perenne showed a Pb-bioconcentration factor higher than 1.0 when growing at 0.5 g of PCB1, and when HNO 3 was used as digestion solution; moreover, in assay III both plants showed a Pb-translocation factor higher than 1.0. Therefore, Lolium perenne and Medicago sativa are able to recover Pb from electronic wastes (PCB).

  9. A single-chip 32-channel analog beamformer with 4-ns delay resolution and 768-ns maximum delay range for ultrasound medical imaging with a linear array transducer.

    PubMed

    Um, Ji-Yong; Kim, Yoon-Jee; Cho, Seong-Eun; Chae, Min-Kyun; Kim, Byungsub; Sim, Jae-Yoon; Park, Hong-June

    2015-02-01

    A single-chip 32-channel analog beamformer is proposed. It achieves a delay resolution of 4 ns and a maximum delay range of 768 ns. It has a focal-point based architecture, which consists of 7 sub-analog beamformers (sub-ABF). Each sub-ABF performs a RX focusing operation for a single focal point. Seven sub-ABFs perform a time-interleaving operation to achieve the maximum delay range of 768 ns. Phase interpolators are used in sub-ABFs to generate sampling clocks with the delay resolution of 4 ns from a low frequency system clock of 5 MHz. Each sub-ABF samples 32 echo signals at different times into sampling capacitors, which work as analog memory cells. The sampled 32 echo signals of each sub-ABF are originated from one target focal point at one instance. They are summed at one instance in a sub-ABF to perform the RX focusing for the target focal point. The proposed ABF chip has been fabricated in a 0.13- μ m CMOS process with an active area of 16 mm (2). The total power consumption is 287 mW. In measurement, the digital echo signals from a commercial ultrasound medical imaging machine were applied to the fabricated chip through commercial DAC chips. Due to the speed limitation of the DAC chips, the delay resolution was relaxed to 10 ns for the real-time measurement. A linear array transducer with no steering operation is used in this work.

  10. Virulence, Speciation and Antibiotic Susceptibility of Ocular Coagualase Negative Staphylococci (CoNS)

    PubMed Central

    Priya, Ravindran; Mythili, Arumugam; Singh, Yendremban Randhir Babu; Sreekumar, Haridas; Manikandan, Palanisamy; Panneerselvam, Kanesan

    2014-01-01

    Background: Coagulase negative Staphylococci (CoNS) are common inhabitants of human skin and mucous membranes. With the emergence of these organisms as prominent pathogens in patients with ocular infections, investigation has intensified in an effort to identify important virulence factors and to inform new approaches to treatment and prevention. Aim: To isolate CoNS from ocular specimens; to study the possible virulence factors; speciation of coagulase negative staphylococci (CoNS) which were isolated from ocular complications; antibiotic susceptibility testing of ocular CoNS. Materials and Methods: The specimens were collected from the target patients who attended the Microbiology Laboratory of a tertiary care eye hospital in Coimbatore, Tamilnadu state, India. The isolates were subjected to tube and slide coagulase tests for the identification of CoNS. All the isolates were subjected to screening for lipase and protease activities. Screening for other virulence factors viz., slime production on Congo red agar medium and haemagglutination assay with use of 96-well microtitre plates. These isolates were identified upto species level by performing biochemical tests such as phosphatase test, arginine test, maltose and trehalose fermentation tests and novobiocin sensitivity test. The isolates were subjected to antibiotic susceptibility studies, based on the revised standards of Clinical and Laboratory Standards Institutes (CLSI). Results: During the one year of study, among the total 260 individuals who were screened, 100 isolates of CoNS were obtained. Lipolytic activity was seen in all the isolates, whereas 38 isolates showed a positive result for protease. A total of 63 isolates showed slime production. Of 100 isolates, 30 isolates were analyzed for haemagglutination, where 4 isolates showed the capacity to agglutinate the erythrocytes. The results of the biochemical analysis revealed that of the 100 isolates of CoNS, 43% were Staphylococcus epidermidis. The other

  11. A first-principles based study of ns2 containing ternary iodides and their possibility of scintillation

    NASA Astrophysics Data System (ADS)

    Kang, Byungkyun; Fang, C. M.; Biswas, Koushik

    2016-10-01

    A recently investigated scintillator material CsBa2I5 showed promising properties when activated with ns2 ions In+, Tl+ or the lanthanide Eu2+. This sparked our interest in an analogous group of materials, e.g. InBa2I5 or TlBa2I5 where the ns2 ion is part of the crystal framework, replacing the alkali ion. Many of these compounds of the type AB2X5 (X  =  halogen) have been previously synthesized and have interesting stereochemical activity. Using density functional calculations we have studied the stable monoclinic phase of the aforementioned ns2 containing iodides. One objective is to explore them as scintillators where the ns2 ions, now appearing as part of the crystal, play a central role. Compared to CsBa2I5, their reduced fundamental band gap and possibility of higher light yield may be attributed to an induced degree of covalency in the ns2-I bonds. The valence and conduction band edges have discernible contributions from the ns2 ions’ s and p orbitals which is crucial in carrier localization. The antibonding Ga or In s sates near valence edge may be a favored site for a hole trap, as against a {{V}k} center. Additional differences among the ns2 compounds lead to qualitatively different self-trapped excitons that may fundamentally affect luminescence. The possibility of fast electron capture at the ns2 sites and the prospect of self-activated scintillation via ns2-p  →  {{V}k} or ns2-p  →  ns2-s transitions may draw interest in related applications.

  12. A novel cell-based assay to measure activity of Venezuelan equine encephalitis virus nsP2 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos-Gomez, Javier; Ahmad, Fahim; Rodriguez, Efrain

    2016-09-15

    The encephalitic alphaviruses encode nsP2 protease (nsP2pro), which because of its vital role in virus replication, represents an attractive target for therapeutic intervention. To facilitate the discovery of nsP2 inhibitors we have developed a novel assay for quantitative measurement of nsP2pro activity in a cell-based format. The assay is based on a substrate fusion protein consisting of eGFP and Gaussia luciferase (Gluc) linked together by a small peptide containing a VEEV nsp2pro cleavage sequence. The expression of the substrate protein in cells along with recombinant nsP2pro results in cleavage of the substrate protein resulting in extracellular release of free Gluc.more » The Gluc activity in supernatants corresponds to intracellular nsP2pro-mediated substrate cleavage; thus, providing a simple and convenient way to quantify nsP2pro activity. Here, we demonstrate potential utility of the assay in identification of nsP2pro inhibitors, as well as in investigations related to molecular characterization of nsP2pro. - Highlights: • A novel cell-based assay to measure VEEV nsP2 protease activity was developed. • Assay utility was demonstrated for antiviral screening. • .The assay also proved to be useful in basic mechanistic studies of nsP2 protease.« less

  13. Changes of ns-soot mixing states and shapes in an urban area during CalNex

    NASA Astrophysics Data System (ADS)

    Adachi, Kouji; Buseck, Peter R.

    2013-05-01

    Aerosol particles from megacities influence the regional and global climate as well as the health of their occupants. We used transmission electron microscopes (TEMs) to study aerosol particles collected from the Los Angeles area during the 2010 CalNex campaign. We detected major amounts of ns-soot, defined as consisting of carbon nanospheres, sulfate, sea salt, and organic aerosol (OA) and lesser amounts of brochosome particles from leaf hoppers. Ns-soot-particle shapes, mixing states, and abundances varied significantly with sampling times and days. Within plumes having high CO2 concentrations, much ns-soot was compacted and contained a relatively large number of carbon nanospheres. Ns-soot particles from both CalNex samples and Mexico City, the latter collected in 2006, had a wide range of shapes when mixed with other aerosol particles, but neither sets showed spherical ns-soot nor the core-shell configuration that is commonly used in optical calculations. Our TEM observations and light-absorption calculations of modeled particles indicate that, in contrast to ns-soot particles that are embedded within other materials or have the hypothesized core-shell configurations, those attached to other aerosol particles hardly enhance their light absorption. We conclude that the ways in which ns-soot mixes with other particles explain the observations of smaller light amplification by ns-soot coatings than model calculations during the CalNex campaign and presumably in other areas.

  14. Dye Oriza sativa glutinosa doped Fe as a active element of Dye Sensitized Solar Cell (DSSC)

    NASA Astrophysics Data System (ADS)

    Prasada, A. B.; Fadli, U. M.; Cari; Supriyanto, A.

    2016-11-01

    The aims of the research are to determine the effect of doping Fe (III) Sulphate into dye Oriza sativa glutinosa on the characteristics parameters of solar cells, to determine the optical characteristic, functional group and electrical characteristic of dye Oriza sativa glutinosa doped Fe (III) sulphate. TiO2 nano size as much as 0.5 gr dissolved in 3 ml ethanol. 100 gr black sticky rice (Oriza sativa glutinosa) was immersed in 80 ml ethanol solution (95%) and kept at room temperature without exposing to light. Then it was filtered with a filter paper no.42, and the extracted result was process with chromatography. Furthermore, it was doped with Fe (III) sulphate respectively of 10-1 M, 10-2 M, 10-3 M. The characteristic of dye solution was measured using UV-Visible Spectrophotometer Lambda 25 for absorbance, Elkahfi 100/I-V meter for conductivity amd Keithey 2602A for characterization of current and voltage (I-V). The result showed that the area of dye Oriza sativa glutionosa doped Fe (III) sulphate with concentration 10-1 M the largest, because the value of Voc intercept at 6.40 × 10-1 mV and the value Isc intercept at 1.89 × 10-3 mA, with efficiency value is 0.148%.

  15. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  16. The crystal structure of Zika virus NS5 reveals conserved drug targets.

    PubMed

    Duan, Wenqian; Song, Hao; Wang, Haiyuan; Chai, Yan; Su, Chao; Qi, Jianxun; Shi, Yi; Gao, George F

    2017-04-03

    Zika virus (ZIKV) has emerged as major health concern, as ZIKV infection has been shown to be associated with microcephaly, severe neurological disease and possibly male sterility. As the largest protein component within the ZIKV replication complex, NS5 plays key roles in the life cycle and survival of the virus through its N-terminal methyltransferase (MTase) and C-terminal RNA-dependent RNA polymerase (RdRp) domains. Here, we present the crystal structures of ZIKV NS5 MTase in complex with an RNA cap analogue ( m7 GpppA) and the free NS5 RdRp. We have identified the conserved features of ZIKV NS5 MTase and RdRp structures that could lead to development of current antiviral inhibitors being used against flaviviruses, including dengue virus and West Nile virus, to treat ZIKV infection. These results should inform and accelerate the structure-based design of antiviral compounds against ZIKV. © 2017 The Authors.

  17. Structure and function of the Zika virus full-length NS5 protein

    DOE PAGES

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei; ...

    2017-03-27

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  18. Effect of Ruta graveolens and Cannabis sativa alcoholic extract on spermatogenesis in the adult wistar male rats.

    PubMed

    Sailani, M R; Moeini, H

    2007-07-01

    The present study was undertaken to evaluate the effects of alcohol extracts of Ruta graveolens and Cannabis sativa that were used traditionally in medieval Persian medicine as male contraceptive drugs, on spermatogenesis in the adult male rats. Ethanol extracts of these plants were obtained by the maceration method. The male rats were injected intraperitionaly with C. sativa and R. graveolens 5% ethanol extracts at dose of 20 mg/day for 20 consecutive days, respectively. Twenty-four hours after the last treatment, testicular function was assessed by epididymal sperm count. The statistical results showed that the ethanol extracts of these plants reduced the number of sperms significantly (P=0.00) in the treatment groups in comparison to the control group. The results also showed that the group, treated by extract of R. graveolens reduced spermatogenesis more than the group treated by extracts of C. sativa. The present study demonstrated the spermatogenesis reducing properties of the ethanol extracts of R. graveolens and C. sativa in the adult male wistar rats but more studies are necessary to reveal the mechanism of action that is involved in spermatogenesis.

  19. The CENNS-10 liquid argon detector to measure CEvNS at the Spallation Neutron Source

    NASA Astrophysics Data System (ADS)

    Tayloe, R.

    2018-04-01

    The COHERENT collaboration is deploying a suite of low-energy detectors in a low-background corridor of the ORNL Spallation Neutron Source (SNS) to measure coherent elastic neutrino-nucleus scattering (CEvNS) on an array of nuclear targets employing different detector technologies. A measurement of CEvNS on different nuclei will test the N2-dependence of the CEvNS cross section and further the physics reach of the COHERENT effort. The first step of this program has been realized recently with the observation of CEvNS in a 14.6 kg CsI detector. Operation and deployment of Ge and NaI detectors are also underway. A 22 kg, single-phase, liquid argon detector (CENNS-10) started data-taking in Dec. 2016 and will provide results on CEvNS from a lighter nucleus. Initial results indicate that light output, pulse-shape discrimination, and background suppression are sufficient for a measurement of CEvNS on argon.

  20. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.

    PubMed

    Xie, Xuping; Zou, Jing; Puttikhunt, Chunya; Yuan, Zhiming; Shi, Pei-Yong

    2015-01-15

    Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA

  1. Pomegranate ( Punica granatum L.) expresses several nsLTP isoforms characterized by different immunoglobulin E-binding properties.

    PubMed

    Bolla, Michela; Zenoni, Sara; Scheurer, Stephan; Vieths, Stefan; San Miguel Moncin, Maria Del Mar; Olivieri, Mario; Antico, Andrea; Ferrer, Marta; Berroa, Felicia; Enrique, Ernesto; Avesani, Linda; Marsano, Francesco; Zoccatelli, Gianni

    2014-01-01

    Pomegranate allergy is associated with sensitization to non-specific lipid transfer proteins (nsLTPs). Our aim was to identify and characterize the non-specific nsLTPs expressed in pomegranate at the molecular level and to study their allergenic properties in terms of immunoglobulin E (IgE)-binding and cross-reactivity with peach nsLTP (Pru p 3). A non-equilibrium two-dimensional (2-D) electrophoretic approach based on acid-urea PAGE and sodium dodecyl sulfate PAGE was set up to separate pomegranate nsLTPs. Their immunoreactivity was tested by immunoblotting carried out with anti-Pru p 3 polyclonal antibodies and sera from pomegranate-allergic patients. For final identification, pomegranate nsLTPs were purified by chromatography and subjected to trypsin digestion and mass spectrometry (MS) analysis. For this purpose, the sequences obtained by cDNA cloning of three pomegranate nsLTPs were integrated in the database that was subsequently searched for MS data interpretation. Four nsLTPs were identified by 2-D immunoblotting. The detected proteins showed different IgE-binding capacity and partial cross-reactivity with Pru p 3. cDNA cloning and MS analyses led to the identification of three nsLTP isoforms with 66-68% amino acid sequence identity named Pun g 1.0101, Pun g 1.0201 and Pun g 1.0301. By 2-D electrophoresis, we could separate different nsLTP isoforms possessing different IgE-binding properties, which might reflect peculiar allergenic potencies. The contribution of Pru p 3 to prime sensitization is not central as in other plant nsLTPs. © 2014 S. Karger AG, Basel.

