Science.gov

Sample records for niii enediolate complex

  1. Probing the structure of nucleic acids with Ni(II) complexes

    SciTech Connect

    Chen, Xiaoying.

    1992-01-01

    The structure of nucleic acids determines their biological function. Interest in the development of novel probes from structures of nucleic acid has led to the discovery of conformation-specific oxidation of guanine sites in DNA and RNA using Ni(II) complexes. The reaction is highly dependent upon the nature of Ni(II) complexes with the most important feature of a strong in-plane ligand field. The unique properties of Ni(II) complexes combining redox and coordination features provide sensitive probes for nucleic acid conformation. One of these nickel complexes, NiCR, has been shown to selectively promote cleavage of DNA at guanine sites held accessible through the formation of unusual secondary structures such as ends, mismatches, bulges and loops. An unique mechanism for the base and conformation-specific oxidation of DNA promoted by Ni(II) complexes is proposed, involving direct ligation of nickel to N-7 of guanine delivering a non-diffusible oxidizing species. NiCR has been proved to be a sensitive and predictable probe for the tertiary structure of RNAs. The specific sites of oxidation of tRNS[sup phe] promoted by NiCR correspond to the most accessible guanine residues determined by theoretic calculations. NiCR has also been successfully applied to probe the tertiary structure of self-splicing Tetrahymena pre-rRNA intron, and has provided important information about the folding of this intron, especially in the region of the catalytic core.

  2. Ni(II) complexes with Schiff bases derived from amino sugars.

    PubMed

    Costamagna, Juan; Lillo, Luis E; Matsuhiro, Betty; Noseda, Miguel D; Villagrán, Manuel

    2003-07-22

    It was found by 1H and 13C NMR spectroscopy that the Schiff base, 2-deoxy-2-(2-hydroxybenzaldimino)-D-glucopyranose exhibits enol-imine-keto-amine and anomeric equilibria in methanolic, and in dimethyl sulfoxide solutions. The reaction of the Schiff base with nickel acetate gave the bidentate, mononuclear Ni(II) complex that was characterized by spectroscopic methods and by cyclic voltammetry. The coordination of the Schiff base to the metal is through the enol-imine tautomeric form, and the anomeric equilibrium remains in dimethyl sulfoxide solutions. This complex was also obtained by reaction of D-glucosamine with Ni(II) salicylaldehydate. The same reaction was employed for the synthesis of bis-N-[2-deoxy-D-galactopyranosyl-2-(2-hydroxybenzaldiminate)]Ni(II). The small paramagnetic shifts of the 1H NMR resonances of the complexes suggest that paramagnetic species are present in low proportions.

  3. Synthesis, Structural Characterization, and Biological Activity Studies of Ni(II) and Zn(II) Complexes

    PubMed Central

    Kavitha, Palakuri; Laxma Reddy, K.

    2014-01-01

    Ni(II) and Zn(II) complexes were synthesized from tridentate 3-formyl chromone Schiff bases such as 3-((2-hydroxyphenylimino)methyl)-4H-chromen-4-one (HL1), 2-((4-oxo-4H-chromen-3-yl)methylneamino)benzoic acid (HL2), 3-((3-hydroxypyridin-2-ylimino)methyl)-4H-chromen-4-one (HL3), and 3-((2-mercaptophenylimino)methyl)-4H-chromen-4-one (HL4). All the complexes were characterized in the light of elemental analysis, molar conductance, FTIR, UV-VIS, magnetic, thermal, powder XRD, and SEM studies. The conductance and spectroscopic data suggested that, the ligands act as neutral and monobasic tridentate ligands and form octahedral complexes with general formula [M(L1–4)2]·nH2O (M = Ni(II) and Zn(II)). Metal complexes exhibited pronounced activity against tested bacteria and fungi strains compared to the ligands. In addition metal complexes displayed good antioxidant and moderate nematicidal activities. The cytotoxicity of ligands and their metal complexes have been evaluated by MTT assay. The DNA cleavage activity of the metal complexes was performed using agarose gel electrophoresis in the presence and absence of oxidant H2O2. All metal complexes showed significant nuclease activity in the presence of H2O2. PMID:24948904

  4. Cytotoxic effect of inositol hexaphosphate and its Ni(II) complex on human acute leukemia Jurkat T cells.

    PubMed

    de Lima, Eliane May; Kanunfre, Carla Cristine; de Andrade, Lucas Ferrari; Granato, Daniel; Rosso, Neiva Deliberali

    2015-12-01

    Inositol hexaphosphate (InsP6) is present in cereals, legumes, nuts and seed oils and is biologically active against some tumor and cancer cells. Herein, this study aimed at evaluating the cellular toxicity, antiproliferative activity and effects on cell cycle progression of free InsP6 and InsP6-Ni(II) of leukemic T (Jurkat) and normal human cells. Treatments with InsP6 at concentrations between 1.0 and 4.0mM significantly decreased the viability of Jurkat cells, but showed no cytotoxic effect on normal human lymphocytes. Treatment with InsP6-Ni(II) complex at concentrations between 0.05 and 0.30 mM showed an anti-proliferative dose and a time-dependent effect, with significantly reduced cell viability of Jurkat cells but showed no cytotoxic effect on normal human lymphocytes as compared to the control. Ni(II) free ion was toxic to normal cells while InsP6-Ni(II) had no cytotoxic effect. The InsP6-Ni(II) complex potentiated (up to 10×) the antiproliferative effect of free InsP6 on Jurkat cells. The cytometric flow assay showed that InsP6 led to an accumulation of cells in the G0/G1 phase of the cell cycle, accompanied by a decrease in the number of cells in S and G2/M phases, whereas InsP6-Ni(II) has led to an accumulation of cells in the S and G2/M phases. Our findings showed that InsP6-Ni(II) potentiates cytotoxic effects of InsP6 on Jurkat cells and may be a potential adjuvant in the treatment of cancer. PMID:26335902

  5. An unexpected Schiff base-type Ni(II) complex: synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities.

    PubMed

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-25

    An unexpected Schiff base-type Ni(II) complex, [Ni(L(2))2]⋅CH3OH (HL(2) = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL(1) (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL(1) and its corresponding Ni(II) complex were characterized by IR, (1)H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL(1) and Ni(II) complex were also investigated.

  6. An unexpected Schiff base-type Ni(II) complex: Synthesis, crystal structures, fluorescence, electrochemical property and SOD-like activities

    NASA Astrophysics Data System (ADS)

    Chai, Lan-Qin; Zhang, Hong-Song; Huang, Jiao-Jiao; Zhang, Yu-Li

    2015-02-01

    An unexpected Schiff base-type Ni(II) complex, [Ni(L2)2]ṡCH3OH (HL2 = 1-(2-{[(E)-3, 5-dibromo-2-hydroxybenzylidene]amino}phenyl)ethanone oxime), has been synthesized via complexation of Ni(II) acetate tetrahydrate with HL1 (2-(3,5-dibromo-2-hydroxyphenyl)-4-methyl-1,2-dihydroquinazoline 3-oxide) originally. HL1 and its corresponding Ni(II) complex were characterized by IR, 1H NMR spectra, as well as by elemental analysis, UV-Vis and emission spectroscopy, respectively. Crystal structures of the ligand and complex have been determined by single-crystal X-ray diffraction. Each complex links two other molecules into an infinite 1-D chain via intermolecular hydrogen bonding interactions. Moreover, the electrochemical property of the nickle complex was studied by cyclic voltammetry. In addition, SOD-like activities of HL1 and Ni(II) complex were also investigated.

  7. Spectroscopic and mycological studies of Co(II), Ni(II) and Cu(II) complexes with 4-aminoantipyrine derivative

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-10-01

    Complexes of the type [M(L)X 2], where M = Co(II), Ni(II) and Cu(II), have been synthesized with novel NO-donor Schiff's base ligand, 1,4-diformylpiperazine bis(4-imino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one) which is obtained by the acid catalyzed condensation of 1,4-diformylpiperazine with 4-aminoantipyrine. The elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV, NMR, mass and EPR studies of the compounds led to the conclusion that the ligand acts as tetradentate chelate. The Schiff's base ligand forms hexacoordinated complexes having octahedral geometry for Ni(II) and tetragonal geometry for Co(II) and Cu(II) complexes. The mycological studies of the compounds were examined against the several opportunistic pathogens, i.e., Alternaria brassicae, Aspergillus niger and Fusarium oxysporum. The Cu(II) complexes were found to have most fungicidal behavior.

  8. Synthesis, spectroscopic, anticancer and antibacterial studies of Ni(II) and Cu(II) complexes with 2-carboxybenzaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana

    2014-08-01

    Ni(II) and Cu(II) complexes of 2-carboxybenzaldehyde thiosemicarbazone (L) were synthesized and investigated by their spectral and analytical data. These newly synthesized complexes have a composition of M(L)X(H2O)2 (where M = Ni(II), Cu(II) and X = Cl-, NO3-, CH3COO-) and (L) is the tridentate Schiff base ligand. The ligand and its complexes have been characterized on the basis of analytical, molar conductivity, magnetic susceptibility measurements, FT-IR, ESR, 1H NMR and electronic spectral analysis. All the compounds were non-electrolytic in nature. On the basis of spectral studies an octahedral geometry has been assigned for Ni(II) and a tetragonal geometry for Cu(II) complexes. The ligand and its metal complexes were screened for their anticancer studies against human breast cancer cell lines MCF-7 and calculated minimum inhibitory concentration and also for antibacterial activity using Kirby-Bauer single disk susceptibility test.

  9. Large and negative magnetic anisotropy in pentacoordinate mononuclear Ni(ii) Schiff base complexes.

    PubMed

    Nemec, Ivan; Herchel, Radovan; Svoboda, Ingrid; Boča, Roman; Trávníček, Zdeněk

    2015-05-28

    A series of pentacoordinate Ni(ii) complexes of the general formula [Ni(L5)] () with various pentadentate Schiff base ligands H2L5 (originating in a condensation of aromatic ortho-hydroxy-aldehydes and aliphatic triamines) was synthesized and characterized by X-ray structure analysis and magnetometry. The alternations of substituents on the H2L parent ligand resulted in the complexes with the geometry varying between the square-pyramid and trigonal-bipyramid. In the compounds whose chromophore geometry is closer to a trigonal-bipyramid, a large and negative uniaxial anisotropy (D = -64 cm(-1)) was identified. Moreover, the simple linear expression for the axial zero-field splitting (ZFS) parameter, D/cm(-1) = 32.7(4.8) - 151(10)τ, was proposed, where τ (in degrees) stands for the Addison parameter. The results of magnetic analysis were also supported by ab initio CASSCF/NEVPT2 calculations of the ZFS splitting parameters D and E, and g tensors. Despite large and negative D-values of the reported compounds, slow relaxation of magnetization was not observed either in zero or non-zero static magnetic field, thus no single-molecule magnetic behaviour was detected. PMID:25919125

  10. Understanding the Aldo-Enediolate Tautomerism of Glycolaldehyde in Basic Aqueous Solutions.

    PubMed

    Azofra, Luis Miguel; Quesada-Moreno, María Mar; Alkorta, Ibon; Avilés-Moreno, Juan Ramón; Elguero, José; López-González, Juan Jesús

    2015-07-20

    The biochemically important interconversion process between aldoses and ketoses is assumed to take place via 1,2-enediol or 1,2-enediolate intermediates, but such intermediates have never been isolated. The current work was undertaken in an attempt to detect the presence of the 1,2-enediol structure of glycolaldehyde in alkaline medium, actually a 1,2-enediolate, and to try to clarify the scarce data existing about both the formation of deprotonated enediol and the aldo-enediolate equilibrium. The Raman spectra of neutral and basic solutions were recorded as a function of time for eleven days. Several bands associated with the presence of the enediolate were observed in alkaline medium. Glycolaldehyde exists as three different structures in aqueous solution at neutral pH, that is, hydrated aldehydes, aldehydes and dimers, with a respective ratio of approximately 4:0.25:1. Additionally, the formation of Z-enediolate forms takes place at basic pH, together with an increase in the concentration of aldehyde species, such as 2-oxoethan-1-olate, and a decrease in the concentrations of the hydrated aldehyde and dimeric forms. The theoretical ratio of ≈1.5:1 for aldehyde:Z-enediolate reproduces the experimental Raman spectrum in basic medium, with an additional contribution of the previously mentioned ratio between the hydrated aldehyde and dimeric forms. Finally, Raman spectroscopy allowed us to monitor the enolization of this carbohydrate model and conclude that aldo-enediol tautomerism-formally aldo-enediolate-happens when a suitable amount of basic species is added.

  11. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  12. Synthesis, Structure, and Reactivity of Co(II) and Ni(II) PCP Pincer Borohydride Complexes

    PubMed Central

    2015-01-01

    The 15e square-planar complexes [Co(PCPMe-iPr)Cl] (2a) and [Co(PCP-tBu)Cl] (2b), respectively, react readily with NaBH4 to afford complexes [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Co(PCP-tBu)(η2-BH4)] (4b) in high yields, as confirmed by IR spectroscopy, X-ray crystallography, and elemental analysis. The borohydride ligand is symmetrically bound to the cobalt center in η2-fashion. These compounds are paramagnetic with effective magnetic moments of 2.0(1) and 2.1(1) μB consistent with a d7 low-spin system corresponding to one unpaired electron. None of these complexes reacted with CO2 to give formate complexes. For structural and reactivity comparisons, we prepared the analogous Ni(II) borohydride complex [Ni(PCPMe-iPr)(η2-BH4)] (5) via two different synthetic routes. One utilizes [Ni(PCPMe-iPr)Cl] (3) and NaBH4, the second one makes use of the hydride complex [Ni(PCPMe-iPr)H] (6) and BH3·THF. In both cases, 5 is obtained in high yields. In contrast to 4a and 4b, the borohydride ligand is asymmetrically bound to the nickel center but still in an η2-mode. [Ni(PCPMe-iPr)(η2-BH4)] (5) loses readily BH3 at elevated temperatures in the presence of NEt3 to form 6. Complexes 5 and 6 are both diamagnetic and were characterized by a combination of 1H, 13C{1H}, and 31P{1H} NMR, IR spectroscopy, and elemental analysis. Additionally, the structure of these compounds was established by X-ray crystallography. Complexes 5 and 6 react with CO2 to give the formate complex [Ni(PCPMe-iPr)(OC(C=O)H] (7). The extrusion of BH3 from [Co(PCPMe-iPr)(η2-BH4)] (4a) and [Ni(PCPMe-iPr)(η2-BH4)] (5) with the aid of NH3 to yield the respective hydride complexes [Co(PCPMe-iPr)H] and [Ni(PCPMe-iPr)H] (6) and BH3NH3 was investigated by DFT calculations showing that formation of the Ni hydride is thermodynamically favorable, whereas the formation of the Co(II) hydride, in agreement with the experiment, is unfavorable. The electronic structures and the bonding of the borohydride ligand in [Co

  13. Spectral studies on Co(II), Ni(II) and Cu(II) complexes with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-04-01

    Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Ni(L) 2(NO 3) 2, which is 1:2 electrolyte. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except nitrato complexes of Ni(II) which is of tetrahedral geometry, whereas tetragonal geometry for Cu(II) complexes.

  14. Synthesis, biological and comparative DFT studies on Ni(II) complexes of NO and NOS donor ligands

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; El-Gammal, O. A.; Ahmed, Sara F.; Abu El-Reash, G. M.

    2015-01-01

    Three new NOS donor ligands have been prepared by addition ethanolic suspension of 2-hydrazino-2-oxo-N-phenyl-acetamide to phenyl isocyanate (H2PAPS), phenyl isothiocyanate (H2PAPT) and benzoyl isothiocyanate (H2PABT). The Ni(II) complexes prepared from the chloride salt and characterized by conventional techniques. The isolated complexes were assigned the formulaes, [Ni2(PAPS)(H2O)2](H2O)2, [Ni(H2PAPT)Cl2(H2O)](H2O)2 and [(Ni)2(HPABT)2Cl2(H2O)2], respectively. The IR spectra of complexes shows that H2PAPS behaves as a binegative pentadentate via both CO of hydrazide moiety in keto and enol form, enolized CO of cyanate moiety and the CN (azomethine) groups of enolization. H2PAPT behaves as neutral tridentate via both CO of hydrazide moiety and CN (azomethine) group due to SH formation and finally H2PABT behaves as mononegative tetradentate via CO and enolized CO of hydrazide moiety, CO of benzoyl moiety and Cdbnd S groups. The experimental IR spectra of ligands are compared with those obtained theoretically from DFT calculations. Also, the bond lengths, bond angles, HOMO (Highest Occupied Molecular Orbitals), LUMO (Lowest Unoccupied Molecular Orbital) and dipole moments have been calculated. The calculated HOMO-LUMO energy gap reveals that charge transfer occurs within the molecule. The theoretical values of binding energies indicate the higher stability of complexes than of ligands. Also, the kinetic and thermodynamic parameters for the different thermal degradation steps of the complexes were determined by Coats-Redfern and Horowitz-Metzger methods. The antibacterial activities were also tested against B. Subtilis and E. coli bacteria. The free ligands showed a higher antibacterial effect than their Ni(II) complexes. The antitumor activities of the Ligands and their Ni(II) complexes have been evaluated against liver (HePG2) and breast (MCF-7) cancer cells. All ligands were found to display cytotoxicity that are better than that of Fluorouracil (5-FU), while Ni(II

  15. Synthesis and spectroscopic studies of novel Cu(II), Co(II), Ni(II) and Zn(II) mixed ligand complexes with saccharin and nicotinamide

    NASA Astrophysics Data System (ADS)

    Çakır, S.; Bulut, İ.; Naumov, P.; Biçer, E.; Çakır, O.

    2001-01-01

    Four novel mixed ligand complexes of Cu(II), Co(II), Ni(II) and Zn(II) with saccharin and nicotinamide were synthesised and characterised on the basis of elemental analysis, FT-IR spectroscopic study, UV-Vis spectrometric and magnetic susceptibility data. The structure of the Cu (II) complex is completely different from those of the Co(II), Ni(II) and Zn(II) complexes. From the frequencies of the saccharinato CO and SO 2 modes, it has been proven that the saccharinato ligands in the structure of the Cu complex are coordinated to the metal ion ([Cu(NA) 2(Sac) 2(H 2O)], where NA — nicotinamide, Sac — saccharinato ligand or ion), whilst in the Co(II), Ni(II) and Zn(II) complexes are uncoordinated and exist as ions ([M(NA) 2(H 2O) 4](Sac) 2).

  16. Novel complexes of Co(III) and Ni(II) containing peptide ligands: Synthesis, DNA binding and photonuclease activity

    NASA Astrophysics Data System (ADS)

    Sudhamani, C. N.; Bhojya Naik, H. S.; Girija, D.; Sangeetha Gowda, K. R.; Giridhar, M.; Arvinda, T.

    2014-01-01

    The new cobalt(III) and nickel(II) complexes of the type [M(L)2(H2O)2]n+ (where M = Co(III) or Ni(II) ion, n = 3 for Co and 2 for Ni, L = peptides Fmoc. Ala-val-OH (F-AVOH), Fmoc-Phe-Leu-Ome (F-PLOMe) and Z-Ala-Phe-COsbnd NH2 (Z-APCONH2)) were synthesized and structurally characterized by FTIR, 1H NMR, elemental analysis and electronic spectral data. An octahedral geometry has been proposed for all the synthesized Co(III) and Ni(II) metal complexes. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. Detailed analysis revealed that the metal complexes intercalates into the DNA base stack as intercalator. The photo induced cleavage studies shows that the complexes possess photonuclease property against pUC19 DNA under UV-Visible irradiation.

  17. Utility of cefixime as a complexing reagent for the determination of Ni(II) in synthetic mixture and water samples.

    PubMed

    Azmi, Syed Najmul Hejaz; Iqbal, Bashir; Al Khanbashi, Reem Saif; Al Hamhami, Nadia Humaid; Rahman, Nafisur

    2013-06-01

    A simple, sensitive, and accurate UV spectrophotometric method has been developed for the determination of nickel in synthetic mixture and water samples. The method is based on the complexation reaction of nickel ion with cefixime, thus leading to the formation of Ni-cefixime complex in ethanol-distilled water medium at room temperature. The complex showed the maximum absorption wavelength at 332 nm. Beer's law is obeyed in the working concentration range of 0.447-4.019 μg mL(-1) with apparent molar absorptivity of 7.314 × 10(3) L mol(-1) cm(-1) and Sandell's sensitivity of 0.008 μg/cm(2)/0.001 absorbance unit. The limits of detection and quantitation for the proposed method are 0.016 and 0.054 μg mL(-1), respectively. The factors such as cefixime concentration and solvent affecting the complexation reaction were carefully studied and optimized. The method is validated as per the International Conference on Harmonisation guideline. The method is successfully applied to the determination of Ni(II) in synthetic mixture and wadi water samples collected from Al Rustaq. The same water samples are also analyzed by atomic absorption spectrophotometry. Both methods determined the amount of Ni(II) in water sample and found to be approximately the same.

  18. Spectroscopic evaluation of Co(II), Ni(II) and Cu(II) complexes derived from thiosemicarbazone and semicarbazone

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-12-01

    Co(II), Ni(II) and Cu(II) complexes were synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from 2-acetyl furan. These complexes were characterized by elemental analysis, molar conductance, magnetic moment, mass, IR, electronic and EPR spectral studies. The molar conductance measurement of the complexes in DMSO corresponds to non-electrolytic nature. All the complexes are of high-spin type. On the basis of different spectral studies six coordinated geometry may be assigned for all the complexes except Co(L) 2(SO 4) and Cu(L) 2(SO 4) [where L = L 1 and L 2] which are of five coordinated square pyramidal geometry.

  19. Synthesis, characterization and anti-microbial evaluation of Cu(II), Ni(II), Pt(II) and Pd(II) sulfonylhydrazone complexes; 2D-QSAR analysis of Ni(II) complexes of sulfonylhydrazone derivatives

    NASA Astrophysics Data System (ADS)

    Özbek, Neslihan; Alyar, Saliha; Alyar, Hamit; Şahin, Ertan; Karacan, Nurcan

    2013-05-01

    Copper(II), nickel(II), platinum(II) and palladium(II) complexes with 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) derived from propanesulfonic acid-1-methylhydrazide (psmh) were synthesized, their structure were identified, and antimicrobial activity of the compounds was screened against three Gram-positive and three Gram-negative bacteria. The results of antimicrobial studies indicate that Pt(II) and Pd(II) complexes showed the most activity against all bacteria. The crystal structure of 2-hydroxy-1-naphthaldehyde-N-methylpropanesulfonylhydrazone (nafpsmh) was also investigated by X-ray analysis. A series of Ni(II) sulfonyl hydrazone complexes (1-33) was synthesized and tested in vitro against Escherichia coli and Staphylococcus aureus. Their antimicrobial activities were used in the QSAR analysis. Four-parameter QSAR models revealed that nucleophilic reaction index for Ni and O atoms, and HOMO-LUMO energy gap play key roles in the antimicrobial activity.

  20. DNA interaction with octahedral and square planar Ni(II) complexes of aspartic-acid Schiff-bases

    NASA Astrophysics Data System (ADS)

    Sallam, S. A.; Orabi, A. S.; Abbas, A. M.

    2011-12-01

    Ni(II) complexes of (S,E)-2-(2-OHbenzilydene)aspartic acid; (S,E)-2-(2,3-diOHbenzilydene)aspartic acid-; (S,E)-2-(2,4-diOH-benzilydene)aspartic acid; (S,E)-2-(2,5-diOHbenzilydene)aspartic acid and (S,E)-2-((2-OHnaphthalene-1-yl)methylene)aspartic acid Schiff-bases have been synthesized by template method in ethanol or ammonia media. They were characterized by elemental analyses, conductivity measurements, magnetic moment, UV, IR and 1H nmr spectra as well as thermal analysis (TG, DTG, DTA). The Schiff-bases are dibasic tridentate or tetradentate donors and the complexes have square planar and octahedral structures. The complexes decompose in two or three steps where kinetic and thermodynamic parameters of the decomposition steps were computed. The interactions of the formed complexes with FM-DNA were monitored by UV and fluorescence spectroscopy.

  1. A tetradentate Ni(II) complex cation as a single redox couple for non-aqueous flow batteries

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seung; Yoon, Taeho; Jang, Jihyun; Mun, Junyoung; Park, Hosang; Ryu, Ji Heon; Oh, Seung M.

    2015-06-01

    Nickel(II)-1,4,8,11-tetraazacyclotetradecane is examined as a possible single redox couple for non-aqueous flow batteries. The nickel complex cation is reduced at -1.81 V (vs. Fc/Fc+) and oxidized at 0.74 V, showing that this tetradentate Ni(II) complex cation can be used as a single redox couple that offers a cell voltage of 2.55 V. The maximum solubility is 0.4 M in 1.0 M tetraethylammonium tetrafluoroborate dissolved in a mixed solvent of ethylene carbonate and propylene carbonate. When tested in a non-flowing cell, this single redox couple exhibits a very stable cycle performance.

  2. Synthesis, characterization, crystal structure and cytotoxic properties of thiosemicarbazide Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Mathan Kumar, S.; Rajesh, J.; Anitha, K.; Dhahagani, K.; Marappan, M.; Indra Gandhi, N.; Rajagopal, G.

    2015-05-01

    Synthesis of new complexes of Ni(II) (1) and Zn(II) (2) with [1-(2-hydroxy-3,5-diiodobenzylidene)-4-phenylthiosemicarbazide] have been reported. The composition of these two complexes 1 and 2 is discussed on the basis of IR, 1H NMR and UV spectral data along with their X-ray crystallographic data. The crystal structure of these two complexes has revealed that the free ligand (L) is deprotonated twice at the oxygen and sulfur atoms and they are coordinated with the complexes through phenoxide-O, azomethine-N and thiolate-S atoms. The single-crystal X-ray structures of complex (1) exhibits a square planar structure, while complex (2) reveals trigonal bipyramidal distorted square based pyramidal structure. Anticancer activity of ligand and the complexes 1-2 are evaluated in human adenocarcinoma (MCF-7) cells. The preliminary bioassay indicates that the free ligand and the complexes 1-2 exhibit inhibitory activity against the human adenocarcinoma cancer cell lines.

  3. A new nano-structured Ni(II) Schiff base complex: synthesis, characterization, optical band gaps, and biological activity

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Hassan, A. M.; Nassar, A. M.; Ibrahim, N. M.; Mourtada, A.

    2014-05-01

    New Ni(II) Schiff base complexes [{Ni(L)(H2O)Cl} where HL = 2-((pyridin-3-ylmethylene)amino)phenol] have been synthesized using the reflux and sonochemical methods. The nickel oxide NiO nanopowder was obtained from the metal complexes after calcination at 650 °C for 2 h. The Schiff base complexes and NiO powders were characterized in detail. The HL and its metal complexes were depicted high activity towards microorganism and breast carcinoma cells. The inhibitory activity against breast carcinoma (MCF-7) were detected with IC50 = 5.5, 12.5 and 9.6 for HL, complex (1) and complex (2), respectively. The optical band gap energy was 3.6, 3.0 and 2.37 eV for Ni complexes (1), (2) and NiO, respectively. The microstructure of the formed NiO powders appeared as cubic-like structure. Furthermore, magnetic properties of NiO sample were identified and paramagnetic property was found at a room temperature. The saturation magnetization and coercive force for the NiO sample were 0.47 emu/g and 42.68 Oe, respectively.

  4. Spectroscopic investigation of the structure of complex compounds of Cu(II), Co(II), and Ni(II) with. cap alpha. - and. beta. -diketone

    SciTech Connect

    Krymova, N.M.; Ivanov, V.E.; Ostapkevich, N.A.

    1986-11-10

    In the reactions of Cu(II), Co(II), and Ni(II) chlorides with 2,3-butanedione and 2,4-pentanedione isonicotinoylhydrazones in neutral and weakly acid media complex compounds of the addition-product type are formed, but in an alkaline medium inner-complex compounds are formed. By methods of electronic and ESR spectroscopy it was shown that the Cu(II) complex compounds have a planar-square structure, the Ni(II) complexes are octrahedral, but the Co(II) complexes have a tetrahedral or distorted tetrahedral structure. In the spectrochemical series 2,3-butanedione and 2,4-pentanedione isonicotinoylhydrazones occupy positions between water and ammonia.

  5. Synthesis, Characterization, and Catalytic Activity of Ni(II) Alkyl Complexes Supported by Pyrrole-Diphosphine Ligands.

