Science.gov

Sample records for nighttime stomatal conductance

  1. Nighttime stomatal conductance differs with nutrient availability in two temperate floodplain tree species.

    PubMed

    Eller, Franziska; Jensen, Kai; Reisdorff, Christoph

    2016-12-14

    Nighttime water flow varies between plant species and is a phenomenon for which the magnitude, purpose and consequences are widely discussed. A potential benefit of nighttime stomata opening may be increased nutrient availability during the night since transpiration affects the mass flow of soil water towards plant roots. We investigated how nitrogen (N) and phosphorus (P) fertilization, and short-term drought affected stomatal conductance of Fraxinus excelsior L. and Ulmus laevis Pallas during the day (gs) and night (gn), and how these factors affected growth for a period of 18 weeks. Both species were found to open their stomata during the night, and gn responded to nutrients and water in a different manner than gs Under N-deficiency, F. excelsior had higher gn, especially when P was sufficient, and lower pre-dawn leaf water potential (Ψpd), supporting our assumption that nutrient limitation leads to increases in nighttime water uptake. Under P-deficiency, F. excelsior had higher relative root production and, thus, adjusted its biomass allocation under P shortage, while sufficient N but not P contributed to overall higher biomasses. In contrast, U. laevis had higher gn and lower root:shoot ratio under high nutrient (especially N) availability, whereas both sufficient N and P produced higher biomasses. Compared with well-watered trees, the drought treatment did not affect any growth parameter but it resulted in lower gn, minimum stomatal conductance and Ψpd of F. excelsior For U. laevis, only gs during July was lower when drought-treated. In summary, the responses of gs and gn to nutrients and drought depended on the species and its nutrient uptake strategy, and also the timing of measurement during the growing season. Eutrophication of floodplain forests dominated by F. excelsior and U. laevis may, therefore, considerably change nighttime transpiration rates, leading to ecosystem-level changes in plant-water dynamics. Such changes may have more severe

  2. Canopy stomatal conductance

    SciTech Connect

    Baldocchi, D.D.; Luxmoore, R.J.; Hatfield, J.L.

    1989-07-14

    Stomata are major conduits for the diffusion of many trace gas species between leaves and the atmosphere. The role of the stomata on controlling gas exchange between the terrestrial biosphere and the atmosphere at the landscape, meso- and global-scales has only recently been recognized. Further advances in modelling large-scale trace gas exchange will depend on our ability to understand and model stomatal mechanics at the scale of the pertinent sub-unit, which is typically that of the canopy. This paper describes two approaches for estimating canopy stomatal conductance. One approach is based on 'bottom-up' scaling. This approach computes canopy stomatal conductance by integrating detailed leaf-level and environmentally-driven, physiological processes with the use of a detailed canopy micrometeorology model. The other approach is based on 'top-down' scaling. It interprets the integrated canopy stomatal conductance from measured fluxes of trace gas exchange. Frameworks for extending these scaling approaches to non-idea conditions are given. 96 refs., 5 figs.

  3. Differential daytime and night-time stomatal behavior in plants from North American deserts.

    PubMed

    Ogle, Kiona; Lucas, Richard W; Bentley, Lisa Patrick; Cable, Jessica M; Barron-Gafford, Greg A; Griffith, Alden; Ignace, Danielle; Jenerette, G Darrel; Tyler, Anna; Huxman, Travis E; Loik, Michael E; Smith, Stanley D; Tissue, David T

    2012-04-01

    Night-time stomatal conductance (g(night)) occurs in many ecosystems, but the g(night) response to environmental drivers is relatively unknown, especially in deserts. Here, we conducted a Bayesian analysis of stomatal conductance (g) (N=5013) from 16 species in the Sonoran, Chihuahuan, Mojave and Great Basin Deserts (North America). We partitioned daytime g (g(day)) and g(night) responses by describing g as a mixture of two extreme (dark vs high light) behaviors. Significant g(night) was observed across 15 species, and the g(night) and g(day) behavior differed according to species, functional type and desert. The transition between extreme behaviors was determined by light environment, with the transition behavior differing between functional types and deserts. Sonoran and Chihuahuan C(4) grasses were more sensitive to vapor pressure difference (D) at night and soil water potential (Ψ(soil)) during the day, Great Basin C(3) shrubs were highly sensitive to D and Ψ(soil) during the day, and Mojave C(3) shrubs were equally sensitive to D and Ψ(soil) during the day and night. Species were split between the exhibition of isohydric or anisohydric behavior during the day. Three species switched from anisohydric to isohydric behavior at night. Such behavior, combined with differential D, Ψ(soil) and light responses, suggests that different mechanisms underlie g(day) and g(night) regulation.

  4. Relating Stomatal Conductance to Leaf Functional Traits.

    PubMed

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  5. Relating Stomatal Conductance to Leaf Functional Traits

    PubMed Central

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-01-01

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants’ regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES

  6. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture.

    PubMed

    Monda, Keina; Araki, Hiromitsu; Kuhara, Satoru; Ishigaki, Genki; Akashi, Ryo; Negi, Juntaro; Kojima, Mikiko; Sakakibara, Hitoshi; Takahashi, Sho; Hashimoto-Sugimoto, Mimi; Goto, Nobuharu; Iba, Koh

    2016-03-01

    The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant's gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.

  7. Effects of stomatal development on stomatal conductance and on stomatal limitation of photosynthesis in Syringa oblata and Euonymus japonicus Thunb.

    PubMed

    Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao

    2014-12-01

    During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange.

  8. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual.

    PubMed

    Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A

    2006-06-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.

  9. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance

    PubMed Central

    Franks, Peter J.

    2013-01-01

    Maximum and minimum stomatal conductance, as well as stomatal size and rate of response, are known to vary widely across plant species, but the functional relationship between these static and dynamic stomatal properties is unknown. The objective of this study was to test three hypotheses: (i) operating stomatal conductance under standard conditions (g op) correlates with minimum stomatal conductance prior to morning light [g min(dawn)]; (ii) stomatal size (S) is negatively correlated with g op and the maximum rate of stomatal opening in response to light, (dg/dt)max; and (iii) g op correlates negatively with instantaneous water-use efficiency (WUE) despite positive correlations with maximum rate of carboxylation (Vc max) and light-saturated rate of electron transport (J max). Using five closely related species of the genus Banksia, the above variables were measured, and it was found that all three hypotheses were supported by the results. Overall, this indicates that leaves built for higher rates of gas exchange have smaller stomata and faster dynamic characteristics. With the aid of a stomatal control model, it is demonstrated that higher g op can potentially expose plants to larger tissue water potential gradients, and that faster stomatal response times can help offset this risk. PMID:23264516

  10. Estimating stomatal conductance with thermal imagery.

    PubMed

    Leinonen, I; Grant, O M; Tagliavia, C P P; Chaves, M M; Jones, H G

    2006-08-01

    Most thermal methods for the study of drought responses in plant leaves are based on the calculation of 'stress indices'. This paper proposes and compares three main extensions of these for the direct estimation of absolute values of stomatal conductance to water vapour (gs) using infrared thermography (IRT). All methods use the measured leaf temperature and two environmental variables (air temperature and boundary layer resistance) as input. Additional variables required, depending on the method, are the temperatures of wet and dry reference surfaces, net radiation and relative humidity. The methods were compared using measured gs data from a vineyard in Southern Portugal. The errors in thermal estimates of conductance were of the same order as the measurement errors using a porometer. Observed variability was also compared with theoretical estimates of errors in estimated gs determined on the basis of the errors in the input variables (leaf temperature, boundary layer resistance, net radiation) and the partial derivatives of the energy balance equations used for the gs calculations. The full energy balance approach requires accurate estimates of net radiation absorbed, which may not be readily available in field conditions, so alternatives using reference surfaces are shown to have advantages. A new approach using a dry reference leaf is particularly robust and recommended for those studies where the specific advantages of thermal imagery, including its non-contact nature and its ability to sample large numbers of leaves, are most apparent. Although the results suggest that estimates of the absolute magnitude of gs are somewhat subjective, depending on the skill of the experimenter at selecting evenly exposed leaves, relative treatment differences in conductance are sensitively detected by different experimenters.

  11. Pore size regulates operating stomatal conductance, while stomatal densities drive the partitioning of conductance between leaf sides

    PubMed Central

    Fanourakis, Dimitrios; Giday, Habtamu; Milla, Rubén; Pieruschka, Roland; Kjaer, Katrine H.; Bolger, Marie; Vasilevski, Aleksandar; Nunes-Nesi, Adriano; Fiorani, Fabio; Ottosen, Carl-Otto

    2015-01-01

    Background and Aims Leaf gas exchange is influenced by stomatal size, density, distribution between the leaf adaxial and abaxial sides, as well as by pore dimensions. This study aims to quantify which of these traits mainly underlie genetic differences in operating stomatal conductance (gs) and addresses possible links between anatomical traits and regulation of pore width. Methods Stomatal responsiveness to desiccation, gs-related anatomical traits of each leaf side and estimated gs (based on these traits) were determined for 54 introgression lines (ILs) generated by introgressing segments of Solanum pennelli into the S. lycopersicum ‘M82’. A quantitative trait locus (QTL) analysis for stomatal traits was also performed. Key Results A wide genetic variation in stomatal responsiveness to desiccation was observed, a large part of which was explained by stomatal length. Operating gs ranged over a factor of five between ILs. The pore area per stomatal area varied 8-fold among ILs (2–16 %), and was the main determinant of differences in operating gs between ILs. Operating gs was primarily positioned on the abaxial surface (60–83 %), due to higher abaxial stomatal density and, secondarily, to larger abaxial pore area. An analysis revealed 64 QTLs for stomatal traits in the ILs, most of which were in the direction of S. pennellii. Conclusions The data indicate that operating and maximum gs of non-stressed leaves maintained under stable conditions deviate considerably (by 45–91 %), because stomatal size inadequately reflects operating pore area (R2 = 0·46). Furthermore, it was found that variation between ILs in both stomatal sensitivity to desiccation and operating gs is associated with features of individual stoma. In contrast, genotypic variation in gs partitioning depends on the distribution of stomata between the leaf adaxial and abaxial epidermis. PMID:25538116

  12. Enhanced Stomatal Conductance by a Spontaneous Arabidopsis Tetraploid, Me-0, Results from Increased Stomatal Size and Greater Stomatal Aperture1[OPEN

    PubMed Central

    Monda, Keina; Araki, Hiromitsu; Kuhara, Satoru; Ishigaki, Genki; Akashi, Ryo; Negi, Juntaro; Kojima, Mikiko; Sakakibara, Hitoshi; Takahashi, Sho; Hashimoto-Sugimoto, Mimi; Goto, Nobuharu; Iba, Koh

    2016-01-01

    The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant’s gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance. PMID:26754665

  13. Optimized stomatal conductance and the climate sensitivity to carbon dioxide

    NASA Astrophysics Data System (ADS)

    Kleidon, A.

    2007-07-01

    Stomatal conductance shapes the exchange of water and carbon of vegetated land surfaces. Previous studies have demonstrated that optimized stomatal functioning that maximizes productivity provides a realistic description of how stomata operate. Here I investigate the role of optimum stomatal functioning for the sensitivity of terrestrial productivity and land surface climate to concentrations of atmospheric carbon dioxide (pCO 2). I conduct sensitivity simulations with a coupled vegetation-climate system model with different values of maximum stomatal conductance at different prescribed levels of pCO 2. The optimum in stomatal conductance shifts to lower values with increasing pCO 2, which is consistent with observed sensitivities of stomatal density of leaves. If this change in optimum conditions is not taken into account, the climate sensitivity shows (1) a general underestimation of terrestrial productivity under altered pCO 2, and (2) different sensitivities of key climatic variables to pCO 2. The climate sensitivity of land temperature for a doubling of pCO 2 ranges from ΔT = 2.7 K to ΔT = 3.2 K, depending on whether stomata adapt optimally or not at all. These results demonstrate that the assumed ability of vegetation to adapt to its environment can have important consequences for the simulated climate system sensitivity to pCO 2.

  14. Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints

    NASA Astrophysics Data System (ADS)

    Lombardozzi, Danica L.; Zeppel, Melanie J. B.; Fisher, Rosie A.; Tawfik, Ahmed

    2017-01-01

    The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land-surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land-surface models typically reduce stomatal conductance to nearly zero at night. Here, we test the sensitivity of carbon and water budgets in a global land-surface model, the Community Land Model (CLM) version 4.5, to three different methods of incorporating observed nighttime stomatal conductance values. We find that our modifications increase transpiration by up to 5 % globally, reduce modeled available soil moisture by up to 50 % in semi-arid regions, and increase the importance of the land surface in modulating energy fluxes. Carbon gain declines by up to ˜ 4 % globally and > 25 % in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.

  15. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  16. Fertilization effects on mean stomatal conductance are mediated through changes in the hydraulic attributes of mature Norway spruce trees.

    PubMed

    Ward, Eric J; Oren, Ram; Sigurdsson, Bjarni D; Jarvis, Paul G; Linder, Sune

    2008-04-01

    Stomatal conductance was quantified with sap flux sensors and whole-tree chambers in mature Norway spruce (Picea abies (L.) Karst.) trees after 3 years of exposure to elevated CO(2) concentration ([CO(2)]) in a 13-year nutrient optimization experiment. The long-term nutrient optimization treatment increased tree height by 3.7 m (67%) and basal diameter by 8 cm (68%); the short-term elevated [CO(2)] exposure had no effect on tree size or allometry. Nighttime transpiration was estimated as approximately 7% of daily transpiration in unchambered trees; accounting for the effect of nighttime flux on the processing of sap flux signals increased estimated daily water uptake by approximately 30%. Crown averaged stomatal conductance (g(s)) was described by a Jarvis-type model. The addition of a stomatal response time constant (tau) and total capacitance of stored water (C(tot)) improved the fit of the model. Model estimates for C(tot) scaled with sapwood volume of the bole in fertilized trees. Hydraulic support-defined as a lumped variable of leaf-specific hydraulic conductivity and water potential gradient (K(l)DeltaPsi) -was estimated from height, sapwood-to-leaf area ratio (A(s):A(l)) and changes in tracheid dimensions. Hydraulic support explained 55% of the variation in g(s) at reference conditions for trees across nutrient and [CO(2)] treatments. Removal of approximately 50% of A(l) from three trees yielded results suggesting that stomatal compensation (i.e., an increase in g(s)) after pruning scales inversely with K(l)DeltaPsi, indicating that the higher the potential hydraulic support after pruning, the less complete the stomatal compensation for the increase in A(s):A(l).

  17. Optimal Stomatal Behaviour Around the World: Synthesis of a Global Stomatal Conductance Database and Scaling from Leaf to Ecosystem

    NASA Astrophysics Data System (ADS)

    Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.

    2014-12-01

    Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.

  18. The contribution of photosynthesis to the red light response of stomatal conductance.

    PubMed

    Baroli, Irene; Price, G Dean; Badger, Murray R; von Caemmerer, Susanne

    2008-02-01

    To determine the contribution of photosynthesis on stomatal conductance, we contrasted the stomatal red light response of wild-type tobacco (Nicotiana tabacum 'W38') with that of plants impaired in photosynthesis by antisense reductions in the content of either cytochrome b(6)f complex (anti-b/f plants) or Rubisco (anti-SSU plants). Both transgenic genotypes showed a lowered content of the antisense target proteins in guard cells as well as in the mesophyll. In the anti-b/f plants, CO(2) assimilation rates were proportional to leaf cytochrome b(6)f content, but there was little effect on stomatal conductance and the rate of stomatal opening. To compare the relationship between photosynthesis and stomatal conductance, wild-type plants and anti-SSU plants were grown at 30 and 300 micromol photon m(-2) s(-1) irradiance (low light and medium light [ML], respectively). Growth in ML increased CO(2) assimilation rates and stomatal conductance in both genotypes. Despite the significantly lower CO(2) assimilation rate in the anti-SSU plants, the differences in stomatal conductance between the genotypes were nonsignificant at either growth irradiance. Irrespective of plant genotype, stomatal density in the two leaf surfaces was 2-fold higher in ML-grown plants than in low-light-grown plants and conductance normalized to stomatal density was unaffected by growth irradiance. We conclude that the red light response of stomatal conductance is independent of the concurrent photosynthetic rate of the guard cells or of that of the underlying mesophyll. Furthermore, we suggest that the correlation of photosynthetic capacity and stomatal conductance observed under different light environments is caused by signals largely independent of photosynthesis.

  19. ENVIRONMENTAL STRESS AND GENETICS INFLUENCE NIGHTTIME LEAF CONDUCTANCE IN THE C4 GRASS DISTICHLIS SPICATA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growing awareness of nighttime leaf conductance (gnight) in many species, as well as genetic variation in gnight within several species, has raised questions about how genetic variation and environmental stress interact to influence the magnitude of gnight. The objective of this study was to invest...

  20. CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions

    PubMed Central

    Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian

    2015-01-01

    Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956

  1. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions.

    PubMed

    Engineer, Cawas B; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordström, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian I

    2016-01-01

    Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate.

  2. Changes in stomatal conductance along grass blades reflect changes in leaf structure.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2012-06-01

    Identifying the consequences of grass blade morphology (long, narrow leaves) on the heterogeneity of gas exchange is fundamental to an understanding of the physiology of this growth form. We examined acropetal changes in anatomy, hydraulic conductivity and rates of gas exchange in five grass species (including C(3) and C(4) functional types). Both stomatal conductance and photosynthesis increased along all grass blades despite constant light availability. Hydraulic efficiency within the xylem remained constant along the leaf, but structural changes outside the xylem changed in concert with stomatal conductance. Stomatal density and stomatal pore index remained constant along grass blades but interveinal distance decreased acropetally resulting in a decreased path length for water movement from vascular bundle to stomate. The increase in stomatal conductance was correlated with the decreased path length through the leaf mesophyll. A strong correlation between the distance from vascular bundles to stomatal pores and stomatal conductance has been identified across species; our results suggest this relationship also exists within individual leaves.

  3. Tree-Level Hydrodynamic Approach for Improved Stomatal Conductance Parameterization

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, G.; Bohrer, G.; Matheny, A. M.; Ivanov, V. Y.

    2014-12-01

    The land-surface models do not mechanistically resolve hydrodynamic processes within the tree. The Finite-Elements Tree-Crown Hydrodynamics model version 2 (FETCH2) is based on the pervious FETCH model approach, but with finite difference numerics, and simplified single-beam conduit system. FETCH2 simulates water flow through the tree as a simplified system of porous media conduits. It explicitly resolves spatiotemporal hydraulic stresses throughout the tree's vertical extent that cannot be easily represented using other stomatal-conductance models. Empirical equations relate water potential at the stem to stomata conductance at leaves connected to the stem (through unresolved branches) at that height. While highly simplified, this approach bring some realism to the simulation of stomata conductance because the stomata can respond to stem water potential, rather than an assumed direct relationship with soil moisture, as is currently the case in almost all models. By enabling mechanistic simulation of hydrological traits, such as xylem conductivity, conductive area per DBH, vertical distribution of leaf area and maximal and minimal water content in the xylem, and their effect of the dynamics of water flow in the tree system, the FETCH2 modeling system enhanced our understanding of the role of hydraulic limitations on an experimental forest plot short-term water stresses that lead to tradeoffs between water and light availability for transpiring leaves in forest ecosystems. FETCH2 is particularly suitable to resolve the effects of structural differences between tree and species and size groups, and the consequences of differences in hydraulic strategies of different species. We leverage on a large dataset of sap flow from 60 trees of 4 species at our experimental plot at the University of Michigan Biological Station. Comparison of the sap flow and transpiration patterns in this site and an undisturbed control site shows significant difference in hydraulic strategies

  4. Ozone exposure causes a decoupling of conductance and photosynthesis: implications for the Ball-Berry stomatal conductance model.

    PubMed

    Lombardozzi, Danica; Sparks, Jed P; Bonan, Gordon; Levis, Samuel

    2012-07-01

    Industrialization has significantly altered atmospheric chemistry by increasing concentrations of chemicals such as nitrogen oxides (NO( x )) and volatile organic carbon, which react in the presence of sunlight to produce tropospheric ozone (O(3)). Ozone is a powerful oxidant that causes both visual and physiological damage to plants, impairing the ability of the plant to control processes like photosynthesis and transpiration. Damage to photosynthesis and stomatal conductance does not always occur at the same rate, which generates a problem when using the Ball-Berry model to predict stomatal conductance because the calculations directly rely on photosynthesis rates. The goals of this work were to develop a modeling framework to modify Ball-Berry stomatal conductance predictions independently of photosynthesis and to test the framework using experimental data. After exposure to elevated O(3) in open-top chambers, photosynthesis and stomatal conductance in tulip poplar changed at different rates through time. We were able to accurately model observed photosynthetic and stomatal conductance responses to chronic O(3) exposure in a Ball-Berry framework by adjusting stomatal conductance in addition to photosynthesis. This led to a significant improvement in the modeled ability to predict both photosynthesis and stomatal conductance responses to O(3).

  5. A feasibility study for conducting unattended night-time operations at WMKO

    NASA Astrophysics Data System (ADS)

    Stomski, Paul J.; Gajadhar, Sarah; Dahm, Scott; Jordan, Carolyn; Nordin, Tom

    2016-08-01

    In 2015, W. M. Keck Observatory conducted a study of the feasibility of conducting nighttime operations on Maunakea without any staff on the mountain. The study was motivated by the possibility of long term operational costs savings as well as other expected benefits. The goals of the study were to understand the technical feasibility and risk as well as to provide labor and cost estimates for implementation. The results of the study would be used to inform a decision about whether or not to fund and initiate a formal project aimed at the development of this new unattended nighttime operating capability. In this paper we will describe the study process as well as a brief summary of the results including the identified viable design alternative, the risk analysis, and the scope of work. We will also share the decisions made as a result of the study and current status of related follow-on activity.

  6. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    NASA Astrophysics Data System (ADS)

    Lombardozzi, D.; Levis, S.; Bonan, G.; Sparks, J. P.

    2012-08-01

    Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3) concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera) in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM) to determine the impacts on gross primary productivity (GPP) and transpiration at a constant O3 concentration of 100 parts per billion (ppb). Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  7. Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf

    SciTech Connect

    Zeiger, E.; Field, C.

    1982-08-01

    The photocontrol of the functional coupling between photosynthesis and stomatal conductance in the leaf was investigated in gas exchange experiments using monochromatic light provided by lasers. Net photosynthesis and stomatal conductance were measured in attached leaves of Malva parviflora L. as a function of photon irradiance at 457.9 and 640.0 nanometers. Photosynthetic rates and quantum yields of photosynthesis were higher under red light than under blue, on an absorbed or incident basis. Stomatal conductance was higher under blue than under red light at all intensities. Based on a calculated apparent photon efficiency of conductance, blue and red light had similar effects on conductance at intensities higher than 0.02 millimoles per square meter per second, but blue light was several-fold more efficient at very low photon irradiances. Red light had no effect on conductance at photon irradiances below 0.02 millimoles per square meter per second. These observations support the hypothesis that stomatal conductance is modulated by two photosystems: a blue light-dependent one, driving stomatal opening at low light intensities and a photosynthetically active radiation (PAR)-dependent one operating at higher irradiances. When low intensity blue light was used to illuminate a leaf already irradiated with high intensity, 640 nanometers light, the leaf exhibited substantial increases in stomatal conductance. Net photosynthesis changed only slightly. Additional far-red light increased net photosynthesis without affecting stomatal conductance. These observations indicate that under conditions where the PAR-dependent system is driven by high intensity red light, the blue light-dependent system has an additive effect on stomatal conductance.

  8. Relationship between 18O enrichment in leaf biomass and stomatal conductance.

    PubMed

    Sheshshayee, Madavalam Sreeman; Bindumadhava, Hanumantha Rao; Ramesh, Rengaswamy; Prasad, Trichy Ganesh; Udayakumar, Makarla

    2010-03-01

    Models that explain the oxygen isotope enrichment in leaf water (and biomass) treat the relationship between the kinetic fractionation that occurs during evapotranspiration and the stomatal conductance in an empirical way. Consequently, the isotopic enrichment is always predicted to decrease with increasing stomatal conductance, regardless of the experimental evidence to the contrary. We explain why and suggest an alternative method to reconcile theory and experiment. We support this with our experimental data on rice and groundnut plants.

  9. Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances.

    PubMed

    Djebbar, Reda; Rzigui, Touhami; Pétriacq, Pierre; Mauve, Caroline; Priault, Pierrick; Fresneau, Chantal; De Paepe, Marianne; Florez-Sarasa, Igor; Benhassaine-Kesri, Ghouziel; Streb, Peter; Gakière, Bertrand; Cornic, Gabriel; De Paepe, Rosine

    2012-03-01

    To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling. Leaf hydraulic conductance was lower in mutant leaves when compared to WT leaves and the role of oxidative aquaporin gating in attaining a maximum stomatal conductance is discussed. In addition, differences in leaf metabolic status between the mutant and the WT might contribute to the low stomatal conductance, as reported for TCA cycle-deficient plants. After withholding watering, TCA cycle derived organic acids declined more in CMSII leaves than in the WT, and ATP content decreased only in the CMSII. Moreover, in contrast to the WT, total free amino acid levels declined whilst soluble protein content increased in CMSII leaves, suggesting an accelerated amino acid remobilisation. We propose that oxidative and metabolic disturbances resulting from remodelled respiration in the absence of Complex I activity could be involved in bringing about the lower stomatal and hydraulic conductances.

  10. Modelling stomatal conductance in Acacia caven: A two way approach to understand vapor fluxes

    NASA Astrophysics Data System (ADS)

    Raab, N.; Meza, F. J.

    2012-12-01

    Evapotranspiration fluxes from semi arid ecosystems show a strong interannual variability and dependence on water availability. Usually this variable is regarded as very small but at local scale could substantially affect water balance at basin level. Climate Change scenarios for these regions are a source of concern as they project an increase in temperature, leading to a greater atmospheric water demand. In addition, precipitation is expected to decrease, increasing pressure for this kind of ecosystems. At a plant level, a rise on the actual atmospheric CO2 concentration is expected to improve photosynthetic performance and water use efficiency. However, as stomatal conductance is the main pathway for water vapor flux, from the leaf to the atmosphere, and CO2 entrance to the substomatal cavity, a larger control of the stomatal opening, due to a severe water control lost from the plant, could lead to shortages in net assimilation, jeopardizing the behavior of Semi Arid ecosystems as natural carbon sinks. Stoma is also one of the main lock of the soil-plant-water continuum, thus finally controlling the rate of soil water depletion. Its modeling presents a key role in determining future groundwater availability and net ecosystem exchange. There are several approaches for stomatal conductance modeling, from mechanistic models, based on the physiological functioning of the stomata, to empirical models where the stomatal behavior is correlated with environmental conditions. We modeled stomatal conductance for a Chilean typical Mediterranean Savannanh, dominated by Acacia caven, comparing two different empirical approaches. We used a Shuttleworth and Wallace model for sparse canopies combined with an inversion of the Penman-Monteith equation. This model allowed us to link stomatal conductance to evapotranspiration. The second approach was based on a multiplicative model for stomatal conductance based on environmental limitation, following Jarvis's model

  11. Observations of leaf stomatal conductance at the canopy scale: An atmospheric modeling perspective

    NASA Astrophysics Data System (ADS)

    Avissar, Roni

    1993-03-01

    Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and, a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a

  12. The temperature sensitivity of guard cell respiration CO- segregates with stomatal conductances in a F2 population of pima cotton

    SciTech Connect

    Lu, Zhenmin; Quinones, M.A.; Zeiger, E. )

    1993-05-01

    Stomatal conductances in lines of Pima cotton selected for higher yields and heat resistance increase as a function of selection. Lines with contrasting rates of stomatal conductances also have contrasting rates of guard cell respiration and proton pumping. In this work, we studied stomatal conductances and guard cell respiration rates in a F2 population of a cross between S-6, a heat-resistant, high yielding line, and B368, a heat sensitive primitive cotton. F2 plants were grown in a greenhouse (temperature=30[degrees]C at noon) and a growth chamber (12 h light, 40[degrees]C/12 h dark 28[degrees]C). conductances were 3-fold higher at 40[degrees]C than at 25[degrees]C in greenhouse-grown plants and 4-fold higher in growth chamber-grown plants. The range of stomatal conductances in segregating F2 plants increased sharply with temperature, indicating that the genetic differences between the parental populations are better expressed at high temperature. Respiration rates of guard cells measured in mechanically isolated, enzymatically cleaned epidermis, co-segregated with stomatal conductances. Plants with high stomatal conductances had high rates of guard cell respiration. The slope of guard cell respiration as a function of temperature increased linearly with stomatal conductances. The co-segregation of rates of guard cell respiration and stomatal conductances indicates that both properties are under genetic control, and that guard cell respiration is a component of the sensory transduction of the stomatal response to temperature.

  13. Variation in photosynthesis and stomatal conductance in an ozone-stressed Ponderosa pine stand: light response

    SciTech Connect

    Cooyne, P.I,; Bingham, G.E.

    1982-06-01

    The seasonal course (May to October 1977) of gross photosynthesis (from /sup 14/CO/sub 2/ uptake and stomatal conductance) in a stand of ponderosa pine (Pinus ponderosa Laws.) in the San Bernardino National Forest was characterized as a function of light. Nine sapling trees, classified for comparative studies into three chronic injury classes (slight, moderate, severe) had experienced oxidant fumigations from California's South Coast Air Basin for approximately 18 years, since their establishment following fire. The CO/sub 2/-transfer pathway was partitioned into its stomatal and residual (mesophyll, carboxylation, excitation) resistance components, for conditions of light saturation and 20/sup 0/C. Light-saturated gross photosynthetic rates and photochemical conversion efficiencies were highest in the current-year needles and decreased with increasing needle age and oxidant injury. Maximum stomatal conductance and stomatal sensitivity to increasing light during stomatal opening followed a trend similar to that of photosynthesis, except for current-year needles, where conductance parameters were highest in the severely injured trees. This higher conductance may contribute to observed differential ozone sensitivity in ponderosa pine. Premature senesence and abscission of the 1-year (severely injured trees) and 2-year (slight to moderate injury) needles occurred at about the time CO/sub 2/ uptake dropped to 10 percent of the potential for current needles of slightly injured trees without foliar injury symptoms. The ratio of the stomatal CO/sub 2/ resistance to the total CO/sub 2/ resistance decreased with increasing oxidant injury and needle age, suggesting that loss of photosynthetic capacity was primarily related to the loss of chloroplast function rather than to increased resistance of CO/sub 2/ diffusion through the stomata.

  14. Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla.

    PubMed

    Kinose, Yoshiyuki; Azuchi, Fumika; Uehara, Yui; Kanomata, Tomoaki; Kobayashi, Ayumi; Yamaguchi, Masahiro; Izuta, Takeshi

    2014-11-01

    To construct stomatal conductance models and estimate stomatal O3 uptake for Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla, stomatal conductance (gs) was measured in seedlings of the four tree species. Better estimates of gs were made by incorporating the acute effects of O3 on gs into the models and the models could explain 34-52% of the variability in gs. Although the O3 concentration was relatively high in spring from April to May, COU of F. crenata, Q. serrata and Q. mongolica var. crispula were relatively low and the ratios of COU in spring to total COU in one year were 16.8% in all tree species because of low gs limited mainly by leaf pre-maturation and/or low temperature. The COU of B. platyphylla were relatively high mainly because of rapid leaf maturation and lower optimal temperature for stomatal opening.

  15. The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.

    PubMed

    Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel

    2011-05-01

    Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop.

  16. REDUCED STOMATAL CONDUCTANCE IN SWEETGUM (LIQUIDAMBAR STYRACIFLUA) SUSTAINED OVER LONG-TERM CO2 ENRICHMENT

    EPA Science Inventory

    Over four years (1998-2001), we examined the effects of CO2 enrichment on stomatal conductance (gs) of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua L.) grown at the Duke Forest Free Air Carbon CO2 Enrichment (FACE) experiment. Gas exchange measurements were...

  17. Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees

    NASA Astrophysics Data System (ADS)

    Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol

    2015-07-01

    Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.

  18. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris.

    PubMed

    Addington, Robert N; Mitchell, Robert J; Oren, Ram; Donovan, Lisa A

    2004-05-01

    We studied the response of stomatal conductance at leaf (gS) and canopy (GS) scales to increasing vapor pressure deficit (D) in mature Pinus palustris Mill. (longleaf pine) growing in a sandhill habitat in the coastal plain of the southeastern USA. Specifically, we determined if variation in the stomatal response to D was related to variation in hydraulic conductance along the soil-to-leaf pathway (KL) over the course of a growing season. Reductions in KL were associated with a severe growing season drought that significantly reduced soil water content (theta) in the upper 90-cm soil profile. Although KL recovered partially following the drought, it never reached pre-drought values. Stomatal sensitivity to D was well correlated with maximum gS at low D at both leaf and canopy scales, and KL appeared to influence this response by controlling maximum gS. Our results are consistent with the hypothesis that stomatal response to D occurs to regulate minimum leaf water potential, and that the sensitivity of this response is related to changes in whole-plant hydraulics.

  19. Surface Geometry and Stomatal Conductance Effects on Evaporation From Aquatic Macrophytes

    NASA Astrophysics Data System (ADS)

    Anderson, Michael G.; Idso, Sherwood B.

    1987-06-01

    Evaporative water loss rates of several floating and emergent aquatic macrophytes were studied over a 4-year period through comparison of daily evaporative water losses from similar-sized vegetated (E) and open water (E0) surfaces. Two species with planate floating leaves (water fern and water lily) yielded E/E0 values of 0.90 for one and four growing seasons, respectively, and displayed stomatal regulation of potential evaporation. Water hyacinths grown in ponds with different diameters exhibited E/E0 ratios which decreased with increasing pond diameter for both short (0.06-0.36 m) and tall (0.63-0.81 m) plants, producing high linear correlations with amount of peripheral vegetative surface area. The latter relationships suggested an E/E0 value less than unity for a relatively extensive canopy of short water hyacinths and a value of the order of 1.4 for a tall canopy possessing similar two-dimensional surface area characteristics. The latter results were also demonstrated in a separate study utilizing polyurethane foam to insulate the peripheral exposure of tall water hyacinth canopies from advective energy. Finally, simultaneous stomatal conductance and daily E/E0 measurements on cattail and water hyacinth canopies with identical tank diameters indicated that although the mean stomatal conductance of the peripheral exposure of the cattail canopy was 72% less than that of the water hyacinth canopy, its total evaporative water loss was nearly equivalent, due to its greater height. Reducing the surface area of the peripheral cattail exposure by the fractional amount suggested by the stomatal conductance measurements harmonized its surface geometry-evaporation relationship with that of the water hyacinth canopy and once again demonstrated the reality of stomatal control of potential evaporation.

  20. Effects of carbonyl sulfide (COS) and carbonic anhydrase on stomatal conductance

    NASA Astrophysics Data System (ADS)

    Yakir, D.; Stimler, K.; Berry, J. A.

    2011-12-01

    The potential use of COS as tracer of the gross, one-way, CO2 flux into plants is based on its co-diffusion with CO2 into leaves without outflux stimulated research on COS-CO2 interactions during leaf gas exchange. We carried out gas exchange measurements of COS and CO2 in 22 plant species representing deciduous and evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations, using mid IR laser spectroscopy. A narrow range in the normalized ratio of the net uptake rates of COS (As) and CO2 (Ac; As/Ac*[CO2]/[COS]) was observed, with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes (except under low light conditions when CO2, but not COS, metabolism is light limited). A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. However, its effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) seems to stimulate stomatal conductance. We examined the stimulation of conductance by COS in a range of species and show that there is a large variation with some species showing almost no response while others are highly responsive (up to doubling stomatal conductance). Using C3 and C4 plants with antisense lines abolishing carbonic anhydrase activity, we show that the activity of this enzyme is essential for both the uptake of COS and the enhancement of stomatal conductance by COS. Since carbonic anhydrase catalyzes the conversion of COS to CO2 and H2S it seems likely that the stomata are responding to H2S produced in the mesophyll. In all natural species examined the uptake of COS and CO2 were highly correlated, and there was no relationship between the sensitivity of stomata and the rate of COS uptake

  1. [ABA accumulation and distribution during the leaf tissues shows its role stomatal conductance regulation under short-term salinity].

    PubMed

    Akhiiarova, G R; Fricke, W; Veselov, D S; Kudoiarova, G R; Veselov, S Iu

    2006-01-01

    The regulative role of ABA in the rapid plant stomatal reactions in response to salinity was investigated. The influence of the short-term salinity on the overall ABA accumulation and its distribution within the mature leaf (revealed by immunohystochemical technique) and stomatal conductance of barley (Hordeum vulgare L.) were determined. Rapid bulk leaf ABA accumulation and increase in ABA immunolabeling in the mesophyl and guard cells of stomata were shown. The bulk ABA increasing in mature barley leaves coincided with stomatal closure induced by salt treatment indicating on the ABA contribution to the rapid stomatal closure.

  2. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves.

    PubMed

    Savvides, Andreas; Fanourakis, Dimitrios; van Ieperen, Wim

    2012-02-01

    Long-term effects of light quality on leaf hydraulic conductance (K(leaf)) and stomatal conductance (g(s)) were studied in cucumber, and their joint impact on leaf photosynthesis in response to osmotic-induced water stress was assessed. Plants were grown under low intensity monochromatic red (R, 640 nm), blue (B, 420 nm) or combined red and blue (R:B, 70:30) light. K(leaf) and g(s) were much lower in leaves that developed without blue light. Differences in g(s) were caused by differences in stomatal aperture and stomatal density, of which the latter was largely due to differences in epidermal cell size and hardly due to stomatal development. Net photosynthesis (A(N)) was lowest in R-, intermediate in B-, and highest in RB- grown leaves. The low A(N) in R-grown leaves correlated with a low leaf internal CO(2) concentration and reduced PSII operating efficiency. In response to osmotic stress, all leaves showed similar degrees of stomatal closure, but the reduction in A(N) was larger in R- than in B- and RB-grown leaves. This was probably due to damage of the photosynthetic apparatus, which only occurred in R-grown leaves. The present study shows the co-ordination of K(leaf) and g(s) across different light qualities, while the presence of blue in the light spectrum seems to drive both K(leaf) and g(s) towards high, sun-type leaf values, as was previously reported for maximal photosynthetic capacity and leaf morphology. The present results suggest the involvement of blue light receptors in the usually harmonized development of leaf characteristics related to water relations and photosynthesis under different light environments.

  3. Stomatal conductance of lettuce grown under or exposed to different light qualities

    NASA Technical Reports Server (NTRS)

    Kim, Hyeon-Hye; Goins, Gregory D.; Wheeler, Raymond M.; Sager, John C.

    2004-01-01

    BACKGROUND AND AIMS: The objective of this research was to examine the effects of differences in light spectrum on the stomatal conductance (Gs) and dry matter production of lettuce plants grown under a day/night cycle with different spectra, and also the effects on Gs of short-term exposure to different spectra. METHODS: Lettuce (Lactuca sativa) plants were grown with 6 h dark and 18 h light under four different spectra, red-blue (RB), red-blue-green (RBG), green (GF) and white (CWF), and Gs and plant growth were measured. KEY RESULTS AND CONCLUSIONS: Conductance of plants grown for 23 d under CWF rose rapidly on illumination to a maximum in the middle of the light period, then decreased again before the dark period when it was minimal. However, the maximum was smaller in plants grown under RB, RGB and GF. This demonstrates that spectral quality during growth affects the diurnal pattern of stomatal conductance. Although Gs was smaller in plants grown under RGB than CWF, dry mass accumulation was greater, suggesting that Gs did not limit carbon assimilation under these spectral conditions. Temporarily changing the spectral quality of the plants grown for 23 d under CWF, affected stomatal responses reversibly, confirming studies on epidermal strips. This study provides new information showing that Gs is responsive to spectral quality during growth and, in the short-term, is not directly coupled to dry matter accumulation.

  4. Electrical signaling, stomatal conductance, ABA and ethylene content in avocado trees in response to root hypoxia.

    PubMed

    Gil, Pilar M; Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-02-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone.

  5. Electrical signaling, stomatal conductance, ABA and Ethylene content in avocado trees in response to root hypoxia

    PubMed Central

    Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo

    2009-01-01

    Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181

  6. A Modeling Approach to Quantify the Effects of Stomatal Behavior and Mesophyll Conductance on Leaf Water Use Efficiency

    PubMed Central

    Moualeu-Ngangue, Dany P.; Chen, Tsu-Wei; Stützel, Hartmut

    2016-01-01

    Water use efficiency (WUE) is considered as a determinant of yield under stress and a component of crop drought resistance. Stomatal behavior regulates both transpiration rate and net assimilation and has been suggested to be crucial for improving crop WUE. In this work, a dynamic model was used to examine the impact of dynamic properties of stomata on WUE. The model includes sub-models of stomatal conductance dynamics, solute accumulation in the mesophyll, mesophyll water content, and water flow to the mesophyll. Using the instantaneous value of stomatal conductance, photosynthesis, and transpiration rate were simulated using a biochemical model and Penman-Monteith equation, respectively. The model was parameterized for a cucumber leaf and model outputs were evaluated using climatic data. Our simulations revealed that WUE was higher on a cloudy than a sunny day. Fast stomatal reaction to light decreased WUE during the period of increasing light (e.g., in the morning) by up to 10.2% and increased WUE during the period of decreasing light (afternoon) by up to 6.25%. Sensitivity of daily WUE to stomatal parameters and mesophyll conductance to CO2 was tested for sunny and cloudy days. Increasing mesophyll conductance to CO2 was more likely to increase WUE for all climatic conditions (up to 5.5% on the sunny day) than modifications of stomatal reaction speed to light and maximum stomatal conductance. PMID:27379150

  7. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    PubMed

    Wheeler, R M; Mackowiak, C L; Yorio, N C; Sager, J C

    1999-03-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  8. Effects of CO2 on stomatal conductance: do stomata open at very high CO2 concentrations?

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Yorio, N. C.; Sager, J. C.

    1999-01-01

    Potato and wheat plants were grown for 50 d at 400, 1000 and 10000 micromoles mol-1 carbon dioxide (CO2). and sweetpotato and soybean were grown at 1000 micromoles mol-1 CO2 in controlled environment chambers to study stomatal conductance and plant water use. Lighting was provided with fluorescent lamps as a 12 h photoperiod with 300 micromoles m-2 s-1 PAR. Mid-day stomatal conductances for potato were greatest at 400 and 10000 micromoles mol-1 and least at 1000 micromoles mol-1 CO2. Mid-day conductances for wheat were greatest at 400 micromoles mol-1 and least at 1000 and 10000 micromoles mol-1 CO2. Mid-dark period conductances for potato were significantly greater at 10000 micromoles mol-1 than at 400 or 1000 micromoles mol-1, whereas dark conductance for wheat was similar in all CO2 treatments. Temporarily changing the CO2 concentration from the native 1000 micromoles mol-1 to 400 micromoles mol-1 increased mid-day conductance for all species, while temporarily changing from 1000 to 10000 micromoles mol-1 also increased conductance for potato and sweetpotato. Temporarily changing the dark period CO2 from 1000 to 10000 micromoles mol-1 increased conductance for potato, soybean and sweetpotato. In all cases, the stomatal responses were reversible, i.e. conductances returned to original rates following temporary changes in CO2 concentration. Canopy water use for potato was greatest at 10000, intermediate at 400, and least at 1000 micromoles mol-1 CO2, whereas canopy water use for wheat was greatest at 400 and similar at 1000 and 10000 micromoles mol-1 CO2. Elevated CO2 treatments (i.e. 1000 and 10000 micromoles mol-1) resulted in increased plant biomass for both wheat and potato relative to 400 micromoles mol-1, and no injurious effects were apparent from the 10000 micromoles mol-1 treatment. Results indicate that super-elevated CO2 (i.e. 10000 micromoles mol-1) can increase stomatal conductance in some species, particularly during the dark period, resulting in

  9. Adjustments in hydraulic architecture of Pinus palustris maintain similar stomatal conductance in xeric and mesic habitats.

    PubMed

    Addington, R N; Donovan, L A; Mitchell, R J; Vose, J M; Pecot, S D; Jack, S B; Hacke, U G; Sperry, J S; Oren, R

    2006-04-01

    We investigated relationships between whole-tree hydraulic architecture and stomatal conductance in Pinus palustris Mill. (longleaf pine) across habitats that differed in soil properties and habitat structure. Trees occupying a xeric habitat (characterized by sandy, well-drained soils, higher nitrogen availability and lower overstory tree density) were shorter in stature and had lower sapwood-to-leaf area ratio (A(S):A(L)) than trees in a mesic habitat. The soil-leaf water potential gradient (psiS - psiL) and leaf-specific hydraulic conductance (kL) were similar between sites, as was tissue-specific hydraulic conductivity (Ks) of roots. Leaf and canopy stomatal conductance (gs and Gs, respectively) were also similar between sites, and they tended to be somewhat higher at the xeric site during morning hours when vapour pressure deficit (D) was low. A hydraulic model incorporating tree height, A(S):A(L) and psiS-psiL accurately described the observed variation in individual tree G(Sref) (G(S) at D = 1 kPa) across sites and indicated that tree height was an important determinant of G(Sref) across sites. This, combined with a 42% higher root-to-leaf area ratio (A(R):A(L)) at the xeric site, suggests that xeric site trees are hydraulically well equipped to realize equal--and sometimes higher potential for conductance compared with trees on mesic sites. However, a slightly more sensitive stomatal closure response to increasing D observed in xeric site trees suggests that this potential for higher conductance may only be reached when D is low and when the capacity of the hydraulic system to supply water to foliage is not greatly challenged.

  10. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    NASA Astrophysics Data System (ADS)

    Wehr, Richard; Commane, Róisín; Munger, J. William; McManus, J. Barry; Nelson, David D.; Zahniser, Mark S.; Saleska, Scott R.; Wofsy, Steven C.

    2017-01-01

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface-atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem-atmosphere exchange of OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is needed to further

  11. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake

    DOE PAGES

    Wehr, Richard; Commane, Róisín; Munger, J. William; ...

    2017-01-26

    Stomatal conductance influences both photosynthesis and transpiration, thereby coupling the carbon and water cycles and affecting surface–atmosphere energy exchange. The environmental response of stomatal conductance has been measured mainly on the leaf scale, and theoretical canopy models are relied on to upscale stomatal conductance for application in terrestrial ecosystem models and climate prediction. Here we estimate stomatal conductance and associated transpiration in a temperate deciduous forest directly on the canopy scale via two independent approaches: (i) from heat and water vapor exchange and (ii) from carbonyl sulfide (OCS) uptake. We use the eddy covariance method to measure the net ecosystem–atmosphere exchange ofmore » OCS, and we use a flux-gradient approach to separate canopy OCS uptake from soil OCS uptake. We find that the seasonal and diurnal patterns of canopy stomatal conductance obtained by the two approaches agree (to within ±6 % diurnally), validating both methods. Canopy stomatal conductance increases linearly with above-canopy light intensity (in contrast to the leaf scale, where stomatal conductance shows declining marginal increases) and otherwise depends only on the diffuse light fraction, the canopy-average leaf-to-air water vapor gradient, and the total leaf area. Based on stomatal conductance, we partition evapotranspiration (ET) and find that evaporation increases from 0 to 40 % of ET as the growing season progresses, driven primarily by rising soil temperature and secondarily by rainfall. Counterintuitively, evaporation peaks at the time of year when the soil is dry and the air is moist. Our method of ET partitioning avoids concerns about mismatched scales or measurement types because both ET and transpiration are derived from eddy covariance data. Neither of the two ecosystem models tested predicts the observed dynamics of evaporation or transpiration, indicating that ET partitioning such as that provided here is

  12. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.

    PubMed

    Franks, Peter J; Beerling, David J

    2009-06-23

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.

  13. Stomatal responses to changes in vapor pressure deficit reflect tissue-specific differences in hydraulic conductance.

    PubMed

    Ocheltree, T W; Nippert, J B; Prasad, P V V

    2014-01-01

    The vapor pressure deficit (D) of the atmosphere can negatively affect plant growth as plants reduce stomatal conductance to water vapor (g(wv)) in response to increasing D, limiting the ability of plants to assimilate carbon. The sensitivity of g(wv) to changes in D varies among species and has been correlated with the hydraulic conductance of leaves (K(leaf) ), but the hydraulic conductance of other tissues has also been implicated in plant responses to changing D. Among the 19 grass species, we found that K(leaf) was correlated with the hydraulic conductance of large longitudinal veins (K(lv), r(2) = 0.81), but was not related to K(root) (r(2) = 0.01). Stomatal sensitivity to D was correlated with K(leaf) relative to total leaf area (r(2) = 0.50), and did not differ between C3 and C4 species. Transpiration (E) increased in response to D, but 8 of the 19 plants showed a decline in E at high D, indicative of an 'apparent feedforward' response. For these individuals, E began to decline at lower values of D in plants with low K(root) (r(2) = 0.72). These results show the significance of both leaf and root hydraulic conductance as drivers of plant responses to evaporative demand.

  14. CO2-induced decrease of canopy stomatal conductance of mature conifer and broadleaved trees

    NASA Astrophysics Data System (ADS)

    Tor-ngern, P.; Oren, R.; Ward, E. J.; Palmroth, S.; McCarthy, H. R.; domec, J.

    2013-12-01

    Together with canopy leaf area, mean canopy stomatal conductance (GS) controls forest-atmosphere exchanges of energy and mass. Expectations for stomatal response to elevated atmospheric [CO2] (CO2E) based on seedling studies range from large decreases of conductance in foliage of broadleaved species to little or no response in conifers. These responses are not directly translatable to forest canopies, and their underlying mechanisms are ill-defined. The uncertainty of canopy-scale stomatal response to CO2E reduces confidence in modeled predictions of future forest productivity and carbon sequestration, and of partitioning of net radiation between latent and sensible heat flux. Thus, debates on the potential effects of CO2E-induced stomatal closure continue. We used a Free-Air CO2 Enrichment (FACE) experiment in a 27-year-old, 25 m tall forest, to generate a whole-canopy CO2-response and test whether canopy-scale GS response to CO2E of widely distributed, fast growing shade-intolerant species, Pinus taeda (L.) and co-occurring broadleaved species dominated by Liquidambar styraciflua (L.), was indirectly affected by slow changes such as hydraulic adjustments and canopy development, as opposed to quickly responding to CO2 concentrations in the leaf-internal air space. Our results show indirect CO2E-induced reductions of GS of 10% and 30%, respectively, and no signs of a direct stomatal response even as CO2E was pushed to 685 μmol mol-1 (~1.8 of ambient). Modeling the effect of CO2E on the water, energy and carbon cycles of forests must consider slow-response indirect mechanisms producing large variation in the reduction of GS, such as the previously observed inconsistent CO2E effect on canopy leaf area and plant hydraulics. Moreover, the new generation of CO2E studies in forests must allow indirect effects caused by, e.g., hydraulic adjustments and canopy development, to play out. Such acclimation will be particularly prolonged in slowly developing ecosystems, such

  15. Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Brilli, F.; Hörtnagl, L.; Xu, X.; Bingemer, H.; Hansel, A.; Loreto, F.

    2011-12-01

    We review the theoretical basis for the link between the leaf exchange of COS, CO2 and H2O and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance. The ratios of COS to CO2 and H2O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO2 and H2O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. Back of the envelope calculations suggest these deposition velocity ratios to exhibit considerable variability, in accordance with available empirical literature data, a finding that challenges current parameterisations which treat these as vegetation specific constants. Due to the comparably more conservative nature of the internal to ambient CO2 mole fraction ratio we conclude that COS is a better tracer for CO2 than H2O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO2 and H2O fluxes requires disentangling leaf COS exchange from other sources/sinks of COS, in particular the soil. Some practical approaches to this end, in analogy to current practises of CO2 flux partitioning, are discussed. We conclude that future priorities for COS research should be to develop a better quantitative understanding of the variability in the ratios of COS to CO2 and H2O deposition velocities and the controlling factors and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks of COS. In order to test our present understanding of COS exchange and its relation to canopy photosynthesis and transpiration integrated studies are needed which concurrently quantify the ecosystem scale CO2, H2O and COS exchange and the corresponding component fluxes.

  16. Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations.

    PubMed

    Wohlfahrt, Georg; Brilli, Federico; Hörtnagl, Lukas; Xu, Xiaobin; Bingemer, Heinz; Hansel, Armin; Loreto, Francesco

    2012-04-01

    The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO(2)) and water vapour (H(2)O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO(2) and H(2)O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO(2) and H(2)O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO(2) than H(2)O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO(2) and H(2)O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO(2) and H(2)O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO(2), H(2)O and COS exchange and the corresponding component fluxes, are urgently needed.

  17. Role of leaf hydraulic conductance in the regulation of stomatal conductance in almond and olive in response to water stress.

    PubMed

    Hernandez-Santana, Virginia; Rodriguez-Dominguez, Celia M; Fernández, J Enrique; Diaz-Espejo, Antonio

    2016-06-01

    The decrease of stomatal conductance (gs) is one of the prime responses to water shortage and the main determinant of yield limitation in fruit trees. Understanding the mechanisms related to stomatal closure in response to imposed water stress is crucial for correct irrigation management. The loss of leaf hydraulic functioning is considered as one of the major factors triggering stomatal closure. Thus, we conducted an experiment to quantify the dehydration response of leaf hydraulic conductance (Kleaf) and its impact on gs in two Mediterranean fruit tree species, one deciduous (almond) and one evergreen (olive). Our hypothesis was that a higher Kleaf would be associated with a higher gs and that the reduction in Kleaf would predict the reduction in gs in both species. We measured Kleaf in olive and almond during a cycle of irrigation withholding. We also compared the results of two methods to measure Kleaf: dynamic rehydration kinetics and evaporative flux methods. In addition, determined gs, leaf water potential (Ψleaf), vein density, photosynthetic capacity and turgor loss point. Results showed that gs was higher in almond than in olive and so was Kleaf (Kmax = 4.70 and 3.42 mmol s(-1) MPa(-1) m(-2), in almond and olive, respectively) for Ψleaf > -1.2 MPa. At greater water stress levels than -1.2 MPa, however, Kleaf decreased exponentially, being similar for both species, while gs was still higher in almond than in olive. We conclude that although the Kleaf decrease with increasing water stress does not drive unequivocally the gs response to water stress, Kleaf is the variable most strongly related to the gs response to water stress, especially in olive. Other variables such as the increase in abscisic acid (ABA) may be playing an important role in gs regulation, although in our study the gs-ABA relationship did not show a clear pattern.

  18. Response of stomatal conductance to drought in ponderosa pine: implications for carbon and ozone uptake.

    PubMed

    Panek, J A; Goldstein, A H

    2001-03-01

    To gain insight into the limitations imposed by a typical Mediterranean-climate summer drought on the uptake of carbon and ozone in the ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystem, we compared diurnal trends in leaf physiology of young trees in a watered and a control plot located in the Sierra Nevada Mountains, CA, USA (Blodgett Forest, 38 degrees 53' N, 120 degrees 37' W, 1315 m elevation). Predawn water potential of trees in the watered plot remained above -0.3 MPa throughout the growing season, whereas it dropped in the control plot from -0.24 to -0.52 MPa between late May and mid-August. Photosynthesis and stomatal conductance of trees in the watered plot were relatively insensitive to atmospheric vapor pressure deficit (VPD), whereas gas exchange of trees in the control plot varied with changes in soil water, VPD and temperature. Although the 1998 growing season was abnormally wet, we saw a pronounced drought effect at the control site. Over the 2 months following the onset of watering, carbon and ozone uptake were measured on three days at widely spaced intervals. Carbon uptake per unit leaf area by 1-year-old foliage of trees in the control plot was 39, 35 and 30% less, respectively, than in the watered plot, and estimated ozone deposition per unit leaf area (ozone concentration times stomatal conductance) was 36, 46 and 41% less.

  19. Continent-Wide Decrease of Stomatal Conductance in Vegetation During Large Droughts of the Recent Decade

    NASA Astrophysics Data System (ADS)

    Peters, W.; van der Velde, I.; Miller, J. B.; Schaefer, K. M.; Tans, P. P.; Vaughn, B. H.; White, J. W. C.; van der Molen, M. K.

    2015-12-01

    Severe droughts in the Northern Hemisphere caused widespread decline of agricultural yield, reduction of forest carbon uptake, and increased CO₂ growth rates in the atmosphere during the past decade. Plants respond to droughts by partially closing their stomata to limit their evaporative water loss, at the expense of carbon uptake by photosynthesis. Here we present new evidence on this drought response of terrestrial vegetation derived from year-to-year changes in the 13C/12C stable isotope ratio in atmospheric CO2. Observations from more than 50,000 flask samples from the NOAA Global Greenhouse Gas Reference Network suggest a strong decrease in stomatal conductance in vegetation that is highly correlated (see green line in the figure) with reductions of net carbon uptake over the Northern Hemisphere. This correlation is driven by severe drought conditions over areas several million km2 in size in Europe (2003, 2006), Russia (2010), and the United States (2002). This spatially integrated vegetation drought response at this scale can not be measured from laboratory experiments or field studies and the atmosphere thus offers a unique perspective on large-scale vegetation drought dynamics. A widely used stomatal conductance parameterization used in our study as well as many current climate models underestimate this observed decrease in carbon and water exchange during droughts (black and blue lines in the figure). The global δ13C record could provide a new opportunity to improve interannual drought dynamics in coupled vegetation-atmosphere models for CO2.

  20. A mutation that eliminates bundle sheath extensions reduces leaf hydraulic conductance, stomatal conductance and assimilation rates in tomato (Solanum lycopersicum).

    PubMed

    Zsögön, Agustin; Negrini, Ana Clarissa Alves; Peres, Lázaro Eustáquio Pereira; Nguyen, Hoa Thi; Ball, Marilyn C

    2015-01-01

    Bundle sheath extensions (BSEs) are key features of leaf structure whose distribution differs among species and ecosystems. The genetic control of BSE development is unknown, so BSE physiological function has not yet been studied through mutant analysis. We screened a population of ethyl methanesulfonate (EMS)-induced mutants in the genetic background of the tomato (Solanum lycopersicum) model Micro-Tom and found a mutant lacking BSEs. The leaf phenotype of the mutant strongly resembled the tomato mutant obscuravenosa (obv). We confirmed that obv lacks BSEs and that it is not allelic to our induced mutant, which we named obv-2. Leaves lacking BSEs had lower leaf hydraulic conductance and operated with lower stomatal conductance and correspondingly lower assimilation rates than wild-type leaves. This lower level of function occurred despite similarities in vein density, midvein vessel diameter and number, stomatal density, and leaf area between wild-type and mutant leaves, the implication being that the lack of BSEs hindered water dispersal within mutant leaves. Our results comparing near-isogenic lines within a single species confirm the hypothesised role of BSEs in leaf hydraulic function. They further pave the way for a genetic model-based analysis of a common leaf structure with deep ecological consequences.

  1. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.

    PubMed

    Rogiers, Suzy Y; Greer, Dennis H; Hatfield, Jo M; Hutton, Ron J; Clarke, Simon J; Hutchinson, Paul A; Somers, Anthony

    2012-03-01

    Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment

  2. Photosynthesis and stomatal conductance related to reflectance on the canopy scale

    NASA Technical Reports Server (NTRS)

    Verma, S. B.; Sellers, P. J.; Walthall, C. L.; Hall, F. G.; Kim, J.; Goetz, S. J.