  2. Bio-active nanoemulsions enriched with gold nanoparticle, marigold extracts and lipoic acid: In vitro investigations.

    PubMed

    Guler, Emine; Barlas, F Baris; Yavuz, Murat; Demir, Bilal; Gumus, Z Pinar; Baspinar, Yucel; Coskunol, Hakan; Timur, Suna

    2014-09-01

    A novel and efficient approach for the preparation of enriched herbal formulations was described and their potential applications including wound healing and antioxidant activity (cell based and cell free) were investigated via in vitro cell culture studies. Nigella sativa oil was enriched with Calendula officinalis extract and lipoic acid capped gold nanoparticles (AuNP-LA) using nanoemulsion systems. The combination of these bio-active compounds was used to design oil in water (O/W) and water in oil (W/O) emulsions. The resulted emulsions were characterized by particle size measurements. The phenolic content of each nanoemulsion was examined by using both colorimetric assay and chromatographic analyses. Two different methods containing cell free chemical assay (1-diphenyl-2-picrylhydrazyl method) and cell based antioxidant activity test were used to evaluate the antioxidant capacities. In order to investigate the bio-activities of the herbal formulations, in vitro cell culture experiments, including cytotoxicity, scratch assay, antioxidant activity and cell proliferation were carried out using Vero cell line as a model cell line. Furthermore, to monitor localization of the nanoemulsions after application of the cell culture, the cell images were monitored via fluorescence microscope after FITC labeling. All data confirmed that the enriched N. sativa formulations exhibited better antioxidant and wound healing activity than N. sativa emulsion without any enrichment. In conclusion, the incorporation of AuNP-LA and C. officinalis extract into the N. sativa emulsions significantly increased the bio-activities. The present work may support further studies about using the other bio-active agents for the enrichment of herbal preparations to strengthen their activities. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A basic cluster in the N terminus of yellow fever virus NS2A contributes to infectious particle production.

    PubMed

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy; Kümmerer, Beate Mareike

    2015-05-01

    The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified a basic cluster of

  4. A Basic Cluster in the N Terminus of Yellow Fever Virus NS2A Contributes to Infectious Particle Production

    PubMed Central

    Voßmann, Stephanie; Wieseler, Janett; Kerber, Romy

    2015-01-01

    ABSTRACT The flavivirus NS2A protein is involved in the assembly of infectious particles. To further understand its role in this process, a charged-to-alanine scanning analysis was performed on NS2A encoded by an infectious cDNA clone of yellow fever virus (YFV). Fifteen mutants containing single, double, or triple charged-to-alanine changes were tested. Five of them did not produce infectious particles, whereas efficient RNA replication was detectable for two of the five NS2A mutants (R22A-K23A-R24A and R99A-E100A-R101A mutants). Prolonged cultivation of transfected cells resulted in the recovery of pseudorevertants. Besides suppressor mutants in NS2A, a compensating second-site mutation in NS3 (D343G) arose for the NS2A R22A-K23A-R24A mutant. We found this NS3 mutation previously to be suppressive for the NS2Aα cleavage site Q189S mutant, also deficient in virion assembly. In this study, the subsequently suggested interaction between NS2A and NS3 was proven by coimmunoprecipitation analyses. Using selectively permeabilized cells, we could demonstrate that the regions encompassing R22A-K23A-R24A and Q189S in NS2A are localized to the cytoplasm, where NS3 is also known to reside. However, the defect in particle production observed for the NS2A R22A-K23A-R24A and Q189S mutants was not due to a defect in physical interaction between NS2A and NS3, as the NS2A mutations did not interrupt NS3 interaction. In fact, a region just upstream of R22-K23-R24 was mapped to be critical for NS2A-NS3 interaction. Taken together, these data support a complex interplay between YFV NS2A and NS3 in virion assembly and identify a basic cluster in the NS2A N terminus to be critical in this process. IMPORTANCE Despite an available vaccine, yellow fever remains endemic in tropical areas of South America and Africa. To control the disease, antiviral drugs are required, and an understanding of the determinants of virion assembly is central to their development. In this study, we identified

  5. Hemp (Cannabis sativa L.).

    PubMed

    Feeney, Mistianne; Punja, Zamir K

    2015-01-01

    Hemp (Cannabis sativa L.) suspension culture cells were transformed with Agrobacterium tumefaciens strain EHA101 carrying the binary plasmid pNOV3635. The plasmid contains a phosphomannose isomerase (PMI) selectable marker gene. Cells transformed with PMI are capable of metabolizing the selective agent mannose, whereas cells not expressing the gene are incapable of using the carbon source and will stop growing. Callus masses proliferating on selection medium were screened for PMI expression using a chlorophenol red assay. Genomic DNA was extracted from putatively transformed callus lines, and the presence of the PMI gene was confirmed using PCR and Southern hybridization. Using this method, an average transformation frequency of 31.23% ± 0.14 was obtained for all transformation experiments, with a range of 15.1-55.3%.

  6. Differential roles for the C-terminal hexapeptide domains of NS2 splice variants during MVM infection of murine cells.

    PubMed

    Ruiz, Zandra; D'Abramo, Anthony; Tattersall, Peter

    2006-06-05

    The MVM NS2 proteins are required for viral replication in cells of its normal murine host, but are dispensable in transformed human 324K cells. Alternate splicing at the minor intron controls synthesis of three forms of this protein, which differ in their C-terminal hexapeptides and in their relative abundance, with NS2P and NS2Y, the predominant isoforms, being expressed at a 5:1 ratio. Mutant genomes were constructed with premature termination codons in the C-terminal exons of either NS2P or NS2Y, which resulted in their failure to accumulate in vivo. To modulate their expression levels, we also introduced a mutation at the putative splice branch point of the large intron, dubbed NS2(lo), that reduced total NS2 expression in murine A9 cells such that NS2P accumulated to approximately half the level normally seen for NS2Y. All mutants replicated productively in human 324K cells. In A9 cells, NS2Y(-) mutants replicated like wildtype, and the NS2(lo) mutants expressed NS1 and replicated duplex viral DNA like wildtype, although their progeny single-strand DNA synthesis was reduced. However, while NS2P(-) and NS2-null viruses initiated infection efficiently in A9 cells, they gave diminished NS1 levels, and viral macromolecular synthesis appeared to become paralyzed shortly after the onset of viral duplex DNA amplification, such that no progeny single-strand DNA could be detected. Thus, the NS2P isoform, even when expressed at a level lower than that of NS2Y, performs a critical role in infection of A9 cells that cannot be accomplished by the NS2Y isoform alone.

  7. Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication.

    PubMed

    Shanmugam, Saravanabalaji; Saravanabalaji, Dhanaranjani; Yi, MinKyung

    2015-04-01

    Previously, we demonstrated that the efficiency of hepatitis C virus (HCV) E2-p7 processing regulates p7-dependent NS2 localization to putative virus assembly sites near lipid droplets (LD). In this study, we have employed subcellular fractionations and membrane flotation assays to demonstrate that NS2 associates with detergent-resistant membranes (DRM) in a p7-dependent manner. However, p7 likely plays an indirect role in this process, since only the background level of p7 was detectable in the DRM fractions. Our data also suggest that the p7-NS2 precursor is not involved in NS2 recruitment to the DRM, despite its apparent targeting to this location. Deletion of NS2 specifically inhibited E2 localization to the DRM, indicating that NS2 regulates this process. Treatment of cells with methyl-β-cyclodextrin (MβCD) significantly reduced the DRM association of Core, NS2, and E2 and reduced infectious HCV production. Since disruption of the DRM localization of NS2 and E2, either due to p7 and NS2 defects, respectively, or by MβCD treatment, inhibited infectious HCV production, these proteins' associations with the DRM likely play an important role during HCV assembly. Interestingly, we detected the HCV replication-dependent accumulation of ApoE in the DRM fractions. Taking into consideration the facts that ApoE was shown to be a major determinant for infectious HCV particle production at the postenvelopment step and that the HCV Core protein strongly associates with the DRM, recruitment of E2 and ApoE to the DRM may allow the efficient coordination of Core particle envelopment and postenvelopment events at the DRM to generate infectious HCV production. The biochemical nature of HCV assembly sites is currently unknown. In this study, we investigated the correlation between NS2 and E2 localization to the detergent-resistant membranes (DRM) and HCV particle assembly. We determined that although NS2's DRM localization is dependent on p7, p7 was not targeted to these

  8. A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases.

    PubMed

    Hasani-Ranjbar, Shirin; Larijani, Bagher; Abdollahi, Mohammad

    2009-03-01

    This review focuses on the medicinal plants growing and having history of folk medicine in Iran and found effective as anti free radical damage in animal or human. Embase, Scopus, Pubmed, Web of Science, Google Scholar, IranMedex, and SID databases were searched up to 2 February 2008. The search terms were antioxidant or "lipid peroxidation" and "plant, medicinal plant, herb, traditional, natural or herbal medicine" limited to Iran. Studies that assessed effects on cell lines or isolated organs, fetal toxicity, and reviews or letters were excluded. Antioxidative effect and lipid peroxidation inhibition were the key outcomes. Forty-six animal studies on the efficacy of medicinal plants were reviewed. Lipid peroxidation was reduced in different clinical circumstances by Ferula szovitsiana, Nigella sativa, Rosa damascene petal, Phlomis anisodonta, Rosemary, Zataria multiflora Boiss, Saffron, Amirkabiria odorastissima mozaffarian, Ficus carica Linn., Ziziphora clinopoides, Carica papaya, Chichorium intybus, Turmer, Eugenol, Curcumin, and Pistacia vera L. Human studies showed that Cinnamomum zeylanicum and Echium amoenum Fisch & C.A. Mey reduce lipid peroxidation and improve total antioxidant power in healthy subjects. Improvement of blood lipid profile was shown by Silybum marianum, garlic, and wheat germ. Amongst these useful herbs, some like Cinnamon, Silybum marianum, Garlic, Nigella, and Echium seem potential targets of future effective drugs for diseases in which free radical damage play a pathogenical role.

  9. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042

    PubMed Central

    2018-01-01

    ABSTRACT Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae, cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli, out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue (hns2). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae. IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool. PMID

  10. Evolution of Bacterial Global Modulators: Role of a Novel H-NS Paralogue in the Enteroaggregative Escherichia coli Strain 042.

    PubMed

    Prieto, A; Bernabeu, M; Aznar, S; Ruiz-Cruz, S; Bravo, A; Queiroz, M H; Juárez, A

    2018-01-01

    Bacterial genomes sometimes contain genes that code for homologues of global regulators, the function of which is unclear. In members of the family Enterobacteriaceae , cells express the global regulator H-NS and its paralogue StpA. In Escherichia coli , out of providing a molecular backup for H-NS, the role of StpA is poorly characterized. The enteroaggregative E. coli strain 042 carries, in addition to the hns and stpA genes, a third gene encoding an hns paralogue ( hns2 ). We present in this paper information about its biological function. Transcriptomic analysis has shown that the H-NS2 protein targets a subset of the genes targeted by H-NS. Genes targeted by H-NS2 correspond mainly with horizontally transferred (HGT) genes and are also targeted by the Hha protein, a fine-tuner of H-NS activity. Compared with H-NS, H-NS2 expression levels are lower. In addition, H-NS2 expression exhibits specific features: it is sensitive to the growth temperature and to the nature of the culture medium. This novel H-NS paralogue is widespread within the Enterobacteriaceae . IMPORTANCE Global regulators such as H-NS play key relevant roles enabling bacterial cells to adapt to a changing environment. H-NS modulates both core and horizontally transferred (HGT) genes, but the mechanism by which H-NS can differentially regulate these genes remains to be elucidated. There are several instances of bacterial cells carrying genes that encode homologues of the global regulators. The question is what the roles of these proteins are. We noticed that the enteroaggregative E. coli strain 042 carries a new hitherto uncharacterized copy of the hns gene. We decided to investigate why this pathogenic E. coli strain requires an extra H-NS paralogue, termed H-NS2. In our work, we show that H-NS2 displays specific expression and regulatory properties. H-NS2 targets a subset of H-NS-specific genes and may help to differentially modulate core and HGT genes by the H-NS cellular pool.

  11. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  12. Quantification of NS1 dengue biomarker in serum via optomagnetic nanocluster detection

    NASA Astrophysics Data System (ADS)

    Antunes, Paula; Watterson, Daniel; Parmvi, Mattias; Burger, Robert; Boisen, Anja; Young, Paul; Cooper, Matthew A.; Hansen, Mikkel F.; Ranzoni, Andrea; Donolato, Marco

    2015-11-01

    Dengue is a tropical vector-borne disease without cure or vaccine that progressively spreads into regions with temperate climates. Diagnostic tools amenable to resource-limited settings would be highly valuable for epidemiologic control and containment during outbreaks. Here, we present a novel low-cost automated biosensing platform for detection of dengue fever biomarker NS1 and demonstrate it on NS1 spiked in human serum. Magnetic nanoparticles (MNPs) are coated with high-affinity monoclonal antibodies against NS1 via bio-orthogonal Cu-free ‘click’ chemistry on an anti-fouling surface molecular architecture. The presence of the target antigen NS1 triggers MNP agglutination and the formation of nanoclusters with rapid kinetics enhanced by external magnetic actuation. The amount and size of the nanoclusters correlate with the target concentration and can be quantified using an optomagnetic readout method. The resulting automated dengue fever assay takes just 8 minutes, requires 6 μL of serum sample and shows a limit of detection of 25 ng/mL with an upper detection range of 20000 ng/mL. The technology holds a great potential to be applied to NS1 detection in patient samples. As the assay is implemented on a low-cost microfluidic disc the platform is suited for further expansion to multiplexed detection of a wide panel of biomarkers.

  13. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts.

    PubMed

    Frassinetti, Stefania; Moccia, Eleonora; Caltavuturo, Leonardo; Gabriele, Morena; Longo, Vincenzo; Bellani, Lorenza; Giorgi, Gianluca; Giorgetti, Lucia

    2018-10-01

    In this study the antioxidant effect of Cannabis sativa L. seeds and sprouts (3 and 5 days of germination) was evaluated. Total polyphenols, flavonoids and flavonols content, when expressed on dry weight basis, were highest in sprouts; ORAC and DPPH (in vitro assays), CAA-RBC (cellular antioxidant activity in red blood cells) and hemolysis test (ex vivo assays) evidenced a good antioxidant activity higher in sprouts than in seeds. Untargeted analysis by high resolution mass spectrometry in negative ion mode allowed the identification of main polyphenols (caffeoyltyramine, cannabisin A, B, C) in seeds and of ω-6 (linoleic acid) in sprouts. Antimutagenic effect of seeds and sprouts extracts evidenced a significant decrease of mutagenesis induced by hydrogen peroxide in Saccharomyces cerevisiae D7 strain. In conclusion our results show that C. sativa seeds and sprouts exert beneficial effects on yeast and human cells and should be further investigated as a potential functional food. Copyright © 2018. Published by Elsevier Ltd.

  14. Phytotoxicity of three plant-based biodiesels, unmodified castor oil, and Diesel fuel to alfalfa (Medicago sativa L.), lettuce (Lactuca sativa L.), radish (Raphanus sativus), and wheatgrass (Triticum aestivum).