    PubMed

    Venkanna, Gopaladasu T; Tammineni, Swetha; Arman, Hadi D; Tonzetich, Zachary J

    2013-08-26

    The organometallic Ni(II) chemistry of the pyrrole-based pincer ligands, (P2 (R)Pyr)(-) (P2 (R)Pyr = 2,5-(R2PCH2)2C4H2N, R = Ph or Cy) is reported. Reactions of Grignard reagents with [NiCl(P2 (R) Pyr)] afford a variety of alkyl and aryl complexes (methyl, ethyl, benzyl, phenyl, and allyl) that all display square planar geometries about nickel. The hydride complex, [NiH(P2 (Cy)Pyr)], can also prepared either through treatment of [NiCl(P2 (Cy)Pyr)] with LiHBEt3, or by reaction of H(P2 (R)Pyr) with [Ni(COD)2] (COD = 1,4-cyclooctadiene). Reactions of the methyl and hydride complexes with CO and CO2, respectively, evince clean migratory insertion chemistry of the Ni-C and Ni-H bonds. Both the alkyl and chloride complexes are active catalysts for the Kumada coupling of aryl chlorides and aryl or alkyl Grignard reagents at room temperature. The solid-state structures of several of the complexes are reported. PMID:24567662

  6. Characterization and biological studies on Co(II), Ni(II) and Cu(II) complexes of carbohydrazones ending by pyridyl ring

    NASA Astrophysics Data System (ADS)

    Abu El-Reash, G. M.; El-Gammal, O. A.; Ghazy, S. E.; Radwan, A. H.

    2013-03-01

    The chelating behavior of ligands based on carbohydrazone core modified with pyridine end towards Co(II), Ni(II) and Cu(II) ions have been examined. The ligands derived from the condensation of carbohydrazide with 2-acetylpyridine (H2APC) and 4-acetylpyridine (H2APEC). The 1H NMR, IR data and the binding energy calculations of H2APC revealed the presence of two stereoisomers syn and anti in the solid state and in the solution. The 1H NMR, IR data and the binding energy calculations confirmed the presence of H2APEC in one keto form only in the solid state and in the solution. The spectroscopic data confirmed that H2APC behaves as a monobasic pentadentate in Co(II) and Cu(II) complexes and as mononegative tetradentate in Ni(II) complex. On the other hand, H2APEC acts as a mononegative tridentate in Co(II) complex, neutral tridentate in Ni(II) complex and neutral bidentate in Cu(II) complex. The electronic spectra and the magnetic measurements of complexes as well as the ESR of the copper complexes suggested the octahedral geometry. The bond length and bond angles were evaluated by DFT method using material studio program. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The antioxidant (DDPH and ABTS methods), anti-hemolytic and in vitro Ehrlich ascites of the compounds have been screened.

  7. Ni(II) and Zn(II) complexes of 2-((thiophen-2-ylmethylene)amino)benzamide: Synthesis, spectroscopic characterization, thermal, DFT and anticancer activities

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.

    2015-01-01

    The paper presents the synthesis of Ni(II) and Zn(II) complexes of general composition M(L)X2 and M(L)2X2 (M = Ni(II), Zn(II), X = Cl-1, OAc-1) with Schiff base obtained through the condensation of 2-aminobenzamide with thiophene-2-carbaldehyde. The characterization of newly formed complexes was done by 1H NMR, UV-VIS, TGA, IR, mass spectrophotometry and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies a distorted octahedral geometry has been assigned for Ni(II) complexes and tetrahedral geometry for Zn(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (HepG2) were studied and compared with those of free ligand.

  8. Thermodynamic functions of Ni(II) complexes with 5-(2-hydroxyphenyl)-pyrazole derivatives. A potentiometric study

    NASA Astrophysics Data System (ADS)

    Deosarkar, S. D.; Narwade, M. L.; Thakre, V. J.

    2013-10-01

    Proton-ligand dissociation constants of five biologically important pyrazole derivatives, viz. [5-(2-hydroxyphenyl)-3-(pyridin-3-yl)-4-benzoyl]-pyrazol (HPPBP), [5-(2-hydroxyphenyl)-3-(3-nitrophenyl)-4-(3-pyridinoyl)]-pyrazol (HPNPPP), [5-(2-hydroxyphenyl)-3-(3-nitrophenyl)-4-benzoyl]-pyrazol (HPNPBP), [5-(2-hydroxyphenyl)-3-phenyl-4-(3-pyridinoyl)]-pyrazol (HPPPP), and [5-(2-hydroxyphenyl)-3-(3-nitrophenyl)-4-(2-furoyl) pyrazol (HPNPFP) and metal ligand stability constants of their Ni(II) complexes in 70% (v/v) dioxane-water and 0.1 M KNO3 were determined at 298.15, 303.15, and 308.15 K by potentiometric method. Thermodynamic functions, such as, free energy change (Δ G ○), enthalpy change (Δ H ○) and entropy (Δ S ○) change for dissociation and complex formation have been estimated form temperature dependence of proton-ligand and metal-ligand stability constants and interpreted in terms of feasibility of these processes.

  9. Electrochemical study of the complexes of aspartame with Cu(II), Ni(II) and Zn(II) ions in the aqueous medium.

    PubMed

    Cakir, Semiha; Coskun, Emine; Biçer, Ender; Cakir, Osman

    2003-05-23

    The voltammetric behaviours of aspartame in the presence of some metal ions (Cu(II), Ni(II), Zn(II)) were investigated. In the presence of aspartame, copper ions reduced at two stages with quasi-reversible one-electron and, with increasing the aspartame (L) concentration, Cu(II)L(2) complex reduces at one-stage with irreversible two-electron reaction (-0.322 V). Zn(II)-aspartame complex (logbeta=3.70) was recognized by a cathodic peak at -1.320 V. Ni(II)-aspartame complex (logbeta=6.52) is reduced at the more positive potential (-0.87 V) than that of the hydrated Ni(II) ions (-1.088 V). In the case of the reduction of Ni(II) ions, aspartame serves as a catalyst. From electronic spectra data of the complexes, their stoichiometries of 1:2 (metal-ligand) in aqueous medium are determined. The greatness of these logarithmic values is agreement with Irwing-Williams series (NiZn). PMID:12747864

  10. Electrochemical study of the complexes of aspartame with Cu(II), Ni(II) and Zn(II) ions in the aqueous medium.

    PubMed

    Cakir, Semiha; Coskun, Emine; Biçer, Ender; Cakir, Osman

    2003-05-23

    The voltammetric behaviours of aspartame in the presence of some metal ions (Cu(II), Ni(II), Zn(II)) were investigated. In the presence of aspartame, copper ions reduced at two stages with quasi-reversible one-electron and, with increasing the aspartame (L) concentration, Cu(II)L(2) complex reduces at one-stage with irreversible two-electron reaction (-0.322 V). Zn(II)-aspartame complex (logbeta=3.70) was recognized by a cathodic peak at -1.320 V. Ni(II)-aspartame complex (logbeta=6.52) is reduced at the more positive potential (-0.87 V) than that of the hydrated Ni(II) ions (-1.088 V). In the case of the reduction of Ni(II) ions, aspartame serves as a catalyst. From electronic spectra data of the complexes, their stoichiometries of 1:2 (metal-ligand) in aqueous medium are determined. The greatness of these logarithmic values is agreement with Irwing-Williams series (NiZn).

  11. Electronic structure aspects of the complete O2 transfer reaction between Ni(II) and Mn(II) complexes with cyclam ligands.

    PubMed

    Zapata-Rivera, Jhon; Caballol, Rosa; Calzado, Carmen J

    2015-01-28

    This work explores the electronic structure aspects involving the complete intermolecular O2 transfer between Ni(ii) and Mn(ii) complexes, both containing N-tetramethylated cyclams (TMC). The energy of the low-lying states of reactants, intermediates and products is established at the CASSCF level and also the DDCI level when possible. The orthogonal valence bond analysis of the wave functions obtained from CASSCF and DDCI calculations indicates the dominant superoxide nature of all the adducts participating in the reaction, and consequently that the whole reaction can be described as the transfer of the superoxide O2(-) between Ni(ii) and Mn(ii) complexes, without any additional change in the electronic structure of the fragments.

  12. Catalytic asymmetric Michael addition of α,β-unsaturated aldehydes to Ni(II) complexes of the Schiff base of glycine.

    PubMed

    Luo, Xiaoyan; Jin, Zhichao; Li, Pengfei; Gao, Jiabin; Yue, Weimin; Liang, Xinmiao; Ye, Jinxing

    2011-02-01

    The conjugate addition of Ni(II) complexes of glycine Schiff base to α,β-unsaturated aldehydes catalyzed by (S)-2-(diphenyl(trimethylsilyloxy)methyl)pyrrolidine afforded adducts in excellent yields with up to 49:1 dr and 95% ee. This method enables the construction of two adjacent chiral centers in one step, and offers an alternative route to chiral α-amino acid derivatives. PMID:21103550

  13. Interaction of a Ni(II) tetraazaannulene complex with elongated fullerenes as simple models for carbon nanotubes.

    PubMed

    Henao-Holguín, Laura Verónica; Basiuk, Vladimir A

    2015-06-01

    Nickel(II) complex of 5,14-dihydro-6,8,15,17-tetramethyldibenzo[b,i][1,4,8,11] tetraazacyclotetradecine (NiTMTAA), which can be employed for noncovalent functionalization of carbon nanotubes (CNTs), represents a more complex and interesting case in terms of structure of the resulting nanohybrids, as compared to the related materials functionalized with porphyrins and phthalocyanines. Due to its saddle shape, the NiTMTAA molecule adsorbed can adopt different, energetically non-equivalent orientations with respect to CNT, depending on whether CH3 or C6H4 groups contact the latter. The main goal of the present work was to provide information on the interactions of NiTMTAA with simple single-walled CNT (SWNT) models accessible for dispersion-corrected DFT calculations. For reasons of comparison, we employed three such functionals: M06-2X and LC-BLYP as implemented in Gaussian 09 package, and PBE-G as implemented in Materials Studio 6.0. In order to roughly estimate the effect of nanotube chirality on the interaction strenght, we considered two short closed-end SWNT models (also referred to as 'elongated fullerenes'), one armchair and one zigzag, derived from C60 and C80 hemispheres. In addition, we calculated similar complexes with C60, as well as I h and D 5h isomers of C80. The results were analyzed in terms of optimized geometries, formation energies, HOMO-LUMO gap energies, and intermolecular separations. Graphical Abstract Interaction of Ni(II) tetraazaannulene complex with elongated fullerenes.

  14. Adsorption phenomena of cubane-type tetranuclear Ni(II) complexes with neutral, thioether-functionalized ligands on Au(111)

    NASA Astrophysics Data System (ADS)

    Heß, Volkmar; Matthes, Frank; Bürgler, Daniel E.; Monakhov, Kirill Yu.; Besson, Claire; Kögerler, Paul; Ghisolfi, Alessio; Braunstein, Pierre; Schneider, Claus M.

    2015-11-01

    The controlled and intact deposition of molecules with specific properties onto surfaces is an emergent field impacting a wide range of applications including catalysis, molecular electronics, and quantum information processing. One strategy is to introduce grafting groups functionalized to anchor to a specific surface. While thiols and disulfides have proven to be quite effective in combination with gold surfaces, other S-containing groups have received much less attention. Here, we investigate the surface anchoring and organizing capabilities of novel charge-neutral heterocyclic thioether groups as ligands of polynuclear nickel(II) complexes. We report on the deposition of a cubane-type {Ni4} (= [Ni(μ3-Cl)Cl(HL·S)]4) single-molecule magnet from dichloromethane solution on a Au(111) surface, investigated by scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction, both immediately after deposition and after subsequent post-annealing. The results provide strong evidence for partial decomposition of the coordination complex upon deposition on the Au(111) surface that, however, leaves the magnetic {Ni4Cl4n} (n = 1 or 2) core intact. Only post-annealing above 480 K induces further decomposition and fragmentation of the {Ni4Cl4n} core. The detailed insight into the chemisorption-induced decomposition pathway not only provides guidelines for the deposition of thioether-functionalized Ni(II) complexes on metallic surfaces but also reveals opportunities to use multidentate organic ligands decorated with thioether groups as transporters for highly unstable inorganic structures onto conducting surfaces, where they are stabilized retaining appealing electronic and magnetic properties.

  15. Air-Stable Triazine-Based Ni(II) PNP Pincer Complexes As Catalysts for the Suzuki-Miyaura Cross-Coupling.

    PubMed

    Mastalir, Matthias; Stöger, Berthold; Pittenauer, Ernst; Allmaier, Günter; Kirchner, Karl

    2016-07-01

    Air-stable, thermally robust, and well-defined cationic Ni(II) PNP pincer complexes based on the 2,4-diaminotriazine scaffold are described. These complexes are active catalysts for the Suzuki-Miyaura cross-coupling of a wide range of aryl, heteroaryl (including benzoxazole, thiazole, pyridine, pyrimidine, thiazole), primary and secondary alkyl halides, and pseudohalides with different organoboronate reagents giving excellent to good isolated yields. Neutral deprotonated complexes seem to play a key role in the catalytic process. PMID:27281438

  16. Synthesis, spectroscopic, anticancer, antibacterial and antifungal studies of Ni(II) and Cu(II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Vandana; Kumar, Suresh

    2015-01-01

    Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.

  17. Ni(II) and Zn(II) complexes of 2-((thiophen-2-ylmethylene)amino)benzamide: synthesis, spectroscopic characterization, thermal, DFT and anticancer activities.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S

    2015-01-01

    The paper presents the synthesis of Ni(II) and Zn(II) complexes of general composition M(L)X₂ and M(L)₂X₂ (M=Ni(II), Zn(II), X=Cl(-1), OAc(-1)) with Schiff base obtained through the condensation of 2-aminobenzamide with thiophene-2-carbaldehyde. The characterization of newly formed complexes was done by (1)H NMR, UV-VIS, TGA, IR, mass spectrophotometry and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff's base and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies a distorted octahedral geometry has been assigned for Ni(II) complexes and tetrahedral geometry for Zn(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (HepG2) were studied and compared with those of free ligand.

  18. Quantum Chemical Studies on the Prediction of Structures, Charge Distributions and Vibrational Spectra of Some Ni(II), Zn(II), and Cd(II) Iodide Complexes

    NASA Astrophysics Data System (ADS)

    Bardakci, Tayyibe; Kumru, Mustafa; Altun, Ahmet

    2016-06-01

    Transition metal complexes play an important role in coordination chemistry as well as in the formation of metal-based drugs. In order to obtain accurate results for studying these type of complexes quantum chemical studies are performed and especially density functional theory (DFT) has become a promising choice. This talk represents molecular structures, charge distributions and vibrational analysis of Ni(II), Zn(II), and Cd(II) iodide complexes of p-toluidine and m-toluidine by means of DFT. Stable structures of the ligands and the related complexes have been obtained in the gas phase at B3LYP/def2-TZVP level and calculations predict Ni(II) complexes as distorted polymeric octahedral whereas Zn(II) and Cd(II) complexes as distorted tetrahedral geometries. Charge distribution analysis have been performed by means of Mulliken, NBO and APT methods and physically most meaningful method for our compounds is explained. Vibrational spectra of the title compounds are computed from the optimized geometries and theoretical frequencies are compared with the previously obtained experimental data. Since coordination occurs via nitrogen atoms of the free ligands, N-H stretching bands of the ligands are shifted towards lower wavenumbers in the complexes whereas NH_2 wagging and twisting vibrations are shifted towards higher wavenumbers.

  19. XAS studies of Ni(I), Ni(II), and Ni(III) complexes

    SciTech Connect

    Furenlid, L.R.; Renner, M.W.; Fujita, E.

    1995-01-01

    XAS techniques for studying structural and electronic changes taking place during oxidation and reduction reactions of nickel complexes are described and applied to selected models for Factor 430, a nickel containing cofactor catalyzing an important step in the conversion of carbon dioxide to methane by methanogenic bacteria.

  20. Polymer complexes. LIV. Structural and spectral studies of supramolecular coordination polymers built from Ni(II), Fe(II) and Pd(II) with sulphadrug

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Belal, A. A. M.; Diab, M. A.; Mohamed, R. H.

    2011-03-01

    Polymer complexes of p-acrylamidyl sulphaguanidine (HL) with Ni(II), Fe(II) and Pd(II) salts have been prepared. The structures of the polymer complexes were elucidated using elemental analysis, 1H NMR, UV-Vis, IR spectroscopies, magnetic moment, molar conductance and thermal analysis. The polymer complexes were isolated in 1:1 and 1:2 (M:L) ratios. The solid monocomplexes (1:1) (M:L) were isolated in the general formula [Fe(HL)O 2SO 2(OH 2) 2]. The biscomplexes (1:2) (M:L) solid chelates found to have the general formula [Ni(HL) 2X 2] n (X = Cl -, Br -, I -, NO3-, NCS -), [Fe(HL)(en)(OSO 3)(OH 2)] n and [Ni(HL) 2(Py) 2] nX 2, while {[Pd(L)X] 2} n (1:1) (X = Cl - or Br -). In all the polymer complexes the ligand and anions were found to be coordinated to the Ni(II) and Fe(II) ions. The bidentate nature of the ligand is evident from IR spectra. The magnetic and spectroscopic data indicate a octahedral geometry for complexes. The thermal behaviour of these chelates shows that the hydrated complexes loss water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps.

  1. Spectroscopic Characterization and Biological Activity of Mixed Ligand Complexes of Ni(II) with 1,10-Phenanthroline and Heterocyclic Schiff Bases

    PubMed Central

    Prashanthi, Y.; Kiranmai, K.; Ira; K, Sathish kumar; Chityala, Vijay kumar; Shivaraj

    2012-01-01

    Mixed ligand complexes of Ni(II) with 1,10-phenanthroline (1,10-Phen) and Schiff bases L1(MIIMP); L2(CMIIMP); L3(EMIIMP); L4(MIIMNP); L5(MEMIIMP); L6(BMIIMP); L7(MMIIMP); L8(MIIBD) have been synthesized. These metal chelates have been characterized by elemental analysis, IR, 1H-NMR, 13C-NMR, Mass, UV-Vis, magnetic moments, and thermogravimetric (TG&DTA) analysis. Spectral data showed that the 1,10-phenanthroline act as neutral bidentate ligand coordinating to the metal ion through two nitrogen donor atoms and Schiff bases acts as monobasic bidentate coordinating through NO donor atoms. All Ni(II) complexes appear to have an octahedral geometry. The antimicrobial activity of mixed ligand complexes has been studied by screening against various microorganisms, it is observed that the activity enhances upon coordination. The DNA binding studies have been investigated by UV-Vis spectroscopy, and the experimental results indicate that these complexes bind to CT DNA with the intrinsic binding constant Kb = 2.5 ± 0.2 × 105 M−1. MTT is used to test the anticancer effect of the complexes with HL60 tumor cell. The inhibition ratio was accelerated by increasing the dosage, and it had significant positive correlation with the medication dosage. PMID:23082074

  2. Co(II), Ni(II) and Cu(II) complexes with coumarin-8-yl Schiff-bases: Spectroscopic, in vitro antimicrobial, DNA cleavage and fluorescence studies

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-09-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of the type ML·2H 2O of Schiff-bases derived from m-substituted thiosemicarbazides and 8-acetyl-7-hydroxy-4-methylcoumarin have been synthesized and characterized by spectroscopic studies. Schiff-bases exhibit thiol-thione tautomerism wherein sulphur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analyses, spectral (IR, UV-vis, FAB-mass, ESR and fluorescence), magnetic and thermal studies. The low molar conductance values in DMF indicate that, the metal complexes are non-electrolytes. The cyclic voltammetric studies suggested that, the Cu(II) and Ni(II) complexes are of single electron transfer quasi-reversible nature. The Schiff-bases and its metal complexes have been evaluated for their in vitro antibacterial ( Escherichia coli, Staphilococcus aureus, Bascillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The Schiff-base I and its metal complexes exhibited DNA cleavage activity on isolated DNA of A. niger.

  3. DNA cleavage, antibacterial, antifungal and anthelmintic studies of Co(II), Ni(II) and Cu(II) complexes of coumarin Schiff bases: Synthesis and spectral approach

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Prabhakara, Chetan T.; Halasangi, Bhimashankar M.; Toragalmath, Shivakumar S.; Badami, Prema S.

    2015-02-01

    The metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized from 6-formyl-7,8-dihydroxy-4-methylcoumarin with o-toluidine/3-aminobenzotrifluoride. The synthesized Schiff bases and their metal complexes were structurally characterized based on IR, 1H NMR, 13C NMR, UV-visible, ESR, magnetic, thermal, fluorescence, mass and ESI-MS studies. The molar conductance values indicate that complexes are non-electrolytic in nature. Elemental analysis reveals ML2·2H2O [M = Co(II), Ni(II) and Cu(II)] stoichiometry, where 'L' stands for a singly deprotonated ligand. The presence of co-ordinated water molecules were confirmed by thermal studies. The spectroscopic studies suggest the octahedral geometry. Redox behavior of the complexes were confirmed by cyclic voltammetry. All the synthesized compounds were screened for their antibacterial (Escherichia coli, Pseudomonas auregenosa, klebsiella, Proteus, Staphylococcus aureus and salmonella) antifungal (Candida, Aspergillus niger and Rhizopus), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activity.

  4. Synthesis, characterization, in vitro antimicrobial and DNA cleavage studies of Co(II), Ni(II) and Cu(II) complexes with ONOO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Unki, Shrishila N.; Kulkarni, Ajaykumar D.; Naik, Vinod H.; Badami, Prema S.

    2011-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes have been synthesized with Schiff bases derived from 2-hydroxy-1-naphthaldehyde and 2-oxo-2H-chromene-3-carbohydrazide/6-bromo-2-oxo-2H-chromene-3-carbohydrazide. The chelation of the complexes has been proposed in the light of analytical, spectral (IR, UV-Vis, 1H NMR, ESR, FAB-mass and fluorescence), magnetic and thermal studies. The measured molar conductance values indicate that, the complexes are non-electrolytic in nature. The redox behavior of the complexes was investigated with electrochemical method by using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial ( Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal activities ( Candida albicans, Cladosporium and Aspergillus niger) by MIC method. The DNA cleavage is studied by agarose gel electrophoresis method.

  5. Cu(II), Co(II) and Ni(II) complexes of new Schiff base ligand: Synthesis, thermal and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.

    2013-04-01

    Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.

  6. Antibacterial Co(II) and Ni(II) Complexes of N-(2-Furanylmethylene)-2-Aminothiadiazole and Role of SO42−, NO3−, C2O42− and CH3CO2− anions on Biological Properties

    PubMed Central

    Rauf, Abdul; Supuran, Claudiu T.

    2002-01-01

    Co(II) and Ni(II) complexes with a Schiff base, N-(2-furanylmethylene)-2-aminothiadiazole have been prepared and characterized by their physical, spectral and analytical data. The synthesized Schiff-bases act as tridentate ligands during the complexation reaction with Co(II) and Ni(II. metal ions. They possess the composition [M(L)2]Xn (where M=Co(II) or Ni(II), L=, X=NO3−, SO42−, C2O42− or CH3CO2− and n=1 or 2) and show an octahedral geometry. In order to evaluate the effect of anions upon chelation, the Schiff-base and its complexes have been screened for antibacterial activity against bacterial strains e.g., Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. PMID:18476008

  7. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of tridentate Schiff base derived from vanillin and DL-α-aminobutyric acid

    NASA Astrophysics Data System (ADS)

    Nair, M. Sivasankaran; Joseyphus, R. Selwin

    2008-09-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and DL-α-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H 2O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.

  8. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 3: Michael addition reactions and miscellaneous transformations.

    PubMed

    Aceña, José Luis; Sorochinsky, Alexander E; Soloshonok, Vadim

    2014-09-01

    The major goal of this review is a critical discussion of the literature data on asymmetric synthesis of α-amino acids via Michael addition reactions involving Ni(II)-complexes of amino acids. The material covered is divided into two conceptually different groups dealing with applications of: (a) Ni(II)-complexes of glycine as C-nucleophiles and (b) Ni(II)-complexes of dehydroalanine as Michael acceptors. The first group is significantly larger and consequently subdivided into four chapters based on the source of stereocontrolling element. Thus, a chiral auxiliary can be used as a part of nucleophilic glycine Ni(II) complex, Michael acceptor or both, leading to the conditions of matching vs. mismatching stereochemical preferences. The particular focus of the review is made on the practical aspects of the methodology under discussion and mechanistic considerations.

  9. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Bekheit, M. M.; El-Brashy, S. A.

    2015-02-01

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M = Co(II) and Ni(II), X = Cl- or OH-, n = 1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu2+ complex confirmed the suggested geometry with values of a α2and β2 indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  10. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand.

    PubMed

    El-Gammal, O A; Bekheit, M M; El-Brashy, S A

    2015-02-25

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M=Co(II) and Ni(II), X=Cl(-) or OH(-), n=1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu(2+) complex confirmed the suggested geometry with values of a α(2)and β(2) indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain.

  11. Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand.

    PubMed

    El-Gammal, O A; Bekheit, M M; El-Brashy, S A

    2015-02-25

    New Co(II), Ni(II) and Cu(II) complexes derived from tetradentate macrocyclic nitrogen ligand, (1E,4E,8E,12E)-5,8,13,16-tetramethyl-1,4,9,12-tetrazacyclohexadeca-4,8,12,16-tetraene (EDHDH) have been synthesized. The complexes have been characterized by elemental analysis, spectral (IR, UV-Vis, (1)H NMR and ESR (for Cu(II) complex)) mass, and magnetic as well as thermal analysis measurements. The complexes afforded the formulae: [Cu(EDHDH)Cl2]·2EtOH and [M(EDHDH)X2]·nH2O where M=Co(II) and Ni(II), X=Cl(-) or OH(-), n=1,0, respectively. The data revealed an octahedral arrangement with N4 tetradentate donor sites in addition to two Cl atoms occupying the other two sites. ESR spectrum of Cu(2+) complex confirmed the suggested geometry with values of a α(2)and β(2) indicating that the in-plane σ-bonding and in-plane π-bonding are appreciably covalent, and are consistent with very strong σ-in-plane bonding in the complexes. The molecular modeling is drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds using DFT method. Also, the thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. Moreover, the in vitro antibacterial studies of all compounds screened against pathogenic bacteria (two Gram +ve and two Gram -ve) to assess their inhibiting potential. The assay indicated that the inhibition potential is metal ion dependent. The ligand, EDHDH, Co(II) and Cu(II) complexes exhibited a remarkable antibacterial activity against Streptococcus Pyogenes as Gram +ve and Proteus vulgaris as Gram -ve bacterial strains. On the other hand, Ni(II) complex revealed a moderate antibacterial activity against both Gram +ve organisms and no activity against Gram -ve bacterial strain. PMID:25218230

  12. Evaluation of the antioxidant capacity of natural polyphenolic compounds using a macrocyclic Ni-(II) complex-catalysed Briggs-Rauscher reaction.

    PubMed

    Li, Mengshuo; Hu, Gang; Chen, Yangyang

    2016-04-15

    This paper reports a method for evaluating antioxidant capacity based on the inhibitory effects of a macrocyclic Ni(II) complex-catalysed Briggs-Rauscher reaction. The macrocyclic Ni(II) complex NiL(ClO4)2, in which L is 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, is a porphyrin-like compound, the structure of which can be found in certain enzymes. The experiments indicated that three natural compounds could temporarily quench the oscillations for a period of time prior to regeneration of oscillations. The inhibition time was related to the compound type and concentration; thus, procedures for evaluating the antioxidant activities of polyphenolic compounds were successfully established. Three polyphenolic compounds were tested to evaluate their antioxidant activities: protocatechuic acid, rutin hydrate and procyanidin. Of these three naturally occurring compounds, procyanidin was found to be the most efficient antioxidant. We have also discussed the reaction of the antioxidant with the hydroperoxyl radical (HOO) present in the oscillating system. PMID:26617044

  13. Chemometric investigation of complex equilibria in solution phase II: Sensitivity of chemical models for the interaction of AADH and FAH with Ni(II) in aqueous medium.