    1993-01-01

    Field measurements of carbon dioxide and water vapor fluxes were analyzed in conjunction with reflectances obtained from a helicopter-mounted Modular Multiband Radiometer at a grassland study site during the First International Satellite Land Surface Climatology Project Field Experiment. These measurements are representative of the canopy scale and were made over a range of meteorological and soil moisture conditions during different stages in the annual life cycle of the prairie vegetation, and thus provide a good basis for investigating hpotheses/relationships potentially useful in remote sensing applications. We tested the hypothesis (Sellers, 1987) that the simple ratio vegetation index should be near-linearly related to the derivatives of the unstressed canopy stomatal conductance and the unstressed canopy photosynthesis with respect to photosynthetically active radiation. Even though there is some scatter in our data, the results seem to support this hypothesis.

  3. The Effect of Drought on Stomatal Conductance in the Biosphere 2 Rainforest

    NASA Astrophysics Data System (ADS)

    Gay, J. D.; Van Haren, J. L. M.

    2015-12-01

    Drought is a major climate change concern for the Earth's rainforests; however little is currently known about how these forests and individual plants will respond to water stress. At the individual level, the ability of plants to regulate their stomatal conductance is an important preservation mechanism that helps to cool leaves, regulate water loss, and uptake carbon dioxide. At the ecosystem level, transpiration in rainforests is a major contributor to the positive feedback loop that returns moisture to the atmosphere for continued precipitation cycles. Nearly 60% of atmospheric moisture in the Amazon rain forests has been traced back to origins of transpiration from its plants. In relation to current climatic conditions, stomatal conductance rates are highly variable across rainforest species and environmental conditions. It is still unknown to what extent these rates will decrease at leaf and forest level in response to periods of drought. The University of Arizona's Biosphere 2 (B2) served as the study site for a simulated 4-week long drought because of its ability to mimic the micrometeorology of an Amazonian rainforest. Three species of plants were chosen at various levels in the canopy: Clitoria racemosa, Cissus sicyoides, and Hibiscus elatus. These plants were selected based on their relative abundance and distribution in the B2 forest. It was revealed that two out of the three species exhibited decreases in H20 efflux at each elevation, while one species (C. racemosa) proved much more resistant, at each elevation, to H20 loss. These results may be useful for future integrative modeling of how individual leaf level responses extend to entire ecosystem scales. It will be important to better understand how rainforests conserve, recycle, and lose water to gauge their response to warming climate, and increased periods of drought in the tropics.

  4. Regulation of Photosynthesis of C3 Plants in Response to Progressive Drought: Stomatal Conductance as a Reference Parameter

    PubMed Central

    MEDRANO, H.; ESCALONA, J. M.; BOTA, J.; GULÍAS, J.; FLEXAS, J.

    2002-01-01

    We review the photosynthetic responses to drought in field‐grown grapevines and other species. As in other plant species, the relationship between photosynthesis and leaf water potential and/or relative water content in field‐grown grapevines depends on conditions during plant growth and measurements. However, when light‐saturated stomatal conductance was used as the reference parameter to reflect drought intensity, a common response pattern was observed that was much less dependent on the species and conditions. Many photosynthetic parameters (e.g. electron transport rate, carboxylation efficiency, intrinsic water‐use efficiency, respiration rate in the light, etc.) were also more strongly correlated with stomatal conductance than with water status itself. Moreover, steady‐state chlorophyll fluorescence also showed a high dependency on stomatal conductance. This is discussed in terms of an integrated down‐regulation of the whole photosynthetic process by CO2 availability in the mesophyll. A study with six Mediterranean shrubs revealed that, in spite of some marked interspecific differences, all followed the same pattern of dependence of photosynthetic processes on stomatal conductance, and this pattern was quite similar to that of grapevines. Further analysis of the available literature suggests that the above‐mentioned pattern is general for C3 plants. Even though the patterns described do not necessarily imply a cause and effect relationship, they can help our understanding of the apparent contradictions concerning stomatal vs. non‐stomatal limitations to photosynthesis under drought. The significance of these findings for the improvement of water‐use efficiency of crops is discussed. PMID:12102515

  5. Factors influencing stomatal conductance in response to water availability in grapevine: a meta-analysis.

    PubMed

    Lavoie-Lamoureux, Anouk; Sacco, Dario; Risse, Paul-André; Lovisolo, Claudio

    2017-04-01

    The main factors regulating grapevine response to decreasing water availability were assessed under statistical support using published data related to leaf water relations in an extensive range of scion and rootstock genotypes. Matching leaf water potential (Ψleaf ) and stomatal conductance (gs ) data were collected from peer-reviewed literature with associated information. The resulting database contained 718 data points from 26 different Vitis vinifera varieties investigated as scions, 15 non-V. vinifera rootstock genotypes and 11 own-rooted V. vinifera varieties. Linearised data were analysed using the univariate general linear model (GLM) with factorial design including biological (scion and rootstock genotypes), methodological and environmental (soil) fixed factors. The first GLM performed on the whole database explained 82.4% of the variability in data distribution having the rootstock genotype the greatest contribution to variability (19.1%) followed by the scion genotype (16.2%). A classification of scions and rootstocks according to their mean predicted gs in response to moderate water stress was generated. This model also revealed that gs data obtained using a porometer were in average 2.1 times higher than using an infra-red gas analyser. The effect of soil water-holding properties was evaluated in a second analysis on a restricted database and showed a scion-dependant effect, which was dominant over rootstock effect, in predicting gs values. Overall the results suggest that a continuum exists in the range of stomatal sensitivities to water stress in V. vinifera, rather than an isohydric-anisohydric dichotomy, that is further enriched by the diversity of scion-rootstock combinations and their interaction with different soils.

  6. Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide 1

    PubMed Central

    Kimmerer, Thomas W.; Kozlowski, T. T.

    1981-01-01

    Plants of five clones of Populus tremuloides Michx. were exposed to 0, 0.2 or 0.5 microliter per liter SO2 for 8 hours in controlled environment chambers. In the absence of the pollutant, two pollution-resistant clones maintained consistently lower daytime diffusive conductance (LDC) than did a highly susceptible clone or two moderately resistant clones. Differences in LDC among the latter three clones were not significant. At 0.2 microliter per liter SO2, LDC decreased in the susceptible clone after 8 hours fumigation while the LDC of the other clones was not affected. Fumigation with 0.5 microliter per liter SO2 decreased LDC of all five clones during the fumigation. Rates of recovery following fumigation varied with the clone, but the LDC of all clones had returned to control values by the beginning of the night following fumigation. Night LDC was higher in the susceptible clone than in the other clones. Fumigation for 16 hours (14 hours day + 2 hours night) with 0.4 microliter per liter SO2 decreased night LDC by half. Sulfur uptake studies generally confirmed the results of the conductance measurements. The results show that stomatal conductance is important in determining relative susceptibility of the clones to pollution stress. PMID:16661807

  7. Stomata-controlled nighttime COS fluxes in a boreal forest: implications for the use of COS as a GPP tracer

    NASA Astrophysics Data System (ADS)

    Kooijmans, Linda M. J.; Maseyk, Kadmiel; Seibt, Ulli; Vesala, Timo; Mammarella, Ivan; Baker, Ian T.; Franchin, Alessandro; Kolari, Pasi; Sun, Wu; Keskinen, Helmi; Levula, Janne; Chen, Huilin

    2016-04-01

    Carbonyl Sulfide (COS) is a promising new tracer that can be used to partition the Net Ecosystem Exchange into gross primary production (GPP) and respiration. COS and CO2 vegetation fluxes are closely related as these gases share the same diffusion pathway into stomata. This close coupling is the fundamental principle for the use of COS as tracer for GPP. Nonetheless, in contrast to CO2 , the uptake of COS by vegetation is not light-dependent, and therefore the vegetative uptake of COS can continue during the night as long as stomata are open. Nighttime stomatal conductance is observed in a variety of studies, and also nighttime depletion of COS concentrations is reported several times but it is not confirmed with field measurements that the depletion of COS in the night is indeed driven by stomatal opening. In the summer of 2015 a campaign took place at the SMEAR II site in Hyytiälä, Finland to provide better constrained COS flux data for boreal forests using a combination of COS measurements, i.e. atmospheric profile concentrations up to 125 m, eddy-covariance fluxes and soil chamber fluxes, and collocated measurements of stomatal conductance and 222Radon. A high correlation between concentrations of 222Radon and COS implies that the radon-tracer method is a valuable tool to derive nighttime ecosystem COS fluxes. We find that soils contribute to 17% of the total ecosystem COS flux during nighttime in the peak growing season. Nighttime ecosystem COS fluxes show a correlation with stomatal conductance (R2 = 0.3), indicating that nighttime COS fluxes are primarily driven by vegetation. The COS vegetation fluxes will be compared with calculated fluxes from the Simple Biosphere model. Furthermore, the nighttime vegetative COS uptake covers a substantial fraction (25%) of the daily maximum COS uptake by vegetation. Accurate quantification of nighttime COS uptake is required to be able to use COS as a useful tracer for GPP.

  8. High precision and continuous measurements of mesophyll and stomatal conductance to CO2 diffusion during photosynthesis using QCL

    NASA Astrophysics Data System (ADS)

    Kodama, N.; Wada, R.; Nakayama, T.; Takemura, K.; Takahashi, K.; Hanba, Y. T.; Matsumi, Y.

    2011-12-01

    The diffusion of CO2 within leaves during photosynthesis can be an important limiting factor for productivity. Mesophyll conductance had been thought to be infinite or constant over the time. Recent studies, however, have revealed that mesophyll conductance is altered by growth environment,and may respond rapidly to some environmental variables such as light and CO2 concentration. Mesophyll conductance has been suggested to be dependent on leaf anatomical and morphological structures, and aquaporin have been proven to play an important role in CO2 transport across cell membranes. In this study we used transgenic Eucalyptus overexpressing radish aquaporin PIP2 to investigate the effect of aquaporin on mesophyll conductance. We hypothesized that stomatal and mesophyll conductance may respond differently to environmental alterations. A mid-infrared laser absorption spectrometer (QCL; Aerodyne research Inc.) was coupled to a photosynthesis system to allow simultaneous measurement of exchange of CO2 and its isotopologues.We found that mesophyll conductance responded more rapidly to alteration of the light intensity compared to stomatal conductance, regardless of aquaporin expression. However, mesophyll conductance was higher in the leaves with higher aquaporin content. The mesophyll response was completed within 5 minutes, considerably faster than the stomatal response to the same perturbation.

  9. Scale effects on the controls on mountain grassland leaf stomatal and ecosystem surface conductance to water vapour

    NASA Astrophysics Data System (ADS)

    Haslwanter, Alois; Hammerle, Albin; Wohlfahrt, Georg

    2010-05-01

    Stomata are the major pathway by which plants exert control on the exchange of trace gases and water vapour with the aerial environment and thus provide a key link between the functioning of terrestrial ecosystems and the state and composition of the atmosphere. Understanding the nature of this control, i.e. how stomatal conductance differs between plant species and ecosystems and how it varies in response to external and internal forcings, is key to predicting feedbacks plants may be providing to changing climatic conditions. Despite a long history of research on stomatal functioning, a fully mechanistic understanding of how stomata function in response to biotic and abiotic controls is still elusive which has led to the development of a large number of (semi-)empirical models of varying complexity. Two of the most widely used models go back to Jarvis (1976) and Ball, Woodrow and Berry (1987), termed J-model and BWB-model, respectively, in the following. The J-model simulates stomatal conductance as some maximal value attenuated by a series of multiplicative functions which are bound between zero and unity, while the BWB-model predicts stomatal conductance as a linear function of photosynthesis, relative humidity and carbon dioxide concentration in the leaf boundary layer. Both models were developed for the prediction of leaf-scale stomatal conductance to water vapour, but have been applied for simulating ecosystem-scale surface conductance as well. The objective of the present paper is to compare leaf- and ecosystem-scale conductances to water vapour and to assess the respective controls using the two above-mentioned models as analysis frameworks. To this end leaf-level stomatal conductance has been measured by means of leaf-gas exchange methods and ecosystem-scale surface conductance by inverting eddy covariance evapotranspiration estimates at a mountain grassland site in Austria. Our major findings are that the proportionality parameter in the BWB-model is

  10. Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species

    PubMed Central

    Vitali, Victoria; Bellati, Jorge; Soto, Gabriela; Ayub, Nicolás D.; Amodeo, Gabriela

    2015-01-01

    Recent advances at the molecular level are introducing a new scenario that needs to be integrated into the analysis of plant hydraulic properties. Although it is not yet clear to what extent this scenario alters the current proposal for the hydraulic circuit models, it introduces new insights when studying plants that are able to easily overcome water restrictions. In this context, our aim was to explore water adjustments in a halotolerant model (Beta vulgaris) by studying the coordination between the root in terms of root hydraulic conductivity (Lpr) and the shoot as reflected in the stomatal conductance (gs). The root water pathways were also analysed in terms of root suberization (apoplastic barrier) and aquaporin transcript levels (cell-to-cell pathway). Beta vulgaris showed the ability to rapidly lose (4 h) and gain (24 h) turgor when submitted to salt stress (200 mM). The reduction profile observed in Lpr and gs was consistent with a coupled process. The tuning of the root water flow involved small variations in the studied aquaporin's transcripts before anatomical modifications occurred. Exploring Lpr enhancement after halting the stress contributed to show not only a different profile in restoring Lpr but also the capacity to uncouple Lpr from gs. Beta vulgaris root plays a key role and can anticipate water loss before the aerial water status is affected. PMID:26602985

  11. Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America.

    PubMed

    Douhovnikoff, V; Taylor, S H; Hazelton, E L G; Smith, C M; O'Brien, J

    2016-01-27

    The fitness costs of reproduction by clonal growth can include a limited ability to adapt to environmental and temporal heterogeneity. Paradoxically, some facultatively clonal species are not only able to survive, but colonize, thrive and expand in heterogeneous environments. This is likely due to the capacity for acclimation (sensu stricto) that compensates for the fitness costs and complements the ecological advantages of clonality. Introduced Phragmites australis demonstrates great phenotypic plasticity in response to temperature, nutrient availability, geographic gradient, water depths, habitat fertility, atmospheric CO2, interspecific competition and intraspecific competition for light. However, no in situ comparative subspecies studies have explored the difference in plasticity between the non-invasive native lineage and the highly invasive introduced lineage. Clonality of the native and introduced lineages makes it possible to control for genetic variation, making P. australis a unique system for the comparative study of plasticity. Using previously identified clonal genotypes, we investigated differences in their phenotypic plasticity through measurements of the lengths and densities of stomata on both the abaxial (lower) and adaxial (upper) surfaces of leaves, and synthesized these measurements to estimate impacts on maximum stomatal conductance to water (gwmax). Results demonstrated that at three marsh sites, invasive lineages have consistently greater gwmax than their native congeners, as a result of greater stomatal densities and smaller stomata. Our analysis also suggests that phenotypic plasticity, determined as within-genotype variation in gwmax, of the invasive lineage is similar to, or exceeds, that shown by the native lineage.

  12. Maximal stomatal conductance to water and plasticity in stomatal traits differ between native and invasive introduced lineages of Phragmites australis in North America

    PubMed Central

    Douhovnikoff, V.; Taylor, S. H.; Hazelton, E. L. G.; Smith, C. M.; O'Brien, J.

    2016-01-01

    The fitness costs of reproduction by clonal growth can include a limited ability to adapt to environmental and temporal heterogeneity. Paradoxically, some facultatively clonal species are not only able to survive, but colonize, thrive and expand in heterogeneous environments. This is likely due to the capacity for acclimation (sensu stricto) that compensates for the fitness costs and complements the ecological advantages of clonality. Introduced Phragmites australis demonstrates great phenotypic plasticity in response to temperature, nutrient availability, geographic gradient, water depths, habitat fertility, atmospheric CO2, interspecific competition and intraspecific competition for light. However, no in situ comparative subspecies studies have explored the difference in plasticity between the non-invasive native lineage and the highly invasive introduced lineage. Clonality of the native and introduced lineages makes it possible to control for genetic variation, making P. australis a unique system for the comparative study of plasticity. Using previously identified clonal genotypes, we investigated differences in their phenotypic plasticity through measurements of the lengths and densities of stomata on both the abaxial (lower) and adaxial (upper) surfaces of leaves, and synthesized these measurements to estimate impacts on maximum stomatal conductance to water (gwmax). Results demonstrated that at three marsh sites, invasive lineages have consistently greater gwmax than their native congeners, as a result of greater stomatal densities and smaller stomata. Our analysis also suggests that phenotypic plasticity, determined as within-genotype variation in gwmax, of the invasive lineage is similar to, or exceeds, that shown by the native lineage. PMID:26819257

  13. An overview of models of stomatal conductance at the leaf level.

    PubMed

    Damour, Gaëlle; Simonneau, Thierry; Cochard, Hervé; Urban, Laurent

    2010-09-01

    Stomata play a key role in plant adaptation to changing environmental conditions as they control both water losses and CO(2) uptake. Particularly, in the context of global change, simulations of the consequences of drought on crop plants are needed to design more efficient and water-saving cropping systems. However, most of the models of stomatal conductance (g(s)) developed at the leaf level link g(s) to environmental factors or net photosynthesis (A(net)), but do not include satisfactorily the effects of drought, impairing our capacity to simulate plant functioning in conditions of limited water supply. The objective of this review was to draw an up-to-date picture of the g(s) models, from the empirical to the process-based ones, along with their mechanistic or deterministic bases. It focuses on models capable to account for multiple environmental influences with emphasis on drought conditions. We examine how models that have been proposed for well-watered conditions can be combined with those specifically designed to deal with drought conditions. Ideas for future improvements of g(s) models are discussed: the issue of co-regulation of g(s) and A(net); the roles of CO(2), absissic acid and H(2)O(2); and finally, how to better address the new challenges arising from the issue of global change.

  14. How should leaf area, sapwood area and stomatal conductance vary with tree height to maximize growth?

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.

  15. Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens).

    PubMed

    Ambrose, Anthony R; Sillett, Stephen C; Koch, George W; Van Pelt, Robert; Antoine, Marie E; Dawson, Todd E

    2010-10-01

    Treetops become increasingly constrained by gravity-induced water stress as they approach maximum height. Here we examine the effects of height on seasonal and diurnal sap flow dynamics at the tops of 12 unsuppressed Sequoia sempervirens (D. Don) Endl. (coast redwood) trees 68-113 m tall during one growing season. Average treetop sap velocity (V(S)), transpiration per unit leaf area (E(L)) and stomatal conductance per unit leaf area (G(S)) significantly decreased with increasing height. These differences in sap flow were associated with an unexpected decrease in treetop sapwood area-to-leaf area ratios (A(S):A(L)) in the tallest trees. Both E(L) and G(S) declined as soil moisture decreased and vapor pressure deficit (D) increased throughout the growing season with a greater decline in shorter trees. Under high soil moisture and light conditions, reference G(S) (G(Sref); G(S) at D = 1 kPa) and sensitivity of G(S) to D (-δ; dG(S)/dlnD) significantly decreased with increasing height. The close relationship we observed between G(Sref) and -δ is consistent with the role of stomata in regulating E(L) and leaf water potential (Ψ(L)). Our results confirm that increasing tree height reduces gas exchange of treetop foliage and thereby contributes to lower carbon assimilation and height growth rates as S. sempervirens approaches maximum height.

  16. Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake.

    PubMed

    Elvira, Susana; Alonso, Rocío; Gimeno, Benjamín S

    2007-04-01

    The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O3) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O3 stomatal conductance model used to estimate tree O3 uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l(-1). The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g(max), f(min), and new f(VPD), f(temp) and f(phen) functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version.

  17. Photosynthesis and stomatal conductance related to reflectance on the canopy scale

    SciTech Connect

    Verma, S.B.; Kim, J. ); Sellers, P.J.; Hall, F.G.; Goetz, S.J. ); Walthall, C.L. )

    1993-04-01

    Field measurements of carbon dioxide and water vapor fluxes were analyzed in conjunction with reflectances obtained from a helicopter-mounted Modular Multiband Radiometer (MMR) at a grassland study site during the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE). These measurements are representative of the canopy scale and were made over a range of meteorological and soil moisture conditions during different stages in the annual life cycle of the prairie vegetation, and thus provide a good basis for investigating hypotheses/relationships potentially useful in remote sensing applications. The authors tested the hypothesis (Sellers, 1987) that the simple ratio vegetation index (SR) should be near-linearly related to the derivatives of the unstressed canopy stomatal conductance (g[sub c]*) and the unstressed canopy photosynthesis (P[sub c]*) with respect to photosynthetically active radiation (PAR). Even though there is some scatter in the data, the results seem to support this hypothesis. Further investigation, however, is needed before such relationships can be employed in satellite remote sensing applications.

  18. Epidemiology and etiology of denture stomatitis.

    PubMed

    Gendreau, Linda; Loewy, Zvi G

    2011-06-01

    Denture stomatitis, a common disorder affecting denture wearers, is characterized as inflammation and erythema of the oral mucosal areas covered by the denture. Despite its commonality, the etiology of denture stomatitis is not completely understood. A search of the literature was conducted in the PubMed electronic database (through November 2009) to identify relevant articles for inclusion in a review updating information on the epidemiology and etiology of denture stomatitis and the potential role of denture materials in this disorder. Epidemiological studies report prevalence of denture stomatitis among denture wearers to range from 15% to over 70%. Studies have been conducted among various population samples, and this appears to influence prevalence rates. In general, where reported, incidence of denture stomatitis is higher among elderly denture users and among women. Etiological factors include poor denture hygiene, continual and nighttime wearing of removable dentures, accumulation of denture plaque, and bacterial and yeast contamination of denture surface. In addition, poor-fitting dentures can increase mucosal trauma. All of these factors appear to increase the ability of Candida albicans to colonize both the denture and oral mucosal surfaces, where it acts as an opportunistic pathogen. Antifungal treatment can eradicate C. albicans contamination and relieve stomatitis symptoms, but unless dentures are decontaminated and their cleanliness maintained, stomatitis will recur when antifungal therapy is discontinued. New developments related to denture materials are focusing on means to reduce development of adherent biofilms. These may have value in reducing bacterial and yeast colonization, and could lead to reductions in denture stomatitis with appropriate denture hygiene.

  19. Analyses of assumptions and errors in the calculation of stomatal conductance from sap flux measurements.

    PubMed

    Ewers, Brent E.; Oren, Ram

    2000-05-01

    We analyzed assumptions and measurement errors in estimating canopy transpiration (E(L)) from sap flux (J(S)) measured with Granier-type sensors, and in calculating canopy stomatal conductance (G(S)) from E(L) and vapor pressure deficit (D). The study was performed in 12-year-old Pinus taeda L. stands with a wide range in leaf area index (L) and growth rate. No systematic differences in J(S) were found between the north and south sides of trees. However, J(S) in xylem between 20 and 40 mm from the cambium was 50 and 39% of J(S) in the outer 20-mm band of xylem in slow- and fast-growing trees, respectively. Sap flux measured in stems did not lag J(S) measured in branches, and time and frequency domain analyses of time series indicated that variability in J(S) in stems and branches is mostly explained by variation in D. Therefore, J(S) was used to estimate transpiration, after accounting for radial patterns. There was no difference between D and leaf-to-air vapor pressure gradient, and D did not have a vertical profile in stands of either low or high L suggesting a strong canopy-atmosphere coupling. Therefore, D estimated at one point in the canopy can be used to calculate G(S) in such stands. Given the uncertainties in J(S), relative humidity, and temperature measurements, to keep errors in G(S) estimates to less than 10%, estimates of G(S) should be limited to conditions in which D >/= 0.6 kPa.

  20. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture

    NASA Astrophysics Data System (ADS)

    Manzoni, Stefano; Vico, Giulia; Palmroth, Sari; Porporato, Amilcare; Katul, Gabriel

    2013-12-01

    Optimization theories explain a variety of forms and functions in plants. At the leaf scale, it is often hypothesized that carbon gain is maximized, thus providing a quantifiable objective for a mathematical definition of optimality conditions. Eco-physiological trade-offs and limited resource availability introduce natural bounds to this optimization process. In particular, carbon uptake from the atmosphere is inherently linked to water losses from the soil as water is taken up by roots and evaporated. Hence, water availability in soils constrains the amount of carbon that can be taken up and assimilated into new biomass. The problem of maximizing photosynthesis at a given water availability by modifying stomatal conductance, the plant-controlled variable to be optimized, has been traditionally formulated for short time intervals over which soil moisture changes can be neglected. This simplification led to a mathematically open solution, where the undefined Lagrange multiplier of the optimization (equivalent to the marginal water use efficiency, λ) is then heuristically determined via data fitting. Here, a set of models based on different assumptions that account for soil moisture dynamics over an individual dry-down are proposed so as to provide closed analytical expressions for the carbon gain maximization problem. These novel solutions link the observed variability in λ over time, across soil moisture changes, and at different atmospheric CO2 concentrations to water use strategies ranging from intensive, in which all soil water is consumed by the end of the dry-down period, to more conservative, in which water stress is avoided by reducing transpiration.

  1. Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus

    PubMed Central

    Hanson, David T.; Green, Laura E.; Pockman, William T.

    2013-01-01

    Reduction of hydraulic conductance to the canopy has been shown to result in stomatal responses to limit transpiration. To test for similar responses to perturbations of the hydraulic network in leaves, we simultaneously measured leaf gas exchange with spatially explicit chlorophyll-a fluorescence and leaf temperature to examine the effects of cutting a primary leaf vein in Helianthus annuus. We repeated the leaf treatment at each of three different vapor pressure deficits and monitored the short-term dynamics of gas exchange following the treatment. Immediately after treatment, photosynthesis and stomatal conductance (gs) showed a transient “wrong way” response in which photosynthesis declined despite increased gs. Comparisons of fluorescence and temperature across the leaf showed that both photosynthesis and gs were transiently patchy across the measured leaf area, but that the patchiness of the two processes did not correspond in space or time. This suggests that photosynthesis and gs respond to vein cutting-induced cavitation via different mechanisms. Because the stomatal response varied by vapor pressure difference condition but photosynthesis did not, it is likely that gs, but not photosynthesis, responded to a hydraulic signal. In contrast, we hypothesize that photosynthesis declined due to a wound-induced electrical signal that has recently been shown to transiently decrease mesophyll conductance to CO2. The interaction of epidermal hydraulics and the electrical signal across the leaf likely created a patchy pattern of chlorophyll fluorescence and leaf temperature that cannot be explained through the action of a single signal. PMID:24065972

  2. Optimizing Leaf Stomatal Conductance for Maximum Carbon Gain Under Salt Stressed and Elevated Atmospheric CO2 Conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G. G.

    2011-12-01

    Understanding how plants adapt to different stresses such as droughts, hypoxic or hyper-saline conditions is necessary to progress on the broader problem of how carbon and water exchange rates between the biosphere and atmosphere react to a changing climate. In this work, the effects of increased salinity on photosynthesis, stomatal and mesophyll conductances under ambient and elevated atmospheric CO2 conditions are explored. A model based on stomatal optimization principles, according to which plants maximize carbon gain at a given water loss at the leaf scale, is generalized to include mesophyll conductance and its dependence on water salinity. The optimization problem is solved for both a non-linear and a linear biochemical demand function and both approaches are consistent with reported gas-exchange measurements in fresh water and in salt stressed conditions. It is shown here that an increase in salt stress causes an increase in the cost of water (and reduced stomatal conductance) for the plant as it does under water stress conditions. However, these reductions in photosynthetic rates observed under increased salt stress conditions cannot be attributed to limitation of CO2 diffusion alone since salt stress did reduce the photosynthetic capacity of plants by 30-40%.

  3. Detecting the Differences in Responses of Stomatal Conductance to Moisture Stresses between Deciduous Shrubs and Artemisia Subshrubs

    PubMed Central

    Gao, Qiong; Yu, Mei; Zhou, Chan

    2013-01-01

    Shrubs and subshrubs can tolerate wider ranges of moisture stresses in both soil and air than other plant life forms, and thus represent greater nonlinearity and uncertainty in ecosystem physiology. The objectives of this paper are to model shrub/subshrub stomatal conductance by synthesizing the field leaf gas exchanges data of 24 species in China, in order to detect the differences between deciduous shrubs and Artemisia subshrubs in their responses of stomatal conductance to changes in the moisture stresses. We revised a model of stomatal conductance by incorporating the tradeoff between xylem hydraulic efficiency and cavitation loss risk. We then fit the model at the three hierarchical levels: global (pooling all data as a single group), three functional groups (deciduous non-legume shrubs, deciduous legume shrubs, and subshrubs in Artemisia genus), and individual observations (species × sites). Bayesian inference with Markov Chain Monte Carlo method was applied to obtain the model parameters at the three levels. We found that the model at the level of functional groups is a significant improvement over that at the global level, indicating the significant differences in the stomatal behavior among the three functional groups. The differences in tolerance and sensitivities to changes in moisture stresses are the most evident between the shrubs and the subshrubs: The two shrub groups can tolerate much higher soil water stress than the subshrubs. The analysis at the observation level is also a significant improvement over that at the functional group level, indicating great variations within each group. Our analysis offered a clue for the equivocal issue of shrub encroachment into grasslands: While the invasion by the shrubs may be irreversible, the dominance of subshrubs, due to their lower resistance and tolerance to moisture stresses, may be put down by appropriate grassland management. PMID:24386351

  4. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight.

    PubMed

    Boccalandro, Hernán E; Giordano, Carla V; Ploschuk, Edmundo L; Piccoli, Patricia N; Bottini, Rubén; Casal, Jorge J

    2012-03-01

    Leaf epidermal peels of Arabidopsis (Arabidopsis thaliana) mutants lacking either phototropins 1 and 2 (phot1 and phot2) or cryptochromes 1 and 2 (cry1 and cry2) exposed to a background of red light show severely impaired stomatal opening responses to blue light. Since phot and cry are UV-A/blue light photoreceptors, they may be involved in the perception of the blue light-specific signal that induces the aperture of the stomatal pores. In leaf epidermal peels, the blue light-specific effect saturates at low irradiances; therefore, it is considered to operate mainly under the low irradiance of dawn, dusk, or deep canopies. Conversely, we show that both phot1 phot2 and cry1 cry2 have reduced stomatal conductance, transpiration, and photosynthesis, particularly under the high irradiance of full sunlight at midday. These mutants show compromised responses of stomatal conductance to irradiance. However, the effects of phot and cry on photosynthesis were largely nonstomatic. While the stomatal conductance phenotype of phot1 phot2 was blue light specific, cry1 cry2 showed reduced stomatal conductance not only in response to blue light, but also in response to red light. The levels of abscisic acid were elevated in cry1 cry2. We conclude that considering their effects at high irradiances cry and phot are critical for the control of transpiration and photosynthesis rates in the field. The effects of cry on stomatal conductance are largely indirect and involve the control of abscisic acid levels.

  5. Is optimality in stomatal conductance an endogenous process or an emergent property arising from interactions with the environment?

    NASA Astrophysics Data System (ADS)

    Resco de Dios, Victor; Gessler, Arthur; Ferrio, Juan Pedro; Bahn, Michael; Milcu, Alexandru; Tissue, David; Voltas, Jordi; Roy, Jacques

    2016-04-01

    Plants are sessile and poikilothermic organisms that need to respond and adjust promptly to an ever-changing environment. Over a single 24 h period, a plant may experience the same level of variation in radiation as in its entire life-time and, in some climates, the oscillation in day-night temperature and vapor pressure deficit might be of similar magnitude to that experienced across a full year. Plants need to maintain a positive C balance without depleting soil water reserves in the face of such a diverse environment, and feedbacks between assimilation (A) and water losses (E) are thought to have evolved to optimize stomatal conductance (gs). In short, the optimal conductance hypothesis proposes that cross-talks between A and stomatal conductance gs lead to a constant marginal water use (λ) during a day, such that A is maximized and E minimized. The biological mechanism by which biochemical processes would feedback gs remains unknown, but multiple studies have shown empirical support for this hypothesis, leading to its current consideration of theory by many. Here we test whether optimal stomatal conductance is an endogenous property, that is, driven solely by factors internal to the plant, and in the absence of environmental fluctuations. After 5 days of entrainment, where monoculture canopies of bean and of cotton were subjected to the average environmental conditions of an August sunny day in Montpellier (at the CNRS European Ecotron, FR), we kept temperature, relative humidity and photosynthetically active radiation constant for 48 h at the values observed at noon. During this period, we monitored leaf gas exchange continuously every two minutes, and canopy gas exchange every 15 minutes. We observed a periodic oscillation in λ, showing a 24 h period, and consistent with a circadian regulation of water use efficiency. Hourly variations in λ could thus not be explained by the optimal stomatal hypothesis. Moreover, the pattern of variation (of maximal water

  6. O3 flux-related responsiveness of photosynthesis, respiration, and stomatal conductance of adult Fagus sylvatica to experimentally enhanced free-air O3 exposure.

    PubMed

    Löw, M; Häberle, K-H; Warren, C R; Matyssek, R

    2007-03-01

    Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The

  7. Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species.

    PubMed

    Ewers, B E; Mackay, D S; Samanta, S

    2007-01-01

    We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal

  8. Tree level hydrodynamic approach for resolving aboveground water storage and stomatal conductance and modeling the effects of tree hydraulic strategy

    NASA Astrophysics Data System (ADS)

    Mirfenderesgi, Golnazalsadat; Bohrer, Gil; Matheny, Ashley M.; Fatichi, Simone; Moraes Frasson, Renato Prata; Schäfer, Karina V. R.

    2016-07-01

    The finite difference ecosystem-scale tree crown hydrodynamics model version 2 (FETCH2) is a tree-scale hydrodynamic model of transpiration. The FETCH2 model employs a finite difference numerical methodology and a simplified single-beam conduit system to explicitly resolve xylem water potentials throughout the vertical extent of a tree. Empirical equations relate water potential within the stem to stomatal conductance of the leaves at each height throughout the crown. While highly simplified, this approach brings additional realism to the simulation of transpiration by linking stomatal responses to stem water potential rather than directly to soil moisture, as is currently the case in the majority of land surface models. FETCH2 accounts for plant hydraulic traits, such as the degree of anisohydric/isohydric response of stomata, maximal xylem conductivity, vertical distribution of leaf area, and maximal and minimal xylem water content. We used FETCH2 along with sap flow and eddy covariance data sets collected from a mixed plot of two genera (oak/pine) in Silas Little Experimental Forest, NJ, USA, to conduct an analysis of the intergeneric variation of hydraulic strategies and their effects on diurnal and seasonal transpiration dynamics. We define these strategies through the parameters that describe the genus level transpiration and xylem conductivity responses to changes in stem water potential. Our evaluation revealed that FETCH2 considerably improved the simulation of ecosystem transpiration and latent heat flux in comparison to more conventional models. A virtual experiment showed that the model was able to capture the effect of hydraulic strategies such as isohydric/anisohydric behavior on stomatal conductance under different soil-water availability conditions.

  9. Environmental controls on saltcedar (Tamarix spp.) transpiration and stomatal conductance and implications for determining evapotranspiration by remote sensing

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Glenn, E. P.; morino, K.

    2012-12-01

    Saltcedar is an introduced, salt-tolerant shrub that now dominates many flow-regulated western U.S. rivers. Saltcedar control programs have been implemented to salvage water and to allow the return of native vegetation to infested rivers. However, there is much debate about how much water saltcedar actually uses and the range of ecohydrological niches it occupies. Ground methods for measuring riparian zone ET have improved and there is considerable interest in developing remote sensing methods for saltcedar to conduct wide-area monitoring of water use. Both thermal band and vegetation index methods have been used to estimate riparian ET. However, several problems present themselves in applying existing remote sensing methods to riparian corridors. First, many riparian corridors are narrow and are surrounded by arid uplands, hence they cannot be treated as energetically closed systems, an assumption of thermal band methods that calculate ET as a residual in the surface energy balance. Second, contrary to the assumption that riparian phreatophytes typically grow under unstressed conditions since they are rooted into groundwater, we find that saltcedar stands are under substantial degrees of apparent moisture stress, exhibiting midday depression of transpiration and stomatal conductance, and decreases in stomatal conductance over the growing season as depth to groundwater increases. Furthermore, the degree of stress is site-specific, depending on local soil texture, salinity of the groundwater and distance from the river. This violates a key assumption of vegetation index methods for estimating ET. The implications of these findings for arid-zone riparian ecohydrology and for remote sensing methods that assume either a constant daily evaporative fraction or rate of stomatal conductance will be discussed using saltcedar stands measured in the Cibola NWR on the lower Colorado River as a case study. Daily rates of saltcedar transpiration ranged from 1.6-3.0 mm/m2 leaf

  10. Effects of CO2 Concentration on Leaf Photosynthesis and Stomatal Conductance of Potatoes Grown Under Different Irradiance Levels and Photoperiods

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.

    2012-01-01

    Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased

  11. Effects of mid-season frost and elevated growing season temperature on stomatal conductance and specific xylem conductivity of the arctic shrub, Salix pulchra.

    PubMed

    Gorsuch, Dennis M; Oberbauer, Steven F

    2002-10-01

    An increased risk of frost is expected during the growing season, as climate warming increases spring temperatures in the Arctic. Because deciduous species have a growth season limited in length and also have generally larger conduit volumes, they are more likely than evergreens to be injured by freeze-thaw-induced cavitation during the growing season. To test whether growth at elevated temperature increases susceptibility to freeze-thaw damage, we grew a deciduous arctic shrub species (Salix pulchra Cham.) in simulated Alaskan summer temperatures and at 5 degrees C above the ambient simulation (+5 degrees C plants) in controlled environments. Stem specific hydraulic conductivity (k(s)) and leaf stomatal conductance (g(s)) were measured in plants grown at both temperatures before and after a freeze treatment simulating a mid-season frost. Before the freeze treatment, specific xylem conductivity was 2.5 times higher and stomatal conductances were 1.3 times higher in +5 degrees C plants than in ambient-grown plants. Reductions in hydraulic conductivity and stomatal conductance as a result of the freeze were 3.5 and 1.8 times greater respectively in +5 degrees C plants than in ambient-grown plants. Many of the +5 degrees C plants showed extensive leaf damage. Plants grown in the two treatments also differed in comparative xylem anatomy; +5 degrees C plants had larger vessel diameters (25.4 versus 22.6 micro m) and higher vessel densities (71 versus 67.4 vessels mm(-2)) than ambient-grown plants. Our results suggest that higher growing season temperatures will increase the susceptibility of arctic deciduous shrubs to frost damage, which may offset their competitive growth advantage.

  12. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees.

    PubMed

    Zhang, Yong-Jiang; Meinzer, Frederick C; Qi, Jin-Hua; Goldstein, Guillermo; Cao, Kun-Fang

    2013-01-01

    Midday depressions in stomatal conductance (g(s) ) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday g(s) , the coordination between leaf and stem hydraulics and whether regulation of midday g(s) differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigated leaf and stem hydraulics, midday leaf and stem water potentials, as well as midday g(s) of co-occurring deciduous and evergreen tree species. Midday g(s) was correlated positively with midday stem water potential across both groups of species, but not with midday leaf water potential. Species with higher stem hydraulic conductivity and greater daily reliance on stem hydraulic capacitance were able to maintain higher stem water potential and higher g(s) at midday. Deciduous species exhibited significantly higher stem hydraulic conductivity, greater reliance on stem capacitance, higher stem water potential and g(s) at midday than evergreen species. Our results suggest that midday g(s) is more associated with midday stem than with leaf water status, and that the functional significance of stomatal regulation in these broadleaf tree species is probably for preventing stem xylem dysfunction.

  13. Implementation of an optimal stomatal conductance scheme in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b)

    NASA Astrophysics Data System (ADS)

    Kala, J.; De Kauwe, M. G.; Pitman, A. J.; Lorenz, R.; Medlyn, B. E.; Wang, Y.-P.; Lin, Y.-S.; Abramowitz, G.

    2015-12-01

    We implement a new stomatal conductance scheme, based on the optimality approach, within the Community Atmosphere Biosphere Land Exchange (CABLEv2.0.1) land surface model. Coupled land-atmosphere simulations are then performed using CABLEv2.0.1 within the Australian Community Climate and Earth Systems Simulator (ACCESSv1.3b) with prescribed sea surface temperatures. As in most land surface models, the default stomatal conductance scheme only accounts for differences in model parameters in relation to the photosynthetic pathway but not in relation to plant functional types. The new scheme allows model parameters to vary by plant functional type, based on a global synthesis of observations of stomatal conductance under different climate regimes over a wide range of species. We show that the new scheme reduces the latent heat flux from the land surface over the boreal forests during the Northern Hemisphere summer by 0.5-1.0 mm day-1. This leads to warmer daily maximum and minimum temperatures by up to 1.0 °C and warmer extreme maximum temperatures by up to 1.5 °C. These changes generally improve the climate model's climatology of warm extremes and improve existing biases by 10-20 %. The bias in minimum temperatures is however degraded but, overall, this is outweighed by the improvement in maximum temperatures as there is a net improvement in the diurnal temperature range in this region. In other regions such as parts of South and North America where ACCESSv1.3b has known large positive biases in both maximum and minimum temperatures (~ 5 to 10 °C), the new scheme degrades this bias by up to 1 °C. We conclude that, although several large biases remain in ACCESSv1.3b for temperature extremes, the improvements in the global climate model over large parts of the boreal forests during the Northern Hemisphere summer which result from the new stomatal scheme, constrained by a global synthesis of experimental data, provide a valuable advance in the long-term development

  14. Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought.

    PubMed

    Vilagrosa, A; Bellot, J; Vallejo, V R; Gil-Pelegrin, E

    2003-09-01

    Seedling shrubs in the Mediterranean semi-arid climate are subjected to intense droughts during summer. Thus, seedlings often surpass their limits of tolerance to water stress, resulting in the loss of hydraulic conductivity due to xylem cavitation. The response in terms of stomatal conductance, vulnerability to cavitation, leaf dieback, and survival were analysed in two co-occurring seedlings of mastic tree (Pistacia lentiscus L.) and kermes oak (Quercus coccifera L.) during an intense drought period. Both species reacted to drought with steep decreases in stomatal conductance before the critical water potential brought about the onset of cavitation events. Q. coccifera showed wider safety margins for avoiding runaway embolism than P. lentiscus and these differences could be related to the particular drought strategy displayed by each species: water saver or water spender. The limits for survival, resprout capacity and leaf dieback were also analysed in terms of loss of conductivity. By contrast with previous studies, the species showing higher seedling survival in the presence of drought also showed higher susceptibility to cavitation and operated with a lower safety margin for cavitation. Both species showed a leaf specific conductivity (LSC) threshold below which leaf biomass had to be regulated to avoid runaway embolism. However, each species displayed a different type of response: P. lentiscus conserved total leaf area up to 100% loss of LSC, whereas Q. coccifera continuously adjusted leaf biomass throughout the drought period in order to maintain the LSC very close to the maximum values recorded without loss of conductivity. Both species maintained the capacity for survival until the loss of conductivity was very nearly 100%.

  15. Ecophysiological parameters for a coupled photosynthesis and stomatal conductance model derived from eddy covariance measurements in Asia

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Ichii, K.; Kobayashi, H.; Alberto, M. C. R.; Bret-Harte, M. S.; Edgar, C.; Euskirchen, E. S.; Harazono, Y.; Hirano, T.; Hirata, R.; Ide, R.; Kosugi, Y.; Machimura, T.; Mizoguchi, Y.; Ohta, T.; Ono, K.; Saigusa, N.; Saitoh, T. M.; Takagi, K.; Takanashi, S.; Zhang, Y.

    2015-12-01

    For better understanding carbon and water vapor fluxes in Asia, ecophysiological parameters of a coupled photosynthesis and stomatal conductance big-leaf model (Farquhar et al., 1980; Ball and Berry, 1987) were inversely estimated using micrometeorological data at 48 sites in Asia. The data covered various ecosystems of arctic tundra, boreal, temperate, and tropical forests, grasslands, and croplands. We applied a global optimization method; shuffled complex evolution (SCE-UA) method (Duan et al., 1993). First stomatal conductance parameters (m and b in the Ball-Berry model) were optimized for evapotranspiration, and then photosynthetic parameters (maximum carboxylation rate at 25oC; Vcmax25) were optimized for gross primarily productivity (GPP). The canopy-scale parameters were then downscaled into the leaf-scale using a two-leaf radiative transfer models and leaf area index (LAI) by MODIS. In the presentation, we will show the spatial variability of the ecophysiological parameters in terms of environmental gradients, and ecosystem types. Implications and limitations of the synthesis will be discussed. References Ball and Berry, 1987: Progress in Photosynthesis Research, pp 221-224. Duan et al., 1993: J. Optimization Theory and Applications, 76, 501-521. Farquhar et al., 1980: Planta, 149, 78-90.

  16. Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species.

    PubMed

    Johnson, D M; Woodruff, D R; McCulloh, K A; Meinzer, F C

    2009-07-01

    Adequate leaf hydraulic conductance (Kleaf) is critical for preventing transpiration-induced desiccation and subsequent stomatal closure that would restrict carbon gain. A few studies have reported midday depression of Kleaf (or petiole conductivity) and its subsequent recovery in situ, but the extent to which this phenomenon is universal is not known. The objectives of this study were to measure Kleaf, using a rehydration kinetics method, (1) in the laboratory (under controlled conditions) across a range of water potentials to construct vulnerability curves (VC) and (2) over the course of the day in the field along with leaf water potential and stomatal conductance (gs). Two broadleaf (one evergreen, Arbutus menziesii Pursh., and one deciduous, Quercus garryana Dougl.) and two coniferous species (Pinus ponderosa Dougl. and Pseudotsuga menziesii [Mirbel]) were chosen as representative of different plant types. In addition, Kleaf in the laboratory and leaf water potential in the field were measured for three tropical evergreen species (Protium panamense (Rose), Tachigalia versicolor Standley and L.O. Williams and Vochysia ferruginea Mart) to predict their daily changes in field Kleaf in situ. It was hypothesized that in the field, leaves would close their stomata at water potential thresholds at which Kleaf begins to decline sharply in laboratory-generated VC, thus preventing substantial losses of Kleaf. The temperate species showed a 15-66% decline in Kleaf by midday, before stomatal closure. Although there were substantial midday declines in Kleaf, recovery was nearly complete by late afternoon. Stomatal conductance began to decrease in Pseudotsuga, Pinus and Quercus once Kleaf began to decline; however, there was no detectable reduction in gs in Arbutus. Predicted Kleaf in the tropical species, based on laboratory-generated VC, decreased by 74% of maximum Kleaf in Tachigalia, but only 22-32% in Vochysia and Protium. The results presented here, from the previous

  17. Evapotranspiration partitioning, stomatal conductance, and components of the water balance: A special case of a desert ecosystem in China

    NASA Astrophysics Data System (ADS)

    Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek

    2016-07-01

    Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.

  18. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar?

    PubMed

    Rogiers, Suzy Y; Greer, Dennis H; Hutton, Ron J; Landsberg, Joe J

    2009-01-01

    The hypothesis that vines of the Semillon wine grape variety show anisohydric behaviour was tested, i.e. that tissue hydration is unstable under fluctuating environmental conditions. Stomatal conductance and transpiration rates from leaves were measured during the day and at night. Leaf water potential (Psi(l)) in Semillon was negatively correlated to vapour pressure deficit (VPD) both predawn and during the day. Furthermore, Psi(l) fell to significantly lower values than in any of the nine other varieties examined. Night-time values of stomatal conductance (g(n)) and transpiration (E(n)) in Semillon were up to four times higher than in other varieties; plants enclosed in plastic bags overnight to reduce E(n) resulted in better plant-soil equilibration so that predawn Psi(l) in Semillon was the same as in Grenache. These data indicate that the hypothesis is supported, and that night-time transpiration contributes significantly to the low Psi(l) values in Semillon during warm, dry nights. The other contributing factor is daytime stomatal conductance (g(day)), which in Semillon leaves was higher than in other varieties, although the decline in g(day) with increasing VPD was greater in Semillon than in Shiraz or Grenache. The high values of g(day) were associated with high rates of transpiration (E(day)) by Semillon through a day when VPD reached 4.5 kPa. When compared to other varieties, Semillon was not unusual in terms of root length density, stomatal density, xylem sap abscisic acid, or leaf electrolyte leakage. Night-time and daytime water loss and insufficient stomatal regulation therefore account for the tendency to anisohydric behaviour shown by Semillon.

  19. CO2 enrichment modulates ammonium nutrition in tomato adjusting carbon and nitrogen metabolism to stomatal conductance.

    PubMed

    Vega-Mas, Izargi; Marino, Daniel; Sánchez-Zabala, Joseba; González-Murua, Carmen; Estavillo, Jose María; González-Moro, María Begoña

    2015-12-01

    Ammonium (NH4(+)) toxicity typically occurs in plants exposed to high environmental NH4(+) concentration. NH4(+) assimilating capacity may act as a biochemical mechanism avoiding its toxic accumulation but requires a fine tuning between nitrogen assimilating enzymes and carbon anaplerotic routes. In this work, we hypothesized that extra C supply, exposing tomato plants cv. Agora Hybrid F1 to elevated atmospheric CO2, could improve photosynthetic process and thus ameliorate NH4(+) assimilation and tolerance. Plants were grown under nitrate (NO3(-)) or NH4(+) as N source (5-15mM), under two atmospheric CO2 levels, 400 and 800ppm. Growth and gas exchange parameters, (15)N isotopic signature, C and N metabolites and enzymatic activities were determined. Plants under 7.5mM N equally grew independently of the N source, while higher ammonium supply resulted toxic for growth. However, specific stomatal closure occurred in 7.5mM NH4(+)-fed plants under elevated CO2 improving water use efficiency (WUE) but compromising plant N status. Elevated CO2 annulled the induction of TCA anaplerotic enzymes observed at non-toxic NH4(+) nutrition under ambient CO2. Finally, CO2 enrichment benefited tomato growth under both nutritions, and although it did not alleviate tomato NH4(+) tolerance it did differentially regulate plant metabolism in N-source and -dose dependent manner.

  20. Stomatal and mesophyll conductances to CO2 are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc.

    PubMed

    Sagardoy, R; Vázquez, S; Florez-Sarasa, I D; Albacete, A; Ribas-Carbó, M; Flexas, J; Abadía, J; Morales, F

    2010-07-01

    *The effects of zinc (Zn) toxicity on photosynthesis and respiration were investigated in sugar beet (Beta vulgaris) plants grown hydroponically with 1.2, 100 and 300 microM Zn. *A photosynthesis limitation analysis was used to assess the stomatal, mesophyll, photochemical and biochemical contributions to the reduced photosynthesis observed under Zn toxicity. *The main limitation to photosynthesis was attributable to stomata, with stomatal conductances decreasing by 76% under Zn excess and stomata being unable to respond to physiological and chemical stimuli. The effects of excess Zn on photochemistry were minor. Scanning electron microscopy showed morphological changes in stomata and mesophyll tissue. Stomatal size and density were smaller, and stomatal slits were sealed in plants grown under high Zn. Moreover, the mesophyll conductance to CO(2) decreased by 48% under Zn excess, despite a marked increase in carbonic anhydrase activity. Respiration, including that through both cytochrome and alternative pathways, was doubled by high Zn. *It can be concluded that, in sugar beet plants grown in the presence of excess Zn, photosynthesis is impaired due to a depletion of CO(2) at the Rubisco carboxylation site, as a consequence of major decreases in stomatal and mesophyll conductances to CO(2).

  1. Contribution of PsbS Function and Stomatal Conductance to Foliar Temperature in Higher Plants

    PubMed Central

    Kulasek, Milena; Bernacki, Maciej Jerzy; Ciszak, Kamil; Witoń, Damian; Karpiński, Stanisław

    2016-01-01

    Natural capacity has evolved in higher plants to absorb and harness excessive light energy. In basic models, the majority of absorbed photon energy is radiated back as fluorescence and heat. For years the proton sensor protein PsbS was considered to play a critical role in non-photochemical quenching (NPQ) of light absorbed by PSII antennae and in its dissipation as heat. However, the significance of PsbS in regulating heat emission from a whole leaf has never been verified before by direct measurement of foliar temperature under changing light intensity. To test its validity, we here investigated the foliar temperature changes on increasing and decreasing light intensity conditions (foliar temperature dynamics) using a high resolution thermal camera and a powerful adjustable light-emitting diode (LED) light source. First, we showed that light-dependent foliar temperature dynamics is correlated with Chl content in leaves of various plant species. Secondly, we compared the foliar temperature dynamics in Arabidopsis thaliana wild type, the PsbS null mutant npq4-1 and a PsbS-overexpressing transgenic line under different transpiration conditions with or without a photosynthesis inhibitor. We found no direct correlations between the NPQ level and the foliar temperature dynamics. Rather, differences in foliar temperature dynamics are primarily affected by stomatal aperture, and rapid foliar temperature increase during irradiation depends on the water status of the leaf. We conclude that PsbS is not directly involved in regulation of foliar temperature dynamics during excessive light energy episodes. PMID:27273581

  2. Daytime and nighttime wind differentially affects hydraulic properties and thigmomorphogenic response of poplar saplings.

    PubMed

    Huang, Ping; Wan, Xianchong; Lieffers, Victor J

    2016-05-01

    This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response.

  3. Optimizing stomatal conductance for maximum carbon gain under water stress: A meta-analysis across plant functional types and climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stomatal responses to environmental variables, in particular atmospheric CO2 concentration and soil water status, are needed for quantifying the controls on carbon and water exchanges between plants and the atmosphere. Building on previous leaf-scale gas exchange models and stomatal optimality theor...

  4. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    EPA Science Inventory

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...

  5. Effects of elevated ozone on photosynthesis and stomatal conductance of two soybean varieties: a case study to assess impacts of one component of predicted global climate change.

    PubMed

    Singh, E; Tiwari, S; Agrawal, M

    2009-11-01

    Global climatic change scenarios predict a significant increase in future tropospheric ozone (O(3)) concentrations. The present investigation was done to assess the effects of elevated O(3) (70 and 100 ppb) on electron transport, carbon fixation, stomatal conductance and pigment concentrations in two tropical soybean (Glycine max L.) varieties, PK 472 and Bragg. Plants were exposed to O(3) for 4 h.day(-1) from 10:00 to 14:00 from germination to maturity. Photosynthesis of both varieties were adversely affected, but the reduction was higher in PK 472 than Bragg. A comparison of chlorophyll a fluorescence kinetics with carbon fixation suggested greater sensitivity of dark reactions than light reactions of photosynthesis to O(3) stress. The O(3)-induced uncoupling between photosynthesis and stomatal conductance in PK 472 suggests the reduction in photosynthesis may be attributed to a factor other than reduced stomatal conductance. An increase in internal CO(2) concentration in both O(3)-treated soybean varieties compared suggests that the reduction in photosynthesis was due to damage to the photosynthetic apparatus, leading to accumulation of internal CO(2) and stomatal closure. The adverse impact of O(3) stress increased at higher O(3) concentrations in both soybean varieties leading to large reductions in photosynthesis. This study suggests that O(3)-induced reductions in photosynthesis in tropical and temperate varieties are similar.

  6. Stomatal and mesophyll conductances to CO₂ in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change?

    PubMed

    Flexas, Jaume; Carriquí, Marc; Coopman, Rafael E; Gago, Jorge; Galmés, Jeroni; Martorell, Sebastià; Morales, Fermín; Diaz-Espejo, Antonio

    2014-09-01

    The climate change conditions predicted for the end of the current century are expected to have an impact on the performance of plants under natural conditions. The variables which are foreseen to have a larger effect are increased CO2 concentration and temperature. Although it is generally considered CO2 assimilation rate could be increased by the increasing levels of CO2, it has been reported in previous studies that acclimation to high CO2 results in reductions of physiological parameters involved in photosynthesis, like the maximum carboxylation rate (Vc,max), stomatal conductance (gs) and mesophyll conductance to CO2 (gm). On the one hand, most of the previous modeling efforts have neglected the potential role played by the acclimation of gm to high CO2 and temperature. On the other hand, the effect of climate change on plant clades other than angiosperms, like ferns, has received little attention, and there are no studies evaluating the potential impact of increasing CO2 and temperature on these species. In this study we predicted responses of several representative species among angiosperms, gymnosperms and ferns to increasing CO2 and temperature. Our results show that species with lower photosynthetic capacity - such as some ferns and gymnosperms - would be proportionally more favored under these foreseen environmental conditions. The main reason for this difference is the lower diffusion limitation imposed by gs and gm in plants having high capacity for photosynthesis among the angiosperms, which reduces the positive effect of increasing CO2. However, this apparent advantage of low-diffusion species would be canceled if the two conductances - gs and gm - acclimate and are down regulated to high CO2, which is basically unknown, especially for gymnosperms and ferns. Hence, for a better understanding of different plant responses to future climate, studies are urged in which the actual photosynthetic response/acclimation to increased CO2 and temperature of

  7. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature.

    PubMed

    Xu, Liukang; Baldocchi, Dennis D

    2003-09-01

    Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO2 and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (Vcmax) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine Vcmax. There was a pronounced seasonal pattern in Vcmax. The maximum value of Vcmax, 127 micromol m(-2) s(-1), was reached shortly after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, Vcmax declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 degrees C. The decline in Vcmax was gradual in midsummer, however, despite extremely low predawn leaf water potentials (Psipd, approximately -4.0 MPa). Overall, temporal changes in Vcmax were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (Rd, 5-6 micromol m(-2) s(-1)) were observed. Once a leaf reached maturity, Rd remained low, around 0.5 micromol m(-2) s(-1). In contrast to the strong seasonality of Vcmax, m and marginal water cost per unit carbon gain (partial partial differential E/ partial partial differential A) were relatively constant over the season, even when leaf Psipd dropped to -6.8 MPa. The constancy of partial partial differential E/ partial partial differential A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.

  8. Sugarcane for water-limited environments. Variation in stomatal conductance and its genetic correlation with crop productivity.

    PubMed

    Basnayake, J; Jackson, P A; Inman-Bamber, N G; Lakshmanan, P

    2015-07-01

    Stomatal conductance (g(s)) and canopy temperature have been used to estimate plant water status in many crops. The behaviour of g(s) in sugarcane indicates that the internal leaf water status is controlled by regular opening and closing of stomata. A large number of g(s) measurements obtained across varying moisture regimes, locations, and crop cycles with a diverse sugarcane germplasm composed of introgression, and commercial clones indicated that there is a high genetic variation for g(s) that can be exploited in a breeding programme. Regardless of the environmental influences on the expression of this trait, moderate heritability was observed across 51 sets of individual measurements made on replicated trials over 3 years. The clone×water status interaction (G×E) variation was smaller than the clone (G) variation on many occasions. A wide range of genetic correlations (r(g)= -0.29 to 0.94) between g(s) and yield were observed across test environments in all three different production regions used. Canopy conductance (g(c)) based on g(s) and leaf area index (LAI) showed a stronger genetic correlation than the g(s) with cane yield (tonnes of cane per hectare; TCH) at 12 months (mature crop). The regression analysis of input weather data for the duration of measurements showed that the predicted values of r(g) correlated with the maximum temperature (r=0.47) during the measurements and less with other environmental variables. These results confirm that the g(c) could have potential as a criterion for early-stage selection of clones in sugarcane breeding programmes.