    PubMed

    Bamgbose, Ifeoluwa; Anderson, Todd A

    2015-12-01

    The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%) ≥ Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further

  15. The non-structural (NS) gene segment of H9N2 influenza virus isolated from backyard poultry in Pakistan reveals strong genetic and functional similarities to the NS gene of highly pathogenic H5N1

    PubMed Central

    Munir, Muhammad; Zohari, Siamak; Iqbal, Munir; Abbas, Muhammad; Perez, Daniel Roberto; Berg, Mikael

    2013-01-01

    Apart from natural reassortment, co-circulation of different avian influenza virus strains in poultry populations can lead to generation of novel variants and reassortant viruses. In this report, we studied the genetics and functions of a reassorted non-structural gene (NS) of H9N2 influenza virus collected from back yard poultry (BYP) flock. Phylogenetic reconstruction based on hemagglutinin and neuraminidase genes indicates that an isolate from BYP belongs to H9N2. However, the NS gene-segment of this isolate cluster into genotype Z, clade 2.2 of the highly pathogenic H5N1. The NS gene plays essential roles in the host-adaptation, cell-tropism, and virulence of influenza viruses. However, such interpretations have not been investigated in naturally recombinant H9N2 viruses. Therefore, we compared the NS1 protein of H9N2 (H9N2/NS1) and highly pathogenic H5N1 (H5N1/NS1) in parallel for their abilities to regulate different signaling pathways, and investigated the molecular mechanisms of IFN-β production in human, avian, and mink lung cells. We found that H9N2/NS1 and H5N1/NS1 are comparably similar in inhibiting TNF-α induced nuclear factor κB and double stranded RNA induced activator protein 1 and interferon regulatory factor 3 transcription factors. Thus, the production of IFN-β was inhibited equally by both NS1s as demonstrated by IFN stimulatory response element and IFN-β promoter activation. Moreover, both NS1s predominantly localized in the nucleus when transfected to human A549 cells. This study therefore suggests the possible increased virulence of natural reassortant viruses for their efficient invasion of host immune responses, and proposes that these should not be overlooked for their epizootic and zoonotic potential. PMID:23959028

  16. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes.

    PubMed

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-06-20

    The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus NS1s in the blood of infected interferon-α and γ receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments.

  17. Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes

    PubMed Central

    Liu, Jianying; Liu, Yang; Nie, Kaixiao; Du, Senyan; Qiu, Jingjun; Pang, Xiaojing; Wang, Penghua; Cheng, Gong

    2016-01-01

    Summary The arbovirus life cycle involves viral transfer between a vertebrate host and an arthropod vector, and acquisition of virus from an infected mammalian host by a vector is an essential step in this process. Here, we report that flavivirus nonstructural protein-1 (NS1), which is abundantly secreted into the serum of an infected host, plays a critical role in flavivirus acquisition by mosquitoes. The presence of dengue virus (DENV) and Japanese encephalitis virus (JEV) NS1s in the blood of infected interferon alpha and gamma receptor-deficient mice (AG6) facilitated virus acquisition by their native mosquito vectors because the protein enabled the virus to overcome the immune barrier of the mosquito midgut. Active immunization of AG6 mice with a modified DENV NS1 reduced DENV acquisition by mosquitoes and protected mice against a lethal DENV challenge, suggesting that immunization with NS1 could reduce the number of virus-carrying mosquitoes as well as the incidence of flaviviral diseases. Our study demonstrates that flaviviruses utilize NS1 proteins produced during their vertebrate phases to enhance their acquisition by vectors, which might be a result of flavivirus evolution to adapt to multiple host environments. PMID:27562253

  18. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis

  19. Identification of high-specificity H-NS binding site in LEE5 promoter of enteropathogenic Esherichia coli (EPEC).

    PubMed

    Bhat, Abhay Prasad; Shin, Minsang; Choy, Hyon E

    2014-07-01

    Histone-like nucleoid structuring protein (H-NS) is a small but abundant protein present in enteric bacteria and is involved in compaction of the DNA and regulation of the transcription. Recent reports have suggested that H-NS binds to a specific AT rich DNA sequence than to intrinsically curved DNA in sequence independent manner. We detected two high-specificity H-NS binding sites in LEE5 promoter of EPEC centered at -110 and -138, which were close to the proposed consensus H-NS binding motif. To identify H-NS binding sequence in LEE5 promoter, we took a random mutagenesis approach and found the mutations at around -138 were specifically defective in the regulation by H-NS. It was concluded that H-NS exerts maximum repression via the specific sequence at around -138 and subsequently contacts a subunit of RNAP through oligomerization.

  20. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments.

    PubMed

    Boudreau, Beth A; Hron, Daniel R; Qin, Liang; van der Valk, Ramon A; Kotlajich, Matthew V; Dame, Remus T; Landick, Robert

    2018-06-20

    In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.

  1. The Changing Face of Hepatitis C: Recent Advances on HCV Inhibitors Targeting NS5A

    PubMed

    Rai, Diwakar; Wang, Liu; Jiang, Xuemei; Zhan, Peng; Jia, Haiyong; De Clercq, Erik; Liu, Xinyong

    2015-05-05

    Current treatment for HCV infections consists of approved direct acting antivirals (DAAs), viz. the protease inhibitors (boceprevir, telaprevir, and simeprevir), NS5B polymerase inhibitors (sofosbuvir) and NS5A inhibitor (ledipasvir) in combination with pegylated interferon α and ribavirin). These treatments have made a great improvement in the treatment of chronic HCV infections in recent years, but their adverse side effects, emergence of resistant mutants, high cost, and increased pill burden have limited their clinical use. Recently, with the increasing knowledge in understanding the HCV life cycle, more targets have been recognized. NS5A protein plays a critical role in assembly of infectious HCV particles and offering potential for HCV therapies. Therefore, discovery and development of novel DAAs targeting NS5A with novel mechanisms of action, is of great necessity to improve the quality of existing HCV treatments. In the present review, we discuss recent advances with NS5A inhibitors with potent anti-HCV activity, and the potential for the development of HCV NS5A inhibitors to combat HCV infections.

  2. A systematic review of anti-obesity medicinal plants - an update

    PubMed Central

    2013-01-01

    Obesity is the most prevalent health problem affecting all age groups, and leads to many complications in the form of chronic heart disease, diabetes mellitus Type 2 and stroke. A systematic review about safety and efficacy of herbal medicines in the management of obesity in human was carried out by searching bibliographic data bases such as, PubMed, Scopus, Google Scholar, Web of Science, and IranMedex, for studies reported between 30th December 2008 to 23rd April 2012 on human or animals, investigating the beneficial and harmful effects of herbal medicine to treat obesity. Actually we limited our search to such a narrow window of time in order to update our article published before December of 2008. In this update, the search terms were “obesity” and (“herbal medicine” or “plant”, “plant medicinal” or “medicine traditional”) without narrowing or limiting search items. Publications with available abstracts were reviewed only. Total publications found in the initial search were 651. Total number of publications for review study was 33 by excluding publications related to animals study. Studies with Nigella Sativa, Camellia Sinensis, Crocus Sativus L, Seaweed laminaria Digitata, Xantigen, virgin olive oil, Catechin enriched green tea, Monoselect Camellia, Oolong tea, Yacon syrup, Irvingia Gabonensi, Weighlevel, RCM-104 compound of Camellia Sinensis, Pistachio, Psyllium fibre, black Chinese tea, sea buckthorn and bilberries show significant decreases in body weight. Only, alginate-based brown seaweed and Laminaria Digitata caused an abdominal bloating and upper respiratory tract infection as the side effect in the trial group. No other significant adverse effects were reported in all 33 trials included in this article. In conclusion, Nigella Sativa, Camellia Synensis, Green Tea, and Black Chinese Tea seem to have satisfactory anti-obesity effects. The effect size of these medicinal plants is a critical point that should be considered for

  3. A systematic review of anti-obesity medicinal plants - an update.

    PubMed

    Hasani-Ranjbar, Shirin; Jouyandeh, Zahra; Abdollahi, Mohammad

    2013-06-19

    Obesity is the most prevalent health problem affecting all age groups, and leads to many complications in the form of chronic heart disease, diabetes mellitus Type 2 and stroke. A systematic review about safety and efficacy of herbal medicines in the management of obesity in human was carried out by searching bibliographic data bases such as, PubMed, Scopus, Google Scholar, Web of Science, and IranMedex, for studies reported between 30th December 2008 to 23rd April 2012 on human or animals, investigating the beneficial and harmful effects of herbal medicine to treat obesity. Actually we limited our search to such a narrow window of time in order to update our article published before December of 2008. In this update, the search terms were "obesity" and ("herbal medicine" or "plant", "plant medicinal" or "medicine traditional") without narrowing or limiting search items. Publications with available abstracts were reviewed only. Total publications found in the initial search were 651. Total number of publications for review study was 33 by excluding publications related to animals study.Studies with Nigella Sativa, Camellia Sinensis, Crocus Sativus L, Seaweed laminaria Digitata, Xantigen, virgin olive oil, Catechin enriched green tea, Monoselect Camellia, Oolong tea, Yacon syrup, Irvingia Gabonensi, Weighlevel, RCM-104 compound of Camellia Sinensis, Pistachio, Psyllium fibre, black Chinese tea, sea buckthorn and bilberries show significant decreases in body weight. Only, alginate-based brown seaweed and Laminaria Digitata caused an abdominal bloating and upper respiratory tract infection as the side effect in the trial group. No other significant adverse effects were reported in all 33 trials included in this article.In conclusion, Nigella Sativa, Camellia Synensis, Green Tea, and Black Chinese Tea seem to have satisfactory anti-obesity effects. The effect size of these medicinal plants is a critical point that should be considered for interpretation. Although there

  4. Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa

    PubMed Central

    Morin, Ryan D.; Aksay, Gozde; Dolgosheina, Elena; Ebhardt, H. Alexander; Magrini, Vincent; Mardis, Elaine R.; Sahinalp, S. Cenk; Unrau, Peter J.

    2008-01-01

    The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs. Deep sequencing provides the means to characterize and quantitatively profile small RNAs in understudied organisms such as these. Pyrosequencing of small RNAs from O. sativa revealed, as expected, ∼21- and ∼24-nt RNAs. The former contained known microRNAs, and the latter largely comprised intergenic-derived sequences likely representing heterochromatin siRNAs. In contrast, sequences from Pinus contorta were dominated by 21-nt small RNAs. Using a novel sequence-based clustering algorithm, we identified sequences belonging to 18 highly conserved microRNA families in P. contorta as well as numerous clusters of conserved small RNAs of unknown function. Using multiple methods, including expressed sequence folding and machine learning algorithms, we found a further 53 candidate novel microRNA families, 51 appearing specific to the P. contorta library. In addition, alignment of small RNA sequences to the O. sativa genome revealed six perfectly conserved classes of small RNA that included chloroplast transcripts and specific types of genomic repeats. The conservation of microRNAs and other small RNAs between the conifers and the angiosperms indicates that important RNA silencing processes were highly developed in the earliest spermatophytes. Genomic mapping of all sequences to the O. sativa genome can be viewed at http://microrna.bcgsc.ca/cgi-bin/gbrowse/rice_build_3/. PMID:18323537

  5. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha.

    PubMed

    García, Jesús; Cordeiro, Tiago N; Nieto, José M; Pons, Ignacio; Juárez, Antonio; Pons, Miquel

    2005-06-15

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 degrees C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS.

  6. Interaction between the bacterial nucleoid associated proteins Hha and H-NS involves a conformational change of Hha

    PubMed Central

    2005-01-01

    The H-NS family of proteins has been shown to participate in the regulation of a large number of genes in Gram-negative bacteria in response to environmental factors. In recent years, it has become apparent that proteins of the Hha family are essential elements for H-NS-regulated gene expression. Hha has been shown to bind H-NS, although the details for this interaction are still unknown. In the present paper, we report fluorescence anisotropy and NMR studies of the interaction between Hha and H-NS64, a truncated form of H-NS containing only its N-terminal dimerization domain. We demonstrate the initial formation of a complex between one Hha and two H-NS64 monomers in 150 mM NaCl. This complex seems to act as a nucleation unit for higher-molecular-mass complexes. NMR studies suggest that Hha is in equilibrium between two different conformations, one of which is stabilized by binding to H-NS64. A similar exchange is also observed for Hha in the absence of H-NS when temperature is increased to 37 °C, suggesting a key role for intrinsic conformational changes of Hha in modulating its interaction with H-NS. PMID:15720293

  7. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. [Advances in Parvovirus Non-structural Protein NS1 Induced Apoptosis].

    PubMed

    Tu, Mengyu; Liu, Fei; Chen, Shun; Wang, Mingshu; Cheng, Anchun

    2015-11-01

    Until now, more than seventeen parvovirus have been reported which can infect mammals and poultries. The infected cells appeared different properties of apoptosis and death, present a typical cytopathic effect. NS1 is a major nonstructural protein of parvovirus, with a conservative structure and function, which plays an important role in the viral life cycle. In addition to the influence on viral replication, the NS1 also participates in apoptosis induced by viruses. Parvovirus induced apoptosis which is mainly mediated by mitochondrial pathway, this review summarized the latest research progresses of parvovirus induced apoptosis.