    PubMed

    Babu, A R; Krishna, D M; Rao, R S

    1993-12-01

    A detailed study of the species formed in the complex equilibria involving adipic acid dihydrazide (AADH)/2-furoic acid hydrazide (FAH) with Ni(II) using pH titration with glass electrode is performed. The results of modeling studies and effect of errors on the equilibrium constants of AADH/FAH with Ni(II) refined by the non-linear least squares program MINIQUAD75 are reported. Based on the expert system approach developed in our laboratory for the species formed from secondary formation data (n and n (H)), several preliminary chemical models were tested. For the four species identified (MLH, ML, ML(2)H, ML(2)), an exhaustive search of a different combination of models (15) was performed. Then other suspected minor species (ML(2)H(2), ML(3) and ML(3)H) were tested. The final best fit chemical model was found to contain ML(3)H to an extent of 3% along with the other four major species. In order to ascertain the accuracy of the stability constants and consequently distribution of the species, a detailed error analysis is attempted. As the existing least squares procedures cannot suppress the systematic errors, three-dimensional plots of the simultaneous effects of pH and TLO:TMO (1.5:1 to 5:1) on the percentage of species are drawn which are of immense use in arriving at optimum conditions for the preparation of a complex of definite stoichiometry. PMID:18965865

  14. Synthesis, spectroscopic studies and crystal structure of the Schiff base ligand L derived from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine and its complexes with Co(II), Ni(II), Cu(II), Cd(II) and Hg(II): Comparative DNA binding studies of L and its Co(II), Ni(II) and Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Azam, Mohammad; Khan, Asad U.

    2011-09-01

    The Schiff base ligand, N,N'-bis-(2-thiophenecarboxaldimine)-3,3'-diaminobenzidine (L) obtained from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine, was used to synthesize the complexes of type, [M 2L 2]Cl 4 [M = Co(II), Ni(II), Cu(II), Cd(II) and Hg(II)]. The newly synthesized ligand (L) was characterized on the basis of the results of elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectroscopic studies and single crystal X-ray crystallography. The characteristic resonance signals in 1H NMR and 13C NMR spectra indicated the presence of azomethine group as a result of condensation reaction. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility measurements, molar conductance and spectroscopic studies viz., FT-IR, 1H and 13C NMR, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed an octahedral geometry for complexes with distortion in Cu(II) complex and conductivity data show 1:2 electrolytic nature of complexes. Absoption and fluorescence spectroscopic studies supported that Schiff base ligand L and its Co(II), Ni(II) and Cu(II) complexes exhibited significant binding to calf thymus DNA. The complexes exhibited higher affinity to calf thymus DNA than the free Schiff base ligand L.

  15. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.

    PubMed

    Franks, Mark; Gadzhieva, Anastasia; Ghandhi, Laura; Murrell, David; Blake, Alexander J; Davies, E Stephen; Lewis, William; Moro, Fabrizio; McMaster, Jonathan; Schröder, Martin

    2013-01-18

    Five-coordinate Zn(II), Ni(II), and Cu(II) complexes containing pentadentate N(3)O(2) Schiff base ligands [1A](2-) and [1B](2-) have been synthesized and characterized. X-ray crystallographic studies reveal five coordinate structures in which each metal ion is bound by two imine N-donors, two phenolate O-donors, and a single amine N-donor. Electron paramagnetic resonance (EPR) spectroscopic studies suggest that the N(3)O(2) coordination spheres of [Cu(1A)] and [Cu(1B)] are retained in CH(2)Cl(2) solution and solid-state superconducting quantum interference device (SQUID) magnetometric studies confirm that [Ni(1A)] and [Ni(1B)] adopt high spin (S = 1) configurations. Each complex exhibits two reversible oxidation processes between +0.05 and +0.64 V vs [Fc](+)/[Fc]. The products of one- and two-electron oxidations have been studied by UV/vis spectroelectrochemistry and by EPR spectroscopy which confirm that each oxidation process for the Zn(II) and Cu(II) complexes is ligand-based with sequential formation of mono- and bis-phenoxyl radical species. In contrast, the one-electron oxidation of the Ni(II) complexes generates Ni(III) products. This assignment is supported by spectroelectrochemical and EPR spectroscopic studies, density functional theory (DFT) calculations, and the single crystal X-ray structure of [Ni(1A)][BF(4)] which contains Ni in a five-coordinate distorted trigonal bipyramidal geometry.

  16. Electronic, epr and magnetic studies of Co(II), Ni(II) and Cu(II) complexes with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from pyrole-2-carboxyaldehyde

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Anil

    2007-07-01

    Co(II), Ni(II) and Cu(II) complexes are synthesized with thiosemicarbazone (L 1) and semicarbazone (L 2) derived from pyrole-2-carboxyaldehyde. These complexes are characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies .The molar conductance measurements of the complexes in DMSO correspond to non-electrolytic nature except Co(L 1) 2(NO 3) 2 and Ni(L 1) 2(NO 3) 2 complexes which are 1:2 electrolytes. All the complexes are of high-spin type. On the basis of spectral studies an octahedral geometry may be assigned for Co(II) and Ni(II) complexes except Co(L 1) 2(NO 3) 2 and Ni(L 1) 2(NO 3) 2 which are of tetrahedral geometry. A tetragonal geometry may be suggested for Cu(II) complexes.

  17. Synthesis, structural characterization and DFT calculation on a square-planar Ni(II) complex of a compartmental Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Biswas, Surajit; Dolai, Malay; Dutta, Arpan; Ali, Mahammad

    2016-12-01

    Reaction of a symmetric compartmental Schiff-base ligand, (H2L) with nickel(II) perchlorate hexahydrate in 1:1 M ratio in methanol gives rise to a mononuclear nickel(II) compound, NiL (1). The compound has been characterized by C, H, N microanalyses and UV-Vis spectra. The single crystal X-ray diffraction studies reveal a square planar geometry around the Ni(II) center. The compound crystallizes in monoclinic system with space group C2/c with a = 21.6425(6), b = 9.9481(3), c = 13.1958(4) Å, β = 107.728(2)°, V = 2706.16(14) Å3 and Z = 4. Ground state DFT optimization and TDDFT calculations on the ligand and complex were performed to get their UV-Vis spectral pattern.

  18. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  19. DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases.

    PubMed

    Vamsikrishna, Narendrula; Kumar, Marri Pradeep; Tejaswi, Somapangu; Rambabu, Aveli; Shivaraj

    2016-07-01

    A series of novel bivalent metal complexes M(L1)2 and M(L2)2 where M = Cu(II), Ni(II), Co(II) and L1 = 2-((benzo [d] thiazol-6-ylimino)methyl)-4-bromophenol [BTEMBP], L2 = 1-((benzo [d] thiazol-6-ylimino)methyl) naphthalen-2-ol [BTEMNAPP] were synthesized. All the compounds have been characterized by elemental analysis, SEM, Mass, (1)H NMR, (13)C NMR, UV-Vis, IR, ESR, spectral data and magnetic susceptibility measurements. Based on the analytical and spectral data four-coordinated square planar geometry is assigned to all the complexes. DNA binding properties of these complexes have been investigated by electronic absorption spectroscopy, fluorescence and viscosity measurements. It is observed that these binary complexes strongly bind to calf thymus DNA by an intercalation mode. DNA cleavage efficacy of these complexes was tested in presence of H2O2 and UV light by gel electrophoresis and found that all the complexes showed better nuclease activity. Finally the compounds were screened for antibacterial activity against few pathogens and found that the complexes have potent biocidal activity than their free ligands.

  20. Synthesis, spectral characterization and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 2-amino benzoic acid- and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide

    NASA Astrophysics Data System (ADS)

    Singh, Vinod P.; Singh, Pooja

    2013-03-01

    A series of metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 2-amino benzoic acid thiophen-2-ylmethylene hydrazide (Habth) and 2-hydroxy benzoic acid thiophen-2-ylmethylene hydrazide (Hhbth) have been synthesized. The complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, electronic, IR, NMR, ESR spectra and thermal studies (TGA and DTA). Molecular structure of the Habth ligand was determined by single crystal X-ray diffraction technique. Habth acts as a monobasic bidentate ligand in all its complexes bonding through a deprotonated Csbnd O- and lbond2 Cdbnd Nsbnd groups whereas, Hhbth acts as a monobasic bidentate in its Co(II) and Ni(II) complexes, bonding through a deprotonated Csbnd O- and lbond2 Cdbnd Nsbnd groups and as monobasic tridentate in Cu(II) and Zn(II) complexes bonding through lbond2 Cdbnd O, lbond2 Cdbnd Nsbnd and deprotonated (Csbnd O)- groups with the metal ion. Electronic spectra suggest a square planar geometry for Co(II), Ni(II) and Cu(II) complexes of Habth and Co(II) and Ni(II) complexes of Hhbth. However, the Cu(II) and Zn(II) complexes of Hhbth have octahedral geometry. The ESR spectra of Cu(II) complex of Hhbth in the solid state and in DMSO frozen solution show axial signals and suggest the presence of unpaired electron in d orbital of Cu(II). The Cu(II) complex of Habth in solid state shows isotropic signal, whereas, axial signal in DMSO frozen solution in the range of tetragonally distorted octahedral geometry due to interactions of DMSO molecules at axial positions. Thermal studies of some of the metal complexes show a multi-step decomposition pattern of bonded ligands in the complex.

  1. Synthesis, spectroscopic and catalytic studies of Cu(II), Co(II) and Ni(II) complexes immobilized on Schiff base modified chitosan

    NASA Astrophysics Data System (ADS)

    Antony, R.; Theodore David Manickam, S.; Saravanan, K.; Karuppasamy, K.; Balakumar, S.

    2013-10-01

    A new class of bidentate (N, O) Schiff base ligand (L) has been derived from the functional biopolymer (chitosan) and 1,2-diphenylethanedione in 1:1 M ratio. This ligand has been used to synthesise the new first row transition metal complexes of Cu(II), Co(II) and Ni(II). The structural properties of the ligand and the synthesized tetra-coordinated complexes have been investigated by elemental analysis, magnetic study, molar conductance measurement and spectroscopic methods viz. FT-IR, UV-Vis., 1H NMR, 13C NMR and XRD. The spectral evidences strongly suggested the square planar geometry to the complexes. The XRD studies proved that crystallinity of chitosan has been diminished after Schiff base formation and metal complexation of L. Thermal and surface properties of the complexes have been also discussed from the investigation of their TG-DTG curves and SEM images, respectively. In addition, the catalytic efficiency of these complexes has been studied in the cyclohexane oxidation reaction using H2O2 as oxidant at 70 °C.

  2. DNA cleavage, antimicrobial, spectroscopic and fluorescence studies of Co(II), Ni(II) and Cu(II) complexes with SNO donor coumarin Schiff bases

    NASA Astrophysics Data System (ADS)

    Patil, Sangamesh A.; Naik, Vinod H.; Kulkarni, Ajaykumar D.; Badami, Prema S.

    2010-01-01

    A series of Co(II), Ni(II) and Cu(II) complexes of the type ML 2 have been synthesized with Schiff bases derived from methylthiosemicarbazone and 5-formyl-6-hydroxy coumarin/8-formyl-7-Hydroxy-4-methylcoumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that, the complexes are non-electrolytes in nature. In view of analytical, spectral (IR, UV-vis, ESR, FAB-mass and fluorescence), magnetic and thermal studies, it has been concluded that, all the metal complexes possess octahedral geometry in which ligand is coordinated to metal ion through azomethine nitrogen, thione sulphur and phenolic oxygen atom via deprotonation. The redox behavior of the metal complexes was investigated by using cyclic voltammetry. The Schiff bases and their complexes have been screened for their antibacterial ( Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi) and antifungal activities ( Aspergillus niger, Aspergillus flavus and Cladosporium) by Minimum Inhibitory Concentration method. The DNA cleavage is studied by agarose gel electrophoresis method.

  3. Diastereoselective synthesis of γ-lactones through reaction of enediolates with α,β-unsaturated sulfoxonium salts.

    PubMed

    Peraino, Nicholas J; Wheeler, Kraig A; Kerrigan, Nessan J

    2015-04-01

    Studies of the reaction of lithium enediolates with α,β-unsaturated sulfoxonium salts are described. γ-Lactones were formed in very good to excellent yields (82% → 99% for 11 examples) and with very good to excellent diastereoselectivity (dr >90:10 for 10 examples), favoring the trans-diastereomer. PMID:25783172

  4. Synthesis, characterization and electrochemical behavior of some Ni(II), Cu(II), Co(II) and Cd(II) complexes of ONS type tridentate Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Durmus, Sefa; Atahan, Alparslan; Zengin, Mustafa

    2011-12-01

    Tridentate Schiff base (H 2L) ligand was synthesized via condensation of o-hydroxybenzaldehyde and 2-aminothiophenol. The metal complexes were prepared from reaction of the ligand with corresponding metal salts presence of substituted pyridine in two different solvents (MeOH or MeCN). The ligand and metal complexes were then characterized by using FTIR, TGA, 1H NMR and 13C NMR spectroscopies. The FTIR spectra showed that H 2L was coordinated to the metal ions in tridentate manner with ONS donor sites of the azomethine N, deprotonated phenolic-OH and phenolic-SH. Furthermore, substituted pyridine was coordinated to the central metal atoms. The thermal behavior of the complexes was investigated by using TGA method and dissociations indicated that substituted pyridine and ligand were leaved from coordination. This coordination of the metal complexes was correlated by 1H NMR and 13C NMR. Finally, electrochemical behavior of the ligand and a Ni(II) complex were investigated.

  5. Theoretical and experimental studies on three new coordination complexes of Co(II), Ni(II), and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand.

    PubMed

    Kusmariya, Brajendra S; Mishra, A P

    2015-11-01

    Three mononuclear coordination complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 2,4-dichloro-6-{(E)-[(5-chloro-2-sulfanylphenyl)imino]methyl}phenol ligand (H 2 L) obtained by simple condensation reaction of 3,5-dichloro-2-hydroxybenzaldehyde and 2-amino-4-chlorobenzenethiol and characterized by elemental analysis, spectral (FT-IR, electronic, and (1)H-NMR), molar conductance, thermal, SEM, PXRD, and fluorescence studies. The PXRD analysis and SEM-EDX micrographs show the crystalline nature of complexes. The domain size and the lattice strain of synthesized compounds have been determined according to Williamson-Hall plot. TG of the synthesized complexes illustrates the general decomposition pattern of the complexes. The ligand exhibits an interesting fluorescence property which is suppressed after complex formation. The Co(II) complex adopted a distorted octahedral configuration while Ni(II) and Cu(II) complexes showed square planar geometry around metal center. The geometry optimization, HOMO-LUMO, molecular electrostatic potential map (MEP), and spin density of synthesized compounds have been performed by density functional theory (DFT) method using B3LYP/6-31G and B3LYP/LANL2DZ as basis set. Graphical abstract Three new coordination complexes of Co(II), Ni(II) and Cu(II) with 2,4-dichloro-6-{(E)-[(5-chloro-2 sulfanylphenyl)imino]methyl}phenol Schiff base ligand. PMID:26438445

  6. Synthesis, spectroscopic characterization, molecular modeling and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) complexes containing the tetradentate aza Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Ruchi

    2013-02-01

    Mn(II), Co(II), Ni(II), and Cu(II) complexes with a tetradentate macrocyclic ligand [1.2.5.6tetraoxo-3,4,7,8tetraaza-(1,2,3,4,5,6,7,8)tetrabenzene(L)] were synthesized and characterized by elemental analysis, molar conductance measurements, mass, nmr, i.r., electronic and e.p.r. spectral studies. All the complexes are non electrolytes in nature and may be formulated as [M(L)X2] [where, M = Mn(II), Co(II), Ni(II), Cu(II) and X = Cl-, CH3COO-]. On the basis of i.r., electronic and e.p.r. spectral studies a distorted octahedral geometry has been assigned for all complexes. The antimicrobial activities and LD50 values of the ligand and its complexes, as growth inhibiting agents, have been screened in vitro against two different species of bacteria and plant pathogenic fungi.

  7. Spectroscopic, magnetic and thermal studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes of 3-acetylcoumarin-isonicotinoylhydrazone and their antimicrobial and anti-tubercular activity evaluation

    NASA Astrophysics Data System (ADS)

    Hunoor, Rekha S.; Patil, Basavaraj R.; Badiger, Dayananda S.; Vadavi, Ramesh S.; Gudasi, Kalagouda B.; Chandrashekhar, V. M.; Muchchandi, I. S.

    2010-11-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes with a new heterocyclic Schiff base derived by the condensation of isonicotinoylhydrazide and 3-acetylcoumarin have been synthesized. 1H, 13C and 2D HETCOR NMR analyses confirm the formation of title compound and existence of the same in two isomeric forms. The metal complexes were characterized on the basis of various spectroscopic techniques like electronic, EPR, IR, 1H and 13C NMR studies, elemental analysis, magnetic properties and thermogravimetric analysis, and also by the aid of molar conductivity measurements. It is found that the Schiff base behaves as a monobasic tridentate ligand coordinating in the imidol form with 1:1 metal to ligand stoichiometry. Trigonal bipyramidal geometry has been assigned for Ni(II) and Cu(II) complexes, while tetrahedral for Co(II) and Zn(II) complexes. The compounds were subjected to antimicrobial and anti-tubercular activity screening using serial broth dilution method and Minimum Inhibitory Concentration (MIC) is determined. Zn(II) complex has shown significant antifungal activity with an MIC of 6.25 μg/mL while Cu(II) complex is noticeable for antibacterial activity at the same concentration. Anti-TB activity of the ligand has enhanced on complexation with Co(II) and Ni(II) ions.

  8. Theoretical investigations of the structures and electronic spectra of Zn(II) and Ni(II) complexes with cyclohexylamine-N-dithiocarbamate

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohan; Wang, Na; He, Hongqing; Wang, Li

    2014-03-01

    The ground-state structures of two ligands cyclohexylamine-N-dithiocarbamate (L) and PPh3 and four complexes [Zn(L)2] (A), [Ni(L)2] (B), [Zn(L)2PPh3] (C), and [Ni(L)2PPh3] (D) are optimized by M06, B3LYP, and B3PW91 methods with the same mixed basis set. As compared with the experimental data of other complexes containing the Ni-P bond, the result obtained by M06/6-31+G(d)-LANL2DZ method is finally regarded as accurate and reliable for this project. Based on the optimized geometries, the compositions of molecular orbitals are analyzed and the absorption spectra are simulated. When one more ligand PPh3 is coordinated, the lowest-lying transition energy presents red-shift; while it shows blue-shift when the metal coordination center change from Ni to Zn with the same ligands. The detailed transition characters related with the absorption spectrum are assigned. In all the key transitions, it is hard to find the contribution from Zn atom. On the contrary, the d orbital of Ni atom contributes a lot for the HOMO and LUMO of complexes B and D. Consequently, the transition characters of Zn(II) and Ni(II) complexes are different.

  9. Theoretical investigations of the structures and electronic spectra of Zn(II) and Ni(II) complexes with cyclohexylamine-N-dithiocarbamate.

    PubMed

    Yu, Xiaohan; Wang, Na; He, Hongqing; Wang, Li

    2014-03-25

    The ground-state structures of two ligands cyclohexylamine-N-dithiocarbamate (L) and PPh3 and four complexes [Zn(L)2] (A), [Ni(L)2] (B), [Zn(L)2PPh3] (C), and [Ni(L)2PPh3] (D) are optimized by M06, B3LYP, and B3PW91 methods with the same mixed basis set. As compared with the experimental data of other complexes containing the Ni-P bond, the result obtained by M06/6-31+G(d)-LANL2DZ method is finally regarded as accurate and reliable for this project. Based on the optimized geometries, the compositions of molecular orbitals are analyzed and the absorption spectra are simulated. When one more ligand PPh3 is coordinated, the lowest-lying transition energy presents red-shift; while it shows blue-shift when the metal coordination center change from Ni to Zn with the same ligands. The detailed transition characters related with the absorption spectrum are assigned. In all the key transitions, it is hard to find the contribution from Zn atom. On the contrary, the d orbital of Ni atom contributes a lot for the HOMO and LUMO of complexes B and D. Consequently, the transition characters of Zn(II) and Ni(II) complexes are different. PMID:24316543

  10. Synthesis, crystal structure, DFT study and photocatalytic property of a new Ni(II) complex of a symmetric N2O4-donor bis-Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Meng, Xiangmin; Fan, Chuanbin; Fan, Yuhua; Bi, Caifeng

    2016-03-01

    A new complex, Ni(C22H26N2O10S2)·2CH3OH, with a sexidentate (N2O4) symmetric bis-Schiff base ligand (C22H26N2O10S2 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-2-aminoethane-sulfonic acid) has been synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure shows that the Ni(II) atom of the complex is six-coordinated by two nitrogens from Cdbnd N groups, two oxygens from ether groups and two hydroxyl oxygens from sulfonic acid groups in the mono-ligand, forming a distorted octahedral geometry. Theoretical study of the complex is carried out by density functional theory (DFT) method and the B3LYP method employing the 6-3l+G* basis set. Moreover, the complex proved to be good candidate for the photocatalytic degradation of methylene blue.

  11. Synthesis, crystal structure, DFT study and photocatalytic property of a new Ni(II) complex of a symmetric N2O4-donor bis-Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Meng, Xiangmin; Fan, Chuanbin; Fan, Yuhua; Bi, Caifeng

    2016-03-01

    A new complex, Ni(C22H26N2O10S2)·2CH3OH, with a sexidentate (N2O4) symmetric bis-Schiff base ligand (C22H26N2O10S2 = 1,2-bis(2-methoxy-6-formylphenoxy)ethane-2-aminoethane-sulfonic acid) has been synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structure shows that the Ni(II) atom of the complex is six-coordinated by two nitrogens from Cdbnd N groups, two oxygens from ether groups and two hydroxyl oxygens from sulfonic acid groups in the mono-ligand, forming a distorted octahedral geometry. Theoretical study of the complex is carried out by density functional theory (DFT) method and the B3LYP method employing the 6-3l+G* basis set. Moreover, the complex proved to be good candidate for the photocatalytic degradation of methylene blue.

  12. Synthesis, antimicrobial activity, structural and spectral characterization and DFT calculations of Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile.

    PubMed

    Mohamed, Tarek A; Shaaban, Ibrahim A; Farag, Rabei S; Zoghaib, Wajdi M; Afifi, Mahmoud S

    2015-01-25

    Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile (APC) have been synthesized and characterized using elemental analysis, magnetic susceptibility, mass spectrometry, infrared (4000-200 cm(-1)), UV-Visible (200-1100 nm), (1)H NMR and ESR spectroscopy as well as TGA analysis. The molar conductance measurements in DMSO imply non-electrolytic complexes, formulated as [M(APC)2Cl2] where M=Co(II), Ni(II), Cu(II) and Pd(II). The infrared spectra of Co(II), Ni(II) and Cu(II) complexes indicate a bidentate type of bonding for APC through the exocyclic amino and adjacent pyrimidine nitrogen as donors whereas APC coordinated to Pd(II) ion as a monodentated ligand via a pyrimidine nitrogen donor. The magnetic measurements and the electronic absorption spectra support distorted octahedral geometries for Co(II), Ni(II) and Cu(II) complexes however a square planar complex was favored for the Pd(II) complex (C2h skeleton symmetry). In addition, we carried out B3LYP and ω-B97XD geometry optimization at 6-31G(d) basis set except for Pd(II) where we implemented LanL2DZ/6-31G(d) combined basis set. The computational results favor all trans geometrical isomers where amino N, pyrimidine N and Cl are trans to each other (structure 1). Finally, APC and its divalent metal ion complexes were screened for their antibacterial activity, and the synthesized complexes were found to be more potent antimicrobial agents than APC against one or more microbial species. PMID:25105264

  13. Synthesis, antimicrobial activity, structural and spectral characterization and DFT calculations of Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile.

    PubMed

    Mohamed, Tarek A; Shaaban, Ibrahim A; Farag, Rabei S; Zoghaib, Wajdi M; Afifi, Mahmoud S

    2015-01-25

    Co(II), Ni(II), Cu(II) and Pd(II) complexes of 4-amino-5-pyrimidinecarbonitrile (APC) have been synthesized and characterized using elemental analysis, magnetic susceptibility, mass spectrometry, infrared (4000-200 cm(-1)), UV-Visible (200-1100 nm), (1)H NMR and ESR spectroscopy as well as TGA analysis. The molar conductance measurements in DMSO imply non-electrolytic complexes, formulated as [M(APC)2Cl2] where M=Co(II), Ni(II), Cu(II) and Pd(II). The infrared spectra of Co(II), Ni(II) and Cu(II) complexes indicate a bidentate type of bonding for APC through the exocyclic amino and adjacent pyrimidine nitrogen as donors whereas APC coordinated to Pd(II) ion as a monodentated ligand via a pyrimidine nitrogen donor. The magnetic measurements and the electronic absorption spectra support distorted octahedral geometries for Co(II), Ni(II) and Cu(II) complexes however a square planar complex was favored for the Pd(II) complex (C2h skeleton symmetry). In addition, we carried out B3LYP and ω-B97XD geometry optimization at 6-31G(d) basis set except for Pd(II) where we implemented LanL2DZ/6-31G(d) combined basis set. The computational results favor all trans geometrical isomers where amino N, pyrimidine N and Cl are trans to each other (structure 1). Finally, APC and its divalent metal ion complexes were screened for their antibacterial activity, and the synthesized complexes were found to be more potent antimicrobial agents than APC against one or more microbial species.

  14. Synthesis, characterization, DFT and biological studies of (Z)-N‧-(2-oxoindolin-3-ylidene)picolinohydrazide and its Co(II), Ni(II) and Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Rakha, T. H.; El-Gammal, O. A.; Metwally, H. M.; Abu El-Reash, G. M.

    2014-03-01

    The picolinohydrazide derivative: (Z)-N‧-(2-oxoindolin-3-ylidene)picolinohydrazide (H2IPH) and its Co(II), Ni(II) and Cu(II) complexes have been synthesized and investigated by using the modern spectroscopic and physicochemical techniques viz. IR, 1H NMR, UV-Vis spectrometric methods and magnetic moment measurements. The investigation study revealed that the ligand acts as monobasic tri- and tetradentate in Co(II) and Ni(II) complex, respectively and as neutral tridentate in Cu(II) complex. On the basis of magnetic moment and spectral studies, a six coordinated octahedral geometry is assigned for all complexes. The molecular modeling are drawn and showed the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all the title compounds and also NLO for the ligand is shown. The energy gap between the HOMO and LUMO for Ni(II) complex is (-7 eV) which indicates that these compound is a promising structure for photovoltaic devices such as solar cells. A comparison of the experimental and theoretical spectra can be very useful in making correct assignments and understanding the basic chemical shift. The thermal behavior and the kinetic parameters of degradation were determined using Coats-Redfern and Horowitz-Metzger methods. The in vitro antibacterial studies of these complexes screened against pathogenic bacteria proved them as growth inhibiting agents. Antitumor activity, carried out in vitro on human mammary gland (breast) MCF7, have shown that the Co(II) complex exhibited potent activity followed by the ligand, Cu(II) and Ni(II) complexes.

  15. Synthesis, spectral, antitumor, antioxidant and antimicrobial studies on Cu(II), Ni(II) and Co(II) complexes of 4-[(1H-Benzoimidazol-2-ylimino)-methyl]-benzene-1,3-diol

    NASA Astrophysics Data System (ADS)

    El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed

    2015-08-01

    A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H3L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC50 of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated.

  16. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment.

    PubMed

    El-Baradie, K; El-Sharkawy, R; El-Ghamry, H; Sakai, K

    2014-01-01

    The azodye ligand (HL(1)) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL(2) and HL(3), were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL(2)) and 2,4-dihydroxy-benzaldehyde (HL(3)). The prepared ligands were characterized by elemental analysis, IR, (1)H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL(1) and HL(3). HL(2) coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HO radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group. PMID:24239761

  17. Novel Ni(II) and Zn(II) complexes coordinated by 2-arylaminomethyl-1H-benzimidazole: Molecular structures, spectral, DFT studies and evaluation of biological activity

    NASA Astrophysics Data System (ADS)

    Abdel-Ghani, Nour T.; Abo El-Ghar, Maha F.; Mansour, Ahmed M.

    2013-03-01

    [NiL1,2Cl2(OH2)3]·zH2O and [ZnL1,2(CH3CO2)2] (L1 = (1H-benzimidazol-2-ylmethyl)-N-phenyl amine, z = 0 and L2 = 2-[(1H-Benzimidazol-2-ylmethyl)-amino]-benzoic acid methyl ester, z = 1) complexes have been synthesized and characterized by a variety of physico-chemical techniques. The central Ni(II) ion is coordinated by only the pyridine-type nitrogen (Npy) of benzimidazole ring, three water molecules and two chlorido ligands forming a distorted octahedral geometry. Five coordinated zinc complexes were obtained, where the coordination sphere of zinc ion is made up of secondary amino group (NHsec), Npy and two acetate groups, one acts as a unidentate and the other as a bidentate. A theoretical DFT/UB3LYP method combined with LANL2DZ basis set shows that all the metal-ligand bonds are of the L → M type. Electronic structures have been calculated using TD-DFT method. The antibacterial activity of NiL2 complexes decreases by the introduction of COOCH3 group in the ortho-position of the aniline moiety.