  9. Seasonal changes in Cyclobalanopsis glauca transpiration and canopy stomatal conductance and their dependence on subterranean water and climatic factors in rocky karst terrain

    NASA Astrophysics Data System (ADS)

    Huang, Yuqing; Li, Xiankun; Zhang, Zhongfeng; He, Chengxin; Zhao, Ping; You, Yeming; Mo, Ling

    2011-05-01

    SummaryThe presence of forest on south China karst is presumed to increase perennial epikarst spring flow, partly because there is adequate storage in bedrock fractures underlying the shallow soil in the forest. If true, transpiration of the ecosystem would not be strongly reduced by temperate drought if trees develop deep roots to reach the perched epikarst water. Therefore, in karst ecosystem the epikarst-soil-plant-atmosphere continuum (ESPAC) would be different from the SPAC in non-karst system. We measured transpiration and canopy conductance from a Cyclobalanopsis glauca (syn. Quercus glauca) stand on a rocky hill slope in South China during 2006-2007 by using the Granier's sap-flow method. Annual stand transpiration (836 mm y -1) accounted for 48.7% of the rainfall during the experimental year. Per month, daily stand transpiration ( E c) maximums varied between 2.1 mm d -1 in January (cool season) to 5.1 mm d -1 in July (hot season). In the driest months, September and October, E c of C. glauca was still high with maximum E c 3.82 mm d -1 and 2.96 mm d -1 respectively. Solar radiation ( PAR), vapor pressure deficiency ( VPD), and air temperature were simple influences on transpiration of C. glauca, which contributed to a quadratic power model, while soil water content ( SWC) moisture influence on transpiration was complicated, which SWC influenced E c greatly under higher VPD, but did not influence E c under low VPD. High stomatal openness occurred in C. glauca in the early morning and declined throughout the day. The relation coefficient between canopy stomatal conductance ( G c) and E c was high when VPD was more than 1.0 kPa, moderate when 0.5 kPa < VPD < 1.0 kPa, and low with VPD of less than 0.5 kPa. Under high VPD, stomatal control of transpiration is high. The pattern of seasonal change of transpiration and canopy stomatal conductance of the plant in karst regions is different from that in non-karst regions, with the stand transpiration and canopy

  10. Evaluating stomatal ozone fluxes in WRF-Chem: Comparing ozone uptake in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Rydsaa, J. H.; Stordal, F.; Gerosa, G.; Finco, A.; Hodnebrog, Ø.

    2016-10-01

    The development of modelling tools for estimating stomatal uptake of surface ozone in vegetation is important for the assessment of potential damage induced due to both current and future near surface ozone concentrations. In this study, we investigate the skill in estimating ozone uptake in plants by the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) V3.6.1, with the Wesely dry deposition scheme. To validate the stomatal uptake of ozone, the model simulations were compared with field measurements of three types of Mediterranean vegetation, over seven different periods representing various meteorological conditions. Some systematic biases in modelled ozone fluxes are revealed; the lack of an explicit and time varying dependency on plants' water availability results in overestimated daytime ozone stomatal fluxes particularly in dry periods. The optimal temperature in the temperature response function is likely too low for the woody species tested here. Also, too low nighttime stomatal conductance leads to underestimation of ozone uptake during night. We demonstrate that modelled stomatal ozone flux is improved by accounting for vapor pressure deficit in the ambient air. Based on the results of the overall comparison to measured fluxes, we propose that additional improvements to the stomatal conductance parameterization should be implemented before applying the modelling system for estimating ozone doses and potential damage to vegetation.

  11. Fine Mapping of Carbon Assimilation Rate 8, a Quantitative Trait Locus for Flag Leaf Nitrogen Content, Stomatal Conductance and Photosynthesis in Rice.

    PubMed

    Adachi, Shunsuke; Yoshikawa, Kazuaki; Yamanouchi, Utako; Tanabata, Takanari; Sun, Jian; Ookawa, Taiichiro; Yamamoto, Toshio; Sage, Rowan F; Hirasawa, Tadashi; Yonemaru, Junichi

    2017-01-01

    Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops.

  12. Fine Mapping of Carbon Assimilation Rate 8, a Quantitative Trait Locus for Flag Leaf Nitrogen Content, Stomatal Conductance and Photosynthesis in Rice

    PubMed Central

    Adachi, Shunsuke; Yoshikawa, Kazuaki; Yamanouchi, Utako; Tanabata, Takanari; Sun, Jian; Ookawa, Taiichiro; Yamamoto, Toshio; Sage, Rowan F.; Hirasawa, Tadashi; Yonemaru, Junichi

    2017-01-01

    Increasing the rate of leaf photosynthesis is one important approach for increasing grain yield in rice (Oryza sativa). Exploiting the natural variation in CO2 assimilation rate (A) between rice cultivars using quantitative genetics is one promising means to identify genes contributing to higher photosynthesis. In this study, we determined precise location of Carbon Assimilation Rate 8 (CAR8) by crossing a high-yielding indica cultivar with a Japanese commercial cultivar. Fine mapping suggested that CAR8 encodes a putative Heme Activator Protein 3 (OsHAP3) subunit of a CCAAT-box-binding transcription factor called OsHAP3H. Sequencing analysis revealed that the indica allele of CAR8 has a 1-bp deletion at 322 bp from the start codon, resulting in a truncated protein of 125 amino acids. In addition, CAR8 is identical to DTH8/Ghd8/LHD1, which was reported to control rice flowering date. The increase of A is largely due to an increase of RuBP regeneration rate via increased leaf nitrogen content, and partially explained by reduced stomatal limitation via increased stomatal conductance relative to A. This allele also increases hydraulic conductivity, which would promote higher stomatal conductance. This indicates that CAR8 affects multiple physiological aspects relating to photosynthesis. The detailed analysis of molecular functions of CAR8 would help to understand the association between photosynthesis and flowering and demonstrate specific genetic mechanisms that can be exploited to improve photosynthesis in rice and potentially other crops. PMID:28197156

  13. Seasonal trend of photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature

    SciTech Connect

    Xu, L; Baldocchi, DD

    2003-09-01

    OAK-B135 Understanding seasonal changes in photosynthetic parameters and stomatal conductance is crucial for modeling long-term carbon uptake and energy fluxes of ecosystems. Gas exchange measurements of CO{sub 2} and light response curves on blue oak leaves (Quercus douglasii H. & A.) were conducted weekly throughout the growing season to study the seasonality of photosynthetic capacity (V{sub cmax}) and Ball-Berry slope (m) under prolonged summer drought and high temperature. A leaf photosynthetic model was used to determine V{sub cmax}. There was a pronounced seasonal pattern in V{sub cmax}. The maximum value of V{sub cmax}, 127 {micro}molm{sup -2} s{sup -1},was reached shortly after leaf expansion in early summer, when air temperature was moderate and soil water availability was high. Thereafter, V{sub cmax} declined as the soil water profile became depleted and the trees experienced extreme air temperatures, exceeding 40 C. The decline in V{sub cmax} was gradual in midsummer, however, despite extremely low predawn leaf water potentials ({Psi}{sub pd}, {approx} -4.0 MPa). Overall, temporal changes in V{sub cmax} were well correlated with changes in leaf nitrogen content. During spring leaf development, high rates of leaf dark respiration (R{sub d}, 5-6 {micro}mol m{sup -2} s{sup -1}) were observed. Once a leaf reached maturity, R{sub d} remained low, around 0.5 {micro}mol m{sup -2} s{sup -1}. In contrast to the strong seasonality of V{sub cmax}, m and marginal water cost per unit carbon gain ({partial_derivative}E/{partial_derivative}A) were relatively constant over the season, even when leaf {Psi}{sub pd} dropped to -6.8 MPa. The constancy of {partial_derivative}E/{partial_derivative}A suggests that stomata behaved optimally under severe water-stress conditions. We discuss the implications of our findings in the context of modeling carbon and water vapor exchange between ecosystems and the atmosphere.

  14. A Negative Hydraulic Message from Oxygen-Deficient Roots of Tomato Plants? (Influence of Soil Flooding on Leaf Water Potential, Leaf Expansion, and Synchrony between Stomatal Conductance and Root Hydraulic Conductivity).

    PubMed Central

    Else, M. A.; Davies, W. J.; Malone, M.; Jackson, M. B.

    1995-01-01

    Four to 10 h of soil flooding delayed and suppressed the normal daily increase in root hydraulic conductance (Lp) in tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants. The resulting short-term loss of synchrony between Lp and stomatal conductance decreased leaf water potential ([psi]L) relative to well-drained plants within 2 h. A decrease in [psi]L persisted for 8 h and was mirrored by decreased leaf thickness measured using linear displacement transducers. After 10 h of flooding, further closing of stomata and re-convergence of Lp in flooded and well-drained roots returned [psi]L to control values. In the second photoperiod, Lp in flooded plants exceeded that in well-drained plants in association with much increased Lp and decreased stomatal conductance. Pneumatic balancing pressure applied to roots of intact flooded plants to prevent temporary loss of [psi]L in the 1st d did not modify the patterns of stomatal closure or leaf expansion. Thus, the magnitude of the early negative hydraulic message was neither sufficient nor necessary to promote stomatal closure and inhibit leaf growth in flooded tomato plants. Chemical messages are presumed to be responsible for these early responses to soil flooding. PMID:12228649

  15. Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception.

    PubMed

    Meza-Canales, Ivan D; Meldau, Stefan; Zavala, Jorge A; Baldwin, Ian T

    2016-12-07

    Herbivory-induced changes in photosynthesis have been documented in many plant species, however the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here we analyzed the early photosynthetic gas-exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral-secretions, and the pathways regulating these responses. Elicitation with M. sexta oral-secretions rapidly decreased photosynthetic carbon-assimilation (AC ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and RuBP-turnover. Phytohormone profiling and gas-exchange-analysis of oral-secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic-responses were mediated by 12-oxo-phytodienoic acid (OPDA), while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signaling mediated by mitogen activated protein kinase 4 (MPK4). The analysis also revealed a role for cytokinins interacting with MPK4 in CO2 -mediated stomatal regulation. Hence oral-secretions, while eliciting jasmonic acid-mediated defense responses, also elicits OPDA-mediated changes in stomatal conductance and AC , an observation illustrating the complexity and economy of the signaling that regulates defense and carbon assimilation pathways in response to herbivore attack.

  16. Comparing model predictions and experimental data for the response of stomatal conductance and guard cell turgor to manipulations of cuticular conductance, leaf-to-air vapour pressure difference and temperature: feedback mechanisms are able to account for all observations.

    PubMed

    Eamus, Derek; Taylor, Daniel T; Macinnis-Ng, Catriona M O; Shanahan, Steve; De Silva, Lionel

    2008-03-01

    Stomata respond to increasing leaf-to-air vapour pressure difference (LAVPD) (D) by closing. The mechanism by which this occurs is debated. A role for feedback and peristomatal transpiration has been proposed. In this paper, we apply a recent mechanistic model of stomatal behaviour, and compare model and experimental data for the influence of increasing D on stomatal conductance. We manipulated cuticular conductance (g(c)) by three independent methods. First, we increased g(c) by using a solvent mixture applied to both leaf surfaces prior to determining stomatal responses to D; second, we increased g(c) by increasing leaf temperature at constant D; and third, we coated a small area of leaf with a light oil to decrease g(c). In all three experiments, experimental data and model outputs showed very close agreement. We conclude, from the close agreement between model and experimental data and the fact that manipulations of g(c), and hence cuticular transpiration, influenced g(s) in ways consistent with a feedback mechanism, that feedback is central in determining stomatal responses to D.

  17. Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C(4) genus Spartina (Poaceae).

    PubMed

    Maricle, Brian R; Koteyeva, Nuria K; Voznesenskaya, Elena V; Thomasson, Joseph R; Edwards, Gerald E

    2009-01-01

    Leaf anatomy, stomatal density, and leaf conductance were studied in 10 species of Spartina (Poaceae) from low versus high salt marsh, and freshwater habitats. Internal structure, external morphology, cuticle structure, and stomatal densities were studied with light and electron microscopy. Functional significance of leaf structure was examined by measures of CO(2) uptake and stomatal distributions. All species have Kranz anatomy and C(4)delta(13)C values. Freshwater species have thin leaves with small ridges on adaxial sides and stomata on both adaxial and abaxial sides. By contrast, salt marsh species have thick leaves with very pronounced ridges on the adaxial side and stomata located almost exclusively on adaxial leaf surfaces. Salt marsh species also have a thicker cuticle on the abaxial than on the adaxial side of leaves, and CO(2) uptake during photosynthesis is restricted to the adaxial leaf surface. Salt marsh species are adapted to controlling water loss by having stomata in leaf furrows on the adaxial side, which increases the boundary layer, and by having large leaf ridges that fit together as the leaf rolls during water stress. Differences in structural-functional features of photosynthesis in Spartina species are suggested to be related to adaptations to saline environments.

  18. Enhanced Photosynthesis and Growth in atquac1 Knockout Mutants Are Due to Altered Organic Acid Accumulation and an Increase in Both Stomatal and Mesophyll Conductance1

    PubMed Central

    Martins, Samuel C.V.; Daloso, Danilo M.; Martinoia, Enrico; Nunes-Nesi, Adriano; DaMatta, Fábio M.; Fernie, Alisdair R.; Araújo, Wagner L.

    2016-01-01

    Stomata control the exchange of CO2 and water vapor in land plants. Thus, whereas a constant supply of CO2 is required to maintain adequate rates of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. Accordingly, the uptake or release of ions and metabolites from guard cells is necessary to achieve normal stomatal function. The AtQUAC1, an R-type anion channel responsible for the release of malate from guard cells, is essential for efficient stomatal closure. Here, we demonstrate that mutant plants lacking AtQUAC1 accumulated higher levels of malate and fumarate. These mutant plants not only display slower stomatal closure in response to increased CO2 concentration and dark but are also characterized by improved mesophyll conductance. These responses were accompanied by increases in both photosynthesis and respiration rates, without affecting the activity of photosynthetic and respiratory enzymes and the expression of other transporter genes in guard cells, which ultimately led to improved growth. Collectively, our results highlight that the transport of organic acids plays a key role in plant cell metabolism and demonstrate that AtQUAC1 reduce diffusive limitations to photosynthesis, which, at least partially, explain the observed increments in growth under well-watered conditions. PMID:26542441

  19. Methanol Emission from Leaves (Enzymatic Detection of Gas-Phase Methanol and Relation of Methanol Fluxes to Stomatal Conductance and Leaf Development).

    PubMed Central

    Nemecek-Marshall, M.; MacDonald, R. C.; Franzen, J. J.; Wojciechowski, C. L.; Fall, R.

    1995-01-01

    We recently reported the detection of methanol emissions from leaves (R. MacDonald, R. Fall [1993] Atmos Environ 27A: 1709-1713). This could represent a substantial flux of methanol to the atmosphere. Leaf methanol production and emission have not been investigated in detail, in part because of difficulties in sampling and analyzing methanol. In this study we used an enzymatic method to convert methanol to a fluorescent product and verified that leaves from several species emit methanol. Methanol was emitted almost exclusively from the abaxial surfaces of hypostomatous leaves but from both surfaces of amphistomatous leaves, suggesting that methanol exits leaves via stomates. The role of stomatal conductance was verified in experiments in which stomates were induced to close, resulting in reduced methanol. Free methanol was detected in bean leaf extracts, ranging from 26.8 [mu]g g-1 fresh weight in young leaves to 10.0 [mu]g g-1 fresh weight in older leaves. Methanol emission was related to leaf development, generally declining with increasing leaf age after leaf expansion; this is consistent with volatilization from a cellular pool that declines in older leaves. It is possible that leaf emission could be a major source of methanol found in the atmosphere of forests. PMID:12228547

  20. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance

    SciTech Connect

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.

    2014-07-12

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  1. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: control by light, temperature and stomatal conductance.

    PubMed

    Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K

    2014-09-01

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.

  2. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought.

    PubMed

    Singh, Shardendu K; Raja Reddy, K

    2011-10-05

    Drought is the major abiotic stress factor that causes extensive losses to agriculture production worldwide. The objective of this study was to evaluate the dynamics of photosynthesis and water-use efficiency parameters in 15 cowpea genotypes under well-watered and drought condition. Photosynthesis (A) and chlorophyll fluorescence (Fv'/Fm') declined linearly with decreasing soil water content whereas intrinsic water-use efficiency (WUE) increased under drought stress, suggesting stomatal regulation was a major limitation to photosynthesis. However, under increasing drought conditions, increase in ratio of intercellular CO(2) to ambient CO(2) concentrations along with reduced WUE showed the role of non-stomatal limitation of photosynthesis. The resistant nature of Fv'/Fm' and electron transport rate under drought appeared to be important mechanisms for photoinhibition protection under drought stress. Oxidative stress was apparent due to drought-induced reduction in total chlorophyll and carotenoid which was accompanied with increased leaf wax contents. The accumulation of proline appeared to be in response of drought injury rather than a drought tolerance mechanism. A clear separation based on the genotypes site of origin among the genotypes for drought tolerance could not be established when analyzed using principal component analysis. The identified genotypes and physiological traits from this study may be useful for genetic engineering and breeding programs integrating drought adaptation in cowpea.

  3. Canopy Stomatal Conductance Following Drought, Disturbance, and Death in an Upland Oak/Pine Forest of the New Jersey Pine Barrens, USA

    PubMed Central

    Schäfer, Karina Vera Rosa

    2011-01-01

    Stomatal conductance controls carbon and water fluxes in forest ecosystems. Therefore, its accurate characterization in land-surface flux models is necessary. Sap-flux scaled canopy conductance was used to evaluate the effect of drought, disturbance, and mortality of three oak species (Quercus prinus, Q. velutina, and Q. coccinea) in an upland oak/pine stand in the New Jersey Pine Barrens from 2005 to 2008. Canopy conductance (GC) was analyzed by performing boundary line analysis and selecting for the highest value under a given light condition. Regressing GC with the driving force vapor pressure deficit (VPD) resulted in reference canopy conductance at 1 kPa VPD (GCref). Predictably, drought in 2006 caused GCref to decline. Q. prinus GCref was least affected, followed by Q. coccinea, with Q. velutina having the highest reductions in GCref. A defoliation event in 2007 caused GCref to increase due to reduced leaf area and a possible increase in water availability. In Q. prinus, GCref quadrupled, while doubling in Q. velutina, and increasing by 50% in Q. coccinea. Tree mortality in 2008 led to higher GCref in the remaining Q. prinus but not in Q. velutina or Q. coccinea. Comparing light response curves of canopy conductance (GCref) and stomatal conductance (gS) derived from gas-exchange measurements showed marked differences in behavior. Canopy GCref failed to saturate under ambient light conditions whereas leaf-level gS saturated at 1,200 μmol m−2 s−1. The results presented here emphasize the differential responses of leaf and canopy-level conductance to saturating light conditions and the effects of various disturbances (drought, defoliation, and mortality) on the carbon and water balance of an oak-dominated forest. PMID:22639580

  4. Canopy stomatal conductance following drought, disturbance, and death in an upland oak/pine forest of the new jersey pine barrens, USA.

    PubMed

    Schäfer, Karina Vera Rosa

    2011-01-01

    Stomatal conductance controls carbon and water fluxes in forest ecosystems. Therefore, its accurate characterization in land-surface flux models is necessary. Sap-flux scaled canopy conductance was used to evaluate the effect of drought, disturbance, and mortality of three oak species (Quercus prinus, Q. velutina, and Q. coccinea) in an upland oak/pine stand in the New Jersey Pine Barrens from 2005 to 2008. Canopy conductance (G(C)) was analyzed by performing boundary line analysis and selecting for the highest value under a given light condition. Regressing G(C) with the driving force vapor pressure deficit (VPD) resulted in reference canopy conductance at 1 kPa VPD (G(Cref)). Predictably, drought in 2006 caused G(Cref) to decline. Q. prinusG(Cref) was least affected, followed by Q. coccinea, with Q. velutina having the highest reductions in G(Cref). A defoliation event in 2007 caused G(Cref) to increase due to reduced leaf area and a possible increase in water availability. In Q. prinus, G(Cref) quadrupled, while doubling in Q. velutina, and increasing by 50% in Q. coccinea. Tree mortality in 2008 led to higher G(Cref) in the remaining Q. prinus but not in Q. velutina or Q. coccinea. Comparing light response curves of canopy conductance (G(Cref)) and stomatal conductance (g(S)) derived from gas-exchange measurements showed marked differences in behavior. Canopy G(Cref) failed to saturate under ambient light conditions whereas leaf-level g(S) saturated at 1,200 μmol m(-2) s(-1). The results presented here emphasize the differential responses of leaf and canopy-level conductance to saturating light conditions and the effects of various disturbances (drought, defoliation, and mortality) on the carbon and water balance of an oak-dominated forest.

  5. Surface vapor conductance derived from the ETRHEQ: Dependence on environmental variables and similarity to Oren's stomatal stress model for vapor pressure deficit

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.

    2015-12-01

    Daily time series of evapotranspiration and surface conductance to water vapor were estimated using the ETRHEQ method (Evapotranspiration from Relative Humidity at Equilibrium). ETRHEQ has been previously compared with ameriflux site-level measurements of ET at daily and seasonal time scales, with watershed water balance estimates, and with various benchmark ET data sets. The ETRHEQ method uses meteorological data collected at common weather stations and estimates the surface conductance by minimizing the vertical variance of the calculated relative humidity profile averaged over the day. The key advantage of the ETRHEQ method is that it does not require knowledge of the surface state (soil moisture, stomatal conductance, leaf are index, etc.) or site-specific calibration. The daily estimates of conductance from 229 weather stations for 53 years were analyzed for dependence on environmental variables known to impact stomatal conductance and soil diffusivity: surface temperature, surface vapor pressure deficit, solar radiation, antecedent precipitation (as a surrogate for soil moisture), and a seasonal vegetation greenness index. At each site the summertime (JJAS) conductance values estimated from ETRHEQ were fitted to a multiplicate Jarvis-type stress model. Functional dependence was not proscribed, but instead fitted using flexible piecewise-linear splines. The resulting stress functions reproduce the time series of conductance across a wide range of ecosystems and climates. The VPD stress term resembles that proposed by Oren (i.e., 1-m*log(VPD) ), with VPD measured in kilopascals. The equivalent value of m derived from our spline-fits at each station varied over a remarkably small range of 0.58 to 0.62, in agreement with Oren's original analysis based on leaf and tree-level measurements.

  6. Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution.

    PubMed

    McElwain, Jennifer C; Yiotis, Charilaos; Lawson, Tracy

    2016-01-01

    Understanding the drivers of geological-scale patterns in plant macroevolution is limited by a hesitancy to use measurable traits of fossils to infer palaeoecophysiological function. Here, scaling relationships between morphological traits including maximum theoretical stomatal conductance (gmax ) and leaf vein density (Dv ) and physiological measurements including operational stomatal conductance (gop ), saturated (Asat ) and maximum (Amax ) assimilation rates were investigated for 18 extant taxa in order to improve understanding of angiosperm diversification in the Cretaceous. Our study demonstrated significant relationships between gop , gmax and Dv that together can be used to estimate gas exchange and the photosynthetic capacities of fossils. We showed that acquisition of high gmax in angiosperms conferred a competitive advantage over gymnosperms by increasing the dynamic range (plasticity) of their gas exchange and expanding their ecophysiological niche space. We suggest that species with a high gmax (> 1400 mmol m(-2) s(-1) ) would have been capable of maintaining a high Amax as the atmospheric CO2 declined through the Cretaceous, whereas gymnosperms with a low gmax would experience severe photosynthetic penalty. Expansion of the ecophysiological niche space in angiosperms, afforded by coordinated evolution of high gmax , Dv and increased plasticity in gop , adds further functional insights into the mechanisms driving angiosperm speciation.

  7. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, Danielle A.; Oren, Ram; Kim, Hyun-Seok; Katul, Gabriel G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16°C day/night) or elevated (30/24°C) air temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, a `long-term' indicator of success. A model holding a constant intercellular to ambient CO2ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while the Jarvis-Oren model (based on stomatal responses to vapor pressure deficit,D) and a model assuming a constant gs each closed the carbon balance for one treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model and a linear optimization model that maximizes carbon gain per unit water loss. Since gsresponses in the optimization model are not a priori assumed, this approach can be used in modeling land-atmosphere exchange of CO2 and water in future climates.

  8. How well do stomatal conductance models perform on closing plant carbon budgets? A test using seedlings grown under current and elevated air temperatures

    NASA Astrophysics Data System (ADS)

    Way, D.; Oren, R.; Kim, H.; Katul, G. G.

    2011-12-01

    Future carbon and water fluxes within terrestrial ecosystems will be determined by how stomatal conductance (gs) responds to rising atmospheric CO2 and air temperatures. While both short- and long-term CO2 effects on gs have been repeatedly studied, there are few studies on how gs acclimates to higher air temperatures. Six gs models were parameterized using leaf gas exchange data from black spruce (Picea mariana) seedlings grown from seed at ambient (22/16 °C day/night) or elevated (30/24 °C) temperatures. Model performance was independently assessed by how well carbon gain from each model reproduced estimated carbon costs to close the seedlings' seasonal carbon budgets, an indicator of the model success at time scales commensurate with biomass changes. A model holding a constant intercellular to ambient CO2 concentration ratio and the Ball-Berry model (based on stomatal responses to relative humidity) could not close the carbon balance for either treatment, while a so-called Jarvis-Oren model (based on stomatal responses to vapor pressure deficit, D) and a model assuming a constant gs each closed the carbon balance for one temperature treatment. Two models, both based on gs responses to D, performed best overall, estimating carbon uptake within 10% of carbon costs for both treatments: the Leuning model (a semi-empirical model that links gs to photosynthetic rates) and a linear optimization model that maximizes carbon gain per unit water loss. Since gs responses in the linear optimization model are not a priori assumed, this approach may be advantageous in modeling gs responses to temperature, especially in future climates.

  9. Measurement of Leaf Hydraulic Conductance and Stomatal Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative Flux Method (EFM)

    PubMed Central

    Sack, Lawren; Scoffoni, Christine

    2012-01-01

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration1,2. Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψleaf). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance3. Leaf hydraulic conductance (Kleaf = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. Kleaf is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, Kleaf responds strongly to the internal and external leaf environment3. Kleaf can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes4, and Kleaf declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation5-10. Because Kleaf can

  10. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM).

    PubMed

    Sack, Lawren; Scoffoni, Christine

    2012-12-31

    Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5

  11. Uptake of NO, NO 2 and O 3 by sunflower ( Helianthus annuus L.) and tobacco plants ( Nicotiana tabacum L.): dependence on stomatal conductivity

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Kley, D.; Wildt, J.; Segschneider, H. J.; Förstel, H.

    The uptake of NO, NO 2 and O 3 by sunflowers ( Helianthus annuus L. var. giganteus) and tobacco plants ( Nicotiana tabacum L. var. Bel W3), using concentrations representative for moderately polluted air, has been determined by gas exchange experiments. Conductivities for these trace gases were measured at different light fluxes ranging from 820 μEm -2s -1 to darkness. The conductivities to water vapor and the trace gases are highly correlated. It is concluded that the uptake of NO, NO 2 and O 3 by sunflowers and tobacco plants is linearly dependent on stomatal opening. While the uptake of NO is limited by the mesophyll resistance, the uptake of NO 2 is only by diffusion through the stomata. Loss processes by deposition to the leaf surfaces are more pronounced for O 3 than for NO and NO 2.

  12. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: correlation with gene expression of carbonic anhydrase and aquaporins.

    PubMed

    Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio

    2014-07-01

    The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions.

  13. Effects of Diffuse Light on Radiation Use Efficiency of Two Anthurium Cultivars Depend on the Response of Stomatal Conductance to Dynamic Light Intensity

    PubMed Central

    Li, Tao; Kromdijk, Johannes; Heuvelink, Ep; van Noort, F. R.; Kaiser, Elias; Marcelis, Leo F. M.

    2016-01-01

    The stimulating effect of diffuse light on radiation use efficiency (RUE) of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD). Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’) were grown in two glasshouses covered by clear (control) and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs) varied strongly in response to transient PPFD in ‘Royal Champion,’ whereas it remained relatively constant in ‘Pink Champion.’ Instantaneous net leaf photosynthesis (Pn) in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion.’ These cultivar differences were reflected by a higher RUE (8%) in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion.’ We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent. PMID:26870071

  14. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis.

    PubMed

    Chastain, Daryl R; Snider, John L; Collins, Guy D; Perry, Calvin D; Whitaker, Jared; Byrd, Seth A

    2014-11-01

    Much effort has been expended to improve irrigation efficiency and drought tolerance of agronomic crops; however, a clear understanding of the physiological mechanisms that interact to decrease source strength and drive yield loss has not been attained. To elucidate the underlying mechanisms contributing to inhibition of net carbon assimilation under drought stress, three cultivars of Gossypium hirsutum were grown in the field under contrasting irrigation regimes during the 2012 and 2013 growing season near Camilla, Georgia, USA. Physiological measurements were conducted on three sample dates during each growing season (providing a broad range of plant water status) and included, predawn and midday leaf water potential (ΨPD and ΨMD), gross and net photosynthesis, dark respiration, photorespiration, and chlorophyll a fluorescence. End-of-season lint yield was also determined. ΨPD ranged from -0.31 to -0.95MPa, and ΨMD ranged from -1.02 to -2.67MPa, depending upon irrigation regime and sample date. G. hirsutum responded to water deficit by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis, thereby limiting PN and decreasing lint yield (lint yield declines observed during the 2012 growing season only). Conversely, even extreme water deficit, causing a 54% decline in PN, did not negatively affect actual quantum yield, maximum quantum yield, or photosynthetic electron transport. It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II. It is further concluded that ΨPD is a reliable indicator of drought stress and the need for irrigation in field-grown cotton.

  15. Vesicular stomatitis.

    PubMed

    Letchworth, G J; Rodriguez, L L; Del cbarrera, J

    1999-05-01

    Vesicular stomatitis is a disease of livestock caused by some members of the Vesiculovirus genus (Family Rhabdoviridae), two of which are called 'vesicular stomatitis virus'. Clinical disease presents as severe vesiculation and/or ulceration of the tongue, oral tissues, feet, and teats, and results in substantial loss of productivity. Except for its appearance in horses, it is clinically indistinguishable from foot-and-mouth disease. Unlike foot-and-mouth disease, it is very infectious for man and can cause a temporarily debilitating disease. Vesicular stomatitis occurs seasonally every year in the southeastern USA, southern Mexico, throughout Central America and in northern South America, and emerges from tropical areas to cause sporadic epidemics in cooler climates during the summer months. Other Vesiculoviruses are endemic in India and Africa. Vesiculoviruses are arthropod-borne and it is possible they are actually well adapted insect viruses that incidentally infect mammals. Vesiculoviruses are relatively simple, having a linear, single stranded, negative sense RNA genome encased in a bullet-shaped virion made from only five proteins. Upon infection of cultured cells, viral products turn off cellular gene expression and seize the entire metabolic potential of the cell. They also depolymerize the cytoskeleton to cause rapid tissue destruction. Virus infection in animals provokes interferon and nitric oxide responses, which quickly control viral replication, and an antibody response that prevents further viral replication. Vesiculovirus genome replication is error-prone, resulting in viral progeny containing many variants. This allows rapid adaptation. Nevertheless, vesicular stomatitis virus genomic sequences appear relatively stable within single endemic areas, and vary progressively on a North-South axis in the Western Hemisphere. Numerous important fundamental discoveries in immunology and virology have come from recent studies of vesicular stomatitis virus

  16. Soil phosphorous and endogenous rhythms exert a larger impact than CO2 or temperature on nocturnal stomatal conductance in Eucalyptus tereticornis.

    PubMed

    de Dios, Víctor Resco; Turnbull, Matthew H; Barbour, Margaret M; Ontedhu, Josephine; Ghannoum, Oula; Tissue, David T

    2013-11-01

    High nocturnal transpiration rates (5-15% of total water loss in terrestrial plants) may be adaptive under limited fertility, by increasing nutrient uptake or transport via transpiration-induced mass flow, but the response of stomata in the dark to environmental variables is poorly understood. Here we tested the impact of soil phosphorous (P) concentration, atmospheric CO2 concentration and air temperature on stomatal conductance (gs) during early and late periods in the night, as well as at midday in naturally, sun-lit glasshouse-grown Eucalyptus tereticornis Sm. seedlings. Soil P was the main driver of nocturnal gs, which was consistently higher in low soil P (37.3-79.9 mmol m(-2) s(-1)) than in high soil P (17.7-49.3 mmol m(-2)(-1)). Elevated temperature had only a marginal (P = 0.07) effect on gs early in the night (gs decreased from 34.7 to 25.8 mmol m(-2) s(-1) with an increase in temperature of 4 °C). The effect of CO2 depended on its interaction with temperature. Stomatal conductance responses to soil P were apparently driven by indirect effects of soil P on plant anatomy, since gs was significantly and negatively correlated with wood density. However, the relationship of gs with environmental factors became weaker late in the night, relative to early in the night, likely due to apparent endogenous processes; gs late in the night was two times larger than gs observed early in the night. Time-dependent controls over nocturnal gs suggest that daytime stomatal models may not apply during the night, and that different types of regulation may occur even within a single night. We conclude that the enhancement of nocturnal gs under low soil P availability is unlikely to be adaptive in our species because of the relatively small amount of transpiration-induced mass flow that can be achieved through rates of nocturnal water loss (3-6% of daytime mass flow).

  17. Inverse Estimation of Parameters for a Coupled Photosynthesis and Stomatal Conductance Model Using Eddy Covariance Measurements at a Black Spruce Forest in Alaska

    NASA Astrophysics Data System (ADS)

    Ueyama, M.; Tahara, N.; Iwata, H.; Nagano, H.; Harazono, Y.

    2014-12-01

    For better understanding high-latitude carbon and water cycles, parameters of a coupled photosynthesis and stomatal conductance big-leaf model (Farquhar et al., 1980; Ball and Berry, 1987; Baldocchi, 1994) were inversely estimated using gross primary productivity (GPP) and evapotranspiration by eddy covariance measurements at a black spruce forest in interior Alaska (Iwata et al., 2012; Ueyama et al., 2014). We developed a sequential optimization method based on a global optimization technique; shuffled complex evolution (SCE-UA) method (Duan et al., 1993). First, photosynthetic parameters (maximum carboxylation and maximum electron transfer rate at 25oC; Vcmax25 and Jmax25) were optimized for GPP, and then stomatal conductance parameters (m and b in the Ball-Berry model) were optimized for evapotranspiration. Based on our optimization, Vcmax25, Jmax25, and m varied seasonally, but b value was almost constant throughout seasons. Vcmax25 and Jmax25 were higher in summer months than other months, which related to understory leaf area index. m was higher in winter months than other months, but did not significantly change throughout the growing season. Our results indicated that simulations using constant ecophysiological parameters could underestimate photosynthesis and evapotranspiration of high-latitude ecosystems. References Ball and Berry, 1987: Progress in Photosynthesis Research, pp 221-224. Baldocchi, 1994: Tree Physiol., 14, 1069-1079. Duan et al., 1993: J. Optimization Theory and Applications, 76, 501-521. Farquhar et al., 1980: Planta, 149, 78-90. Iwata et al., 2012: Agric. For. Meteorol., 161, 107-115. Ueyama et al., 2014: Global Change Biol., 20, 1161-1173.

  18. Model estimates of leaf area and reference canopy stomatal conductance suggest correlation between phenology and physiology in both trembling aspen and red pine

    NASA Astrophysics Data System (ADS)

    Mackay, D. S.; Ewers, B. E.; Kruger, E. L.

    2006-12-01

    Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.

  19. Stomatal conductance at Duke FACE: Leveraging the lessons from 11 years of scaled sap flux measurements for region-wide analyses

    NASA Astrophysics Data System (ADS)

    Ward, E. J.; Bell, D.; Clark, J. S.; McCarthy, H. R.; Kim, H.; domec, J.; Noormets, A.; McNulty, D.; Sun, G.; Oren, R.

    2013-12-01

    A network of thermal dissipation probes (TDPs) monitoring sap flux density was used to estimate leaf-specific transpiration (EL) and canopy-averaged stomatal conductance (GS) in Pinus taeda (L.) exposed to +200 ppm atmospheric CO2 levels (eCO2) and nitrogen fertilization as part of the Duke FACE study. Data from scaling half-hourly measurements from hundreds of sensors over 11 years indicated that P. taeda in eCO2 intermittently (49% of monthly values) decreased stomatal conductance relative to the control, with a mean reduction of 13% in both total EL and mean daytime GS. This intermittent response was related to changes in a hydraulic allometry index (AH), defined as sapwood area per unit leaf area per unit canopy height, which was linearly related to GS at reference conditions (GSR) during the growing season across years (R2=0.67). Overall, AH decreased a mean of 15% with eCO2 over the course of the study, due mostly to a mean 19% increase in leaf area. Throughout the southeastern U.S., other P. taeda stands have been monitored with TDPs, such as the US-NC2 Ameriflux site and four fertilizer × throughfall displacement studies recently begun as part of the PINEMAP research network in VA, GA, FL and OK. We will also discuss the challenges and benefits of using a common modeling platform to combine FACE TDP data with that from a diversity of sites and treatments to draw inferences about EL and GS responses to environmental drivers and climate change, as well as their relation to AH, across the range of P. taeda.

  20. Decreases in Stomatal Conductance of Soybean under Open-Air Elevation of [CO2] Are Closely Coupled with Decreases in Ecosystem Evapotranspiration12[W][OA

    PubMed Central

    Bernacchi, Carl J.; Kimball, Bruce A.; Quarles, Devin R.; Long, Stephen P.; Ort, Donald R.

    2007-01-01

    Stomatal responses to atmospheric change have been well documented through a range of laboratory- and field-based experiments. Increases in atmospheric concentration of CO2 ([CO2]) have been shown to decrease stomatal conductance (gs) for a wide range of species under numerous conditions. Less well understood, however, is the extent to which leaf-level responses translate to changes in ecosystem evapotranspiration (ET). Since many changes at the soil, plant, and canopy microclimate levels may feed back on ET, it is not certain that a decrease in gs will decrease ET in rain-fed crops. To examine the scaling of the effect of elevated [CO2] on gs at the leaf to ecosystem ET, soybean (Glycine max) was grown in field conditions under control (approximately 375 μmol CO2 mol−1 air) and elevated [CO2] (approximately 550 μmol mol−1) using free air CO2 enrichment. ET was determined from the time of canopy closure to crop senescence using a residual energy balance approach over four growing seasons. Elevated [CO2] caused ET to decrease between 9% and 16% depending on year and despite large increases in photosynthesis and seed yield. Ecosystem ET was linked with gs of the upper canopy leaves when averaged across the growing seasons, such that a 10% decrease in gs results in a 8.6% decrease in ET; this relationship was not altered by growth at elevated [CO2]. The findings are consistent with model and historical analyses that suggest that, despite system feedbacks, decreased gs of upper canopy leaves at elevated [CO2] results in decreased transfer of water vapor to the atmosphere. PMID:17114275

  1. Stomatal Conductance, Plant Species Distribution, and an Exploration of Rhizosphere Microbes and Mycorrhizae at a Deliberately Leakimg Experimental Carbon Sequestration Field (ZERT)

    NASA Astrophysics Data System (ADS)

    Sharma, B.; Apple, M. E.; Morales, S.; Zhou, X.; Holben, B.; Olson, J.; Prince, J.; Dobeck, L.; Cunningham, A. B.; Spangler, L.

    2010-12-01

    One measure to reduce atmospheric CO2 is to sequester it in deep geological formations. Rapid surface detection of any CO2 leakage is crucial. CO2 leakage rapidly affects vegetation above sequestration fields. Plant responses to high CO2 are valuable tools in surface detection of leaking CO2. The Zero Emission Research Technology (ZERT) site in Bozeman, MT is an experimental field for surface detection of CO2 where 0.15 ton/day of CO2 was released (7/19- 8/15/2010) from a 100m horizontal injection well, HIW, 1.5 m underground with deliberate leaks of CO2 at intervals, and from a vertical injector, VI, (6/3-6/24/2010). The vegetation includes Taraxacum officinale (Dandelion), Dactylis glomerata (Orchard Grass), and other herbaceous plants. We collected soil and roots 1, 3 and 5 m from the VI to determine the responses of mycorrhizal fungi and rhizosphere microbes to high CO2. Mycorrhizal fungi obtain C from root exudates, increase N and P availability, and reduce desiccation, while prokaryotic rhizosphere microbes fix atmospheric N and will be examined for abundance and expression of carbon and nitrogen cycling genes. We are quantifying mycorrhizal colonization and the proportion of spores, hyphae, and arbuscules in vesicular-arbuscular mycorrhizae (VAM) in cleared and stained roots. Stomatal conductance is an important measure of CO2 uptake and water loss via transpiration. We used a porometer (5-40°C, 0-90% RH, Decagon) to measure stomatal conductivity in dandelion and orchard grass at 1, 3, and 5 m from the VI and along a transect perpendicular to the HIW. Dandelion conductance was highest close to the VI and almost consistently higher close to hot spots (circular regions with maximum CO2 and leaf dieback) at the HIW, with 23.2 mmol/m2/s proximal to the hot spot, and 10.8 mmol/m2/s distally. Average conductance in grass (50.3 mmol/m2/s) was higher than in dandelion, but grass did not have high conductance near hot spots. Stomata generally close at elevated CO2

  2. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy.

  3. An Integrated View of Whole-Tree Hydraulic Architecture. Does Stomatal or Hydraulic Conductance Determine Whole Tree Transpiration?

    PubMed Central

    Rodríguez-Gamir, Juan; Primo-Millo, Eduardo; Forner-Giner, María Ángeles

    2016-01-01

    Hydraulic conductance exerts a strong influence on many aspects of plant physiology, namely: transpiration, CO2 assimilation, growth, productivity or stress response. However we lack full understanding of the contribution of root or shoot water transport capacity to the total water balance, something which is difficult to study in trees. Here we tested the hypothesis that whole plant hydraulic conductance modulates plant transpiration using two different seedlings of citrus rootstocks, Poncirus trifoliata (L.) Raf. and Cleopatra mandarin (Citrus reshni Hort ex Tan.). The two genotypes presented important differences in their root or shoot hydraulic conductance contribution to whole plant hydraulic conductance but, even so, water balance proved highly dependent on whole plant conductance. Further, we propose there is a possible equilibrium between root and shoot hydraulic conductance, similar to that between shoot and root biomass production, which could be related with xylem anatomy. PMID:27223695

  4. Can the Responses of Photosynthesis and Stomatal Conductance to Water and Nitrogen Stress Combinations Be Modeled Using a Single Set of Parameters?

    PubMed Central

    Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou

    2017-01-01

    Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental conditions, simplifying the parameterization procedure is important toward a wide range of model applications. In this study, the biochemical photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model) and the stomatal conductance model of Ball, Woodrow and Berry which was revised by Leuning and Yin (the BWB-Leuning-Yin model) were parameterized for Lilium (L. auratum × speciosum “Sorbonne”) grown under different water and nitrogen conditions. Linear relationships were found between biochemical parameters of the FvCB model and leaf nitrogen content per unit leaf area (Na), and between mesophyll conductance and Na under different water and nitrogen conditions. By incorporating these Na-dependent linear relationships, the FvCB model was able to predict the net photosynthetic rate (An) in response to all water and nitrogen conditions. In contrast, stomatal conductance (gs) can be accurately predicted if parameters in the BWB-Leuning-Yin model were adjusted specifically to water conditions; otherwise gs was underestimated by 9% under well-watered conditions and was overestimated by 13% under water-deficit conditions. However, the 13% overestimation of gs under water-deficit conditions led to only 9% overestimation of An by the coupled FvCB and BWB-Leuning-Yin model whereas the 9% underestimation of gs under well-watered conditions affected little the prediction of An. Our results indicate that to accurately predict An and gs under different water and nitrogen conditions, only a few parameters in the BWB-Leuning-Yin model need to be adjusted according to water conditions whereas all other parameters are either conservative or can be adjusted according to

  5. Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States

    NASA Astrophysics Data System (ADS)

    Tang, Jianwu; Bolstad, Paul V.; Ewers, Brent E.; Desai, Ankur R.; Davis, Kenneth J.; Carey, Eileen V.

    2006-06-01

    Combining sap flux and eddy covariance measurements provides a means to study plant stomatal conductance and the relationship between transpiration and photosynthesis. We measured sap flux using Granier-type sensors in a northern hardwood-dominated old growth forest in Michigan, upscaled to canopy transpiration, and calculated canopy conductance. We also measured carbon and water fluxes with the eddy covariance method and derived daytime gross primary production (GPP). The diurnal patterns of sap flux and canopy transpiration were mainly controlled by vapor pressure deficit (D) and photosynthetically active radiation (PAR). Daily sums of sap flux and canopy transpiration had exponential relationships to D that saturated at higher D and had linear relationships to PAR. Sugar maple (Acer saccharum) and yellow birch (Betula alleghaniesis) had higher sap flux per unit of sapwood area than eastern hemlock (Tsuga canadensis), while sugar maple and hemlock had higher canopy transpiration per unit of leaf area than yellow birch. Sugar maple dominated canopy transpiration per ground area. Canopy transpiration averaged 1.57 mm d-1, accounting for 65% of total evapotranspiration in the growing season. Canopy conductance was controlled by both D and PAR, but the day-to-day variation in canopy conductance mainly followed a negatively logarithmic relationship with D. By removing the influences of PAR, half-hourly canopy conductance was also negatively logarithmically correlated with D. Water use efficiency (WUE) had a strong exponential relationship with D on a daily basis and approached a minimum of 4.4 mg g-1. WUE provides an alternative to estimate GPP from measurements of sap flux.

  6. Nighttime in dreams.

    PubMed

    Schredl, Michael; Knoth, Inga Sophia

    2012-04-01

    Based on the continuity hypothesis of dreaming, a study was designed to examine whether time of day within the dream was related to dream emotions. A sample of 1,612 dreams reported by 444 participants was analyzed. As predicted, dream scenarios set at nighttime were associated with less positive and more negative emotions compared to dream scenarios set at other times of the day. In order to pursue this line of research, it would be fruitful to study the dreams of persons with specific nighttime fears.

  7. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.

    PubMed

    Ward, Eric J; Oren, Ram; Bell, David M; Clark, James S; McCarthy, Heather R; Kim, Hyun-Seok; Domec, Jean-Christophe

    2013-02-01

    In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.

  8. Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis.

    PubMed

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2015-01-01

    Stomata regulate rates of carbon assimilation and water loss. Arbuscular mycorrhizal (AM) symbioses often modify stomatal behavior and therefore play pivotal roles in plant productivity. The size of the AM effect on stomatal conductance to water vapor (g s ) has varied widely, has not always been apparent, and is unpredictable. We conducted a meta-analysis of 460 studies to determine the size of the AM effect under ample watering and drought and to examine how experimental conditions have influenced the AM effect. Across all host and symbiont combinations under all soil moisture conditions, AM plants have shown 24 % higher g s than nonmycorrhizal (NM) controls. The promotion of g s has been over twice as great during moderate drought than under amply watered conditions. The AM influence on g s has been even more pronounced under severe drought, with over four times the promotion observed with ample water. Members of the Claroideoglomeraceae, Glomeraceae, and other AM families stimulated g s by about the same average amount. Colonization by native AM fungi has produced the largest promotion. Among single-AM symbionts, Glomus deserticola, Claroideoglomus etunicatum, and Funneliformis mosseae have had the largest average effects on g s across studies. Dicotyledonous hosts, especially legumes, have been slightly more responsive to AM symbiosis than monocotyledonous hosts, and C3 plants have shown over twice the AM-induced promotion of C4 plants. The extent of root colonization is important, with heavily colonized plants showing ×10 the g s promotion of lightly colonized plants. AM promotion of g s has been larger in growth chambers and in the field than in greenhouse studies, almost ×3 as large when plants were grown under high light than low light, and ×2.5 as large in purely mineral soils than in soils having an organic component. When AM plants have been compared with NM controls given NM pot culture, they have shown only half the promotion of g s as NM plants

  9. Using combined measurements for comparison of light induction of stomatal conductance, electron transport rate and CO2 fixation in woody and fern species adapted to different light regimes.

    PubMed

    Wong, Shau-Lian; Chen, Chung-Wei; Huang, Hsien-Wen; Weng, Jen-Hsien

    2012-05-01

    We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation

  10. Protection of ash (Fraxinus excelsior) trees from ozone injury by ethylenediurea (EDU): roles of biochemical changes and decreased stomatal conductance in enhancement of growth.

    PubMed

    Paoletti, Elena; Contran, Nicla; Manning, William J; Castagna, Antonella; Ranieri, Annamaria; Tagliaferro, Francesco

    2008-10-01

    Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450 ppm by gravitational trunk infusion in May-September 2005 (32.5 ppm h AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O(3) effects on leaf growth and visible injury is controversial.

  11. A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering.

    PubMed

    Pou, Alicia; Medrano, Hipolito; Flexas, Jaume; Tyerman, Stephen D

    2013-04-01

    We examined the role of aquaporins (AQPs) in regulating leaf hydraulic conductance (Kleaf ) in Vitis vinifera L. (cv Chardonnay) by studying effects of AQP inhibitors, and AQP gene expression during water stress (WS) and recovery (REC). Kleaf was measured after 3 h of petiole perfusion with different solutions and to introduce inhibitors. The addition of 0.1 mm HgCl2 to 15 mm KCl reduced Kleaf compared with perfusion in 15 mM KNO3 or KCl, and these solutions were used for leaves from control, WS and REC plants. Perfusion for 3 h did not significantly alter stomatal conductance (gs ) though expression of VvTIP1;1 was increased. WS decreased Kleaf by about 30% and was correlated with gs . The expression of VvTIP2;1 and VvPIP2;1 correlated with Kleaf , and VvTIP2;1 was highly correlated with gs . There was no association between the expression of particular AQPs during WS and REC and inhibition of Kleaf by HgCl2 ; however, HgCl2 treatment itself increased expression of VvPIP2;3 and decreased expression of VvPIP2;1. Inhibition by HgCl2 of Kleaf only at early stages of WS and then after REC suggested that apoplasmic pathways become more important during WS. This was confirmed using fluorescent dyes confined to apoplasm or preferentially accumulated in symplasm.

  12. Characteristics of photosynthesis and stomatal conductance in the shrubland species manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides) for the estimation of annual canopy carbon uptake.

    PubMed

    Whitehead, David; Walcroft, Adrian S; Scott, Neal A; Townsend, Jacqueline A; Trotter, Craig M; Rogers, Graeme N D

    2004-07-01

    Responses of photosynthesis to carbon dioxide (CO2) partial pressure and irradiance were measured on leaves of 39-year-old trees of manuka (Leptospermum scoparium J. R. Forst. & G. Forst.) and kanuka (Kunzea ericoides var. ericoides (A. Rich.) J. Thompson) at a field site, and on leaves of young trees grown at three nitrogen supply rates in a nursery, to determine values for parameters in a model to estimate annual net carbon uptake. These secondary successional species belong to the same family and commonly co-occur. Mean (+/- standard error) values of the maximum rate of carboxylation (hemi-surface area basis) (Vcmax) and the maximum rate of electron transport (Jmax) at the field site were 47.3 +/- 1.9 micromol m(-2) s(-1) and 94.2 +/- 3.7 micromol m(-2) s(-1), respectively, with no significant differences between species. Both Vcmax and Jmax were positively related to leaf nitrogen concentration on a unit leaf area basis, and the slopes of these relationships did not differ significantly between species or between the trees in the field and young trees grown in the nursery. Mean values of Jmax/Vcmax measured at 20 degrees C were significantly lower (P < 0.01) for trees in the field (2.00 +/- 0.05) than for young trees in the nursery with similar leaf nitrogen concentrations (2.32 +/- 0.08). Stomatal conductance decreased sharply with increasing air saturation deficit, but the sensitivity of the response did not differ between species. These data were used to derive parameters for a coupled photosynthesis-stomatal conductance model to scale estimates of photosynthesis from leaves to the canopy, incorporating leaf respiration at night, site energy and water balances, to estimate net canopy carbon uptake. Over the course of a year, 76% of incident irradiance (400-700 nm) was absorbed by the canopy, annual net photosynthesis per unit ground area was 164.5 mol m(-2) (equivalent to 1.97 kg C m(-2)) and respiration loss from leaves at night was 37.5 mol m(-2

  13. Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying.

    PubMed

    Sobeih, Wagdy Y; Dodd, Ian C; Bacon, Mark A; Grierson, Donald; Davies, William J

    2004-11-01

    Tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) plants were grown with roots split between two soil columns. After plant establishment, water was applied daily to one (partial root-zone drying-PRD) or both (well-watered control-WW) columns. Water was withheld from the other column in the PRD treatment, to expose some roots to drying soil. Soil and plant water status were monitored daily and throughout diurnal courses. Over 8 d, there were no treatment differences in leaf water potential (psileaf) even though soil moisture content of the upper 6 cm (theta) of the dry column in the PRD treatment decreased by up to 70%. Stomatal conductance (gs) of PRD plants decreased (relative to WW plants) when of the dry column decreased by 45%. Such closure coincided with increased xylem sap pH and did not require increased xylem sap abscisic acid (ABA) concentration ([X-ABA]). Detached leaflet ethylene evolution of PRD plants increased when of the dry column decreased by 55%, concurrent with decreased leaf elongation. The physiological significance of enhanced ethylene evolution of PRD plants was examined using a transgenic tomato (ACO1AS) with low stress-induced ethylene production. In response to PRD, ACO1AS and wild-type plants showed similar xylem sap pH, [X-ABA] and gs, but ACO1AS plants showed neither enhanced ethylene evolution nor significant reductions in leaf elongation. Combined use of genetic technologies to reduce ethylene production and agronomic technologies to sustain water status (such as PRD) may sustain plant growth under conditions where yield would otherwise be significantly reduced.

  14. Instantaneous-to-daily GPP upscaling schemes based on a coupled photosynthesis-stomatal conductance model: correcting the overestimation of GPP by directly using daily average meteorological inputs.

    PubMed

    Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin

    2014-11-01

    Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.

  15. A photosynthesis-based two-leaf canopy stomatal conductance model for meteorology and air quality modeling with WRF/CMAQ PX LSM

    NASA Astrophysics Data System (ADS)

    Ran, Limei; Pleim, Jonathan; Song, Conghe; Band, Larry; Walker, John T.; Binkowski, Francis S.

    2017-02-01

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system - WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH are simulated especially well by the PX PSN compared to significant overestimation by the PX Jarvis for a grassland site.

  16. Recurrent aphthous stomatitis.

    PubMed

    Chattopadhyay, Amit; Shetty, Kishore V

    2011-02-01

    Recurrent aphthous stomatitis is a common oral ulcerative disease, affecting 10% to 15% of the general US population. This article reviews the epidemiology and clinical presentations of recurrent aphthous stomatitis, including diagnosis and management.

  17. VLF nighttime data analysis

    NASA Astrophysics Data System (ADS)

    1991-03-01

    This paper documents a very low frequency/low frequency (VLF/LF) Data Analysis task by the Naval Ocean Systems Center to improve the modeling of the nighttime ionosphere when making propagation predictions with the Long Wave Propagation Capability (LWPC) computer program. The task utilizes an extensive database of VLF measured data recorded during the 1985 to 1986 trips of the merchant ship GTS Callaghan in the North Atlantic area. By constraining the Callaghan data to those periods when both the ship and the distant transmitters were in time zones consistent with all-nighttime propagation, and by eliminating data from trips outside the principal area of interest, an aggregated set of recorded data was assembled for each frequency of concern. Four frequencies were examined: 16.0, 19.0, 21.4 and 24.0 kHz. Recorded data sets were graphed as signal vs. distance plots, computing distance from the transmitter for each ship's location. The LWPC program was then utilized to compute signal vs. distance along a typical path in the same ocean area, and the predicted and recorded data were compared. By changing the LWPC parameters different propagation predictions were compared with the recorded data until a best fit was obtained.

  18. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO(2) (free-air CO(2) enrichment) and N-fertilization.

    PubMed

    Domec, Jean-Christophe; Palmroth, Sari; Ward, Eric; Maier, Chris A; Thérézien, M; Oren, Ram

    2009-11-01

    We investigated how leaf hydraulic conductance (K(leaf)) of loblolly pine trees is influenced by soil nitrogen amendment (N) in stands subjected to ambient or elevated CO(2) concentrations (CO(2)(a) and CO(2)(e), respectively). We also examined how K(leaf) varies with changes in reference leaf water potential (Psi(leaf-ref)) and stomatal conductance (g(s-ref)) calculated at vapour pressure deficit, D of 1 kPa. We detected significant reductions in K(leaf) caused by N and CO(2)(e), but neither treatment affected pre-dawn or midday Psi(leaf). We also detected a significant CO(2)(e)-induced reduction in g(s-ref) and Psi(leaf-ref). Among treatments, the sensitivity of K(leaf) to Psi(leaf) was directly related to a reference K(leaf) (K(leaf-ref) computed at Psi(leaf-ref)). This liquid-phase response was reflected in a similar gas-phase response, with g(s) sensitivity to D proportional to g(s-ref). Because leaves represented a substantial component of the whole-tree conductance, reduction in K(leaf) under CO(2)(e) affected whole-tree water use by inducing a decline in g(s-ref). The consequences of the acclimation of leaves to the treatments were: (1) trees growing under CO(2)(e) controlled morning leaf water status less than CO(2)(a) trees resulting in a higher diurnal loss of K(leaf); (2) the effect of CO(2)(e) on g(s-ref) was manifested only during times of high soil moisture.

  19. The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.

    PubMed

    Negin, Boaz; Moshelion, Menachem

    2016-10-01

    Abscisic acid is found in a wide variety of organisms. In the plant kingdom, ABA's role in mediating responses to abiotic stress has been conserved and enhanced throughout evolution. The emergence of plants to terrestrial environments required the development of mechanisms to cope with ongoing and severe abiotic stress such as drought and rapid changes in humidity and temperature. The common understanding is that terrestrial plants evolved strategies ranging from desiccation-tolerance mechanisms (mosses) to drought tolerance (CAM plants), to better exploit different ecological niches. In between these divergent water regulation strategies, ABA plays a significant role in managing plants' adaptation to new environments by optimizing water-use efficiency (WUE) under particular environmental conditions. ABA plays some very different roles in the regulation of WUE. ABA's role in the regulation of guard cells and transpiration has yielded a wide variety of WUE-regulation mechanisms, ranging from no sensitivity (ferns) to low sensitivity (anisohydric behavior) to hypersensitivity to ABA (isohydric behavior and putatively CAM plants). ABA also plays a role in the regulation of non-stomatal, biochemical mechanisms of WUE regulation. In angiosperms, this includes the control of osmotic adjustment and morphological changes, including changes in leaf size, stomatal density, stomatal size and root development. Under severe stress, ABA also appears to initiate leaf senescence via transcriptional regulation, to directly inhibit photosynthesis.