  9. Molecular models of NS3 protease variants of the Hepatitis C virus.

    PubMed

    da Silveira, Nelson J F; Arcuri, Helen A; Bonalumi, Carlos E; de Souza, Fátima P; Mello, Isabel M V G C; Rahal, Paula; Pinho, João R R; de Azevedo, Walter F

    2005-01-21

    Hepatitis C virus (HCV) currently infects approximately three percent of the world population. In view of the lack of vaccines against HCV, there is an urgent need for an efficient treatment of the disease by an effective antiviral drug. Rational drug design has not been the primary way for discovering major therapeutics. Nevertheless, there are reports of success in the development of inhibitor using a structure-based approach. One of the possible targets for drug development against HCV is the NS3 protease variants. Based on the three-dimensional structure of these variants we expect to identify new NS3 protease inhibitors. In order to speed up the modeling process all NS3 protease variant models were generated in a Beowulf cluster. The potential of the structural bioinformatics for development of new antiviral drugs is discussed. The atomic coordinates of crystallographic structure 1CU1 and 1DY9 were used as starting model for modeling of the NS3 protease variant structures. The NS3 protease variant structures are composed of six subdomains, which occur in sequence along the polypeptide chain. The protease domain exhibits the dual beta-barrel fold that is common among members of the chymotrypsin serine protease family. The helicase domain contains two structurally related beta-alpha-beta subdomains and a third subdomain of seven helices and three short beta strands. The latter domain is usually referred to as the helicase alpha-helical subdomain. The rmsd value of bond lengths and bond angles, the average G-factor and Verify 3D values are presented for NS3 protease variant structures. This project increases the certainty that homology modeling is an useful tool in structural biology and that it can be very valuable in annotating genome sequence information and contributing to structural and functional genomics from virus. The structural models will be used to guide future efforts in the structure-based drug design of a new generation of NS3 protease variants

  10. Noncytopathogenic Pestivirus Strains Generated by Nonhomologous RNA Recombination: Alterations in the NS4A/NS4B Coding Region

    PubMed Central

    Gallei, Andreas; Orlich, Michaela; Thiel, Heinz-Juergen; Becher, Paul

    2005-01-01

    Several studies have demonstrated that cytopathogenic (cp) pestivirus strains evolve from noncytopathogenic (noncp) viruses by nonhomologous RNA recombination. In addition, two recent reports showed the rapid emergence of noncp Bovine viral diarrhea virus (BVDV) after a few cell culture passages of cp BVDV strains by homologous recombination between identical duplicated viral sequences. To allow the identification of recombination sites from noncp BVDV strains that evolve from cp viruses, we constructed the cp BVDV strains CP442 and CP552. Both harbor duplicated viral sequences of different origin flanking the cellular insertion Nedd8*; the latter is a prerequisite for their cytopathogenicity. In contrast to the previous studies, isolation of noncp strains was possible only after extensive cell culture passages of CP442 and CP552. Sequence analysis of 15 isolated noncp BVDVs confirmed that all recombinant strains lack at least most of Nedd8*. Interestingly, only one strain resulted from homologous recombination while the other 14 strains were generated by nonhomologous recombination. Accordingly, our data suggest that the extent of sequence identity between participating sequences influences both frequency and mode (homologous versus nonhomologous) of RNA recombination in pestiviruses. Further analyses of the noncp recombinant strains revealed that a duplication of 14 codons in the BVDV nonstructural protein 4B (NS4B) gene does not interfere with efficient viral replication. Moreover, an insertion of viral sequences between the NS4A and NS4B genes was well tolerated. These findings thus led to the identification of two genomic loci which appear to be suited for the insertion of heterologous sequences into the genomes of pestiviruses and related viruses. PMID:16254361

  11. Extended Surface for Membrane Association in Zika Virus NS1 Structure

    PubMed Central

    Brown, W. Clay; Akey, David L.; Konwerski, Jamie; Tarrasch, Jeffrey T.; Skiniotis, Georgios; Kuhn, Richard J.; Smith, Janet L.

    2018-01-01

    The Zika virus, which is implicated in an increase in neonatal microcephaly and Guillain-Barré syndrome, has spread rapidly through tropical regions of the world. The virulence protein NS1 functions in genome replication and host immune system modulation. Here we report the crystal structure of full-length Zika virus NS1, revealing an elongated hydrophobic surface for membrane association and a polar surface that varies substantially among flaviviruses. PMID:27455458

  12. Raising the avermectins production in Streptomyces avermitilis by utilizing nanosecond pulsed electric fields (nsPEFs)

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Ma, Ruonan; Su, Bo; Li, Yinglong; Zhang, Jue; Fang, Jing

    2016-05-01

    Avermectins, a group of anthelmintic and insecticidal agents produced from Streptomyces avermitilis, are widely used in agricultural, veterinary, and medical fields. This study presents the first report on the potential of using nanosecond pulsed electric fields (nsPEFs) to improve avermectin production in S. avermitilis. The results of colony forming units showed that 20 pulses of nsPEFs at 10 kV/cm and 20 kV/cm had a significant effect on proliferation, while 100 pulses of nsPEFs at 30 kV/cm exhibited an obvious effect on inhibition of agents. Ultraviolet spectrophotometry assay revealed that 20 pulses of nsPEFs at 15 kV/cm increased avermectin production by 42% and reduced the time for reaching a plateau in fermentation process from 7 days to 5 days. In addition, the decreased oxidation reduction potential (ORP) and increased temperature of nsPEFs-treated liquid were evidenced to be closely associated with the improved cell growth and fermentation efficiency of avermectins in S. avermitilis. More importantly, the real-time RT-PCR analysis showed that nsPEFs could remarkably enhance the expression of aveR and malE in S. avermitilis during fermentation, which are positive regulator for avermectin biosynthesis. Therefore, the nsPEFs technology presents an alternative strategy to be developed to increase avermectin output in fermentation industry.

  13. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    NASA Technical Reports Server (NTRS)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  14. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein.

    PubMed

    Sinawang, Prima Dewi; Rai, Varun; Ionescu, Rodica E; Marks, Robert S

    2016-03-15

    An Electrochemical Lateral Flow Immunosensor (ELFI) is developed combining screen-printed gold electrodes (SPGE) enabling quantification together with the convenience of a lateral flow test strip. A cellulose glassy fiber paper conjugate pad retains the marker immunoelectroactive nanobeads which will bind to the target analyte of interest. The specific immunorecognition event continues to occur along the lateral flow bed until reaching the SPGE-capture antibodies at the end of the cellulosic lateral flow strip. The rationale of the immunoassay consists in the analyte antigen NS1 protein being captured selectively and specifically by the dengue NS1 antibody conjugated onto the immunonanobeads thus forming an immunocomplex. With the aid of a running buffer, the immunocomplexes flow and reach the immuno-conjugated electrode surface and form specific sandwich-type detection due to specific, molecular recognition, while unbound beads move along past the electrodes. The successful sandwich immunocomplex formation is then recorded electrochemically. Specific detection of NS1 is translated into an electrochemical signal contributed by a redox label present on the bead-immobilized detection dengue NS1 antibody while a proportional increase of faradic current is observed with increase in analyte NS1 protein concentration. The first generation ELFI prototype is simply assembled in a cassette and successfully demonstrates wide linear range over a concentration range of 1-25 ng/mL with an ultrasensitive detection limit of 0.5 ng/mL for the qualitative and quantitative detection of analyte dengue NS1 protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Medicago sativa--Sinorhizobium meliloti Symbiosis Promotes the Bioaccumulation of Zinc in Nodulated Roots.

    PubMed

    Zribi, Kais; Nouairi, Issam; Slama, Ines; Talbi-Zribi, Ons; Mhadhbi, Haythem

    2015-01-01

    In this study we investigated effects of Zn supply on germination, growth, inorganic solutes (Zn, Ca, Fe, and Mg) partitioning and nodulation of Medicago sativa This plant was cultivated with and without Zn (2 mM). Treatments were plants without (control) and with Zn tolerant strain (S532), Zn intolerant strain (S112) and 2 mM urea nitrogen fertilisation. Results showed that M. sativa germinates at rates of 50% at 2 mM Zn. For plants given nitrogen fertilisation, Zn increased plant biomass production. When grown with symbionts, Zn supply had no effect on nodulation. Moreover, plants with S112 showed a decrease of shoot and roots biomasses. However, in symbiosis with S532, an increase of roots biomass was observed. Plants in symbiosis with S. meliloti accumulated more Zn in their roots than nitrogen fertilised plants. Zn supply results in an increase of Ca concentration in roots of fertilised nitrogen plants. However, under Zn supply, Fe concentration decreased in roots and increased in nodules of plants with S112. Zn supply showed contrasting effects on Mg concentrations for plants with nitrogen fertilisation (increase) and plants with S112 (decrease). The capacity of M. sativa to accumulate Zn in their nodulated roots encouraged its use in phytostabilisation processes.

  16. Diversification in continental island archipelagos: new evidence on the roles of fragmentation, colonization and gene flow on the genetic divergence of Aegean Nigella (Ranunculaceae).

    PubMed

    Jaros, Ursula; Tribsch, Andreas; Comes, Hans Peter

    2018-02-12

    Disentangling the relative roles of past fragmentation (vicariance), colonization (dispersal) and post-divergence gene flow in the genetic divergence of continental island organisms remains a formidable challenge. Amplified fragment length polymorphisms (AFLPs) were used to (1) gain further insights into the biogeographical processes underlying the Pleistocene diversification of the Aegean Nigella arvensis complex; (2) evaluate the role of potential key factors driving patterns of population genetic variability (mating system, geographical isolation and historical contingencies); and (3) test the robustness of conclusions previously drawn from chloroplast (cp) DNA. Genetic diversity was analysed for 235 AFLP markers from 48 populations (497 individuals) representing 11 taxa of the complex using population genetic methods and Bayesian assignment tests. Most designated taxa are identifiable as genetically distinct units. Both fragmentation and dispersal-driven diversification processes occurred at different geological time scales, from Early to Late Pleistocene, specifically (1) sea barrier-induced vicariant speciation in the Cyclades, the Western Cretan Strait and Ikaria; and (2) bi-regional colonizations of the 'Southern Aegean Island Arc' from the Western vs. Eastern Aegean mainland, followed by allopatric divergences in Crete vs. Rhodos and Karpathos/Kasos. Outcrossing island taxa experienced drift-related demographic processes that are magnified in the two insular selfing species. Population genetic differentiation on the mainland seems largely driven by dispersal limitation, while in the Central Aegean it may still be influenced by historical events (island fragmentation and sporadic long-distance colonization). The biogeographical history of Aegean Nigella is more complex than expected for a strictly allopatric vicariant model of divergence. Nonetheless, the major phylogeographical boundaries of this radiation are largely congruent with the geography and

  17. Molecular Docking Based Screening of Plant Flavonoids as Dengue NS1 Inhibitors

    PubMed Central

    Qamar, Muhammad Tahir ul; Mumtaz, Arooj; Naseem, Rabbia; Ali, Amna; Fatima, Tabeer; Jabbar, Tehreem; Ahmad, Zubair; Ashfaq, Usman Ali

    2014-01-01

    Dengue infection has turned into a serious health concern globally due to its high morbidity rate and a high possibility of increase in its mortality rate on the account of unavailability of any proper treatment for severe dengue infection. The situation demands an urgent development of efficient and practicable treatment to deal with Dengue virus (DENV). Flavonoids, a class of phytochemicals present in medicinal plants, possess anti-viral activity and can be strong drug candidates against viruses. NS1 glycoprotein of Dengue virus is involved in its RNA replication and can be a strong target for screening of drugs against this virus. Current study focuses on the identification of flavonoids which can block Asn-130 glycosylation site of Dengue virus NS1 to inhibit viral replication as glycosylation of NS1 is required for its biological functioning. Molecular docking approach was used in this study and the results revealed that flavonoids have strong potential interactions with active site of NS1. Six flavonoids (Deoxycalyxin A; 3,5,7,3',4'-pentahydroxyflavonol-3-O-beta-D-galactopyranoside; (3R)-3',8-Dihydroxyvestitol; Sanggenon O; Epigallocatechin gallate; Chamaejasmin) blocked the Asn-130 glycosylation site of NS1 and could be able to inhibit the viral replication. It can be concluded from this study that these flavonoids could serve as antiviral drugs for dengue infections. Further in-vitro analyses are required to confirm their efficacy and to evaluate their drug potency. PMID:25187688

  18. Evaluation of an enzyme immunoassay for detection of dengue virus NS1 antigen in human serum.

    PubMed

    Dussart, Philippe; Labeau, Bhety; Lagathu, Gisèle; Louis, Philippe; Nunes, Marcio R T; Rodrigues, Sueli G; Storck-Herrmann, Cécile; Cesaire, Raymond; Morvan, Jacques; Flamand, Marie; Baril, Laurence

    2006-11-01

    We evaluated a one-step sandwich-format microplate enzyme immunoassay for detecting dengue virus NS1 antigen (Ag) in human serum by use of Platelia Dengue NS1 Ag kits (Bio-Rad Laboratories, Marnes La Coquette, France). We collected 299 serum samples from patients with dengue disease and 50 serum samples from patients not infected with dengue virus. For the 239 serum samples from patients with acute infections testing positive by reverse transcription-PCR and/or virus isolation for one of the four dengue virus serotypes, the sensitivity of the Platelia Dengue NS1 Ag kit was 88.7% (95% confidence interval, 84.0% to 92.4%). None of the serum samples from patients not infected with dengue virus tested positive with the Platelia Dengue NS1 Ag kit. A diagnostic strategy combining the Platelia Dengue NS1 Ag test for acute-phase sera and immunoglobulin M capture enzyme-linked immunosorbent assay for early-convalescent-phase sera increased sensitivity only from 88.7% to 91.9%. Thus, NS1 antigen detection with the Platelia Dengue NS1 Ag kit could be used for first-line testing for acute dengue virus infection in clinical diagnostic laboratories.

  19. Interspecific somatic hybridization between lettuce (Lactuca sativa) and wild species L. virosa.

    PubMed

    Matsumoto, E

    1991-02-01

    Somatic hybrids between cultivated lettuce (Lactuca sativa) and a wild species L. virosa were produced by protoplast electrofusion. Hybrid selection was based on inactivation of L. sativa with 20mM iodoacetamide for 15 min, and the inability of L. virosa protoplasts to divide in the culture conditions used. Protoplasts were cultured in agarose beads in a revised MS media. In all 71 calli were formed and 21 of them differentiated shoots on LS medium containing 0.1mg/l NAA and 0.2mg/l BA. Most regenerated plants exhibited intermediate morphology. These plants were confirmed as hybrids by isoenzyme analysis. The majority of somatic hybrids had 2n=4x=36 chromosomes, and had more vigorous growth than either parent. Hybrids had normal flower morphology, but all were sterile.

  20. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    USDA-ARS?s Scientific Manuscript database

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  1. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus.

    PubMed

    Wang, Yan; Zhang, Yiquan; Yin, Zhe; Wang, Jie; Zhu, Yongzhe; Peng, Haoran; Zhou, Dongsheng; Qi, Zhongtian; Yang, Wenhui

    2018-01-01

    Swarming motility is ultimately mediated by the proton-powered lateral flagellar (laf) system in Vibrio parahaemolyticus. Expression of laf genes is tightly regulated by a number of environmental conditions and regulatory factors. The nucleoid-associated DNA-binding protein H-NS is a small and abundant protein that is widely distributed in bacteria, and H-NS-like protein-dependent expression of laf genes has been identified in Vibrio cholerae and V. parahaemolyticus. The data presented here show that H-NS acts as a repressor of the swarming motility in V. parahaemolyticus. A single σ 28 -dependent promoter was detected for lafA encoding the flagellin of the lateral flagella, and its activity was directly repressed by H-NS. Thus, H-NS represses swarming motility by directly acting on lafA. Briefly, this work revealed a novel function for H-NS as a repressor of the expression of lafA and swarming motility in V. parahaemolyticus.

  2. Macromolecular Traits in the African Rice Oryza glaberrima and in Glaberrima/Sativa Crosses, and Their Relevance to Processing.