  18. Supramolecular complexes of Co(II), Ni(II) and Zn(II) p-hydroxybenzoates with caffeine: Synthesis, spectral characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali

    2016-09-01

    Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.

  19. Biomimetic mono- and dinuclear Ni(I) and Ni(II) complexes studied by X-ray absorption and emission spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Schuth, N.; Gehring, H.; Horn, B.; Holze, P.; Kositzki, R.; Schrapers, P.; Limberg, C.; Haumann, M.

    2016-05-01

    Five biomimetic mono- or dinuclear nickel complexes featuring Ni(I) or Ni(II) sites were studied by X-ray absorption and emission spectroscopy and DFT calculations. Ni K-edge XANES spectra and Kβ main and satellite emission lines were collected on powder samples. The pre-edge absorption transitions (core-to-valence excitation) and Kβ2,5 emission transitions (valence-to-core decay) were calculated using DFT (TPSSh/TZVP) on crystal structures. This yielded theoretical ctv and vtc spectra in near-quantitative agreement with the experiment, showing the adequacy of the DFT approach for electronic structure description, emphasizing the sensitivity of the XAS/XES spectra for ligation/redox changes at nickel, and revealing the configuration of unoccupied and occupied valence levels, as well as the spin-coupling modes in the dinuclear complexes. XAS/XES-DFT is valuable for molecular and electronic structure analysis of synthetic complexes and of nickel centers in H2 or COx converting metalloenzymes.

  20. Synthesis and characterization of Cu(II), Co(II) and Ni(II) complexes of a number of sulfadrug azodyes and their application for wastewater treatment

    NASA Astrophysics Data System (ADS)

    El-Baradie, K.; El-Sharkawy, R.; El-Ghamry, H.; Sakai, K.

    2014-03-01

    The azodye ligand (HL1) was synthesized from the coupling of sulfaguanidine diazonium salt with 2,4-dihydroxy-benzaldehyde while the two ligands, HL2 and HL3, were prepared by the coupling of sulfadiazine diazonium salt with salicylaldehyde (HL2) and 2,4-dihydroxy-benzaldehyde (HL3). The prepared ligands were characterized by elemental analysis, IR, 1H NMR and mass spectra. Cu(II), Co(II) and Ni(II) complexes of the prepared ligands have been synthesized and characterized by various spectroscopic techniques like IR, UV-Visible as well as magnetic and thermal (TG and DTA) measurements. It was found that all the ligands behave as a monobasic bidentate which coordinated to the metal center through the azo nitrogen and α-hydroxy oxygen atoms in the case of HL1 and HL3. HL2 coordinated to the metal center through sulfonamide oxygen and pyrimidine nitrogen. The applications of the prepared complexes in the oxidative degradation of indigo carmine dye exhibited good catalytic activity in the presence of H2O2 as an oxidant. The reactions followed first-order kinetics and the rate constants were determined. The degradation reaction involved the catalytic action of the azo-dye complexes toward H2O2 decomposition, which can lead to the generation of HOrad radicals as a highly efficient oxidant attacking the target dye. The detailed kinetic studies and the mechanism of these catalytic reactions are under consideration in our group.

  1. Synthesis, characterization and in vitro anticancer activity of 18-membered octaazamacrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II)

    NASA Astrophysics Data System (ADS)

    Kareem, Abdul; Zafar, Hina; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2014-10-01

    An effective series of 18 membered octaazamacrocyclic complexes of the type [MLX2], where X = Cl or NO3 have been synthesized by template condensation reaction of oxalyl dihydrazide with dibenzoylmethane and metal salt in 2:2:1 molar ratio. The formation of macrocyclic framework, stereochemistry and their overall geometry have been characterized by various physico-chemical studies viz., elemental analysis, electron spray ionization-mass spectrometry (ESI-MS), I.R, UV-Vis, 1H NMR, 13C NMR spectroscopy, X-ray diffraction (XRD) and TGA/DTA studies. These studies suggest formation of octahedral macrocyclic complexes of Co(II), Ni(II), Cd(II) and Sn(II). The molar conductance values suggest nonelectrolytic nature for all the complexes. Thermogravimatric analysis shows that all the complexes are stable up to 600 °C. All these complexes have been tested against different human cancer cell lines i.e. human hepatocellular carcinoma (Hep3B), human cervical carcinoma (HeLa), human breast adenocarcinoma (MCF7) and normal cells (PBMC). The newly synthesized 18-membered octaazamacrocyclic complexes during in vitro anticancer evaluation, displayed moderate to good cytotoxicity on liver (Hep3B), cervical (HeLa) and breast (MCF7) cancer cell lines, respectively. The most effective anticancer cadmium complex (C34H28N10CdO10) was found to be active with IC50 values, 2.44 ± 1.500, 3.55 ± 1.600 and 4.82 ± 1.400 in micro-molar on liver, cervical and breast cancer cell lines, respectively.

  2. Dependence of the chemical properties of macrocyclic [Ni(II)(2)L(μ-O(2)CR)](+) complexes on the basicity of the carboxylato coligands (L(2-) = macrocyclic N(6)S(2) ligand).

    PubMed

    Lehmann, Ulrike; Klingele, Julia; Lozan, Vasile; Steinfeld, Gunther; Klingele, Marco H; Käss, Steffen; Rodenstein, Axel; Kersting, Berthold

    2010-12-01

    The dependence of the properties of mixed ligand [Ni(II)(2)L(μ-O(2)CR)](+) complexes (where L(2-) represents a 24-membered macrocyclic hexaamine-dithiophenolato ligand) on the basicity of the carboxylato coligands has been examined. For this purpose 19 different [Ni(II)(2)L(μ-O(2)CR)](+) complexes (2-20) incorporating carboxylates with pK(b) values in the range 9 to 14 have been prepared by the reaction of [Ni(II)(2)L(μ-Cl)](+) (1) and the respective sodium or triethylammonium carboxylates. The resulting carboxylato complexes, isolated as ClO(4)(-) or BPh(4)(-) salts, have been fully characterized by elemental analyses, IR, UV/vis spectroscopy, and X-ray crystallography. The possibility of accessing the [Ni(II)(2)L(μ-O(2)CR)](+) complexes by carboxylate exchange reactions has also been examined. The main findings are as follows: (i) Substitution reactions between 1 and NaO(2)CR are not affected by the basicity or the steric hindrance of the carboxylate. (ii) Complexes 2-20 form an isostructural series of bisoctahedral [Ni(II)(2)L(μ-O(2)CR)](+) compounds with a N(3)Ni(μ-SR)(2)(μ-O(2)CR)NiN(3) core. (iii) They are readily identified by their ν(as)(CO) and ν(s)(CO) stretching vibration bands in the ranges 1684-1576 cm(-1) and 1428-1348 cm(-1), respectively. (iv) The spin-allowed (3)A(2g) → (3)T(2g) (ν(1)) transition of the NiOS(2)N(3) chromophore is steadily red-shifted by about 7.5 nm per pK(b) unit with increasing pK(b) of the carboxylate ion. (v) The less basic the carboxylate ion, the more stable the complex. The stability difference across the series, estimated from the difference of the individual ligand field stabilization energies (LFSE), amounts to about 4.2 kJ/mol [Δ(LFSE)(2,18)]. (vi) The "second-sphere stabilization" of the nickel complexes is not reflected in the electronic absorption spectra, as these forces are aligned perpendicularly to the Ni-O bonds. (vii) Coordination of a basic carboxylate donor to the [Ni(II)(2)L](2+) fragment weakens

  3. Synthesis, characterization, biological activity of binuclear Co(II), Cu(II) and mononuclear Ni(II) complexes of bulky multi-dentate thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    El-Gammal, O. A.; Abd Al-Gader, I. M.; El-Asmy, A. A.

    2014-07-01

    The chelation behavior of 9,10-dihydro-9,10-ethanoanthracene-11,12-dicarbonyl) bis (N-ethylhydrazine-1-carbothioamide) (H6ETS)(1) towards Co2+, Ni2+and Cu2+ have been studied. The spectral data revealed that the ligand acts as a bi- and/or mono-negative multi-dentate. The isolated Ni(II) and Cu(II) complexes are square-planar while the Co(II) is tetrahedral. EPR spectrum of Cu(II) complex confirmed simulated an axial spin-Hamiltonian exhibiting a four-line pattern with nitrogen super-hyperfine couplings originating from imine hydrazinic nitrogen atoms and possess a significant amount of tetrahedral distortion leading to a pseudo-square-planar geometry with unpaired electron has d ground state. Also, the thermal behavior and kinetic parameters were determined. Furthermore, the title compounds were investigated for their antibacterial activity using inhibition zone diameter and for DNA degradation, superoxide-scavenging activity as well as hydroxyl radicals that generated by the oxidation of cytochrome c in L-ascorbic acid/CuSO4-cytochrome c system.

  4. Carbonato-bridged Ni(II)2Ln(III)2 (Ln(III) = Gd(III), Tb(III), Dy(III)) complexes generated by atmospheric CO2 fixation and their single-molecule-magnet behavior: [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH or H2O)Ln(III)(NO3)}2]·solvent [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato].

    PubMed

    Sakamoto, Soichiro; Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Mochida, Naotaka; Ishida, Takayuki; Sunatsuki, Yukinari; Re, Nazzareno

    2013-06-17

    Atmospheric CO2 fixation of [Ni(II)(3-MeOsaltn)(H2O)2]·2.5H2O [3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato], Ln(III)(NO3)3·6H2O, and triethylamine occurred in methanol/acetone, giving a first series of carbonato-bridged Ni(II)2Ln(III)2 complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(MeOH)Ln(III)(NO3)}2] (1Gd, 1Tb, and 1Dy). When the reaction was carried out in acetonitrile/water, it gave a second series of complexes [(μ4-CO3)2{Ni(II)(3-MeOsaltn)(H2O)Ln(III)(NO3)}2]·2CH3CN·2H2O (2Gd, 2Tb, and 2Dy). For both series, each Ni(II)2Ln(III)2 structure can be described as two di-μ-phenoxo-bridged Ni(II)Ln(III) binuclear units bridged by two carbonato CO3(2-) units to form a carbonato-bridged (μ4-CO3)2{Ni(II)2Ln(III)2} structure. The high-spin Ni(II) ion has octahedral coordination geometry, and the Ln(III) ion is coordinated by O9 donor atoms from Ni(II)(3-MeOsaltn), bidentate NO3(-), and one and two oxygen atoms of two CO3(2-) ions. The NO3(-) ion for the first series roughly lie on Ln-O(methoxy) bonds and are tilted toward the outside, while for the second series, the two oxygen atoms roughly lie on one of the Ln-O(phenoxy) bonds due to the intramolecular hydrogen bond. The temperature-dependent magnetic susceptibilities indicated a ferromagnetic interaction between the Ni(II) and Ln(III) ions (Ln(III) = Gd(III), Tb(III), Dy(III)) for all of the complexes, with a distinctly different magnetic behavior between the two series in the lowest-temperature region due to the Ln(III)-Ln(III) magnetic interaction and/or different magnetic anisotropies of the Tb(III) or Dy(III) ion. Alternating-current susceptibility measurements under the 0 and 1000 Oe direct-current (dc) bias fields showed no magnetic relaxation for the Ni(II)2Gd(III)2 complexes but exhibited an out-of-phase signal for Ni(II)2Tb(III)2 and Ni(II)2Dy(III)2, indicative of slow relaxation of magnetization. The energy barriers, Δ/kB, for the spin flipping were estimated from the Arrhenius

  5. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases. Part 2: aldol, Mannich addition reactions, deracemization and (S) to (R) interconversion of α-amino acids.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim

    2013-11-01

    This review provides a comprehensive treatment of literature data dealing with asymmetric synthesis of α-amino-β-hydroxy and α,β-diamino acids via homologation of chiral Ni(II) complexes of glycine Schiff bases using aldol and Mannich-type reactions. These reactions proceed with synthetically useful chemical yields and thermodynamically controlled stereoselectivity and allow direct introduction of two stereogenic centers in a single operation with predictable stereochemical outcome. Furthermore, new application of Ni(II) complexes of α-amino acids Schiff bases for deracemization of racemic α-amino acids and (S) to (R) interconversion providing additional synthetic opportunities for preparation of enantiomerically pure α-amino acids, is also reviewed. Origin of observed diastereo-/enantioselectivity in the aldol, Mannich-type and deracemization reactions, generality and limitations of these methodologies are critically discussed.

  6. Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO 2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline

    NASA Astrophysics Data System (ADS)

    El-Behery, Mostafa; El-Twigry, Haifaa

    2007-01-01

    A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.

  7. Synthesis, magnetism and spectral studies of six defective dicubane tetranuclear {M4O6} (M = Ni(II), Co(II), Zn(II)) and three trinuclear Cd(II) complexes with polydentate Schiff base ligands.

    PubMed

    Jiang, Lin; Zhang, Dong-Yan; Suo, Jing-Jing; Gu, Wen; Tian, Jin-Lei; Liu, Xin; Yan, Shi-Ping

    2016-06-21

    A series of Ni(II), Co(II), Zn(II) and Cd(II) complexes with polytopic Schiff base ligands have been synthesized. The single-crystal X-ray crystallography results show that tetranuclear complexes have common face-shared defective dicubane cores, whereas trinuclear Cd(II) complexes are almost linear entities. Synthesis methods (solvent evaporation and hydrothermal synthesis), reaction conditions (pH, solvents and dosage) and coligands (azide, methanol, chloride and acetate) play vital roles in determining the final structure of the complexes and therefore their magnetic properties. In complexes , the terminal and central M(2+) ions are connected through mixed bridges, μ-phenoxido/μ1,1,1-X and μ-Oalphatic/μ1,1,1-X, while central two M(2+) ions are linked by double bridges, μ1,1,1-X (X = azido and methoxido groups for and respectively). For complex , two central Ni(II) ions are connected through two μ1,1,1-N3(-) which is relatively less reported. For complexes , there are two kinds of Cd(II), the centre Cd(II) ions are eight-coordinated with triangle dodecahedral geometries, while the two side Cd(II) ions are six-coordinated with trigonal prism geometries using chlorides or acetates as terminal ligands. Magnetic susceptibility measurements (χM) for compounds have been performed, and they reveal predominant ferromagnetic exchange interactions in Co(II) and Ni(II) tetramers. The photoluminescence studies show that the Zn(II) complex and three Cd(II) complexes have strong fluorescence, and the lifetimes are measured to be in the 10(2) nanosecond timescale. PMID:27230103

  8. Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic characterization and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.

    2012-11-01

    Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.

  9. Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding

    NASA Astrophysics Data System (ADS)

    Gaber, M.; El-Ghamry, H. A.; Fathalla, S. K.

    2015-03-01

    Metal complexes of the general formula [ML(H2O)Cl]nH2O; n = 1 for M = Ni and Pt and n = 2 for M = Pd, L = Schiff base (HL) derived from the condensation of 3-amino-1,2,4-triazole and 2-hydroxy-1-naphthaldehyde, were prepared. The synthesized ligand and its metal complexes were characterized on the basis of elemental analyses, spectral and magnetic studies as well as thermal analysis. The IR spectra revealed that the ligand is coordinated to the metal ions in bidentate manner via the N-atom of the azomethine group and the phenolic OH group. Square planar geometry was proposed for Pd(II) and Pt(II) complexes and tetrahedral for Ni(II) complex. The ligand and its metal complexes were screened against the sensitive organisms Escherichia coli as Gram-negative bacteria, Staphylococcus aureus as Gram-positive bacteria, Aspergillus flavus and Candida albicans as fungi. Moreover, the anticancer activity of the ligand and its metal complexes was evaluated in liver carcinoma (HEPG2) cell line. The results obtained indicated that the Schiff base ligand is more effective than its metal complexes towards the tested cell line. Ni(II), Pd(II) and Pt(II) complexes as well as the free Schiff base ligand were tested for their antioxidant activities. The DNA-binding properties of the studied complexes have been investigated by electronic absorption and viscosity measurements.

  10. Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding.

    PubMed

    Gaber, M; El-Ghamry, H A; Fathalla, S K

    2015-03-15

    Metal complexes of the general formula [ML(H2O)Cl]nH2O; n=1 for M=Ni and Pt and n=2 for M=Pd, L=Schiff base (HL) derived from the condensation of 3-amino-1,2,4-triazole and 2-hydroxy-1-naphthaldehyde, were prepared. The synthesized ligand and its metal complexes were characterized on the basis of elemental analyses, spectral and magnetic studies as well as thermal analysis. The IR spectra revealed that the ligand is coordinated to the metal ions in bidentate manner via the N-atom of the azomethine group and the phenolic OH group. Square planar geometry was proposed for Pd(II) and Pt(II) complexes and tetrahedral for Ni(II) complex. The ligand and its metal complexes were screened against the sensitive organisms Escherichia coli as Gram-negative bacteria, Staphylococcus aureus as Gram-positive bacteria, Aspergillus flavus and Candida albicans as fungi. Moreover, the anticancer activity of the ligand and its metal complexes was evaluated in liver carcinoma (HEPG2) cell line. The results obtained indicated that the Schiff base ligand is more effective than its metal complexes towards the tested cell line. Ni(II), Pd(II) and Pt(II) complexes as well as the free Schiff base ligand were tested for their antioxidant activities. The DNA-binding properties of the studied complexes have been investigated by electronic absorption and viscosity measurements. PMID:25576936

  11. Synthesis and characterization of polymeric azido Zn(II) and Ni(II) complexes based on 3-hydroxypyridine

    NASA Astrophysics Data System (ADS)

    Mautner, Franz A.; Berger, Christian; Domian, Elisabeth; Fischer, Roland C.; Massoud, Salah S.

    2016-10-01

    The synthesis and structural characterization of two new complexes catena-[Ni(3-O-py)(3-HO-py)2(μ1,3-N3)(H2O)] (1) and catena-[Zn(μ-3-O-py)(μ1,1-N3)] (2), where 3-HO-py = 3-hydroxypyridine, are reported. The complexes were characterized by the elemental microanalyses, IR, and X-ray crystallography and by UV-Vis spectroscopy for complex 1. Single crystal X-ray crystallography revealed the polymeric nature of the complexes: 1 as 1D with a single EE azide bridging, and 2 as 2D with μ(O,O‧,N) bridging of the deprotonated 3-O-py anions and di-EO azide groups, respectively. In 1 the neutral and deprotonated 3-hydroxypyridine molecules act only as N-terminal ligands. The emission spectral properties of the Zn(II) complex were investigated.

  12. Quinoline-2-carboxaldehyde thiosemicarbazones and their Cu(II) and Ni(II) complexes as topoisomerase IIa inhibitors.

    PubMed

    Bisceglie, Franco; Musiari, Anastasia; Pinelli, Silvana; Alinovi, Rossella; Menozzi, Ilaria; Polverini, Eugenia; Tarasconi, Pieralberto; Tavone, Matteo; Pelosi, Giorgio

    2015-11-01

    A series of quinoline-2-carboxaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes were synthesized and characterized. In all complexes the ligands are in the E configuration with respect to the imino bond and behave as terdentate. The copper(II) complexes form square planar derivatives with one molecule of terdentate ligand and chloride ion. A further non-coordinated chloride ion compensates the overall charge. Nickel(II) ions form instead octahedral complexes with two ligands for each metal ion, independently from the stoichiometric metal:ligand ratio used in the synthesis. Ligands and complexes were tested for their antiproliferative properties on histiocytic lymphoma cell line U937. Copper(II) derivatives are systematically more active than the ligands and the nickel complexes. All copper derivatives result in inhibiting topoisomerase IIa in vitro. Computational methods were used to propose a model to explain the different extent of inhibition presented by these compounds. The positive charge of the dissociated form of the copper complexes may play a key role in their action. PMID:26335598

  13. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline.

    PubMed

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-25

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2'-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, (1)H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ). PMID:25282021

  14. Synthesis, spectral and theoretical studies of Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphyhaline

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Ghamry, Hoda; Atlam, Faten; Fathalla, Shaimaa

    2015-02-01

    Ni(II), Pd(II) and Pt(II) complexes of 5-mercapto-1,2,4-triazole-3-imine-2‧-hydroxynaphthaline have been isolated and characterized by elemental analysis, IR, 1H NMR, EI-mass, UV-vis, molar conductance, magnetic moment measurements and thermogravimetric analysis. The molar conductance values indicated that the complexes are non-electrolytes. The magnetic moment values of the complexes displayed diamagnetic behavior for Pd(II) and Pt(II) complexes and tetrahedral geometrical structure for Ni(II) complex. From the bioinorganic applications point of view, the interaction of the ligand and its metal complexes with CT-DNA was investigated using absorption and viscosity titration techniques. The Schiff-base ligand and its metal complexes have also been screened for their antimicrobial and antitumor activities. Also, theoretical investigation of molecular and electronic structures of the studied ligand and its metal complexes has been carried out. Molecular orbital calculations were performed using DFT (density functional theory) at B3LYP level with standard 6-31G(d,p) and LANL2DZ basis sets to access reliable results to the experimental values. The calculations were performed to obtain the optimized molecular geometry, charge density distribution, extent of distortion from regular geometry, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), Mulliken atomic charges, reactivity index (ΔE), dipole moment (D), global hardness (η), softness (σ), electrophilicity index (ω), chemical potential and Mulliken electronegativity (χ).

  15. Synthesis, DNA-binding, DNA-photonuclease profiling and antimicrobial activity of novel tetra-aza macrocyclic Ni(II), Co(II) and Cu(II) complexes constrained by thiadiazole

    NASA Astrophysics Data System (ADS)

    Vinay Kumar, B.; Bhojya Naik, H. S.; Girija, D.; Sharath, N.; Pradeepa, S. M.; Joy Hoskeri, H.; Prabhakara, M. C.

    A new tetra-aza macrocyclic ligand, L (C24H16N12O2S4) and its complexes of type, [MLCl2] and [CuL]Cl2 (where M = Ni(II), Co(II); L = N,N'-(benzene-1,3-diyldi-1,3,4-thiadiazole-5,2-diyl)bis{2-[(5-benzene-1,3-diyl-1,3,4-thiadiazol-2-yl)amino]acetamide}) were synthesized and characterized by the spectral and analytical techniques. An octahedral geometry has been proposed for Ni(II) and Co(II) complexes while Cu(II) complex exhibit a square planar geometry. All the synthesized metal complexes were screened for their in vitro antimicrobial activity against selected species of pathogenic bacteria and fungi. The binding property of the complexes with CT-DNA was studied by absorption spectral analysis, followed by viscosity measurement and thermal denaturation studies. The photo induced cleavage studies revealed that the complexes possess photonuclease property against pUC19 DNA under UV-visible irradiation.

  16. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.

    PubMed

    Adewuyi, Sheriff; Jacob, Julianah Modupe; Olaleye, Oluwatoyin Omolola; Abdulraheem, Taofiq Olanrewaju; Tayo, Jubril Ayopo; Oladoyinbo, Fatai Oladipupo

    2016-10-20

    Chitosan is a biopolymer with immense structural advantage for chemical and mechanical modifications to generate novel properties, functions and applications. This work depicts new pyridinedicarboxylicacid (PDC) crosslinked chitosan-metal ion films as veritable material for cyanide ion removal from aqueous solution. The PDC-crosslinked chitosan-metal films (PDC-Chit-Ni(II) and PDC-Chit-Fe(III)) were formed by complexing PDC-crosslinked chitosan film with anhydrous nickel(II) and iron(III) chloride salts respectively. The PDC-Chit and its metal films were characterized employing various analytical and spectroscopic techniques. The FT-IR, UV-vis and the XRD results confirm the presence of the metal ions in the metal coordinated PDC-crosslinked chitosan film. The surface morphological difference of PDC-Chit-Ni(II) film before and after decyanidation was explored with scanning electron microscopy. Furthermore, the quantitative amount of nickel(II) and iron(III) present in the complex were determined using Atomic Absorption Spectrophotometer as 32.3 and 37.2μg/g respectively which portends the biopolymer film as a good complexing agent. Removal of cyanide from aqueous solution with PDC-Chit, PDC-Chit-Ni(II) and PDC-Chit-Fe(III) films was studied with batch equilibrium experiments. At equilibrium, decyanidation capacity (DC) followed the order PDC-Chit-Ni (II)≈PDC-Chit-Fe(III)>PDC-Chit. PDC-Chit-Ni(II) film gave 100% CN(-) removal within 40min decyanidation owing to favorable coordination geometry. PMID:27474675

  17. Synthesis, spectroscopic, antimicrobial and DNA cleavage studies of new Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes with naphthofuran-2-carbohydrazide Schiff base

    NASA Astrophysics Data System (ADS)

    Halli, Madappa B.; Sumathi, R. B.

    2012-08-01

    A series of Co(II), Ni(II), Cu(II), Cd(II), Zn(II) and Hg(II) complexes have been synthesized with newly synthesized Schiff base derived from naphthofuran-2-carbohydrazide and cinnamaldehyde. The elemental analyses of the complexes are confined to the stoichiometry of the type MLCl2 [M = Co(II) and Cu(II)], ML2Cl2 [M = Ni(II), Cd(II), Zn(II) and Hg(II)] respectively, where L is Schiff base ligand. Structures have been proposed from elemental analyses, IR, electronic, mass, 1H NMR, ESR spectral data, magnetic, and thermal studies. The measured low molar conductance values in DMF indicate that the complexes are non-electrolytes. Spectroscopic studies suggest coordination occurs through azomethine nitrogen and carbonyl oxygen of the ligand with the metal ions. The Schiff base and its complexes have been screened for their antibacterial (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Salmonella typhi) and antifungal (Aspergillus niger, Aspergillus flavus, Cladosporium and Candida albicans) activities by minimum inhibitory concentration (MIC) method. The DNA cleavage studies by agarose gel electrophoresis method was studied for all the complexes.

  18. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole

    NASA Astrophysics Data System (ADS)

    Kalanithi, M.; Kodimunthiri, D.; Rajarajan, M.; Tharmaraj, P.

    2011-11-01

    Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by 1H, 13C NMR, UV-Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.

  19. Synthesis, characterization and biological activity of some new VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based NNO Schiff base derived from 2-aminothiazole.

    PubMed

    Kalanithi, M; Kodimunthiri, D; Rajarajan, M; Tharmaraj, P

    2011-11-01

    Coordination compounds of VO(IV), Co(II), Ni(II), Cu(II) and Zn(II) with the Schiff base obtained through the condensation of 2-aminothiazole with 3-formyl chromone were synthesized. The compounds were characterized by (1)H, (13)C NMR, UV-Vis, IR, Mass, EPR, molar conductance and magnetic susceptibility measurements. The Cu(II) complex possesses tetrahedrally distorted square planar geometry whereas Co(II), Ni(II), and Zn(II) show distorted tetrahedral geometry. The VO(IV) complex shows square pyramidal geometry. The cyclic voltammogram of Cu (II) complex showed a well defined redox couple Cu(II)/Cu(I) with quasireversible nature. The antimicrobial activity against the species Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Candida albigans and Aspergillus niger was screened and compared to the activity of the ligand. Emission spectrum was recorded for the ligand and the metal(II) complexes. The second harmonic generation (SHG) efficiency was measured and found to have one fourth of the activity of urea. The SEM image of the copper(II) complex implies that the size of the particles is 2 μm.

  20. Structural investigation of mM Ni(II) complex isomers using transmission XAFS: the significance of model development.

    PubMed

    Islam, M Tauhidul; Chantler, Christopher T; Cheah, Mun Hon; Tantau, Lachlan J; Tran, Chanh Q; Best, Stephen P

    2015-11-01

    High-accuracy transmission XAFS determined using the hybrid technique has been used to refine the geometries of bis(N-n-propyl-salicylaldiminato) nickel(II) (n-pr Ni) and bis(N-i-propyl-salicylaldiminato) nickel(II) (i-pr Ni) complexes which have approximately square planar and tetrahedral metal coordination. Multiple-scattering formalisms embedded in FEFF were used for XAFS modelling of the complexes. Here it is shown that an IFEFFIT-like package using weighting from experimental uncertainty converges to a well defined XAFS model. Structural refinement of (i-pr Ni) was found to yield a distorted tetrahedral geometry providing an excellent fit, χr(2) = 2.94. The structure of (n-pr Ni) is best modelled with a distorted square planar geometry, χr(2) = 3.27. This study demonstrates the insight that can be obtained from the propagation of uncertainty in XAFS analysis and the consequent confidence which can be obtained in hypothesis testing and in analysis of alternate structures ab initio. It also demonstrates the limitations of this (or any other) data set by defining the point at which signal becomes embedded in noise or amplified uncertainty, and hence can justify the use of a particular k-range for one data set or a different range for another. It is demonstrated that, with careful attention to data collection, including the correction of systematic errors with statistical analysis of uncertainty (the hybrid method), it is possible to obtain reliable structural information from dilute solutions using transmission XAFS data. PMID:26524313

  1. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    PubMed Central

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  2. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system.