  20. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees

    NASA Astrophysics Data System (ADS)

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux ( J s,n) or transpiration ( E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux ( J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47 %, while J s,n decreased by 12.03 % in covered trees as compared to that of control, and the difference was statistically significant ( P < 0.01). The linear quantile regression model showed that J s,n decreased for a given daytime transpiration water loss, indicating that J s,n was suppressed by lower stem photosynthesis in covered trees. Predawn ( ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance ( g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ13C between the two groups, while leaf nitrogen content and δ15N were significantly higher in covered trees than that of the control ( P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  1. Suppression of nighttime sap flux with lower stem photosynthesis in Eucalyptus trees.

    PubMed

    Gao, Jianguo; Zhou, Juan; Sun, Zhenwei; Niu, Junfeng; Zhou, Cuiming; Gu, Daxing; Huang, Yuqing; Zhao, Ping

    2016-04-01

    It is widely accepted that substantial nighttime sap flux (J s,n) or transpiration (E) occurs in most plants, but the physiological implications are poorly known. It has been hypothesized that J s,n or E serves to enhance nitrogen uptake or deliver oxygen; however, no clear evidence is currently available. In this study, sap flux (J s) in Eucalyptus grandis × urophylla with apparent stem photosynthesis was measured, including control trees which were covered by aluminum foil (approximately 1/3 of tree height) to block stem photosynthesis. We hypothesized that the nighttime water flux would be suppressed in trees with lower stem photosynthesis. The results showed that the green tissue degraded after 3 months, demonstrating a decrease in stem photosynthesis. The daytime J s decreased by 21.47%, while J s,n decreased by 12.03% in covered trees as compared to that of control, and the difference was statistically significant (P < 0.01). The linear quantile regression model showed that J s,n decreased for a given daytime transpiration water loss, indicating that J s,n was suppressed by lower stem photosynthesis in covered trees. Predawn (ψ pd) of covered trees was marginally higher than that of control while lower at predawn stomatal conductance (g s), indicating a suppressed water flux in covered trees. There was no difference in leaf carbon content and δ(13)C between the two groups, while leaf nitrogen content and δ(15)N were significantly higher in covered trees than that of the control (P < 0.05), indicating that J s,n was not used for nitrogen uptake. These results suggest that J s,n may act as an oxygen pathway since green tissue has a higher respiration or oxygen demand than non-green tissue. Thus, this study demonstrated the physiological implications of J s,n and the possible benefits of nighttime water use or E by the tree.

  2. Nighttime Temperatures on Ganymede

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This infrared image of Jupiter's moon Ganymede, showing heat radiation from its surface at a wavelength of about 60 microns (millionths of a meter), provides the best view yet of nighttime temperatures on this hemisphere of Ganymede. Temperatures, derived from the brightness of the infrared radiation, can be determined from the colors by reference to the scale at the bottom of the image.

    The image, taken by NASA's Galileo spacecraft, shows most of Ganymede's nighttime hemisphere, centered on longitude 180 degrees, with north at the top. Irregular, diagonal dark stripes result from missing data, and are not real. Part of Ganymede's illuminated crescent, warmed by the late afternoon sun and appearing pink in this representation (indicating temperatures near 110 Kelvin (-260 F), is visible in the lower left, but most of the part of Ganymede that is seen here is in darkness, glowing only because it retains some heat from the previous day. Jupiter appears in the background behind Ganymede in the upper right part of the image. Although it is nighttime on this part of Jupiter, the planet remains much warmer at night than Ganymede does, with temperatures near 140 Kelvin (- 207 F), because Jupiter's atmosphere is too dense to cool down significantly during the night, and is also warmed by heat that flows up from Jupiter's interior. The coldest parts of Ganymede that are visible (appearing dark blue) are near the north and south poles, and have temperatures below 80 Kelvin (-315 F), while parts of the equator remain at temperatures up to 100 K (-279 F) through the night, and appear in bright blue and purple colors. This same side of Ganymede was seen in full sunlight on Galileo's first orbit around Jupiter, and similar measurements showed that noontime temperatures at the equator reached 150 K (-190 F), which is 90 degrees (Fahrenheit) warmer than the night-time temperatures seen here.

    The image was taken with Galileo's PPR (Photopolarimeter-Radiometer) instrument on

  3. A New mouthwash for Chemotherapy Induced Stomatitis

    PubMed Central

    Miranzadeh, Sedigheh; Adib-Hajbaghery, Mohsen; Soleymanpoor, Leyla; Ehsani, Majid

    2014-01-01

    Background: Stomatitis is a disturbing side-effect of chemotherapy that disturbs patients and causes difficulties in patient’s drinking, eating and talking, and may results in infection and bleeding. Objectives: This study aimed to investigate the effect of Yarrow distillate in the treatment of chemotherapy-induced stomatitis. Patients and Methods: This randomized controlled trial study was conducted during 2013. The study population consisted of all cancer patients with chemotherapy-induced oral stomatitis referred to Shahid Beheshti Medical Center, Kashan, Iran. The data collection instrument had two-part; a demographic part and another part recording the severity of the stomatitis at the first, seventh, and 14th days of the intervention based on a WHO criteria checklist in 2005. In this study, 56 patients diagnosed with cancer were randomly assigned into control and experimental groups in similar blocks according to their stomatitis severity. The experimental group gargled 15 mL of a routine solution mixed with Yarrow distillate 4 times a day for 14 days while the control group gargled 15 mL of routine solution. The severity of stomatitis was assessed at the beginning of the intervention, and then after 7 and 14 days of the study. Data were analyzed using chi-square and Fisher exact test, Mann-Whitney U, Kruskal-Wallis, and Friedman tests using SPSS 11.5 software. Results: At first, the median score of stomatitis in the experimental group was 2.50 that significantly reduced to 1 and 0 in days 7 and 14 of the intervention, respectively (P value < 0.001). However, in the control group, the median score of stomatitis was 2.50, which significantly increased to 3 in days 7 and 14 (P value < 0.001). Conclusions: Yarrow distillate-contained solution reduced stomatitis severity more than the routine solution. Therefore, we suggest using it in patients with chemotherapy-induced stomatitis. PMID:25699281

  4. Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon

    PubMed Central

    McNellis, Brandon; Howard, Ava R

    2015-01-01

    Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use. PMID:26380686

  5. Phylogenetic and ecological patterns in nighttime transpiration among five members of the genus Rubus co-occurring in western Oregon.

    PubMed

    McNellis, Brandon; Howard, Ava R

    2015-09-01

    Nighttime transpiration is a substantial portion of ecosystem water budgets, but few studies compare water use of closely related co-occurring species in a phylogenetic context. Nighttime transpiration can range up to 69% of daytime rates and vary between species, ecosystem, and functional type. We examined leaf-level daytime and nighttime gas exchange of five species of the genus Rubus co-occurring in the Pacific Northwest of western North America in a greenhouse common garden. Contrary to expectations, nighttime transpiration was not correlated to daytime water use. Nighttime transpiration showed pronounced phylogenetic signals, but the proportion of variation explained by different phylogenetic groupings varied across datasets. Leaf osmotic water potential, water potential at turgor loss point, stomatal size, and specific leaf area were correlated with phylogeny but did not readily explain variation in nighttime transpiration. Patterns in interspecific variation as well as a disconnect between rates of daytime and nighttime transpiration suggest that variation in nighttime water use may be at least partly driven by genetic factors independent of those that control daytime water use. Future work with co-occurring congeneric systems is needed to establish the generality of these results and may help determine the mechanism driving interspecific variation in nighttime water use.

  6. Role of hysteresis in stomatal aperture dynamics

    NASA Astrophysics Data System (ADS)

    Ramos, Antônio M. T.; Prado, Carmen P. C.

    2013-01-01

    Stomata are pores responsible for gas exchange in leaves. Several experiments indicate that stomata synchronize into clusters or patches. The patches’ coordination may produce oscillations in stomatal conductance. Previous studies claim to reproduce some experimental results. However, none was able to explain the variety of behavior observed in the stomatal dynamics. Recently, Ferraz and Prado suggested a realistic geometry of vein distribution. Although it reproduces the patches, no oscillation was observed and the patches remain static. Without exploring significant details, the authors stated that hysteresis in stomatal aperture could explain several experimental features. In this paper, the hysteresis hypothesis is further explored through the concept of hysteretic operators. We have shown that the hysteresis assumption is sufficient to obtain dynamical patches and oscillations in stomatal conductance. The robustness of this hypothesis is tested by using different hysteresis operators. The model analysis reveals a dependence between the period of oscillation in stomatal conductance and the water deficit between the leaf and the environment. This underlying feature of the model might inspire further experiments to test this hypothesis.

  7. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conductance during water-stress in C3 plants.

    PubMed

    Flexas, Jaume; Escalona, José Mariano; Evain, Sebastian; Gulías, Javier; Moya, Ismaël; Osmond, Charles Barry; Medrano, Hipólito

    2002-02-01

    Water stress experiments were performed with grapevines (Vitis vinifera L.) and other C3 plants in the field, in potted plants in the laboratory, and with detached leaves. It was found that, in all cases, the ratio of steady state chlorophyll fluorescence (Fs) normalized to dark-adapted intrinsic fluorescence (Fo) inversely correlated with non-photochemical quenching (NPQ). Also, at high irradiance, the ratio Fs/Fo was positively correlated with CO2 assimilation in air, with electron transport rate calculated from fluorescence, and with stomatal conductance, but no clear correlation was observed with qP. The significance of these relationships is discussed. The ratio Fs/Fo, measured with a portable instrument (PAM-2000) or with a remote sensing FIPAM system, provides a good method for the early detection of water stress, and may become a useful guide to irrigation requirements.

  8. Determinants of water circulation in a woody bamboo species: afternoon use and night-time recharge of culm water storage.

    PubMed

    Yang, Shi-Jian; Zhang, Yong-Jiang; Goldstein, Guillermo; Sun, Mei; Ma, Ren-Yi; Cao, Kun-Fang

    2015-09-01

    To understand water-use strategies of woody bamboo species, sap flux density (Fd) in the culms of a woody bamboo (Bambusa vulgaris Schrader ex Wendland) was monitored using the thermal dissipation method. The daytime and night-time Fd were analyzed in the dry and rainy seasons. Additionally, diurnal changes in root pressure, culm circumference, and stomatal conductance (gs) were investigated to characterize the mechanisms used to maintain diurnal water balance of woody bamboos. Both in the dry and rainy seasons, daytime Fd responded to vapor pressure deficit (VPD) in an exponential fashion, with a fast initial increase in Fd when VPD increased from 0 to 1 kPa. The Fd and gs started to increase very fast as light intensity and VPD increased in the morning, but they decreased sharply once the maximum value was achieved. The Fd response of this woody bamboo to VPD was much faster than that of representative trees and palms growing in the same study site, suggesting its fast sap flow and stomatal responses to changes in ambient environmental factors. The Fd in the lower and higher culm positions started to increase at the same time in the morning, but the Fd in the higher culm position was higher than that of the lower culm in the afternoon. Consistently, distinct decreases in its culm circumference in the afternoon were detected. Therefore, unlike trees, water storage of bamboo culms was not used for its transpiration in the morning but in the afternoon. Nocturnal sap flow of this woody bamboo was also detected and related to root pressure. We conclude that this bamboo has fast sap flow/stomatal responses to irradiance and evaporative demands, and it uses substantial water storage for transpiration in the afternoon, while root pressure appears to be a mechanism resulting in culm water storage recharge during the night.

  9. Nighttime Intensivist Staffing and Mortality among Critically Ill Patients

    PubMed Central

    Wallace, David J.; Angus, Derek C.; Barnato, Amber E.; Kramer, Andrew A.; Kahn, Jeremy M.

    2014-01-01

    BACKGROUND Hospitals are increasingly adopting 24-hour intensivist physician staffing as a strategy to improve intensive care unit (ICU) outcomes. However, the degree to which nighttime intensivists are associated with improvements in the quality of ICU care is unknown. METHODS We conducted a retrospective cohort study involving ICUs that participated in the Acute Physiology and Chronic Health Evaluation (APACHE) clinical information system from 2009 through 2010, linking a survey of ICU staffing practices with patient-level outcomes data from adult ICU admissions. Multivariate models were used to assess the relationship between nighttime intensivist staffing and in-hospital mortality among ICU patients, with adjustment for daytime intensivist staffing, severity of illness, and case mix. We conducted a confirmatory analysis in a second, population-based cohort of hospitals in Pennsylvania from which less detailed data were available. RESULTS The analysis with the use of the APACHE database included 65,752 patients admitted to 49 ICUs in 25 hospitals. In ICUs with low-intensity daytime staffing, nighttime intensivist staffing was associated with a reduction in risk-adjusted in-hospital mortality (adjusted odds ratio for death, 0.62; P = 0.04). Among ICUs with high-intensity daytime staffing, nighttime intensivist staffing conferred no benefit with respect to risk-adjusted in-hospital mortality (odds ratio, 1.08; P = 0.78). In the verification cohort, there was a similar relationship among daytime staffing, nighttime staffing, and in-hospital mortality. The interaction between nighttime staffing and daytime staffing was not significant (P = 0.18), yet the direction of the findings were similar to those in the APACHE cohort. CONCLUSIONS The addition of nighttime intensivist staffing to a low-intensity daytime staffing model was associated with reduced mortality. However, a reduction in mortality was not seen in ICUs with high-intensity daytime staffing. (Funded by the

  10. Nighttime atmospheric chemistry of iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Plane, John M. C.; Cuevas, Carlos A.; Mahajan, Anoop S.; Lamarque, Jean-François; Kinnison, Douglas E.

    2016-12-01

    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I2 during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO3+ HOI → IO + HNO3 is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300 K and at a pressure of 1000 hPa to be k(T) = 2.7 × 10-12 (300 K/T)2.66 cm3 molecule-1 s-1. This reaction is included in two atmospheric models, along with the known reaction between I2 and NO3, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I2, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI + I2 and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO3 radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.

  11. Drought induces alterations in the stomatal development program in Populus.

    PubMed

    Hamanishi, Erin T; Thomas, Barb R; Campbell, Malcolm M

    2012-08-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.

  12. Mechanisms of stomatal development.

    PubMed

    Pillitteri, Lynn Jo; Torii, Keiko U

    2012-01-01

    The main route for CO(2) and water vapor exchange between a plant and the environment is through small pores called stomata. The accessibility of stomata and predictable division series that characterize their development provides an excellent system to address fundamental questions in biology. Stomatal cell-state transition and specification are regulated by a suite of transcription factors controlled by positional signaling via peptide ligands and transmembrane receptors. Downstream effectors include several members of the core cell-cycle genes. Environmentally induced signals are integrated into this essential developmental program to modulate stomatal development or function in response to changes in the abiotic environment. In addition, the recent identification of premitotic polarly localized proteins from both Arabidopsis and maize has laid a foundation for the future understanding of intrinsic cell polarity in plants. This review highlights the mechanisms of stomatal development through characterization of genes controlling cell-fate specification, cell polarity, cell division, and cell-cell communication during stomatal development and discusses the genetic framework linking these molecular processes with the correct spacing, density, and differentiation of stomata.

  13. The Effect of Exogenous Abscisic Acid on Stomatal Development, Stomatal Mechanics, and Leaf Gas Exchange in Tradescantia virginiana

    PubMed Central

    Franks, Peter J.; Farquhar, Graham D.

    2001-01-01

    Gas exchange parameters and stomatal physical properties were measured in Tradescantia virginiana plants grown under well-watered conditions and treated daily with either distilled water (control) or 3.0 mm abscisic acid (ABA). Photosynthetic capacity (CO2 assimilation rate for any given leaf intercellular CO2 concentration [ci]) and relative stomatal sensitivity to leaf-to-air vapor-pressure difference were unaffected by the ABA treatment. However, at an ambient CO2 concentration (ca) of 350 μmol mol−1, ABA-treated plants operated with significantly lower ci. ABA-treated plants had significantly smaller stomata and higher stomatal density in their lower epidermis. Stomatal aperture versus guard cell pressure (Pg) characteristics measured with a cell pressure probe showed that although the form of the relationship was similar in control and ABA-treated plants, stomata of ABA-treated plants exhibited more complete closure at Pg = 0 MPa and less than half the aperture of stomata in control plants at any given Pg. Scaling from stomatal aperture versus Pg to stomatal conductance versus Pg showed that plants grown under ABA treatment would have had significantly lower maximum stomatal conductance and would have operated with lower stomatal conductance for any given guard cell turgor. This is consistent with the observation of lower ci/ca in ABA-treated plants with a ca of 350 μmol mol−1. It is proposed that the ABA-induced changes in stomatal mechanics and stomatal conductance versus Pg characteristics constitute an improvement in water-use efficiency that may be invoked under prolonged drought conditions. PMID:11161050

  14. [Response of stomatal characteristics and its plasticity to different light intensities in leaves of seven tropical woody seedlings].

    PubMed

    Cai, Zhiquan; Qi, Xin; Cao, Kunfang

    2004-02-01

    Stomatal characteristics and its plasticity in leaves of four canopy species, Shorea chinensis, Pometia tomentosa, Anthocephalus chinensis, Calophyllun polyanthum and three middle-layer species, Barringtonia pendula, Garcinia hanburyi, Horsfieldia tetratepala acclimated to different light conditions (8%, 25%, 50% and 100% of full sunlight) for more than one year were surveyed. All plant's stomata were distributed on the abaxial of leaves. Pometia tomentosa and Barringtonia pendula had higher stomatal density, and the guard cell length of Anthocephalus chinensis and Calophyllun polyanthum were much greater than others'. Stomatal density and stomatal index (ratio of stomatal numbers to epidermal cell number) were increased with growth irradiance increased, while numbers of stomata per leaf were higher in the low than the high relative PFD, and stomatal conductance of leaves was the highest in the 50% of sunlight except for Anthocephalus chinensis. The relative PFD had little effects on the guard cell length of all seven plants. There was a significant negative correlation between stomatal density and leaf area, but the stomatal conductance was not significantly positive with the stomatal conductance in some degree. The analysis of phenotypic plasticity of stomatal characteristics showed that plasticity index for stomatal index and numbers of stomatal per leaf were similar for canopy and middle-layer species, while the plasticity index of stomatal density and stomatal conductance were significantly greater for canopy species than middle-layer species. The high plasticity of canopy species was consistent with the hypothesis that specialization in a more favorable environment increases plasticity.

  15. Effects of atmospheric VPD, plant canopies, and low-water years on leaf stomatal conductance and photosynthetic water use efficiency in fifteen potential crop species for use in arid environments

    NASA Astrophysics Data System (ADS)

    Lue, A.; Jasoni, R. L.; Arnone, J.

    2011-12-01

    When evaluating the potential for growing alternative crop species in arid environments, high vapor pressure deficits (VPDs) that could potentially inhibit crop productivity by limiting stomatal conductance and CO2 uptake must be considered. The objective of this study was to quantify the effects of VPD and irrigation levels on leaf stomatal conductance (gs) and photosynthetic water use efficiency (PWUE) for a range of alternative crop species for aridland agriculture. We evaluated fifteen alternative crops in a field trial in the northern Nevada Walker River Basin. Plots of each species were subjected to two irrigation treatments, 4 and 2 acre-feet per growing season, to simulate normal-year and dry-year irrigation levels. We quantified gs and photosynthesis (A) under decreasing relative humidity (RH) (increasing VPDs) in 10% increments, from about 75% to 2%. About seventeen leaves per species were measured throughout the 2010 growing season over eleven days of samplings. Canopy air temperature and RH were logged in experimental plots to calculate diel and seasonal patterns in canopy VPD. Volumetric water content was also collected to quantify the effects of irrigation treatments on soil moisture and leaf gas exchange. Species varied in their gs and PWUE responses to increasing VPD. Stomatal conductance (gs) of leaves of all species generally increased initially as RH was lowered but then decreased at differing rates as RH dropped further. Average gs (across all measurement VPDs), maximum gs, maximum PWUE, and corresponding VPDs differed among species and between irrigation treatments. Some species (Medicago sativa, Leymus racemosus) showed higher gs across the range of measurement VPDs than other species (Bothrichloa ischaemum, Sorghastrum nutans), while some species exhibited maximum gs and maximum PWUE at higher VPDs (Erograstis tef, Calamovilfa longifolia) than other species (Leymus cinereus, Sorghastrum nutans). These results suggest that some species may

  16. Recurrent Aphthous Stomatitis: A Review

    PubMed Central

    Saleh, Dahlia; Miller, Richard A.

    2017-01-01

    Aphthous stomatitis is a painful and often recurrent inflammatory process of the oral mucosa that can appear secondary to various well-defined disease processes. Idiopathic recurrent aphthous stomatitis is referred to as recurrent aphthous stomatitis. The differential diagnosis for recurrent aphthous ulcerations is extensive and ranges from idiopathic benign causes to inherited fever syndromes, to connective tissue disease, or even inflammatory bowel diseases. A thorough history and review of systems can assist the clinician in determining whether it is related to a systemic inflammatory process or truly idiopathic. Management of aphthous stomatitis is challenging. For recurrent aphthous stomatitis or recalcitrant aphthous stomatitis from underlying disease, first-line treatment consists of topical medications with use of systemic medications as necessary. Herein, the authors discuss the differential diagnosis and treatment ladder of aphthous stomatitis as described in the literature. PMID:28360966

  17. Recurrent Aphthous Stomatitis: A Review.

    PubMed

    Edgar, Natalie Rose; Saleh, Dahlia; Miller, Richard A

    2017-03-01

    Aphthous stomatitis is a painful and often recurrent inflammatory process of the oral mucosa that can appear secondary to various well-defined disease processes. Idiopathic recurrent aphthous stomatitis is referred to as recurrent aphthous stomatitis. The differential diagnosis for recurrent aphthous ulcerations is extensive and ranges from idiopathic benign causes to inherited fever syndromes, to connective tissue disease, or even inflammatory bowel diseases. A thorough history and review of systems can assist the clinician in determining whether it is related to a systemic inflammatory process or truly idiopathic. Management of aphthous stomatitis is challenging. For recurrent aphthous stomatitis or recalcitrant aphthous stomatitis from underlying disease, first-line treatment consists of topical medications with use of systemic medications as necessary. Herein, the authors discuss the differential diagnosis and treatment ladder of aphthous stomatitis as described in the literature.

  18. Urban legends: recurrent aphthous stomatitis.

    PubMed

    Baccaglini, L; Lalla, R V; Bruce, A J; Sartori-Valinotti, J C; Latortue, M C; Carrozzo, M; Rogers, R S

    2011-11-01

    Recurrent aphthous stomatitis (RAS) is the most common idiopathic intraoral ulcerative disease in the USA. Aphthae typically occur in apparently healthy individuals, although an association with certain systemic diseases has been reported. Despite the unclear etiopathogenesis, new drug trials are continuously conducted in an attempt to reduce pain and dysfunction. We investigated four controversial topics: (1) Is complex aphthosis a mild form of Behçet's disease (BD)? (2) Is periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome a distinct medical entity? (3) Is RAS associated with other systemic diseases [e.g., celiac disease (CD) and B12 deficiency]? (4) Are there any new RAS treatments? Results from extensive literature searches, including a systematic review of RAS trials, suggested the following: (1) Complex aphthosis is not a mild form of BD in North America or Western Europe; (2) Diagnostic criteria for PFAPA have low specificity and the characteristics of the oral ulcers warrant further studies; (3) Oral ulcers may be associated with CD; however, these ulcers may not be RAS; RAS is rarely associated with B12 deficiency; nevertheless, B12 treatment may be beneficial, via mechanisms that warrant further study; (4) Thirty-three controlled trials published in the past 6 years reported some effectiveness, although potential for bias was high.

  19. A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation.

    PubMed

    Ocheltree, Troy W; Nippert, Jesse B; Prasad, P V Vara

    2016-04-01

    A common theme in plant physiological research is the trade-off between stress tolerance and growth; an example of this trade-off at the tissue level is the safety vs efficiency hypothesis, which suggests that plants with the greatest resistance to hydraulic failure should have low maximum hydraulic conductance. Here, we quantified the leaf-level drought tolerance of nine C4 grasses as the leaf water potential at which plants lost 50% (P50 × RR ) of maximum leaf hydraulic conductance (Ksat ), and compared this trait with other leaf-level and whole-plant functions. We found a clear trade-off between Ksat and P50 × RR when Ksat was normalized by leaf area and mass (P = 0.05 and 0.01, respectively). However, no trade-off existed between P50 × RR and gas-exchange rates; rather, there was a positive relationship between P50 × RR and photosynthesis (P = 0.08). P50 × RR was not correlated with species distributions based on precipitation (P = 0.70), but was correlated with temperature during the wettest quarter of the year (P < 0.01). These results suggest a trade-off between safety and efficiency in the hydraulic system of grass leaves, which can be decoupled from other leaf-level functions. The unique physiology of C4 plants and adaptations to pulse-driven systems may provide mechanisms that could decouple hydraulic conductance from other plant functions.

  20. Stomatal control of transpiration.

    PubMed

    Meinzer, F C

    1993-08-01

    The role of stomata in regulating transpiration from vegetation has historically been controversial among those working either at the single leaf, or at the extensive canopy scales. Recently, the role of unstirred air layers surrounding leaves and canopies in limiting the impact of stomatal movements on transpiration has received renewed recognition. This has led to notable progress in quantitatively describing the effectiveness of stomata in controlling transpiration and in reconciling contrasting viewpoints concerning the role of stomata at the leaf, stand and regional scales. Considerable progress has also been made in understanding how variations in aerial factors such as evaporative demand and edaphic factors such as soil water availability are sensed and transduced into appropriate stomatal regulatory responses. These developments indicate that studies carried out at multiple scales of observation are needed to understand how external environmental factors and intrinsic plant properties interact to determine the role of stomata in regulating transpiration from different types of vegetation.

  1. Zeaxanthin concentrations co-segregate with the magnitude of the blue light response of adaxial guard cells and leaf stomatal conductances in an F2 population of pima cotton

    SciTech Connect

    Quinones, M.A.; Lu Zhenmin; Zeiger, E. )

    1993-05-01

    A blue light (BL) response of adaxial (AD) guard cells was investigated in two cotton lines with contrasting rates of stomatal conductances (g). This response is expressed as an enhancement of the red light-induced chlorophyll a fluorescence quenching by BL, and has an action spectrum indicative of a carotenoid photoreceptor. Ad guard cell from the high g, advanced line Pima S-6 have a higher carotenoid content and a larger BL response than those from the low g, primitive cotton, B368. In a growth chamber-grown F2 population of a cross between the two lines (n=30), g of individual plants segregated over a range exceeding the average g of the parental populations. Carotenoid content and the BL response of ad guard cell also segregated. There was a positive, strong correlation (r=0.71) between leaf g and the magnitude of the BL response of ad guard cells, indicating that both parameters are under genetic control, and that the BL response of guard cells contributes to the modulation of g. The concentration of all xanthopylls and [beta]-carotene in the ad guard cells correlated poorly with the BL response, except for zeaxanthin (r=0.71). In all green systems, xanthophylls are located inside the chloroplast which suggests that zeaxanthin functions in these organelle as a blue light photoreceptor for cotton guard cells.

  2. The energy balance of the nighttime thermosphere

    NASA Technical Reports Server (NTRS)

    Glenar, D. A.

    1977-01-01

    The discrepancy between the input from the day hemisphere and the observed loss rates is discussed in terms of ion-neutral processes and gravity wave inputs. There has been considerable speculation as to the energy balance of the thermosphere and in particular about the fraction of the total energy input supplied by ultraviolet radiation. The problem is considerably simplified by considering the energy balance of the nighttime hemisphere alone. Sunrise and sunset vapor trail measurements provide data on the wind systems at the terminator boundary, and temperature measurements provide information on the vertical energy conduction. North-south winds from high latitude vapor trail measurements provide a measure of the energy input from auroral processes.

  3. Effects of exogenous 5-aminolevulinic acid on photosynthesis, stomatal conductance, transpiration rate, and PIP gene expression of tomato seedlings subject to salinity stress.

    PubMed

    Zhao, Y Y; Yan, F; Hu, L P; Zhou, X T; Zou, Z R; Cui, L R

    2015-06-11

    The effects of exogenous 5-aminolevulinic acid (ALA) on photosynthesis, plant growth, and the expression of two aquaporin genes in tomato seedlings under control and salinity conditions were investigated. Exogenous ALA application significantly improved net photosynthetic rate (Pn), total chlorophyll content, and plant biomass accumulation of tomato seedlings under salinity stress. As revealed by real-time PCR analyses, after treatment with ALA alone, expression of both LePIP1 and LePIP2 in the two tomato cultivars was up-regulated at 2 h and subsequently decreased to normal levels. Under salinity stress, transcript levels of LePIP1 in both leaves and roots of salt-sensitive cultivars (cv. Zhongza No.9) increased significantly and were considerably higher than in cultivars exposed to ALA alone. In contrast, the expression levels of LePIP1 and LePIP2 in cvs. Jinpeng No.1 cultivars were slightly lower under salinity stress than under ALA treatment. In addition, transcript levels of both LePIP1 and LePIP2 in the roots of Jinpeng No. 1 cultivars were considerably lower than those in the roots of Zhongza No. 9 cultivars under salinity stress, regardless of ALA supplementation, implying that Jinpeng No. 1 cultivars had a better capacity to maintain membrane intrinsic protein stability. Further, ALA application distinctly counteracted the up- or down-regulation of LePIP1 and LePIP2 in both cultivars under salinity stress, in accordance with the improvements instomatal conductance, transpiration rate, and Pn of tomato leaves. The results presented here indicate that ALA controls aquaporin expression, thus, presumably ALA regulates water homeostasis and enhances salt tolerance of tomato seedlings.

  4. Optimal stomatal behaviour around the world

    SciTech Connect

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-StPaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; De Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-03-02

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  5. Optimal stomatal behaviour around the world

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa

    2015-05-01

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.

  6. Optimal stomatal behaviour around the world

    DOE PAGES

    Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; ...

    2015-03-02

    Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbonmore » cost of water use, as predicted by the theory underpinning the optimal stomatal model1 and the leaf and wood economics spectrum2,3. We also demonstrate a global relationship with climate. In conclusion, these findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.« less

  7. Recurrent aphthous stomatitis.

    PubMed

    Akintoye, Sunday O; Greenberg, Martin S

    2014-04-01

    Recurrent aphthous stomatitis (RAS) is the most common ulcerative disease affecting the oral mucosa. RAS occurs mostly in healthy individuals and has an atypical clinical presentation in immunocompromised individuals. The etiology of RAS is still unknown, but several local, systemic, immunologic, genetic, allergic, nutritional, and microbial factors, as well as immunosuppressive drugs, have been proposed as causative agents. Clinical management of RAS using topical and systemic therapies is based on severity of symptoms and the frequency, size, and number of lesions. The goals of therapy are to decrease pain and ulcer size, promote healing, and decrease the frequency of recurrence.

  8. Recurrent Aphthous Stomatitis

    PubMed Central

    Akintoye, Sunday O.; Greenberg, Martin S.

    2014-01-01

    Recurrent Aphthous Stomatitis (RAS) is the most common ulcerative disease affecting the oral mucosa. It occurs mostly in healthy individuals and has atypical clinical presentation in immunocompromised individuals. The etiology of RAS is still unknown, but several local, systemic, immunologic, genetic, allergic, nutritional, and microbial factors, as well as immunosuppressive drugs, have been proposed as causative agents. Clinical management of RAS is based on severity of symptoms, frequency, size and number of lesions using topical and systemic therapies. The goals of therapy are to decrease pain and ulcer size, promote healing and decrease frequency of recurrence. PMID:24655523

  9. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-01

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  10. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  11. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    PubMed Central

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-01-01

    Tropospheric ozone concentrations have increased by 60–100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected. PMID:25943276

  12. A new stomatal paradigm for earth system models? (Invited)

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Williams, M. D.; Fisher, R. A.; Oleson, K. W.; Lombardozzi, D.

    2013-12-01

    The land component of climate, and now earth system, models has simulated stomatal conductance since the introduction in the mid-1980s of the so-called second generation models that explicitly represented plant canopies. These second generation models used the Jarvis-style stomatal conductance model, which empirically relates stomatal conductance to photosynthetically active radiation, temperature, vapor pressure deficit, CO2 concentration, and other factors. Subsequent models of stomatal conductance were developed from a more mechanistic understanding of stomatal physiology, particularly that stomata are regulated so as to maximize net CO2 assimilation (An) and minimize water loss during transpiration (E). This concept is embodied in the Ball-Berry stomatal conductance model, which relates stomatal conductance (gs) to net assimilation (An), scaled by the ratio of leaf surface relative humidity to leaf surface CO2 concentration, or the Leuning variant which replaces relative humidity with a vapor pressure deficit term. This coupled gs-An model has been widely used in climate and earth system models since the mid-1990s. An alternative approach models stomatal conductance by directly optimizing water use efficiency, defined as the ratio An/gs or An/E. Conceptual developments over the past several years have shown that the Ball-Berry style model can be derived from optimization theory. However, an explicit optimization model has not been tested in an earth system model. We compare the Ball-Berry model with an explicit optimization model, both implemented in a new plant canopy parameterization developed for the Community Land Model, the land component of the Community Earth System Model. The optimization model is from the Soil-Plant-Atmosphere (SPA) model, which integrates plant and soil hydraulics, carbon assimilation, and gas diffusion. The canopy parameterization is multi-layer and resolves profiles of radiation, temperature, vapor pressure, leaf water stress

  13. Observations on the Stomatal Control of NO2 Exchange.

    NASA Astrophysics Data System (ADS)

    Kesselmeier, J.; Chaparro-Suarez, I. G.; Meixner, F. X.

    2005-12-01

    Nitrogen oxides play a central role in tropospheric chemistry especially in the formation of tropospheric ozone, acid rain and hydroxyl radical as well as in CH4 and CO oxidation processes. NO2 can be assimilated and emitted by the plant leaves as well. We investigated the impact of the stomatal regulation with four tree species (Betula pendula, Fagus sylvatica, Quercus ilex und Pinus sylvestris) by exposure of leaves to the hormone abscisic acid inducing stomatal closure. The results showed that the NO2 uptake was strongly dependent on stomatal aperture. The uptake correlated linearly with stomatal (leaf) conductance in case of all four tree species investigated. In contrast an NO2 emission was observed with beech in the dark when stomata were basically closed.

  14. Spatiotemporal variation of crown-scale stomatal conductance in an arid Vitis vinifera L. cv. Merlot vineyard: direct effects of hydraulic properties and indirect effects of canopy leaf area.

    PubMed

    Zhang, Yanqun; Oren, Ram; Kang, Shaozhong

    2012-03-01

    Vineyards were planted in the arid region of northwest China to meet the local economic strategy while reducing agricultural water use. Sap flow, environmental variables, a plant characteristic (sapwood-to-leaf area ratio, A(s)/A(l)) and a canopy characteristic (leaf area index, L) were measured in a vineyard in the region during the growing season of 2009, and hourly canopy stomatal conductance (G(si)) was estimated for individual vines to quantify the relationships between G(si) and these variables. After accounting for the effects of vapor pressure deficit (D) and solar radiation (R(s)) on G(si), much of the remaining variation of reference G(si) (G(siR)) was driven by that of leaf-specific hydraulic conductivity, which in turn was driven by that of A(s)/A(l). After accounting for that effect on G(siR), appreciable temporal variation remained in the decline rate of G(siR) with decreasing vineyard-averaged relative extractable soil water (θ(E)). This variation was related to the differential decline ofθ(E) near each monitored vine, decreasing faster between irrigation events near vines where L was greater, thus adding to the spatiotemporal variation of G(siR) observed in the vineyard. We also found that the vines showed isohydric-like behavior whenθ(E) was low, but switched to anisohydric-like behavior with increasingθ(E). Modeledθ(E) and associated G(s) of a canopy with even L (1.9 m(2) m(-2)) were greater than that of the same average L but split between the lowest and highest L observed along sections of rows in the vineyard (1.2 and 2.6 m(2) m(-2)) by 6 and 12%, respectively. Our results suggest that managing sectional L near the average, rather than allowing a wide variation, can reduce soil water depletion, maintaining G(s) higher, thus potentially enhancing yield.

  15. [Recurrent aphthous stomatitis in Rheumatology].

    PubMed

    Riera Matute, Gabriel; Riera Alonso, Elena

    2011-01-01

    Recurrent aphthous stomatitis consists on recurring oral ulcers of unknown etiology. Oral ulcers may be different in number and size depending on the clinical presentation, which also determines the time needed for healing. Moreover, there are factors associated to outbreaks but not implicated in its etiopathogenesis. When oral aphthosis has a known etiology, it is not considered as recurrent aphthous stomatitis. The severity and the clinical presentation helps in the differential diagnosis. Treatment is symptomatic in recurrent aphthous stomatitis while, if there is an underlying systemic disease, the treatment of such disease is need in addition to topical treatment.

  16. Protein phosphorylation in stomatal movement

    PubMed Central

    Zhang, Tong; Chen, Sixue; Harmon, Alice C

    2014-01-01

    As research progresses on how guard cells perceive and transduce environmental cues to regulate stomatal movement, plant biologists are discovering key roles of protein phosphorylation. Early research efforts focused on characterization of ion channels and transporters in guard cell hormonal signaling. Subsequent genetic studies identified mutants of kinases and phosphatases that are defective in regulating guard cell ion channel activities, and recently proteins regulated by phosphorylation have been identified. Here we review the essential role of protein phosphorylation in ABA-induced stomatal closure and in blue light-induced stomatal opening. We also highlight evidence for the cross-talk between different pathways, which is mediated by protein phosphorylation. PMID:25482764

  17. Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine

    PubMed Central

    Tombesi, Sergio; Nardini, Andrea; Frioni, Tommaso; Soccolini, Marta; Zadra, Claudia; Farinelli, Daniela; Poni, Stefano; Palliotti, Alberto

    2015-01-01

    Water saving under drought stress is assured by stomatal closure driven by active (ABA-mediated) and/or passive (hydraulic-mediated) mechanisms. There is currently no comprehensive model nor any general consensus about the actual contribution and relative importance of each of the above factors in modulating stomatal closure in planta. In the present study, we assessed the contribution of passive (hydraulic) vs active (ABA mediated) mechanisms of stomatal closure in V. vinifera plants facing drought stress. Leaf gas exchange decreased progressively to zero during drought, and embolism-induced loss of hydraulic conductance in petioles peaked to ~50% in correspondence with strong daily limitation of stomatal conductance. Foliar ABA significantly increased only after complete stomatal closure had already occurred. Rewatering plants after complete stomatal closure and after foliar ABA reached maximum values did not induced stomatal re-opening, despite embolism recovery and water potential rise. Our data suggest that in grapevine stomatal conductance is primarily regulated by passive hydraulic mechanisms. Foliar ABA apparently limits leaf gas exchange over long-term, also preventing recovery of stomatal aperture upon rewatering, suggesting the occurrence of a mechanism of long-term down-regulation of transpiration to favor embolism repair and preserve water under conditions of fluctuating water availability and repeated drought events. PMID:26207993

  18. Effects of experimental warming on stomatal traits in leaves of maize (Zea may L.).

    PubMed

    Zheng, Yunpu; Xu, Ming; Hou, Ruixing; Shen, Ruichang; Qiu, Shuai; Ouyang, Zhu

    2013-09-01

    We examined the warming effects on the stomatal frequency, stomatal aperture size and shape, and their spatial distribution pattern of maize (Zea may L.) leaves using a light microscope, an electron scanning microscope, and geostatistic techniques. A field manipulative experiment was conducted to elevate canopy temperature by 2.08°C, on average. We found that experimental warming had little effect on stomatal density, but significantly increased stomatal index due to the reduction in the number of epidermal cells under the warming treatment. Warming also significantly decreased stomatal aperture length and increased stomatal aperture width. As a result, warming significantly increased the average stomatal aperture area and stomatal aperture circumference. In addition, warming dramatically changed the stomatal spatial distribution pattern with a substantial increase in the average nearest neighbor distance between stomata on both adaxial and abaxial surfaces. The spatial distribution pattern of stomata was scale dependent with regular patterns at small scales and random patterns at larger scales on both leaf surfaces. Warming caused the stomatal distribution to become more regular on both leaf surfaces with smaller L(t) values (Ripley's K-function, L(t) is an expectation of zero for any value of t) in the warming plots than the control plots.

  19. Daytime nap controls toddlers’ nighttime sleep

    PubMed Central

    Nakagawa, Machiko; Ohta, Hidenobu; Nagaoki, Yuko; Shimabukuro, Rinshu; Asaka, Yoko; Takahashi, Noriko; Nakazawa, Takayo; Kaneshi, Yousuke; Morioka, Keita; Oishi, Yoshihisa; Azami, Yuriko; Ikeuchi, Mari; Takahashi, Mari; Hirata, Michio; Ozawa, Miwa; Cho, Kazutoshi; Kusakawa, Isao; Yoda, Hitoshi

    2016-01-01

    Previous studies have demonstrated that afternoon naps can have a negative effect on subsequent nighttime sleep in children. These studies have mainly been based on sleep questionnaires completed by parents. To investigate the effect of napping on such aspects of sleep quality, we performed a study in which child activity and sleep levels were recorded using actigraphy. The parents were asked to attach actigraphy units to their child’s waist by an adjustable elastic belt and complete a sleep diary for 7 consecutive days. 50 healthy young toddlers of approximately 1.5 years of age were recruited. There was a significant negative correlation between nap duration and both nighttime sleep duration and sleep onset time, suggesting that long nap sleep induces short nighttime sleep duration and late sleep onset time. We also found a significant negative correlation between nap timing and nighttime sleep duration and also a significant positive correlation between nap timing and sleep onset time, suggesting that naps in the late afternoon also lead to short nighttime sleep duration and late sleep onset. Our findings suggest that duration-controlled naps starting early in the afternoon can induce a longer nighttime sleep in full-term infants of approximately 1.5 years of age. PMID:27277329

  20. Daytime nap controls toddlers' nighttime sleep.

    PubMed

    Nakagawa, Machiko; Ohta, Hidenobu; Nagaoki, Yuko; Shimabukuro, Rinshu; Asaka, Yoko; Takahashi, Noriko; Nakazawa, Takayo; Kaneshi, Yousuke; Morioka, Keita; Oishi, Yoshihisa; Azami, Yuriko; Ikeuchi, Mari; Takahashi, Mari; Hirata, Michio; Ozawa, Miwa; Cho, Kazutoshi; Kusakawa, Isao; Yoda, Hitoshi

    2016-06-09

    Previous studies have demonstrated that afternoon naps can have a negative effect on subsequent nighttime sleep in children. These studies have mainly been based on sleep questionnaires completed by parents. To investigate the effect of napping on such aspects of sleep quality, we performed a study in which child activity and sleep levels were recorded using actigraphy. The parents were asked to attach actigraphy units to their child's waist by an adjustable elastic belt and complete a sleep diary for 7 consecutive days. 50 healthy young toddlers of approximately 1.5 years of age were recruited. There was a significant negative correlation between nap duration and both nighttime sleep duration and sleep onset time, suggesting that long nap sleep induces short nighttime sleep duration and late sleep onset time. We also found a significant negative correlation between nap timing and nighttime sleep duration and also a significant positive correlation between nap timing and sleep onset time, suggesting that naps in the late afternoon also lead to short nighttime sleep duration and late sleep onset. Our findings suggest that duration-controlled naps starting early in the afternoon can induce a longer nighttime sleep in full-term infants of approximately 1.5 years of age.

  1. Nighttime chemistry in the Houston urban plume

    NASA Astrophysics Data System (ADS)

    Luria, Menachem; Valente, Ralph J.; Bairai, Solomon; Parkhurst, William J.; Tanner, Roger L.

    A late afternoon polluted air parcel transported from the Houston metropolitan area was monitored by an instrumented aircraft throughout the night of 21-22 July, 2005. Sampling was conducted during three flight segments over several downwind areas that were identified by a controllable meteorological balloon released from the Houston area at sundown. Samples were taken for approximately 2 h over each area. Using carbon monoxide as a tracer of the urban plume, it was revealed that the dilution inside the plume was relatively small. Ozone levels of up to 120 ppb were found in the plume at the furthest downwind distance, some 250 km northwest of Houston, with plume transport in the direction of the Dallas metropolitan area. The data further suggest that the nighttime conversion of NO x to NO z was very rapid, with complete (˜100%) conversion by the end of the night. At two locations the urban plume mixed with fresh emissions from power plants. At these sampling points ˜50% of the NO y had already been converted to NO z, thus indicating very rapid oxidation at night.

  2. Nighttime snacking, stress, and migraine activity.

    PubMed

    Turner, Dana P; Smitherman, Todd A; Penzien, Donald B; Porter, John A H; Martin, Vincent T; Houle, Timothy T

    2014-04-01

    Missing meals and fasting have long been reported as headache triggers. Stress also has received attention for its role in precipitating headaches. This study explored the effects of eating behaviors on new-onset headache. Analyzing only the 1070 of 1648 (64.9%) diary days that followed a non-headache day, the study included 34 migraineurs who contributed a median (25th, 75th percentile) of 28 (22, 40) days of diary entries. Multivariable survival modeling with random effects was conducted, and hazards ratios and 95% confidence intervals were calculated. Nighttime snacking was associated with a 40% reduction in the odds of experiencing a headache compared to having no food (p=0.013). Eating a late dinner was associated with a 21% reduction in the odds of headache when compared to no additional food, but this association was not statistically significant (p=0. 22). These results demonstrate the potential for eating behaviors to be targeted in headache management, as regulated eating habits may have the potential to reduce the occurrence of headache. Although no causal relationship can be established, these results indicate that further research into the mechanisms of the association between eating behaviors and headache activity is warranted.

  3. Modeled hydraulic redistribution by Helianthus annuus L. matches observed data only after model modification to include nighttime transpiration

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Cardon, Z. G.; Rockwell, F. E.; Teshera-Levye, J.; Zwieniecki, M.; Holbrook, N. M.

    2013-12-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical, and ecological consequences of HR depend on the amount of redistributed water, while the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two eco-types of Helianthus annuus L. in split-pot experiments, we examined how well the widely used HR modeling formulation developed by Ryel et al. (2002) could match experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive nighttime transpiration, and though over the last decade it has become more widely recognized that nighttime transpiration occurs in multiple species and many ecosystems, the original Ryel et al. (2002) formulation does not include the effect of nighttime transpiration on HR. We developed and added a representation of nighttime transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and nighttime stomatal behavior changed, both influencing HR.

  4. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    PubMed

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR.

  5. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling?

    PubMed

    Aliniaeifard, Sasan; Malcolm Matamoros, Priscila; van Meeteren, Uulke

    2014-12-01

    Exposing plants to low VPD reduces leaf capacity to maintain adequate water status thereafter. To find the impact of VPD on functioning of stomata, stomatal morphology and leaf anatomy, fava bean plants were grown at low (L, 0.23 kPa) or moderate (M, 1.17 kPa) VPDs and some plants that developed their leaves at moderate VPD were then transferred for 4 days to low VPD (M→L). Part of the M→L-plants were sprayed with ABA (abscisic acid) during exposure to L. L-plants showed bigger stomata, larger pore area, thinner leaves and less spongy cells compared with M-plants. Stomatal morphology (except aperture) and leaf anatomy of the M→L-plants were almost similar to the M-plants, while their transpiration rate and stomatal conductance were identical to that of L-plants. The stomatal response to ABA was lost in L-plants, but also after 1-day exposure of M-plants to low VPD. The level of foliar ABA sharply decreased within 1-day exposure to L, while the level of ABA-GE (ABA-glucose ester) was not affected. Spraying ABA during the exposure to L prevented loss of stomatal closing response thereafter. The effect of low VPD was largely depending on exposure time: the stomatal responsiveness to ABA was lost after 1-day exposure to low VPD, while the responsiveness to desiccation was gradually lost during 4-day exposure to low VPD. Leaf anatomical and stomatal morphological alterations due to low VPD were not the main cause of loss of stomatal closure response to closing stimuli.

  6. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass.

    PubMed

    Xu, Zhenzhu; Zhou, Guangsheng

    2008-01-01

    Responses of plant leaf stomatal conductance and photosynthesis to water deficit have been extensively reported; however, little is known concerning the relationships of stomatal density with regard to water status and gas exchange. The responses of stomatal density to leaf water status were determined, and correlation with specific leaf area (SLA) in a photosynthetic study of a perennial grass, Leymus chinensis, subjected to different soil moisture contents. Moderate water deficits had positive effects on stomatal number, but more severe deficits led to a reduction, described in a quadratic parabolic curve. The stomatal size obviously decreased with water deficit, and stomatal density was positively correlated with stomatal conductance (g(s)), net CO(2) assimilation rate (A(n)), and water use efficiency (WUE). A significantly negative correlation of SLA with stomatal density was also observed, suggesting that the balance between leaf area and its matter may be associated with the guard cell number. The present results indicate that high flexibilities in stomatal density and guard cell size will change in response to water status, and this process may be closely associated with photosynthesis and water use efficiency.

  7. A rate equation model of stomatal responses to vapour pressure deficit and drought

    PubMed Central

    Eamus, D; Shanahan, ST

    2002-01-01

    Background Stomata respond to vapour pressure deficit (D) – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses. PMID:12153703

  8. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    PubMed Central

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  9. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.

    PubMed

    Tanaka, Yu; Sugano, Shigeo S; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2013-05-01

    Photosynthetic rate is determined by CO2 fixation and CO2 entry into the plant through pores in the leaf epidermis called stomata. However, the effect of increased stomatal density on photosynthetic rate remains unclear. This work investigated the effect of alteration of stomatal density on leaf photosynthetic capacity in Arabidopsis thaliana. Stomatal density was modulated by overexpressing or silencing STOMAGEN, a positive regulator of stomatal development. Leaf photosynthetic capacity and plant growth were examined in transgenic plants. Increased stomatal density in STOMAGEN-overexpressing plants enhanced the photosynthetic rate by 30% compared to wild-type plants. Transgenic plants showed increased stomatal conductance under ambient CO2 conditions and did not show alterations in the maximum rate of carboxylation, indicating that the enhancement of photosynthetic rate was caused by gas diffusion changes. A leaf photosynthesis-intercellular CO2 concentration response curve showed that photosynthetic rate was increased under high CO2 conditions in association with increased stomatal density. STOMAGEN overexpression did not alter whole plant biomass, whereas its silencing caused biomass reduction. Our results indicate that increased stomatal density enhanced leaf photosynthetic capacity by modulating gas diffusion. Stomatal density may be a target trait for plant engineering to improve photosynthetic capacity.

  10. [Effects of nighttime warming on winter wheat root growth and soil nutrient availability].

    PubMed

    Zhang, Ming-Qian; Chen, Jin; Guo, Jia; Tian, Yun-Lu; Yang, Shi-Jia; Zhang, Li; Yang, Bing; Zhang, Wei-Jian

    2013-02-01

    Climate warming has an obvious asymmetry between day and night, with a greater increment of air temperature at nighttime than at daytime. By adopting passive nighttime warming (PNW) system, a two-year field experiment of nighttime warming was conducted in the main production areas of winter wheat in China (Shijiazhuang of Hebei Province, Xuzhou of Jiangsu Province, Xuchang of Henan Province, and Zhenjiang of Jiangsu Province) in 2009 and 2010, with the responses of soil pH and available nutrient contents during the whole growth periods and of wheat root characteristics at heading stage determined. As compared with the control (no nighttime warming), nighttime warming decreased the soil pH and available nutrient contents significantly, and increased the root dry mass and root/shoot ratio to a certain extent. During the whole growth period of winter wheat, nighttime warming decreased the soil pH in Shijiazhuang, Xuzhou, Xuchang, and Zhenjiang averagely by 0.4%, 0.4%, 0.7%, and 0.9%, the soil alkaline nitrogen content averagely by 8.1%, 8.1%, 7.1%, and 6.0%, the soil available phosphorus content averagely by 15.7%, 12.1%, 19.6%, and 25.8%, and the soil available potassium content averagely by 11.5%, 7.6%, 7.6% , and 10.1%, respectively. However, nighttime warming increased the wheat root dry mass at heading stage in Shijiazhuang, Xuzhou, and Zhenjiang averagely by 31. 5% , 27.0%, and 14.5%, and the root/shoot ratio at heading stage in Shijiazhuang, Xuchang, and Zhenjiang averagely by 23.8%, 13.7% and 9.7%, respectively. Our results indicated that nighttime warming could affect the soil nutrient supply and winter wheat growth via affecting the soil chemical properties.

  11. Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.

    PubMed

    Fares, S; Loreto, F; Kleist, E; Wildt, J

    2008-01-01

    Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.

  12. Gas valves, forests and global change: a commentary on Jarvis (1976) 'The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field'.

    PubMed

    Beerling, David J

    2015-04-19

    Microscopic turgor-operated gas valves on leaf surfaces-stomata-facilitate gas exchange between the plant and the atmosphere, and respond to multiple environmental and endogenous cues. Collectively, stomatal activities affect everything from the productivity of forests, grasslands and crops to biophysical feedbacks between land surface vegetation and climate. In 1976, plant physiologist Paul Jarvis reported an empirical model describing stomatal responses to key environmental and plant conditions that predicted the flux of water vapour from leaves into the surrounding atmosphere. Subsequent theoretical advances, building on this earlier approach, established the current paradigm for capturing the physiological behaviour of stomata that became incorporated into sophisticated models of land carbon cycling. However, these models struggle to accurately predict observed trends in the physiological responses of Northern Hemisphere forests to recent atmospheric CO2 increases, highlighting the need for improved representation of the role of stomata in regulating forest-climate interactions. Bridging this gap between observations and theory as atmospheric CO2 rises and climate change accelerates creates challenging opportunities for the next generation of physiologists to advance planetary ecology and climate science. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society.

  13. Gas valves, forests and global change: a commentary on Jarvis (1976) ‘The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field’

    PubMed Central

    Beerling, David J.

    2015-01-01

    Microscopic turgor-operated gas valves on leaf surfaces—stomata—facilitate gas exchange between the plant and the atmosphere, and respond to multiple environmental and endogenous cues. Collectively, stomatal activities affect everything from the productivity of forests, grasslands and crops to biophysical feedbacks between land surface vegetation and climate. In 1976, plant physiologist Paul Jarvis reported an empirical model describing stomatal responses to key environmental and plant conditions that predicted the flux of water vapour from leaves into the surrounding atmosphere. Subsequent theoretical advances, building on this earlier approach, established the current paradigm for capturing the physiological behaviour of stomata that became incorporated into sophisticated models of land carbon cycling. However, these models struggle to accurately predict observed trends in the physiological responses of Northern Hemisphere forests to recent atmospheric CO2 increases, highlighting the need for improved representation of the role of stomata in regulating forest–climate interactions. Bridging this gap between observations and theory as atmospheric CO2 rises and climate change accelerates creates challenging opportunities for the next generation of physiologists to advance planetary ecology and climate science. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750234

  14. Circadian Rhythms in Stomatal Responsiveness to Red and Blue Light.

    PubMed Central

    Gorton, H. L.; Williams, W. E.; Assmann, S. M.

    1993-01-01

    Stomata of many plants have circadian rhythms in responsiveness to environmental cues as well as circadian rhythms in aperture. Stomatal responses to red light and blue light are mediated by photosynthetic photoreceptors; responses to blue light are additionally controlled by a specific blue-light photoreceptor. This paper describes circadian rhythmic aspects of stomatal responsiveness to red and blue light in Vicia faba. Plants were exposed to a repeated light:dark regime of 1.5:2.5 h for a total of 48 h, and because the plants could not entrain to this short light:dark cycle, circadian rhythms were able to "free run" as if in continuous light. The rhythm in the stomatal conductance established during the 1.5-h light periods was caused both by a rhythm in sensitivity to light and by a rhythm in the stomatal conductance established during the preceding 2.5-h dark periods. Both rhythms peaked during the middle of the subjective day. Although the stomatal response to blue light is greater than the response to red light at all times of day, there was no discernible difference in period, phase, or amplitude of the rhythm in sensitivity to the two light qualities. We observed no circadian rhythmicity in net carbon assimilation with the 1.5:2.5 h light regime for either red or blue light. In continuous white light, small rhythmic changes in photosynthetic assimilation were observed, but at relatively high light levels, and these appeared to be attributable largely to changes in internal CO2 availability governed by stomatal conductance. PMID:12231947

  15. An integrated model of stomatal development and leaf physiology.

    PubMed

    Dow, Graham J; Bergmann, Dominique C; Berry, Joseph A

    2014-03-01

    Stomatal conductance (g(s)) is constrained by the size and number of stomata on the plant epidermis, and the potential maximum rate of g(s) can be calculated based on these stomatal traits (Anatomical g(smax)). However, the relationship between Anatomical g(smax) and operational g(s) under atmospheric conditions remains undefined. • Leaf-level gas-exchange measurements were performed for six Arabidopsis thaliana genotypes that have different Anatomical g(smax) profiles resulting from mutations or transgene activity in stomatal development. • We found that Anatomical g(smax) was an accurate prediction of g(s) under gas-exchange conditions that maximized stomatal opening, namely high-intensity light, low [CO₂], and high relative humidity. Plants with different Anatomical g(smax) had quantitatively similar responses to increasing [CO₂] when g(s) was scaled to Anatomical g(smax). This latter relationship allowed us to produce and test an empirical model derived from the Ball-Woodrow-Berry equation that estimates g(s) as a function of Anatomical g(smax), relative humidity, and [CO₂] at the leaf. • The capacity to predict operational g(s) via Anatomical g(smax) and the pore-specific short-term response to [CO₂] demonstrates a precise link between stomatal development and leaf physiology. This connection should be useful to quantify the gas flux of plants in past, present, and future CO₂ regimes based upon the anatomical features of stomata.

  16. [CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].

    PubMed

    Koridze, Kh; Aladashvili, L; Taboridze, I

    2015-09-01

    The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.

  17. Recurrent aphthous stomatitis: a review.

    PubMed

    Chavan, Mahesh; Jain, Hansa; Diwan, Nikhil; Khedkar, Shivaji; Shete, Anagha; Durkar, Sachin

    2012-09-01

    Recurrent aphthous stomatitis (RAS) is a common clinical condition producing painful ulcerations in oral cavity. The diagnosis of RAS is based on well-defined clinical characteristics but the precise etiology and pathogenesis of RAS remain unclear. The present article provides a detailed review of the current concepts and knowledge of the etiology, pathogenesis, and management of RAS.

  18. Increasing water-use efficiency directly through genetic manipulation of stomatal density.

    PubMed

    Franks, Peter J; W Doheny-Adams, Timothy; Britton-Harper, Zoe J; Gray, Julie E

    2015-07-01

    Improvement in crop water-use efficiency (WUE) is a critical priority for regions facing increased drought or diminished groundwater resources. Despite new tools for the manipulation of stomatal development, the engineering of plants with high WUE remains a challenge. We used Arabidopsis epidermal patterning factor (EPF) mutants exhibiting altered stomatal density to test whether WUE could be improved directly by manipulation of the genes controlling stomatal density. Specifically, we tested whether constitutive overexpression of EPF2 reduced stomatal density and maximum stomatal conductance (gw(max) ) sufficiently to increase WUE. We found that a reduction in gw(max) via reduced stomatal density in EPF2-overexpressing plants (EPF2OE) increased both instantaneous and long-term WUE without altering significantly the photosynthetic capacity. Conversely, plants lacking both EPF1 and EPF2 expression (epf1epf2) exhibited higher stomatal density, higher gw(max) and lower instantaneous WUE, as well as lower (but not significantly so) long-term WUE. Targeted genetic modification of stomatal conductance, such as in EPF2OE, is a viable approach for the engineering of higher WUE in crops, particularly in future high-carbon-dioxide (CO2 ) atmospheres.