    PubMed

    Marengo, Mauro; Barbiroli, Alberto; Bonomi, Francesco; Casiraghi, Maria Cristina; Marti, Alessandra; Pagani, Maria Ambrogina; Manful, John; Graham-Acquaah, Seth; Ragg, Enzio; Fessas, Dimitrios; Hogenboom, Johannes A; Iametti, Stefania

    2017-10-01

    Molecular properties of proteins and starch were investigated in 2 accessions of Oryza glaberrima and Oryza sativa, and in one NERICA cross between the 2 species, to assess traits that could be relevant to transformation into specific foods. Protein nature and organization in O. glaberrima were different from those in O. sativa and in NERICA. Despite the similar cysteine content in all samples, thiol accessibility in O. glaberrima proteins was higher than in NERICA or in O. sativa. Inter-protein disulphide bonds were important for the formation of protein aggregates in O. glaberrima, whereas non-covalent protein-protein interactions were relevant in NERICA and O. sativa. DSC and NMR studies indicated only minor differences in the structure of starch in these species, as also made evident by their microstructural features. Nevertheless, starch gelatinization in O. glaberrima was very different from what was observed in O. sativa and NERICA. The content of soluble species in gelatinized starch from the various species in the presence/absence of treatments with specific enzymes indicated that release of small starch breakdown products was lowest in O. glaberrima, in particular from the amylopectin component. These findings may explain the low glycemic index of O. glaberrima, and provide a rationale for extending the use of O. glaberrima in the production of specific rice-based products, thus improving the economic value and the market appeal of African crops. The structural features of proteins and starch in O. glaberrima are very different from those in O. sativa and in the NERICA cross. These results appear useful as for extending the use of O. glaberrima cultivars in the design and production of specific rice-based products (for example, pasta), that might, in turn, improve the economic value and the market appeal of locally sourced raw materials, by introducing added-value products on the African market. © 2017 Institute of Food Technologists®.

  3. Recombinant dengue 2 virus NS3 protein conserves structural antigenic and immunological properties relevant for dengue vaccine design.

    PubMed

    Ramírez, Rosa; Falcón, Rosabel; Izquierdo, Alienys; García, Angélica; Alvarez, Mayling; Pérez, Ana Beatriz; Soto, Yudira; Muné, Mayra; da Silva, Emiliana Mandarano; Ortega, Oney; Mohana-Borges, Ronaldo; Guzmán, María G

    2014-10-01

    The NS3 protein is a multifunctional non-structural protein of flaviviruses implicated in the polyprotein processing. The predominance of cytotoxic T cell lymphocytes epitopes on the NS3 protein suggests a protective role of this protein in limiting virus replication. In this work, we studied the antigenicity and immunogenicity of a recombinant NS3 protein of the Dengue virus 2. The full-length NS3 gene was cloned and expressed as a His-tagged fusion protein in Escherichia coli. The pNS3 protein was purified by two chromatography steps. The recombinant NS3 protein was recognized by anti-protease NS3 polyclonal antibody and anti-DENV2 HMAF by Western Blot. This purified protein was able to stimulate the secretion of high levels of gamma interferon and low levels of interleukin-10 and tumor necrosis factor-α in mice splenocytes, suggesting a predominantly Th-1-type T cell response. Immunized BALB/c mice with the purified NS3 protein showed a strong induction of anti-NS3 IgG antibodies, essentially IgG2b, as determined by ELISA. Immunized mice sera with recombinant NS3 protein showed specific recognition of native dengue protein by Western blotting and immunofluorescence techniques. The successfully purified recombinant protein was able to preserv the structural and antigenic determinants of the native dengue protein. The antigenicity shown by the recombinant NS3 protein suggests its possible inclusion into future DENV vaccine preparations.

  4. Molecular cytogenetic characterization of the dioecious Cannabis sativa with an XY chromosome sex determination system.

    PubMed

    Divashuk, Mikhail G; Alexandrov, Oleg S; Razumova, Olga V; Kirov, Ilya V; Karlov, Gennady I

    2014-01-01

    Hemp (Cannabis sativa L.) was karyotyped using by DAPI/C-banding staining to provide chromosome measurements, and by fluorescence in situ hybridization with probes for 45 rDNA (pTa71), 5S rDNA (pCT4.2), a subtelomeric repeat (CS-1) and the Arabidopsis telomere probes. The karyotype has 18 autosomes plus a sex chromosome pair (XX in female and XY in male plants). The autosomes are difficult to distinguish morphologically, but three pairs could be distinguished using the probes. The Y chromosome is larger than the autosomes, and carries a fully heterochromatic DAPI positive arm and CS-1 repeats only on the less intensely DAPI-stained, euchromatic arm. The X is the largest chromosome of all, and carries CS-1 subtelomeric repeats on both arms. The meiotic configuration of the sex bivalent locates a pseudoautosomal region of the Y chromosome at the end of the euchromatic CS-1-carrying arm. Our molecular cytogenetic study of the C. sativa sex chromosomes is a starting point for helping to make C. sativa a promising model to study sex chromosome evolution.

  5. Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line.

    PubMed

    Vaseghi, Golnaz; Taki, Mohamad Javad; Javanmard, Shaghayegh Haghjooy

    2017-10-01

    Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. In the treatment group, melanoma (B1617) was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls. C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.

  6. Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein

    PubMed Central

    Rajsbaum, Ricardo; Albrecht, Randy A.; Wang, May K.; Maharaj, Natalya P.; Versteeg, Gijs A.; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U.

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production. PMID:23209422

  7. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein.

    PubMed

    Rajsbaum, Ricardo; Albrecht, Randy A; Wang, May K; Maharaj, Natalya P; Versteeg, Gijs A; Nistal-Villán, Estanislao; García-Sastre, Adolfo; Gack, Michaela U

    2012-01-01

    Influenza A viruses can adapt to new host species, leading to the emergence of novel pathogenic strains. There is evidence that highly pathogenic viruses encode for non-structural 1 (NS1) proteins that are more efficient in suppressing the host immune response. The NS1 protein inhibits type-I interferon (IFN) production partly by blocking the TRIM25 ubiquitin E3 ligase-mediated Lys63-linked ubiquitination of the viral RNA sensor RIG-I, required for its optimal downstream signaling. In order to understand possible mechanisms of viral adaptation and host tropism, we examined the ability of NS1 encoded by human (Cal04), avian (HK156), swine (SwTx98) and mouse-adapted (PR8) influenza viruses to interact with TRIM25 orthologues from mammalian and avian species. Using co-immunoprecipitation assays we show that human TRIM25 binds to all tested NS1 proteins, whereas the chicken TRIM25 ortholog binds preferentially to the NS1 from the avian virus. Strikingly, none of the NS1 proteins were able to bind mouse TRIM25. Since NS1 can inhibit IFN production in mouse, we tested the impact of TRIM25 and NS1 on RIG-I ubiquitination in mouse cells. While NS1 efficiently suppressed human TRIM25-dependent ubiquitination of RIG-I 2CARD, NS1 inhibited the ubiquitination of full-length mouse RIG-I in a mouse TRIM25-independent manner. Therefore, we tested if the ubiquitin E3 ligase Riplet, which has also been shown to ubiquitinate RIG-I, interacts with NS1. We found that NS1 binds mouse Riplet and inhibits its activity to induce IFN-β in murine cells. Furthermore, NS1 proteins of human but not swine or avian viruses were able to interact with human Riplet, thereby suppressing RIG-I ubiquitination. In conclusion, our results indicate that influenza NS1 protein targets TRIM25 and Riplet ubiquitin E3 ligases in a species-specific manner for the inhibition of RIG-I ubiquitination and antiviral IFN production.

  8. Effects of nanosecond pulsed electrical fields (nsPEFs) on the cell cycle of CHO and Jurkat cells

    NASA Astrophysics Data System (ADS)

    Mahlke, Megan A.; Navara, Christopher; Ibey, Bennett L.

    2014-03-01

    Exposure to nano-second pulsed electrical fields (nsPEFs) can cause poration of external and internal cell membranes, DNA damage, and disassociation of cytoskeletal components, all of which are capable of disrupting a cell's ability to replicate. Variations between cell lines in membrane and cytoskeletal structure as well as in survival of nsPEF exposure should correspond to unique line-dependent cell cycle effects. Additionally, phase of cell cycle during exposure may be linked to differential sensitivities to nsPEFs across cell lines, as DNA structure, membrane elasticity, and cytoskeletal structure change dramatically during the cell cycle. Populations of Jurkat and Chinese Hamster Ovary (CHO) cells were examined post-exposure (10 ns pulse trains at 150kV/cm) by analysis of DNA content via propidium iodide staining and flow cytometric analysis at various time points (1, 6, and 12h post-exposure) to determine population distribution in cell cycle phases. Additionally, CHO and Jurkat cells were synchronized in G1/S and G2/M phases, pulsed, and analyzed to evaluate role of cell cycle phase in survival of nsPEFs. CHO populations recovered similarly to sham populations postnsPEF exposure and did not exhibit a phase-specific change in response. Jurkat cells exhibited considerable apoptosis/necrosis in response to nsPEF exposure and were unable to recover and proliferate in a manner similar to sham exposed cells. Additionally, Jurkat cells appear to be more sensitive to nsPEFs in G2/M phases than in G1/S phases. Recovery of CHO populations suggests that nsPEFs do not inhibit proliferation in CHO cells; however, inhibition of Jurkat cells post-nsPEF exposure coupled with preferential cell death in G2/M phases suggest that cell cycle phase during exposure may be an important factor in determining nsPEF toxicity in certain cell lines. Interestingly, CHO cells have a more robust and rigid cytoskeleton than Jurkat cells which is thought to contribute to their ability to

  9. Structure and function of Zika virus NS5 protein: perspectives for drug design.

    PubMed

    Wang, Boxiao; Thurmond, Stephanie; Hai, Rong; Song, Jikui

    2018-05-01

    Zika virus (ZIKV) belongs to the positive-sense single-stranded RNA-containing Flaviviridae family. Its recent outbreak and association with human diseases (e.g. neurological disorders) have raised global health concerns, and an urgency to develop a therapeutic strategy against ZIKV infection. However, there is no currently approved antiviral against ZIKV. Here we present a comprehensive overview on recent progress in structure-function investigation of ZIKV NS5 protein, the largest non-structural protein of ZIKV, which is responsible for replication of the viral genome, RNA capping and suppression of host interferon responses. Structural comparison of the N-terminal methyltransferase domain and C-terminal RNA-dependent RNA polymerase domain of ZIKV NS5 with their counterparts from related viruses provides mechanistic insights into ZIKV NS5-mediated RNA replication, and identifies residues critical for its enzymatic activities. Finally, a collection of recently identified small molecule inhibitors against ZIKV NS5 or its closely related flavivirus homologues are also discussed.

  10. Recombinant Dengue 2 Virus NS3 Helicase Protein Enhances Antibody and T-Cell Response of Purified Inactivated Vaccine

    PubMed Central

    Simmons, Monika; Sun, Peifang; Putnak, Robert

    2016-01-01

    Dengue virus purified inactivated vaccines (PIV) are highly immunogenic and protective over the short term, but may be poor at inducing cell-mediated immune responses and long-term protection. The dengue nonstructural protein 3 (NS3) is considered the main target for T-cell responses during viral infection. The amino (N)-terminal protease and the carboxy (C)-terminal helicase domains of DENV-2 NS3 were expressed in E. coli and analyzed for their immune-potentiating capacity. Mice were immunized with DENV-2 PIV with and without recombinant NS3 protease or NS3 helicase proteins, and NS3 proteins alone on days 0, 14 and 28. The NS3 helicase but not the NS3 protease was effective in inducing T-cell responses quantified by IFN-γ ELISPOT. In addition, markedly increased total IgG antibody titer against virus antigen was seen in mice immunized with the PIV/NS3 helicase combination in the ELISA, as well as increased neutralizing antibody titer measured by the plaque reduction neutralization test. These results indicate the potential immunogenic properties of the NS3 helicase protein and its use in a dengue vaccine formulation. PMID:27035715

  11. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication.

    PubMed

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R; Li, Melody M H; Rice, Charles M; MacDonald, Margaret R

    2016-01-06

    DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single polyprotein, which is

  12. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication

    PubMed Central

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.

    2016-01-01

    ABSTRACT DNAJC14, a heat shock protein 40 (Hsp40) cochaperone, assists with Hsp70-mediated protein folding. Overexpressed DNAJC14 is targeted to sites of yellow fever virus (YFV) replication complex (RC) formation, where it interacts with viral nonstructural (NS) proteins and inhibits viral RNA replication. How RCs are assembled and the roles of chaperones in this coordinated process are largely unknown. We hypothesized that chaperones are diverted from their normal cellular protein quality control function to play similar roles during viral infection. Here, we show that DNAJC14 overexpression affects YFV polyprotein processing and alters RC assembly. We monitored YFV NS2A-5 polyprotein processing by the viral NS2B-3 protease in DNAJC14-overexpressing cells. Notably, DNAJC14 mutants that did not inhibit YFV replication had minimal effects on polyprotein processing, while overexpressed wild-type DNAJC14 affected the NS3/4A and NS4A/2K cleavage sites, resulting in altered NS3-to-NS3-4A ratios. This suggests that DNAJC14's folding activity normally modulates NS3/4A/2K cleavage events to liberate appropriate levels of NS3 and NS4A and promote RC formation. We introduced amino acid substitutions at the NS3/4A site to alter the levels of the NS3 and NS4A products and examined their effects on YFV replication. Residues with reduced cleavage efficiency did not support viral RNA replication, and only revertant viruses with a restored wild-type arginine or lysine residue at the NS3/4A site were obtained. We conclude that DNAJC14 inhibition of RC formation upon DNAJC14 overexpression is likely due to chaperone dysregulation and that YFV probably utilizes DNAJC14's cochaperone function to modulate processing at the NS3/4A site as a mechanism ensuring virus replication. IMPORTANCE Flaviviruses are single-stranded RNA viruses that cause a wide range of illnesses. Upon host cell entry, the viral genome is translated on endoplasmic reticulum (ER) membranes to produce a single

  13. 18F-labeled norepinephrine transporter tracer [18F]NS12137: radiosynthesis and preclinical evaluation.

    PubMed

    Kirjavainen, Anna K; Forsback, Sarita; López-Picón, Francisco R; Marjamäki, Päivi; Takkinen, Jatta; Haaparanta-Solin, Merja; Peters, Dan; Solin, Olof

    2018-01-01

    Several psychiatric and neurodegenerative diseases are associated with malfunction of brain norepinephrine transporter (NET). However, current clinical evaluations of NET function are limited by the lack of sufficiently sensitive methods of detection. To this end, we have synthesized exo-3-[(6-[ 18 F]fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]-octane ([ 18 F]NS12137) as a radiotracer for positron emission tomography (PET) and have demonstrated that it is highly specific for in vivo detection of NET-rich regions of rat brain tissue. We applied two methods of electrophilic, aromatic radiofluorination of the precursor molecule, exo-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate: (1) direct labeling with [ 18 F]F 2 , and (2) labeling with [ 18 F]Selectfluor, a derivative of [ 18 F]F 2 , using post-target produced [ 18 F]F 2 . The time-dependent distribution of [ 18 F]NS12137 in brain tissue of healthy, adult Sprague-Dawley rats was determined by ex vivo autoradiography. The specificity of [ 18 F]NS12137 binding was demonstrated on the basis of competitive binding by nisoxetine, a known NET antagonist of high specificity. [ 18 F]NS12137 was successfully synthesized with radiochemical yields of 3.9% ± 0.3% when labeled with [ 18 F]F 2 and 10.2% ± 2.7% when labeled with [ 18 F]Selectfluor. The molar activity of radiotracer was 8.8 ± 0.7 GBq/μmol with [ 18 F]F 2 labeling and 6.9 ± 0.4 GBq/μmol with [ 18 F]Selectfluor labeling at the end of synthesis of [ 18 F]NS12137. Uptake of [ 18 F]NS12137 in NET-rich areas in rat brain was demonstrated with the locus coeruleus (LCoe) having the highest regional uptake. Prior treatment of rats with nisoxetine showed no detectable [ 18 F]NS12137 in the LCoe. Analyses of whole brain samples for radiometabolites showed only the parent compound [ 18 F]NS12137. Uptake of 18 F-radioactivity in bone increased with time. The two electrophilic 18 F-labeling methods proved to be suitable for synthesis of [ 18 F]NS

  14. Monitoring Metabolite Profiles of Cannabis sativa L. Trichomes during Flowering Period Using 1H NMR-Based Metabolomics and Real-Time PCR.