  3. Thermodynamic modeling of poorly complexing metals in concentrated electrolyte solutions: an X-ray absorption and UV-Vis spectroscopic study of Ni(II) in the NiCl2-MgCl2-H2O system.

    PubMed

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg(-1) NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg(-1) NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  4. Synthesis, spectroscopic characterization and biological activities of N4O2 Schiff base ligand and its metal complexes of Co(II), Ni(II), Cu(II) and Zn(II)

    NASA Astrophysics Data System (ADS)

    Al-Resayes, Saud I.; Shakir, Mohammad; Abbasi, Ambreen; Amin, Kr. Mohammad Yusuf; Lateef, Abdul

    The Schiff base ligand, bis(indoline-2-one)triethylenetetramine (L) obtained from condensation of triethylenetetramine and isatin was used to synthesize the complexes of type, [ML]Cl2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. L was characterized on the basis of the results of elemental analysis, FT-IR, 1H and 13C NMR, mass spectroscopic studies. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility values, molar conductance and various spectroscopic studies. EPR, UV-vis and magnetic moments revealed an octahedral geometry for complexes. L and its Cu(II) and Zn(II) complexes were screened for their antibacterial activity. Analgesic activity of Cu(II) and Zn(II) complexes was also tested in rats by tail flick method. Both complexes were found to possess good antibacterial and moderate analgesic activity.

  5. Complexation and coordination selectivities of the tetradentate ligand 7-[(2-hydroxy-5-sulfophenyl) azo]-8-hydroxyquinoline-5-sulfonic acid with Fe(II), Ni(II), Zn(II), Cd(II) and VO(IV)

    SciTech Connect

    Huang, Hu; Kai, Fumiaki; Hirohata, Masaaki; Nakamura, Masaaki; Matsuzaki, Susumu; Komori, Kenji; Tsunematsu, Yuriko

    1993-12-31

    The new title tetradentate ligand (SPAHQS), containing both phenylazo and 8-quinolinol fragments, was prepared. Proton-dissociation processes of the ligand and complexing equilibria with Fe(II), Ni(II), Zn(II), Cd(II), and VO(IV) were analyzed spectrophotometrically. Coordination modes of SPAHQS with these metal ions have been investigated by means of polarography and Raman spectroscopy in aqueous solution. It was established that the coordination selectivity of SPAHQS for such metal ions is mainly dependent on steric factors in the chelate ring formed, not on HSAB properties. 18 refs., 6 figs., 2 tabs.

  6. Carbon-carbon cross-coupling reactions catalyzed by a two-coordinate nickel(II)-bis(amido) complex via observable Ni(I) , Ni(II) , and Ni(III) intermediates.

    PubMed

    Lipschutz, Michael I; Tilley, T Don

    2014-07-01

    Recently, the development of more sustainable catalytic systems based on abundant first-row metals, especially nickel, for cross-coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a Ni(III) -alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon-carbon cross-coupling system based on a two-coordinate Ni(II) -bis(amido) complex in which a Ni(III) -alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this Ni(III) -alkyl species as well as those of other key Ni(I) and Ni(II) intermediates. The catalytic cycle described herein is also one of the first examples of a two-coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first-row transition metals to accommodate two-coordinate complexes.

  7. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid.

    PubMed

    Faheim, Abeer A; Abdou, Safaa N; Abd El-Wahab, Zeinab H

    2013-03-15

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H(2)L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, (1)H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H(2)L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  8. Spectroscopic and thermal degradation behavior of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes with thiopental sodium anesthesia drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2013-04-01

    A new series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized with thiopental sodium anesthesia drug. The elemental analyses of the complexes are confined to stoichiometry of the formulas [M(TPL)3]ṡnH2O (M = Cr(III) or Fe(III); n = 6 or 5), [M(TPL)2(H2O)2]ṡnH2O (M = Mn(II), Co(II) or Ni(II); n = 0 or 4), and [M(TPL)2] (M = Cu(II) or Zn(II); n = 2 or 0) respectively, where TPL is thiopental chelating agent. Structures have been discussed and suggested upon elemental analyses, infrared, Raman, electronic, electron spin resonance, 1H NMR spectral data and magnetic studies. The X-ray powder diffraction (XRD) was performed of metal complexes. The XRD patterns indicate crystalline nature for the complexes. The measured low molar conductance values in dimethylsulfoxide indicate that the complexes are non-electrolyte nature. Spectroscopic discussion refer that coordination take place through three types: Cdbnd N (pyrimidine moiety) nitrogen and C2sbnd S (2-thiolate group) for Cr(III), Mn(II) and Fe(III), C6dbnd O (amido group) oxygen and C2sbnd S (2-thiolate group) for Co(II) and Ni(II), and Cu(II) and Zn(II) ions coordinated via Cdbnd N (pyrimidine moiety) nitrogen, C2dbnd S (2-thiolate group) and C6dbnd O (amido group) oxygen, respectively. The thermal behavior (TG/DTG/DTA) of the complexes was studied and kinetic parameters were determined by Horowitz-Metzger and Coats-Redfern methods. The thiopental and its complexes have been screened for their antimicrobial (G+ and G-) bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Pseudomonas aeruginosa) and fungi (Aspergillus flavus and Candida albicans) activities by minimum inhibitory concentration (MIC) method.

  9. Theoretical and experimental studies of two Co(II) and Ni(II) coordination complex with N,O donor 2-chloro-6-{[(4-hydroxy-3-methoxyphenyl)methylidene]amino}-4 nitrophenol ligand

    NASA Astrophysics Data System (ADS)

    Kusmariya, Brajendra S.; Tiwari, Sandeep; Tiwari, Anjali; Mishra, A. P.; Naikoo, Gowhar Ahmad; Pandit, Umar J.

    2016-07-01

    Here we report two mononuclear Co(II) and Ni(II) complexes of general formula [M(L)2(H2O)].2H2O; {M = CoII & NiII} derived from bidentate 2-chloro-6-{[(4-hydroxy-3-methoxyphenyl)methylidene]amino}-4 nitrophenol ligand (HL). These compounds were characterized by elemental analysis, spectral (FT-IR, electronic and 1H-NMR), molar conductance, thermal, PXRD, SEM and electrochemical studies. Distorted octahedral geometry was proposed around the metal center with ligand (HL). The PXRD and SEM analysis shows the crystalline nature of complexes. The broadening of diffraction peaks were explained in terms of domain size and the lattice strain according to Scherrer and Williamson-Hall method. TG of the synthesized complexes illustrates their general decomposition pattern and thermal stability. The kinetic and thermodynamic parameters viz. activation energy (E∗), pre-exponential factor (Z), entropy of activation (ΔS∗), enthalpy of activation (ΔH∗) and free energy of activation (ΔG∗) of degradation process were also evaluated using Coats-Redfern (C-R), Piloyan-Novikova (P-N) and Horowitz-Metzger (H-M) methods for both complexes assuming first order degradation. The optical band gap values of complexes were found to be in good agreement with calculated HOMO-LUMO energy gap (ΔE) and lie in semiconducting range. The cyclic voltammetric studies of synthesized compounds were carried out in order to examine their electrochemical behavior. In addition theoretical calculations by means of DFT at B3LYP level were incorporated to support the experimental findings.

  10. NiII, CuII and ZnII complexes with a sterically hindered scorpionate ligand (TpmsPh) and catalytic application in the diasteroselective nitroaldol (Henry) reaction.

    PubMed

    Rocha, Bruno G M; Mac Leod, Tatiana C O; Guedes da Silva, M Fátima C; Luzyanin, Konstantin V; Martins, Luísa M D R S; Pombeiro, Armando J L

    2014-10-28

    The Ni(II) and Zn(II) complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))3, pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu(II) complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, (1)H and (13)C{(1)H} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(n)Bu4N](Tpms(Ph)) (7), the latter obtained upon Li(+) replacement by [(n)Bu4N](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn(II) and Cu(II) complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding β-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni(II) complex 2 only shows a modest catalytic activity.

  11. NiII, CuII and ZnII complexes with a sterically hindered scorpionate ligand (TpmsPh) and catalytic application in the diasteroselective nitroaldol (Henry) reaction.

    PubMed

    Rocha, Bruno G M; Mac Leod, Tatiana C O; Guedes da Silva, M Fátima C; Luzyanin, Konstantin V; Martins, Luísa M D R S; Pombeiro, Armando J L

    2014-10-28

    The Ni(II) and Zn(II) complexes [MCl(Tpms(Ph))] (Tpms(Ph) = SO3C(pz(Ph))3, pz = pyrazolyl; M = Ni 2 or Zn 3) and the Cu(II) complex [CuCl(Tpms(Ph))(H2O)] (4) have been prepared by treatment of the lithium salt of the sterically demanding and coordination flexible tris(3-phenyl-1-pyrazolyl)methanesulfonate (Tpms(Ph))(-) (1) with the respective metal chlorides. The (Tpms(Ph))(-) ligand shows the N3 or N2O coordination modes in 2 and 3 or in 4, respectively. Upon reaction of 2 and 3 with Ag(CF3SO3) in acetonitrile the complexes [M(Tpms(Ph))(MeCN)](CF3SO3) (M = Ni 5 or Zn 6, respectively) were formed. The compounds were obtained in good yields and characterized by analytic and spectral (IR, (1)H and (13)C{(1)H} NMR, ESI-MS) data, density functional theory (DFT) methods and {for 4 and [(n)Bu4N](Tpms(Ph)) (7), the latter obtained upon Li(+) replacement by [(n)Bu4N](+) in Li(Tpms(Ph))} by single crystal X-ray diffraction analysis. The Zn(II) and Cu(II) complexes (3 and 4, respectively) act as efficient catalyst precursors for the diastereoselective nitroaldol reaction of benzaldehydes and nitroethane to the corresponding β-nitroalkanols (up to 99% yield, at room temperature) with diastereoselectivity towards the formation of the anti isomer, whereas the Ni(II) complex 2 only shows a modest catalytic activity. PMID:25185114

  12. Synthesis, characterization, and antioxidant/cytotoxic activity of new chromone Schiff base nano-complexes of Zn(II), Cu(II), Ni(II) and Co(II)

    NASA Astrophysics Data System (ADS)

    Saif, M.; El-Shafiy, Hoda F.; Mashaly, Mahmoud M.; Eid, Mohamed F.; Nabeel, A. I.; Fouad, R.

    2016-08-01

    A chromone Schiff base complexes of Zn(II) (1), Cu(II) (2), Ni(II) (3) and Co(II) (4) were successfully prepared in nano domain with crystalline or amorphous structures. The spectroscopic data revealed that the Schiff base ligand behaves as a monoanionic tridentate ligand. The metal complexes exhibited octahedral geometry. Transmission electron microscope (TEM) analysis showed that Cu(II) complex have aggregated nanospheres morphology. The obtained nano-complexes were tested as antioxidant and antitumor agents. The H2L and its Cu(II) complex (2) were found to be more potent antioxidant (IC50(H2L) = 0.93 μM; IC50(Cu(II) complex) = 1.1 μM than standard ascorbic acid (IC50 = 2.1 μM) as evaluated by DPPH• method. The H2L and its complexes (1-4) were tested for their in vitro cytotoxicity against Ehrlich Ascites Carcinoma cell line (EAC). The Cu(II) nano-complex (2) effectively inhibited EAC growth with IC50 value of 47 μM in comparison with its parent compound and other prepared complexes. The high antioxidant activity and antitumor activity of Cu(II) nano-complex (2) were attributed to their chemical structure, Cu(II) reducing capacity, and nanosize property. The toxicity test on mice showed that Zn(II) (1) and Cu(II) (2) nano-complex have lower toxicity than the standard cis-platin.

  13. Synthesis, spectroscopic characterization, DNA interaction and biological activities of Mn(II), Co(II), Ni(II) and Cu(II) complexes with [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol

    NASA Astrophysics Data System (ADS)

    Gaber, Mohamed; El-Wakiel, Nadia A.; El-Ghamry, Hoda; Fathalla, Shaimaa K.

    2014-11-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes of [(1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol have been synthesized. The structure of complexes have been characterized by elemental analysis, molar conductance, magnetic moment measurements and spectral (IR, 1H NMR, EI-mass, UV-Vis and ESR), and thermal studies. The results showed that the chloro and nitrato Cu(II) complexes have octahedral geometry while Ni(II), Co(II) and Mn(II) complexes in addition to acetato Cu(II) complex have tetrahedral geometry. The possible structures of the metal complexes have been computed using the molecular mechanic calculations using the hyper chem. 8.03 molecular modeling program to confirm the proposed structures. The kinetic and thermodynamic parameters of the thermal decomposition steps were calculated from the TG curves. The binding modes of the complexes with DNA have been investigated by UV-Vis absorption titration. The results showed that the mode of binding of the complexes to DNA is intercalative or non-intercalative binding modes. Schiff base and its metal complexes have been screened for their in vitro antimicrobial activities against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli and Pesudomonas aeruginosa), fungi (Asperigllus flavus and Mucer) and yeast (Candida albicans and Malassezia furfur).

  14. Synthesis and characterization of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of chromone based azo-linked Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Johnson Raja, S.

    2012-12-01

    Azo-Schiff-base complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized and characterized by elemental analysis, IR, UV-Vis, 1H NMR, mass spectra, molar conductance, magnetic susceptibility measurement, electron spin resonance (EPR), CV, fluorescence, NLO and SEM. The conductance data indicate the nonelectrolytic nature of the complexes, except VO(II) complex which is electrolytic in nature. On the basis of electronic spectra and magnetic susceptibility octahedral geometry has been proposed for the complexes. The EPR spectra of copper and oxovanadium complexes in DMSO at 300 and 77 K were recorded and its salient features are reported. The redox behavior of the copper(II) complex was studied using cyclic voltammetry. The in vitro antimicrobial activity against Staphylococcus aureus, Escherichia coli, Salmonella enterica typhi, Bacillus subtilis and Candida strains was studied and compared with that of free ligand by well-diffusion technique. The azo Schiff base exhibited fluorescence properties originating from intraligand (π-π∗) transitions and metal-mediated enhancement is observed on complexation and so the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. On the basis of the optimized structures, the second-order nonlinear optical properties (NLO) are calculated by using second-harmonic generation (SHG) and also the surface morphology of the complexes was studied by SEM.

  15. Synthesis, spectral characterization and antioxidant activity studies of a bidentate Schiff base, 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its Cd(II), Cu(II), Ni(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Harinath, Y.; Harikishore Kumar Reddy, D.; Naresh Kumar, B.; Apparao, Ch.; Seshaiah, K.

    2013-01-01

    A new Schiff base bidentate ligand (L), 5-methyl thiophene-2-carboxaldehyde-carbohydrazone and its metal (Cu(II), Cd(II), Ni(II) and Zn(II)) complexes with general stoichiometry [M(L)2X2] (where X = Cl) were synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, ESR spectral analyses, and molar conductance studies. The molar conductance data revealed that all the metal chelates are non-electrolytes. IR spectra showed that ligand (L) is coordinated to the metal ions in a bidentate manner with N and O donor sites of the azomethine-N, and carbonyl-O. ESR and UV-Vis spectral data showed that the geometrical structure of the complexes are Orthorhombic. Furthermore, the antioxidant activity of the ligand and its complexes was determined by hydroxyl radical scavenging, DPPH, NO, reducing power methods in vitro. The obtained IC50 value of the DPPH activity for the copper complex (IC50 = 66.4 μm) was higher than other compounds. Microbial assay of the above complexes against Staphylococcus aureus, Escherichia coli, Rhizocotonia bataticola and Alternaria alternata showed that copper complex exhibited higher activity than the other complexes.

  16. Evaluation of DNA Binding, Cleavage, and Cytotoxic Activity of Cu(II), Co(II), and Ni(II) Schiff Base Complexes of 1-Phenylindoline-2,3-dione with Isonicotinohydrazide

    PubMed Central

    Gomathi, Ramadoss; Ramu, Andy; Murugan, Athiappan

    2014-01-01

    One new series of Cu(II), Co(II), and Ni(II) Schiff base complexes was prepared through the condensation reaction between 1-phenylindoline-2,3-dione with isonicotinohydrazide followed by metalation, respectively. The Schiff base ligand(L), (E)-N′-(2-oxo-1-phenylindolin-3-lidene)isonicotinohydrazide, and its complexes were found soluble in DMF and DMSO solvents and characterized by using the modern analytical and spectral techniques such as elemental analysis, conductivity, magnetic moments, IR, NMR, UV-visible, Mass, CV, and EPR. The elemental analysis data of ligand and their complexes were well agreed with their calculated values in which metal and ligand stoichiometry ratio 1 : 2 was noted. Molar conductance values indicated that all the complexes were found to be nonelectrolytes. All the complexes showed octahedral geometry around the central metal ions. Herein, we better characterized DNA binding with the complexes by UV-visible and CD spectroscopy and cyclic voltammetry techniques. The DNA cleavage experiments were carried out by Agarose gel electrophoresis method and the cytotoxicity experiments by MTT assay method. Based on the DNA binding, cleavage, and cytotoxicity studies, Cu and Ni complexes were found to be good anticancer agents against AGS-human gastric cancer cell line. PMID:24744691

  17. Synthesis, spectral characterization and biological evaluation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with thiosemicarbazone ending by pyrazole and pyridyl rings

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2014-08-01

    Here we present the synthesis of the new Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with chelating ligand (Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene) hydrazinyl)(pyridin-2-ylamino)methanethiol. All the complexes were characterized by elemental analysis, IR, 1H NMR, UV-vis, magnetic susceptibility measurements and EPR spectral studies. IR spectra of complexes showed that the ligand behaves as NN neutral bidentate, NSN mononegative tridentate and NSNN mononegative tetradentate. The electronic spectra and the magnetic measurements suggested the octahedral geometry for all complexes as well as the EPR confirmed the tetragonal distorted octahedral for Cu(II) complex. Cd(II) complex showed the highest inhibitory antioxidant activity either using ABTS method. The SOD-like activity exhibited those Cd(II) and Zn(II) complexes have strong antioxidative properties. We tested the synthesized compounds for antitumor activity and showed that the ability to kill liver (HePG2) and breast (MCF-7) cancer cells definitely.

  18. Peculiarities of crystal structures and magnetic properties of Cu(II) and Ni(II) mixed-ligand complexes on the 1,3-dithiole-2-thione-4,5-dithiolate basis

    NASA Astrophysics Data System (ADS)

    Starodub, V. A.; Vitushkina, S. V.; Kamenskyi, D.; Anders, A. G.; Cheranovskii, V. O.; Schmidt, H.; Steinborn, D.; Potočňák, I.; Kajňaková, M.; Radváková, A.; Feher, A.

    2012-02-01

    Mixed-ligand Cu(II) and Ni(II) complexes, [Cu(dmit)(bpy)]2 (I), [Ni(dmit)(phen)2] (II) and [Ni(dmit)(phen)2]·CH2Cl2 (III) (dmit=1.3-dithiole-2-thione-4.5-dithiolate, phen=1.10-phenantroline, bpy=2.2‧-bipyridine) have been prepared by ligand exchange between phen or bpy and (Bu4N)2[M(dmit)2] (M=Ni, Cu) and characterized by elemental analysis, IR spectroscopy, single-crystal X-ray analysis and by investigation of magnetic and resonance properties. In complex I, the monomeric units form dimers in a head-to-tail arrangement by weak coordination bonds between copper and dithiolate sulfur atoms and π-π interactions between dmit and bpy from neighboring monomers. Dimers in I are further extended into chains by weak Cu-S(thione) contacts. In crystal packing of complex II and III, there exists a weak π-π interaction between two parallel phen molecules of the adjacent complexes. As a consequence, the magnetic and resonance characteristics of copper complex may be described in approximation of exchange-coupled pairs of Cu2+ ions with ion spin S=1/2. The nickel complexes are described by isotropic exchange model for single-site spin S=1.

  19. Seven-coordinate Co(II), Fe(II) and six-coordinate Ni(II) amide-appended macrocyclic complexes as ParaCEST agents in biological media.

    PubMed

    Olatunde, Abiola O; Cox, Jordan M; Daddario, Michael D; Spernyak, Joseph A; Benedict, Jason B; Morrow, Janet R

    2014-08-18

    The solution chemistry and solid-state structures of the Co(II), Fe(II), and Ni(II) complexes of 7,13-bis(carbamoylmethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L) are reported as members of a new class of paramagnetic chemical exchange saturation transfer (paraCEST) MRI contrast agents that contain transition metal ions. Crystallographic data show that nitrogen and oxygen donor atoms of the macrocyclic ligand coordinate to the metal ions to generate complexes with distorted pentagonal bipyramidal geometry for [Co(L)]Cl2·2H2O or [Fe(L)](CF3SO3)2. The Ni(II) complex [Ni(L)](CF3SO3)2·H2O features a hexadentate ligand in a distorted octahedral geometry. The proton NMR spectra of all three complexes show highly dispersed and relatively sharp proton resonances. The complexes were further characterized by monitoring their dissociation under biologically relevant conditions including solutions containing phosphate and carbonate, ZnCl2, or acidic conditions. Solutions of the paraCEST agents in 20 mM N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (pH 7.4) and 100 mM NaCl showed highly shifted and intense CEST peaks at 59, 72, and 92 ppm away from bulk water for [Co(L)](2+), [Ni(L)](2+), and [Fe(L)](2+), respectively at 37 °C on a 11.7 T NMR spectrometer. CEST spectra with corresponding rate constants for proton exchange are reported in 4% agarose gel (w/w), rabbit serum, egg white, or buffered solutions. CEST phantoms of 4 mM complex in buffer, 4% agarose gel (w/w), or rabbit serum on a 4.7 T MRI scanner at 37 °C, are compared. The most substantial change was observed for the reactive [Ni(L)](2+), which showed reduced CEST contrast in rabbit serum and egg white. The complexes with the least highly shifted CEST peaks ([Co(L)](2+) and [Ni(L)](2+)) showed a reduction in CEST contrast in 4% agarose gel (w/w) compared to that in buffered solutions, while the CEST effect for [Fe(L)](2+) in 4% agarose gel (w/w) was not substantially different.

  20. Synthesis, Spectroscopic Characterization, and In Vitro Antimicrobial Studies of Pyridine-2-Carboxylic Acid N′-(4-Chloro-Benzoyl)-Hydrazide and Its Co(II), Ni(II), and Cu(II) Complexes

    PubMed Central

    Singh, Jagvir; Singh, Prashant

    2012-01-01

    N-substituted pyridine hydrazide (pyridine-2-carbonyl chloride and 4-chloro-benzoic acid hydrazide) undergoes hydrazide formation of the iminic carbon nitrogen double bond through its reaction with cobalt(II), nickel(II), and copper(II) metal salts in ethanol which are reported and characterized based on elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and thermal analysis (TG). From the elemental analyses data, 1 : 2 metal complexes are formed having the general formulae [MCl2(HL)2] ·yH2O (where M = Co(II), Ni(II), and Cu(II), y = 1–3). The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied. IR spectra show that ligand is coordinated to the metal ions in a neutral bidentate manner with ON donor sites. The solid complexes have been synthesized and studied by thermogravimetric analysis. All the metal chelates are found to be nonelectrolytes. From the magnetic and solid reflectance spectra, the complexes (cobalt(II), nickel(II), and copper(II)) have octahedral and square planner geometry, respectively. The antibacterial and antifungal activity's data show that the metal complexes have a promising biological activity comparable with the parent ligand against bacterial and fungal species. PMID:23125560

  1. Synthesis, characterization, thermal study and biological evaluation of Cu(II), Co(II), Ni(II) and Zn(II) complexes of Schiff base ligand containing thiazole moiety

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    The novel Schiff base ligand 2-(4-(dimethylamino)benzylidene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 4-dimethylaminobenzaldehyde and its newly synthesized Cu(II), Co(II), Ni(II) and Zn(II) complexes have been characterized by microanalysis, magnetic susceptibility, molar conductance, thermal analysis, FT-IR, 1H NMR, ESI mass, UV-Visible, ESR spectroscopy and powder X-ray diffraction data. The newly synthesized ligand behaves as a bidentate ON donor. The IR results confirmed the bidentate binding of the ligand involving oxygen atom of amide carbonyl and azomethine nitrogen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties of all the compounds against Artemia salina. Furthermore, the antioxidant activity of the ligand (L) and its metal complexes were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH), the ligand exhibited potent in vitro - antioxidant activity than its metal complexes.

  2. A mononuclear Ni(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: DNA- and BSA-binding and anticancer activity against human breast carcinoma cells.

    PubMed

    Anjomshoa, Marzieh; Hadadzadeh, Hassan; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud

    2015-02-01

    DNA- and BSA-binding properties of a mononuclear Ni(II) complex, [Ni(dppt)2Cl2] (dppt = 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), have been investigated under physiological conditions. The interaction of the complex with the fish sperm DNA (FS-DNA) has been studied by UV-Vis absorption, thermal denaturation, viscosity measurement, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis technique. The experimental results indicate that the complex interacts with DNA by intercalative binding mode. The competitive study with ethidium bromide (EB) shows that the complex competes for the DNA-binding sites with EB and displaces the DNA-bound EB molecule. The interactions of the dppt ligand and the complex with BSA have been studied by UV-Vis absorption and fluorescence spectroscopic techniques. The values of Kb for the BSA-dppt and the BSA-complex systems at room temperature were calculated to be 0.14×10(4) M(-1) and 0.32×10(5) M(-1), respectively, indicating that the complex has stronger tendency to bind with BSA than the dppt ligand. The quenching constants (Ksv), binding constants (Kbin), and number of binding sites (n) at different temperatures, as well as the binding distance (r) and thermodynamic parameters (ΔH°, ΔS° and ΔG°) have been calculated for the BSA-dppt and the BSA-complex systems. The cytotoxicities of the dppt ligand and the complex have been also tested against the human breast adenocarcinoma (MCF-7) cell line using the MTT assay. The results indicate that the dppt ligand and the complex display cytotoxicity against human breast cancer cell lines (MCF-7) with the IC50 values of 17.35 μM and 13.00 μM, respectively. It is remarkable that the complex can introduce as a potential anticancer drug.

  3. A mononuclear Ni(II) complex with 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine: DNA- and BSA-binding and anticancer activity against human breast carcinoma cells

    NASA Astrophysics Data System (ADS)

    Anjomshoa, Marzieh; Hadadzadeh, Hassan; Fatemi, Seyed Jamilaldin; Torkzadeh-Mahani, Masoud

    2015-02-01

    DNA- and BSA-binding properties of a mononuclear Ni(II) complex, [Ni(dppt)2Cl2] (dppt = 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine), have been investigated under physiological conditions. The interaction of the complex with the fish sperm DNA (FS-DNA) has been studied by UV-Vis absorption, thermal denaturation, viscosity measurement, competitive DNA-binding studies with ethidium bromide (EB) by fluorescence, and gel electrophoresis technique. The experimental results indicate that the complex interacts with DNA by intercalative binding mode. The competitive study with ethidium bromide (EB) shows that the complex competes for the DNA-binding sites with EB and displaces the DNA-bound EB molecule. The interactions of the dppt ligand and the complex with BSA have been studied by UV-Vis absorption and fluorescence spectroscopic techniques. The values of Kb for the BSA-dppt and the BSA-complex systems at room temperature were calculated to be 0.14 × 104 M-1 and 0.32 × 105 M-1, respectively, indicating that the complex has stronger tendency to bind with BSA than the dppt ligand. The quenching constants (Ksv), binding constants (Kbin), and number of binding sites (n) at different temperatures, as well as the binding distance (r) and thermodynamic parameters (ΔH°, ΔS° and ΔG°) have been calculated for the BSA-dppt and the BSA-complex systems. The cytotoxicities of the dppt ligand and the complex have been also tested against the human breast adenocarcinoma (MCF-7) cell line using the MTT assay. The results indicate that the dppt ligand and the complex display cytotoxicity against human breast cancer cell lines (MCF-7) with the IC50 values of 17.35 μM and 13.00 μM, respectively. It is remarkable that the complex can introduce as a potential anticancer drug.

  4. Synthesis, characterization and equilibrium studies of some potential antimicrobial and antitumor complexes of Cu(II), Ni(II), Zn(II) and Cd(II) ions involving 2-aminomethylbenzimidazole and glycine

    NASA Astrophysics Data System (ADS)

    Aljahdali, M.