  19. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2- and ABA-induced stomatal closing

    PubMed Central

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andish; Israelsson-Nordstrom, Maria; Engineer, Cawas B.; Bargmann, Bastiaan O.R.; Stephan, Aaron B.; Schroeder, Julian I.

    2015-01-01

    SUMMARY Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard-cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard-cell specific enhancer trap-line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately ~ 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable to wild-type plants. Time-resolved intact leaf gas exchange analyses showed a reduction in stomatal conductance and carbon assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard-cell CO2 and ABA signal transduction are not directly modulated by guard-cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a “deflated” thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard-cell turgor production. PMID:26096271

  20. Guard cell photosynthesis is critical for stomatal turgor production, yet does not directly mediate CO2 - and ABA-induced stomatal closing.

    PubMed

    Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I

    2015-08-01

    Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.

  1. Stomatal limitation to carbon gain in Paphiopedilum sp. (Orchidaceae) and its reversal by blue light

    SciTech Connect

    Zeiger, E.; Grivet, C.; Assmann, S.M.; Dietzer, G.F.; Hannegan, M.W.

    1985-02-01

    Leaves from Paphiopedilum sp. (Orchidaceae) having achlorophyllous stomata, show reduced levels of stomatal conductance when irradiated with red light, as compared with either the related, chlorophyllous genus Phragmipedium or with their response to blue light. These reduced levels of stomatal conductance, and the failure of isolated Paphiopedilum stomata to open under red irradiation indicates that the small stomatal response measured in the intact leaf under red light is indirect. The overall low levels of stomatal conductance observed in Paphiopedilum leaves under most growing conditions and their capacity to increase stomatal conductance in response to blue light suggested that growth and carbon gain in Paphiopedilum could be enhanced in a blue light-enriched environment. To test that hypothesis, plants of Paphiopedilum acmodontum were grown in controlled growth chambers under daylight fluorescent light, with or without blue light supplementation. Blue light enrichment resulted in significantly higher growth rates over a 3 to 4 week growing period, with all evidence indicating that the blue light effect was a stomatal response. Manipulations of stomatal properties aimed at long-term carbon gains could have agronomic applications.

  2. Nighttime Fears and Fantasy-Reality Differentiation in Preschool Children

    ERIC Educational Resources Information Center

    Zisenwine, Tamar; Kaplan, Michal; Kushnir, Jonathan; Sadeh, Avi

    2013-01-01

    Nighttime fears are very common in preschool years. During these years, children's fantasy-reality differentiation undergoes significant development. Our study was aimed at exploring the links between nighttime fears and fantasy-reality differentiation in preschool children. Eighty children (aged: 4-6 years) suffering from severe nighttime fears…

  3. Nighttime parenting strategies and sleep-related risks to infants.

    PubMed

    Volpe, Lane E; Ball, Helen L; McKenna, James J

    2013-02-01

    A large social science and public health literature addresses infant sleep safety, with implications for infant mortality in the context of accidental deaths and Sudden Infant Death Syndrome (SIDS). As part of risk reduction campaigns in the USA, parents are encouraged to place infants supine and to alter infant bedding and elements of the sleep environment, and are discouraged from allowing infants to sleep unsupervised, from bed-sharing either at all or under specific circumstances, or from sofa-sharing. These recommendations are based on findings from large-scale epidemiological studies that generate odds ratios or relative risk statistics for various practices; however, detailed behavioural data on nighttime parenting and infant sleep environments are limited. To address this issue, this paper presents and discusses the implications of four case studies based on overnight observations conducted with first-time mothers and their four-month old infants. These case studies were collected at the Mother-Baby Behavioral Sleep Lab at the University of Notre Dame USA between September 2002 and June 2004. Each case study provides a detailed description based on video analysis of sleep-related risks observed while mother-infant dyads spent the night in a sleep lab. The case studies provide examples of mothers engaged in the strategic management of nighttime parenting for whom sleep-related risks to infants arose as a result of these strategies. Although risk reduction guidelines focus on eliminating potentially risky infant sleep practices as if the probability of death from each were equal, the majority of instances in which these occur are unlikely to result in infant mortality. Therefore, we hypothesise that mothers assess potential costs and benefits within margins of risk which are not acknowledged by risk-reduction campaigns. Exploring why mothers might choose to manage sleep and nighttime parenting in ways that appear to increase potential risks to infants may

  4. Daytime Sleep Aids and Nighttime Cognitive Performance

    DTIC Science & Technology

    2005-11-01

    reproduction of technical data or portions thereof marked as limited rights data must also reproduce the markings. Any person, other than the...a sleep promoting or "No-Go" medication may be prescribed to promote a more restorative crew rest. This study compared two doses of the hypnotic ... hypnotic zolpidem, two doses of melatonin and placebo for their effects on daytime sleep, on nighttime cognitive performance and on mood in an

  5. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China

    NASA Astrophysics Data System (ADS)

    Huang, Fuqing; Dou, Xiankang; Lei, Jiuhou; Lin, Jian; Ding, Feng; Zhong, Jiahao

    2016-09-01

    Statistical analyses were conducted to investigate the nighttime medium-scale traveling ionospheric disturbances (MSTIDs) for the first time by using airglow images and Global Positioning System (GPS) data over central China during 2013-2015. Our results show that the phase fronts of perturbations are aligned from northwest to southeast direction and propagate toward the southwest direction. The characteristics of the nighttime MSTIDs observed by OI 630.0 nm images are consistent with those of the nighttime MSTIDs obtained from the GPS data. The phase velocity, period, wavelength, and amplitude of nighttime MSTIDs are 50-150 m/s, 0.5-1.5 h, 150-400 km, and 2%-15%, respectively, as measured from 630.0 nm images and GPS data. In addition, we utilized the simultaneous observations from OI 630.0 nm and OI 557.7 nm images to explore the relationship between nighttime MSTIDs and gravity waves (<100 km) in the mesopause. It is found that the nighttime MSTIDs frequently occurred in the summer solstice, which was not consistent with the occurrence of gravity wave observed in the mesopause. Our results indicate that the nighttime MSTIDs may be generated by the coupling of electrodynamic processes rather than be trigged by gravity waves from the lower atmosphere.

  6. Electrical potentials in stomatal complexes

    SciTech Connect

    Saftner, R.A.; Raschke, K.

    1981-06-01

    Guard cells of several species, but predominantly Commelina communis, were impaled by micropipette electrodes and potential differences measured that occurred between cell compartments and the flowing bathing medium. The wall developed a Donnan potential that was between -60 and -70 millivolt in 30 millimolar KC1 at pH 7. The density of the fixed charges ranged from 0.3 to 0.5 molar; its dependence on pH was almost identical with the titration curve of authentic polygalacturonic acid. The vacuolar potential of guard cells of Commelina communis L., Zea mays L., Nicotiana glauca Graham, Allium cepa L., and Vicia faba L. was between -40 and -50 millivolt in 30 millimolar KCl when stomata were open and about -30 millivolt when stomata were closed. The vacuolar potential of guard cells of C. communis was almost linearly related to stomatal aperture and responded to changes in the ionic strength in the bathing medium in a Nernstian manner. No specificity for any alkali ion (except Li/sup +/), ammonium, or choline appeared. Lithium caused hyperpolarization. Calcium in concentrations between 1 and 100 millimolar in the medium led to stomatal closure, also caused hyperpolarization, and triggered transient oscillations in the intracellular potential. Gradients in the electrical potential existed across stomatal complexes with open pores. When stomata closed, these gradients almost disappeared or slightly reverted; all epidermal cells were then at potentials near -30 millivolt in 30 millimolar KCl.

  7. Adverse Health Effects of Nighttime Lighting

    NASA Astrophysics Data System (ADS)

    Motta, M.

    2012-06-01

    The effects of poor lighting and glare on public safety are well-known, as are the harmful environmental effects on various species and the environment in general. What is less well-known is the potential harmful medical effects of excessive poor nighttime lighting. A significant body of research has been developed over the last few years regarding this problem. One of the most significant effects is the startling increased risk for breast cancer by excessive exposure to nighttime lighting. The mechanism is felt to be by disruption of the circadian rhythm and suppression of melatonin production from the pineal gland. Melatonin has an anticancer effect that is lost when its production is disrupted. I am in the process of developing a monograph that will summarize this important body of research, to be presented and endorsed by the American Medical Association, and its Council of Science and Public health. This paper is a brief overall summary of this little known potential harmful effect of poor and excessive nighttime lighting.

  8. Monoterpene hydrocarbons in the nighttime troposphere

    SciTech Connect

    Roberts, J.M.; Hahn, C.J.; Fehsenfeld, F.C.; Warnock, J.M.; Albritton, D.L.; Sievers, R.E.

    1985-01-01

    Monoterpene hydrocarbons were measured during the night at a rural site in the Rocky Mountains. The compounds positively identified and quantified were ..cap alpha..-pinene, camphene, ..beta..-pinene, ..delta../sup 3/-carene, and d-limonene. The average sum of the mixing ratios of the five compounds measured during the nighttime between July and Oct., 1982, was 0.63 ppb (volume), which was about twice the corresponding daytime average sum. No significant difference was observed between day and night in the relative concentrations of the individual monoterpenes. Increased atmospheric stability, with attendant reduced mixing and dilution during the night, was found to contribute to the large nighttime vs. daytime monoterpene mixing ratios. Nighttime atmospheric stability was also responsible for the observation of ozone diminution and a corresponding inverse relationship between monoterpene and ozone mixing ratios. The results indicate that, at this site, transport rather than chemistry determines the concentrations of the monoterpenes. The ultimate fate of the monoterpenes is chemical reaction with O/sub 3/, OH, or NO/sub 3/. Because of the differences in rate constants of reactions between the various monoterpenes and the above species, chemical reaction should cause systematic changes in relative concentrations of monoterpenes, which are characteristic of the reactant species involved.

  9. Temperatures on europa from galileo photopolarimeter-radiometer: nighttime thermal anomalies

    PubMed

    Spencer; Tamppari; Martin; Travis

    1999-05-28

    Galileo observations of Europa's thermal emission show low-latitude diurnal brightness temperatures in the range of 86 to 132 kelvin. Nighttime temperatures form an unexpected pattern, with high temperatures on the bright ejecta blanket of the crater Pwyll and an equatorial minimum in temperatures after sunset, uncorrelated with surface albedo or geology. The nighttime anomalies may be due to regional thermal inertia variations of an unknown origin, which are equivalent to a two- to threefold variation in thermal conductivity, or to endogenic heat fluxes locally reaching 1 watt per square meter. Endogenic heat flow at this high level, although consistent with some geological evidence, is theoretically unlikely.

  10. Regolith thermal energy storage for lunar nighttime power

    NASA Technical Reports Server (NTRS)

    Tillotson, Brian

    1992-01-01

    A scheme for providing nighttime electric power to a lunar base is described. This scheme stores thermal energy in a pile of regolith. Any such scheme must somehow improve on the poor thermal conductivity of lunar regolith in vacuum. Two previous schemes accomplish this by casting or melting the regolith. The scheme described here wraps the regolith in a gas-tight bag and introduces a light gas to enhance thermal conductivity. This allows the system to be assembled with less energy and equipment than schemes which require melting of regolith. A point design based on the new scheme is presented. Its mass from Earth compares favorably with the mass of a regenerative fuel cell of equal capacity.

  11. Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion-tension theory.

    PubMed

    Novick, Kimberly A; Miniat, Chelcy F; Vose, James M

    2016-03-01

    We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species.

  12. Endothelial function in postmenopausal women with nighttime systolic hypertension

    PubMed Central

    Routledge, Faye S.; Hinderliter, Alan L.; McFetridge-Durdle, Judith; Blumenthal, James A.; Paine, Nicola J.; Sherwood, Andrew

    2014-01-01

    Objective Hypertension becomes more prevalent in women during their postmenopausal years. Nighttime systolic blood pressure (SBP) is especially predictive of adverse cardiac events and the relationship between rising nighttime SBP and cardiovascular risk increases more rapidly in women compared to men. The reasons for the prognostic significance of nighttime SBP are not completely known, but may involve vascular endothelial dysfunction. The purpose of this study was to examine the relationship of nighttime SBP and endothelial function, assessed by brachial artery flow-mediated dilation (FMD) and to determine whether postmenopausal women with nighttime hypertension (SBP≥120 mm Hg) evidenced greater endothelial dysfunction compared to women with normal nighttime SBP. Methods One-hundred postmenopausal women (mean age: 65.8 ± 7.5 years, body mass index: 28.3 ± 4.7 kg/m2, hypertension: 47%, coronary artery disease: 51%, mean clinic BP 137 ± 17/67 ± 11 mm Hg, 34 with nighttime hypertension) underwent 24-hour ambulatory BP monitoring, actigraphy, and brachial artery FMD assessments. Results Multivariate regression models showed that higher nighttime SBP and larger baseline artery diameter were inversely related to FMD. Nighttime SBP and baseline artery diameter accounted for 23% of the variance in FMD. After adjusting for baseline artery diameter, women with nighttime hypertension had lower FMD than women with normal nighttime SBP (2.95%±0.65 vs 5.52%±0.46, p = .002). Conclusions In postmenopausal women, nighttime hypertension was associated with reduced endothelial function. Research examining the therapeutic benefits of treating nighttime hypertension on endothelial function and future cardiovascular risk in postmenopausal women is warranted. PMID:25563797

  13. Feline gingivitis-stomatitis-pharyngitis.

    PubMed

    Diehl, K; Rosychuk, R A

    1993-01-01

    Inflammatory conditions of the feline mouth are commonly encountered in small animal practice. Although the majority can be attributed to dental disease and a small percentage are due to autoimmune diseases, the eosinophilic granuloma complex, neoplasia, and other miscellaneous syndromes, many cases appear to be due to a gingivitis-stomatitis-pharyngitis complex, which is likely multifactorial in origin. Viruses, bacterial infection, diet, dental disease, oral conformation, genetic predisposition, hypersensitivities, immunoinsufficiencies, and other defects in oral defense mechanisms may all be contributory. The complexities of this syndrome have made it one of the most challenging diagnostic and therapeutic problems in feline medicine.

  14. Dynamic stomatal behavior and its role in carbon gain during lightflecks of a gap phase and an understory Piper species acclimated to high and low light.

    PubMed

    Tinoco-Ojanguren, Clara; Pearcy, Robert W

    1992-11-01

    Steady-state and dynamic stomatal and assimilation responses to light transients were characterized in sun- and shade-acclimated plants of Piper auritum, a pioneer tree, and Piper aequale a shade-tolerant shrub from a tropical forest at Los Tuxtlas, Veracruz, México. Despite essentially identical steady-state responses of stomatal conductance to PFD of P. aequale and P. auritum shade plants, the dynamic responses to lightflecks were markedly different and depended on the growth regime. For both species from both growth environments, the increase in stomatal conductance occurring in response to a lightfleck continued long after the lightfleck itself so that the maximum stomatal conductance was not reached until 20-40 min after the lightfleck. Closing then occurred until stomatal conductance returned to near its original value before the lightfleck. Plants that were grown under light regimes similar to those of their natural habitat (high light for P. auritum and shade for P. aequale) had large maximum excursions of stomatal conductance and slower closing than opening responses. Plants grown under the opposite conditions had smaller excursions of stomatal conductance, especially in P. auritum, and more symmetrical opening and closing. The large and hysteretic response of stomatal conductance of P. aequale shade plants to a lightfleck was shown to improve carbon gain during subsequent lightflecks by 30-200%, depending on lightfleck duration. In contrast the very small stomatal response to lightflecks in P. auritum shade plants, resulted in no significant improvement in use of subsequent lightflecks.

  15. Scaling of stomatal size and density optimizes allocation of leaf epidermal space for gas exchange in angiosperms

    NASA Astrophysics Data System (ADS)

    de Boer, Hugo Jan; Price, Charles A.; Wagner-Cremer, Friederike; Dekker, Stefan C.; Franks, Peter J.; Veneklaas, Erik J.

    2015-04-01

    Stomata on plant leaves are key traits in the regulation of terrestrial fluxes of water and carbon. The basic morphology of stomata consists of a diffusion pore and two guard cells that regulate the exchange of CO2 and water vapour between the leaf interior and the atmosphere. This morphology is common to nearly all land plants, yet stomatal size (defined as the area of the guard cell pair) and stomatal density (the number of stomata per unit area) range over three orders of magnitude across species. Evolution of stomatal sizes and densities is driven by selection pressure on the anatomical maximum stomatal conductance (gsmax), which determines the operational range of leaf gas exchange. Despite the importance of stomata traits for regulating leaf gas exchange, a quantitative understanding of the relation between adaptation of gsmax and the underlying co-evolution of stomatal sizes and densities is still lacking. Here we develop a theoretical framework for a scaling relationship between stomatal sizes and densities within the constraints set by the allocation of epidermal space and stomatal gas exchange. Our theory predicts an optimal scaling relationship that maximizes gsmax and minimizes epidermal space allocation to stomata. We test whether stomatal sizes and densities reflect this optimal scaling with a global compilation of stomatal trait data on 923 species reflecting most major clades. Our results show optimal scaling between stomatal sizes and densities across all species in the compiled data set. Our results also show optimal stomatal scaling across angiosperm species, but not across gymnosperm and fern species. We propose that the evolutionary flexibility of angiosperms to adjust stomatal sizes underlies their optimal allocation of leaf epidermal space to gas exchange.

  16. Histopathological study of stomatitis nicotina.

    PubMed

    Reddy, C R; Kameswari, V R; Ramulu, C; Reddy, P G

    1971-09-01

    One hundred and thirteen biopsies of the palate in people accustomed to smoking cigars, most of them with the burning end of the cigar inside the mouth, have been studied.Thirty-eight of these showed mild to severe atypical changes in the epithelium. There were 19 lesions showing orthokeratosis and 53 showing hyperorthokeratosis.The earliest atypical change is seen in the mouths of the ducts of the glands.There were 3 cases showing microinvasive carcinomas.Pigmentation is a prominent feature in these cases.The papules with umbilication could be due to hyperplasia of the mucous glands.It is suggested that stomatitis nicotina occurring in men and women with the habit of reverse smoking is probably precancerous because of the presence of atypical changes in the epithelium and also the finding of 3 microinvasive carcinomas without any macroscopic evidence.There is no acceptable explanation why the soft palate escapes getting either stomatitis nicotina lesion or carcinoma in reverse smokers.

  17. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient.

    PubMed

    Doheny-Adams, Timothy; Hunt, Lee; Franks, Peter J; Beerling, David J; Gray, Julie E

    2012-02-19

    To investigate the impact of manipulating stomatal density, a collection of Arabidopsis epidermal patterning factor (EPF) mutants with an approximately 16-fold range of stomatal densities (approx. 20-325% of that of control plants) were grown at three atmospheric carbon dioxide (CO(2)) concentrations (200, 450 and 1000 ppm), and 30 per cent or 70 per cent soil water content. A strong negative correlation between stomatal size (S) and stomatal density (D) was observed, suggesting that factors that control D also affect S. Under some but not all conditions, mutant plants exhibited abnormal stomatal density responses to CO(2) concentration, suggesting that the EPF signalling pathway may play a role in the environmental adjustment of D. In response to reduced water availability, maximal stomatal conductance was adjusted through reductions in S, rather than D. Plant size negatively correlated with D. For example, at 450 ppm CO(2) EPF2-overexpressing plants, with reduced D, had larger leaves and increased dry weight in comparison with controls. The growth of these plants was also less adversely affected by reduced water availability than plants with higher D, indicating that plants with low D may be well suited to growth under predicted future atmospheric CO(2) environments and/or water-scarce environments.

  18. Transmission and pathogenesis of vesicular stomatitis viruses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...

  19. Nighttime ionospheric D region: Equatorial and nonequatorial

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  20. Nighttime air quality under desert conditions

    NASA Astrophysics Data System (ADS)

    Goliff, Wendy S.; Luria, Menachem; Blake, Donald R.; Zielinska, Barbara; Hallar, Gannet; Valente, Ralph J.; Lawson, Charlene V.; Stockwell, William R.

    2015-08-01

    Nighttime concentrations of the gas phase nitrate radical (NO3) were successfully measured during a four week field campaign in an arid urban location, Reno Nevada, using long-path Differential Optical Absorbance Spectrometry (DOAS). While typical concentrations of NO3 ranged from 5 to 20 ppt, elevated concentrations were observed during a wildfire event. Horizontal mixing in the free troposphere was considerable because the sampling site was above the stable nocturnal boundary layer every night and this justified a box modeling approach. Process analysis of box model simulations showed NO3 accounted for approximately half of the loss of internal olefins, 60% of the isoprene loss, and 85% of the α-pinene loss during the nighttime hours during a typical night of the field study. The NO3 + aldehyde reactions were not as important as anticipated. On a polluted night impacted by wildfires upwind of the sampling location, NO3 reactions were more important. Model simulations overpredicted NO2 concentrations for both case studies and inorganic chemistry was the biggest influence on NO3 concentrations and on nitric acid formation. The overprediction may be due to additional NO2 loss processes that were not included in the box model, as deposition and N2O5 uptake had no significant effect on NO2 levels.

  1. A review of nighttime eating disorders.

    PubMed

    Howell, Michael J; Schenck, Carlos H; Crow, Scott J

    2009-02-01

    Nighttime eating is categorized as either night eating syndrome (NES) or sleep-related eating disorder (SRED). These conditions represent an interruption in the overnight fast that characterizes human sleep. A critical review of the literature on NES and SRED will suggest that they are situated at opposite poles of a disordered eating spectrum. NES could be considered an abnormality in the circadian rhythm of meal timing with a normal circadian timing of sleep onset. Conversely, the feeding behavior in SRED is characterized by recurrent episodes of eating after an arousal from nighttime sleep with or without amnesia. Both conditions are often relentless and chronic. Multiple definitions of night eating have limited our ability to determine the exact prevalence of NES. Studies have suggested that central nervous system (CNS) serotonin modulation may lead to an effective treatment of NES. SRED is frequently associated with other sleep disorders, in particular parasomnias. Early studies have shown that the anti-seizure medication topiramate may be an effective treatment for SRED.

  2. Perceptual evaluation of colorized nighttime imagery

    NASA Astrophysics Data System (ADS)

    Toet, Alexander; de Jong, Michael J.; Hogervorst, Maarten A.; Hooge, Ignace T. C.

    2014-02-01

    We recently presented a color transform that produces fused nighttime imagery with a realistic color appearance (Hogervorst and Toet, 2010, Information Fusion, 11-2, 69-77). To assess the practical value of this transform we performed two experiments in which we compared human scene recognition for monochrome intensified (II) and longwave infrared (IR) imagery, and color daylight (REF) and fused multispectral (CF) imagery. First we investigated the amount of detail observers can perceive in a short time span (the gist of the scene). Participants watched brief image presentations and provided a full report of what they had seen. Our results show that REF and CF imagery yielded the highest precision and recall measures, while both II and IR imagery yielded significantly lower values. This suggests that observers have more difficulty extracting information from monochrome than from color imagery. Next, we measured eye fixations of participants who freely explored the images. Although the overall fixation behavior was similar across image modalities, the order in which certain details were fixated varied. Persons and vehicles were typically fixated first in REF, CF and IR imagery, while they were fixated later in II imagery. In some cases, color remapping II imagery and fusion with IR imagery restored the fixation order of these image details. We conclude that color remapping can yield enhanced scene perception compared to conventional monochrome nighttime imagery, and may be deployed to tune multispectral image representation such that the resulting fixation behavior resembles the fixation behavior for daylight color imagery.

  3. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits.

    PubMed

    Sperry, John S; Wang, Yujie; Wolfe, Brett T; Mackay, D Scott; Anderegg, William R L; McDowell, Nate G; Pockman, William T

    2016-11-01

    Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (Pcanopy ) from soil water potential (Psoil ) and vapor pressure deficit (D). Modeled responses to D and Psoil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and Pcanopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization.

  4. Stomatal control of gas-exchange is related to assimilate transport from leaves

    NASA Astrophysics Data System (ADS)

    Nikinmaa, E.; Holtta, T.; Sevanto, S.; Makela, A.; Hari, P.; Vesala, T.

    2009-04-01

    In land plants, the carbon fluxes are closely associated with those of water. The loss of water from leaves pulls water from soil in plants. High transpiration relative to compensating water flux from soil increases the tension of water column that may lead to its rupture and catastrophic dysfunction of the xylem if the transpiration rate is not regulated. Modification of the size of stomatal openings in leaves regulates the interconnected fluxes of water and carbon. Stomatal regulation of transpiration has direct influence also on the carbon transport from source leaves to sinks. Under given conditions, the water tension of xylem in leaves is linearly related to stomatal conductance while the assimilation rate, which is linked to the loading capacity, has saturating relationship with stomatal conductance. High sugar loading at source could compensate for the high water tension in xylem resulting from eg. high transpiration. However, excessive loading rate of the most commonly transported sugar, sucrose, causes rapid viscosity build up that effectively blocks the phloem transport. Assimilate transport from the shoot is a clear requirement for continuous photosynthetic production in leaves. Without transport the storage capacity of the leaves would be rapidly exhausted and accumulation of excess sugars in leaves lead to downregulation of photosynthesis. In this presentation we study the stomatal response to environment and its linkage to xylem and phloem tranport with dynamic model. We hypothesize that stomatal reaction to environment would maintain maximal assimilate transport in phloem under those conditions. We added to the xylem phloem transport model stomatal control of leaf gas-exchange, light and CO2 concentration dependent photosynthesis rate and carbon storage in leaf. For each time step we varied the stomatal conductance and selected the sollution that maximised the transport of assimilates in phloem. Our hypothesis reproduced realistically stomatal

  5. Hormonal dynamics contributes to divergence in seasonal stomatal behaviour in a monsoonal plant community.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    The plant hormone abscisic acid (ABA) is a primary regulator of plant transpiration, but its influence in determining seasonal stomatal behaviour in natural plant communities is poorly understood. We examined distantly related vascular plants growing together in a seasonally dry, monsoonal environment to determine whether ABA dynamics contributed to contrasting water use patterns in this natural setting. Regular sampling of angiosperm, cycad, conifer and fern species revealed characteristic seasonal patterns in ABA production, but these were highly distinct among species. Although no general relationship was observed between ABA levels, plant hydration or stomatal conductance among species, the seasonal dynamics in stomatal behaviour within species were predictable functions of either ABA or leaf water potential. Strong divergence in the seasonal role of ABA among species suggests that modification in ABA-stomatal interactions represents an important evolutionary pathway for adaptation in plant water use.

  6. Ionic partitioning and stomatal regulation

    PubMed Central

    Sanoubar, Rabab; Orsini, Francesco; Gianquinto, Giorgio Prosdocimi

    2013-01-01

    Vegetable grafting is commonly claimed to improve crop’s tolerance to biotic and abiotic stresses, including salinity. Although the use of inter-specific graftings is relatively common, whether the improved salt tolerance should be attributed to the genotypic background rather than the grafting per se is a matter of discussion among scientists. It is clear that most of published research has to date overlooked the issue, with the mutual presence of self-grafted and non-grafted controls resulting to be quite rare within experimental evidences. It was recently demonstrated that the genotype of the rootstock and grafting per se are responsible respectively for the differential ion accumulation and partitioning as well as to the stomatal adaptation to the stress. The present paper contributes to the ongoing discussion with further data on the differences associated to salinity response in a range of grafted melon combinations. PMID:24309549

  7. Satellite instrument provides nighttime sensing capability

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-12-01

    "This is not your father's low-light sensor," Steve Miller, senior research scientist and deputy director of the Cooperative Institute for Research in the Atmosphere at Colorado State University, Fort Collins, said at a 5 December news briefing at the AGU Fall Meeting. He and others at the briefing were showing off the nighttime sensing capability of the day/night band of the Visible Infrared Imaging Radiometer Suite (VIIRS) of instruments onboard the Suomi National Polar-orbiting Partnership (NPP) Earth-observing research satellite, a joint NASA and National Oceanic and Atmospheric Administration (NOAA) satellite that was launched on 28 October 2011. Noting that low-light satellite technology has been available for about 40 years, Miller said that the VIIRS day/night band "is truly a paradigm shift in the technology and capability."

  8. Prototype active scanner for nighttime oil spill mapping and classification

    NASA Technical Reports Server (NTRS)

    Sandness, G. A.; Ailes, S. B.

    1977-01-01

    A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.

  9. Nighttime fears and fantasy-reality differentiation in preschool children.

    PubMed

    Zisenwine, Tamar; Kaplan, Michal; Kushnir, Jonathan; Sadeh, Avi

    2013-02-01

    Nighttime fears are very common in preschool years. During these years, children's fantasy-reality differentiation undergoes significant development. Our study was aimed at exploring the links between nighttime fears and fantasy-reality differentiation in preschool children. Eighty children (aged: 4-6 years) suffering from severe nighttime fears were compared with 32 non-fearful controls. Fears were assessed using child and parental reports. Children viewed images depicting fantastic or real entities and situations, and were asked to report whether these were imaginary or could occur in real life. The results revealed that children with nighttime fears demonstrated more fantasy-reality confusion compared to their controls. These differences in fantasy-reality differentiation were more pronounced in younger children. Additional significant associations were found between fantasy-reality differentiation and age and specific characteristics of the stimuli. These preliminary findings, suggesting a developmental delay in fantasy-reality differentiation in children with nighttime fears, have significant theoretical and clinical implications.

  10. Oral medicine case book 65: Necrotising stomatitis.

    PubMed

    Khammissa, R A G; Ciya, R; Munzhelele, T I; Altini, M; Rikhotso, E; Lemmer, J; Feller, L

    2014-11-01

    Necrotising stomatitis is a fulminating anaerobic polybacterial infection affecting predominantly the oral mucosa of debilitated malnourished children or immunosuppressed HIV-seropositive subjects. It starts as necrotising gingivitis which progresses to necrotising periodontitis and subsequently to necrotising stomatitis. In order to prevent the progression of necrotising stomatitis to noma (cancrum oris), affected patients should be vigorously treated and may require admission to hospital. Healthcare personnel should therefore be familiar with the signs and symptoms of necrotising gingivitis/necrotising periodontitis, of their potential sequelae and of the need for immediate therapeutic intervention.

  11. Consistent allometric scaling of stomatal sizes and densities across taxonomic ranks and geologic time

    NASA Astrophysics Data System (ADS)

    de Boer, H. J.; Price, C. A.; Wagner-Cremer, F.; Dekker, S. C.; Veneklaas, E. J.

    2013-12-01

    Stomatal pores on plants leaves are an important link in the chain of processes that determine biosphere fluxes of water and carbon. Stomatal density (i.e. the number of stomata per area) and the size of the stomatal pore at maximum aperture are particularly relevant traits in this context because they determine the theoretical maximum diffusive stomatal conductance (gsmax) and thereby set an upper limit for leaf gas exchange. Observations on (sub)fossil leaves revealed that changes in stomatal densities are anti-correlated with changes in stomatal sizes at developmental and evolutionary timescales. Moreover, this anti-correlation appears consistently within single species, across multiple species in the extant plant community and at evolutionary time scales. The consistency of the relation between stomatal densities and sizes suggests that common mechanisms constrain the adaptation of these traits across the plant community. In an attempt to identify such potential generic constraints, we investigated the allometry between stomatal densities and sizes in the extant plant community and across geological time. As the size of the stomatal pore at maximum aperture is typically derived from the length of the stomatal pore, we considered the allometric scaling of pore length (lp) with stomatal density (Ds) as the power law: lp = k . Dsa in which k is a normalization constant and the exponent a is the slope of the scaling relation. Our null-hypothesis predicts that stomatal density and pore length scale along a constant slope of -1/2 based on a scale-invariant relation between pore length and the distance between neighboring pores. Our alternative hypothesis predicts a constant slope of -1 based on the idea that stomatal density and pore length scale along an invariant gsmax. To explore these scaling hypotheses in the extant plant community we compiled a dataset of combined observations of stomatal density and pore length on 111 species from published literature and new

  12. The relationship between screen time, nighttime sleep duration, and behavioural problems in preschool children in China.

    PubMed

    Wu, Xiaoyan; Tao, Shuman; Rutayisire, Erigene; Chen, Yunxiao; Huang, Kun; Tao, Fangbiao

    2016-11-07

    The purpose of this study was to evaluate the relationships between screen time (ST), nighttime sleep duration, and behavioural problems in a sample of preschool children in China. A sample of 8900 children aged 3-6 years was enrolled from 35 kindergartens, in four cities, in two provinces, in China to evaluate the relationships between ST, nighttime sleep duration, and behavioural problems. Children's ST and nighttime sleep duration were assessed by questionnaires completed by parents or guardians. Behavioural problems were assessed using the Strengths and Difficulties Questionnaire (SDQ), and the Clancy Autism Behaviour Scale (CABS). Multivariate analysis was used to assess the associations between ST, nighttime sleep duration, and behavioural problems. The total SDQ and CABS scores were higher in children with ST ≥2 h/day and sleep duration <9.15 h/day (a P < 0.001 for all). After adjusting for potential confounders, children with ST ≥2 h/day had a significantly increased risk of having total difficulties, emotional symptoms, conduct problems, hyperactivity, peer problems, and prosocial problems, as well as behavioural symptoms of autism spectrum disorder. Similar results were found in children with sleep duration <9.15 h/day. No significantly increased risk of emotional symptoms was observed for short sleep duration. Preschool children with more ST and short nighttime sleep duration were significantly more likely to have behavioural problems. These results may contribute to a better understanding of prevention and intervention for psychosocial problems in children.

  13. Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO/sub 2/

    SciTech Connect

    Omasa, K.; Hashimoto, Y.; Kramer, P.J.; Strain, B.R.; Aiga, I.; Kondo, J.

    1985-09-01

    The effects of SO/sub 2/ on stomatal aperture of attached sunflower leaves were observed with a remote-control light microscope system that permitted continuous observation of stomatal responses over periods of several hours. The relationship between actual stomatal aperture and stomatal conductance, measured with a porometer, also was examined on leaves before and after exposure to SO/sub 2/. A distinction between uninjured and injured regions was clearly visible on leaves after exposure to 1.5 microliters per liter SO/sub 2/ for less than an hour. During the exposure, the mean value of apertures for many stomata, which indicates stomatal conductance and transpiration rate, tended to decrease simultaneously in the uninjured and injured regions. There was a good correlation between pore width and stomatal conductance measured with a porometer before exposure to SO/sub 2/. This correlation continued in leaves exposed to SO/sub 2/ until visible, irreversible injury occurred, but then it disappeared. The results of these experiments indicate the necessity of continuous observation of individual stomata under the microscope to understand the effects of air pollutants such as SO/sub 2/ on stomatal behavior.

  14. Stomatal Size, Speed, and Responsiveness Impact on Photosynthesis and Water Use Efficiency1[C

    PubMed Central

    Lawson, Tracy; Blatt, Michael R.

    2014-01-01

    The control of gaseous exchange between the leaf and bulk atmosphere by stomata governs CO2 uptake for photosynthesis and transpiration, determining plant productivity and water use efficiency. The balance between these two processes depends on stomatal responses to environmental and internal cues and the synchrony of stomatal behavior relative to mesophyll demands for CO2. Here we examine the rapidity of stomatal responses with attention to their relationship to photosynthetic CO2 uptake and the consequences for water use. We discuss the influence of anatomical characteristics on the velocity of changes in stomatal conductance and explore the potential for manipulating the physical as well as physiological characteristics of stomatal guard cells in order to accelerate stomatal movements in synchrony with mesophyll CO2 demand and to improve water use efficiency without substantial cost to photosynthetic carbon fixation. We conclude that manipulating guard cell transport and metabolism is just as, if not more likely to yield useful benefits as manipulations of their physical and anatomical characteristics. Achieving these benefits should be greatly facilitated by quantitative systems analysis that connects directly the molecular properties of the guard cells to their function in the field. PMID:24578506

  15. Optimal stomatal behavior with competition for water and risk of hydraulic impairment

    PubMed Central

    Wolf, Adam; Anderegg, William R. L.; Pacala, Stephen W.

    2016-01-01

    For over 40 y the dominant theory of stomatal behavior has been that plants should open stomates until the carbon gained by an infinitesimal additional opening balances the additional water lost times a water price that is constant at least over short periods. This theory has persisted because of its remarkable success in explaining strongly supported simple empirical models of stomatal conductance, even though we have also known for over 40 y that the theory is not consistent with competition among plants for water. We develop an alternative theory in which plants maximize carbon gain without pricing water loss and also add two features to both this and the classical theory, which are strongly supported by empirical evidence: (i) water flow through xylem that is progressively impaired as xylem water potential drops and (ii) fitness or carbon costs associated with low water potentials caused by a variety of mechanisms, including xylem damage repair. We show that our alternative carbon-maximization optimization is consistent with plant competition because it yields an evolutionary stable strategy (ESS)—species with the ESS stomatal behavior that will outcompete all others. We further show that, like the classical theory, the alternative theory also explains the functional forms of empirical stomatal models. We derive ways to test between the alternative optimization criteria by introducing a metric—the marginal xylem tension efficiency, which quantifies the amount of photosynthesis a plant will forego from opening stomatal an infinitesimal amount more to avoid a drop in water potential. PMID:27799540

  16. Expression of Arabidopsis Hexokinase in Citrus Guard Cells Controls Stomatal Aperture and Reduces Transpiration.

    PubMed

    Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David

    2015-01-01

    Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.

  17. [Denture stomatitis - definition, etiology, classification and treatment].

    PubMed

    Cubera, Katarzyna

    2013-01-01

    Denture stomatitis pertains to a number of pathological symptoms in the oral cavity caused by wearing acrylic dentures. Etiological factors include: mucosal trauma, fungal infection and accumulation of denture plaque. All of these factors appear to increase the ability of Candida albicans to colonize both the denture and oral mucosal surfaces. Antifungal treatment can eradicate C. albicans contamination and relieve stomatitis symptoms. Early diagnosis of the lesion is essential to assure rational therapy.

  18. Patchy stomatal behavior in broad-leaved trees grown in different habitats.

    PubMed

    Takanashi, Satoru; Kosugi, Yoshiko; Matsuo, Naoka; Tani, Makoto; Ohte, Nobuhito

    2006-12-01

    Effects of heterogeneity in stomatal behavior on gas-exchange characteristics of leaves from four tree species growing in different climates, including temperate, tropical monsoon and tropical rain forest, were investigated by combining gas-exchange measurements and the pressure-infiltration method. Field observations indicated linear relationships between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area (open stomata area) in Dipterocarpus sublamellatus Foxw. and Neobalanocarpus heimii (King) Ashton in a tropical rain forest in Peninsular Malaysia, whereas the ratio of infiltrated to non-infiltrated area rapidly increased up to the whole-leaf conductance at which the entire leaf was infiltrated in Cinnamomum camphora Sieb. in a temperate evergreen forest in Japan and in Azadirachta indica Juss. in a tropical monsoon area in Thailand. These results strongly suggest small ranges in bell-shaped stomatal conductance distributions in C. camphora and A. indica and bimodal stomatal conductance distributions in D. sublamellatus and N. heimii. The values of normalized maximum carboxylation rate at 25 degrees C (V(cmax25)) derived from gas-exchange measurements were not constant, but decreased with decreasing whole-leaf conductance in D. sublamellatus and N. heimii. A gas-exchange model analysis revealed a linear relationship between whole-leaf conductance and the ratio of infiltrated to non-infiltrated leaf area for bimodal stomatal conductance distributions, whereas for bell-shaped distributions, the relationships were nonlinear. Midday depression of apparent V(cmax25) in these species was mainly caused by bimodal stomatal closure. The bimodal stomatal distribution model could also explain diurnal changes in photosynthetic assimilation and transpiration rates in these species.

  19. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2

    PubMed Central

    Haworth, Matthew; Killi, Dilek; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro

    2016-01-01

    Physiological control of stomatal conductance (Gs) permits plants to balance CO2-uptake for photosynthesis (PN) against water-loss, so optimizing water use efficiency (WUE). An increase in the atmospheric concentration of carbon dioxide ([CO2]) will result in a stimulation of PN and reduction of Gs in many plants, enhancing carbon gain while reducing water-loss. It has also been hypothesized that the increase in WUE associated with lower Gs at elevated [CO2] would reduce the negative impacts of drought on many crops. Despite the large number of CO2-enrichment studies to date, there is relatively little information regarding the effect of elevated [CO2] on stomatal control. Five crop species with active physiological stomatal behavior were grown at ambient (400 ppm) and elevated (2000 ppm) [CO2]. We investigated the relationship between stomatal function, stomatal size, and photosynthetic capacity in the five species, and then assessed the mechanistic effect of elevated [CO2] on photosynthetic physiology, stomatal sensitivity to [CO2] and the effectiveness of stomatal closure to darkness. We observed positive relationships between the speed of stomatal response and the maximum rates of PN and Gs sustained by the plants; indicative of close co-ordination of stomatal behavior and PN. In contrast to previous studies we did not observe a negative relationship between speed of stomatal response and stomatal size. The sensitivity of stomata to [CO2] declined with the ribulose-1,5-bisphosphate limited rate of PN at elevated [CO2]. The effectiveness of stomatal closure was also impaired at high [CO2]. Growth at elevated [CO2] did not affect the performance of photosystem II indicating that high [CO2] had not induced damage to the photosynthetic physiology, and suggesting that photosynthetic control of Gs is either directly impaired at high [CO2], sensing/signaling of environmental change is disrupted or elevated [CO2] causes some physical effect that constrains stomatal

  20. Impaired Stomatal Control Is Associated with Reduced Photosynthetic Physiology in Crop Species Grown at Elevated [CO2].

    PubMed

    Haworth, Matthew; Killi, Dilek; Materassi, Alessandro; Raschi, Antonio; Centritto, Mauro

    2016-01-01

    Physiological control of stomatal conductance (Gs) permits plants to balance CO2-uptake for photosynthesis (PN) against water-loss, so optimizing water use efficiency (WUE). An increase in the atmospheric concentration of carbon dioxide ([CO2]) will result in a stimulation of PN and reduction of Gs in many plants, enhancing carbon gain while reducing water-loss. It has also been hypothesized that the increase in WUE associated with lower Gs at elevated [CO2] would reduce the negative impacts of drought on many crops. Despite the large number of CO2-enrichment studies to date, there is relatively little information regarding the effect of elevated [CO2] on stomatal control. Five crop species with active physiological stomatal behavior were grown at ambient (400 ppm) and elevated (2000 ppm) [CO2]. We investigated the relationship between stomatal function, stomatal size, and photosynthetic capacity in the five species, and then assessed the mechanistic effect of elevated [CO2] on photosynthetic physiology, stomatal sensitivity to [CO2] and the effectiveness of stomatal closure to darkness. We observed positive relationships between the speed of stomatal response and the maximum rates of PN and Gs sustained by the plants; indicative of close co-ordination of stomatal behavior and PN. In contrast to previous studies we did not observe a negative relationship between speed of stomatal response and stomatal size. The sensitivity of stomata to [CO2] declined with the ribulose-1,5-bisphosphate limited rate of PN at elevated [CO2]. The effectiveness of stomatal closure was also impaired at high [CO2]. Growth at elevated [CO2] did not affect the performance of photosystem II indicating that high [CO2] had not induced damage to the photosynthetic physiology, and suggesting that photosynthetic control of Gs is either directly impaired at high [CO2], sensing/signaling of environmental change is disrupted or elevated [CO2] causes some physical effect that constrains stomatal

  1. [Veterinary dentistry (11). Feline gingivitis-stomatitis-pharyngitis complex. Chronic/recurrent stomatitis in cats].

    PubMed

    van Foreest, A

    1995-10-01

    This is the fourth article in a series on veterinary dentistry in cats. This article describes the clinical signs, possible investigations, and differential diagnosis of the gingivitis-stomatitis pharyngitis complex (GSP complex), a complex and frequently occurring disease. Strategies for the treatment of feline chronic stomatitis complex, which is frequently idiopathic, are presented.

  2. The Fate of Ozone at a Ponderosa Pine Plantation: Partitioning Between Stomatal and Non-stomatal Deposition Using Sap Flow and Eddy Covariance Techniques

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; McKay, M. M.; Goldstein, A. H.

    2001-12-01

    Major advances in quantifying ozone deposition to vegetated ecosystems have been made using above-canopy techniques -- such as eddy covariance -- that allow for the direct measure of ozone flux into natural systems. However, from above-canopy flux measurements alone, it is impossible to differentiate between deposition through stomatal openings of trees versus non-stomatal surfaces or within canopy chemical loss. Therefore, there is a need to partition ozone fluxes into plant stomatal and non-stomatal components. Sap flow measurements provide a direct measurement of stomatal conductance from which we can infer ozone uptake by trees: this represents a novel way to determine pollutant loading on stomatal surfaces of trees that is inexpensive, reliable, and can be deployed in a multitude of environments. Sap flow measurements were used to determine ozone uptake by ponderosa pine trees in the Sierra Nevada Mountains year-round starting in June 2000 at Blodgett Forest, an Ameriflux site located ~75 miles downwind of Sacramento, CA. Concurrently, total ecosystem ozone flux was measured using eddy covariance. Mean total ozone flux to the ecosystem was 46.6 μ mol m-2 h-1 (+/-15.1) in summer 2000, 27.6 μ mol m-2 h-1 (+/-14.2) in fall 2000, 8.2 μ mol m-2 h-1 (+/-5.1) in winter 2001, and 21.1 μ mol m-2 h-1 (+/-11.6) in spring 2001. Mean ozone flux through the stomata was 14.6 μ mol m-2 h-1 (+/-4.1) during summer 2000, 12.9 μ mol m-2 h-1 (+/-5.8) during fall 2000, 5.6 μ mol m-2 h-1 (+/-2.8) during winter 2001, and 12.7 μ mol m-2 h-1 (+/-3.7) during spring 2001. The percentage of total ozone deposition which occurred through the stomata was 31% in summer, 47% in fall, 69% but highly variable in winter, and 60% in spring. The difference between total ozone flux to the ecosystem and stomatal ozone flux to the trees varied exponentially with air temperature, suggesting that much of the non-stomatal deposition was actually due to chemical loss either on surfaces or within

  3. The Remote Equatorial Nighttime Observatory of Ionospheric Regions Project and the International Heliospherical Year

    NASA Astrophysics Data System (ADS)

    Makela, Jonathan J.; Meriwether, John W.; Lima, Jose P.; Miller, Ethan S.; Armstrong, Shaun J.

    2009-04-01

    We describe a new suite of instruments planned for deployment to Cape Verde as part of the International Heliospherical Year. The Remote Equatorial Nighttime Observatory of Ionospheric Regions (RENOIR) project consists of a bistatic Fabry-Perot interferometer system, an all-sky imaging system, a dual-frequency Global Positioning System (GPS) receiver, and an array of single-frequency GPS scintillation monitors. This instrumentation will allow for studying the low-latitude thermosphere/ionosphere (TI) system in great detail. Investigations to be conducted using this instrumentation while in Cape Verde include studying equatorial irregularity processes, the effects of neutral winds and gravity waves on irregularity development, the midnight temperature maximum, and ion-neutral coupling in the nighttime TI system. Initial observations from the RENOIR instrumentation during pre-deployment testing at the Urbana Atmospheric Observatory are presented, as is the deployment scenario for the project in Cape Verde.

  4. Analysis of Temperature Distributions in Nighttime Inversions

    NASA Astrophysics Data System (ADS)

    Telyak, Oksana; Krasouski, Aliaksandr; Svetashev, Alexander; Turishev, Leonid; Barodka, Siarhei

    2015-04-01

    Adequate prediction of temperature inversion in the atmospheric boundary layer is one of prerequisites for successful forecasting of meteorological parameters and severe weather events. Examples include surface air temperature and precipitation forecasting as well as prediction of fog, frosts and smog with hazardous levels of atmospheric pollution. At the same time, reliable forecasting of temperature inversions remains an unsolved problem. For prediction of nighttime inversions over some specific territory, it is important to study characteristic features of local circulation cells formation and to properly take local factors into account to develop custom modeling techniques for operational use. The present study aims to investigate and analyze vertical temperature distributions in tropospheric inversions (isotherms) over the territory of Belarus. We study several specific cases of formation, evolution and decay of deep nighttime temperature inversions in Belarus by means of mesoscale numerical simulations with WRF model, considering basic mechanisms of isothermal and inverse temperature layers formation in the troposphere and impact of these layers on local circulation cells. Our primary goal is to assess the feasibility of advance prediction of inversions formation with WRF. Modeling results reveal that all cases under consideration have characteristic features of radiative inversions (e.g., their formation times, development phases, inversion intensities, etc). Regions of "blocking" layers formation are extensive and often spread over the entire territory of Belarus. Inversions decay starts from the lowermost (near surface) layer (altitudes of 5 to 50 m). In all cases, one can observe formation of temperature gradients that substantially differ from the basic inversion gradient, i.e. the layer splits into smaller layers, each having a different temperature stratification (isothermal, adiabatic, etc). As opposed to various empirical techniques as well as

  5. Night-time symptoms: a forgotten dimension of COPD.

    PubMed

    Agusti, A; Hedner, J; Marin, J M; Barbé, F; Cazzola, M; Rennard, S

    2011-09-01

    Sleep quality is often poor in patients with chronic obstructive pulmonary disease (COPD), but these night-time symptoms are frequently unnoticed by physicians and/or not reported by patients themselves. Therefore, the prevalence and clinical impact of sleep disturbances and night-time symptoms in COPD is not well understood and has not been a clinical focus to date. To address this gap, an expert panel meeting was convened in Barcelona, Spain, in March 2011 to discuss the aetiology, evolution, burden, long-term clinical consequences and optimal management of night-time symptoms in COPD. The term "night-time symptoms" in COPD has not been distinctly defined in an objective sense but epidemiological data suggests that the prevalence of nocturnal symptoms and symptomatic sleep disturbance may exceed 75% in patients with COPD. The panel concluded that night-time symptoms in COPD are prevalent and bothersome; that their cause(s) are multiple and include demographic factors, such as age and obesity, pharmacotherapy, disease-specific symptoms and the presence of comorbid sleep disorders, and other medical conditions; and that potential long-term consequences can include lung function changes, increased exacerbation frequency, emergence or worsening of cardiovascular disease, cognitive effects, depression, impaired quality of life and increased mortality. To date, few interventional studies have investigated them, but emerging data suggest that bronchodilator therapy can improve them if deployed appropriately. In summary, night-time symptoms in COPD warrant further clinical investigation with validated tools.

  6. Stomatal architecture and evolution in basal angiosperms.

    PubMed

    Carpenter, Kevin J

    2005-10-01

    Stomatal architecture-the number, form, and arrangement of specialized epidermal cells associated with stomatal guard cells-of 46 species of basal angiosperms representing all ANITA grade families and Chloranthaceae was investigated. Leaf clearings and cuticular preparations were examined with light microscopy, and a sample of 100 stomata from each specimen was coded for stomatal type and five other characters contributing to stomatal architecture. New stomatal types were defined, and many species were examined and illustrated for the first time. Character evolution was examined in light of the ANITA hypothesis using MacClade software. Analysis of character evolution, along with other evidence from this study and evidence from the literature on fossil angiosperms and other seed plant lineages, suggests that the ancestral condition of angiosperms can be described as anomo-stephanocytic, a system in which complexes lacking subdidiaries (anomocytic) intergrade with those having weakly differentiated subsidiaries arranged in a rosette (stephanocytic). From this ancestral condition, tangential divisions of contact cells led to the profusion of different types seen in early fossil angiosperms and Amborellaceae, Austrobaileyales, and derived Chloranthaceae, while the state in Nymphaeales is little modified. Formation of new, derived types by tangential division appears to be a recurrent theme in seed plant evolution.

  7. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation.

    PubMed

    Merilo, Ebe; Laanemets, Kristiina; Hu, Honghong; Xue, Shaowu; Jakobson, Liina; Tulva, Ingmar; Gonzalez-Guzman, Miguel; Rodriguez, Pedro L; Schroeder, Julian I; Broschè, Mikael; Kollist, Hannes

    2013-07-01

    Rapid stomatal closure induced by changes in the environment, such as elevation of CO2, reduction of air humidity, darkness, and pulses of the air pollutant ozone (O3), involves the SLOW ANION CHANNEL1 (SLAC1). SLAC1 is activated by OPEN STOMATA1 (OST1) and Ca(2+)-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of type 2 protein phosphatases (PP2C) by PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR) receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance and stomatal closure induced by environmental factors, we used a set of Arabidopsis (Arabidopsis thaliana) mutants defective in ABA metabolism/signaling. The stomatal conductance values varied severalfold among the studied mutants, indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity, and O3. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner, and there is a functional diversity among them. Although a rapid stomatal response to elevated CO2 was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was reduced in the dominant active PP2C mutants abi1-1 and abi2-1. Further experiments with a wider range of CO2 concentrations and analyses of stomatal response kinetics suggested that the ABA signalosome partially affects the CO2-induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness, and O3 and are involved in responses to elevated CO2.

  8. Nighttime Chemistry at a High Elevation Site above Hong Kong: Implications for Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Brown, S. S.; Parrish, D. D.; Tham, Y. J.; Wang, T.; Zha, Q.; Xu, Z.; Xue, L.; Poon, S.; Wang, Z.; Wang, X.; Tsui, W.

    2014-12-01

    Nighttime chemical processes of nitrogen oxides, including reactions of the nitrate radical (NO3) and dinitrogen pentoxide (N2O5), are important to numerous tropospheric chemical cycles, including the removal of NO­x, the oxidation of biogenic hydrocarbons, and the heterogeneous activation of halogen species. These cycles influence regional ozone and aerosol pollution but remain uncertain. Although nitrogen oxide levels are highest in urban areas, nighttime chemistry is notoriously difficult to study in these regions due to surface level buildup of NO and consequent titration of O3, which suppress nighttime chemical reactions. Tai Mo Shan (TMS) is a high elevation site (950 m) situated between the cities of Hong Kong and Shenzhen, each of which has a population of approximately 7 million. Both lie within the Pearl River Delta, a regional megacity of population 45 million. TMS is ideally suited for the study of nighttime chemistry within a megacity because it is situated within the residual boundary layer at night and is influenced by regional pollution in the absence of strong local effects. During the fall season, the Pearl River Delta region and Hong Kong experience peak ozone due to meteorological pattern that brings polluted continental outflow over the coastal region of southern China. During November and December 2013, a small-scale field study was conducted at the TMS summit to investigate nighttime chemistry. Chemical instrumentation included cavity ring-down and mass spectrometric instruments for NO3, N2O5 and ClNO2, as well as instrumentation for measurement of NOx, NOy, O3, VOCs, aerosols, other trace gases and meteorological data. Regular late afternoon and evening outflow events from mainland China were observed at this site, including one event with extreme (12 ppbv) levels of N2O5. This presentation will give an overview of the campaign, the atmospheric chemical data and its relationship to meteorological regimes. It will also examine budgets for

  9. Gingivitis/stomatitis in cats.

    PubMed

    Williams, C A; Aller, M S

    1992-11-01

    Any alteration in the balance of bacterial challenge versus the host's ability to resist and repair will result in oral lesions that are similar in appearance. The bacterial cause of gingivitis and periodontitis in humans and in all other animals in which it has been studied is firmly established, and specific species of predominantly gram-negative anaerobes have been implicated. Naturally occurring or acquired immunopathologies are likely to result in premature dental disease. When oral disease is associated with the accumulation of plaque, a positive response can be achieved by reducing the bacterial challenge to the host through the maintenance of oral hygiene by timely professional dental prophylaxis and home care. Disease that is the result of atypical immune responses, however, can be much more difficult to manage. Such oral disease can occur with either immune deficiencies or exaggerated immune responses, and it is likely that multiple mechanisms are active concurrently. In any case, gram-negative anaerobes present in plaque are likely to be a major contributing factor. Therefore patients with chronic refractory gingivitis-stomatitis must be considered to be plaque intolerant. Only with a frequent regimen of aggressive and thorough professional dental treatment plus meticulous oral home care on a daily basis can one expect to keep these cases in remission. Because this is often unrealistic, the only other way to keep these patients free of disease is by total dental extraction. The tissues that are colonized by the causative organisms must be eliminated. All root tips and bony sequestra must be removed and healing with intact epithelium accomplished before these cases will go into remission. Edentulous feline patients that continue to have signs of gingivostomatitis have been found to have an area of nonhealed bony sequestrum and chronic osteomyelitis. Once effective debridement has been accomplished and epithelial healing completed, nonresponsive cases can

  10. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling.

    PubMed

    Fotopoulos, Vasileios; De Tullio, Mario C; Barnes, Jeremy; Kanellis, Angelos K

    2008-01-01

    Control of stomatal aperture is of paramount importance for plant adaptation to the surrounding environment. Here, we report on several parameters related to stomatal dynamics and performance in transgenic tobacco plants (Nicotiana tabacum L., cv. Xanthi) over-expressing cucumber ascorbate oxidase (AO), a cell wall-localized enzyme of uncertain biological function that oxidizes ascorbic acid (AA) to monodehydroascorbic acid which dismutates yielding AA and dehydroascorbic acid (DHA). In comparison to WT plants, leaves of AO over-expressing plants exhibited reduced stomatal conductance (due to partial stomatal closure), higher water content, and reduced rates of water loss on detachment. Transgenic plants also exhibited elevated levels of hydrogen peroxide and a decline in hydrogen peroxide-scavenging enzyme activity. Leaf ABA content was also higher in AO over-expressing plants. Treatment of epidermal strips with either 1 mM DHA or 100 microM hydrogen peroxide resulted in rapid stomatal closure in WT plants, but not in AO-over-expressing plants. This suggests that signal perception and/or transduction associated with stomatal closure is altered by AO over-expression. These data support a specific role for cell wall-localized AA in the perception of environmental cues, and suggest that DHA acts as a regulator of stomatal dynamics.

  11. Stomagen positively regulates stomatal density in Arabidopsis.

    PubMed

    Sugano, Shigeo S; Shimada, Tomoo; Imai, Yu; Okawa, Katsuya; Tamai, Atsushi; Mori, Masashi; Hara-Nishimura, Ikuko

    2010-01-14

    Stomata in the epidermal tissues of leaves are valves through which passes CO(2), and as such they influence the global carbon cycle. The two-dimensional pattern and density of stomata in the leaf epidermis are genetically and environmentally regulated to optimize gas exchange. Two putative intercellular signalling factors, EPF1 and EPF2, function as negative regulators of stomatal development in Arabidopsis, possibly by interacting with the receptor-like protein TMM. One or more positive intercellular signalling factors are assumed to be involved in stomatal development, but their identities are unknown. Here we show that a novel secretory peptide, which we designate as stomagen, is a positive intercellular signalling factor that is conserved among vascular plants. Stomagen is a 45-amino-rich peptide that is generated from a 102-amino-acid precursor protein designated as STOMAGEN. Both an in planta analysis and a semi-in-vitro analysis with recombinant and chemically synthesized stomagen peptides showed that stomagen has stomata-inducing activity in a dose-dependent manner. A genetic analysis showed that TMM is epistatic to STOMAGEN (At4g12970), suggesting that stomatal development is finely regulated by competitive binding of positive and negative regulators to the same receptor. Notably, STOMAGEN is expressed in inner tissues (the mesophyll) of immature leaves but not in the epidermal tissues where stomata develop. This study provides evidence of a mesophyll-derived positive regulator of stomatal density. Our findings provide a conceptual advancement in understanding stomatal development: inner photosynthetic tissues optimize their function by regulating stomatal density in the epidermis for efficient uptake of CO(2).