    PubMed

    Happyana, Nizar; Kayser, Oliver

    2016-08-01

    Cannabis sativa trichomes are glandular structures predominantly responsible for the biosynthesis of cannabinoids, the biologically active compounds unique to this plant. To the best of our knowledge, most metabolomic works on C. sativa that have been reported previously focused their investigations on the flowers and leaves of this plant. In this study, (1)H NMR-based metabolomics and real-time PCR analysis were applied for monitoring the metabolite profiles of C. sativa trichomes, variety Bediol, during the last 4 weeks of the flowering period. Partial least squares discriminant analysis models successfully classified metabolites of the trichomes based on the harvest time. Δ (9)-Tetrahydrocannabinolic acid (1) and cannabidiolic acid (2) constituted the vital differential components of the organic preparations, while asparagine, glutamine, fructose, and glucose proved to be their water-extracted counterparts. According to RT-PCR analysis, gene expression levels of olivetol synthase and olivetolic acid cyclase influenced the accumulation of cannabinoids in the Cannabis trichomes during the monitoring time. Moreover, quantitative (1)H NMR and RT-PCR analysis of the Cannabis trichomes suggested that the gene regulation of cannabinoid biosynthesis in the C. sativa variety Bediol is unique when compared with other C. sativa varieties. Georg Thieme Verlag KG Stuttgart · New York.

  15. CHD3 facilitates vRNP nuclear export by interacting with NES1 of influenza A virus NS2.

    PubMed

    Hu, Yong; Liu, Xiaokun; Zhang, Anding; Zhou, Hongbo; Liu, Ziduo; Chen, Huanchun; Jin, Meilin

    2015-03-01

    NS2 from influenza A virus mediates Crm1-dependent vRNP nuclear export through interaction with Crm1. However, even though the nuclear export signal 1 (NES1) of NS2 does not play a requisite role in NS2-Crm1 interaction, there is no doubt that NES1 is crucial for vRNP nuclear export. While the mechanism of the NES1 is still unclear, it is speculated that certain host partners might mediate the NES1 function through their interaction with NES1. In the present study, chromodomain-helicase-DNA-binding protein 3 (CHD3) was identified as a novel host nuclear protein for locating NS2 and Crm1 on dense chromatin for NS2 and Crm1-dependent vRNP nuclear export. CHD3 was confirmed to interact with NES1 in NS2, and a disruption to this interaction by mutation in NES1 significantly delayed viral vRNPs export and viral propagation. Further, the knockdown of CHD3 would affect the propagation of the wild-type virus but not the mutant with the weakened NS2-CHD3 interaction. Therefore, this study demonstrates that NES1 is required for maximal binding of NS2 to CHD3, and that the NS2-CHD3 interaction on the dense chromatin contributed to the NS2-mediated vRNP nuclear export.

  16. Mutation of Putative N-Glycosylation Sites on Dengue Virus NS4B Decreases RNA Replication.

    PubMed

    Naik, Nenavath Gopal; Wu, Huey-Nan

    2015-07-01

    Dengue virus (DENV) nonstructural protein 4B (NS4B) is an endoplasmic reticulum (ER) membrane-associated protein, and mutagenesis studies have revealed its significance in viral genome replication. In this work, we demonstrated that NS4B is an N-glycosylated protein in virus-infected cells as well as in recombinant protein expression. NS4B is N glycosylated at residues 58 and 62 and exists in two forms, glycosylated and unglycosylated. We manipulated full-length infectious RNA clones and subgenomic replicons to generate N58Q, N62Q, and N58QN62Q mutants. Each of the single mutants had distinct effects, but the N58QN62Q mutation resulted in dramatic reduction of viral production efficiency without affecting secretion or infectivity of the virion in mammalian and mosquito C6/36 hosts. Real-time quantitative PCR (qPCR), subgenomic replicon, and trans-complementation assays indicated that the N58QN62Q mutation affected RNA replication possibly by the loss of glycans. In addition, four intragenic mutations (S59Y, S59F, T66A, and A137T) were obtained from mammalian and/or mosquito C6/36 cell culture systems. All of these second-site mutations compensated for the replication defect of the N58QN62Q mutant without creating novel glycosylation sites. In vivo protein stability analyses revealed that the N58QN62Q mutation alone or plus a compensatory mutation did not affect the stability of NS4B. Overall, our findings indicated that mutation of putative N-glycosylation sites affected the biological function of NS4B in the viral replication complex. This is the first report to identify and reveal the biological significance of dengue virus (DENV) nonstructural protein 4B (NS4B) posttranslation N-glycosylation to the virus life cycle. The study demonstrated that NS4B is N glycosylated in virus-infected cells and in recombinant protein expression. NS4B is modified by glycans at Asn-58 and Asn-62. Functional characterization implied that DENV NS4B utilizes the glycosylation

  17. 3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B-NS3 protease inhibitors.

    PubMed

    Luo, Pei H; Zhang, Xuan R; Huang, Lan; Yuan, Lun; Zhou, Xang Z; Gao, X; Li, Ling S

    2017-10-01

    NS2B-NS3 protease has been identified to serve as lead drug design target due to its significant role in West Nile viral (WNV) and dengue virus (DENV) reproduction and replication. There are currently no approved chemotherapeutic drugs and effective vaccines to inhibit DENV and WNV infections. In this work, 3D-QSAR pharmacophore model has been developed to discover potential inhibitory candidates. Validation through Fischer's model and decoy test indicate that the developed 3D pharmacophore model is highly predictive for DENV inhibitors, which was then employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 15 hits were subjected to further filter through molecular docking and CoMFA modeling. Finally, top three hits were identified as lead compounds or potential inhibitory candidates with IC 50 values of ∼0.4637 µM and fitness of ∼57.73. It is implied from CoMFA modeling that substituents at the side site of benzotriazole such as a p-nitro group (e.g. biphenyl head) and a carbonyl (e.g. carboxylate function) at the side site of furan or amino group may improve bioactivity of ZINC85645245, respectively. Molecular dynamics simulations (MDS) were performed to discover new interactions and reinforce the binding modes from docking for the hits also. The QSAR and MDS results obtained from this work should be useful in determining structural requirements for inhibitor development as well as in designing more potential inhibitors for NS2B-NS3 protease.

  18. Alternate SlyA and H-NS nucleoprotein complexes control hlyE expression in Escherichia coli K-12

    PubMed Central

    Lithgow, James K; Haider, Fouzia; Roberts, Ian S; Green, Jeffrey

    2007-01-01

    Haemolysin E is a cytolytic pore-forming toxin found in several Escherichia coli and Salmonella enterica strains. Expression of hlyE is repressed by the global regulator H-NS (histone-like nucleoid structuring protein), but can be activated by the regulator SlyA. Expression of a chromosomal hlyE–lacZ fusion in an E. coli slyA mutant was reduced to 60% of the wild-type level confirming a positive role for SlyA. DNase I footprint analysis revealed the presence of two separate SlyA binding sites, one located upstream, the other downstream of the hlyE transcriptional start site. These sites overlap AT-rich H-NS binding sites. Footprint and gel shift data showed that whereas H-NS prevented binding of RNA polymerase (RNAP) at the hlyE promoter (PhlyE), SlyA allowed binding of RNAP, but inhibited binding of H-NS. Accordingly, in vitro transcription analyses showed that addition of SlyA protein relieved H-NS-mediated repression of hlyE. Based on these observations a model for SlyA/H-NS regulation of hlyE expression is proposed in which the relative concentrations of SlyA and H-NS govern the nature of the nucleoprotein complexes formed at PhlyE. When H-NS is dominant RNAP binding is inhibited and hlyE expression is silenced; when SlyA is dominant H-NS binding is inhibited allowing RNAP access to the promoter facilitating hlyE transcription. PMID:17892462

  19. Hippocampal A-type current and Kv4.2 channel modulation by the sulfonylurea compound NS5806.

    PubMed

    Witzel, Katrin; Fischer, Paul; Bähring, Robert

    2012-12-01

    We examined the effects of the sulfonylurea compound NS5806 on neuronal A-type channel function. Using whole-cell patch-clamp we studied the effects of NS5806 on the somatodendritic A-type current (I(SA)) in cultured hippocampal neurons and the currents mediated by Kv4.2 channels coexpressed with different auxiliary β-subunits, including both Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-related proteins (DPPs), in HEK 293 cells. The amplitude of the I(SA) component in hippocampal neurons was reduced in the presence of 20 μM NS5806. I(SA) decay kinetics were slowed and the recovery kinetics accelerated, but the voltage dependence of steady-state inactivation was shifted to more negative potentials by NS5806. The peak amplitudes of currents mediated by ternary Kv4.2 channel complexes, associated with DPP6-S (short splice-variant) and either KChIP2, KChIP3 or KChIP4, were potentiated and their macroscopic inactivation slowed by NS5806, whereas the currents mediated by binary Kv4.2 channels, associated only with DPP6-S, were suppressed, and the NS5806-mediated slowing of macroscopic inactivation was less pronounced. Neither potentiation nor suppression and no effect on current decay kinetics in the presence of NS5806 were observed for Kv4.2 channels associated with KChIP3 and the N-type inactivation-conferring DPP6a splice-variant. For all recombinant channel complexes, NS5806 slowed the recovery from inactivation and shifted the voltage dependence of steady-state inactivation to more negative potentials. Our results demonstrate the activity of NS5806 on native I(SA) and possible molecular correlates in the form of recombinant Kv4.2 channels complexed with different KChIPs and DPPs, and they shed some light on the mechanism of NS5806 action. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Suitable technological conditions for enzymatic hydrolysis of waste paper by Novozymes® enzymes NS50013 and NS50010.

    PubMed

    Brummer, Vladimir; Skryja, Pavel; Jurena, Tomas; Hlavacek, Viliam; Stehlik, Petr

    2014-10-01

    Waste paper belongs to a group of quantitatively the most produced waste types. Enzymatic hydrolysis is becoming a suitable way to treat this type of waste and at the same time, to produce a valuable liquid biofuel, because reducing sugars solutions that are formed during the process of saccharification can be a precursor for following or simultaneous fermentation. If it will be possible to make the enzymatic hydrolysis of the waste paper economically viable, it could serve as one of the new ways to lower the dependence of the transport sector on oil in the future. Only several studies comparing the enzymatic hydrolysis of different waste papers were performed in the past; they are summarized in this manuscript. In our experimental trials, suitable technological conditions for waste paper enzymatic hydrolysis using enzymes from Novozymes® biomass kit: enzymes NS50013 and NS50010 were investigated. The following enzymatic hydrolysis parameters in laboratory scale trials were verified on high cellulose content substrates-filter paper and cellulose pulp: type of buffer, pH, temperature, concentration of the substrate, loading of the enzyme and rate of stirring.

  1. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  2. Plasma Membrane Permeabilization by 60- and 600-ns Electric Pulses Is Determined by the Absorbed Dose

    PubMed Central

    Ibey, Bennett L.; Xiao, Shu; Schoenbach, Karl H.; Murphy, Michael R.; Pakhomov, Andrei G.

    2008-01-01

    We explored how the effect of plasma membrane permeabilization by nanosecond-duration electric pulses (nsEP) depends on the physical characteristics of exposure. The resting membrane resistance (Rm) and membrane potential (MP) were measured in cultured GH3 and CHO cells by conventional whole-cell patch-clamp technique. Intact cells were exposed to a single nsEP (60 or 600 ns duration, 0-22 kV/cm), followed by patch-clamp measurements after a 2-3 min delay. Consistent with earlier findings, nsEP caused long-lasting Rm decrease, accompanied by the loss of MP. The threshold for these effects was about 6 kV/cm for 60 ns pulses, and about 1 kV/cm for 600 ns pulses. Further analysis established that it was neither pulse duration nor the E-field amplitude per se, but the absorbed dose that determined the magnitude of the biological effect. In other words, exposure to nsEP at either pulse duration caused equal effects if the absorbed doses were equal. The threshold absorbed dose to produce plasma membrane effects in either GH3 or CHO cells at either pulse duration was found to be at or below 10 mJ/g. Despite being determined by the dose, the nsEP effect clearly is not thermal, as the maximum heating at the threshold dose is less than 0.01 °C. The use of the absorbed dose as a universal exposure metric may help to compare and quantify nsEP sensitivity of different cell types and of cells in different physiological conditions. The absorbed dose may also prove to be a more useful metric than the incident E-field in determining safety limits for high peak, lowaverage power EMF emissions. PMID:18839412

  3. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornholdt, Zachary A.; Prasad, B.V. Venkataram

    2009-04-08

    The recent emergence of highly pathogenic avian (H5N1) influenza viruses, their epizootic and panzootic nature, and their association with lethal human infections have raised significant global health concerns. Several studies have underlined the importance of non-structural protein NS1 in the increased pathogenicity and virulence of these strains. NS1, which consists of two domains - a double-stranded RNA (dsRNA) binding domain and the effector domain, separated through a linker - is an antagonist of antiviral type-I interferon response in the host. Here we report the X-ray structure of the full-length NS1 from an H5N1 strain (A/Vietnam/1203/2004) that was associated with 60%more » of human deaths in an outbreak in Vietnam. Compared to the individually determined structures of the RNA binding domain and the effector domain from non-H5N1 strains, the RNA binding domain within H5N1 NS1 exhibits modest structural changes, while the H5N1 effector domain shows significant alteration, particularly in the dimeric interface. Although both domains in the full-length NS1 individually participate in dimeric interactions, an unexpected finding is that these interactions result in the formation of a chain of NS1 molecules instead of distinct dimeric units. Three such chains in the crystal interact with one another extensively to form a tubular organization of similar dimensions to that observed in the cryo-electron microscopy images of NS1 in the presence of dsRNA. The tubular oligomeric organization of NS1, in which residues implicated in dsRNA binding face a 20-{angstrom}-wide central tunnel, provides a plausible mechanism for how NS1 sequesters varying lengths of dsRNA, to counter cellular antiviral dsRNA response pathways, while simultaneously interacting with other cellular ligands during an infection.« less

  4. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats.