    2013-08-01

    The ternary complexes of Cu(II), Zn(II), Ni(II) and Cd(II) with 2-aminomethylbenzimidazole (AMBI) and glycine as a representative example of amino acids have been isolated and characterized by elemental analyses, IR, ESR, UV-vis, magnetic moment, molar conductance and 1H NMR spectra. AMBI behaves as neutral bidentate ligands with coordination through imidazole and amino group nitrogens while the glycine amino acid behaves as a monodenate anion with coordination involving the amino group and carboxylate oxygen after deprotonation. The magnetic and spectral data indicates a square planar geometry for both Cu2+ and Ni2+ complexes and a tetrahedral geometry for both Zn2+ and Cd2+ complexes. The isolated chelates have been screened for their antifungal and antibacterial activities using the disc diffusion method. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. The stability constants of ternary M-AMBI-Gly complexes were determined potentiometrically in aqueous solution at I = 0.1 mol dm-3 NaCl.

  5. Synthesis, spectral characterization, solution equilibria, in vitro antibacterial and cytotoxic activities of Cu(II), Ni(II), Mn(II), Co(II) and Zn(II) complexes with Schiff base derived from 5-bromosalicylaldehyde and 2-aminomethylthiophene

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Eldebss, Taha M. A.

    2011-09-01

    Schiff base namely 2-aminomethylthiophenyl-4-bromosalicylaldehyde (ATS)(4-bromo-2-(thiophen-2-yl-imino)methylphenol) and its metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, ESR and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:2 [M:L] ratio of the formula [ML 2], where M represents Ni(II), Zn(II) and Cu(II) ions, while L represents the deprotonated Schiff base. IR spectra show that ATS is coordinated to the metal ions in a bidentate manner through azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria. A cytotoxicity of the compounds against colon (HCT116) and larynx (HEP2) cancer cells have been studied. Protonation constants of (ATS) ligand and stability constants of its Cu 2+, Co 2+, Mn 2+, Zn 2+ and Ni 2+ complexes were determined by potentiometric titration method in 50% (v/v) DMSO-water solution at ionic strength of 0.1 M NaNO 3.

  6. Separation and determination of metallocyanide complexes of Fe(II), Ni(II) and Co(III) by ion-interaction chromatography with membrane suppressed conductivity detection applied to analysis of oil refinery streams (sour water).

    PubMed

    Souza e Silva, Renata; de Carvalho, Maria de Fátima Batista; Santelli, Ricardo Erthal

    2006-09-15

    A separation and determination method for the analysis of cyanometallic complexes of Fe(II), Ni(II) and Co(III) was developed to be applied to the analysis of petroleum refinery streams (sour water). Ion-interaction chromatography was used employing an analytical column IonPac NS1 10 microm and a chromatographic system ICS 2500 equipped with a membrane conductivity suppression ASRS ultra 4mm, both supplied by Dionex Corporation. The mobile phase was composed of 2 mmol l(-1) TBAOH, 1 mmol l(-1) Na(2)CO(3), 0.1 mol l(-1) NaCN and ACN (77:23, v/v), flowing at 0.7 ml min(-1). At the optimized conditions, detection limits estimated by the calibration curve parameters and relative standard deviation were: 0.002 mg CNl(-1) and 3.1% for Fe(CN)(6)(4-); 0.003 mg CNl(-1) and 2.5% for Ni(CN)(4)(2-) and 0.003 mg CNl(-1) and 2.8% for Co(CN)(6)(3-). Sour water samples without any pretreatment (except membrane filtration) from a petroleum refinery in Brazil were analyzed successfully by external calibration method. PMID:16889783

  7. Ni(II), Cu(II), and Zn(II) Diethyldithiocarbamate Complexes Show Various Activities Against the Proteasome in Breast Cancer Cells

    PubMed Central

    Cvek, Boris; Milacic, Vesna; Taraba, Jan; Dou, Q. Ping

    2008-01-01

    A series of three complexes with diethyldithiocarbamate ligand and three different metals (Ni, Cu, Zn) was prepared, confirmed by X-ray crystallography, and tested in human breast cancer MDA-MB-231 cells. Zinc and copper complexes, but not nickel complex, were found to be more active against cellular 26S proteasome than against purified 20S proteasome core particle. One of the possible explanations is inhibition of JAMM domain in the 19S proteasome lid. PMID:18816109

  8. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds

    PubMed Central

    Chohan, Zahid H.; Arif, M.; Akhtar, Muhammad A.; Supuran, Claudiu T.

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1)−(L5) were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H2O)4]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)2(H2O)2] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22), displayed

  9. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds.

    PubMed

    Chohan, Zahid H; Arif, M; Akhtar, Muhammad A; Supuran, Claudiu T

    2006-01-01

    A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L(1))-(L(5)) were derived by condensation of beta-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H(2)O)(4)]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)(2)(H(2)O)(2)] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22

  10. Reactivity of phosphonodithioato-dppt Ni(II) mixed ligand complexes with halogens: first example of a metal-coordinating tribromide anion.

    PubMed

    Aragoni, M Carla; Arca, Massimiliano; Coles, Susanne L; Devillanova, Francesco A; Hursthouse, Michael B; Isaia, Francesco; Lippolis, Vito

    2012-06-14

    The first example of a metal complex containing a tribromide anion is presented and characterised by X-ray diffraction. Hybrid DFT calculations were used to investigate the nature of the bond in coordinating trihalides and the differences with the corresponding mono-halide complexes.

  11. Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: Synthesis, characterization, cytotoxicity, protein and DNA-binding properties.

    PubMed

    Li, Zhen; Yan, Hui; Chang, Guoliang; Hong, Min; Dou, Jianmin; Niu, Meiju

    2016-10-01

    A series of novel copper (II) and nickel (II) complexes derived from chiral Schiff-base ligands [(R)/(S)-H2L(1)=(R)/(S)-2-[(1-Hydroxymethyl-propylimino)-methyl]-5-methoxy-phenol and (R)/(S)-H2L(2)=(R)/(S)-2-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-5-methoxy-phenol], were synthesized and characterized by elemental analyses, (1)H NMR spectra, FT-IR spectrum. The crystal structures of complexes 1-5 were determined through single crystal X-ray diffraction (SXRD). The structures showed the ligands coordinated to the Cu/Ni (II) ion in a neutral manner via ONO donor atoms, and oxygen atoms of solvent molecules occupy the axial positions in Ni (II) complexes 3 and 4. The complexes interactions with BSA and CT-DNA were investigated by various spectroscopic methods (UV-Visible, circular dichroism spectrum, fluorescence spectroscopic and synchronous fluorescence spectra). Interactions of chiral copper (II) complexes are stronger than nickel (II) complexes. Further, the cytotoxicities of the complexes 1-6 towards three kinds of cancerous cell lines, were human lung adenocarcinoma (A549), human cervical carcinoma cell (HeLa) and human breast cancer cell (MCF-7) respectively, were evaluated by MTT assay. All complexes exhibited good cytotoxic activity. Furthermore, Cu (II) complex 5 derived from (R)-Schiff-base ligand was found to be more effective towards HeLa cancerous cell. The results showed that chirality and metal ion have important influence on their anticancer activities and interactions with DNA/BSA.

  12. Cu(II), Ni(II) complexes derived from chiral Schiff-base ligands: Synthesis, characterization, cytotoxicity, protein and DNA-binding properties.

    PubMed

    Li, Zhen; Yan, Hui; Chang, Guoliang; Hong, Min; Dou, Jianmin; Niu, Meiju

    2016-10-01

    A series of novel copper (II) and nickel (II) complexes derived from chiral Schiff-base ligands [(R)/(S)-H2L(1)=(R)/(S)-2-[(1-Hydroxymethyl-propylimino)-methyl]-5-methoxy-phenol and (R)/(S)-H2L(2)=(R)/(S)-2-[(1-Hydroxymethyl-2-phenyl-ethylimino)-methyl]-5-methoxy-phenol], were synthesized and characterized by elemental analyses, (1)H NMR spectra, FT-IR spectrum. The crystal structures of complexes 1-5 were determined through single crystal X-ray diffraction (SXRD). The structures showed the ligands coordinated to the Cu/Ni (II) ion in a neutral manner via ONO donor atoms, and oxygen atoms of solvent molecules occupy the axial positions in Ni (II) complexes 3 and 4. The complexes interactions with BSA and CT-DNA were investigated by various spectroscopic methods (UV-Visible, circular dichroism spectrum, fluorescence spectroscopic and synchronous fluorescence spectra). Interactions of chiral copper (II) complexes are stronger than nickel (II) complexes. Further, the cytotoxicities of the complexes 1-6 towards three kinds of cancerous cell lines, were human lung adenocarcinoma (A549), human cervical carcinoma cell (HeLa) and human breast cancer cell (MCF-7) respectively, were evaluated by MTT assay. All complexes exhibited good cytotoxic activity. Furthermore, Cu (II) complex 5 derived from (R)-Schiff-base ligand was found to be more effective towards HeLa cancerous cell. The results showed that chirality and metal ion have important influence on their anticancer activities and interactions with DNA/BSA. PMID:27619741

  13. Ni(II) and Pd(II) complexes with new N,O donor thiophene appended Schiff base ligand: Synthesis, electrochemistry, X-ray structure and DFT calculation

    NASA Astrophysics Data System (ADS)

    Kundu, Subhankar; Pramanik, Ajoy Kumar; Mondal, Apurba Sau; Mondal, Tapan Kumar

    2016-07-01

    The thiophene appended Schiff's base ligand, 1-(2-(thiophen-2-yl)ethylimino)methyl)naphthalene-2-ol (HL) with N,O donor sites has been synthesized by the condensation between 2-hydroxy-1-naphthaldehyde and thiophene-2-ethylamine. The square planar 1:2 complexes of HL having general formula [M(L)2] (M = Ni(1) and Pd(2)) with nickel(II) and palladium(II) have been synthesized and characterized by several spectroscopic techniques. The geometry has been confirmed by single crystal X-ray study for complex 1. The electronic structure and spectral properties of the complexes are interpreted by DFT and TDDFT studies.

  14. Synthesis and characterization of Ni(II) complex with 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium bromide

    SciTech Connect

    Yusoff, Latifah M.; Yusoff, Siti Fairus M.; Ismail, Wafiuddin; Yamin, Bohari M.

    2014-09-03

    Nickel(II) complex have been synthesized by treating a 14-membered ring tetraaza macrocyclic compound, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-dienium, bromide (Me{sub 6}N{sub 4}H{sub 4})Br{sub 2} with nickel acetate in metanol. The complex was characterized using elemental analysis, Fourier Transform Infrared (FTIR), Ultraviolet-Visible (UV-Vis), and single crystal diffraction (X-ray). The nickel atom coordinates through four nitrogen atoms in the ligand. Square planar geometry has been proposed for this complex.

  15. Phenoxide bridged tetranuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes: Electrochemical, magnetic and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Kamath, Anupama; Kulkarni, Naveen V.; Netalkar, Priya P.; Revankar, Vidyanand K.

    2011-09-01

    Phenoxide bridged later first row transition metal(II) complexes have been prepared by the interaction of later 3d transition metal(II) chlorides with tetranucleating compartmental Schiff base ligand system derived from 2,6-diformyl-4-methylphenol, p-phenylenediamine and 2-hydrazinobenzothiazole. Ligand and complexes were characterized by analytical, spectral (IR, UV-visible, ESR, FAB-mass and fluorescence), magnetic and thermal studies. All complexes are found to have octahedral geometry. The mutual influence of metal centres in terms of cooperative effect on the electronic, magnetic, electrochemical and structural properties was investigated. The Schiff base and its complexes have been screened for their antibacterial (against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa) and antifungal activities (against Aspergillus niger, and Candida albicans).

  16. Molecular mechanisms of the biological activity of the anticancer drug elesclomol and its complexes with Cu(II), Ni(II) and Pt(II).

    PubMed

    Yadav, Arun A; Patel, Daywin; Wu, Xing; Hasinoff, Brian B

    2013-09-01

    The bis(thiohydrazide) amide elesclomol has extremely potent antiproliferative activity and is currently in clinical trials as an anticancer agent. Elesclomol strongly binds copper and may be exerting its cell growth inhibitory effects by generating copper-mediated oxidative stress. Nickel(II) and platinum(II) complexes of elesclomol were synthesized and characterized in order to investigate if these biologically redox inactive metal complexes could also inhibit cell growth. The nickel(II)-elesclomol and platinum(II) elesclomol complexes were 34- and 1040-fold less potent than the copper(II)-elesclomol complex towards human leukemia K562 cells. These results support the conclusion that a redox active metal is required for elesclomol to exert its cell growth inhibitory activity. Copper(II)-elesclomol was also shown to efficiently oxidize ascorbic acid at physiological ascorbic acid concentrations. Reoxidation of the copper(I) thus produced would lead to production of damaging reactive oxygen species. An X-ray crystallographic structure determination of copper(II)-elesclomol showed that it formed a 1:1 neutral complex with a distorted square planar structure. The kinetics and equilibria of the competition reaction of the strong copper(II) chelator TRIEN with copper(II)-elesclomol were studied spectrophotometrically under physiological conditions. These results showed elesclomol bound copper(II) with a conditional stability constant 24-fold larger than TRIEN. A log stability constant of 24.2 was thus indirectly determined for the copper(II)-elesclomol complex.

  17. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  18. Synthesis, spectral characterization, structural investigation and antimicrobial studies of mononuclear Cu(II), Ni(II), Co(II), Zn(II) and Cd(II) complexes of a new potentially hexadentate N2O4 Schiff base ligand derived from salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Elerman, Yalcin; Buyukgungor, Orhan

    2013-01-01

    A new potentially hexadentate N2O4 Schiff base ligand, H2L derived from condensation reaction of an aromatic diamine and salicylaldehyde, and its metal complexes were characterized by elemental analyses, IR, UV-Vis, EI-MS, 1H and 13C NMR spectra, as well as conductance measurements. It has been originated that the Schiff base ligand with Cu(II), Ni(II), Co(II), Cd(II) and Zn(II) ions form mononuclear complexes on 1:1 (metal:ligand) stoichiometry. The conductivity data confirm the non-electrolytic nature of the complexes. Also the crystal structures of the complexes [ZnL] and [CoL] have also been determined by using X-ray crystallographic technique. The Zn(II) and Co(II) complexes show a tetrahedral configuration. Electronic absorption spectra of the Cu(II) and Ni(II) complexes suggest a square-planar geometry around the central metal ion. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Bacillus cereus, Enterococcus faecalis and Listeria monocytogenes and also against the three Gram-negative bacteria: Salmonella paraB, Citrobacter freundii and Enterobacter aerogenes. The results showed that in some cases the antibacterial activity of complexes were more than nalidixic acid and amoxicillin as standards.

  19. One-pot synthesis, structural characterization, UV-Vis and electrochemical analyses of new Schiff base complexes of Fe(III), Ni(II) and Cu(II)

    NASA Astrophysics Data System (ADS)

    Back, Davi Fernando; de Oliveira, Gelson Manzoni; Fontana, Liniquer Andre; Ramão, Brenda Fiorin; Roman, Daiane; Iglesias, Bernardo Almeida

    2015-11-01

    The complexes [Ni(Pyr2tetam-2H)]·2H2O (1) (Pyr2tetam = (pyridoxyl)2-N1,N4-triethylenetetramine), [Fe(Pyr2tetam-2H)](ClO4)·H2O (2) and [Cu(Pyrtetam-H)](ClO4) (3) (Pyrtetam = pyridoxyl-N1-triethylenetetramine) were obtained through one pot reactions of triethylenetetramine, pyridoxal chloridrate, triethylamine and the metal salts Ni(ClO4)2·6H2O, Fe(ClO4)2·6H2O and Cu(ClO4)2·6H2O. In complexes 1 and 2 the metal centers present a distorted octahedral coordination, while complex 3 shows a square pyramidal configuration. The structures were characterized through X-ray diffractometry, IR and UV-Vis spectra. Cyclic voltammograms of the title compounds are also presented and discussed.

  20. Crystal structures, spectra properties and DFT calculations studies on 4-phenyl-1-(3-phenylallylidene)thiosemicarbazide and its Ni(II) complex.

    PubMed

    Song, Jie; Zhu, Fengxia; Wang, Hongyan; Zhao, Pusu

    2014-08-14

    4-Phenyl-1-(3-phenylallylidene)thiosemicarbazide (HL) and its metal complex of NiL2 have been synthesized. For them, elemental analysis, IR and X-ray single crystal diffraction have been carried out. In complex NiL2, the central Ni(2+) ion coordinates with two deprotonated ligands of L(-) and adopts a distorted square planar configuration with the Ni(2+) ion being located at the inversion center. The thermal analyses result shows that complex NiL2 undergoes two decomposition processes. For the title compounds, DFT calculations of the structures and natural population analysis (NPA) have been performed at B3LYP/LANL2DZ level of theory. The predicted geometric parameters are compared with the experimental values and they are supported each other. By using TD-DFT method, electron spectra of ligand HL and complex NiL2 have been predicted, which suggest the B3LYP/LANL2DZ method can approximately simulate the electron spectra for the system presented here. The NPA results indicate that, for ligand HL, the electronic absorption spectra are mainly assigned to n-π(∗) and π-π(∗) electron transitions, while for the complex NiL2, the electronic transitions are mainly derived from the contribution of an intra-ligand (IL) transition, a metal-to-ligand charge transfer (MLCT) transition and a d-d transition. Based on vibrational analysis, thermodynamic properties for ligand HL and complex NiL2 at different temperatures have been obtained. PMID:24735780

  1. Structures and spectroscopic properties of Ni(II) and Mn(II) complexes based on 5-(3‧, 5‧-dicarboxylphenyl) picolinic acid ligand

    NASA Astrophysics Data System (ADS)

    Ma, Qi; Song, Jin-Ping; Su, Feng; Guo, Jun-Mei; Guo, Yong; Dong, Chuan

    2016-05-01

    Two novel complexes including [Ni(Hdcppa)(H2O)4] (1) and {[Mn3(dcppa)2(H2O)6]·2H2O}n (2) have been synthesized and characterized by single crystal X-ray structure analysis and elemental analysis. Results show that 1 is a mononuclear nickel(II) compound with octahedron coordination geometry, while 2 is a stairs-like 2D layer structure consisting of the trinuclear MnII units linked through dcppa3-. Spectroscopic and electrochemical properties of the complexes 1-2 have also been studied in dimethyl sulfoxide solution at room temperature.

  2. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Yadav, Deepak

    2015-06-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7.

  3. Design, spectral characterization, thermal, DFT studies and anticancer cell line activities of Co(II), Ni(II) and Cu(II) complexes of Schiff bases derived from 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Yadav, Deepak

    2015-06-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 4-amino-5-(pyridin-4-yl)-4H-1,2,4-triazole-3-thiol with thiophene-2-carbaldehyde and furan-2-carbaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 1:1 and 2:1. The characterization of Schiff bases and metal complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrometry and molar conductivity studies. The in DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II), Ni(II) and Cu(II) complexes. The effect of these complexes on proliferation of human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2) were studied and compared with those of free ligand. The anticancer cell line results reveal that all metal complexes show moderate to significant % cytotoxicity on cell line HepG2 and MCF-7.

  4. Zn(II), Ni(II), Cu(II) and Pb(II) complexes of tridentate asymmetrical Schiff base ligands: Synthesis, characterization, properties and biological activity

    NASA Astrophysics Data System (ADS)

    Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur

    2013-02-01

    New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.

  5. Syntheses, crystallographic, mass-spectroscopic determination and antioxidant studies of Co(II), Ni(II) and Cu(II) complexes of a new imidazol based Schiff base.

    PubMed

    Demir, Serkan; Güder, Aytaç; Yazıcılar, Turan K; Çağlar, Sema; Büyükgüngör, Orhan

    2015-01-01

    A new imidazole-based Schiff base, 2-((1H-imidazol-4-yl)methyleneamino)benzylalcohol (HL) and corresponding analogous bis(2-((1H-imidazol-4-yl)methyleneimino)benzylalcohol)metal(II) perchlorates (M: Co(1), Ni(2), Cu(3)) have prepared and characterized by elemental analyses, ESI-MS, IR, UV-Vis spectroscopies and conductivity measurements. X-ray single crystal structures of 1 and 2 have been also determined. Elemental analyses, spectroscopic and conductance data of 3 demonstrated similar structural features with these of crystallographically characterized complexes and based upon this relevances, HL ligands are neutrally coordinated to metal(II) ions in tridentate mode and all complexes are isostructural, dicathionic, contain perchlorate anions as complementary ions and, are in octahedral geometry with the formulae of [M(HL)2](ClO4)2 (for 3) and [M(HL)2](ClO4)2·H2O (for 1 and 2). Radical scavenging activities of the complexes have been evaluated by using DPPH, DMPD(+), and ABTS(+) assays. SC50 values (μg/mL) of the complexes and standards on DPPH, DMPD(+), ABTS(+) follow the sequences, BHA (9.06±0.33)>CMPD3 (15.62±0.52)>CMPD2 (17.43±0.29)>Rutin (21.65±0.60)>CMPD1 (25.67±0.51)>Trolox (28.57±0.37), Rutin>BHA>CMPD3>CMPD2>Trolox>CMPD1, and Trolox>BHA>CMPD3>CMPD2>Rutin>CMPD1 respectively.

  6. Co(II), Ni(II) and Cu(II) complexes of methyl-5-(Phenylthio) benzimidazole-2-carbamate: Molecular structures, spectral and DFT calculations

    NASA Astrophysics Data System (ADS)

    Mansour, Ahmed M.; El Bakry, Eslam M.; Abdel-Ghani, Nour T.

    2016-05-01

    [Co(FBZ)2(H2O)]·2NO3·0.5H2O (1), [Ni(FBZ)2X2]·zH2O (X = Cl​-, z = 0.5 (2) and X = CH3COO-, z = 1 (3)) and [Cu(FBZ)2(H2O) (NO3)]·NO3·1.5H2O (4) (FBZ = methyl-5-(Phenylthio) benzimidazole-2-carbamate; Fenbendazole) complexes were synthesized and characterized by elemental analysis, thermal, IR, EPR, UV-Vis, magnetic and conductance measurements. Geometry optimization, molecular electrostatic potential maps and natural bond orbital analysis were carried out at DFT/B3LYP/6-31G∗ level of theory. FBZ behaves as a neutral bidentate ligand via the pyridine-type nitrogen of the benzimidazole moiety and the carbamate group. Three-step ionization with pKa values of 3.38, 4.06 and 10.07 were reported for FBZ. The coordination of FBZ to the metal ions led to an increase in the antibacterial activity against the tested Staphylococcus aureus and Escherichia coli bacteria.

  7. Syntheses, spectroscopic and thermal analyses of cyanide bridged heteronuclear polymeric complexes: [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine or N-ethylethylenediamine; Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II))

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla

    2016-02-01

    Polymeric tetracyanonickelate(II) complexes of the type [M(L)2Ni(CN)4]n (Ldbnd N-methylethylenediamine (men) or N-ethylethylenediamine (neen); Mdbnd Ni(II), Cu(II), Zn(II) or Cd(II)) have been prepared and characterized by FT-IR, Raman spectroscopy, thermal and elemental analysis techniques. Additionally, FT-IR and Raman spectral analyses of men and neen have experimentally and theoretically investigated in the range of 4000-250 cm-1. The corresponding vibration assignments of men and neen are performed by using B3LYP density functional theory (DFT) method together with 6-31 G(d) basis set. The spectral features of the complexes suggest that the coordination environment of the M(II) ions are surrounded by the two symmetry related men and neen ligands and the two symmetry related N atom of cyanide groups, whereas the Ni(II) atoms are coordinated with a square-planar to four C atoms of the cyanide groups. Polymeric structures of the complexes consist of one dimensional alternative chains of [M(L)2]2+ and [Ni(CN)4]2- moieties. The thermal decompositions in the temperature range 30-700 °C of the complexes were investigated in the static air atmosphere.

  8. Synthesis and spectroscopic studies on the Schiff base ligand derived from condensation of 2-furaldehyde and 3,3'-diaminobenzidene, L and its complexes with Co(II), Ni(II), Cu(II) and Zn(II): Comparative DNA binding studies of L and its Cu(II) and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Khan, Asad U.; Khan, Shahper N.

    2011-01-01

    The Schiff base ligand, N,N'-bis-(2-furancarboxaldimine)-3,3'-diaminobenzidene (L) obtained by condensation of 2-furaldehyde and 3,3'-diaminobenzidene, was used to synthesize the mononuclear complexes of the type, [M(L)](NO 3) 2 [M = Co(II), Ni(II), Cu(II) and Zn(II)]. The newly synthesized ligand, (L) and its complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, 1H and 13C NMR, mass, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed a square planar geometry for the complexes with distortion in Cu(II) complex and conductivity data show a 1:2 electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that Schiff base ligand, L and its Cu(II) and Zn(II) complex exhibit significant binding to calf thymus DNA. The highest binding affinity in case of L may be due to the more open structure as compared to the metal coordinated complexes.

  9. Structural diversity in Ni(II) cluster chemistry: Ni5, Ni6, and {NiNa2}n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid.

    PubMed

    Perlepe, Panagiota S; Cunha-Silva, Luís; Bekiari, Vlasoula; Gagnon, Kevin J; Teat, Simon J; Escuer, Albert; Stamatatos, Theocharis C

    2016-06-21

    The employment of the fluorescent bridging and chelating ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2) in Ni(II) cluster chemistry has led to a series of pentanuclear and hexanuclear compounds with different structural motifs, magnetic and optical properties, as well as an interesting 1-D coordination polymer. Synthetic parameters such as the inorganic anion present in the NiX2 starting materials (X = ClO4(-) or Cl(-)), the reaction solvent and the nature of the organic base employed for the deprotonation of nacbH2 were proved to be structure-directing components. Undoubtedly, the reported results demonstrate the rich coordination chemistry of nacbH2 in the presence of Ni(II) metal ions and the ability of this chelate to adopt a variety of different modes, thus fostering the formation of high-nuclearity molecules with many physical properties.

  10. Structural diversity in Ni(II) cluster chemistry: Ni5, Ni6, and {NiNa2}n complexes bearing the Schiff-base ligand N-naphthalidene-2-amino-5-chlorobenzoic acid.

    PubMed

    Perlepe, Panagiota S; Cunha-Silva, Luís; Bekiari, Vlasoula; Gagnon, Kevin J; Teat, Simon J; Escuer, Albert; Stamatatos, Theocharis C

    2016-06-21

    The employment of the fluorescent bridging and chelating ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2) in Ni(II) cluster chemistry has led to a series of pentanuclear and hexanuclear compounds with different structural motifs, magnetic and optical properties, as well as an interesting 1-D coordination polymer. Synthetic parameters such as the inorganic anion present in the NiX2 starting materials (X = ClO4(-) or Cl(-)), the reaction solvent and the nature of the organic base employed for the deprotonation of nacbH2 were proved to be structure-directing components. Undoubtedly, the reported results demonstrate the rich coordination chemistry of nacbH2 in the presence of Ni(II) metal ions and the ability of this chelate to adopt a variety of different modes, thus fostering the formation of high-nuclearity molecules with many physical properties. PMID:27240998

  11. Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.

    PubMed

    Juang, Ruey-Shin; Kao, Hsiang-Chien; Liu, Fong-Yi

    2006-01-16

    Ion exchange is widely used for the recovery and removal of metals from process and waste streams in chemical process industries. The Na-form of strong-acid Purolite NRW-100 resin was used to recover Ni(II) from a simulated electroplating waste solution containing NiSO4, NH4Cl, NaH2PO4, and citrate. A set of mass balance equations that take into account possible aqueous complexation reactions was used to establish the pH diagram of Ni(II) species in the presence of anionic ligand citrate or phosphate. Experiments were performed as a function of initial solution pH (0.5-6.0), initial concentration of Ni(II) (0.85-11.9 mol/m3), and temperature (15-45 degrees C). It was shown that the amount of Ni(II) exchanged leveled off when the equilibrium pH was higher than around 2.5. The exchange isotherms obtained at various equilibrium pH values were well fitted by the Langmuir equation. The enthalpy of Ni(II) exchange was also evaluated based on the Langmuir constant. Finally, the kinetics of the present ion exchange process was analyzed.

  12. Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate

    NASA Astrophysics Data System (ADS)

    Dzyazko, Yu. S.; Trachevskii, V. V.; Rozhdestvenskaya, L. M.; Vasilyuk, S. L.; Belyakov, V. N.