  12. Shifts in stomatal traits following the domestication of plant species.

    PubMed

    Milla, Rubén; de Diego-Vico, Natalia; Martín-Robles, Nieves

    2013-08-01

    Stomata are the major gates regulating substrate availability for photosynthesis and water loss. Although both processes are critical to yield and to resource-use efficiency, we lack a comprehensive picture on how domestication and further breeding have impacted on leaf stomata. To fill this gap, stomatal sizes and densities were screened in cultivated and wild ancestor representatives of a uniquely large group of 24 herbaceous crops. Anatomical data and gas-exchange models were combined to compute maximum potential conductance to water, separately for upper and lower leaf sides. The evolution of maximum conductance under domestication was diverse. Several crops increased, others decreased (noticeably high-conductance species), and others kept a similar potential conductance following domestication. It was found that the contribution of upper leaf sides to maximum conductance was statistically higher in cultivated than in wild ancestors. For crops showing this response, reduced stomatal density in the lower side of domesticated leaves was responsible for the observed 'adaxialization' of conductance. Increases in the size of stomata at the upper epidermis played a comparatively minor role. Nevertheless, this overall response was varied in magnitude and direction, signalling crop-wise specificities. Observed patterns reflect only potential conductances based on anatomical traits and should be used with care until actual physiological outcomes are measured. Together with advancements in the developmental genetics of stomata, our findings might hint at new breeding avenues, focused on stomata distribution. Provided urgent needs for increasing yields, the opportunities of enhancing traits of the physiological relevance of stomata should not be ignored.

  13. Measuring nighttime spawning behavior of chum salmon using a dual-frequency identification sonar (DIDSON)

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.

    2005-01-01

    The striking body coloration and morphology that Pacific salmon display during spawning coupled with elaborate courtship behaviors suggest that visual cues are important during their reproductive period. To date, virtually all existing information on chum salmon (Oncorhynchus keta) spawning behavior has been derived from studies conducted during the daytime, and has contributed to the assumption that salmon do not spawn at night. We tested this assumption using a new technology - a dual-frequency identification sonar (DIDSON) - to describe and measure nighttime spawning behavior of wild chum salmon in the Columbia River. The DIDSON produces detailed, video-like images using sound, which enabled us to collect behavioral information at night in complete darkness. The display of DIDSON images enabled fish movements and behaviors to be spatially quantified. We collected continuous observational data on 14 pairs of chum salmon in a natural spawning channel during the daytime and nighttime. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the pre-spawning behavior of tail crossing. We observed a total of 13 spawning events, of which nine occurred at night and four occurred during the day. The behaviors we observed at night suggest the assumption that chum salmon do not spawn at night is false. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. We speculate that non-visual cues (e.g. tactile and auditory) enable chum salmon to carry out most spawning behaviors at night. Our findings have implications for how nighttime flows from hydroelectric dams on the Columbia River are managed for power production and protection of imperiled salmon stocks.

  14. The Evolution of Mechanisms Driving the Stomatal Response to Vapor Pressure Deficit1[OPEN

    PubMed Central

    McAdam, Scott A.M.; Brodribb, Timothy J.

    2015-01-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage. PMID:25637454

  15. The evolution of mechanisms driving the stomatal response to vapor pressure deficit.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2015-03-01

    Stomatal responses to vapor pressure deficit (VPD) are a principal means by which vascular land plants regulate daytime transpiration. While much work has focused on characterizing and modeling this response, there remains no consensus as to the mechanism that drives it. Explanations range from passive regulation by leaf hydration to biochemical regulation by the phytohormone abscisic acid (ABA). We monitored ABA levels, leaf gas exchange, and water status in a diversity of vascular land plants exposed to a symmetrical, mild transition in VPD. The stomata in basal lineages of vascular plants, including gymnosperms, appeared to respond passively to changes in leaf water status induced by VPD perturbation, with minimal changes in foliar ABA levels and no hysteresis in stomatal action. In contrast, foliar ABA appeared to drive the stomatal response to VPD in our angiosperm samples. Increased foliar ABA level at high VPD in angiosperm species resulted in hysteresis in the recovery of stomatal conductance; this was most pronounced in herbaceous species. Increased levels of ABA in the leaf epidermis were found to originate from sites of synthesis in other parts of the leaf rather than from the guard cells themselves. The transition from a passive regulation to ABA regulation of the stomatal response to VPD in the earliest angiosperms is likely to have had critical implications for the ecological success of this lineage.

  16. Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming.

    PubMed

    Marchin, Renée M; Broadhead, Alice A; Bostic, Laura E; Dunn, Robert R; Hoffmann, William A

    2016-10-01

    Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata, and thereby less efficient water use. Stomatal acclimation maintained homeostasis of leaf T and carbon gain despite increased VPD, revealing that short-term stomatal responses to VPD may not be representative of long-term exposure. Acclimation responses differ from expectations of decreasing gs with increasing VPD and may necessitate revision of current models based on this assumption.

  17. Responses of Hawaiian plants to volcanic sulfur dioxide: stomatal behavior and foliar injury

    SciTech Connect

    Not Available

    1980-11-14

    Hawaiian plants exposed to volcanic sulfur dioxide showed interspecific differences in leaf injury that are related to sulfur dioxide-induced changes in stomatal conductance. Species with leaves that did not close stomata developed either chlorosis or necrosis, whereas leaves of Metrosideros collina closed stomata and showed no visual symptoms of sulfur dioxide stress.

  18. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  19. Neurexin regulates nighttime sleep by modulating synaptic transmission

    PubMed Central

    Tong, Huawei; Li, Qian; Zhang, Zi Chao; Li, Yi; Han, Junhai

    2016-01-01

    Neurexins are cell adhesion molecules involved in synaptic formation and synaptic transmission. Mutations in neurexin genes are linked to autism spectrum disorders (ASDs), which are frequently associated with sleep problems. However, the role of neurexin-mediated synaptic transmission in sleep regulation is unclear. Here, we show that lack of the Drosophila α-neurexin homolog significantly reduces the quantity and quality of nighttime sleep and impairs sleep homeostasis. We report that neurexin expression in Drosophila mushroom body (MB) αβ neurons is essential for nighttime sleep. We demonstrate that reduced nighttime sleep in neurexin mutants is due to impaired αβ neuronal output, and show that neurexin functionally couples calcium channels (Cac) to regulate synaptic transmission. Finally, we determine that αβ surface (αβs) neurons release both acetylcholine and short neuropeptide F (sNPF), whereas αβ core (αβc) neurons release sNPF to promote nighttime sleep. Our findings reveal that neurexin regulates nighttime sleep by mediating the synaptic transmission of αβ neurons. This study elucidates the role of synaptic transmission in sleep regulation, and might offer insights into the mechanism of sleep disturbances in patients with autism disorders. PMID:27905548

  20. The Health Impact of Nighttime Eating: Old and New Perspectives

    PubMed Central

    Kinsey, Amber W.; Ormsbee, Michael J.

    2015-01-01

    Nighttime eating, particularly before bed, has received considerable attention. Limiting and/or avoiding food before nighttime sleep has been proposed as both a weight loss strategy and approach to improve health and body composition. Indeed, negative outcomes have been demonstrated in response to large mixed meals in populations that consume a majority of their daily food intake during the night. However, data is beginning to mount to suggest that negative outcomes may not be consistent when the food choice is small, nutrient-dense, low energy foods and/or single macronutrients rather than large mixed-meals. From this perspective, it appears that a bedtime supply of nutrients can promote positive physiological changes in healthy populations. In addition, when nighttime feeding is combined with exercise training, any adverse effects appear to be eliminated in obese populations. Lastly, in Type I diabetics and those with glycogen storage disease, eating before bed is essential for survival. Nevertheless, nighttime consumption of small (~150 kcals) single nutrients or mixed-meals does not appear to be harmful and may be beneficial for muscle protein synthesis and cardiometabolic health. Future research is warranted to elucidate potential applications of nighttime feeding alone and in combination with exercise in various populations of health and disease. PMID:25859885

  1. Nighttime OClO in the Winter Arctic Vortex

    NASA Technical Reports Server (NTRS)

    Canty, T.; Riviere, E. D.; Salawitch, R. J.; Berthet, G.; Renard, J. -B.; Pfeilsticker, K.; Dorf, M.; Butz, A.; Bosch, H.; Stimpfle, R. M.; Wilmouth, D. M.; Richard, E. C.; Fahey, D. W.; Popp, P. J.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.

    2005-01-01

    We show that a nighttime profile of OClO in the Arctic vortex during the winter of 2000 is overestimated, by nearly a factor of 2, using an isentropic trajectory model constrained by observed profiles of ClOx (ClO + 2 X ClOOCl) and BrO. Calculated abundances of nighttime OClO are shown to be sensitive to the abundance of BrOx (BrO + BrCl), details of the air parcel history during the most recent sunrise/sunset transitions, and the BrCl yield from the reaction BrO + ClO. Many uncertainties are considered, and the discrepancy between measured and modeled nighttime OClO appears to be robust. This discrepancy suggests that production of OClO occurs more slowly than implied by standard photochemistry. If the yield of BrCl from the reaction of BrO + ClO is increased from 7% (JPL 2002 value) to 11% (near the upper limit of the uncertainty), good agreement is found between measured and modeled nighttime OClO. This study highlights the importance of accurate knowledge of BrO + ClO reaction kinetics as well as air parcel trajectories for proper interpretation of nighttime OClO. These factors have a considerably smaller impact on the interpretation of OClO observations obtained during twilight (90(deg) <=SZA <= 92(deg)), when photolytic processes are still active.

  2. Ozone risk assessment for agricultural crops in Europe: Further development of stomatal flux and flux-response relationships for European wheat and potato

    NASA Astrophysics Data System (ADS)

    Pleijel, H.; Danielsson, H.; Emberson, L.; Ashmore, M. R.; Mills, G.

    Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat ( r2=0.83) and potato ( r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AF st6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m -2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.

  3. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    PubMed

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  4. Evidence for NO(x) control over nighttime SOA formation.

    PubMed

    Rollins, A W; Browne, E C; Min, K-E; Pusede, S E; Wooldridge, P J; Gentner, D R; Goldstein, A H; Liu, S; Day, D A; Russell, L M; Cohen, R C

    2012-09-07

    Laboratory studies have established a number of chemical pathways by which nitrogen oxides (NO(x)) affect atmospheric organic aerosol (OA) production. However, these effects have not been directly observed in ambient OA. We report measurements of particulate organic nitrates in Bakersfield, California, the nighttime formation of which increases with NO(x) and is suppressed by high concentrations of organic molecules that rapidly react with nitrate radical (NO(3))--evidence that multigenerational chemistry is responsible for organic nitrate aerosol production. This class of molecules represents about a third of the nighttime increase in OA, suggesting that most nighttime secondary OA is due to the NO(3) product of anthropogenic NO(x) emissions. Consequently, reductions in NO(x) emissions should reduce the concentration of organic aerosol in Bakersfield and the surrounding region.

  5. K+ starvation inhibits water-stress-induced stomatal closure via ethylene synthesis in sunflower plants.

    PubMed

    Benlloch-González, María; Romera, Javier; Cristescu, Simona; Harren, Fran; Fournier, José María; Benlloch, Manuel

    2010-02-01

    The effect of water stress on stomatal closure in sunflower plants has been found to be dependent on K(+) nutrient status. When plants with different internal K(+) content were subjected to a water-stress period, stomatal conductance was reduced more markedly in plants with an adequate K(+) supply than in K(+)-starved plants. K(+) starvation promoted the production of ethylene by detached leaves, as well as by the shoot of whole plants. Water stress had no significant effect on this synthesis. The effect on stomatal conductance of adding 5 microM cobalt (an ethylene synthesis inhibitor) to the growing medium of plants subjected to water stress was also dependent on their K(+) nutritional status: conductance was not significantly affected in normal K(+) plants whereas it was reduced in K(+)-starved plants. Cobalt had no harmful effects on growth, and did not alter the internal K(+) content in the plants. These results suggest that ethylene may play a role in the inhibiting effect of K(+) starvation on stomatal closure.

  6. Nighttime temperatures and ion chemistry from OGO 6 plasma measurements

    NASA Technical Reports Server (NTRS)

    Sanatani, S.; Breig, E. L.

    1980-01-01

    Results are presented of a statical investigation of temperature and molecular ion chemistry in the nighttime thermosphere, with data from plasma measurements between 400 and 450 km from the retarding potential analyzer on the OGO 6 satellite. Temperatures and ion concentrations from the equatorial region are discussed. Emphasis is placed on statistical analyses of all data acquired within small cells of finite width in latitude and day of observation. Attention is given to a significant fraction of the nighttime hemisphere between low summer and middle winter latitudes.

  7. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis

    PubMed Central

    Ha, Yunmi; Shang, Yun; Nam, Kyoung Hee

    2016-01-01

    Stomatal movement in response to water availability is an important physiological process in the survival of land plants. The plant hormone abscisic acid (ABA) and brassinosteroids (BRs) regulate stomatal closure. The physiological functions of ABA and BRs, including germination, cell elongation and stomatal movement, are generally known to be antagonistic. Here, we investigated how BRs affect stomatal movement alone and in combination with ABA. We demonstrate that brassinoslide (BL), the most active BR, promotes stomatal closure in an ABA-independent manner. Interestingly, BL also inhibited ABA-induced stomatal closure when a high concentration of BL was added to ABA. Furthermore, we found that the induction of some genes for reactive oxygen species (ROS) generation by ABA (AtrbohD, NIA1 and NIA2) and subsequent ROS production were repressed by BL treatment. The BR signaling mutant bri1-301 failed to inhibit ABA-induced stomatal closure upon BL treatment. However, BRI1-overexpressing transgenic plants were hypersensitive to ABA during stomatal closure, and BL reversed ABA-induced stomatal closure more completely than in wild type plants. Taken together, these results suggest that BRs can positively and negatively modulate ABA-induced stomatal closure. Therefore, interactions between ABA and BR signaling are important for the regulation of stomatal closure. PMID:27856707

  8. Stomatal design principles in synthetic and real leaves.

    PubMed

    Zwieniecki, Maciej A; Haaning, Katrine S; Boyce, C Kevin; Jensen, Kaare H

    2016-11-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water and CO2 availability and on the geometrical properties of the stoma pores. The link between stoma geometry and environmental factors has informed a wide range of scientific fields-from agriculture to climate science, where observed variations in stoma size and density are used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible for major trends in stomatal patterning are not well understood. Here, we use a combination of biomimetic experiments and theory to rationalize the observed changes in stoma geometry. We show that the observed correlations between stoma size and density are consistent with the hypothesis that plants favour efficient use of space and maximum control of dynamic gas conductivity, and that the capacity for gas exchange in plants has remained constant over at least the last 325 Myr. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics.

  9. A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.

    PubMed

    Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J

    2017-01-26

    Background The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. Methods We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. Results The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. Conclusions This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a

  10. Efficacy and Safety of Nighttime Dosing of Antihypertensives: Review of the Literature and Design of a Pragmatic Clinical Trial

    PubMed Central

    Carter, Barry L.; Chrischilles, Elizabeth A.; Rosenthal, Gary; Gryzlak, Brian M.; Eisenstein, Eric L.; Vander Weg, Mark W.

    2014-01-01

    Blood pressure exhibits circadian variability and nighttime blood pressure is one of the best predictors of cardiovascular (CV) events. Adults with hypertension who lack a nighttime dipping pattern are particularly at high risk. Several studies have found that bedtime dosing of antihypertensives reduces sleep blood pressure and improves the dipping pattern in nondippers. One small study and two sub-studies in diabetes and chronic kidney disease suggest that bedtime dosing of one or more antihypertensives significantly reduced CV events. A Cochrane review of five studies found no difference in adverse events between morning and evening dosing. However, several evaluations in ophthalmology have found that nocturnal arterial hypotension precipitated ocular vascular disorders such as ischemic optic neuropathy. Some authors have suggested that additional studies of nighttime dosing of antihypertensives that evaluate CV events need to be conducted. We describe a randomized controlled pragmatic trial that is being planned at the University of Iowa and Duke University. Subjects with hypertension and other co-morbid conditions will be randomized to either continue morning dosing of all antihypertensives or to switch their non-diuretic medications to bedtime dosing. Subjects will be followed for 36–42 months. This study will determine if nighttime dosing reduces CV risk when compared to traditional morning dosing of antihypertensives. PMID:24373519

  11. Distinct Cellular Locations of Carbonic Anhydrases Mediate Carbon Dioxide Control of Stomatal Movements1[OPEN

    PubMed Central

    Hu, Honghong; Rappel, Wouter-Jan; Occhipinti, Rossana; Ries, Amber; Böhmer, Maik; You, Lei; Xiao, Chuanlei; Engineer, Cawas B.; Boron, Walter F.; Schroeder, Julian I.

    2015-01-01

    Elevated carbon dioxide (CO2) in leaves closes stomatal apertures. Research has shown key functions of the β-carbonic anhydrases (βCA1 and βCA4) in rapid CO2-induced stomatal movements by catalytic transmission of the CO2 signal in guard cells. However, the underlying mechanisms remain unclear, because initial studies indicate that these Arabidopsis (Arabidopsis thaliana) βCAs are targeted to distinct intracellular compartments upon expression in tobacco (Nicotiana benthamiana) cells. Which cellular location of these enzymes plays a key role in native guard cells in CO2-regulated stomatal movements remains unknown. Here, we express fluorescently tagged CAs in guard cells of ca1ca4 double-mutant plants and show that the specific locations of βCA4 at the plasma membrane and βCA1 in native guard cell chloroplasts each can mediate rapid CO2 control of stomatal movements. Localization and complementation analyses using a mammalian αCAII-yellow fluorescent protein in guard cells further show that cytoplasmic localization is also sufficient to restore CO2 regulation of stomatal conductance. Mathematical modeling of cellular CO2 catalysis suggests that the dynamics of the intracellular HCO3− concentration change in guard cells can be driven by plasma membrane and cytoplasmic localizations of CAs but not as clearly by chloroplast targeting. Moreover, modeling supports the notion that the intracellular HCO3− concentration dynamics in guard cells are a key mechanism in mediating CO2-regulated stomatal movements but that an additional chloroplast role of CAs exists that has yet to be identified. PMID:26243620

  12. Napping in College Students and Its Relationship with Nighttime Sleep

    ERIC Educational Resources Information Center

    Ye, Lichuan; Hutton Johnson, Stacy; Keane, Kathleen; Manasia, Michael; Gregas, Matt

    2015-01-01

    Objective: To examine the habit of napping and its relationship with nighttime sleep in college students. Participants: Four hundred and forty undergraduate students who responded to an anonymous online survey in April 2010. Methods: Three questions were asked to determine the frequency, length, and timing of napping during the past month. Sleep…

  13. Mapping Nighttime Lights using the VIIRS Day/Night Band

    NASA Astrophysics Data System (ADS)

    Baugh, K.

    2015-12-01

    Temporal patterns in nighttime lights can reveal changes in economic activity, population, and development. Identifying areas of change mandates a baseline of nighttime light sources to use for comparison. Ideally this baseline would be free from ephemeral events such as fires, and have background (non-light) values identified and removed. Annual maps of persistent light sources have historically been created using data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) sensor, but the last available annual product is from 2013. Using the more recently available data from the Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS-DNB) provides an opportunity to extend the record of nighttime lights products beyond the DMSP era, and it is possible to create vastly improved products due to the increased spatial resolution and dynamic range of the DNB over the OLS. This presentation will focus on the use of long time-series of DNB radiance values to identify background (non-light) areas and to separate areas with persistent nighttime lights from ephemeral lights, especially fires. Stability of the DNB radiance values will also be addressed.

  14. Effect of nighttime temperature on tomato plant defensive chemistry.

    PubMed

    Bradfield, M; Stamp, N

    2004-09-01

    Given that the amplitude of diurnal temperature fluctuations has been decreasing, mainly via warmer night temperatures, we examined the effects of nighttime temperature on concentration of the catecholic phenolics chlorogenic acid and rutin in tomato plants. A two-factor design, with carbon dioxide (350 ppm and 700 ppm) and nighttime temperature (14, 15, 16, 17, and 18 degrees C, with a 26 degrees C daytime temperature) was used. Compared to the lower carbon dioxide level, for whole plants the concentration of phenolics was lower at the higher carbon dioxide level, but patterns for plant parts differed. Nighttime temperature did not affect concentration of phenolics for whole plants, but it did influence concentration of the phenolics for plant parts, although not in predictable ways. Furthermore, the pattern of concentration of chlorogenic acid was somewhat different from that of rutin. The amount of change in concentration of these allelochemicals is likely sufficient to have substantial effects on insect herbivores. We conclude that nighttime temperature affects concentration of allelochemicals in tomato plants in significant ways.

  15. Evaluating stomatal models and their atmospheric drought response in a land surface scheme: A multibiome analysis

    NASA Astrophysics Data System (ADS)

    Knauer, Jürgen; Werner, Christiane; Zaehle, Sönke

    2015-10-01

    Stomatal conductance (gs) is a key variable in Earth system models as it regulates the transfer of carbon and water between the terrestrial biosphere and the lower atmosphere. Various approaches have been developed that aim for a simple representation of stomatal regulation applicable at the global scale. These models differ, among others, in their response to atmospheric humidity, which induces stomatal closure in a dry atmosphere. In this study, we compared the widely used empirical Ball-Berry and Leuning stomatal conductance models to an alternative empirical approach, an optimization-based approach, and a semimechanistic hydraulic model. We evaluated these models using evapotranspiration (ET) and gross primary productivity (GPP) observations derived from eddy covariance measurements at 56 sites across multiple biomes and climatic conditions. The different models were embedded in the land surface model JSBACH. Differences in performance across plant functional types or climatic conditions were small, partly owing to the large variations in the observational data. The models yielded comparable results at low to moderate atmospheric drought but diverged under dry atmospheric conditions, where models with a low sensitivity to air humidity tended to overestimate gs. The Ball-Berry model gave the best fit to the data for most biomes and climatic conditions, but all evaluated approaches have proven adequate for use in land surface models. Our findings further encourage future efforts toward a vegetation-type-specific parameterization of gs to improve the modeling of coupled terrestrial carbon and water dynamics.

  16. Use of infrared thermography for monitoring stomatal closure in the field: application to grapevine.

    PubMed

    Jones, Hamlyn G; Stoll, Manfred; Santos, Tiago; de Sousa, Claudia; Chaves, M Manuela; Grant, Olga M

    2002-11-01

    This paper reviews and discusses strategies for the use of thermal imaging for studies of stomatal conductance in the field and compares techniques for image collection and analysis. Measurements were taken under a range of environmental conditions and on sunlit and shaded canopies to illustrate the variability of temperatures and derived stress indices. A simple procedure is presented for correcting for calibration drift within the images from the low-cost thermal imager used (SnapShot 225, Infrared Solutions, Inc.). The use of wet and dry reference surfaces as thresholds to eliminate the inclusion of non-leaf material in the analysis of canopy temperature is discussed. An index that is proportional to stomatal conductance was compared with stomatal measurements with a porometer. The advantages and disadvantages of a possible new approach to the use of thermal imagery for the detection of stomatal closure in grapevine canopies, based on an analysis of the temperature of shaded leaves, rather than sunlit leaves, are discussed. Evidence is presented that the temperature of reference surfaces exposed within the canopy can be affected by the canopy water status.

  17. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation.

    PubMed

    Garcia-Forner, Núria; Adams, Henry D; Sevanto, Sanna; Collins, Adam D; Dickman, Lee T; Hudson, Patrick J; Zeppel, Melanie J B; Jenkins, Michael W; Powers, Heath; Martínez-Vilalta, Jordi; Mcdowell, Nate G

    2016-01-01

    Relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.

  18. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    DOE PAGES

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; ...

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P.more » edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.« less

  19. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation

    SciTech Connect

    Garcia-Forner, Nuria; Adams, Henry D.; Sevanto, Sanna; Collins, Adam D.; Dickman, Lee T.; Hudson, Patrick J.; Zeppel, Melanie J. B.; Jenkins, Michael W.; Powers, Heath; Martinez-Vilalta, Jordi; Mcdowell, Nate G.

    2015-08-08

    Here, relatively anisohydric species are predicted to be more predisposed to hydraulic failure than relatively isohydric species, as they operate with narrower hydraulic safety margins. We subjected co-occurring anisohydric Juniperus monosperma and isohydric Pinus edulis trees to warming, reduced precipitation, or both, and measured their gas exchange and hydraulic responses. We found that reductions in stomatal conductance and assimilation by heat and drought were more frequent during relatively moist periods, but these effects were not exacerbated in the combined heat and drought treatment. Counter to expectations, both species exhibited similar gs temporal dynamics in response to drought. Further, whereas P. edulis exhibited chronic embolism, J. monosperma showed very little embolism due to its conservative stomatal regulation and maintenance of xylem water potential above the embolism entry point. This tight stomatal control and low levels of embolism experienced by juniper refuted the notion that very low water potentials during drought are associated with loose stomatal control and with the hypothesis that anisohydric species are more prone to hydraulic failure than isohydric species. Because direct association of stomatal behaviour with embolism resistance can be misleading, we advocate consideration of stomatal behaviour relative to embolism resistance for classifying species drought response strategies.

  20. [How to cope with recurrent aphthous stomatitis].

    PubMed

    Madrid, C; Jaques, B; Bouferrrache, K; Broome, M

    2010-10-06

    Recurrent aphthous stomatitis (RAS) is the most common oral mucosa ailment. This condition is frequently considered as idiopathic due to the doubts about its etiology, probably related to a minor immunological dysregulation in a context of genetic predisposition. However, ulcers that resemble recurrent aphthous stomatitis in some respects can be found in systemic disorders that must be ruled out for the differential diagnosis of SAR, particularly when they appear after adolescence and/or when associated lesions exist out of the oral cavity. SAR management lies on the elimination of predisposing factors (drugs, oral trauma, food allergies...) and if needed, topical corticosteroids are the first choice regimen. More severe cases may require systemic regimens.

  1. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.

    PubMed

    McKown, Athena D; Guy, Robert D; Quamme, Linda; Klápště, Jaroslav; La Mantia, Jonathan; Constabel, C P; El-Kassaby, Yousry A; Hamelin, Richard C; Zifkin, Michael; Azam, M S

    2014-12-01

    Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.

  2. Nighttime chemistry at a high altitude site above Hong Kong

    NASA Astrophysics Data System (ADS)

    Brown, Steven S.; Dubé, William P.; Tham, Yee Jun; Zha, Qiaozhi; Xue, Likun; Poon, Steven; Wang, Zhe; Blake, Donald R.; Tsui, Wilson; Parrish, David D.; Wang, Tao

    2016-03-01

    Nighttime reactions of nitrogen oxides influence ozone, volatile organic compounds, and aerosol and are thus important to the understanding of regional air quality. Despite large emissions and rapid recent growth of nitrogen oxide concentrations, there are few studies of nighttime chemistry in China. Here we present measurements of nighttime nitrogen oxides, NO3 and N2O5, from a coastal mountaintop site in Hong Kong adjacent to the megacities of the Pearl River Delta region. This is the first study of nighttime chemistry from a site within the residual layer in China. Key findings include the following. First, highly concentrated urban NOx outflow from the Pearl River Delta region was sampled infrequently at night, with N2O5 mixing ratios up to 8 ppbv (1 min average) or 12 ppbv (1 s average) in nighttime aged air masses. Second, the average N2O5 uptake coefficient was determined from a best fit to the available steady state lifetime data as γ(N2O5) = 0.014 ± 0.007. Although this determination is uncertain due to the difficulty of separating N2O5 losses from those of NO3, this value is in the range of previous residual layer determinations of N2O5 uptake coefficients in polluted air in North America. Third, there was a significant contribution of biogenic hydrocarbons to NO3 loss inferred from canister samples taken during daytime. Finally, daytime N2O5 mixing ratios were in accord with their predicted photochemical steady state. Heterogeneous uptake of N2O5 in fog is determined to be an important production mechanism for soluble nitrate, even during daytime.

  3. Nighttime Bracing Versus Observation for Early Adolescent Idiopathic Scoliosis

    PubMed Central

    Shah, Suken A.; Price, Charles T.

    2014-01-01

    Background: Spinal bracing is widely utilized in patients with moderate severity adolescent idiopathic scoliosis with the goal of preventing curve progression and therefore preventing the need for surgical correction. Bracing is typically initiated in patients with a primary curve angle between 25 and 40 degrees, who are Risser sign 0 to 2 and <1-year postmenarchal. The purpose of this study is to determine whether nighttime bracing using a Charleston bending brace is effective in preventing progression of smaller curves (15 to 25 degrees) in skeletally immature, premenarchal female patients relative to current standard of care (observation for curves <25 degrees). Methods: Premenarchal, Risser 0 female patients presenting to 2 pediatric orthopaedic specialty practices for evaluation of idiopathic scoliosis with Cobb angle measurements between 15 and 25 degrees were selected. They were randomized by location to receive nighttime bending brace treatment or observation. Patients in the observation group were converted to fulltime TLSO wear if they progressed to >25 degrees primary curve Cobb angle. Curve progression was monitored with minimum 2-year follow-up. Results: Sixteen patients in the observation group and 21 patients in the bracing group completed 2-year follow-up. All patients in the observation group progressed to fulltime bracing threshold. In the nighttime bracing group, 29% of the patients did not progress to 25 degrees primary curve magnitude. Rate of progression to surgical magnitude was similar in the 2 groups. Conclusions: Risser 0 patients presenting with mild idiopathic scoliosis are at high risk for progression to >25 degrees primary curve magnitude. Treatment with the Charleston nighttime bending brace may reduce progression to full-time bracing threshold. No difference in progression to surgical intervention was shown between nighttime bracing and observation for small curves. Level of Evidence: Level II—therapeutic study (prospective

  4. Cell fate transitions during stomatal development.

    PubMed

    Serna, Laura

    2009-08-01

    Stomata, the most influential components in gas exchange with the atmosphere, represent a revealing system for studying cell fate determination. Studies in Arabidopsis thaliana have demonstrated that many of the components, functioning in a signaling cascade, guide numerous cell fate transitions that occur during stomatal development. The signaling cascade is initiated at the cell surface through the activation of the membrane receptors TOO MANY MOUTHS (TMM) and/or ERECTA (ER) family members by the secretory peptide EPIDERMAL PATTERNING FACTOR1 (EPF1) and/or a substrate processed proteolytically by the subtilase STOMATAL DENSITY AND DISTRIBUTION1 (SDD1) and transduced through cytoplasmic MAP kinases (YODA (YDA), MKK4/MKK5, and MPK3/MPK6) towards the nucleus. In the nucleus, these MAP kinases regulate the activity of the basic helix-loop-helix (bHLH) proteins SPEECHLESS (SPCH), MUTE, and FAMA, which act in concert with the bHLH-Leu zipper protein SCREAM (SCRM) (and/or its closely related paralog, SCREAM2). This article reviews current insights into the role of this signaling cascade during stomatal development.

  5. Plant virus infections control stomatal development

    NASA Astrophysics Data System (ADS)

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-09-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum.

  6. Plant virus infections control stomatal development

    PubMed Central

    Murray, Rose R.; Emblow, Mark S. M.; Hetherington, Alistair M.; Foster, Gary D.

    2016-01-01

    Stomata are important regulators of carbon dioxide uptake and transpirational water loss. They also represent points of vulnerability as bacterial and fungal pathogens utilise this natural opening as an entry portal, and thus have an increasingly complex relationship. Unlike the situation with bacterial and fungal pathogens, we know very little about the role of stomata in viral infection. Here we report findings showing that viral infection influences stomatal development in two susceptible host systems (Nicotiana tabacum with TMV (Tobacco mosaic virus), and Arabidopsis thaliana with TVCV (Turnip vein-clearing virus)), but not in resistant host systems (Nicotiana glutinosa and Chenopodium quinoa with TMV). Virus infected plants had significantly lower stomatal indices in systemic leaves of susceptible systems; N. tabacum 9.8% reduction and A. thaliana 12.3% reduction, but not in the resistant hosts. Stomatal density in systemic leaves was also significantly reduced in virus infected A. thaliana by 19.6% but not in N. tabacum or the resistant systems. In addition, transpiration rate was significantly reduced in TMV infected N. tabacum. PMID:27687773

  7. Stomatal Dimorphism of Neodiplogaster acaloleptae (Diplogastromorpha: Diplogastridae)

    PubMed Central

    Kanzaki, Natsumi

    2016-01-01

    Several genera belonging to the nematode family Diplogastridae show characteristic dimorphism in their feeding structures; specifically, they have microbial feeding stenostomatous and predatory eurystomatous morphs. A diplogastrid satellite model species, Pristionchus pacificus, and its close relatives have become a model system for studying this phenotypic plasticity, with intensive physiological and structural studies having been undertaken. However, the many other species that are morphologically and phylogenetically divergent from P. pacificus have not been examined to date. In the present study, the detailed stomatal structure and induction of dimorphism in Neodiplogaster acaloleptae were examined. N. acaloleptae has a fungal feeding stenostomatous morph and a predatory eurystomatous morph. The predatory morph was induced by starvation, high population density, and co-culturing with its potential prey, Caenorhabditis elegans. The feeding behavior of the stenostomatous and eurystomatous morphs of N. acaloleptae was confirmed, demonstrating that 1) the stomatal and pharyngeal movements of the two morphs were basically identical, and 2) the stomatal elements were protracted to cut open the hyphae and/or prey to feed when a N. acaloleptae flips its dorsal movable tooth dorsally and tilts its subventral stegostomatal cylinder ventrally, forming a pair of scissors to cut the food source. The stoma morphology of N. acaloleptae with a single movable tooth and a long stoma is markedly different from that of Pristionchus, which has two movable teeth and a short stoma. It is, however, similar to that of Mononchoides, tentatively a sister to Neodiplogaster. PMID:27196730

  8. Nighttime home blood pressure and the risk of hypertensive target organ damage.

    PubMed

    Ishikawa, Joji; Hoshide, Satoshi; Eguchi, Kazuo; Ishikawa, Shizukiyo; Shimada, Kazuyuki; Kario, Kazuomi

    2012-10-01

    In ambulatory blood pressure (BP) monitoring, nighttime BP has a superior ability to predict hypertensive target organ damage than awake BP. We evaluated whether nighttime BP, assessed by a home BP monitor, was associated with hypertensive target organ damage. We measured clinic BP, out-of-clinic BP including nighttime home BP, and the urinary albumin:creatinine ratio (UACR) in 854 patients who had cardiovascular risk factors. Nighttime home BP was measured at 2:00, 3:00, and 4:00 am, in addition to clinic, awake ambulatory, nighttime ambulatory, and awake home BP. Nighttime home systolic BP (SBP) was slightly higher than nighttime ambulatory SBP (difference, 2.6 mm Hg; P<0.001). Clinic (r=0.186), awake ambulatory (r=0.173), nighttime ambulatory (r=0.194), awake home (r=0.298), and nighttime home (r=0.311) SBPs were all associated with log-transformed UACR (all P<0.001). The correlation coefficient for the relationship between nighttime home SBP and log-transformed UACR was significantly greater than that for the relationship between nighttime ambulatory SBP and log-transformed UACR (P<0.001). The goodness of fit of the association between SBP and UACR was improved by adding nighttime home SBP to the other SBPs (P<0.001). Nighttime home diastolic BP also improved the goodness-of-fit of the association between diastolic BP and UACR (P=0.001). Similar findings were observed for the left ventricular mass index in the subgroup (N=594). In conclusion, nighttime home BP is slightly different from (but comparable to) nighttime ambulatory BP. The addition of nighttime home BP to other BP measures improves the association of BP with hypertensive target organ damage.

  9. The development of a patient-reported outcome measure for assessing nighttime symptoms of chronic obstructive pulmonary disease

    PubMed Central

    2013-01-01

    Background The assessment of symptoms of chronic obstructive pulmonary disease (COPD) is important for monitoring and managing the disease and for evaluating outcomes of interventions. COPD patients experience symptoms during the day and night, and symptoms experienced at night often disturb sleep. The aim of this paper is to describe methods used to develop a patient-reported outcome (PRO) instrument for evaluating nighttime symptoms of COPD, and to document evidence for the content validity of the instrument. Methods Literature review and clinician interviews were conducted to inform discussion guides to explore patients’ nighttime COPD symptom experience. Data from focus groups with COPD patients was used to develop a conceptual framework and the content of a new PRO instrument. Patient understanding of the new instrument was assessed via cognitive interviews with COPD patients. Results The literature review confirmed that there is no instrument with evidence of content validity currently available to assess nighttime symptoms of COPD. Additionally, the literature review and clinician interviews suggested the need to understand patients’ experience of specific symptoms in order to evaluate nighttime symptoms of COPD. Analyses of patient focus group data (N = 27) supported saturation of concepts and aided in development of a conceptual framework. Items were generated using patients’ terminology to collect data on concepts in the framework including the occurrence and severity of COPD symptoms, use of rescue medication at night, and nocturnal awakening. Response options were chosen to reflect concepts that were salient to patients. Subsequent cognitive interviewing with ten COPD patients demonstrated that the items, response options, recall period, and instructions were understandable, relevant, and interpreted as intended. Conclusions A new PRO instrument, the Nighttime Symptoms of COPD Instrument (NiSCI), was developed with documented evidence of content

  10. Observations of the nighttime electron volt range electron fluxes in the equatorial region

    NASA Technical Reports Server (NTRS)

    Rao, B. C. N.; Singh, R.; Maier, E. J.

    1974-01-01

    The importance of some of the features observed among the nighttime equatorial data of Explorer 31 is discussed with respect to the nighttime thermal structure of the topside ionosphere. The very short-lived photoelectrons being absent, the nighttime measurements represent the background flux due to magnetospheric particles.

  11. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  12. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  13. 21 CFR 338.50 - Labeling of nighttime sleep-aid drug products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 5 2014-04-01 2014-04-01 false Labeling of nighttime sleep-aid drug products. 338... SERVICES (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 338.50 Labeling of nighttime sleep-aid drug products. (a) Statement of identity. The labeling...

  14. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  15. 21 CFR 338.50 - Labeling of nighttime sleep-aid drug products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of nighttime sleep-aid drug products. 338... SERVICES (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 338.50 Labeling of nighttime sleep-aid drug products. (a) Statement of identity. The labeling...

  16. 21 CFR 338.50 - Labeling of nighttime sleep-aid drug products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 5 2012-04-01 2012-04-01 false Labeling of nighttime sleep-aid drug products. 338... SERVICES (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 338.50 Labeling of nighttime sleep-aid drug products. (a) Statement of identity. The labeling...

  17. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  18. 21 CFR 338.10 - Nighttime sleep-aid active ingredients.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Nighttime sleep-aid active ingredients. 338.10... (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Active Ingredients § 338.10 Nighttime sleep-aid active ingredients. The active ingredient of the product consists...

  19. 21 CFR 338.50 - Labeling of nighttime sleep-aid drug products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Labeling of nighttime sleep-aid drug products. 338... SERVICES (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 338.50 Labeling of nighttime sleep-aid drug products. (a) Statement of identity. The labeling...

  20. 21 CFR 338.50 - Labeling of nighttime sleep-aid drug products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 5 2013-04-01 2013-04-01 false Labeling of nighttime sleep-aid drug products. 338... SERVICES (CONTINUED) DRUGS FOR HUMAN USE NIGHTTIME SLEEP-AID DRUG PRODUCTS FOR OVER-THE-COUNTER HUMAN USE Labeling § 338.50 Labeling of nighttime sleep-aid drug products. (a) Statement of identity. The labeling...

  1. Dependence of the Extent and Direction of Average Stomatal Response in Zea mays L. and Phaseolus vulgaris L. on the Frequency of Fluctuations in Environmental Stimuli.

    PubMed Central

    Cardon, Z. G.; Berry, J. A.; Woodrow, I. E.

    1994-01-01

    Stomatal responses to fluctuating light and CO2 were investigated in Zea mays and Phaseolus vulgaris. Slow-moving stomata can affect carbon gain and water loss by plants during light flecks, under dynamic cloud cover, during alternating windy and calm air conditions (which influence CO2 concentrations and humidity immediately around leaves in plant canopies), at natural CO2 vents, or in growth chambers with imperfect CO2 control. It was found that the frequency of constant-amplitude fluctuations in light and CO2 dramatically affected the time-averaged stomatal conductance in both Zea and Phaseolus. During oscillations in light, average stomatal conductance was driven either above or below that observed at steady state at the average light level, depending on the frequency of the oscillations. Under oscillating CO2, the departure of average stomatal conductance away from that observed at steady state at the average CO2 level was also frequency dependent in both species. Upon cessation of oscillations and return of light or CO2 to the stable median level, stomatal conductance also returned to a steady state, matching that before oscillations were initiated. This work shows that fluctuations in light and CO2, and equally important, their frequency, can be critical in determining time-averaged stomatal conductance under unstable environmental conditions. PMID:12232261

  2. [Relationships of wheat leaf stomatal traits with wheat yield and drought-resistance].

    PubMed

    Wang, Shu-Guang; Li, Zhong-Qing; Jia, Shou-Shan; Sun, Dai-Zhen; Shi, Yu-Gang; Fan, Hua; Liang, Zeng-Hao; Jing, Rui-Lian

    2013-06-01

    Taking the DH population of wheat cultivar Hanxuan10/Lumai14 as test object, and by the methods of correlation analysis and path analysis, this paper studied the relationships of the flag leaf stomatal density (SD), stomatal length and width (SL and SW), stomatal conductance (g(s)), photosynthetic rate (P(n)), and transpiration rate (T(r)) on the 10th and 20th day after anthesis with the yield and the index of drought-resistance under the conditions of drought stress and normal irrigation. Under the two conditions, most of the test leaf traits on the 10th day after anthesis had less correlation with the yield and the index of drought-resistance, whereas the leaf traits on the 20th day after anthesis had significant positive correlations with thousand kernel weight but less correlation with grain number per ear, grain yield per plant, and index of drought-resistance. Path analysis showed that g(s), P(n), and T(r) were the main factors affecting the grain yield per plant (YPP) and the index of drought resistance (IDR), and the effects were stronger both in direct and in indirect ways. The direct and indirect effects of SD, SL, and SW on the YPP and IDR were lesser. Under both drought stress and normal irrigation, and on the 10th and 20th day after anthesis, there were significant correlations between SD and SL, and between SL and SW, g(s), P(n), and Tr, but the correlations of SD and SL with g(s), P(n), and T(r) changed with water condition or growth stage. Therefore, it would be not always a good means to select the leaf stomatal density and size as the targets for breeding to improve the leaf stomatal conductance, photosynthetic rate, and transpiration rate, and further, to promote the yield.

  3. Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest

    NASA Astrophysics Data System (ADS)

    Fares, S.; Matteucci, G.; Scarascia Mugnozza, G.; Morani, A.; Calfapietra, C.; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F.

    2013-03-01

    Mediterranean forests close to urban areas are exposed to polluted plumes loaded with tropospheric ozone. This is the case of Castelporziano Estate, a 6000 ha Mediterranean forest 25 km from Rome downtown on the coast of the Mediterranean Sea. In September 2011 we started an intensive field campaign aimed at investigating ozone deposition from a mixed Mediterranean forest, mainly composed by Quercus suber, Quercus ilex, Pinus pinea. Measurements at canopy level with the eddy covariance technique were supported by a vegetation survey and the measurement of all environmental parameters which allowed to calculate stomatal ozone fluxes. Leaf-level measurements were used to parameterize models to calculate stomatal conductance based on a Jarvis-type and Ball-Berry approach. We show changes in magnitude of ozone fluxes from a warm (September) to a cold period (October-December). Stomatal component explained almost the totality of ozone fluxes during the cold days, but contributed only up to 50% to total ozone deposition during warm days, suggesting that other sinks (e.g. chemistry in the gas-phase) play a major role. Modeled stomatal ozone fluxes based on a Jarvis-type approach (DO3SE) correlated with measured fluxes better than using a Ball-Berry approach. A third model based on a modified Ball-Berry equation was proposed to account for the non-linear dependency of stomatal conductance on relative humidity. This research will help the development of metrics for ozone-risk assessment and advance our understanding of mixed Mediterranean forests in biosphere-atmosphere exchange.

  4. Stomatal closure, basal leaf embolism and shedding protect the hydraulic integrity of grape stems.

    PubMed

    Hochberg, Uri; Windt, Carel W; Ponomarenko, Alexandre; Zhang, Yong-Jiang; Gersony, Jessica; Rockwell, Fulton E; Holbrook, N Michele

    2017-03-28

    The time scale of stomatal closure and xylem cavitation during plant dehydration, as well as the fate of embolised organs, is under debate, largely due to methodological limitations in the evaluation of embolism. While some argue that complete stomatal closure precedes the occurrence of embolism, others believe that the two are contemporaneous processes that are accompanied with daily xylem refilling. Here we utilize an optical light transmission method, to continuously monitor xylem cavitation in leaves of dehydrating grapevines (Vitis vinifera L.) in concert with stomatal conductance and stem and petiole hydraulic measurements. Magnetic resonance imaging (MRI) of an intact vine was used to continuously monitor xylem cavitation and flow rates in the stem of an intact vine during 10 days of dehydration. The results showed that complete stomatal closure preceded the appearance of embolism in the leaves and the stem by several days. Basal leaves were more vulnerable to xylem embolism than apical leaves and, once embolised, were shed, thereby preventing further water loss and protecting the hydraulic integrity of younger leaves and the stem. As a result, embolism in the stem was minimal even when drought led to complete leaf shedding. These findings suggest that grapevines avoid xylem embolism rather than tolerate it.

  5. Stomatal design principles for gas exchange in synthetic and real leaves

    NASA Astrophysics Data System (ADS)

    Jensen, Kaare H.; Haaning, Katrine; Boyce, C. Kevin; Zwieniecki, Maciej

    2016-11-01

    Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water, and CO2 availability and on geometric properties of the stomata pores. The link between stomata geometry and environmental factors have informed a wide range of scientific fields - from agriculture to climate science, where observed variations in stomata size and density is used to infer prehistoric atmospheric CO2 content. However, the physical mechanisms and design principles responsible for major trends in stomatal patterning, are not well understood. Here we use a combination of biomimetic experiments and theory to rationalize the observed changes in stomatal geometry. We show that the observed correlations between stomatal size and density are consistent with the hypothesis that plants favor efficient use of space and maximum control of dynamic gas conductivity, and - surprisingly - that the capacity for gas exchange in plants has remained constant over at least the last 325 million years. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics. Supported by the Carlsberg Foundation (2013-01-0449), VILLUM FONDEN (13166) and the National Science Foundation (EAR-1024041).

  6. Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost.

    PubMed

    Sperry, John S; Venturas, Martin D; Anderegg, William R L; Mencuccini, Maurizio; Mackay, D Scott; Wang, Yujie; Love, David M

    2016-10-20

    Stomatal regulation presumably evolved to optimize CO2 for H2 O exchange in response to changing conditions. If the optimization criterion can be readily measured or calculated, then stomatal responses can be efficiently modelled without recourse to empirical models or underlying mechanism. Previous efforts have been challenged by the lack of a transparent index for the cost of losing water. Yet it is accepted that stomata control water loss to avoid excessive loss of hydraulic conductance from cavitation and soil drying. Proximity to hydraulic failure and desiccation can represent the cost of water loss. If at any given instant, the stomatal aperture adjusts to maximize the instantaneous difference between photosynthetic gain and hydraulic cost, then a model can predict the trajectory of stomatal responses to changes in environment across time. Results of this optimization model are consistent with the widely used Ball-Berry-Leuning empirical model (r(2)  > 0.99) across a wide range of vapour pressure deficits and ambient CO2 concentrations for wet soil. The advantage of the optimization approach is the absence of empirical coefficients, applicability to dry as well as wet soil and prediction of plant hydraulic status along with gas exchange.

  7. Elevated CO2 reduces stomatal and metabolic limitations on photosynthesis caused by salinity in Hordeum vulgare.

    PubMed

    Pérez-López, Usue; Robredo, Anabel; Lacuesta, Maite; Mena-Petite, Amaia; Muñoz-Rueda, Alberto

    2012-03-01

    The future environment may be altered by high concentrations of salt in the soil and elevated [CO(2)] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO(2)] stimulates photosynthesis by increasing CO(2) availability in the Rubisco carboxylating site and by reducing photorespiration. However, few studies have focused on the interactive effects of these factors on photosynthesis. To elucidate this knowledge gap, we grew the barley plant, Hordeum vulgare (cv. Iranis), with and without salt stress at either ambient or elevated atmospheric [CO(2)] (350 or 700 μmol mol(-1) CO(2), respectively). We measured growth, several photosynthetic and fluorescence parameters, and carbohydrate content. Under saline conditions, the photosynthetic rate decreased, mostly because of stomatal limitations. Increasing salinity progressively increased metabolic (photochemical and biochemical) limitation; this included an increase in non-photochemical quenching and a reduction in the PSII quantum yield. When salinity was combined with elevated CO(2), the rate of CO(2) diffusion to the carboxylating site increased, despite lower stomatal and internal conductance. The greater CO(2) availability increased the electron sink capacity, which alleviated the salt-induced metabolic limitations on the photosynthetic rate. Consequently, elevated CO(2) partially mitigated the saline effects on photosynthesis by maintaining favorable biochemistry and photochemistry in barley leaves.

  8. The nighttime problems of Parkinson's disease.

    PubMed

    Lees, A J; Blackburn, N A; Campbell, V L

    1988-12-01

    In a national survey conducted among 220 patients with Parkinson's disease (PD), 215 reported experiencing disabilities at night or on waking. The most common problems were inability to turn over or get out of bed and a frequent need to pass urine during the night. For the majority of patients, sleep was disrupted. Despite these difficulties, two-thirds of patients rated sleep quality as acceptable or good. The average duration of sleep was 6.5-7 h but approximately 8% of patients reported less than 5 h sleep per night. Hypnotic or sedative drugs were used by 29% of patients to help them sleep but only 6% took any antiparkinsonian medication during the night. Just over half the patients had told their doctor of nocturnal problems; prescription of hypnotic drugs or changes to antiparkinsonian therapy were the remedies most frequently tried. Problems at night are common in PD and, because of their debilitating effect on performance during the daytime, merit special attention.

  9. Stomatal Blue Light Response Is Present in Early Vascular Plants.

    PubMed

    Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro

    2015-10-01

    Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum.

  10. Relationships between brightness of nighttime lights and population density

    NASA Astrophysics Data System (ADS)

    Naizhuo, Z.

    2012-12-01

    Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly

  11. Photosynthetic and stomatal acclimation to elevated CO{sub 2} depends on soil type in Quercus prinus

    SciTech Connect

    Bunce, J.A.

    1995-06-01

    Quercus prinus (L.) seedlings grown outdoors at ambient and elevated (ambient + 350 ppm) CO{sub 2} with a fertile soil had no photosynthetic acclimation to elevated CO{sub 2} and no stomatal response to growth or measurement CO{sub 2}. In contrast, seedlings grown with soil collected from a Q. prinus stand had photosynthetic and stomatal acclimation, and stomatal conductance was sensitive to measurement CO{sub 2}. In plants grown with the native soil, light-saturated stomatal conductance measured at the growth CO{sub 2} was reduced by 54% at elevated CO{sub 2}, compared to the short-term reduction of 36%. Photosynthetic acclimation in plants grown with the native soil reduced the stimulation of light-saturated photosynthesis at elevated CO{sub 2} from a factor of 1.9 to a factor of 1.3. In contrast to the dependence of photosynthetic and stomatal acclimation on soil type, the response of leaf respiration to elevated CO{sub 2} was the same for both soils. Respiration of leaves was reduced in the elevated CO{sub 2} treatment by 41 % on a leaf area basis. However, this effect was immediately reversible by altering the measurement CO{sub 2}, indicating that no acclimation of respiration occurred.

  12. The ecological impacts of nighttime light pollution: a mechanistic appraisal.

    PubMed

    Gaston, Kevin J; Bennie, Jonathan; Davies, Thomas W; Hopkins, John

    2013-11-01

    The ecological impacts of nighttime light pollution have been a longstanding source of concern, accentuated by realized and projected growth in electrical lighting. As human communities and lighting technologies develop, artificial light increasingly modifies natural light regimes by encroaching on dark refuges in space, in time, and across wavelengths. A wide variety of ecological implications of artificial light have been identified. However, the primary research to date is largely focused on the disruptive influence of nighttime light on higher vertebrates, and while comprehensive reviews have been compiled along taxonomic lines and within specific research domains, the subject is in need of synthesis within a common mechanistic framework. Here we propose such a framework that focuses on the cross-factoring of the ways in which artificial lighting alters natural light regimes (spatially, temporally, and spectrally), and the ways in which light influences biological systems, particularly the distinction between light as a resource and light as an information source. We review the evidence for each of the combinations of this cross-factoring. As artificial lighting alters natural patterns of light in space, time and across wavelengths, natural patterns of resource use and information flows may be disrupted, with downstream effects to the structure and function of ecosystems. This review highlights: (i) the potential influence of nighttime lighting at all levels of biological organisation (from cell to ecosystem); (ii) the significant impact that even low levels of nighttime light pollution can have; and (iii) the existence of major research gaps, particularly in terms of the impacts of light at population and ecosystem levels, identification of intensity thresholds, and the spatial extent of impacts in the vicinity of artificial lights.

  13. Recurrent aphthous stomatitis and Helicobacter pylori

    PubMed Central

    Gomes, Carolina-Cavaliéri; Gomez, Ricardo-Santiago; Zina, Lívia-Guimarães

    2016-01-01

    Background Recurrent aphthous stomatitis (RAS) is a recurrent painful ulcerative disorder that commonly affects the oral mucosa. Local and systemic factors such as trauma, food sensitivity, nutritional deficiencies, systemic conditions, immunological disorders and genetic polymorphisms are associated with the development of the disease. Helicobacter pylori (H. pylori) is a gram-negative, microaerophile bacteria, that colonizes the gastric mucosa and it was previously suggested to be involved in RAS development. In the present paper we reviewed all previous studies that investigated the association between RAS and H. pylori. Material and Methods A search in Pubmed (MEDLINE) databases was made of articles published up until July 2015 using the following keywords: Helicobacter Pylori or H. pylori and RAS or Recurrent aphthous stomatitis. Results Fifteen experimental studies that addressed the relationship between infection with H. pylori and the presence of RAS and three reviews, including a systematic review and a meta-analysis were included in this review. The studies reviewed used different methods to assess this relationship, including PCR, nested PCR, culture, ELISA and urea breath test. A large variation in the number of patients included in each study, as well as inclusion criteria and laboratorial methods was observed. H. pylori can be detected in the oral mucosa or ulcerated lesion of some patients with RAS. The quality of the all studies included in this review was assessed using levels of evidence based on the University of Oxford’s Center for Evidence Based Medicine Criteria. Conclusions Although the eradication of the infection may affect the clinical course of the oral lesions by undetermined mechanisms, RAS ulcers are not associated with the presence of the bacteria in the oral cavity and there is no evidence that H. pylori infection drives RAS development. Key words:Campylobacter, elisa, h. pylori, Helicobacter Pylori, RAS, recurrent aphthous

  14. Root signalling and modulation of stomatal closure in flooded citrus seedlings.

    PubMed

    Rodríguez-Gamir, Juan; Ancillo, Gema; González-Mas, M Carmen; Primo-Millo, Eduardo; Iglesias, Domingo J; Forner-Giner, M Angeles

    2011-06-01

    In this work, we studied the sequence of responses induced by flooding in citrus plants, with the aim of identifying the signals that lead to stomatal closure. One-year-old seedlings of Carrizo citrange, grown in sand under greenhouse conditions, were waterlogged for 35 d and compared with normally watered well-drained plants. Significant decreases in stomatal conductance and transpiration were detected between flooded and control seedlings from a week after the beginning of the experiment. However ABA concentration in leaves only started to increase after three weeks of flooding, suggesting that stomata closed in the absence of a rise in foliar ABA. Therefore, stomatal closure in waterlogged seedlings does not appear to be induced by ABA, at least during the early stages of flood-stress. The low levels of ABA detected in roots and xylem sap from flooded seedlings indicated that it is very unlikely that the ABA increase in the leaves of these plants is due to ABA translocation from roots to shoots. We propose that ABA is produced in old leaves and transported to younger leaves. Flooding had no effect on water potential or the relative water content of leaves. Soil flooding reduced root hydraulic conductance in citrus seedlings. This effect was already evident after a week of waterlogging, and at the end of the experiment, flood-stressed seedlings reached values of root hydraulic conductance below 12% of that of control plants. This reduction was related to down-regulation of the expression of PIP aquaporins. In addition, whole plant transpiration was reduced by 56% after 35 d under flooding conditions. Flood-stress also decreased the pH of sap extracted from citrus roots. Evidence is presented suggesting that acidosis induced by anoxic stress in roots causes gating of aquaporins, thereby decreasing hydraulic conductance. Additionally, stomatal closure finely balances-out low pH-mediated losses of root hydraulic conductance therefore maintaining stable leaf

  15. Nighttime Lights, Socioeconomic Development, and Revitalization Policies in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Bennett, M.; Smith, L. C.

    2015-12-01

    Nighttime lights are typically used as a proxy for population and economic growth, yet they can also reveal socioeconomic decline. We use two night light datasets to infer socioeconomic patterns and trends in the Russian Far East, Northeast China, and North Korea, a cross-border region impacted by the 1991 collapse of the USSR. First, using the annual stable light composites from the DMSP/OLS satellites, we find that generally, nighttime lights declined in the Russian Far East, increased in Northeast China, and fluctuated in North Korea between 1992 and 2012. By 2012, lighting in most of the Russian Far East had not recovered to 1992 levels. In Northeast China, a government revitalization program may have increased lighting during the mid-2000s, suggesting sensitivity of remotely sensed nighttime lights to regional development policies. Yet caveats with DMSP/OLS data include low spatial and radiometric resolutions, saturation, and blooming. The Day/Night Band (DNB) of the Suomi NPP satellite, however, launched in October 2011, has higher quality, enabling improved monitoring of socioeconomic trends in the region. For our second night lights dataset, we use both nightly images and monthly DNB composites to make inferences regarding socioeconomic activities at finer spatial and temporal resolutions from 2012-2015. Cross-border activity in particular emerges in finer detail, allowing us to examine specific transport corridors and sites of industrial and natural resource production that involve both Russian and Chinese partners.

  16. [Passive nighttime warming (PNW) system, its design and warming effect].