    PubMed

    Wang, T; Hu, X; Liang, S; Li, W; Wu, X; Wang, L; Jin, F

    2015-01-01

    Gut microbiota play a vital role in maintaining the health of the host. Many factors affect gut microbiota; application of broad range antibiotics disturb microbiota, while probiotic application protects the microbiota. To investigate how probiotics alter the physiological and psychological changes induced by antibiotics, we tested the performance of ampicillin-treated rats in the presence or absence of Lactobacillus fermentum strain NS9, in elevated plus maze and Morris water maze. The results showed that NS9 normalised the composition of gut microbiota and alleviated the ampicillin-induced inflammation in the colon. The levels of the mineralocorticoid and N-methyl-D-aspartate receptors were also elevated in the hippocampus of the ampillicin+NS9 treated group. NS9 administration also reduced the anxiety-like behaviour and alleviated the ampicillin-induced impairment in memory retention. These findings suggest that NS9 is beneficial to the host, because it restores the physiological and psychological abnormalities induced by ampicillin. Our results highlight how gut contents regulate the brain, and shed light on the clinical applications of probiotics to treat the side effect of antibiotics and mental disorders.

  5. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae.

    PubMed

    Murakami, Suguru; Shimamoto, Toshi; Nagano, Hideaki; Tsuruno, Masahiro; Okuhara, Hiroaki; Hatanaka, Haruyo; Tojo, Hiromasa; Kodama, Yukiko; Funato, Kouichi

    2015-11-17

    Ceramide is one of the most important intercellular components responsible for the barrier and moisture retention functions of the skin. Because of the risks involved with using products of animal origin and the low productivity of plants, the availability of ceramides is currently limited. In this study, we successfully developed a system that produces sphingosine-containing human ceramide-NS in the yeast Saccharomyces cerevisiae by eliminating the genes for yeast sphingolipid hydroxylases (encoded by SUR2 and SCS7) and introducing the gene for a human sphingolipid desaturase (encoded by DES1). The inactivation of the ceramidase gene YDC1, overexpression of the inositol phosphosphingolipid phospholipase C gene ISC1, and endoplasmic reticulum localization of the DES1 gene product resulted in enhanced production of ceramide-NS. The engineered yeast strains can serve as hosts not only for providing a sustainable source of ceramide-NS but also for developing further systems to produce sphingosine-containing sphingolipids.

  6. Over-expression of AtPAP2 in Camelina sativa leads to faster plant growth and higher seed yield

    PubMed Central

    2012-01-01

    Background Lipids extracted from seeds of Camelina sativa have been successfully used as a reliable source of aviation biofuels. This biofuel is environmentally friendly because the drought resistance, frost tolerance and low fertilizer requirement of Camelina sativa allow it to grow on marginal lands. Improving the species growth and seed yield by genetic engineering is therefore a target for the biofuels industry. In Arabidopsis, overexpression of purple acid phosphatase 2 encoded by Arabidopsis (AtPAP2) promotes plant growth by modulating carbon metabolism. Overexpression lines bolt earlier and produce 50% more seeds per plant than wild type. In this study, we explored the effects of overexpressing AtPAP2 in Camelina sativa. Results Under controlled environmental conditions, overexpression of AtPAP2 in Camelina sativa resulted in longer hypocotyls, earlier flowering, faster growth rate, higher photosynthetic rate and stomatal conductance, increased seed yield and seed size in comparison with the wild-type line and null-lines. Similar to transgenic Arabidopsis, activity of sucrose phosphate synthase in leaves of transgenic Camelina was also significantly up-regulated. Sucrose produced in photosynthetic tissues supplies the building blocks for cellulose, starch and lipids for growth and fuel for anabolic metabolism. Changes in carbon flow and sink/source activities in transgenic lines may affect floral, architectural, and reproductive traits of plants. Conclusions Lipids extracted from the seeds of Camelina sativa have been used as a major constituent of aviation biofuels. The improved growth rate and seed yield of transgenic Camelina under controlled environmental conditions have the potential to boost oil yield on an area basis in field conditions and thus make Camelina-based biofuels more environmentally friendly and economically attractive. PMID:22472516

  7. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.

    PubMed

    Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-08

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.

  8. Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface

    PubMed Central

    Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel

    2018-01-01

    Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722

  9. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina

    Infection by the four serotypes ofDengue virus(DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all fourDengue virusserotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1more » to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented.« less

  10. Structural insight and flexible features of NS5 proteins from all four serotypes of Dengue virus in solution

    PubMed Central

    Saw, Wuan Geok; Tria, Giancarlo; Grüber, Ardina; Subramanian Manimekalai, Malathy Sony; Zhao, Yongqian; Chandramohan, Arun; Srinivasan Anand, Ganesh; Matsui, Tsutomu; Weiss, Thomas M.; Vasudevan, Subhash G.; Grüber, Gerhard

    2015-01-01

    Infection by the four serotypes of Dengue virus (DENV-1 to DENV-4) causes an important arthropod-borne viral disease in humans. The multifunctional DENV nonstructural protein 5 (NS5) is essential for capping and replication of the viral RNA and harbours a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. In this study, insights into the overall structure and flexibility of the entire NS5 of all four Dengue virus serotypes in solution are presented for the first time. The solution models derived revealed an arrangement of the full-length NS5 (NS5FL) proteins with the MTase domain positioned at the top of the RdRP domain. The DENV-1 to DENV-4 NS5 forms are elongated and flexible in solution, with DENV-4 NS5 being more compact relative to NS5 from DENV-1, DENV-2 and DENV-3. Solution studies of the individual MTase and RdRp domains show the compactness of the RdRp domain as well as the contribution of the MTase domain and the ten-residue linker region to the flexibility of the entire NS5. Swapping the ten-residue linker between DENV-4 NS5FL and DENV-3 NS5FL demonstrated its importance in MTase–RdRp communication and in concerted interaction with viral and host proteins, as probed by amide hydrogen/deuterium mass spectrometry. Conformational alterations owing to RNA binding are presented. PMID:26527147

  11. Characterization and evaluation of apoptotic potential of double gene construct pVIVO.VP3.NS1.

    PubMed

    Saxena, Shikha; Desai, G S; Kumar, G Ravi; Sahoo, A P; Santra, Lakshman; Singh, Lakshya Veer

    2015-05-01

    Viral gene oncotherapy, targeted killing of cancer cells by viral genes, is an emerging non-infectious therapeutic cancer treatment modality. Chemo and radiotherapy in cancer treatment is limited due to their genotoxic side effects on healthy cells and need of functional p53, which is mutated in most of the cancers. VP3 (apoptin) of chicken infectious anaemia (CIA) and NS1 (Non structural protein 1) of Canine Parvovirus-2 (CPV-2) have been proven to have oncolytic potential in our laboratory. To evaluate oncolytic potential of VP3 and NS1 together these genes needed to be cloned in a bicistronic vector. In this study, both these genes were cloned and characterized for expression of their gene products and its apoptotic potential. The expression of VP3 and NS1 was studied by confocal microscopy and flowcytometry. Expression of VP3 and NS1 in pVIVO.VP3.NS1 transfected HeLa cells in comparison to mock transfected cells indicated that the double gene construct expresses both the products. This was further confirmed by flowcytometry where there was increase in cells expressing VP3 and NS1 in pVIVO.VP3.NS1 transfected group in comparison with the mock control group. The apoptotic inducing potential of this characterized pVIVO.VP3.NS1 was evaluated in human cervical cancer cell line (HeLa) by DNA fragmentation assay, TUNEL assay and Hoechst staning. This double construct was observed to induce apoptosis in HeLa cells.

  12. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  13. A split face study to document the safety and efficacy of clearance of melasma with a 5 ns q switched Nd YAG laser versus a 50 ns q switched Nd YAG laser.

    PubMed

    Alsaad, Salman M S; Ross, E Victor; Mishra, Vineet; Miller, Lee

    2014-12-01

    To determine the safety and efficacy of a 50 ns Q switched Nd YAG laser vs. a 5 ns Q switched Nd YAG laser for clearance of melasma. To compare subject satisfaction, efficacy, and comfort level between the two lasers. This is a prospective, randomized split face clinical study. The study was approved by the Scripps IRB. Ten healthy female subjects with moderate to severe melasma were enrolled. Each subject had three laser treatments one month apart. Patients were followed up approximately 1 month, 3 months, and 6 months after the final laser treatment. A treatment session consisted of a microdermabrasion, 1064 nm QS laser, and topicals. Subjects were asked to rate treatment pain based on a numerical scale range 0-10 (0 = no pain and 10 = worst pain). A melasma area and severity index (MASI) grading system was applied. Also, melanin measurements were acquired by a reflectance spectrophotometer. Side effects were documented during the study including post treatment erythema. Eight patients completed the study. Subjects showed improvement on both sides of the face. From baseline to 1 month post the final laser treatment, the average MASI scores showed a 16% reduction for the 50 ns QS 1064 nm laser vs. a 27% reduction for the 5 ns QS 1064 nm laser (both significant versus baseline pigment, P < 0.05). This difference in MASI scores between the two lasers was not statistically significant (P = 0.87930). Laser treatments displayed mild erythema that resolved after one day. The melanin meter measurements showed a reduction in pigment readings on both sides. Three months after the final treatment there was some relapse in the melasma, as the mean pigment reduction fell to 12% for the 50 ns laser and 11% for the 5 ns laser. By 3 months pigment reduction was not statistically significant for either laser, and no significant differences in pigment reduction were noted between the two pulse durations. There was a statistically significant difference (P < 0.05) in pain scores

  14. The allelopathic effects of invasive plant Solidago canadensis on seed germination and growth of Lactuca sativa enhanced by different types of acid deposition.

    PubMed

    Wang, Congyan; Xiao, Hongguang; Zhao, Lulu; Liu, Jun; Wang, Lei; Zhang, Fei; Shi, Yanchun; Du, Daolin

    2016-04-01

    Invasive species can exhibit allelopathic effects on native species. Meanwhile, the types of acid deposition are gradually changing. Thus, the allelopathic effects of invasive species on seed germination and growth of native species may be altered or even enhanced under conditions with diversified acid deposition. This study aims to assess the allelopathic effects (using leaves extracts) of invasive plant Solidago canadensis on seed germination and growth of native species Lactuca sativa treated with five types of acid deposition with different SO4(2-) to NO3(-) ratios (1:0, sulfuric acid; 5:1, sulfuric-rich acid; 1:1, mixed acid; 1:5, nitric-rich acid; 0:1, nitric acid). Solidago canadensis leaf extracts exhibited significantly allelopathic effects on germination index, vigor index, and germination rate index of L. sativa. High concentration of S. canadensis leaf extracts also similarly exhibited significantly allelopathic effects on root length of L. sativa. This may be due to that S. canadensis could release allelochemicals and then trigger allelopathic effects on seed germination and growth of L. sativa. Acid deposition exhibited significantly negative effects on seedling biomass, root length, seedling height, germination index, vigor index, and germination rate index of L. sativa. This may be ascribed to the decreased soil pH values mediated by acid deposition which could produce toxic effects on seedling growth. Sulfuric acid deposition triggered more toxic effects on seedling biomass and vigor index of L. sativa than nitric acid deposition. This may be attributing to the difference in exchange capacity with hydroxyl groups (OH(-)) between SO4(2-) and NO3(-) as well as the fertilizing effects mediated by nitric deposition. All types of acid deposition significantly enhanced the allelopathic effects of S. canadensis on root length, germination index, vigor index, and germination rate index of L. sativa. This may be due to the negatively synergistic effects of

  15. Effect of N. sativa oil on impaired glucose tolerance and insulin insensitivity induced by high-fat-diet and turpentine-induced trauma.

    PubMed

    Alsaif, Mohammed A

    2008-04-15

    The aim of this study was to investigate the effect of N. sativa oil on impaired glucose tolerance and insulin insensitivity induced by high-fat diet and trauma. Three dietary groups were used in this study; Rat-Chow (RC), N. sativa oil diet (Combination 4% N. sativa oil and 16% butter oil) (NSOD) and 20% Butter Oil Diet (BOD). Each group was subdivided in two groups; control and trauma. Diets were supplemented for five consecutive weeks body weight increase per week was calculated. At end of the dietary treatments, single dose (2 mL kg(-1) body weight) of turpentine was injected in the dorso-lumber region. Intravenous glucose tolerance test (i.v. GTT) was performed, insulinogenic index and insulin sensitivity was measured. The results showed butter oil diet significantly increased the body weights and visceral fats compared other two groups, respectively. Fasting glucose levels did not change in trauma induced rats while insulin levels increased significantly and it found highest in butter oil diet fed animals. Impaired glucose tolerance was found sever in BOD fed traumatized rats. N. sativa oil diet protected impaired glucose tolerance and insulin insensitivity induced either via saturated fatty acids or injury. In conclusion, N. sativa oil may be used in post surgery diabetic patients to prevent the long going adverse effects from surgical trauma.

  16. Functional dissection of hematopoietic stem cell populations with a stemness-monitoring system based on NS-GFP transgene expression.

    PubMed

    Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi

    2017-09-12

    Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.

  17. Radiometric properties of the NS001 Thematic Mapper Simulator aircraft multispectral scanner

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Ahmad, Suraiya P.

    1990-01-01

    Laboratory tests of the NS001 TM are described emphasizing absolute calibration to determine the radiometry of the simulator's reflective channels. In-flight calibration of the data is accomplished with the NS001 internal integrating-sphere source because instabilities in the source can limit the absolute calibration. The data from 1987-89 indicate uncertainties of up to 25 percent with an apparent average uncertainty of about 15 percent. Also identified are dark current drift and sensitivity changes along the scan line, random noise, and nonlinearity which contribute errors of 1-2 percent. Uncertainties similar to hysteresis are also noted especially in the 2.08-2.35-micron range which can reduce sensitivity and cause errors. The NS001 TM Simulator demonstrates a polarization sensitivity that can generate errors of up to about 10 percent depending on the wavelength.

  18. [Therapeutic potential of Cannabis sativa].

    PubMed

    Avello L, Marcia; Pastene N, Edgar; Fernández R, Pola; Córdova M, Pia

    2017-03-01

    Cannabis sativa (marihuana) is considered an illicit drug due to its psychoactive properties. Recently, the Chilean government opened to the use cannabis in the symptomatic treatment of some patients. The biological effects of cannabis render it useful for the complementary treatment of specific clinical situations such as chronic pain. We retrieved scientific information about the analgesic properties of cannabis, using it as a safe drug. The drug may block or inhibit the transmission of nervous impulses at different levels, an effect associated with pain control. Within this context and using adequate doses, forms and administration pathways, it can be used for chronic pain management, considering its effectiveness and low cost. It could also be considered as an alternative in patients receiving prolonged analgesic therapies with multiple adverse effects.

  19. Rice, Japonica (Oryza sativa L.).

    PubMed

    Main, Marcy; Frame, Bronwyn; Wang, Kan

    2015-01-01

    The importance of rice, as a food crop, is reflected in the extensive global research being conducted in an effort to improve and better understand this particular agronomic plant. In regard to biotechnology, this has led to the development of numerous genetic transformation protocols. Over the years, many of these methods have become increasingly straightforward, rapid, and efficient, thereby making rice valuable as a model crop for scientific research and functional genomics. The focus of this chapter is on one such protocol that uses Agrobacterium-mediated transformation of Oryza sativa L. ssp. Japonica cv. Nipponbare with an emphasis on tissue desiccation. The explants consist of callus derived from mature seeds which are cocultivated on filter paper postinfection. Hygromycin selection is used for the recovery of subsequent genetically engineered events.