    2013-05-01

    Samples of amorphous zirconium hydrogen phosphate with different zirconium and phosphorus concentrations in hydrogen and nickel-substituted forms are studied by means of electronic, 31P NMR, and impedance spectroscopy. It is shown that Ni(II) → H+ ion exchange is accompanied by the hydrolysis of sorbed cations and the formation of complexes with the dihydro- and hydrophosphate groups of the inorganic ionite. It is found that the coordination environment of Ni(II) in the sorbent phase includes 2-4 fragments of phosphate groups, along with OH groups and water molecules.

  13. Synthesis, Characterization, Spectral Studies and Antifungal Activity of Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) Complexes with 2-(4- Sulphophenylazo)-1,8-Dihydroxy-3,6-Napthalene Disulphonic Acid Trisodium Salt

    PubMed Central

    Pandey, Gajanan; Narang, K. K.

    2005-01-01

    Complexes of the type Na6[M(HL)2(H2O)2], where M= Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) and Na3H2L= 2-(4-sulphophenylazo)-1,8-dihydroxy 3,6 naphthalene disulphonic acid trisodium salt, have been synthesized and characterized by physico-chemical (elemental analyses, solubility, electrolytic conductance, magnetic susceptibility measurement) and spectral (UV-Visible, IR, ESR, powder x-ray diffraction) techniques for their structure and studied for their antifungal activity against ten fungi. The anionic 1:2 metal:ligand complexes show octahedral geometry around M(II), a significant antifungal activity against Curvularia lunata and Alternaria triticina and a moderate activity against Alternaria brassicicola, Alternaria brassicae, Alternaria solanae, Curvularia species, Helminthosporium oryzae, Collectotrichum capsici, Aspergillus niger, Aspergillus flavus and Fusarium udum. PMID:18365101

  14. Spectroscopic and structural study of some 2,5-hexanedione bis(salicyloylhydrazone) complexes: Crystal structures of its Ni(II) and Cu(II) complexes and N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxy-benzamide

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; El-Asmy, Ahmed A.

    2014-08-01

    The reaction between 2,5-hexanedione and salicylic acid hydrazide produced two compounds: 2,5-hexanedione bis(salicyloylhydrazone) [HDSH] (ethanol insoluble) and N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzamide [DPH] (ethanol soluble). HDSH formed complexes with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and Pd(II) which are characterized by elemental analyses, spectra (IR, 1H NMR, ESR and MS), thermal and magnetic measurements. The crystals of [Ni(HDSH-2H)(EtOH)(H2O)] and [Cu(HDSH-2H)] were solved having octahedral and square-planar geometries, respectively. The other complexes have the formulae [Co(HDSH-2H)(H2O)2], [Cu(HDSH-H)2], [Zn(HDSH-2H)(H2O)2], [Cd2(HDSH-4H)(H2O)4], [Cd2(HDSH-2H)(H2O)4Cl2]; [Hg(HDSH-2H)] and [Pd2(HDSH-4H)(H2O)4]. The obtained complexes are stable in air and non-hygroscopic. The magnetic moments and electronic spectra of the complexes provide different geometries. The ESR spectra support the mononuclear geometry for [Cu(HDSH-2H)] and [Cu(HDSH-H)2]. The thermal decomposition of the complexes revealed the coordinated waters as well as the end product which is in most cases the metal oxide. The crystal structure of N-(2,5-dimethyl-1H-pyrrol-1-yl)-2-hydroxybenzamide is solved by X-ray technique.

  15. Synthesis, spectral and quantum chemical studies and use of (E)-3-[(3,5-bis(trifluoromethyl)phenylimino)methyl]benzene-1,2-diol and its Ni(II) and Cu(II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent

    NASA Astrophysics Data System (ADS)

    Ünver, Hüseyin; Boyacıoğlu, Bahadır; Zeyrek, Celal Tuğrul; Yıldız, Mustafa; Demir, Neslihan; Yıldırım, Nuray; Karaosmanoğlu, Oğuzhan; Sivas, Hülya; Elmalı, Ayhan

    2016-12-01

    We report the synthesis of a novel Schiff base (E)-3-[(3,5-bis(trifluoromethyl) phenylimino)methyl] benzene-1,2-diol from the reaction of 2,3-dihydroxybenzaldehyde with 3,5-bis(trifluoromethyl)aniline, and its Ni(II) and Cu(II) complexes. The molecular structure of the Schiff base was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using density functional theory (DFT), Hartree-Fock (HF) and Möller-Plesset second-order perturbation (MP2). In addition, nonlinear optical (NLO) effects of the compound was predicted using DFT. The antimicrobial activities of the compounds were investigated for their minimum inhibitory concentration. UV-Vis spectroscopy studies of the interactions between the compounds and calf thymus DNA (CT-DNA) showed that the compounds interacts with CT-DNA via intercalative binding. A DNA cleavage study showed that the Cu(II) complex cleaved DNA without any external agents. The compounds inhibited the base pair mutation in the absence of S9 with high inhibition rate. In addition, in vitro cytotoxicity of the Ni(II) complex towards HepG2 cell line was assayed by the MTT method. Also, the colorimetric response of the Schiff base in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated. In this regard, while the addition of F-, CN-, AcO- and OH- anions into the solution containing Schiff base resulted in a significant color change, the addition of Br-, I-, SCN-, ClO4-, HSO4-, H2PO4- and N3- anions resulted in no color change. The most discernable color change in the Schiff base was caused by CN-, which demonstrated that the ligand can be used to selectively detect CN-.

  16. Ternary complexes metal [Co(II), Ni(II), Cu(II) and Zn(II)]--ortho-iodohippurate (I-hip)--acyclovir. X-ray characterization of isostructural [(Co, Ni or Zn)(I-hip)(2)(ACV)(H(2)O)(3)] with stacking as a recognition factor.

    PubMed

    Barceló-Oliver, M; Terrón, A; García-Raso, A; Fiol, J J; Molins, E; Miravitlles, C

    2004-11-01

    Four ternary metal--ortho-iodohippurate (I-hip)--acyclovir (ACV) complexes, [M(I-hip)(2)(ACV)(H(2)O)(3)] where M is Co(II) (1), Ni(II) (2), Cu (3) and Zn(II) have been obtained by reaction between the corresponding binary complexes M(II)(I-hip)(2)xnH(2)O and ACV. Three ternary complexes (M=Co, Ni and Zn) and the corresponding Zn(II)--ortho-iodohippurate binary derivative have been structurally characterized by X-ray diffraction: The studies show these three ternary complexes are isostructural and present, in solid state, an interesting stacking between the nucleobase and the aryl ring of the hippurate moiety, which probably promotes the formation of ternary complexes. Moreover, the two different ligands interact between them by means of ancillary hydrogen bonds with water molecules coordinated to the metal ion. It must be mentioned that these two recognition factors, hydrogen bonds plus stacking, could explain the reason for the isostructurality of these ternary derivatives with so different three metal ions, with diverses trends in coordination numbers and geometries. In solid state, there are two enantiomeric molecules that are related by an inversion center as the crystal-building unit (as a translational motif) for the ternary complexes.

  17. Pharmacologically significant complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) of novel Schiff base ligand, (E)-N-(furan-2-yl methylene) quinolin-8-amine: Synthesis, spectral, XRD, SEM, antimicrobial, antioxidant and in vitro cytotoxic studies

    NASA Astrophysics Data System (ADS)

    Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.

    2015-07-01

    A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.

  18. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).

    PubMed

    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao

    2016-04-18

    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling. PMID:27022765

  19. Two Isostructural Coordination Polymers Showing Diverse Magnetic Behaviors: Weak Coupling (Ni(II)) and an Ordered Array of Single-Chain Magnets (Co(II)).

    PubMed

    Chen, Min; Zhao, Hui; Sañudo, E Carolina; Liu, Chun-Sen; Du, Miao

    2016-04-18

    Two isomorphic 3-D complexes with the formulas [M3(TPTA) (OH)2(H2O)4]n (M = Ni for 1 and Co for 2; H4TPTA = [1,1':4',1″-terphenyl]-2',3,3″,5'-tetracarboxylic acid) have been synthesized and magnetically characterized. Complexes 1 (Ni(II)) and 2 (Co(II)) have the same 1-D rod-shaped inorganic SBUs but exhibit significantly different magnetic properties. Complex 2(Co(II)) is a 3-D arrangement of a 1-D Co(II) single-chain magnet (SCM), while complex 1(Ni(II)) exhibits weak coupling.

  20. Microscopic level investigation of Ni(II) sorption on Na-rectorite by EXAFS technique combined with statistical F-tests.

    PubMed

    Ren, Xuemei; Yang, Shitong; Hu, Fengchun; He, Bo; Xu, Jinzhang; Tan, Xiaoli; Wang, Xiangke

    2013-05-15

    Extended X-ray absorption fine structure (EXAFS) spectroscopy combined with statistical F-tests is used to investigate the local atomic structures of Ni(II) adsorbed on Na-rectorite. The EXAFS analysis results of Ni(II) sorption samples indicate that the first coordination shell consists of ~6 O at the Ni-O interatomic distance (R) of ~2.04 Å. The presence of Ni backscattering at R(Ni-Ni) = 3.06 Å in the second coordination shell suggests the formation of Ni(II) precipitate. The results of F-tests show that the Ni(II) precipitate is Ni-Al layered double hydroxide (LDH). Our results demonstrate that Ni(II) ions are retained via different mechanisms depending on solution conditions. At low pH, Ni retention is controlled mainly by the outer-sphere surface complexation. With increasing pH, outer-sphere and inner-sphere surface complexation dominate Ni uptake. Furthermore, Ni surface loading increases with temperature increasing at pH 6.5 due to the formation of inner-sphere surface complexes and Ni-Al LDH. The formation of Ni-Al LDH becomes the dominate mechanism at the elevated pH and temperature. In the presence of humic substances, the sorption of Ni(II) on Na-rectorite is dominated by the formation of ternary surface complexes. These results are important to understand the physicochemical behavior of Ni(II) in the natural environment. PMID:23500786

  1. Synthesis, Characterization, and Biological Activity of N′-[(Z)-(3-Methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)(phenyl)methyl]benzohydrazide and Its Co(II), Ni(II), and Cu(II) Complexes

    PubMed Central

    Asegbeloyin, Jonnie N.; Ujam, Oguejiofo T.; Okafor, Emmanuel C.; Babahan, Ilknur; Coban, Esin Poyrazoglu; Özmen, Ali; Biyik, Halil

    2014-01-01

    Reaction of 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one and benzoyl hydrazide in refluxing ethanol gave N′-[(Z)-(3-methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)(phenyl)methyl]benzohydrazide (HL1), which was characterized by NMR spectroscopy and single-crystal X-ray structure study. X-ray diffraction analyses of the crystals revealed a nonplanar molecule, existing in the keto-amine form, with intermolecular hydrogen bonding forming a seven-membered ring system. The reaction of HL1 with Co(II), Ni(II), and Cu(II) halides gave the corresponding complexes, which were characterized by elemental analysis, molar conductance, magnetic measurements, and infrared and electronic spectral studies. The compounds were screened for their in vitro cytotoxic activity against HL-60 human promyelocytic leukemia cells and antimicrobial activity against some bacteria and yeasts. Results showed that the compounds are potent against HL-60 cells with the IC50 value ≤5 μM, while some of the compounds were active against few studied Gram-positive bacteria. PMID:25332694

  2. Another step toward DNA selective targeting: NiII and CuII complexes of a Schiff base ligand able to bind gene promoter G-quadruplexes† †Electronic supplementary information (ESI) available. CCDC 1451694–1451696. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6dt00648e Click here for additional data file. Click here for additional data file.

    PubMed Central

    Lötsch, Daniela; van Schoonhoven, Sushilla; Roller, Alexander; Kowol, Christian R.; Berger, Walter; Keppler, Bernhard K.

    2016-01-01

    DNA G-rich sequences are able to form four-stranded structures organized in stacked guanine tetrads. These structures, called G-quadruplexes, were found to have an important role in the regulation of oncogenes expression and became, for such a reason, appealing targets for anticancer drugs. Aiming at finding selective G-quadruplex binders, we have designed, synthesized and characterized a new water soluble Salen-like Schiff base ligand and its NiII and CuII metal complexes. UV-Vis, circular dichroism and FRET measurements indicated that the nickel complex can stabilize oncogene promoter G-quadruplexes with high selectivity, presenting no interactions with duplex DNA at all. The same compound exhibited dose-dependent cytotoxic activity in MCF-7 breast cancer cells when combined with lipofectamine as lipophilic carrier. PMID:27054617

  3. Deprotonation Induced Ligand Oxidation in a Ni(II) Complex of a Redox Noninnocent N(1)-(2-Aminophenyl)benzene-1,2-diamine and Its Use in Catalytic Alcohol Oxidation.

    PubMed

    Sikari, Rina; Sinha, Suman; Jash, Upasona; Das, Siuli; Brandão, Paula; de Bruin, Bas; Paul, Nanda D

    2016-06-20

    Two nickel(II)-complexes, [Ni(II)(H3L)2](ClO4)2 ([1](ClO4)2) and [Ni(II)(HL)2] (2), containing the redox-active tridentate ligand N(1)-(2-aminophenyl)benzene-1,2-diamine (H3L) have been synthesized. Complex [1](ClO4)2 is octahedral containing two neutral H3L ligands in a facial coordination mode, whereas complex 2 is a singlet diradical species with approximately planar configuration at the tetracoordinate metal atom with two pendant NH2 side arms from each of the coordinated ligands. Both complexes are found to be chemically interconvertible; complex [1](2+) gets converted to complex 2 when exposed to base and oxygen via simultaneous deprotonation and oxidation of the coordinated ligands. Molecular and electronic structures of the isolated complexes are scrutinized thoroughly by various spectroscopic techniques, single crystal X-ray crystallography, and density functional theory. The observed dissociation of a ligand arm upon oxidation of the ligand was exploited to bring about catalytic alcohol oxidation using coordinatively saturated complex [1](ClO4)2 as a catalyst precursor. Both the complexes [1](ClO4)2and 2 were tested for catalytic oxidation of both primary and secondary alcohols. PMID:27267427

  4. Synthesis, spectroscopic characterization and antimicrobial studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with Schiff bases derived from 5-bromo-salicylaldehyde

    NASA Astrophysics Data System (ADS)

    Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol

    2013-09-01

    In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.

  5. Rational design of azide-bridged bimetallic complexes. Crystal structure and magnetic properties of Fe(III)MFe(III) (M = Ni(II) and Cu(II)) trinuclear species.

    PubMed

    Colacio, Enrique; Costes, Jean-Pierre; Domínguez-Vera, José M; Maimoun, Ikram Ben; Suárez-Varela, José

    2005-01-28

    The first examples of azide-bridged bimetallic trinuclear complexes ([M(cyclam)][FeL(N3)(mu1,5-N3)]2) (H2L = 4,5-dichloro-1,2-bis(pyridine-2-carboxamido) benzene) have been structurally and magnetically characterized.

  6. Preparation of 4-([2,2':6',2″-terpyridin]-4'-yl)-N,N-diethylaniline Ni(II) and Pt(II) complexes and exploration of their in vitro cytotoxic activities.

    PubMed

    Zou, Hua-Hong; Wang, Li; Long, Zhi-Xiang; Qin, Qi-Pin; Song, Zhong-Kui; Xie, Tao; Zhang, Shu-Hua; Liu, Yan-Cheng; Lin, Bin; Chen, Zhen-Feng

    2016-01-27

    Two metal complexes of NiLCl2 (1) and [PtLCl]Cl (2) with 4-([2,2':6',2″-terpyridin]-4'-yl)-N,N-diethylaniline (L) were synthesized and characterized. 1 and 2 exhibited selective cytotoxicity to T-24 cells more than L, compared with the normal liver cell line (HL-7702). Various experiments showed that L, 1 and 2 caused T-24 cell cycle arrest at S phase, as shown by the down-regulation of cdc25 A, cyclin A, cyclin B and CDK2 and the up-regulation of p21, p27 and p53. Furthermore, complexes 1 and 2, especially complex 2, acted as telomerase inhibitors targeting c-myc G-quadruplex DNA and triggered cell apoptosis. In addition, 1 and 2 also caused mitochondrial dysfunction. Taken together, we found that 1 and 2 exerted their cytotoxic activity mainly via inhibiting telomerase by interaction with c-myc quadruplex and disruption of mitochondrial function.

  7. Syntheses, structures, and magnetic properties of acetato- and diphenolato-bridged 3d-4f binuclear complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = Zn(II), Cu(II), Ni(II), Co(II); Ln = La(III), Gd(III), Tb(III), Dy(III); 3-MeOsaltn = N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = acetato; hfac = hexafluoroacetylacetonato; x = 0 or 1).

    PubMed

    Towatari, Masaaki; Nishi, Koshiro; Fujinami, Takeshi; Matsumoto, Naohide; Sunatsuki, Yukinari; Kojima, Masaaki; Mochida, Naotaka; Ishida, Takayuki; Re, Nazzareno; Mrozinski, Jerzy

    2013-05-20

    A series of 3d-4f binuclear complexes, [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (x = 0 for M = Cu(II), Zn(II); x = 1 for M = Co(II), Ni(II); Ln = Gd(III), Tb(III), Dy(III), La(III)), have been synthesized and characterized, where 3-MeOsaltn, ac, and hfac denote N,N'-bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato, acetato, and hexafluoroacetylacetonato, respectively. The X-ray analyses demonstrated that all the complexes have an acetato- and diphenolato-bridged M(II)-Ln(III) binuclear structure. The Cu(II)-Ln(III) and Zn(II)-Ln(III) complexes are crystallized in an isomorphous triclinic space group P1, where the Cu(II) or Zn(II) ion has square pyramidal coordination geometry with N2O2 donor atoms of 3-MeOsaltn at the equatorial coordination sites and one oxygen atom of the bridging acetato ion at the axial site. The Co(II)-Ln(III) and Ni(II)-Ln(III) complexes are crystallized in an isomorphous monoclinic space group P2(1)/c, where the Co(II) or Ni(II) ion at the high-spin state has an octahedral coordination environment with N2O2 donor atoms of 3-MeOsaltn at the equatorial sites, and one oxygen atom of the bridged acetato and a methanol oxygen atom at the two axial sites. Each Ln(III) ion for all the complexes is coordinated by four oxygen atoms of two phenolato and two methoxy oxygen atoms of "ligand-complex" M(3-MeOsaltn), four oxygen atoms of two hfac(-), and one oxygen atom of the bridging acetato ion; thus, the coordination number is nine. The temperature dependent magnetic susceptibilities from 1.9 to 300 K and the field-dependent magnetization up to 5 T at 1.9 K were measured. Due to the important orbital contributions of the Ln(III) (Tb(III), Dy(III)) and to a lesser extent the M(II) (Ni(II), Co(II)) components, the magnetic interaction between M(II) and Ln(III) ions were investigated by an empirical approach based on a comparison of the magnetic properties of the M(II)-Ln(III), Zn(II)-Ln(III), and M(II)-La(III) complexes. The differences of χ(M)T and M

  8. Voltammetry as a virtual potentiometric sensor in modelling of a metal-ligand system and refinement of stability constants. Part 4. An electrochemical study of NiII complexes with methylene diphosphonic acid.

    PubMed

    Cukrowski, Ignacy; Mogano, Daniel M; Zeevaart, Jan Rijn

    2005-12-01

    The Ni(II)-MDP-OH system (MDP=methylene diphosphonic acid) and stability constants of complexes formed at ionic strength 0.15M at 298K were established by direct current polarography (DCP) and glass electrode potentiometry (GEP). The final M-L-OH model could only be arrived to by employing recent concept of virtual potentiometry (VP). VP-data were generated from non-equilibrium and dynamic DC polarographic technique. The VP and GEP data were refined simultaneously by software dedicated to potentiometric studies of metal complexes. Species distribution diagrams that were generated for different experimental conditions employed in this work assisted in making the final choice regarding the metal-ligand model. The model established contains ML, ML(2), ML(OH) and ML(OH)(2) with stability constants, as logbeta, 7.94+/-0.02, 13.75+/-0.02, 12.04 (fixed value), and 16.75+/-0.05, respectively. It has been demonstrated that virtual potential must be used in modelling operations (predictions of species formed) when a polarographic signal decreases significantly due to the formation of polarographically inactive species (or formation of inert complexes). The linear free energy relationships that included stability constant logK(1) for Ni(II)-MDP established in this work together with other available data were used to predict logK(1) values for Sm(III) and Ho(III) with MDP. The logK(1) values for Sm(III)-MDP and Ho(III)-MDP were estimated to be 9.65+/-0.10 and 9.85+/-0.10, respectively. PMID:16213588

  9. Synthesis and spectroscopic characterization of Ni(II) complexes involving functionalised dithiocarbamates and triphenylphosphine: Anagostic interaction in (N-cyclopropyl-N-(4-fluorobenzyl)dithiocarbamato-S,S‧) (thiocyanato-N)(triphenylphosphine)nickel(II)

    NASA Astrophysics Data System (ADS)

    Sathiyaraj, E.; Srinivasan, T.; Thirumaran, S.; Velmurugan, D.

    2015-12-01

    Twelve new nickel(II) complexes namely [Ni(S2CNRR‧)2](1-6) and [Ni(S2CNRR‧)(NCS)(PPh3)](7-12) [where R = cyclopropyl (cPr); R‧ = 2HO-C6H4-CH2- (1,7), 3HO-C6H4-CH2- (2,8), 4HO-C6H4-CH2- (3,9), 4CH3O-C6H4-CH2- (4,10), 4F-C6H4-CH2- (5,11), 4Cl-C6H4-CH2- (6,12)] have been prepared and characterized by elemental analysis, IR, UV-Vis and NMR (1H and 13C) spectroscopy. A single crystal X-ray structural analysis was carried out for (N-cyclopropyl-N-(4-fluorobenzyl)dithiocarbamato-S,S‧)(thiocyanato-N)- (triphenylphosphine)nickel(II). The increase in wavenumber of νC-N thioureide and decrease in chemical shift values of heteroleptic complexes 7-12 compared to that of homoleptic complexes 1-6 are due to the mesomeric drift of electron density from the dithiocarbamate moiety towards the metal centre, increasing the carbon-nitrogen double bond character. The increased strength of C-N bond is due to the presence of the π-accepting triphenylphosphine. Electronic spectral studies indicated square planar geometry around the nickel(II) central atom for all the complexes. Single crystal X-ray structural analysis of 11 confirms that the coordination geometry about the Ni is distorted square planar. The C-H…F interactions lead to a polymeric structure and a rare intramolecular anagostic interaction [M…H = 2.929 Å] is observed. The molecular geometry, HOMO-LUMO in the ground state and MEP have been calculated for 11 using the Hartree-Fock (HF) method with the LANL2DZ basic set. The optimized bond lengths and bond angles agree well with the experimental results. The asymmetry in the Ni-S bonds reveal the greater trans influence of triphenylphosphine compared to that of the isothiocyanate ion.

  10. Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach.

    PubMed

    Ding, Congcong; Cheng, Wencai; Wang, Xiangxue; Wu, Zhen-Yu; Sun, Yubing; Chen, Changlun; Wang, Xiangke; Yu, Shu-Hong

    2016-08-01

    The competitive sorption of Pb(II), Cu(II) and Ni(II) on the uniform carbonaceous nanofibers (CNFs) was investigated in binary/ternary-metal systems. The pH-dependent sorption of Pb(II), Cu(II) and Ni(II) on CNFs was independent of ionic strength, indicating that inner-sphere surface complexation dominated sorption Pb(II), Cu(II) and Ni(II) on CNFs. The maximum sorption capacities of Pb(II), Cu(II) and Ni(II) on CNFs in single-metal systems at a pH 5.5±0.2 and 25±1°C were 3.84 (795.65mg/g), 3.21 (204.00mg/g) and 2.67 (156.70mg/g)mmol/g, respectively. In equimolar binary/ternary-metal systems, Pb(II) exhibited greater inhibition of the sorption of Cu(II) and Ni(II), demonstrating the stronger affinity of CNFs for Pb(II). The competitive sorption of heavy metals in ternary-metal systems was predicted quite well by surface complexation modeling derived from single-metal data. According to FTIR, XPS and EXAFS analyses, Pb(II), Cu(II) and Ni(II) were specifically adsorbed on CNFs via covalent bonding. These observations should provide an essential start in simultaneous removal of multiple heavy metals from aquatic environments by CNFs, and open the doorways for the application of CNFs. PMID:27108273

  11. Synthesis and Characterization of New Schiff Bases Derived from N (1)-Substituted Isatin with Dithiooxamide and Their Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) Complexes

    PubMed Central

    Abdul-Ghani, Ahlam J.; Khaleel, Asmaa M. N.

    2009-01-01

    Three new Schiff bases of N-substituted isatin LI, LII, and LIII = Schiff base of N-acetylisatin, N-benzylisatin, and N-benzoylisatin, respectively, and their metal complexes C1a,b = [Co2(LI)2Cl3]Cl, C2 = [Ni(LI)2Cl2]0.4BuOH, C3 = [CuLICl(H2O)]Cl ⋅ 0.5BuOH, C4 = [Pd(LI)2Cl]Cl, C5 = [Pt(L1)2Cl2]Cl2 ⋅ 1.8EtOH.H2O, C6a = [CoLIICl]Cl ⋅ 0.4H2O ⋅ 0.3DMSO, C6b = [CoLIICl]Cl ⋅ 0.3H2O ⋅ 0.1BuOH, C7 = [NiLIICl2], C8 = [CuLII]Cl2 ⋅ H2O , C9 = [Pd(LII)2]Cl2, C10 = [Pt(LII)2.5Cl]Cl3, C11a = [Co(LIII)]C12 ⋅ H2O, C11b = [Co(LIII)]Cl2 ⋅ 0.2H2O, and C12 = [Ni(LIII)2]Cl2, C13 = [Ni(LIII)2]Cl2 were reported. The complexes were characterized by elemental analyses, metal and chloride content, spectroscopic methods, magnetic moments, conductivity measurements, and thermal studies. Some of these compounds were tested as antibacterial and antifungal agents against Staphylococcus aureus, Proteus vulgaris, Candida albicans, and Aspergillus niger. PMID:19865487

  12. Syntheses, structures, and magnetic properties of a family of tetranuclear hydroxido-bridged Ni(II)2Ln(III)2 (Ln = La, Gd, Tb, and Dy) complexes: display of slow magnetic relaxation by the zinc(II)-dysprosium(III) analogue.

    PubMed

    Abtab, Sk Md Towsif; Maity, Manoranjan; Bhattacharya, Kisholoy; Sañudo, E Carolina; Chaudhury, Muktimoy

    2012-10-01

    A new family of [2 × 2] tetranuclear 3d-4f heterometallic complexes have been synthesized. These are [Zn(2)Dy(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·2H(2)O·MeOH (3), [Ni(2)Dy(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·MeOH (4), [Ni(2)La(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](ClO(4))·H(2)O·2MeOH (5), [Ni(2)Tb(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2) (MeOH)(2)](NO(3))·MeOH (6), and [Ni(2)Gd(2)L(2)(μ(3)-OH)(2)(μ(4)-OH)(dbm)(2)(MeOH)(2)](NO(3))·MeOH (7), [H(2)L = N,N'-dimethyl-N,N'-bis(2-hydroxy-3,5-dimethylbenzyl)ethylenediamine and Hdbm = dibenzoylmethane] obtained through a single-pot synthesis using [Zn(HL)(dbm)] (for 3)/[Ni(HL)(dbm)]·2CH(3)OH (for 4, 5, 6, and 7) as 3d-metal ion precursors. Single-crystal X-ray diffraction analysis and electrospray ionization (ESI) mass spectroscopy have been used to establish their identities. Compounds are isostructural, in which the metal ions are all connected together by a bridging hydroxido ligand in a rare μ(4)-mode. In complexes 3-7, the metal ions are antiferromagnetically coupled. Taking a cue from the results of 3 and 5, precise estimations have been made for the antiferromagnetic Ni···Ni (J(Ni) = -50 cm(-1)), Ni···Gd (J(NiGd) = -4.65 cm(-1)), and Gd···Gd (J(Gd) = -0.02 cm(-1)) exchange interactions in 7, involving the gadolinium(III) ions. The Zn(II)(2)Dy(III)(2) compound 3 has shown the tail of an out-of-phase signal in alternating current (AC) susceptibility measurement, indicative of slow relaxation of magnetization. Interestingly, the Ni(II)(2)Dy(III)(2) compound 4 in which both the participating metal ions possess large single ion anisotropy, has failed to show up any slow magnetic relaxation.