    PubMed

    Chen, Jin; Yang, Fei; Zhang, Bin; Tian, Yun-lu; Dong, Wen-jun; Zhang, Wei-jian

    2010-09-01

    Based on the technique of passive nighttime warming (PNW), a convenient and energy-saving PNW facility was designed for a rice-wheat cropping system in Danyang, Jiangsu Province. The facility could guarantee 15.75 m2 effective sampling area, with a homogeneous amplitude of increased temperature, and making the nighttime canopy temperature during whole rice growth season increased averagely by 1.1 degrees C and the nighttime canopy temperature and 5 cm soil temperature during whole winter wheat growth period increased averagely by 1.3 degrees C and 0.8 degrees C, respectively. During the operation period of the facility, the variation trends of the canopy temperature and 5 cm soil temperature during the whole growth periods of rice and winter wheat in the warming plots were similar to those of the control. Though the facility slightly decreased the soil moisture content during winter wheat growth period, wheat growth was less impacted. The application of this facility in our main production areas of rice and winter wheat showed that the facility could advance the initial blossoming stages of rice and winter wheat averagely by 3 d and 5 d, respectively. In despite of the discrepancy in the warming effect among different regions and seasons, this energy-saving facility was reliable for the field research on crop responses to climate warming, when the homogeneity of increased temperature, the effective area, and the effects on crop growth period were taken into comprehensive consideration.

  17. Evidence-based modelling of diverse plant water use strategies on stomatal and non-stomatal components under drought

    NASA Astrophysics Data System (ADS)

    zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.

    2013-12-01

    Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax

  18. Treatment of recurrent aphthous stomatitis. A literature review

    PubMed Central

    Jiménez-Soriano, Yolanda; Claramunt-Lozano, Ariadna

    2014-01-01

    Recurrent aphthous stomatitis (RAS) is the most common chronic disease of the oral cavity, affecting 5-25% of the population. The underlying etiology remains unclear, and no curative treatment is available. The present review examines the existing treatments for RAS with the purpose of answering a number of questions: How should these patients be treated in the dental clinic? What topical drugs are available and when should they be used? What systemic drugs are available and when should they be used? A literature search was made of the PubMed, Cochrane and Scopus databases, limited to articles published between 2008-2012, with scientific levels of evidence 1 and 2 (metaanalyses, systematic reviews, phase I and II randomized clinical trials, cohort studies and case-control studies), and conducted in humans. The results obtained indicate that the management of RAS should be based on identification and control of the possible predisposing factors, with the exclusion of possible underlying systemic causes, and the use of a detailed clinical history along with complementary procedures such as laboratory tests, where required. Only in the case of continuous outbreaks and symptoms should drug treatment be prescribed, with the initial application of local treatments in all cases. A broad range of topical medications are available, including antiseptics (chlorhexidine), antiinflammatory drugs (amlexanox), antibiotics (tetracyclines) and corticosteroids (triamcinolone acetonide). In patients with constant and aggressive outbreaks (major aphthae), pain is intense and topical treatment is unable to afford symptoms relief. Systemic therapy is indicated in such situations, in the form of corticosteroids (prednisone) or thalidomide, among other drugs. Key words:Recurrent aphthous stomatitis, treatment, clinical management. PMID:24790718

  19. Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages.

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Cruse, Dave; Blumgart, Dan; Inger, Richard; Gaston, Kevin J

    2017-01-31

    White light-emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night-time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three-year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night-time lighting may ultimately require avoiding its use altogether.

  20. Influence of light exposure at nighttime on sleep development and body growth of preterm infants

    PubMed Central

    Kaneshi, Yosuke; Ohta, Hidenobu; Morioka, Keita; Hayasaka, Itaru; Uzuki, Yutaka; Akimoto, Takuma; Moriichi, Akinori; Nakagawa, Machiko; Oishi, Yoshihisa; Wakamatsu, Hisanori; Honma, Naoki; Suma, Hiroki; Sakashita, Ryuichi; Tsujimura, Sei-ichi; Higuchi, Shigekazu; Shimokawara, Miyuki; Cho, Kazutoshi; Minakami, Hisanori

    2016-01-01

    Previous studies have demonstrated that a light-dark cycle has promoted better sleep development and weight gain in preterm infants than constant light or constant darkness. However, it was unknown whether brief light exposure at night for medical treatment and nursing care would compromise the benefits brought about by such a light-dark cycle. To examine such possibility, we developed a special red LED light with a wavelength of >675 nm which preterm infants cannot perceive. Preterm infants born at <36 weeks’ gestational age were randomly assigned for periodic exposure to either white or red LED light at night in a light-dark cycle after transfer from the Neonatal Intensive Care Unit to the Growing Care Unit, used for supporting infants as they mature. Activity, nighttime crying and body weight were continuously monitored from enrolment until discharge. No significant difference in rest-activity patterns, nighttime crying, or weight gain was observed between control and experimental groups. The data indicate that nursing care conducted at 3 to 4-hour intervals exposing infants to light for <15 minutes does not prevent the infants from developing circadian rest-activity patterns, or proper body growth as long as the infants are exposed to regular light-dark cycles. PMID:26877166

  1. Influence of light exposure at nighttime on sleep development and body growth of preterm infants.

    PubMed

    Kaneshi, Yosuke; Ohta, Hidenobu; Morioka, Keita; Hayasaka, Itaru; Uzuki, Yutaka; Akimoto, Takuma; Moriichi, Akinori; Nakagawa, Machiko; Oishi, Yoshihisa; Wakamatsu, Hisanori; Honma, Naoki; Suma, Hiroki; Sakashita, Ryuichi; Tsujimura, Sei-ichi; Higuchi, Shigekazu; Shimokawara, Miyuki; Cho, Kazutoshi; Minakami, Hisanori

    2016-02-15

    Previous studies have demonstrated that a light-dark cycle has promoted better sleep development and weight gain in preterm infants than constant light or constant darkness. However, it was unknown whether brief light exposure at night for medical treatment and nursing care would compromise the benefits brought about by such a light-dark cycle. To examine such possibility, we developed a special red LED light with a wavelength of >675 nm which preterm infants cannot perceive. Preterm infants born at <36 weeks' gestational age were randomly assigned for periodic exposure to either white or red LED light at night in a light-dark cycle after transfer from the Neonatal Intensive Care Unit to the Growing Care Unit, used for supporting infants as they mature. Activity, nighttime crying and body weight were continuously monitored from enrolment until discharge. No significant difference in rest-activity patterns, nighttime crying, or weight gain was observed between control and experimental groups. The data indicate that nursing care conducted at 3 to 4-hour intervals exposing infants to light for <15 minutes does not prevent the infants from developing circadian rest-activity patterns, or proper body growth as long as the infants are exposed to regular light-dark cycles.

  2. Magnetic field fluctuations observed by the Swarm constellation in the nighttime mid-latitude topside ionosphere

    NASA Astrophysics Data System (ADS)

    Park, J.; Luhr, H.; Kervalishvili, G.; Rauberg, J.; Michaelis, I.; Stolle, C.; Kwak, Y. S.

    2015-12-01

    Using single-satellite observations on Low-Earth-Orbits (LEO), some previous studies suggested that electric and magnetic field fluctuations observed in the nighttime mid-latitude ionosphere originate from medium-scale traveling ionospheric disturbances (MSTIDs). With the inherently 1-dimensional sampling, however, those studies could not confirm whether (1) the electric and magnetic field fluctuations are spatial structures rather than temporal variations, and (2) horizontal shapes of the field fluctuation regions generally have mirror symmetry with respect to the magnetic equator, just as MSTIDs do. In this presentation we analyze magnetic field data sampled by three identical Swarm satellites. The results support the idea of a close connection between mid-latitude magnetic fluctuations (MMFs) and MSTIDs in the nighttime sector. Combined with the relationship between MMFs and MSTIDs, the MMF climatology can be used for extending that of MSTIDs, which has been poorly investigated over oceans. In addition, we have conducted a scale size analysis and found that coherence lengths of MMFs are typically shorter than 150 km. We also discuss the possibility that the MMF regions are aligned with the background magnetic field.

  3. The acclimation of Tilia cordata stomatal opening in response to light, and stomatal anatomy to vegetational shade and its components.

    PubMed

    Aasamaa, Krõõt; Aphalo, Pedro José

    2016-09-26

    Stomatal anatomical traits and rapid responses to several components of visible light were measured in Tilia cordata Mill. seedlings grown in an open, fully sunlit field (C-set), or under different kinds of shade. The main questions were: (i) stomatal responses to which visible light spectrum regions are modified by growth-environment shade and (ii) which separate component of vegetational shade is most effective in eliciting the acclimation effects of the full vegetational shade. We found that stomatal opening in response to red or green light did not differ between the plants grown in the different environments. Stomatal response to blue light was increased (in comparison with that of C-set) in the leaves grown in full vegetational shade (IABW-set), in attenuated UVAB irradiance (AB-set) or in decreased light intensity (neutral shade) plus attenuated UVAB irradiance (IAB-set). In all sets, the addition of green light-two or four times stronger-into induction light barely changed the rate of the blue-light-stimulated stomatal opening. In the AB-set, stomatal response to blue light equalled the strong IABW-set response. In attenuated UVB-grown leaves, stomatal response fell midway between IABW- and C-set results. Blue light response by neutral shade-grown leaves did not differ from that of the C-set, and the response by the IAB-set did not differ from that of the AB-set. Stomatal size was not modified by growth environments. Stomatal density and index were remarkably decreased only in the IABW- and IAB-sets. It was concluded that differences in white light responses between T. cordata leaves grown in different light environments are caused only by their different blue light response. Differences in stomatal sensitivity are not dependent on altered stomatal anatomy. Attenuated UVAB irradiance is the most efficient component of vegetational shade in stimulating acclimation of stomata, whereas decreased light intensity plays a minor role.

  4. Positive and negative peptide signals control stomatal density.

    PubMed

    Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko

    2011-06-01

    The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.

  5. Experimental simulation of radio- and chemoradio stomatitis in rats.

    PubMed

    Antushevich, A A; Grebenyuk, A N; Antushevich, A Y; Polevay, L P

    2013-04-01

    Experimental models of stomatitis developing in response to an isolated (radiation) and combined (radiation and chemical) exposure of experimental animals, were created. The severity of radiation-induced stomatitis was determined by the dose of radiation exposure. Additional exposure to a chemical factor (cyclophosphamide) augmented the destructive effect of ionizing radiation on the buccal mucosa of rats.

  6. In situ stomatal responses to long-term CO 2 enrichment in calcareous grassland plants

    NASA Astrophysics Data System (ADS)

    Lauber, Wolfgang; Körner, Christian

    A calcareous grassland community growing under full season CO 2 enrichment at low altitude in the Swiss Jura mountains was investigated for diurnal and seasonal variations of leaf diffusive conductance. A new CO 2 enrichment method (Screen aided CO 2 control, SACC) permitted in situ leaf porometry under natural climatic conditions without disturbance of plants. At 600 ppm CO 2, leaf conductance in the dominant species, Bromus erectus (a species so far not showing a growth response to elevated CO 2) was reduced to half the values measured in controls. In contrast, leaf conductance in Carex flacca, a species of low cover (the only species so far exhibiting a dramatic growth stimulation by CO 2 fertilization) remained almost unaffected by elevated CO 2. Sanguisorba minor, Plantago media, and Cirsium acaule showed intermediate responses. Trifolium montanum, studied only on a single day, showed a reduction like Bromus. Differences between treatments were largest under humid conditions and disappeared during dry periods. In none of the species studied did stomatal density or stomatal index differ between treatments. A parallel investigation of whole ecosystem evapotranspiration indicated only small (<10%) and non significant CO 2 responses, suggesting that both aerodynamic effects at the canopy level and a great interspecific variation of leaf level responses overshadow the clear CO 2 response of Bromus stomata. The different stomatal responses to CO 2 enrichment are likely to alter species specific water consumption, and may thus affect community structure in the long run.

  7. Reactive Oxygen Species in the Regulation of Stomatal Movements.

    PubMed

    Sierla, Maija; Waszczak, Cezary; Vahisalu, Triin; Kangasjärvi, Jaakko

    2016-07-01

    Guard cells form stomatal pores that optimize photosynthetic carbon dioxide uptake with minimal water loss. Stomatal movements are controlled by complex signaling networks that respond to environmental and endogenous signals. Regulation of stomatal aperture requires coordinated activity of reactive oxygen species (ROS)-generating enzymes, signaling proteins, and downstream executors such as ion pumps, transporters, and plasma membrane channels that control guard cell turgor pressure. Accumulation of ROS in the apoplast and chloroplasts is among the earliest hallmarks of stomatal closure. Subsequent increase in cytoplasmic Ca(2+) concentration governs the activity of multiple kinases that regulate the activity of ROS-producing enzymes and ion channels. In parallel, ROS directly regulate the activity of multiple proteins via oxidative posttranslational modifications to fine-tune guard cell signaling. In this review, we summarize recent advances in the role of ROS in stomatal closure and discuss the importance of ROS in regulation of signal amplification and specificity in guard cells.

  8. Drawing the future: Stomatal response to CO(2) levels.

    PubMed

    Serna, Laura

    2008-04-01

    Gas exchange between the plant and the atmosphere is regulated by controlling both the stomatal density and the aperture of the stomatal pore. Environmental factors such as light, the level of atmospheric CO(2) and hormones regulate stomatal development and/or function. Because atmospheric CO(2) levels have been rising since the Industrial Revolution, and it is predicted that they will continue doing so in the future, an understanding of the CO(2) signalling mechanisms in the stomatal responses will help to know how plants were in the past and will allow predicting how they will respond to climate change in the near future. This article covers the recent knowledge of the CO(2) signalling mechanisms that regulate both stomatal function and development.

  9. Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity.

    PubMed

    Mediavilla, Sonia; Escudero, Alfonso

    2003-10-01

    We studied stomatal responses to decreasing predawn water potential (Psipd) and increasing leaf-to-air water vapor pressure difference (VPD) of co-occurring woody Mediterranean species with contrasting leaf habits and growth form. The species included two evergreen oaks (Quercus ilex subsp. ballota (Desf.) Samp. and Q. suber L.), two deciduous oaks (Q. faginea Lam. and Q. pyrenaica Willd.) and two deciduous shrubs (Pyrus bourgaeana Decne. and Crataegus monogyna Jacq.). Our main objective was to determine if stomatal sensitivity is related to differences in leaf life span and leaf habit. The deciduous shrubs had the least conservative water-use characteristics, with relatively high stomatal conductance and low stomatal sensitivity to soil and atmospheric drought. As a result, Psipd decreased greatly in both species during the growing season, resulting in early leaf abscission in the summer. The deciduous oaks showed intermediate water-use characteristics, having maximum stomatal conductances and CO2 assimilation rates similar to or even higher than those of the deciduous shrubs. However, they had greater stomatal sensitivity to soil drying and showed less negative Psipd values than the deciduous shrubs. The evergreen oaks, and especially the species with the greatest leaf longevity, Q. ilex, exhibited the most conservative water-use behavior, having lower maximum stomatal conductances and greater sensitivity to VPD than the deciduous species. As a result, Psipd decreased less during the growing season in the evergreens than in the deciduous species, which may contribute to greater leaf longevity by avoiding irreversible damage during the summer drought. However, the combination of low maximum CO2 assimilation rates and high stomatal sensitivity to drought must have a negative impact on the final carbon budget of leaves with a long life span.

  10. Nitric oxide is involved in stomatal development by modulating the expression of stomatal regulator genes in Arabidopsis.

    PubMed

    Fu, Zheng-Wei; Wang, Yan-Li; Lu, Ying-Tang; Yuan, Ting-Ting

    2016-11-01

    As sessile organisms, plants require many flexible strategies to adapt to the environment. Although some environmental signaling pathways regulating stomatal development have been identified, how stomatal regulators are modulated by internal and external signals to determine the final stomatal abundance requires further exploration. In our studies, we found that nitric oxide (NO) promotes stomatal development with increased stomatal index as well as the relative number of meristemoids and guard mother cells [%(M+GMC)] in NO-treated wild-type Arabidopsis plants; this role of NO was further verified in the nox1 mutant, which exhibits higher NO levels, and the noa1 mutant, which exhibits low NO accumulation. To gain insight into the molecular mechanisms underlying the effect of NO, we further assayed the expression of genes involved in stomatal development and found that NO induces the expression of the master regulators SPCH, MUTE and SCRM2 to initiate stomatal development. In addition, MPK6 is also involved in NO-promoted stomatal development, as MPK6 expression was repressed in nox1 and NO-treated plants, and transgenic plants overexpressing MPK6 were less sensitive to SNP treatment in terms of changes in the%(M+GMC). Thus, our study shows that NO promotes the production of stomata by up-regulating the expression of SPCH, MUTE and SCRM2 and down-regulating MPK6 expression.

  11. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.

    PubMed

    Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R

    2016-09-01

    Stomata enable gaseous exchange between the interior of the leaf and the atmosphere through the stomatal pore. Control of the pore aperture depends on osmotic solute accumulation by, and its loss from the guard cells surrounding the pore. Stomata in most plants are separated by at least one epidermal cell, and this spacing is thought to enhance stomatal function, although there are several genera that exhibit stomata in clusters. We made use of Arabidopsis (Arabidopsis thaliana) stomatal patterning mutants to explore the impact of clustering on guard cell dynamics, gas exchange, and ion transport of guard cells. These studies showed that stomatal clustering in the Arabidopsis too many mouths (tmm1) mutant suppressed stomatal movements and affected CO2 assimilation and transpiration differentially between dark and light conditions and were associated with alterations in K(+) channel gating. These changes were consistent with the impaired dynamics of tmm1 stomata and were accompanied by a reduced accumulation of K(+) ions in the guard cells. Our findings underline the significance of spacing for stomatal dynamics. While stomatal spacing may be important as a reservoir for K(+) and other ions to facilitate stomatal movements, the effects on channel gating, and by inference on K(+) accumulation, cannot be explained on the basis of a reduced number of epidermal cells facilitating ion supply to the guard cells.

  12. Factors Predicting Atypical Development of Nighttime Bladder Control

    PubMed Central

    Sullivan, Sarah; Heron, Jon

    2015-01-01

    ABSTRACT: Objective: To derive latent classes (longitudinal “phenotypes”) of frequency of bedwetting from 4 to 9 years and to examine their association with developmental delay, parental history of bedwetting, length of gestation and birth weight. Method: The authors used data from 8,769 children from the UK Avon Longitudinal Study of Parents and Children cohort. Mothers provided repeated reports on their child's frequency of bedwetting from 4 to 9 years. The authors used longitudinal latent class analysis to derive latent classes of bedwetting and examined their association with sex, developmental level at 18 months, parental history of wetting, birth weight, and gestational length. Results: The authors identified 5 latent classes: (1) “normative”—low probability of bedwetting; (2) “infrequent delayed”—delayed attainment of nighttime bladder control with bedwetting nighttime bladder control with bedwetting ≥ twice a week; (4) “infrequent persistent”—persistent bedwetting < twice a week; and (5) “frequent persistent”—persistent bedwetting ≥ twice a week. Male gender (odds ratio = 3.20 [95% confidence interval = 2.36–4.34]), developmental delay, for example, delayed social skills (1.33 [1.11–1.58]), and maternal history of wetting (3.91 [2.60–5.88]) were associated with an increase in the odds of bedwetting at 4 to 9 years. There was little evidence that low birth weight and shorter gestation period were associated with bedwetting. Conclusion: The authors described patterns of development of nighttime bladder control and found evidence for factors that predict continuation of bedwetting at school age. Increased knowledge of risk factors for bedwetting is needed to identify children at risk of future problems attaining and maintaining continence. PMID:26468941

  13. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.

    PubMed

    Lawson, Tracy; Lefebvre, Stephane; Baker, Neil R; Morison, James I L; Raines, Christine A

    2008-01-01

    Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F(q)(')/F(m)(')) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO(2) assimilation rates and higher internal CO(2) concentrations. Increasing CO(2) concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C(i) levels. Together, these data suggest that the primary light-induced opening or CO(2)-dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO(2).

  14. Characterization of Nighttime Light Variability Over the Southeastern United States

    NASA Technical Reports Server (NTRS)

    Cole, Tony A.; Molthan, Andrew L.; Schultz, Lori A.

    2016-01-01

    City lights provide indications of human activity at night. Nighttime satellite imagery offers daily snapshots of this activity. With calibrated, science-quality imagery, long-term monitoring can also be achieved. The degree to which city lights fluctuate, however, is not well known. For the application of detecting power outages, this degree of variability is crucial for assessing reductions to city lights based on historical trends. Eight southeastern U.S. cities are analyzed to understand the relationship between emission variability and several population centers. A preliminary, example case power outage study is also discussed as a transition into future work.

  15. Characterization of Nighttime Light Variability over the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cole, T.; Molthan, A.; Schultz, L. A.

    2015-12-01

    Severe meteorological events such as thunderstorms, tropical cyclones and winter ice storms often produce prolonged, widespread power outages affecting large populations and regions. The spatial impact of these events can extend from relatively rural, small towns (i.e. November 17, 2013 Washington, IL EF-4 tornado) to a series of adjoined states (i.e. April 27, 2011 severe weather outbreak) to entire regions (i.e. 2012 Hurricane Sandy) during their lifespans. As such, affected populations can vary greatly, depending on the event's intensity, location and duration. Actions taken by disaster response agencies like FEMA, the American Red Cross and NOAA to provide support to communities during the recovery process need accurate and timely information on the extent and location(s) of power disruption. This information is often not readily available to these agencies given communication interruptions, independent storm damage reports and other response-inhibiting factors. VIIRS DNB observations which provide daily, nighttime measurements of light sources can be used to detect and monitor power outages caused by these meteorological disaster events. To generate such an outage product, normal nighttime light variability must be analyzed and understood at varying spatial scales (i.e individual pixels, clustered land uses/covers, entire city extents). The southeastern portion of the United States serves as the study area in which the mean, median and standard deviation of nighttime lights are examined over numerous temporal periods (i.e. monthly, seasonally, annually, inter-annually). It is expected that isolated pixels with low population density (rural) will have tremendous variability in which an outage "signal" is difficult to detect. Small towns may have more consistent lighting (over a few pixels), making it easier to identify outages and reductions. Finally, large metropolitan areas may be the most "stable" light source, but the entire area may rarely experience a

  16. Management of Recurrent Aphthous Stomatitis in Children.

    PubMed

    Montgomery-Cranny, Jodie A; Wallace, Ann; Rogers, Helen J; Hughes, Sophie C; Hegarty, Anne M; Zaitoun, Halla

    2015-01-01

    Recurrent oral ulceration is common and may present in childhood. Causes of recurrent oral ulceration are numerous and there may be an association with underlying systemic disease. Recurrent aphthous stomatitis (RAS) is the most common underlying diagnosis in children. The discomfort of oral ulcers can impact negatively on quality of life of a child, interfering with eating, speaking and may result in missed school days. The role of the general dental practitioner is to identify patients who can be treated with simple measures in primary dental care and those who require assessment and treatment in secondary care. Management may include topical agents for symptomatic relief, topical corticosteroids and, in severe recalcitrant cases, systemic agents may be necessary.

  17. SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and modulates photosynthesis and growth.

    PubMed

    Upadhyay, Rakesh Kumar; Soni, Devendra K; Singh, Ruchi; Dwivedi, Upendra N; Pathre, Uday V; Nath, Pravendra; Sane, Aniruddha P

    2013-08-01

    The AP2 domain class of transcription factors is a large family of genes with various roles in plant development and adaptation but with very little functional information in plants other than Arabidopsis. Here, the characterization of an EAR motif-containing transcription factor, SlERF36, from tomato that affects stomatal density, conductance, and photosynthesis is described. Heterologous expression of SlERF36 under the CaMV35S promoter in tobacco leads to a 25-35% reduction in stomatal density but without any effect on stomatal size or sensitivity. Reduction in stomatal density leads to a marked reduction in stomatal conductance (42-56%) as well as transpiration and is associated with reduced CO₂ assimilation rates, reduction in growth, early flowering, and senescence. A prominent adaptive response of SlERF36 overexpressors is development of constitutively high non-photochemical quenching (NPQ) that might function as a protective measure to prevent damage from high excitation pressure. The high NPQ leads to markedly reduced light utilization and low electron transport rates even at low light intensities. Taken together, these data suggest that SlERF36 exerts a negative control over stomatal density and modulates photosynthesis and plant development through its direct or indirect effects.

  18. Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. 1

    PubMed Central

    Sharkey, Thomas D.; Raschke, Klaus

    1981-01-01

    Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO2 assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves. PMID:16662069

  19. Nighttime awakenings responding to gabapentin therapy in late premenopausal women: a case series.

    PubMed

    Guttuso, Thomas

    2012-04-15

    Insomnia related to nighttime awakenings is known to be more prevalent in women than men. Three cases are presented here of late premenopausal women experiencing frequent nighttime awakenings that responded well to bedtime treatment with gabapentin. In one case, what started as isolated nighttime awakenings slowly progressed to awakenings accompanied by typical menopausal night sweats. This led to the theory that the initial isolated nighttime awakenings in this patient may have been secondary to a menopausal etiology related to low serum estradiol levels. In the subsequent 2 cases, early follicular phase serum estradiol was confirmed to be low. It is theorized that isolated nighttime awakenings in some premenopausal women may be caused by low serum estradiol, triggering events physiologically related to menopausal night sweats. Further research is needed to determine if low early follicular phase serum estradiol is associated with nighttime awakenings in premenopausal women not experiencing night sweats.

  20. Allyl isothiocyanate induces stomatal closure in Vicia faba.

    PubMed

    Sobahan, Muhammad Abdus; Akter, Nasima; Okuma, Eiji; Uraji, Misugi; Ye, Wenxiu; Mori, Izumi C; Nakamura, Yoshimasa; Murata, Yoshiyuki

    2015-01-01

    Isothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V. faba. GSH monoethyl ester induced stomatal reopening and suppressed AITC-induced GSH depletion in guard cells. Exogenous catalase and a peroxidase inhibitor, salicylhydroxamic acid, inhibited AITC-induced stomatal closure, unlike an NAD(P)H oxidase inhibitor, diphenylene iodonium chloride. The peroxidase inhibitor also abolished the AITC-induced ROS production, NO production, and cytosolic alkalization. AITC-induced stomatal closure was suppressed by an NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and an agent to acidify cytosol, butyrate. These results indicate that AITC-induced stomatal closure in V. faba as well as in A. thaliana and suggest that AITC signaling in guard cells is conserved in both plants.

  1. Stomatal development in Arabidopsis and grasses: differences and commonalities.

    PubMed

    Serna, Laura

    2011-01-01

    Stomata, found on the epidermis of all terrestrial plants, consist of two specialized cells called guard cells, which surround a tiny pore. Major advances have been made in our understanding of the genetic control of stomatal development in Arabidopsis and grasses. In Arabidopsis, three basic-helix-loop-helix (bHLH) genes control the successive steps that lead to stomatal formation. SPEECHLESS (SPCH) drives the cell division that initiates the stomatal cell lineage, MUTE induces the formation of the immediate stomatal precursor cell, and FAMA causes the stomatal precursor cell to divide into the two guard cells. Recent results demonstrate that these genes share functions with their grass homologs, and that MUTE is expressed later in development than its grass counterparts. Other differences in stomatal development between these two plant groups are exemplified by the PANGLOSS1 (PAN1) gene of maize. PAN1, which encodes a leucine-rich repeat receptor-like kinase with an inactive kinase domain, promotes polarization of the subsidiary mother cell and orients its cell division plane. Because such events do not exist in Arabidopsis, it is likely that the PAN1-like genes of Arabidopsis and PAN1 are paralogs. Together, these results indicate that distinctions in the regulation of gene expression and protein function are both responsible for the divergence of stomatal development between Arabidopsis and grasses.

  2. Sleep quality and temperament among university students: differential associations with nighttime sleep duration and sleep disruptions.

    PubMed

    Lukowski, Angela F; Milojevich, Helen M

    2015-01-01

    Sleep-temperament associations have not yet been examined among university students, despite awareness of the high incidence of sleep problems in this population. The present study was conducted (a) to examine whether sleep quality was associated with temperament among university-attending young adults and (b) to determine whether particular components of sleep quality were differentially associated with temperament. University students completed questionnaires designed to assess sleep quality and temperament. Poor sleep quality was associated with increased negative affect and orienting sensitivity as well as decreased effortful control; regression analyses revealed differential associations between components of nighttime sleep quality and temperament ratings. The presented study reveals conceptual continuity in sleep-temperament relations from infancy to young adulthood and highlights important avenues for future research.

  3. Weak vertical canopy gradients of photosynthetic capacities and stomatal responses in a fertile Norway spruce stand.

    PubMed

    Tarvainen, Lasse; Wallin, Göran; Uddling, Johan

    2013-12-01

    The sensitivity of carbon (C) assimilation to within-canopy nitrogen (N) allocation and of stomatal conductance (g s) to environmental variables were investigated along a vertical canopy gradient in a fertile Norway spruce [Picea abies (L.) Karst.] stand. Maximum rates of ribulose bisphosphate-saturated carboxylation (V (cmax)) and electron transport (J (max)) exhibited weak relationships with needle N content. Using these relationships together with a combined stomatal-photosynthesis model, it was found that the sensitivity of C assimilation of 12 1-year old shoots to within-canopy N allocation pattern was very weak. Modelled C assimilation based on optimal compared to observed N allocation pattern increased by only 1-2 %, and altering total needle N content by ± 30 % resulted in a 2-4 % change in modelled C assimilation. C assimilation was more sensitive to water use and changed by 8-12 % in response to ± 30 % altered stomatal conductance. No indications of significant limitations of photosynthesis by other nutrients or non-optimal within-canopy allocation of water were detected. The sensitivity of g s to photosynthetic photon flux density (PPFD) was found to be stronger in the lower canopy, while no significant within-canopy variation was observed in light-saturated g( s) or stomatal sensitivity to vapour pressure deficit (VPD). The results of this study show that, at this N rich site, photosynthesis integrated for shoots at different canopy positions is only marginally affected by N allocation pattern and that increased stand-scale N availability would only be truly beneficial to canopy photosynthesis if it resulted in increased leaf area.

  4. Savanna Tree Seedlings are Physiologically Tolerant to Nighttime Freeze Events

    PubMed Central

    O’Keefe, Kimberly; Nippert, Jesse B.; Swemmer, Anthony M.

    2016-01-01

    Freeze events can be important disturbances in savanna ecosystems, yet the interactive effect of freezing with other environmental drivers on plant functioning is unknown. Here, we investigated physiological responses of South African tree seedlings to interactions of water availability and freezing temperatures. We grew widely distributed South African tree species (Colophospermum mopane, Combretum apiculatum, Acacia nigrescens, and Cassia abbreviata) under well-watered and water-limited conditions and exposed individuals to nighttime freeze events. Of the four species studied here, C. mopane was the most tolerant of lower water availability. However, all species were similarly tolerant to nighttime freezing and recovered within one week following the last freezing event. We also show that water limitation somewhat increased freezing tolerance in one of the species (C. mopane). Therefore, water limitation, but not freezing temperatures, may restrict the distribution of these species, although the interactions of these stressors may have species-specific impacts on plant physiology. Ultimately, we show that unique physiologies can exist among dominant species within communities and that combined stresses may play a currently unidentified role in driving the function of certain species within southern Africa. PMID:26870065

  5. Calculating Change in Global Urbanization Using Nighttime Lights

    NASA Astrophysics Data System (ADS)

    Stewart, B. P.; McWilliams, K. L.; Roberts, M.

    2014-12-01

    Measuring urban change is important for policy makers at the municipal, regional, national, and international levels. However, obtaining urban metrics from countries is often difficult, and data-poor, developing countries have little to no capacity to measure urban change over long time periods. The goals of this analysis were to develop a standard methodology for extracting urban footprints from remotely sensed data, and to determine what environmental and economic conditions control urban brightness. For example, an urban area in a country with less development may have darker urban areas than their more developed counterparts, thus, country specific thresholds for separating urban from non-urban areas are necessary to appropriately analyze urbanization. Nighttime lights data, from the DMSP-OLS constellation, are well suited for this task, due to their global coverage, historical archive, and ease of accessibility for data-poor countries. In this project, we used ESA's GlobCover dataset as our validation data, and developed a country-specific classification of urban vs. non urban cover using the nighttime lights data. Classification accuracies varied by country, but ranged from ~90-99%. Preliminary results show that brightness thresholds vary substantially both between countries, and as a function of geographic location. Finally, brightness thresholds and their associated accuracies were compared to environmental and economic indices through regression analysis, in an attempt to determine the drivers of urban brightness.

  6. [Nighttime eating disorders--clinical symptoms and treatment].

    PubMed

    Zawilska, Jolanta B; Santorek-Strumiłło, Edyta J; Kuna, Paulina

    2010-01-01

    Nighttime eating is categorized as either night eating syndrome (NES) or the sleep-related eating disorder (SRED). Both diseases are often connected with an increase of the body mass, obesity, and with psychiatric disturbances. NES is characterized by evening hyperphagia, abnormally increased food intake after the evening meal, nocturnal awakings with ingestions, morning anorexia, and insomnia. Patients suffering from NES are aware of their nocturnal ingestions. It is suggested that NES is an abnormality in the circadian rhythm of meal timing that occurs in people with normal circadian rhythm of sleep. Other factors underlying NES include genetic predispositions, hormonal and neurochemical disturbances, and mood disorders. SRED is characterized by recurrent episodes of eating or drinking after arousal from nighttime sleep, unaware in tight the most cases, with adverse consequences. The distinctive features of SRED are amnesia of night eating episodes and consumption of non-typical food or dangerous articles. SRED is frequently associated with other sleep disorders, e.g., restless leg syndrome, periodic limb movement disorder, obstructive sleep apnea, and somnambulism. It can be also induced by medicines applied by a patient (e.g. zolpidem). It is hypothesized that the syndrome represents a variation of somnambulism. In the treatment of NES both non-pharmacological methods (psychotherapy, phototherapy) as well as the pharmacotherapy (aimed to increase serotoninergic neurotransmission in the brain, predominantly by sertraline, a selective serotonin re-uptake inhibitor) are used. SRED can be treated by controlling comorbid sleep disorders and eliminating provocative sedative hypnotics.

  7. Correcting incompatible DN values and geometric errors in nighttime lights time series images

    SciTech Connect

    Zhao, Naizhuo; Zhou, Yuyu; Samson, Eric L.

    2014-09-19

    The Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime lights imagery has proven to be a powerful remote sensing tool to monitor urbanization and assess socioeconomic activities at large scales. However, the existence of incompatible digital number (DN) values and geometric errors severely limit application of nighttime light image data on multi-year quantitative research. In this study we extend and improve previous studies on inter-calibrating nighttime lights image data to obtain more compatible and reliable nighttime lights time series (NLT) image data for China and the United States (US) through four steps: inter-calibration, geometric correction, steady increase adjustment, and population data correction. We then use gross domestic product (GDP) data to test the processed NLT image data indirectly and find that sum light (summed DN value of pixels in a nighttime light image) maintains apparent increase trends with relatively large GDP growth rates but does not increase or decrease with relatively small GDP growth rates. As nighttime light is a sensitive indicator for economic activity, the temporally consistent trends between sum light and GDP growth rate imply that brightness of nighttime lights on the ground is correctly represented by the processed NLT image data. Finally, through analyzing the corrected NLT image data from 1992 to 2008, we find that China experienced apparent nighttime lights development in 1992-1997 and 2001-2008 respectively and the US suffered from nighttime lights decay in large areas after 2001.

  8. Have we been ignoring physiological plasticity and genetic variation in stomatal function as a significant source of error in models of water and carbon fluxes?

    NASA Astrophysics Data System (ADS)

    Wertin, T. M.; Wolz, K.; Richter, K.; Adorbo, M.; Betzelberger, A. M.; Leakey, A.

    2013-12-01

    Accurately predicting plant and ecosystem function across climatic and ecological gradients requires properly parameterized models of both net photosynthetic assimilation of CO2 and stomatal conductance. Photosynthesis models have been parameterized to account for physiological plasticity and genetic variation for decades. However, models describing physiological plasticity or genetic variation in the sensitivity of stomatal conductance to net photosynthetic CO2 assimilation (A), relative humidity (RH), and atmospheric [CO2] have rarely, if ever, been applied. There is no mechanistic basis for the prevailing assumption that models of stomatal conductance can share a universal parameterization for all C3 species. Twelve species of temperate trees were grown in a common garden to test species-specific sensitivity of stomatal conductance to A, RH and [CO2]. Additionally, a Salix and a Populus genotype, grown at three locations throughout the Eastern US in biofuels trails, were measured at three times during the growing season to test for temporal and spatial effects. Soybean was also grown at eight ozone concentrations to test for physiological plasticity in stomatal function. Laboratory-based gas exchange measurements were used to parameterize the widely used Ball et al. (1987) model of stomatal conductance and the Farquhar et al. (1980) model of photosynthesis. These models were coupled to each other and a leaf energy balance model in order to predict in situ leaf CO2 and water fluxes which were compared against field measurements. There was significant physiological plasticity and genetic variation in the sensitivity of stomatal conductance to A, RH and [CO2]. This was reflected in significant variation in parameters of the Ball et al. (1987) model, with the key slope parameter (m) ranging from more than 4-fold. Context-specific parameterization of this widely used stomatal conductance model reduced error in predictions of in situ leaf A and gs by up to 59

  9. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza.

    PubMed

    Xiong, Dongliang; Flexas, Jaume; Yu, Tingting; Peng, Shaobing; Huang, Jianliang

    2017-01-01

    Leaf hydraulic conductance (Kleaf ) and mesophyll conductance (gm ) both represent major constraints to photosynthetic rate (A), and previous studies have suggested that Kleaf and gm is correlated in leaves. However, there is scarce empirical information about their correlation. In this study, Kleaf , leaf hydraulic conductance inside xylem (Kx ), leaf hydraulic conductance outside xylem (Kox ), A, stomatal conductance (gs ), gm , and anatomical and structural leaf traits in 11 Oryza genotypes were investigated to elucidate the correlation of H2 O and CO2 diffusion inside leaves. All of the leaf functional and anatomical traits varied significantly among genotypes. Kleaf was not correlated with the maximum theoretical stomatal conductance calculated from stomatal dimensions (gsmax ), and neither gs nor gsmax were correlated with Kx . Moreover, Kox was linearly correlated with gm and both were closely related to mesophyll structural traits. These results suggest that Kleaf and gm are related to leaf anatomical and structural features, which may explain the mechanism for correlation between gm and Kleaf .

  10. The chemical compound bubblin induces stomatal mispatterning in Arabidopsis by disrupting the intrinsic polarity of stomatal lineage cells.

    PubMed

    Sakai, Yumiko; Sugano, Shigeo S; Kawase, Takashi; Shirakawa, Makoto; Imai, Yu; Kawamoto, Yusuke; Sugiyama, Hiroshi; Nakagawa, Tsuyoshi; Hara-Nishimura, Ikuko; Shimada, Tomoo

    2017-02-01

    Stem cell polarization is a crucial step in asymmetric cell division, which is a universal system for generating cellular diversity in multicellular organisms. Several conventional genetics studies have attempted to elucidate the mechanisms underlying cell polarization in plants, but it remains largely unknown. In plants, stomata, which are valves for gas exchange, are generated through several rounds of asymmetric divisions. In this study, we identified and characterized a chemical compound that affects stomatal stem cell polarity. High-throughput screening for bioactive molecules identified a pyridine-thiazole derivative, named bubblin, which induced stomatal clustering in Arabidopsis epidermis. Bubblin perturbed stomatal asymmetric division, resulting in the generation of two identical daughter cells. Both cells continued to express the stomatal fate determinant SPEECHLESS, and then differentiated into mispatterned stomata. Bubblin-treated cells had a defect in the polarized localization of BREAKING OF ASYMMETRY IN THE STOMATAL LINEAGE (BASL), which is required for asymmetric cell fate determination. Our results suggest that bubblin induces stomatal lineage cells to divide without BASL-dependent pre-mitotic establishment of polarity. Bubblin is a potentially valuable tool for investigating cell polarity establishment in stomatal asymmetric division.

  11. Sport Transition of JPSS VIIRS Imagery for Night-time Applications

    NASA Technical Reports Server (NTRS)

    Fuell, Kevin; LeRoy, Anita; Smith, Matt; Miller, Steve; Kann, Diedre; Bernhardt, David; Reydell, Nezette; Cox, Robert

    2014-01-01

    The NASA/Short-term Prediction, Research, and Transition (SPoRT) Program and NOAA/Cooperative Institute for Research in the Atmosphere (CIRA) work within the NOAA/Joint Polar Satellite System (JPSS) Proving Ground to demonstrate the unique capabilities of the VIIRS instrument. Very similar to MODIS, the VIIRS instrument provides many high-resolution visible and infrared channels in a broad spectrum. In addition, VIIRS is equipped with a low-light sensor that is able to detect light emissions from the land and atmosphere as well as reflected sunlight by the lunar surface. This band is referred to as the Day-Night Band due to the sunlight being used at night to see cloud and topographic features just as one would typically see in day-time visible imagery. NWS forecast offices that collaborate with SPoRT and CIRA have utilized MODIS imagery in operations, but have longed for more frequent passes of polar-orbiting data. The VIIRS instrument enhances SPoRT collaborations with WFOs by providing another day and night-time pass, and at times two additional passes due to its large swath width. This means that multi-spectral, RGB imagery composites are more readily available to prepare users for their use in GOES-R era and high-resolution imagery for use in high-latitudes is more frequently able to supplement standard GOES imagery within the SPoRT Hybrid GEO-LEO product. The transition of VIIRS also introduces the new Day-Night Band capability to forecast operations. An Intensive Evaluation Period (IEP) was conducted in Summer 2013 with a group of "Front Range" NWS offices related to VIIRS night-time imagery. VIIRS single-channel imagery is able to better analyze the specific location of fire hotspots and other land features, as well as provide a more true measurement of various cloud and aerosol properties than geostationary measurements, especially at night. Viewed within the SPoRT Hybrid imagery, the VIIRS data allows forecasters to better interpret the more frequent, but

  12. Use of sap flow measurements to validate stomatal functions for mature beech (Fagus sylvatica) in view of ozone uptake calculations.

    PubMed

    Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian

    2010-09-01

    For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO3SE model.

  13. Vesicular stomatitis outbreak in the southwestern United States, 2012.

    PubMed

    McCluskey, Brian J; Pelzel-McCluskey, Angela M; Creekmore, Lynn; Schiltz, John

    2013-09-01

    Vesicular stomatitis is a viral disease primarily affecting horses and cattle when it occurs in the United States. Outbreaks in the southwestern United States occur sporadically, with initial cases typically occurring in Texas, New Mexico, or Arizona and subsequent cases occurring in a northward progression. The viruses causing vesicular stomatitis can be transmitted by direct contact of lesioned animals with other susceptible animals, but transmission is primarily through arthropod vectors. In 2012, an outbreak of vesicular stomatitis in the United States occurred that was caused by Vesicular stomatitis New Jersey virus serotype. Overall, 51 horses on 36 premises in 2 states were confirmed positive. Phylogenetic analysis of the virus indicated that it was most closely related to viruses detected in the state of Veracruz, Mexico, in 2000.

  14. [Management of Stomatitis Associated with Treatment with Everolimus].

    PubMed

    Ota, Yoshihide; Kurita, Hiroshi; Umeda, Masahiro

    2016-02-01

    Stomatitis is a characteristic adverse event of everolimus and other mTOR inhibitors, and occurs at a high incidence and impairs QOL owing to pain. Most cases of stomatitis are mild to moderate. However, when stomatitis becomes serious, it can interfere with the continuation of medication. Therefore, it is important to place more emphasis on the prevention as well as early detection and treatment. In addition, patient education is also important. The possible occurrence of stomatitis, its signs and symptoms, as well as the importance of oral care need to be thoroughly explained prior to starting treatment. In order to smoothly carry out these measures, it will also be essential that cancer-treating physicians coordinate and collaborate with dentists, nurses, and pharmacists. It is desirable to establish appropriate prevention and management methods on the basis of the results of the Phase III prospective study, Oral Care-BC, currently ongoing in Japan.

  15. Investigating Polyploidy: Using Marigold Stomates and Fingernail Polish.

    ERIC Educational Resources Information Center

    Hunter, Kimberly L.; Leone, Rebecca S.; Kohlhepp, Kimberly; Hunter, Richard B.

    2002-01-01

    Describes a science activity on polyploidy targeting middle and high school students which can be used to discuss topics such as chromosomes, cells, plant growth, and functions of stomates. Integrates mathematics in data collection. (Contains 13 references.) (YDS)

  16. Stomatal innovation and the rise of seed plants.

    PubMed

    McAdam, Scott A M; Brodribb, Timothy J

    2012-01-01

    Stomatal valves on the leaves of vascular plants not only prevent desiccation but also dynamically regulate water loss to maintain efficient daytime water use. This latter process involves sophisticated active control of stomatal aperture that may be absent from early-branching plant clades. To test this hypothesis, we compare the stomatal response to light intensity in 13 species of ferns and lycophytes with a diverse sample of seed plants to determine whether the capacity to optimise water use is an ancestral or derived feature of stomatal physiology. We found that in seed plants, the ratio of photosynthesis to water use remained high and constant at different light intensities, but fern and lycophyte stomata were incapable of sustaining homeostatic water use efficiency. We conclude that efficient water use in early seed plants provided them with a competitive advantage that contributed to the decline of fern and lycophyte dominated-ecosystems in the late Paleozoic.

  17. Role of Sucrose in Emerging Mechanisms of Stomatal Aperture Regulation.

    SciTech Connect

    Outlaw, W. H.

    2000-09-15

    Focused on the second of 2 hypotheses that were proposed for testing that transpiration rate determines the extent to which suc accumulates in the GC wall providing a mechanism for regulating stomatal aperture size.

  18. Simple relations for different stomatal control mechanisms link partially drying soil and transpiration

    NASA Astrophysics Data System (ADS)

    Huber, Katrin; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Stomata can close to regulate plant water loss under unfavourable water availability. This closure can be triggered by hydraulic ('H') and/or chemical signals ('C', 'H+C'). By combining plant hydraulic relations with a model for stomatal conductance, including chemical signalling, our aim was to derive a simple relation that links soil water availability, expressed as the fraction of roots in dry soil, to transpiration. We used the detailed mechanistic soil-root water flow model R-SWMS to verify this relation. Virtual split root experiments were simulated, comparing horizontally and vertically split domains with varying fractions of roots in dry soil and comparing different strengths of stomatal regulation by chemical and hydraulic signals. Transpiration predicted by the relation was in good agreement with numerical simulations. Under certain conditions H+C control leads to isohydric plant behaviour, which means that stomata close to keep leaf water potential constant after reaching a certain level. C control on the other hand exerts anisohydric behaviour, meaning that stomata remain fully open during changes in leaf water potential. For C control the relation between transpiration reduction and fraction of roots in dry soil becomes independent of transpiration rate whereas H+C control results in stronger reduction for higher transpiration rates. Simple relations that link effective soil and leaf water potential can describe different stomatal control resulting in contrasting behaviour.

  19. Stomatal constraints may affect emission of oxygenated monoterpenoids from the foliage of Pinus pinea.

    PubMed

    Niinemets, Ulo; Reichstein, Markus; Staudt, Michael; Seufert, Günther; Tenhunen, John D

    2002-11-01

    Dependence of monoterpenoid emission and fractional composition on stomatal conductance (G(V)) was studied in Mediterranean conifer Pinus pinea, which primarily emits limonene and trans-beta-ocimene but also large fractions of oxygenated monoterpenoids linalool and 1,8-cineole. Strong decreases in G(V) attributable to diurnal water stress were accompanied by a significant reduction in total monoterpenoid emission rate in midday. However, various monoterpenoids responded differently to the reduction in G(V), with the emission rates of limonene and trans-beta-ocimene being unaffected but those of linalool and 1,8-cineole closely following diurnal variability in G(V). A dynamic emission model indicated that stomatal sensitivity of emissions was associated with monoterpenoid Henry's law constant (H, gas/liquid phase partition coefficient). Monoterpenoids with a large H such as trans-beta-ocimene sustain higher intercellular partial pressure for a certain liquid phase concentration, and stomatal closure is balanced by a nearly immediate increase in monoterpene diffusion gradient from intercellular air-space to ambient air. The partial pressure rises also in compounds with a low H, but more than 1,000-fold higher liquid phase concentrations of linalool and 1,8-cineole are necessary to increase intercellular partial pressure high enough to balance stomatal closure. The system response is accordingly slower, and the emission rates may be transiently suppressed by low G(V). Simulations further suggested that linalool and 1,8-cineole synthesis rates also decreased with decreasing G(V), possibly as the result of selective inhibition of various monoterpene synthases by stomata. We conclude that physicochemical characteristics of volatiles not only affect total emission but also alter the fractional composition of emitted monoterpenoids.

  20. Stomatal sensitivity to vapour pressure deficit relates to climate of origin in Eucalyptus species.

    PubMed

    Bourne, Aimee E; Haigh, Anthony M; Ellsworth, David S

    2015-03-01

    Selecting plantation species to balance water use and production requires accurate models for predicting how species will tolerate and respond to environmental conditions. Although interspecific variation in water use occurs, species-specific parameters are rarely incorporated into physiologically based models because often the appropriate species parameters are lacking. To determine the physiological control over water use in Eucalyptus, five stands of Eucalyptus species growing in a common garden were measured for sap flux rates and their stomatal response to vapour pressure deficit (D) was assessed. Maximal canopy conductance and whole-canopy stomatal sensitivity to D and reduced water availability were lower in species originating from more arid climates of origin than those from humid climates. Species from humid climates showed a larger decline in maximal sap flux density (JSmax) with reduced water availability, and a lower D at which stomatal closure occurred than species from more arid climates, implying larger sensitivity to water availability and D in these species. We observed significant (P < 0.05) correlations of species climate of origin with mean vessel diameter (R(2) = 0.90), stomatal sensitivity to D (R(2) = 0.83) and the size of the decline in JSmax to restricted water availability (R(2) = 0.94). Thus aridity of climate of origin appears to have a selective role in constraining water-use response among the five Eucalyptus plantation species. These relationships emphasize that within this congeneric group of species, climate aridity constrains water use. These relationships have implications for species choices for tree plantation success against drought-induced losses and the ability to manage Eucalyptus plantations against projected changes in water availability and evaporation in the future.

  1. Bovine lactoferrin and piroxicam as an adjunct treatment for lymphocytic-plasmacytic gingivitis stomatitis in cats.

    PubMed

    Hung, Yi-Ping; Yang, Yi-Ping; Wang, Hsien-Chi; Liao, Jiunn-Wang; Hsu, Wei-Li; Chang, Chao-Chin; Chang, Shih-Chieh

    2014-10-01

    Feline lymphocytic-plasmacytic gingivitis/stomatitis (LPGS) or caudal stomatitis is an inflammatory disease that causes painfully erosive lesions and proliferations of the oral mucosa. The disease is difficult to cure and can affect cats at an early age, resulting in lifetime therapy. In this study, a new treatment using a combination of bovine lactoferrin (bLf) oral spray and oral piroxicam was investigated using a randomized double-blinded clinical trial in 13 cats with caudal stomatitis. Oral lesion grading and scoring of clinical signs were conducted during and after the trial to assess treatment outcome. Oral mucosal biopsies were used to evaluate histological changes during and after treatment. Clinical signs were significantly improved in 77% of the cats. In a 4-week study, clinical signs were considerably ameliorated by oral piroxicam during the first 2 weeks. In a 12-week study, the combined bLf oral spray and piroxicam, when compared with piroxicam alone, exhibited an enhanced effect that reduced the severity of the oral lesions (P = 0.059), while also significantly improving clinical signs (P <0.05), quality of life (P <0.05), and weight gain (P <0.05). The remission of oral inflammation was closely correlated with the decreased number of macrophages (OR = 4.719, P < 0.05). There was no detectable influence on liver or kidney function during a 12-week assessment. It was concluded that combining oral bLf spray and piroxicam was safe and might be used to decrease the clinical signs of caudal stomatitis in cats.

  2. Unraveling the Effects of Plant Hydraulics on Stomatal Closure during Water Stress in Walnut

    PubMed Central

    Cochard, Hervé; Coll, Lluis; Le Roux, Xavier; Améglio, Thierry

    2002-01-01

    The objectives of the study were to identify the relevant hydraulic parameters associated with stomatal regulation during water stress and to test the hypothesis of a stomatal control of xylem embolism in walnut (Juglans regia × nigra) trees. The hydraulic characteristics of the sap pathway were experimentally altered with different methods to alter plant transpiration (Eplant) and stomatal conductance (gs). Potted trees were exposed to a soil water depletion to alter soil water potential (Ψsoil), soil resistance (Rsoil), and root hydraulic resistances (Rroot). Soil temperature was changed to alter Rroot alone. Embolism was created in the trunk to increase shoot resistance (Rshoot). Stomata closed in response to these stresses with the effect of maintaining the water pressure in the leaf rachis xylem (Prachis) above −1.4 MPa and the leaf water potential (Ψleaf) above −1.6 MPa. The same dependence of Eplant and gs on Prachis or Ψleaf was always observed. This suggested that stomata were not responding to changes in Ψsoil, Rsoil, Rroot, or Rshoot per se but rather to their impact on Prachis and/or Ψleaf. Leaf rachis was the most vulnerable organ, with a threshold Prachis for embolism induction of −1.4 MPa. The minimum Ψleaf values corresponded to leaf turgor loss point. This suggested that stomata are responding to leaf water status as determined by transpiration rate and plant hydraulics and that Prachis might be the physiological parameter regulated by stomatal closure during water stress, which would have the effect of preventing extensive developments of cavitation during water stress. PMID:11788773

  3. Cytokinin activity increases stomatal density and transpiration rate in tomato

    PubMed Central

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-01-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions. PMID:27811005

  4. Calcium effects on stomatal movement in Commelina communis L

    SciTech Connect

    Schwartz, A.; Ilan, N.; Grantz, D.A. )

    1988-07-01

    Stomatal movements depends on both ion influx and efflux: attainment of steady state apertures reflects modulation of either or both processes. The role of Ca{sup 2+} in those two processes was investigated in isolated epidermal strips of Commelina communis, using the Ca{sup 2+} chelator EGTA to reduce apoplastic (Ca{sup 2+}). The results suggest that a certain concentration of Ca{sup 2+} is an absolute requirement for salt efflux and stomatal closure. EGTA (2 millimolar) increased KCl-dependent stomatal opening in darkness and completely inhibited the dark-induced closure of initially open stomata. Closure was inhibited even in a KCl-free medium. Thus, maintenance of stomata in the open state does not necessarily depend on continued K{sup +} influx but on the inhibition of salt efflux. Opening in the dark was stimulated by IAA in a concentration-dependent manner, up to 15.4 micrometer without reaching saturation, while the response to EGTA leveled off at 9.2 micrometer. IAA did not inhibit stomatal closure to the extent it stimulated opening. The response to IAA is thus consistent with a primary stimulation of opening, while EGTA can be considered a specific inhibitor of stomatal closing since it inhibits closure to a much larger degree than it stimulates opening. CO{sub 2} causes concentration-dependent reduction in the steady state stomatal aperture. EGTA completely reversed CO{sub 2}-induced closing of open stomata but only partially prevented the inhibition of opening.

  5. Cytokinin activity increases stomatal density and transpiration rate in tomato.

    PubMed

    Farber, Mika; Attia, Ziv; Weiss, David

    2016-12-01

    Previous studies on cytokinin (CK) and drought have suggested that the hormone has positive and negative effects on plant adaptation to restrictive conditions. This study examined the effect of CK on transpiration, stomatal activity, and response to drought in tomato (Solanum lycopersicum) plants. Transgenic tomato plants overexpressing the Arabidopsis thaliana CK-degrading enzyme CK oxidase/dehydrogenase 3 (CKX3) maintained higher leaf water status under drought conditions due to reduced whole-plant transpiration. The reduced transpiration could be attributed to smaller leaf area and reduced stomatal density. CKX3-overexpressing plants contained fewer and larger pavement cells and fewer stomata per leaf area than wild-type plants. In addition, wild-type leaves treated with CK exhibited enhanced transpiration and had more pavement cells and increased numbers of stomata per leaf area than untreated leaves. Manipulation of CK levels did not affect stomatal movement or abscisic acid-induced stomatal closure. Moreover, we found no correlation between stomatal aperture and the activity of the CK-induced promoter Two-Component Signaling Sensor (TCS) in guard cells. Previous studies have shown that drought reduces CK levels, and we propose this to be a mechanism of adaptation to water deficiency: the reduced CK levels suppress growth and reduce stomatal density, both of which reduce transpiration, thereby increasing tolerance to prolonged drought conditions.

  6. A photosynthesis-based two-leaf canopy stomatal ...

    EPA Pesticide Factsheets

    A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH

  7. Short-term water stress impacts on stomatal, mesophyll and biochemical limitations to photosynthesis differ consistently among tree species from contrasting climates.

    PubMed

    Zhou, Shuangxi; Medlyn, Belinda; Sabaté, Santiago; Sperlich, Dominik; Prentice, I Colin

    2014-10-01

    Predicting the large-scale consequences of drought in contrasting environments requires that we understand how drought effects differ among species originating from those environments. A previous meta-analysis of published experiments suggested that the effects of drought on both stomatal and non-stomatal limitations to photosynthesis may vary consistently among species from different hydroclimates. Here, we explicitly tested this hypothesis with two short-term water stress experiments on congeneric mesic and xeric species. One experiment was run in Australia using Eucalyptus species and the second was run in Spain using Quercus species as well as two more mesic species. In each experiment, plants were grown under moist conditions in a glasshouse, then deprived of water, and gas exchange was monitored. The stomatal response was analysed with a recently developed stomatal model, whose single parameter g1 represents the slope of the relationship between stomatal conductance and photosynthesis. The non-stomatal response was partitioned into effects on mesophyll conductance (gm), the maximum Rubisco activity (Vcmax) and the maximum electron transport rate (Jmax). We found consistency among the drought responses of g1, gm, Vcmax and Jmax, suggesting that drought imposes limitations on Rubisco activity and RuBP regeneration capacity concurrently with declines in stomatal and mesophyll conductance. Within each experiment, the more xeric species showed relatively high g1 under moist conditions, low drought sensitivity of g1, gm, Vcmax and Jmax, and more negative values of the critical pre-dawn water potential at which Vcmax declines most steeply, compared with the more mesic species. These results indicate adaptive interspecific differences in drought responses that allow xeric tree species to continue transpiration and photosynthesis for longer during periods without rain.

  8. Evaluating CALIOP Nighttime Level 2 Aerosol Profile Retrievals Using a Global Transport Model Equipped with Two-Dimensional Variational Data Assimilation and Ground-Based Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Westphal, D. L.; Vaughan, M.; Winker, D. M.; Welton, E. J.; Prospero, J. M.; Shimizu, A.; Sugimoto, N.