  20. A Review of Staphylococcal Cassette Chromosome mec (SCCmec) Types in Coagulase-Negative Staphylococci (CoNS) Species.

    PubMed

    Saber, Huda; Jasni, Azmiza Syawani; Jamaluddin, Tengku Zetty Maztura Tengku; Ibrahim, Rosni

    2017-10-01

    Coagulase-negative staphylococci (CoNS) are considered low pathogenic organisms. However, they are progressively causing more serious infections with time because they have adapted well to various antibiotics owing to their ability to form biofilms. Few studies have been conducted on CoNS in both, hospital and community-acquired settings, especially in Malaysia. Thus, it is important to study their species and gene distributions. A mobile genetic element, staphylococcal cassette chromosome mec (SCC mec ), plays an important role in staphylococci pathogenesis. Among CoNS, SCC mec has been studied less frequently than Staphylococcus aureus (coagulase-positive staphylococci). A recent study (8) conducted in Malaysia successfully detected SCC mec type I to VIII as well as several new combination patterns in CoNS species, particularly Staphylococcus epidermidis . However, data are still limited, and further research is warranted. This paper provides a review on SCC mec types among CoNS species.

  1. Isolation and Characterization of Wheat Derived Nonspecific Lipid Transfer Protein 2 (nsLTP2).

    PubMed

    Bosi, Sara; Fiori, Jessica; Dinelli, Giovanni; Rigby, Neil; Leoncini, Emanuela; Prata, Cecilia; Bregola, Valeria; Marotti, Ilaria; Gotti, Roberto; Naldi, Marina; Massaccesi, Luca; Malaguti, Marco; Kroon, Paul; Hrelia, Silvana

    2018-05-22

    Numerous studies support the protective role of bioactive peptides against cardiovascular diseases. Cereals represent the primary source of carbohydrates, but they also contain substantial amounts of proteins, therefore representing a potential dietary source of bioactive peptides with nutraceutical activities. The analysis of wheat extracts purified by chromatographic techniques by means of HPLC-UV/nanoLC-nanoESI-QTOF allowed the identification of a signal of about 7 kDa which, following data base searches, was ascribed to a nonspecific lipid-transfer protein (nsLTP) type 2 from Triticum aestivum (sequence coverage of 92%). For the first time nsLTP2 biological activities have been investigated. In particular, in experiments with human umbilical vein endothelial cells (HUVEC), nsLTP2 displayed antioxidant and cytoprotective activities, being able to significantly decrease reactive oxygen species (ROS) levels and to reduce lactate dehydrogenase (LDH) release, generated following oxidative (hydrogen peroxide) and inflammatory (tumor necrosis factor α, interleukin-1β, and lipopolysaccharide) stimulation. The obtained promising results suggest potential protective role of nsLTP2 in vascular diseases prevention. PRACTICAL APPLICATION: nsLTP 2 peptide is resistant to proteases throughout the gastrointestinal tract and exerts antioxidant and cytoprotective activities. These characteristics could be exploited in vascular diseases prevention. © 2018 Institute of Food Technologists®.

  2. Genetic diversity of weedy red rice (Oryza sativa) in Arkansas, USA

    USDA-ARS?s Scientific Manuscript database

    Weedy red rice (Oryza sativa L.) is a problematic weed in rice. About 50% of US rice is produced in Arkansas and 60% of these fields have some red rice infestation. Red rice populations are morphologically and phenologically diverse. We hypothesize that red rice in Arkansas has high genetic diversit...

  3. Viperin Restricts Zika Virus and Tick-Borne Encephalitis Virus Replication by Targeting NS3 for Proteasomal Degradation.

    PubMed

    Panayiotou, Christakis; Lindqvist, Richard; Kurhade, Chaitanya; Vonderstein, Kirstin; Pasto, Jenny; Edlund, Karin; Upadhyay, Arunkumar S; Överby, Anna K

    2018-04-01

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus , affording the possible availability of new drug targets that can be used for therapeutic intervention. IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to

  4. Effects of ultraviolet-B radiation on the growth, physiology and cannabinoid production of Cannabis sativa L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lydon, J.

    The concentration of cannabinoids in Cannabis sativa L. is correlated with high ultraviolet-B (UV-B) radiation environments. ..delta../sup 9/-Tetrahydrocannabinolic acid and cannabidiolic acid, both major secondary products of C. sativa, absorb UV-B radiation and may function as solar screens. The object of this study was to test the effects of UV-B radiation on the physiology and cannabinoid production of C. sativa. Drug and fiber-type C. sativa were irradiated with three levels of UV-B radiation for 40 days in greenhouse experiments. Physiological measurements on leaf tissues were made by infra-red gas analysis. Drug and fiber-type control plants had similar CO/sub 2/ assimilationmore » rates from 26 to 32/sup 0/C. Drug-type control plant had higher dark respiration rates and stomatal conductances than fiber-type control plants. The concentration of ..delta../sup 9/-THC, but not of other cannabinoids) in both vegetative and reproductive tissues increased with UV-B dose in drug-type plants. None of the cannabinoids in fiber-type plants were affected by UV-B radiation. The increased level of ..delta../sup 9/-THC found in leaves after irradiation may account for the physiological and morphological insensitivity to UV-B radiation in the drug-type plants. However, fiber plants showed no comparable change in the level of cannabidoil (CBD). Resin stripped form fresh fiber-type floral tissue by sonication was spotted on filter paper and irradiated continuously for 7 days. Cannabidiol (CBD) gradually decreased when irradiated but ..delta../sup 9/-THC and cannabichromene did not.« less

  5. Identification of small molecule inhibitors of the Chikungunya virus nsP1 RNA capping enzyme.

    PubMed

    Feibelman, Kristen M; Fuller, Benjamin P; Li, Linfeng; LaBarbera, Daniel V; Geiss, Brian J

    2018-06-01

    Chikungunya virus (CHIKV) is an arthropod-borne alphavirus. Alphaviruses are positive strand RNA viruses that require a 5' cap structure to direct translation of the viral polyprotein and prevent degradation of the viral RNA genome by host cell nucleases. Formation of the 5' RNA cap is orchestrated by the viral protein nsP1, which binds GTP and provides the N-7 methyltransferase and guanylyltransferase activities that are necessary for cap formation. Viruses with aberrant nsP1 activity are unable to replicate effectively suggesting that nsP1 is a promising target for antiviral drug discovery. Given the absence of commercially available antiviral therapies for CHIKV, it is imperative to identify compounds that could be developed as potential therapeutics. This study details a high-throughput screen of 3051 compounds from libraries containing FDA-approved drugs, natural products, and known bioactives against CHIKV nsP1 using a fluorescence polarization-based GTP competition assay. Several small molecule hits from this screen were able to compete with GTP for the CHIKV nsP1 GTP binding site at low molar concentrations. Compounds were also evaluated with an orthogonal assay that measured the ability of nsP1 to perform the guanylation step of the capping reaction in the presence of inhibitor. In addition, live virus assays with CHIKV and closely related alphavirus, Sindbis virus, were used in conjunction with cell toxicity assays to determine the antiviral activity of compounds in cell culture. The naturally derived compound lobaric acid was found to inhibit CHIKV nsP1 GTP binding and guanylation as well as attenuate viral growth in vitro at both 24 hpi and 48 hpi in hamster BHK21 and human Huh 7 cell lines. These data indicate that development of lobaric acid and further exploration of CHIKV nsP1 as a drug target may aid in the progress of anti-alphaviral drug development strategies. Copyright © 2018. Published by Elsevier B.V.

  6. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  7. In Vitro Propagation of Cannabis sativa L. and Evaluation of Regenerated Plants for Genetic Fidelity and Cannabinoids Content for Quality Assurance.

    PubMed

    Lata, Hemant; Chandra, Suman; Khan, Ikhlas A; ElSohly, Mahmoud A

    2016-01-01

    Cannabis sativa L. (Marijuana; Cannabaceae), one of the oldest medicinal plants in the world, has been used throughout history for fiber, food, as well as for its psychoactive properties. The dioecious and allogamous nature of C. sativa is the major constraint to maintain the consistency in chemical profile and overall efficacy if grown from seed. Therefore, the present optimized in vitro propagation protocol of the selected elite germplasm via direct organogenesis and quality assurance protocols using genetic and chemical profiling provide an ideal pathway for ensuring the efficacy of micropropagated Cannabis sativa germplasm. A high frequency shoot organogenesis of C. sativa was obtained from nodal segments in 0.5 μM thidiazuron medium and 95 % in vitro rhizogenesis is obtained on half-strength MS medium supplemented with 500 mg/L activated charcoal and 2.5 μM indole-3-butyric acid. Inter Simple Sequence Repeats (ISSR) and Gas Chromatography-Flame Ionization Detection (GC-FID) are successfully used to monitor the genetic stability in micropropagated plants up to 30 passages in culture and hardened in soil for 8 months.

  8. The 5.5 protein of phage T7 inhibits H-NS through interactions with the central oligomerization domain.

    PubMed

    Ali, Sabrina S; Beckett, Emily; Bae, Sandy Jeehoon; Navarre, William Wiley

    2011-09-01

    The 5.5 protein (T7p32) of coliphage T7 (5.5(T7)) was shown to bind and inhibit gene silencing by the nucleoid-associated protein H-NS, but the mechanism by which it acts was not understood. The 5.5(T7) protein is insoluble when expressed in Escherichia coli, but we find that 5.5(T7) can be isolated in a soluble form when coexpressed with a truncated version of H-NS followed by subsequent disruption of the complex during anion-exchange chromatography. Association studies reveal that 5.5(T7) binds a region of H-NS (residues 60 to 80) recently found to contain a distinct domain necessary for higher-order H-NS oligomerization. Accordingly, we find that purified 5.5(T7) can disrupt higher-order H-NS-DNA complexes in vitro but does not abolish DNA binding by H-NS per se. Homologues of the 5.5(T7) protein are found exclusively among members of the Autographivirinae that infect enteric bacteria, and despite fairly low sequence conservation, the H-NS binding properties of these proteins are largely conserved. Unexpectedly, we find that the 5.5(T7) protein copurifies with heterogeneous low-molecular-weight RNA, likely tRNA, through several chromatography steps and that this interaction does not require the DNA binding domain of H-NS. The 5.5 proteins utilize a previously undescribed mechanism of H-NS antagonism that further highlights the critical importance that higher-order oligomerization plays in H-NS-mediated gene repression. Copyright © 2011, American Society for Microbiology. All Rights Reserved.

  9. The NS1 Protein from Influenza Virus Stimulates Translation Initiation by Enhancing Ribosome Recruitment to mRNAs.

    PubMed

    Panthu, Baptiste; Terrier, Olivier; Carron, Coralie; Traversier, Aurélien; Corbin, Antoine; Balvay, Laurent; Lina, Bruno; Rosa-Calatrava, Manuel; Ohlmann, Théophile

    2017-10-27

    The non-structural protein NS1 of influenza A viruses exerts pleiotropic functions during infection. Among these functions, NS1 was shown to be involved in the control of both viral and cellular translation; however, the mechanism by which this occurs remains to be determined. Thus, we have revisited the role of NS1 in translation by using a combination of influenza infection, mRNA reporter transfection, and in vitro functional and biochemical assays. Our data show that the NS1 protein is able to enhance the translation of virtually all tested mRNAs with the exception of constructs bearing the Dicistroviruses Internal ribosome entry segment (IRESes) (DCV and CrPV), suggesting a role at the level of translation initiation. The domain of NS1 required for translation stimulation was mapped to the RNA binding amino-terminal motif of the protein with residues R38 and K41 being critical for activity. Although we show that NS1 can bind directly to mRNAs, it does not correlate with its ability to stimulate translation. This activity rather relies on the property of NS1 to associate with ribosomes and to recruit them to target mRNAs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. pH-Dependent Conformational Changes in the HCV NS3 Protein Modulate Its ATPase and Helicase Activities

    PubMed Central

    Ventura, Gustavo Tavares; da Costa, Emmerson Corrêa Brasil; Capaccia, Anne Miranda; Mohana-Borges, Ronaldo

    2014-01-01

    The hepatitis C virus (HCV) infects 170 to 200 million people worldwide and is, therefore, a major health problem. The lack of efficient treatments that specifically target the viral proteins or RNA and its high chronicity rate make hepatitis C the cause of many deaths and hepatic transplants annually. The NS3 protein is considered an important target for the development of anti-HCV drugs because it is composed of two domains (a serine protease in the N-terminal portion and an RNA helicase/NTPase in the C-terminal portion), which are essential for viral replication and proliferation. We expressed and purified both the NS3 helicase domain (NS3hel) and the full-length NS3 protein (NS3FL) and characterized pH-dependent structural changes associated with the increase in their ATPase and helicase activities at acidic pH. Using intrinsic fluorescence experiments, we have observed that NS3hel was less stable at pH 6.4 than at pH 7.2. Moreover, binding curves using an extrinsic fluorescent probe (bis-ANS) and ATPase assays performed under different pH conditions demonstrated that the hydrophobic clefts of NS3 are significantly more exposed to the aqueous medium at acidic pH. Using fluorescence spectroscopy and anisotropy assays, we have also observed more protein interaction with DNA upon pH acidification, which suggests that the hydrophobic clefts exposure on NS3 might be related to a loss of stability that could lead it to adopt a more open conformation. This conformational change at acidic pH would stimulate both its ATPase and helicase activities, as well as its ability to bind DNA. Taken together, our results indicate that the NS3 protein adopts a more open conformation due to acidification from pH 7.2 to 6.4, resulting in a more active form at a pH that is found near Golgi-derived membranes. This increased activity could better allow NS3 to carry out its functions during HCV replication. PMID:25551442

  11. Effects of nanosecond pulsed electric fields (nsPEFs) on the human fungal pathogen Candida albicans: an in vitro study

    NASA Astrophysics Data System (ADS)

    Guo, Jinsong; Dang, Jie; Wang, Kaile; Zhang, Jue; Fang, Jing

    2018-05-01

    Candida albicans is the leading human fungal pathogen that causes many life-threatening infections. Notably, the current clinical trial data indicate that Candida species shows the emerging resistance to anti-fungal drugs. The aim of this study was to evaluate the antifungal effects of nanosecond pulsed electric fields (nsPEFs) as a novel drug-free strategy in vitro. In this study, we investigated the inactivation and permeabilization effects of C. albicans under different nsPEFs exposure conditions (100 pulses, 100 ns in duration, intensities of 20, 40 kV cm‑1). Cell death was studied by annexin-V and propidium iodide staining. The changes of intracellular Ca2+ concentration after nsPEFs treatment were observed using Fluo-4 AM. Results show that C. albicans cells and biofilms were both obviously inhibited and destroyed after nsPEFs treatment. Furthermore, C. albicans cells were significantly permeabilized after nsPEFs treatment. Additionally, nsPEFs exposure led to a large amount of DNA and protein leakage. Importantly, nsPEFs induced a field strength-dependent apoptosis in C. albicans cells. Further experiments revealed that Ca2+ involved in nsPEFs induced C. albicans apoptosis. In conclusion, this proof-of-concept study provides a potential alternative drug-free strategy for killing pathogenic Candida species.