    2011-12-01

    Launched in 2006, the Cloud Aerosol Lidar with Orthogonal Polarization instrument (CALIOP) flown aboard the NASA/CNES Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite has collected the first high-resolution global, inter-seasonal and multi-year measurements of aerosol structure. Profiles for aerosol particle extinction coefficient and column-integrated optical depth (AOD) are unique and highly synergistic satellite measurements, given the limitations of passive aerosol remote sensors from resolving information vertically. However, accurate value-added (Level 2.0) CALIOP aerosol products require comprehensive validation of retrieval techniques and calibration stability. Daytime Level 2.0 CALIOP AOD retrievals have been evaluated versus co-located NASA Moderate Resolution Imaging Spectroradiometer (MODIS-AQUA) data. To date, no corresponding investigation of nighttime retrieval performance has been conducted from a lack of requisite global nighttime validation datasets. In this paper, Version 3.01 CALIOP 5-km retrievals of nighttime 0.532 μm AOD from 2007 are evaluated versus corresponding 0.550 μm AOD analyses derived with the global 1° x 1° U. S. Navy Aerosol Analysis and Prediction System (NAAPS). Mean regional profiles of CALIOP nighttime 0.532 μm extinction coefficient are assessed versus NASA Micropulse Lidar Network and NIES Skynet Lidar Network measurements. NAAPS features a two-dimensional variational assimilation procedure for quality-assured MODIS and NASA Multi-angle Imaging Spectroradiometer (MISR) AOD products. Whereas NAAPS nighttime AOD datasets represent a nominal 12-hr forecast field, from lack of MODIS/MISR retrievals for assimilation in the dark sector of the model, evaluation of NAAPS 00-hr analysis and 24-hr forecast skill versus MODIS and NASA Aerosol Robotic Network (AERONET) indicates adequate stability for conducting this study. Corresponding daytime comparisons of CALIOP retrievals with NAAPS

  9. Psychological Stress and Recurrent Aphthous Stomatitis

    PubMed Central

    de Barros Gallo, Camila; Mimura, Maria Angela Martins; Sugaya, Norberto Nobuo

    2009-01-01

    INTRODUCTION AND OBJECTIVES: Recurrent aphthous stomatitis (RAS) is the most common type of ulcerative disease of the oral mucosa. Despite its worldwide occurrence and the extensive amount of research that has been devoted to the subject, the etiology of RAS remains unclear. Nevertheless, several hereditary, nutritional, infectious and psychological factors have been associated with RAS. The aim of this case-control study was to assess the influence of psychological stress on the manifestation of RAS. METHOD: Fifty patients were enrolled in the trial. Twenty-five RAS patients constituted the study group and another 25 non-RAS patients who were similarly matched for sex, age and socioeconomic status constituted the control group. Each patient was evaluated in terms of the four domains of stress (emotional, physical, social and cognitive) using an internationally validated questionnaire, which was comprised of 59 items and measured the frequency and intensity of stress symptoms. The RAS group was interviewed during an active RAS episode. Completed questionnaires were submitted to proper analytical software and interpreted by an expert psychologist. RESULTS: There was a higher level of psychological stress among RAS group patients when compared to the control group (P < 0.05). CONCLUSION: Psychological stress may play a role in the manifestation of RAS; it may serve as a trigger or a modifying factor rather than being a cause of the disease. PMID:19606240

  10. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub

    PubMed Central

    Carlson, Jane E.; Adams, Christopher A.; Holsinger, Kent E.

    2016-01-01

    Background and Aims Trait–environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. Methods In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait–trait and trait–environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Key Results Across 19 populations in a common garden, stomatal density increased with the source population’s mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. Conclusions The parallel patterns of broad-scale variation, differences in selection and differences in trait–ecophysiology relationships suggest a mechanism for adaptive differentiation in

  11. Rocket radio measurement of electron density in the nighttime ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, B. E.; Smith, L. G.

    1979-01-01

    One experimental technique based on the Faraday rotation effect of radio waves is presented for measuring electron density in the nighttime ionosphere at midlatitudes. High frequency linearly-polarized radio signals were transmitted to a linearly-polarized receiving system located in a spinning rocket moving through the ionosphere. Faraday rotation was observed in the reference plane of the rocket as a change in frequency of the detected receiver output. The frequency change was measured and the information was used to obtain electron density data. System performance was evaluated and some sources of error were identified. The data obtained was useful in calibrating a Langmuir probe experiment for electron density values of 100/cu cm and greater. Data from two rocket flights are presented to illustrate the experiment.

  12. Anisotropy of high-latitude nighttime F region irregularities

    SciTech Connect

    Livingston, R.C.; Rino, C.L.; Owen, J.; Tsunoda, R.T.

    1982-12-01

    The anisotropy of intermediate-scale, F region irregularities in the nighttime auroral zone is described. The study is based upon spaced-receiver phase scintillation measurements made with the Wideband satellite at Poker Flat, Alaska. A systematic dependence of irregularity anisotropy with local time and magnetic latitude is observed, suggesting convective control. Sheetlike irregularities are confined to the zone of east-west drift near the equatorward boundary of the auroral zone, and at the flow reversal, or Harang discontinuity, the cross-field extension of the sheets is reduced. The extension of rodlike irregularities, which are observed poleward of the zonal convection boundary, also shows apparent convection dominance. Mechanisms for convection control of the anisotropy are discussed.

  13. Satellite Imagery Analysis for Nighttime Temperature Inversion Clouds

    NASA Technical Reports Server (NTRS)

    Kawamoto, K.; Minnis, P.; Arduini, R.; Smith, W., Jr.

    2001-01-01

    Clouds play important roles in the climate system. Their optical and microphysical properties, which largely determine their radiative property, need to be investigated. Among several measurement means, satellite remote sensing seems to be the most promising. Since most of the cloud algorithms proposed so far are daytime use which utilizes solar radiation, Minnis et al. (1998) developed a nighttime use one using 3.7-, 11 - and 12-microns channels. Their algorithm, however, has a drawback that is not able to treat temperature inversion cases. We update their algorithm, incorporating new parameterization by Arduini et al. (1999) which is valid for temperature inversion cases. This updated algorithm has been applied to GOES satellite data and reasonable retrieval results were obtained.

  14. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  15. Satellite nighttime lights reveal increasing human exposure to floods worldwide

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Laio, Francesco; Montanari, Alberto

    2014-10-01

    River floods claim thousands of lives every year, but effective and high-resolution methods to map human exposure to floods at the global scale are still lacking. We use satellite nightlight data to prove that nocturnal lights close to rivers are consistently related to flood damages. We correlate global data of economic losses caused by flooding events with nighttime lights and find that increasing nightlights are associated to flood damage intensification. Then, we analyze the temporal evolution of nightlights along the river network all over the world from 1992 to 2012 and obtain a global map of nightlight trends, which we associate with increasing human exposure to floods, at 1 km2 resolution. An enhancement of exposure to floods worldwide, particularly in Africa and Asia, is revealed, which may exacerbate the projected effects of climate change on flood-related losses and therefore argues for the development of valuable flood preparedness and mitigation strategies.

  16. Nighttime NOx Chemistry in Coal-Fired Power Plant Plumes

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; McDuffie, E. E.; Dube, W. P.; Veres, P. R.; Lopez-Hilfiker, F.; Lee, B. H.; Green, J. R.; Fiddler, M. N.; Ebben, C. J.; Sparks, T.; Weinheimer, A. J.; Montzka, D.; Campos, T. L.; Cohen, R. C.; Bililign, S.; Holloway, J. S.; Thornton, J. A.; Brown, S. S.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) play a key role in atmospheric chemistry. During the day, they catalyze ozone (O3) production, while at night they can react to form nitric acid (HNO3) and nitryl chloride (ClNO2) and remove O3 from the atmosphere. These processes are well studied in the summer, but winter measurements are more limited. Coal-fired power plants are a major source of NOx to the atmosphere, making up approximately 30% of emissions in the US (epa.gov). NOx emissions can vary seasonally, as well as plant-to-plant, with important impacts on the details of the plume chemistry. In particular, due to inefficient plume dispersion, nighttime NOx emissions from power plants are held in concentrated plumes, where rates of mixing with ambient O3 have a strong influence on plume evolution. We will show results from the aircraft-based WINTER campaign over the northeastern United States, where several nighttime intercepts of power plant plumes were made. Several of these intercepts show complete O3 titration, which can have a large influence on NOx lifetime, and thus O3 production, in the plume. When power plant NO emissions exceed background O3 levels, O3 is completely consumed converting NO to NO2. In the presence of O3, NO2 will be oxidized to NO3, which will then react with NO2 to form N2O5, which can then form HNO3 and/or ClNO2 and, ultimately, remove NOx from the atmosphere or provide next-day oxidant sources. If there is no O3 present, however, no further chemistry can occur and NO and NO2 will be transported until mixing with sufficient O3 for higher oxidation products. Modeling results of plume development and mixing, which can tell us more about this transport, will also be presented.

  17. Evening and nighttime features of equatorial ionospheric F2 layer

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2016-07-01

    We have used ionosonde observations recorded at Ibadan (7.4 degree North, 3.9 degree East) during the International Geophysical year (1957-58) to investigate evening and nighttime characteristic features of equatorial ionosphere during high solar flux and quiet magnetic conditions. We have also used International Reference Ionosphere model (IRI-2012) data. Our results show that the base of the ionosphere descends at a rate of -27.5 km/hr between 2000 LT and 0400 LT, whereas the observed bottomside peak of the ionosphere move down at a rate of -29.3 km/hr between 1900 and 0500 LT, while IRI2012 bottomside peak show -29.8 km/hr between 2000 LT and 0500 LT. The downward flow rate of plasma concentration between 1900 LT and 0500 LT and between 1800 LT and 0400 LT is approximately 0.040 electron per cubic metre per hour and 0.081 electron per cubic metre per hour, respectively for observed and for modeled NmF2. Month-by-month averaged altitudes (h'F, hmF2, and modeled hmF2) indicate significant local time variation. In addition, the month-by month variation indicates nighttime double crest of averaged peak height (hmF2) in the ionosonde measurements and in the IRI-2012 empirical model with a trough in June-August for data and In July for model. The monthly mean downward vertical drift velocities derived from local time variation of h'F and hmF2 together with global drift model essential demonstrate much fluctuations. We found a "domed shape" in modeled drift velocity, indicating equatorward plasma between April and September.

  18. Impact of Nighttime Temperature on Physiology and Growth of Spring Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate models predict greater increases in nighttime temperature in future climates. The effects of high nighttime temperature on wheat (Triticum aestivum L.) are not well understood and are needed to better understand impacts of climate change. The objectives of this study were to investigate the ...

  19. Non-stomatal limitation to photosynthesis in Cinnamomum camphora seedings exposed to elevated O3.

    PubMed

    Niu, Junfeng; Feng, Zhaozhong; Zhang, Weiwei; Zhao, Ping; Wang, Xiaoke

    2014-01-01

    Ozone (O3) is the most phytotoxic air pollutant for global forests, with decreased photosynthesis widely regarded as one of its most common effects. However, controversy exists concerning the mechanism that underlies the depressing effects of O3 on CO2 assimilation. In the present study, seedlings of Cinnamomum camphora, a subtropical evergreen tree species that has rarely been studied, were exposed to ambient air (AA), ambient air plus 60 [ppb] O3 (AA+60), or ambient air plus 120 [ppb] O3 (AA+120) in open-top chambers (OTCs) for 2 years. Photosynthetic CO2 exchange and chlorophyll a fluorescence were investigated in the second growing season (2010). We aim to determine whether stomatal or non-stomatal limitation is responsible for the photosynthesis reduction and to explore the potential implications for forest ecosystem functions. Results indicate that elevated O3 (E-O3) reduced the net photosynthetic rates (PN) by 6.0-32.2%, with significant differences between AA+60 and AA+120 and across the four measurement campaigns (MCs). The actual photochemical efficiency of photosystem II (PSII) in saturated light (Fv'/Fm') was also significantly decreased by E-O3, as was the effective quantum yield of PSII photochemistry (ΦPSII). Moreover, E-O3 significantly and negatively impacted the maximum rates of carboxylation (Vcmax) and electron transport (Jmax). Although neither the stomatal conductance (gs) nor the intercellular CO2 concentration (Ci) was decreased by E-O3, PN/gs was significantly reduced. Therefore, the observed reduction in PN in the present study should not be attributed to the unavailability of CO2 due to stomatal limitation, but rather to the O3-induced damage to Ribulose-1,5-bisphosphate carboxylase/oxygenase and the photochemical apparatus. This suggests that the down-regulation of stomatal conductance could fail to occur, and the biochemical processes in protoplasts would become more susceptible to injuries under long-term O3 exposure, which may have

  20. Gene expression and physiological responses associated to stomatal functioning in Rosa×hybrida grown at high relative air humidity.

    PubMed

    Carvalho, Dália R A; Vasconcelos, Marta W; Lee, Sangseok; Koning-Boucoiran, Carole F S; Vreugdenhil, Dick; Krens, Frans A; Heuvelink, Ep; Carvalho, Susana M P

    2016-12-01

    High relative air humidity (RH≥85%) during growth disturbs stomatal functioning, resulting in excessive water loss in conditions of high evaporative demand. We investigated the expression of nine abscisic acid (ABA)-related genes (involved in ABA biosynthesis, oxidation and conjugation) and two non-ABA related genes (involved in the water stress response) aiming to better understand the mechanisms underlying contrasting stomatal functioning in plants grown at high RH. Four rose genotypes with contrasting sensitivity to high RH (one sensitive, one tolerant and two intermediate) were grown at moderate (62±3%) or high (89±4%) RH. The sensitive genotype grown at high RH showed a significantly higher stomatal conductance (gs) and water loss in response to closing stimuli as compared to the other genotypes. Moreover, high RH reduced the leaf ABA concentration and its metabolites to a greater extent in the sensitive genotype as compared to the tolerant one. The large majority of the studied genes had a relevant role on stomatal functioning (NCED1, UGT75B2, BG2, OST1, ABF3 and Rh-APX) while two others showed a minor contribution (CYP707A3 and BG1) and AAO3, CYP707A1 and DREB1B did not contribute to the tolerance trait. These results show that multiple genes form a highly complex regulatory network acting together towards the genotypic tolerance to high RH.

  1. Improving nighttime mobility in persons with night blindness caused by retinitis pigmentosa: A comparison of two low-vision mobility devices.

    PubMed

    Mancil, Rickilyn M; Mancil, Gary L; King, Ellis; Legault, Claudine; Munday, Julie; Alfieri, Salvatore; Nowakowski, Rod; Blasch, Bruce B

    2005-01-01

    This study compared the effectiveness of the ITT Night Vision Viewer with the Wide Angle Mobility Lamp (WAML) as low-vision mobility devices for people experiencing night blindness due to retinitis pigmentosa (RP). Both engineering bench testing and functional evaluations were used in the assessments. Engineering evaluations were conducted for (1) consistency of the manufacturer's specifications, (2) ergonomic characteristics, (3) modifications of devices, and (4) pedestrian safety issues. Twenty-seven patients with RP conducted rehabilitation evaluations with each device that included both clinical and functional tests. Both devices improved nighttime travel for people with night blindness as compared with nighttime travel with no device. Overall, the WAML provided better travel efficiency-equivalent to that measured in daytime. Recommendations have been developed on ergonomic factors for both devices. Although some participants preferred the ITT Night Vision Viewer, overall most participants performed better with the WAML.

  2. Whole-tree level water balance and its implications on stomatal oscillations in orange trees [Citrus sinensis (L.) Osbeck] under natural climatic conditions.

    PubMed

    Dzikiti, S; Steppe, K; Lemeur, R; Milford, J R

    2007-01-01

    Sustained cyclic oscillations in stomatal conductance, leaf water potential, and sap flow were observed in young orange trees growing under natural conditions. The oscillations had an average period of approximately 70 min. Water uptake by the roots and loss by the leaves was characterized by large time lags which led to imbalances between water supply and demand in the leaves. The bulk of the lag in response between stomatal movements and the upstream water balance resided downstream of the branch, with branch level sap flow lagging behind the stomatal conductance by approximately 20 min while the stem sap flow had a much shorter time lag of only 5 min behind the branch sap flow. This imbalance between water uptake and loss caused transient changes in internal water deficits which were closely correlated to the dynamics of the leaf water potential. The hydraulic resistance of the whole tree fluctuated throughout the day, suggesting transient changes in the efficiency of water supply to the leaves. A simple whole-tree water balance model was applied to describe the dynamics of water transport in the young orange trees, and typical values of the hydraulic parameters of the transpiration stream were estimated. In addition to the hydro-passive stomatal movements, whole-tree water balance appears to be an important factor in the generation of stomatal oscillations.

  3. Evolution of the vesicular stomatitis viruses: divergence and codon usage bias.

    PubMed

    Liang, Yang; He, Mei; Teng, Chun-Bo

    2014-11-04

    Four Vesiculovirus species causing vesicular stomatitis in the Americas, together with two closely related insect isolates, can be phyletically classified into two major groups: New Jersey (NJ) and Indiana (IN). Here, Bayesian coalescent analyses were conducted to the time-stamped entire coding sequences of the G gene of these vesiculoviruses, with emphasis on their divergence scenario. The primary bifurcation was a much ancient event that might have taken place around 1.8 million years ago between NJ and IN, which shared a similar high mean rate. Interestingly, the overall codon usage bias pattern of these viruses resembled that of the insect vectors rather than the livestock hosts.

  4. Protein Phosphorylation and Redox Modification in Stomatal Guard Cells

    PubMed Central

    Balmant, Kelly M.; Zhang, Tong; Chen, Sixue

    2016-01-01

    Post-translational modification (PTM) is recognized as a major process accounting for protein structural variation, functional diversity, and the dynamics and complexity of the proteome. Since PTMs can change the structure and function of proteins, they are essential to coordinate signaling networks and to regulate important physiological processes in eukaryotes. Plants are constantly challenged by both biotic and abiotic stresses that reduce productivity, causing economic losses in crops. The plant responses involve complex physiological, cellular, and molecular processes, with stomatal movement as one of the earliest responses. In order to activate such a rapid response, stomatal guard cells employ cellular PTMs of key protein players in the signaling pathways to regulate the opening and closure of the stomatal pores. Here we discuss two major types of PTMs, protein phosphorylation and redox modification that play essential roles in stomatal movement under stress conditions. We present an overview of PTMs that occur in stomatal guard cells, especially the methods and technologies, and their applications in PTM identification and quantification. Our focus is on PTMs that modify molecular components in guard cell signaling at the stages of signal perception, second messenger production, as well as downstream signaling events and output. Improved understanding of guard cell signaling will enable generation of crops with enhanced stress tolerance, and increased yield and bioenergy through biotechnology and molecular breeding. PMID:26903877

  5. Evolutionary Conservation of ABA Signaling for Stomatal Closure in Ferns.

    PubMed

    Cai, Shengguan; Chen, Guang; Wang, Yuanyuan; Huang, Yuqing; Marchant, Blaine; Wang, Yizhou; Yang, Qian; Dai, Fei; Hills, Adrian; Franks, Peter J; Nevo, Eviatar; Soltis, Doug; Soltis, Pamela; Sessa, Emily; Wolf, Paul G; Xue, Dawei; Zhang, Guoping; Pogson, Barry J; Blatt, Mike R; Chen, Zhong-Hua

    2017-02-23

    ABA-driven stomatal regulation reportedly evolved after the divergence of ferns, during the early evolution of seed plants approximately 360 Mya. This hypothesis is based on the observation that the stomata of certain fern species are unresponsive to ABA, but exhibit passive hydraulic control. However, ABA-induced stomatal closure was detected in some mosses and lycophytes. Here, we observed that a number of ABA signaling and membrane transporter protein families diversified over the evolutionary history of land plants. The aquatic ferns Azolla filiculoides and Salvinia cucullata have representatives of 23 families of proteins orthologous to those of Arabidopsis thaliana and all other land plant species studied. Phylogenetic analysis of the key ABA signaling proteins indicates an evolutionarily conserved stomatal response to ABA. Moreover, comparative transcriptomic analysis has identified a suite of ABA responsive genes that differentially expressed in a terrestrial fern species, Polystichum proliferum. These genes encode proteins associated with ABA biosynthesis, transport, reception, transcription, signaling, and ion and sugar transport, which fit the general ABA signaling pathway constructed from Arabidopsis thaliana and Hordeum vulgare. The retention of these key ABA-responsive genes could have had a profound effect on the adaptation of ferns to dry conditions. Furthermore, stomatal assays have shown the primary evidence for ABA-induced closure of stomata in two terrestrial fern species P. proliferum and Nephrolepis exaltata. In summary, we report new molecular and physiological evidence for the presence of active stomatal control in ferns.

  6. Nighttime Breastfeeding Behavior Is Associated with More Nocturnal Sleep among First-Time Mothers at One Month Postpartum

    PubMed Central

    Doan, Therese; Gay, Caryl L.; Kennedy, Holly P.; Newman, Jack; Lee, Kathryn A.

    2014-01-01

    Study Objective: To describe sleep duration and quality in the first month postpartum and compare the sleep of women who exclusively breastfed at night to those who used formula. Methods: We conducted a longitudinal study in a predominantly low-income and ethnically diverse sample of 120 first-time mothers. Both objective and subjective measures of sleep were obtained using actigraphy, diary, and self-report data. Measures were collected in the last month of pregnancy and at one month postpartum. Infant feeding diaries were used to group mothers by nighttime breastfeeding behavior. Results: Mothers who used at least some formula at night (n = 54) and those who breastfed exclusively (n = 66) had similar sleep patterns in late pregnancy. However, there was a significant group difference in nocturnal sleep at one month postpartum as measured by actigraphy. Total nighttime sleep was 386 ± 66 minutes for the exclusive breastfeeding group and 356 ± 67 minutes for the formula group. The groups did not differ with respect to daytime sleep, wake after sleep onset (sleep fragmentation), or subjective sleep disturbance at one month postpartum. Conclusion: Women who breastfed exclusively averaged 30 minutes more nocturnal sleep than women who used formula at night, but measures of sleep fragmentation did not differ. New mothers should be encouraged to breastfeed exclusively since breastfeeding may promote sleep during postpartum recovery. Further research is needed to better understand how infant feeding method affects maternal sleep duration and fragmentation. Citation: Doan T; Gay CL; Kennedy HP; Newman J; Lee KA. Nighttime breastfeeding behavior is associated with more nocturnal sleep among first-time mothers at one month postpartum. J Clin Sleep Med 2014;10(3):313-319. PMID:24634630

  7. Nighttime instabilities of neurophysiological, cardiovascular, and respiratory activity: integrative modeling and preliminary results

    PubMed Central

    Shusterman, Vladimir; Troy, William C.; Abdelmessih, Medhat; Hoffman, Stacy; Nemec, Jan; Strollo, Patrick J.; London, Barry; Lampert, Rachel

    2015-01-01

    Unstable (cyclical alternating pattern, or CAP) sleep is associated with surges of sympathetic nervous system activity, increased blood pressure and vasoconstriction, heightened baroreflex sensitivity, and unstable heart rhythm and breathing. In susceptible persons, CAP sleep provokes clinically significant events, including hypertensive crises, sleep-disordered breathing, and cardiac arrhythmias. Here we explore the neurophysiology of CAP sleep and its impact on cardiovascular and respiratory functions. We show that: (i) an increase in neurophysiological recovery rate can explain the emergence of slow, self-sustained, hypersynchronized A1 CAP-sleep pattern and its transition to the faster A2-A3 CAP-sleep patterns; (ii) in a two-dimensional, continuous model of cardiac tissue with heterogeneous action potential duration (APD) distribution, heart rate accelerations during CAP sleep may encounter incompletely recovered electrical excitability in cell clusters with longer APD. If the interaction between short cycle length and incomplete, spatially heterogeneous repolarization persists over multiple cycles, irregularities and asymmetry of depolarization front may accumulate and ultimately lead to a conduction block, retrograde conduction, breakup of activation waves, reentrant activity, and arrhythmias; and (iii) these modeling results are consistent with the nighttime data obtained from patients with structural heart disease (N=13) that show clusters of atrial and ventricular premature beats occurring during the periods of unstable heart rhythm and respiration that accompany CAP sleep. In these patients, CAP sleep is also accompanied by delayed adaptation of QT intervals and T-wave alternans. PMID:26341647

  8. Recurrent aphthous stomatitis caused by food allergy.

    PubMed

    Wardhana; Datau, E A

    2010-10-01

    Recurrent Aphthous Stomatitis (RAS) is one of the most common oral lesions which occur either in single or multiple forms in oral mucosa. The mouth is subjected to a wide spectrum of antigenic agents, including foodstuff, and allergic reactions to such antigens may manifest in a number of diverse ways. Food allergy, however, has not been widely investigated as the cause of RAS. The main complaint of RAS typically is pain, and the main therapy is still corticosteroids, besides avoiding allergenic foodstuff. In RAS, there is often a genetic basis. More than 42 percent of patients with RAS have first-degree relatives with RAS. The likelihood of RAS is 90 percent when both parents are affected, but only 20 percent when neither parent has RAS, and it is also likely to be more severe and to start at an earlier age in patients with a positive family history. The primary goals of therapy of RAS are relief of pain, reduction of ulcer duration, and restoration of normal oral function. The secondary goals include reduction in frequency and severity of recurrences and maintenance of remission. Diagnostic elimination diets are frequently utilized both in diagnosis and management of RAS caused by food allergy. Patients with RAS may have increased levels of CD8+ T-lymphocytes and/or decreased CD4+ T-lymphocytes. There may be a reduced percentage of "virgin" T-cells and an increased of "memory" T-lymphocytes. Patients with active RAS have an increased proportion of gd T-cells compared with healthy control subjects and RAS patients with inactive disease. The gd T-cells may play a role in ADCC and it is believed that gd T-cells play a role in immunological damages. Preventive treatment is a consideration for patients with RAS caused by food allergy who report regular exacerbations of their condition. It focuses on dietary modifications, the earliest stage, the prodromal stage, and attempts to intercept ulcer development again by the use of topical immunosuppressant and particularly

  9. Nighttime ion composition measurements at the geomagnetic equator

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1973-01-01

    Two ion composition profiles, representative of the nighttime equatorial ionosphere between 90 km and 300 km, are presented. These profiles were obtained by two rocket-borne ion mass spectrometers on a single night for solar zenith angles of 112 deg and 165 deg. For both flights, the principal ion above 200 km is O(+). The downward drift of the atomic ions O(+) and N(+), coinciding with the postsunset lowering of the F2 peak, is observed through an enhancement of the density of O(+) at altitudes above 200 km and N(+) above 240 km. Below the drift region, O(+) and N(+) are observed in concentrations larger than expected. The NO(+) altitude distribution retains its shape throughout the night, and below 210 km, is the principal ion. The behavior of O2(+) can be explained by the O(+), electron density and theoretical neutral nitric oxide concentrations. Light metallic ions, including Mg(+), Na(+), and possibly Si(+), are observed to altitudes approaching 300 km and are affected by vertical drift.

  10. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  11. The nighttime production of OH radicals in the continental troposphere

    NASA Astrophysics Data System (ADS)

    Bey, Isabelle; Aumont, Bernard; Toupance, Gérard

    1997-05-01

    Chemical pathways involved in the nocturnal production of hydroxyl radical (OH) and associated peroxy radicals (HO2 and RO2) are quantified for various environmental situations of the continental troposphere by means of numerical simulations. In the nocturnal stable layer, most of the OH radicals are directly produced by VOC+O3 reactions in rural and semipolluted environments while in urban environments, they result mainly from the radical chain propagation from RO2 and HO2. The radical propagation is mainly driven by NO: the nitrate radical (NO3) plays no role in such processes but is significantly involved in the direct formation of RO2 radicals. Above the nocturnal stable layer, whatever the environmental situation, OH radicals are mainly due to radical chain propagation in which NO3 plays a significant role. The nighttime simulated OH concentrations are 3 × 104 to 5 × 105 and 1 × 104 to 5 × 104 molec cm-3 for the nocturnal stable and residual layers respectively.

  12. Self-focused thinking predicts nighttime physiological de-arousal.

    PubMed

    Takano, Keisuke; Ueno, Mayumi; Tanno, Yoshihiko

    2014-03-01

    Excessive focus on the internal self has maladaptive consequences for mental and physical health. Although the emotional functions of self-focus have been well established, no study has examined physiological arousal during the daily experience of self-focused thinking. The present study investigates the association between self-focus and autonomic activity using the experience sampling method with ambulatory monitoring of heart rate variability (HRV). Forty-five students reported the content of their thoughts during their daily activities while their heart rate (HR) was being recorded. Multilevel modeling analyses showed that HRV was lower (and HR was higher) over the sampling day if participants engaged in more self-focus, while HRV increased (and HR decreased) from midday to nighttime if participants did not engage in self-focused thinking. These results suggest that self-focus at night is associated with increased physiological arousal, and leads to inhibition of de-arousal associated with normal sleep processes. Implications for insomnia are discussed.

  13. Nighttime Aerosol Optical Depth Variability From Astronomical Photometry

    NASA Astrophysics Data System (ADS)

    Musat, I. C.; Ellingson, R. G.

    2006-12-01

    A technique for determination of the short-term (6 minutes intervals) variability of the aerosol optical depth (AOD) during nighttime from broadband visible measurements of star irradiances during clear nights was developed for the instrument called the Whole Sky Imager (WSI), placed at the Atmospheric Radiation Measurement (ARM) observation site in Oklahoma. The AOD is inferred indirectly from simultaneous observations of extinction of stars having different colors (spectra) and different elevations above the horizon, and takes into account the other sources for starlight attenuation in the atmosphere which might be present and which are measured by other instruments at the site at compatible timescales (e.g., precipitable water vapor content, columnar ozone amount, observed atmospheric stratification). The total error of the new method is a combination of the absolute star flux measurement error with the WSI and a systematic error in the models assumed for the other atmospheric components causing the starlight extinction. The relative error in the aerosol optical depth determined through this method is found to be below 4%. For the validation of the results, the comparison of the aerosol optical depth measured with the Lidar at 10 minutes intervals (at 355nm) with the AOD determined from WSI (in visible) shows a good agreement for the data in the interval studied (1999-2003).

  14. High-performance LLLTV CCD camera for nighttime pilotage

    NASA Astrophysics Data System (ADS)

    Williams, George M., Jr.

    1992-06-01

    Nighttime, nap-of-the-earth pilotage requires information from several sensors including thermal and image intensified sensors. Traditionally, the thermal imagery is displayed on a CRT; the image intensified imagery is displayed with a night vision goggle (NVG), a direct- view device worn immediately in front of the pilot''s eyes. If electronic output data from the image intensifier could be displayed on a CRT, the pilot''s safety and mission effectiveness would be greatly enhanced. Conventional approaches to using charge coupled devices fiberoptically coupled to image intensifier tubes have failed to provide the resolution, contrast, and sensitivity that pilots are accustomed to with night vision goggles. To produce image intensified sensors with performance comparable to an NVG, an intensified sensor that is optimized for coupling to solid state sensors and eliminates all fiberoptic-to-fiberoptic interfaces was fabricated. The Integrated Taper Assembly (ITA) sensor has a fiberoptic taper built into the vacuum of the image tube. The fiberoptic taper minifies the 18 or 25 millimeter (mm) output of the image intensifier tube to the 11 mm diagonal of the high resolution CCD. This requires one optical coupling -- at the CCD surface. By offering high resolution, high sensitivity, and a simplified optical path, the ITA image intensifier overcomes the shortcomings that normally limit the performance of intensified CCD cameras.

  15. Satellite nighttime lights reveal increasing human exposure to floods worldwide

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Laio, Francesco; Montanari, Alberto

    2015-04-01

    River floods are the first cause of human fatalities and economic losses among natural disasters. Floods claim thousands of lives every year, but effective and high-resolution methods to provide a spatially and temporally detailed analysis of the human exposure to floods at the global scale are still lacking. To this aim, we use satellite nightlight data to prove that nocturnal lights close to rivers are consistently related to flood damages. First, we analyse the temporal evolution of nightlights along the river network all over the world from 1992 to 2012 and obtain a global map of nightlight trends, which we associate with increasing human exposure to floods, at 1 km2 resolution. Then, we correlate global data of economic losses caused by flooding events with nighttime lights and find that increasing nightlights are associated to flood damage intensification. Our results show an enhancement of exposure to floods worldwide, particularly in Africa and Asia. Therefore our analysis argues for the development of valuable flood preparedness and mitigation strategies, also associated to the projected effects of climate change on flood-related losses.

  16. Ozone Inhibits Guard Cell K+ Channels Implicated in Stomatal Opening

    NASA Astrophysics Data System (ADS)

    Torsethaugen, Gro; Pell, Eva J.; Assmann, Sarah M.

    1999-11-01

    Ozone (O3) deleteriously affects organisms ranging from humans to crop plants, yet little is understood regarding the underlying mechanisms. In plants, O3 decreases CO2 assimilation, but whether this could result from direct O3 action on guard cells remained unknown. Potassium flux causes osmotically driven changes in guard cell volume that regulate apertures of associated microscopic pores through which CO2 is supplied to the photosynthetic mesophyll tissue. We show in Vicia faba that O3 inhibits (i) guard cell K+ channels that mediate K+ uptake that drives stomatal opening; (ii) stomatal opening in isolated epidermes; and (iii) stomatal opening in leaves, such that CO2 assimilation is reduced without direct effects of O3 on photosynthetic capacity. Direct O3 effects on guard cells may have ecological and agronomic implications for plant productivity and for response to other environmental stressors including drought.

  17. Treatment of radiation- and chemotherapy-induced stomatitis

    SciTech Connect

    Carnel, S.B.; Blakeslee, D.B.; Oswald, S.G.; Barnes, M. )

    1990-04-01

    Severe stomatitis is a common problem encountered during either radiation therapy or chemotherapy. Most therapeutic regimens are empirical, with no scientific basis. The purpose of this study is to determine the efficacy of various topical solutions in the treatment of radiation- or chemotherapy-induced stomatitis. Eighteen patients were entered into a prospective double-blinded study to test several topical solutions: (1) viscous lidocaine with 1% cocaine; (2) dyclonine hydrochloride 1.0% (Dyclone); (3) kaolin-pectin solution, diphenhydramine plus saline (KBS); and (4) a placebo solution. Degree of pain relief, duration of relief, side effects, and palatability were evaluated. The results showed that Dyclone provided the most pain relief. Dyclone and viscous lidocaine with 1% cocaine provided the longest pain relief, which averaged 50 minutes This study provides objective data and defines useful guidelines for treatment of stomatitis.

  18. The role of brassinosteroids and abscisic acid in stomatal development.

    PubMed

    Serna, Laura

    2014-08-01

    Gas exchange with the atmosphere is regulated through the stomata. This process relies on both the degree and duration of stomatal opening, and the number and patterning of these structures in the plant surface. Recent work has revealed that brassinosteroids and abscisic acid (ABA), which control stomatal opening, also repress stomatal development in cotyledons and leaves of at least some plants. It is speculated that, in Arabidopsis, these phytohormones control the same steps of this developmental process, most probably, through the regulation of the same mitogen-activated protein (MAP) kinase module. The conservation, in seeds plants, of components downstream of this module with MAP kinase target domains, suggests that these proteins are also regulated by these cascades, which, in turn, may be regulated by brassinosteroids and/or ABA.

  19. Passive origins of stomatal control in vascular plants.

    PubMed

    Brodribb, Tim J; McAdam, Scott A M

    2011-02-04

    Carbon and water flow between plants and the atmosphere is regulated by the opening and closing of minute stomatal pores in surfaces of leaves. By changing the aperture of stomata, plants regulate water loss and photosynthetic carbon gain in response to many environmental stimuli, but stomatal movements cannot yet be reliably predicted. We found that the complexity that characterizes stomatal control in seed plants is absent in early-diverging vascular plant lineages. Lycophyte and fern stomata are shown to lack key responses to abscisic acid and epidermal cell turgor, making their behavior highly predictable. These results indicate that a fundamental transition from passive to active metabolic control of plant water balance occurred after the divergence of ferns about 360 million years ago.

  20. Controls on the emission of plant volatiles through stomata: Differential sensitivity of emission rates to stomatal closure explained

    NASA Astrophysics Data System (ADS)

    Niinemets, ÜLo; Reichstein, Markus

    2003-04-01

    Volatile (VOC) flux from leaves may be expressed as GSΔP, where GS is stomatal conductance to specific compound and ΔP partial pressure gradient between the atmosphere and substomatal cavities. It has been suggested that decreases in GS are balanced by increases in ΔP such that stomata cannot control VOC emission. Yet, responses of emission rates of various volatiles to experimental manipulations of stomatal aperture are contrasting. To explain these controversies, a dynamic emission model was developed considering VOC distribution between gas and liquid phases using Henry's law constant (H, Pa m3 mol-1). Our analysis demonstrates that highly volatile compounds such as isoprene and monoterpenes with H values on the order of 103 have gas and liquid pool half-times of a few seconds, and thus cannot be controlled by stomata. More soluble compounds such as alcohols and carboxylic acids with H values of 10-2-101 are controlled by stomata with the degree of stomatal sensitivity varying with H. Inability of compounds with high solubility to support a high partial pressure, and thus to balance ΔP in response to a decrease in GS is the primary explanation for different stomatal sensitivities. For compounds with low H, the analysis predicts bursts of emission after stomatal opening that accord with experimental observations, but that cannot be currently explained. Large within-leaf VOC pool sizes in compounds with low H also increase the system inertia to environmental fluctuations. In conclusion, dynamic models are necessary to simulate diurnal variability of the emissions of compounds that preferably partition to aqueous phase.

  1. Transcriptional control of cell fate in the stomatal lineage

    PubMed Central

    Simmons, Abigail R.; Bergmann, Dominique C.

    2015-01-01

    The Arabidopsis stomatal lineage is a microcosm of development; it undergoes selection of precursor cells, asymmetric and stem cell-like divisions, cell commitment and finally, acquisition of terminal cell fates. Recent transcriptomic approaches revealed major shifts in gene expression accompanying each fate transition, and mechanistic analysis of key bHLH transcription factors, along with mathematical modeling, has begun to unravel how these major shifts are coordinated. In addition, stomatal initiation is proving to be a tractable model for defining the genetic and epigenetic basis of stable cell identities and for understanding the integration of environmental responses into developmental programs. PMID:26550955

  2. Effects of Nighttime Light Radiance on the Sleep of the General Population

    NASA Technical Reports Server (NTRS)

    Ohayon, Maurice M.; Milesi, Cristina

    2015-01-01

    The objectives of this study is to verify if the exposure to greater nighttime radiance is associated with changes in the sleep/wake schedule and with greater sleep disturbances. Methods: The target population was the adults (18 years and older) living in California, USA. This represents 24 million of inhabitants. A total of 3,104 subjects participated in the survey (participation rate 85.6%). The participants were interviewed by telephone using the Sleep-EVAL system. The interviews covered several topics including sleeping habits, sleep quality, sleep disturbances, physical symptoms related to menopause. Chronic insomnia was defined as difficulty initiating or maintaining sleep for at least 3 months. Global nighttime light emissions have been collected by the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS) sensors. We extracted the radiance calibrated nighttime lights corresponding to the date of the interviews for a three by three window centered on each coordinate corresponding to an interview address. Results: Dissatisfaction with sleep quantity and/or quality was associated with an increased nighttime radiance (p=0.02). Similarly, excessive sleepiness accompanied with impaired functioning was significantly associated with an increased nighttime radiance (p (is) less than 0.0001). The association remained significant after controlling for age, gender and use of a night lamp in the bedroom. Confusional arousals were also significantly associated with an increased nighttime radiance (p (is) less than 0.0001). Bedtime hour was linearly increasing with the intensity of nighttime radiance: the later the bedtime, the greater the nighttime radiance (p (is) less than 0.0001). Similarly, wakeup time became progressively later as the nighttime radiance increased (p (is) less than 0.0001). Both associations remained significant after controlling for age, gender and use of a night lamp in the bedroom. Circadian Rhythm Disorders were the

  3. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances.

    PubMed

    Creese, Chris; Oberbauer, Steve; Rundel, Phil; Sack, Lawren

    2014-10-01

    The stomatal behavior of ferns provides an excellent system for disentangling responses to different environmental signals, which balance carbon gain against water loss. Here, we measured responses of stomatal conductance (gs ) to irradiance, CO2 , and vapor pressure deficit (VPD) for 13 phylogenetically diverse species native to open and shaded habitats, grown under high- and low-irradiance treatments. We tested two main hypotheses: that plants adapted and grown in high-irradiance environments would have greater responsiveness to all stimuli given higher flux rates; and that species' responsiveness to different factors would be correlated because of the relative simplicity of fern stomatal control. We found that species with higher light-saturated gs had larger responses, and that plants grown under high irradiance were more responsive to all stimuli. Open habitat species showed greater responsiveness to irradiance and CO2 , but lower responsiveness to VPD; a case of plasticity and adaptation tending in different directions. Responses of gs to irradiance and VPD were positively correlated across species, but CO2 responses were independent and highly variable. The novel finding of correlations among stomatal responses to different stimuli suggests coordination of hydraulic and photosynthetic signaling networks modulating fern stomatal responses, which show distinct optimization at growth and evolutionary time-scales.

  4. Nighttime Blood Pressure Dipping in Postmenopausal Women With Coronary Heart Disease

    PubMed Central

    Sherwood, Andrew

    2012-01-01

    Background Blunted nighttime blood pressure (BP) dipping is prognostic of cardiovascular morbidity and mortality. This relationship may be stronger among women than men. The present study hypothesized that coronary artery disease (CAD) and advancing age would be associated with reduced BP dipping in postmenopausal women. The effects of daytime physical activity and nighttime sleep quality on BP dipping were also examined. Methods 54 postmenopausal women with CAD (≥50% occlusion of at least one major coronary vessel) and 48 age-matched (range 50–80 years) postmenopausal women without CAD (non-CAD) underwent 24-h ambulatory BP monitoring and actigraphic evaluations of daytime physical activity and nighttime sleep efficiency. Results Women with CAD evidenced higher nighttime systolic BP (SBP) (P = 0.05) and blunted SBP dipping (P = 0.017), blunted diastolic BP (DBP) dipping (P = 0.047), and blunted pulse pressure dipping (P = 0.01), compared to non-CAD women. Multivariable regression models showed that the presence of CAD, age, daytime physical activity, and nighttime sleep efficiency were independently related to the magnitude of SBP dipping, together accounting for 25% of its variability. DBP dipping showed similar associations. Conclusions For postmenopausal women, the presence of CAD and advancing age are accompanied by blunted nighttime BP dipping, which may increase the risk of adverse cardiovascular events. Lifestyle changes that increase daytime physical activity and improve nighttime sleep quality may help improve cardiovascular risk by enhancing nighttime BP dipping. American Journal of Hypertension, advance online publication 12 July 2012. doi:10.1038/ajh.2012.95 PMID:22785406

  5. Night-time radical chemistry during the NAMBLEX campaign

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Pilling, M. J.; Bloss, W. J.; Heard, D. E.; Lee, J. D.; Fleming, Z. L.; Monks, P. S.; Plane, J. M. C.; Saiz-Lopez, A.; Ball, S. M.; Bitter, M.; Jones, R. L.; Brough, N.; Penkett, S. A.; Hopkins, J. R.; Lewis, A. C.; Read, K. A.

    2006-08-01

    Night-time chemistry in the Marine Boundary Layer has been modelled using a number of observationally constrained zero-dimensional box-models. The models were based upon the Master Chemical Mechanism (MCM) and the measurements were taken during the North Atlantic Marine Boundary Layer Experiment (NAMBLEX) campaign at Mace Head, Ireland in July-September 2002. The model could reproduce, within the combined uncertainties, the measured concentration of HO2 (within 30-40%) during the night 31 August-1 September and of HO2+RO2 (within 15-30%) during several nights of the campaign. The model always overestimated the NO3 measurements made by Differential Optical Absorption Spectroscopy (DOAS) by up to an order of magnitude or more, but agreed with the NO3 Cavity Ring-Down Spectroscopy (CRDS) measurements to within 30-50%. The most likely explanation of the discrepancy between the two instruments and the model is reaction of the nitrate radical with inhomogeneously distributed NO, which was measured at concentrations of up to 10 ppt, even though this is not enough to fully explain the difference between the DOAS measurements and the model. A rate of production and destruction analysis showed that radicals were generated during the night mainly by the reaction of ozone with light alkenes. The cycling between HO2/RO2 and OH was maintained during the night by the low concentrations of NO and the overall radical concentration was limited by slow loss of peroxy radicals to form peroxides. A strong peak in [NO2] during the night 31 August-1 September allowed an insight into the radical fluxes and the connections between the HOx and the NO3 cycles.

  6. Night-time radical chemistry during the NAMBLEX campaign

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Pilling, M. J.; Bloss, W. J.; Heard, D. E.; Lee, J. D.; Fleming, Z. L.; Monks, P. S.; Plane, J. M. C.; Saiz-Lopez, A.; Ball, S. M.; Bitter, M.; Jones, R. L.; Brough, N.; Penkett, S. A.; Hopkins, J. R.; Lewis, A. C.; Read, K. A.

    2007-02-01

    Night-time chemistry in the Marine Boundary Layer has been modelled using a number of observationally constrained zero-dimensional box-models. The models were based upon the Master Chemical Mechanism (MCM) and the measurements were taken during the North Atlantic Marine Boundary Layer Experiment (NAMBLEX) campaign at Mace Head, Ireland in July-September 2002. The model could reproduce, within the combined uncertainties, the measured concentration of HO2 (within 30-40%) during the night 31 August-1 September and of HO2+RO2 (within 15-30%) during several nights of the campaign. The model always overestimated the NO3 measurements made by Differential Optical Absorption Spectroscopy (DOAS) by up to an order of magnitude or more, but agreed with the NO3 Cavity Ring-Down Spectroscopy (CRDS) measurements to within 30-50%. The most likely explanation of the discrepancy between the two instruments and the model is the reaction of the nitrate radical with inhomogeneously distributed NO, which was measured at concentrations of up to 10 ppt, even though this is not enough to fully explain the difference between the DOAS measurements and the model. A rate of production and destruction analysis showed that radicals were generated during the night mainly by the reaction of ozone with light alkenes. The cycling between HO2/RO2 and OH was maintained during the night by the low concentrations of NO and the overall radical concentration was limited by slow loss of peroxy radicals to form peroxides. A strong peak in [NO2] during the night 31 August-1 September allowed an insight into the radical fluxes and the connections between the HOx and the NO3 cycles.

  7. Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar stomatal movements are critical for regulating plant water status and gas exchange. Elevated carbon dioxide (CO2) concentrations are known to induce stomatal closure. However, current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report the metabolomic respo...

  8. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    PubMed Central

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-01-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature. PMID:26987482

  9. Nighttime warming enhances drought resistance of plant communities in a temperate steppe

    NASA Astrophysics Data System (ADS)

    Yang, Zhongling; Jiang, Lin; Su, Fanglong; Zhang, Qian; Xia, Jianyang; Wan, Shiqiang

    2016-03-01

    Drought events could have profound influence on plant community structure and ecosystem function, and have subsequent impacts on community stability, but we know little about how different climate warming scenarios affect community resistance and resilience to drought. Combining a daytime and nighttime warming experiment in the temperate steppe of north China with a natural drought event during the study period, we tested how daytime and nighttime warming influences drought resistance and resilience. Our results showed that the semi-arid steppe in north China was resistant to both daytime and nighttime warming, but vulnerable to drought. Nighttime warming, but not daytime warming, enhanced community resistance to drought via stimulating carbon sequestration, whereas neither daytime nor nighttime warming affected community resilience to drought. Large decline in plant community cover, primarily caused by the reduction in the cover of dominant and rare species rather than subordinate species during drought, did not preclude rapid ecosystem recovery. These findings suggest that nighttime warming may facilitate ecosystem sustainability and highlight the need to assess the effects of climate extremes on ecosystem functions at finer temporal resolutions than based on diurnal mean temperature.

  10. Heating of the nighttime D region by very low frequency transmitters

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan V.; Inan, Umran S.; Bell, Timothy F.

    1994-01-01

    VLF signals propagating in the Earth-ionosphere waveguide are used to probe the heated nighttime D region over three U.S. Navy very low frequency (VLF,3-30 kHz) transmitters. Ionospheric cooling and heating are observed when a transmitter turns off and on in the course of normal operations. Heating by the 24.0-kHz NAA transmitter in Cutler, Maine, (1000 kW radiated power) was observed by this method in 41 of 52 off/on episodes during December 1992, increasing the amplitude and retarding the phase of the 21.4-kHz NSS probe wave propagating from Annapolis, Maryland, to Gander, Newfoundland, by as much as 0.84 dB and 5.3 deg, respectively. In 6 of these 41 episodes, the amplitude of the 28.5-kHz NAU probe wave propagating from Puerto Rico to Gander was also perturbed by as much as 0.29 dB. The latter observations were unexpected due to the greater than 770 km distance between NAA and the NAU-Gander great circle path. Heating by the NSS (21.4 kHz, 265 kW) and NLK (24.8 kHz, 850 kW) transmitters was observed serendipitously in data from earlier measurements of the amplitudes of VLF signals propagating in the Earth-ionosphere waveguide. A three-dimensional model of wave absorption and electron heating in a magnetized, weakly ionized plasma is used to calculate the extent nad shape of the collision frequency (i.e., electron temperature) enhancement above a VLF transmitter. The enhancements are annular, with a geomagnetic north-south asymmetry and a radius at the outer half-maximum of the collision frequency enhancement of about 150 km. Heating by the NAA transmitter is predicted to increase the nighttime D region electron temperature by as much as a factor of 3. The calculated changes in the D region conductivity are used in a three-dimensional model of propagation in the Earth-ionosphere wavelength to predict the effect of the heated patch on a subionospheric VLF probe wave. The range of predicted scattered field amplitudes is in general consistent with the observed

  11. Design Calibration and Field Use of a Stomatal Diffusion Porometer

    PubMed Central

    Kanemasu, E. T.; Thurtell, G. W.; Tanner, C. B.

    1969-01-01

    Modifications of the design and calibration procedure of a diffusion porometer permit determinations of stomatal resistance which agree well with results obtained by leaf energy balance. The energy balance and the diffusion porometer measurements indicate that the boundary layer resistances of leaves in the field are substantially less than those predicted from heat transport formulas based on wind flow and leaf size. PMID:16657142

  12. Burdock fructooligosaccharide induces stomatal closure in Pisum sativum.

    PubMed

    Guo, Yanling; Guo, Moran; Zhao, Wenlu; Chen, Kaoshan; Zhang, Pengying

    2013-09-12

    Burdock fructooligosaccharide (BFO) isolated from the root tissue of Arctium lappa is a reserve carbohydrate that can induce resistance against a number of plant diseases. Stomatal closure is a part of plant innate immune response to restrict bacterial invasion. In this study, the effects of BFO on stomata movement in Pisum sativum and the possible mechanisms were studied with abscisic acid (ABA) as a positive control. The results showed that BFO could induce stomatal closure accompanied by ROS and NO production, as is the case with ABA. BFO-induced stomatal closure was inhibited by pre-treatment with L-NAME (N(G)-nitro-L-arginine methyl ester, hydrochloride; nitric oxide synthase inhibitor) and catalase (hydrogen peroxide scavenger). Exogenous catalase completely restricted BFO-induced production of ROS and NO in guard cells. In contrast, L-NAME prevented the rise in NO levels but only partially restricted the ROS production. These results indicate that BFO-induced stomatal closure is mediated by ROS and ROS-dependent NO production.

  13. Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations.

    PubMed

    Schymanski, Stanislaus J; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection

  14. Stomatal Control and Leaf Thermal and Hydraulic Capacitances under Rapid Environmental Fluctuations

    PubMed Central

    Schymanski, Stanislaus J.; Or, Dani; Zwieniecki, Maciej

    2013-01-01

    Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes), the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides limited protection

  15. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest

    PubMed Central

    Renninger, Heidi J.; Carlo, Nicholas J.; Clark, Kenneth L.; Schäfer, Karina V. R.

    2015-01-01

    Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem. PMID:25999966

  16. Resource use and efficiency, and stomatal responses to environmental drivers of oak and pine species in an Atlantic Coastal Plain forest.

    PubMed

    Renninger, Heidi J; Carlo, Nicholas J; Clark, Kenneth L; Schäfer, Karina V R

    2015-01-01

    Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.

  17. A cross-sectional survey of night-time symptoms and impact of sleep disturbance on symptoms and health status in patients with COPD

    PubMed Central

    Ding, Bo; Small, Mark; Bergström, Gina; Holmgren, Ulf

    2017-01-01

    Background Sleep disturbance has been termed the forgotten dimension of chronic obstructive pulmonary disease (COPD), but it is clinically important as most patients are affected. This study examined the incremental burden of illness associated with sleep disturbance in COPD, with reference to health status and disease impact, and the degree of concordance between physicians and patients in reporting night-time COPD symptoms. Methods Real-world data from >2,500 patients with COPD consulting for routine care were derived from respiratory Disease-Specific Programs conducted in Europe, the USA, and China. Night-time COPD symptom burden was assessed from patient and physician perspectives. Patients completed the Jenkins Sleep Evaluation Questionnaire (JSEQ), COPD assessment test (CAT), and EuroQol five-dimension questionnaire (EQ-5D). A regression approach was used to analyze the relationship between sleep disturbance (JSEQ score) and health status (EQ-5D score), adjusting for confounding variables. Results Frequency of night-time symptoms was high and was higher when reported by patients than physicians (69.7% and 65.7%, respectively). According to the JSEQ, 73.3% of patients had trouble falling asleep, 75.3% experienced night-time awakenings, 70.6% had trouble staying asleep, and 67.7% woke after a usual amount of sleep feeling worn out. Over half (52.7%) of patients received maintenance treatment where night-time symptom relief was stated by the physician as a treatment aim. A one unit increase in JSEQ score was associated with increased CAT score (0.7 units in Europe and the USA; 0.2 units in China). Sleep disturbance was significantly associated with worse health status (odds ratio [OR]: 1.27, 95% confidence interval [CI]: 1.18, 1.36, P<0.001 for Europe; OR: 1.23, 95% CI: 1.12, 1.38, P<0.001 for the USA; and OR: 1.19, 95% CI: 1.10, 1.28, P<0.001 for China). Conclusions Night-time symptoms and sleep disturbance are common among patients with COPD, and sleep

  18. Natural variation in stomatal abundance of Arabidopsis thaliana includes cryptic diversity for different developmental processes

    PubMed Central

    Delgado, Dolores; Alonso-Blanco, Carlos; Fenoll, Carmen; Mena, Montaña

    2011-01-01

    Background and Aims Current understanding of stomatal development in Arabidopsis thaliana is based on mutations producing aberrant, often lethal phenotypes. The aim was to discover if naturally occurring viable phenotypes would be useful for studying stomatal development in a species that enables further molecular analysis. Methods Natural variation in stomatal abundance of A. thaliana was explored in two collections comprising 62 wild accessions by surveying adaxial epidermal cell-type proportion (stomatal index) and density (stomatal and pavement cell density) traits in cotyledons and first leaves. Organ size variation was studied in a subset of accessions. For all traits, maternal effects derived from different laboratory environments were evaluated. In four selected accessions, distinct stomatal initiation processes were quantitatively analysed. Key Results and Conclusions Substantial genetic variation was found for all six stomatal abundance-related traits, which were weakly or not affected by laboratory maternal environments. Correlation analyses revealed overall relationships among all traits. Within each organ, stomatal density highly correlated with the other traits, suggesting common genetic bases. Each trait correlated between organs, supporting supra-organ control of stomatal abundance. Clustering analyses identified accessions with uncommon phenotypic patterns, suggesting differences among genetic programmes controlling the various traits. Variation was also found in organ size, which negatively correlated with cell densities in both organs and with stomatal index in the cotyledon. Relative proportions of primary and satellite lineages varied among the accessions analysed, indicating that distinct developmental components contribute to natural diversity in stomatal abundance. Accessions with similar stomatal indices showed different lineage class ratios, revealing hidden developmental phenotypes and showing that genetic determinants of primary and

  19. Inconsolable night-time awakening: beyond night terrors.

    PubMed

    Snyder, David M; Goodlin-Jones, Beth L; Pionk, Mary Jane; Stein, Martin T

    2008-08-01

    Sophia is a 3-year-old girl who was brought to her pediatrician by her parents who were concerned about inconsolable night-time awakening. Her mother indicated that she has frequent (>6), early nocturnal awakenings accompanied by screaming and crying lasting up to 1 hour since her birth. These episodes increased in intensity and frequency in the past year since the birth of her brother. With a bedtime routine (a cup of water by bedside with a washcloth and touching mother's nose, chin, and cheeks), Sophia falls asleep easily; however, within 1 hour she awakes screaming and flailing unaware of her surroundings and unable to be comforted. There are no tonic-clonic movements. Prior interventions, including a sleep coach and "letting Sophia cry it out," did not change her sleep pattern. Sophia's mother reports that she needs to be on a specific daily routine including set times for awakening, activity, snacks, naps, and meals. Diversion from the routine and separation from her mother results in a tantrum (kicking, hitting, screaming, and inconsolability) often lasting more than 30 minutes. Sophia was born after an uncomplicated 37-week gestation. Neonatal hyperbilirubinemia required readmission for 24 hours of phototherapy; serum bilirubin levels were performed daily for 3 weeks after discharge. At 6 weeks, daily episodes of screaming, inconsolability, forceful vomiting, and inability to sleep led to a diagnosis of gastroesophageal reflux. Medication trials were not successful, but the symptoms resolved by 5 months. Formula intolerance and difficulty swallowing and chewing different textures of solid food occurred in the first year. Occupational therapy was of "no benefit"; Sophia was overwhelmed by the activity and took a long time to warm up to the therapist. Her texture aversion resolved by 2 years of age. She prefers one-on-one play and has minimal interactions with other children. She has met all her developmental milestones appropriately and has no other health

  20. Electrodynamic parameters in the nighttime sector during auroral substorms

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Anderson, P. C.; Craven, J. D.; Sugiura, M.; Frank, L. A.; Maynard, N. C.

    1994-01-01

    The characteristics of the large-scale electrodynamic parameters, field-aligned currents (FACs), electric fields, and electron precipitation, which are associated with auroral substorm events in the nighttime sector, have been obtained through a unique analysis which places the ionospheric measurements of these parameters into the context of a generic substorm determined from global auroral images. A generic bulge-type auroral emission region has been deduced from auroral images taken by the Dynamics Explorer 1 (DE 1) satellite during a number of isolated substorms, and the form has been divided into six sectors, based on the peculiar emission characteristics in each sector: west of bulge, surge horn, surge, middle surge, eastern bulge, and east of bulge. By comparing the location of passes of the Dynamics Explorer 2 (DE 2) satellite to the simultaneously obtained auroral images, each pass is placed onto the generic aurora. The organization of DE 2 data in this way has systematically clarified peculiar characteristics in the electrodynamic parameters. An upward net current mainly appears in the surge, with little net current in the surge horn and the west of bulge. The downward net current is distributed over wide longitudinal regions from the eastern bulge to the east of bulge. Near the poleward boundary of the expanding auroral bulge, a pair of oppositely directed FAC sheets is observed, with the downward FAC on the poleward side. This downward FAC and most of the upward FAC in the surge and the middle surge are assoc iated with narrow, intense antisunwqard convection, corresponding to an equatorward directed spikelike electric field. This pair of currents decreases in amplitude and latitudinal width toward dusk in the surge and the west of bulge, and the region 1 and 2 FACs become embedded in the sunward convection region. The upward FAC region associated with the spikelike field on the poleward edge of the bulge coincides well with intense electron

  1. Circadian phase and its relationship to nighttime sleep in toddlers.

    PubMed

    LeBourgeois, Monique K; Carskadon, Mary A; Akacem, Lameese D; Simpkin, Charles T; Wright, Kenneth P; Achermann, Peter; Jenni, Oskar G

    2013-10-01

    Circadian phase and its relation to sleep are increasingly recognized as fundamental factors influencing human physiology and behavior. Dim light melatonin onset (DLMO) is a reliable marker of the timin