  13. A Novel Mixed Macrocycle Complex of Nickel: Synthesis, Structure, and Redox Chemistry of [Ni(II)([9]aneN(3))([9]aneS(3))](ClO(4))(2).CHCl(3) ([9]aneN(3) = 1,4,7-Triazacyclononane and [9]aneS(3) = 1,4,7-Trithiacyclononane).

    PubMed

    McAuley, A.; Subramanian, S.; Zaworotko, M. J.; Atencio, R.

    1998-09-01

    The mixed macrocycle cation, [Ni([9]aneN(3))([9]aneS(3))](2+) (where [9]aneN(3) = 1,4,7-triazacyclononane and [9]aneS(3) = 1,4,7-trithiacyclononane), has been prepared by stepwise complexation of [9]aneN(3) and [9]aneS(3), respectively, to Ni(II) cation. The intermediate [Ni([9]aneN(3))(CH(3)NO(2))(3)](2+) has been isolated and characterized by mass spectrometry and UV-visible spectroscopy. Cyclic voltammetry of [Ni([9]aneN(3))(CH(3)NO(2))(3)](2+) shows a quasireversible wave for the Ni(II/III) couple (E(1/2) = 0.73V vs Fc(+/0)), and the Ni(III) species exhibits an axial ESR spectrum (g( perpendicular) = 2.101 and g( parallel) = 1.985). The structure of [Ni([9]aneN(3))([9]aneS(3))](ClO(4))(2).CHCl(3) has been determined. It crystallizes in monoclinic space group P2(1)/c with a = 13.3911(8) Å, b = 14.4430(9) Å, c = 13.6116(8) Å, beta = 107.2090(10) degrees, V = 2514.7(3) Å(3), and Z = 4. Of the 15 047 reflections collected, 5765 reflections (I > 2sigma(I)) were used in the refinement to obtain a final R(w) = 0.0278 and R(F) = 0.0368. In the cation [Ni([9]aneN(3))([9]aneS(3))](2+), the two macrocycles occupy the trigonal faces of the Ni(2+) ion, imposing a distorted octahedral geometry. Cyclic voltammetry of the complex in CH(3)CN (Pt electrodes, 0.1 M n-Bu(4)NClO(4), 500 mV) shows a quasireversible wave for the Ni(II)/Ni(III) couple (E(1/2) = 0.86V vs Fc(+/0)). Chemical oxidation by NOPF(6) of the cation [Ni([9]aneN(3))([9]aneS(3))](2+) generates a Ni(III) species that shows axial ESR spectrum with g( perpendicular) = 2.106 and g( parallel) = 2.063. No characteristic reduction wave was observed in either CH(3)CN or CH(3)NO(2) media. PMID:11670608

  14. Ni(II) And Co(II) Sensing By Escherichia Coli RcnR

    SciTech Connect

    Iwig, J.S.; Leitch, S.; Herbst, R.W.; Maroney, M.J.; Chivers, P.T.

    2009-05-18

    Escherichia coli RcnR and Mycobacterium tuberculosis CsoR are the founding members of a recently identified, large family of bacterial metal-responsive DNA-binding proteins. RcnR controls the expression of the metal efflux protein RcnA only in response to Ni(II) and Co(II) ions. Here, the interaction of Ni(II) and Co(II) with wild-type and mutant RcnR proteins is examined to understand how these metals function as allosteric effectors. Both metals bind to RcnR with nanomolar affinity and stabilize the protein to denaturation. X-ray absorption and electron paramagnetic resonance spectroscopies reveal six-coordinate high-spin sites for each metal that contains a thiolate ligand. Experimental data support a tripartite N-terminal coordination motif (NH{sub 2}-Xaa-NH-His) that is common for both metals. However, the Ni(II)- and Co(II)-RcnR complexes are shown to differ in the remaining coordination environment. Each metal coordinates a conserved Cys ligand but with distinct M-S distances. Co(II)-thiolate coordination has not been observed previously in Ni(II)-/Co(II)-responsive metalloregulators. The ability of RcnR to recruit ligands from the N-terminal region of the protein distinguishes it from CsoR, which uses a lower coordination geometry to bind Cu(I). These studies facilitate comparisons between Ni(II)-RcnR and NikR, the other Ni(II)-responsive transcriptional regulator in E. coli, to provide a better understanding how different nickel levels are sensed in E. coli. The characterization of the Ni(II)- and Co(II)-binding sites in RcnR, in combination with bioinformatics analysis of all RcnR/CsoR family members, identified a four amino acid fingerprint that likely defines ligand-binding specificity, leading to an emerging picture of the similarities and differences between different classes of RcnR/CsoR proteins.

  15. Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography.

    PubMed

    Wu, Chien-Ching; Reinhoudt, David N; Otto, Cees; Velders, Aldrik H; Subramaniam, Vinod

    2010-02-23

    An indirect method of protein patterning by using Ni(II) ion templates for immobilization via a specific metal-protein interaction is described. A nitrilotriacetic acid (NTA)-terminated self-assembled monolayer (SAM) allows oriented binding of histidine-tagged proteins via complexation with late first-row transition metal ions, such as Ni(II). Patterns of nickel(II) ions were prepared on NTA SAM-functionalized glass slides by microcontact printing (microCP) and dip-pen nanolithography (DPN) to obtain micrometer and submicrometer scale patterns. Consecutive dipping of the slides in 6His-protein solutions resulted in the formation of protein patterns, as was subsequently proven by AFM and confocal fluorescence microscopy. This indirect method prevents denaturation of fragile biomolecules caused by direct printing or writing of proteins. Moreover, it yields well-defined patterned monolayers of proteins and, in principle, is indifferent for biomolecules with a high molecular weight. This approach also enabled us to characterize the transfer of Ni(II) ions on fundamental parameters of DPN, such as writing speeds and tip-surface contact times, while writing with the smallest possible ink "molecules" (i.e., metal ions). PMID:20104881

  16. Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies

    NASA Astrophysics Data System (ADS)

    Yang, Shitong; Ren, Xuemei; Zhao, Guixia; Shi, Weiqun; Montavon, Gilles; Grambow, Bernd; Wang, Xiangke

    2015-10-01

    Heavy metal ions that leach from various industrial and agricultural processes are simultaneously present in the contaminated soil and water systems. The competitive sorption of these toxic metal ions on the natural soil components and sediments significantly influences their migration, bioavailability and ecotoxicity in the geochemical environment. In this study, the competitive sorption and selectivity order of Cu(II) and Ni(II) on montmorillonite are investigated by combining the batch experiments, X-ray diffraction (XRD), electron paramagnetic resonance (EPR), surface complexation modeling and X-ray Absorption Spectroscopy (XAS). The batch experimental data show that the coexisting Ni(II) exhibits a negligible influence on the sorption behavior of Cu(II), whereas the coexisting Cu(II) reduces the Ni(II) sorption percentage and changes the shape of the Ni(II) sorption isotherm. The sorption species of Cu(II) and Ni(II) on montmorillonite over the acidic and near-neutral pH range are well simulated by the surface complexation modeling. However, this model cannot identify the occurrence of surface nucleation and the co-precipitation processes at a highly alkaline pH. Based on the results of the EPR and XAS analyses, the microstructures of Cu(II) on montmorillonite are identified as the hydrated free Cu(II) ions at pH 5.0, inner-sphere surface complexes at pH 6.0 and the surface dimers/Cu(OH)2(s) precipitate at pH 8.0 in the single-solute and the binary-solute systems. For the Ni(II) sorption in the single-solute system, the formed microstructure varies from the hydrated free Ni(II) ions at the pH values of 5.0 and 6.0 to the inner-sphere surface complexes at pH 8.0. For the Ni(II) sorption in the binary-solute system, the coexisting Cu(II) induces the formation of the inner-sphere complexes at pH 6.0. In contrast, Ni(II) is adsorbed on montmorillonite via the formation of Ni phyllosilicate co-precipitate/α-Ni(OH)2(s) precipitate at pH 8.0. The selective sequence

  17. Coordination behavior and bio-potent aspects of Ni(II) with 2-aminobenzamide and some amino acid mixed ligands--Part II: Synthesis, spectral, morphological, pharmacological and DNA interaction studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha

    2014-11-11

    A series of novel bioactive mixed ligand Ni(II) complexes (1a-1d) have been synthesised by using 2-aminobenzamide (2AB) and some bio-relevant amino acid ligands. The synthesised Ni(II) complexes were structurally characterized by various physico-chemical and spectral studies. Elemental analysis and molar conductance values suggest that 1:1:1 stoichiometry with non-electrolytic nature. Based on the spectral studies, both the ligands act as bidentate and they chelate with Ni(II) ion via amino-NH2 and amido-O and deprotonated carboxylato-O and amino-NH2 atoms respectively to form a stable six, five membered chelate rings with mononuclear octahedral geometry. Thermal studies show the presence of coordinated water and acetate molecules in the coordination. The powder X-ray diffractogram and SEM pictograph imply that all the complexes have fine crystalline peaks with homogeneous surface morphology. In vitro antimicrobial and antioxidant studies indicate the complexes are more active than free 2-aminobenzamide ligand. The Ni(II)-2AB-gly/phe complexes (1a and 1d) show significant oxidative cleavage and DNA binding activities. Moreover, the 3D molecular modeling, analysis of the complexes has also been studied.

  18. Recycling of Ni(II)-citrate complexes using precipitation in alkaline solutions.

    PubMed

    Gyliene, O; Aikaite, J; Nivinskiene, O

    2004-06-18

    When the excess of Ni(II) ions as compared to citrate concentration is used both Ni(II) ions and citrate can be precipitated in alkaline solutions. The ratio between Ni(II) and citrate in the precipitate and completeness of citrate precipitation depends on the ratio between the Ni(II) and citrate concentrations in the initial solution and its pH. The data of chemical analysis, potentiometric titration, FT-IR as well as visible spectrophotometric investigations suggest that Ni(II) in the insoluble compound is bound with three -COO- groups and -OH group of the citrate. The insoluble compound also contains SO4(2-) and hydroxides. The treatment of this precipitate with H2SO4 enables to recover a soluble Ni(II)-citrate complex, which can be reused in practice, and to remove the excess of Ni(II) in the form of insoluble Ni(OH)2. PMID:15177751

  19. Ni(II) sorption on biogenic Mn-oxides with varying Mn octahedral layer structure.

    PubMed

    Zhu, Mengqiang; Ginder-Vogel, Matthew; Sparks, Donald L

    2010-06-15

    Biogenic Mn-oxides (BioMnO(x)), produced by microorganisms, possess an extraordinary ability to sequester metals. BioMnO(x) are generally layered structures containing varying amounts of Mn(III) and vacant sites in the Mn layers. However the relationship between the varying structure of BioMnO(x) and metal sorption properties remains unclear. In this study, BioMnO(x) produced by Pseudomonas putida strain GB-1 was synthesized at either pH 6, 7, or 8 in CaCl(2) solution, and Ni(II) sorption mechanisms were determined at pH 7 and at different Ni(II) loadings, using isotherm and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses. Our data demonstrate that Ni(II) sorbs at vacant sites in the interlayer of the BioMnO(x) and the maximum Ni(II) sorption capacity increases as the formation pH of BioMnO(x) decreases. This relation indicates that the quantity of BioMnO(x) vacant sites increases as formation conditions become more acidic, which is in good agreement with our companion study. Contents of the vacant sites were quantitatively estimated based on maximum Ni(II) sorption capacity. Additionally, this study reveals that imidazole groups are involved in Ni(II) binding to biomaterials, and have a higher Ni(II) sorption affinity, but a lower site density compared to carboxyl groups. PMID:20469849

  20. Interfacial reaction in the synergistic extraction rate of Ni(II) with dithizone and 1,10-phenanthroline.

    PubMed

    Watarai, H; Sasaki, K; Takahashi, K; Murakami, J

    1995-11-01

    The kinetic synergistic effect of 1,10-phenanthroline (phen) on the extraction rate of Ni(II) with dithizone (HDz) into chloroform was studied by means of a high-speed stirring method combined with photodiode-array spectrophotometry. The initial extraction rate of the adduct complex NiDz(2)phen depended upon the concentrations of both HDz and phen, suggesting the formation of NiDzphen(+) as the rate-controlling step. When [HDz] < [phen], the initial extraction of NiDz(2)phen competed with the formation of an intermediate complex, which was adsorbed at the interface and assigned most probably to NiDzphen(+)(2). The intermediate complex was gradually converted to NiDz(2)phen at a later stage of the extraction. The rate constants for the formation and consumption of the intermediate were determined, and the kinetic mechanism in the synergistic extraction was discussed.

  1. Arene C(sp(2))-H Metalation at Ni(II) Modeled with a Reactive PONCPh Ligand.

    PubMed

    Jongbloed, Linda S; García-López, Diego; van Heck, Richard; Siegler, Maxime A; Carbó, Jorge J; van der Vlugt, Jarl Ivar

    2016-08-15

    Coordination of the reactive phosphinitopyridylphenyl PONCPh ligand L(H) to NiBr2 initially yields paramagnetic brown NiBr2(L(H)) (1), but addition of triethylamine results in fast and facile cyclometalation at Ni(II), giving NiBr(κ(3)-P,N,C-L) (2) as well-defined species. This is a rare example of direct cyclometalation at Ni(II) from a C-H bond in a ligand structure other than encumbering ligands (e.g., ECE pincers). Diamagnetic yellow complex 2 reacts instantaneously with HBF4 to give purple [NiBr(κ(3)-P,N-L(H))]BF4 (3). A very unusual (an)agostic Ni(CPh-H) interaction in the solid-state structure of 3 was unequivocally demonstrated using single-crystal X-ray crystallography and was interpreted by density functional theory calculations (quantum theory of atoms in molecules and electron localization function analysis). These compounds may be viewed as models for key intermediates in the Ni-catalyzed C-H functionalization of arenes. PMID:27479533

  2. Biosorption of Ni(II) from aqueous solutions by Litchi chinensis seeds.

    PubMed

    Flores-Garnica, Jonathan Gonzalo; Morales-Barrera, Liliana; Pineda-Camacho, Gabriela; Cristiani-Urbina, Eliseo

    2013-05-01

    The potential of Litchi chinensis seeds (LCS) for biosorption of Ni(II) ions from aqueous solutions was investigated in batch systems in terms of kinetics, equilibrium and thermodynamics. Experimental data showed that the biosorption capacity of LCS was dependent on operating variables such as solution pH, initial Ni(II) concentration, contact time, and temperature. The optimum pH value for Ni(II) biosorption was 7.5. Significant enhancement of Ni(II) biosorption was observed by increasing initial metal concentration and temperature. Modeling of sorption kinetics showed good agreement of experimental data with the pseudo-second-order kinetic model. Langmuir model exhibited the best fit to experimental data. According to this isotherm model, the maximum Ni(II) biosorption capacity of LCS is 66.62 mg g(-1). The calculated thermodynamic parameters showed that the biosorption of Ni(II) ions is an endothermic and non-spontaneous process. Results indicate that LCS can be used as an effective and environmentally friendly biosorbent to detoxify Ni(II)-polluted wastewaters.

  3. Ni(II) Sorption on Biogenic Mn-Oxides with Varying Mn Octahedral Layer Structure

    SciTech Connect

    Zhu, M.; Ginder-Vogel, M; Sparks, D

    2010-01-01

    Biogenic Mn-oxides (BioMnO{sub x}), produced by microorganisms, possess an extraordinary ability to sequester metals. BioMnO{sub x} are generally layered structures containing varying amounts of Mn(III) and vacant sites in the Mn layers. However the relationship between the varying structure of BioMnO{sub x} and metal sorption properties remains unclear. In this study, BioMnO{sub x} produced by Pseudomonas putida strain GB-1 was synthesized at either pH 6, 7, or 8 in CaCl{sub 2} solution, and Ni(II) sorption mechanisms were determined at pH 7 and at different Ni(II) loadings, using isotherm and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses. Our data demonstrate that Ni(II) sorbs at vacant sites in the interlayer of the BioMnO{sub x} and the maximum Ni(II) sorption capacity increases as the formation pH of BioMnO{sub x} decreases. This relation indicates that the quantity of BioMnO{sub x} vacant sites increases as formation conditions become more acidic, which is in good agreement with our companion study. Contents of the vacant sites were quantitatively estimated based on maximum Ni(II) sorption capacity. Additionally, this study reveals that imidazole groups are involved in Ni(II) binding to biomaterials, and have a higher Ni(II) sorption affinity, but a lower site density compared to carboxyl groups.

  4. Ten metal complexes of vitamin B3/niacin: Spectroscopic, thermal, antibacterial, antifungal, cytotoxicity and antitumor studies of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Cd(II), Pt(IV) and Au(III) complexes

    NASA Astrophysics Data System (ADS)

    Al-Saif, Foziah A.; Refat, Moamen S.

    2012-08-01

    Ten coordination compounds, namely Mn(NA)2Cl2·4H2O (1), Fe(NA)Cl3(H2O)2 (2), Co(NA)2(NO3)2·6H2O (3), Ni(NA)Cl2·5H2O (4), Cu(NA)Cl2·3H2O (5), Zn(NA)(NO3)2·H2O (6), Pd(NA)2Cl2·H2O (7), Cd(NA)Cl2·H2O (8), Pt(NA)2Cl4·5H2O (9) and Au(NA)Cl3 (10) were obtained by the reactions of the corresponding transition metal salts with vitamin B3/niacin (NA) in the presence of 1:4 (v:v) distilled water: methanol solvent at 70 °C for about 30 min, and their suggested structures were determined by elemental analyses, molar conductivity, (infrared, UV-vis) spectra, effective magnetic moment in Bohr magnetons, electron spin resonance (ESR), thermal analysis (TG), X-ray powder diffraction (XRD) as well as scanning electron microscopy (SEM). The results revealed that in complexes 1, 3, 7, and 9 both of two NA ligand coordinates one metal ion to form four or six coordinated structures, while in compound 10, one NA ligand coordinate to Au+++ ion to form a square-planar geometry with N-bonded pyridine ligand is suggested, and (2, 4, 5, 6 and, 8) complexes have 1:1 structures. Antimicrobial and antitumor activities were assessment against some kind of (G+ and G-) bacteria, fungi and breast carcinoma cells (MCF-7-cell line).

  5. Photosensitizing activity of ferrocenyl bearing Ni(II) and Cu(II) dithiocarbamates in dye sensitized TiO2 solar cells.

    PubMed

    Singh, Vikram; Chauhan, Ratna; Gupta, Ajit N; Kumar, Vinod; Drew, Michael G B; Bahadur, Lal; Singh, Nanhai

    2014-03-28

    Biferrocene bearing planar metal dithiocarbamates, namely, [M(FcCH2dtc)2] (dtc = furan-2-ylmethyldithiocarbamate, M = Cu(II) 1, Ni(II) 4; dtc = benzo[d][1,3]dioxol-5-ylmethyl dithiocarbamate, M = Cu(II) 2, Ni(II) 5; dtc = pyridin-2-ylmethyldithiocarbamate, M = Cu(II) 3, Ni(II) 6; Fc = ferrocenyl; Fe(η(5)-C5H5)(η(5)-C5H4-)), have been synthesized and characterized by microanalysis, magnetic susceptibility and cyclic voltammetry. Structures of 1, 2 and 4 have been obtained by single crystal X-ray diffraction. These complexes with pyridyl, piperonyl and furfuryl as heteroaromatic groups in the dithiocarbamate ligands have been exploited as sensitizers in dye sensitized TiO2 solar cells for converting sunlight into electrical energy. Light-to-electrical energy conversion efficiencies achieved using these sensitizers are considerably greater than those obtained with analogous compounds previously reported by us. The overall conversion efficiency (η) is found to be dependent upon the nature of the heteroaromatic conjugated linkers and increases in the order η (ferrocenylfurfuryl) > η (ferrocenylpiperonyl) > η (ferrocenylpyridyl) all values being lower than that obtained in the reference Ru dye N719 under similar experimental conditions. The conversion efficiencies also vary with the metal being higher for Ni (4, 5 and 6) than for Cu complexes (1, 2 and 3). The X-ray structural analyses reveal the existence of rare M···H-C intermolecular anagostic interactions involving the metal atom in chain motifs in 1 and 4, which are retained in solution as evidenced by (1)H NMR spectroscopy. PMID:24473675

  6. Relationship between Ni(II) and Zn(II) Coordination and Nucleotide Binding by the Helicobacter pylori [NiFe]-Hydrogenase and Urease Maturation Factor HypB*

    PubMed Central

    Sydor, Andrew M.; Lebrette, Hugo; Ariyakumaran, Rishikesh; Cavazza, Christine; Zamble, Deborah B.

    2014-01-01

    The pathogen Helicobacter pylori requires two nickel-containing enzymes, urease and [NiFe]-hydrogenase, for efficient colonization of the human gastric mucosa. These enzymes possess complex metallocenters that are assembled by teams of proteins in multistep pathways. One essential accessory protein is the GTPase HypB, which is required for Ni(II) delivery to [NiFe]-hydrogenase and participates in urease maturation. Ni(II) or Zn(II) binding to a site embedded in the GTPase domain of HypB modulates the enzymatic activity, suggesting a mechanism of regulation. In this study, biochemical and structural analyses of H. pylori HypB (HpHypB) revealed an intricate link between nucleotide and metal binding. HpHypB nickel coordination, stoichiometry, and affinity were modulated by GTP and GDP, an effect not observed for zinc, and biochemical evidence suggests that His-107 coordination to nickel toggles on and off in a nucleotide-dependent manner. These results are consistent with the crystal structure of HpHypB loaded with Ni(II), GDP, and Pi, which reveals a nickel site distinct from that of zinc-loaded Methanocaldococcus jannaschii HypB as well as subtle changes to the protein structure. Furthermore, Cys-142, a metal ligand from the Switch II GTPase motif, was identified as a key component of the signal transduction between metal binding and the enzymatic activity. Finally, potassium accelerated the enzymatic activity of HpHypB but had no effect on the other biochemical properties of the protein. Altogether, this molecular level information about HpHypB provides insight into its cellular function and illuminates a possible mechanism of metal ion discrimination. PMID:24338018

  7. Stabilization of hexagonal close-packed metallic nickel for alumina-supported systems prepared from Ni(II) glycinate

    SciTech Connect

    Rodriguez-Gonzalez, Vicente; Marceau, Eric Beaunier, Patricia; Che, Michel; Train, Cyrille

    2007-01-15

    The decomposition in flowing argon of the neutral complex [Ni{sup II}(glycinate){sub 2}(H{sub 2}O){sub 2}] leads to a mixture of face-centered cubic (fcc) and hexagonal close-packed (hcp) metallic nickel. The latter is the main phase when the Ni(II) complex is supported on alumina. Unlike most hexagonal Ni phases described earlier, and similar to hexagonal Ni{sub 3}C, the unit cell parameters (a=0.2493 and c=0.4084nm) lead to Ni-Ni distances equal to those encountered in fcc Ni. TEM shows that the nanoparticles are protected by graphite layers, whose elimination by heating in hydrogen results in transformation to the fcc phase and crystal growth. Magnetic measurements provide evidence of the coexistence of superparamagnetic and ferromagnetic nanoparticles. This result is in line with the broad size distribution observed by TEM and is interpreted on the basis of the metallic character of hcp Ni particles.

  8. Catalytic reduction of pralidoxime in pharmaceuticals by macrocyclic Ni(II) compounds derived from orthophthalaldehyde

    NASA Astrophysics Data System (ADS)

    Reddy, P. Muralidhar; Prasad, Adapa V. S. S.; Rohini, Rondla; Ravinder, Vadde

    2008-08-01

    Efficient catalytic method for the reduction of pralidoxime to its amine derivative by macrocyclic Ni(II) compounds has been developed. Ten macrocyclic Schiff base Ni(II) compounds were synthesized via non-template synthesis by treating the corresponding macrocycles with nickel chloride in 1:1 ratio. The resulting compounds were characterized by elemental, IR, 1H NMR, 13C NMR, mass, electronic spectra, conductance, magnetic, thermal studies and their structures have been proposed. These compounds were used as catalysts for the reduction of pralidoxime to its amino derivative. The reduced pralidoxime was also characterized by spectral analysis and catalytic cycle has been established. The reduced product was determined spectrophotometrically by treating with ninhydrin reagent and the percent yields were found to be in the range of 75.12-82.36%.

  9. Saturation magnetization of Ni(II) in metalloproteins and model compounds

    SciTech Connect

    Sendova, M.; Day, E.P.; Kiick, K.; Johnson, M.; Ma, L.; Scott, B.; Hausinger, R.; Todd, M.; Peterson, J. Univ. of Georgia, Athens Michigan State Univ., East Lansing Univ. of Alabama, Tuscaloosa )

    1992-01-01

    The Ni(II) sites of urease (from Klebsiella aerogenes and jack bean), coenzyme F[sub 430] (from Methanobacterium thermoautotrophicum), and several model compounds having octahedral symmetry have been studied using the saturation megnetization technique. Data were collected at four fixed fields over the temperature range from 2 - 200K. Theoretical curves calculated from the spin Hamiltonian were used to fit the experimentally obtained magnetization curves. The following parameters were determined: the spine state (S), the amount of the sample in this spin state ([S]), the gyromagnetic ratio (g), and the zero field splitting parameters (D, E/D). The amount of S=1 paramagnetism of the Ni(II) sites was found to depend on the pH of the buffer and on the concentration of the protein in D[sub 2]O (for coenzyme F[sub 430]). The relationship of the strength of the ligand field to the zero field splitting parameter was studied for the model compounds. There was no evidence for exchange coupling between the two Ni(II) ions at the active sites of either plant or bacterial urease.

  10. Process optimization for Ni(II) removal from wastewater by calcined oyster shell powders using Taguchi method.

    PubMed

    Yen, Hsing Yuan; Li, Jun Yan

    2015-09-15

    Waste oyster shells cause great environmental concerns and nickel is a harmful heavy metal. Therefore, we applied the Taguchi method to take care of both issues by optimizing the controllable factors for Ni(II) removal by calcined oyster shell powders (OSP), including the pH (P), OSP calcined temperature (T), Ni(II) concentration (C), OSP dose (D), and contact time (t). The results show that their percentage contribution in descending order is P (64.3%) > T (18.9%) > C (8.8%) > D (5.1%) > t (1.7%). The optimum condition is pH of 10 and OSP calcined temperature of 900 °C. Under the optimum condition, the Ni(II) can be removed almost completely; the higher the pH, the more the precipitation; the higher the calcined temperature, the more the adsorption. The latter is due to the large number of porosities created at the calcination temperature of 900 °C. The porosities generate a large amount of cavities which significantly increase the surface area for adsorption. A multiple linear regression equation obtained to correlate Ni(II) removal with the controllable factors is: Ni(II) removal(%) = 10.35 × P + 0.045 × T - 1.29 × C + 19.33 × D + 0.09 × t - 59.83. This equation predicts Ni(II) removal well and can be used for estimating Ni(II) removal during the design stage of Ni(II) removal by calcined OSP. Thus, OSP can be used to remove nickel effectively and the formula for removal prediction is developed for practical applications.

  11. Enneanuclear [Ni6Ln3] Cages: [Ln(III)3] Triangles Capping [Ni(II)6] Trigonal Prisms Including a [Ni6Dy3] Single-Molecule Magnet.

    PubMed

    Canaj, Angelos B; Tzimopoulos, Demetrios I; Siczek, Milosz; Lis, Tadeusz; Inglis, Ross; Milios, Constantinos J

    2015-07-20

    The use of (2-(β-naphthalideneamino)-2-hydroxymethyl-1-propanol) ligand, H3L, in Ni/Ln chemistry has led to the isolation of three new isostructural [Ni(II)6Ln(III)3] metallic cages. More specifically, the reaction of Ni(ClO4)2·6H2O, the corresponding lanthanide nitrate salt, and H3L in MeCN, under solvothermal conditions in the presence of NEt3, led to the isolation of three complexes with the formulas [Ni6Gd3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (1·5.75MeCN·2Et2O·1.5H2O), [Ni6Dy3(OH)6(HL)6(NO3)3]·2MeCN·2.7Et2O·2.4H2O (2·2MeCN·2.7Et2O·2.4H2O), and [Ni6Er3(OH)6(HL)6(NO3)3]·5.75MeCN·2Et2O·1.5H2O (3·5.75MeCN·2Et2O·1.5H2O). The structure of all three clusters describes a [Ln(III)3] triangle capping a [Ni(II)6] trigonal prism. Direct current magnetic susceptibility studies in the 5-300 K range for complexes 1-3 reveal the different nature of the magnetic interactions within the clusters: dominant antiferromagnetic exchange interactions for the Dy(III) and Er(III) analogues and dominant ferromagnetic interactions for the Gd(III) example. Alternating current magnetic susceptibility measurements under zero external dc field displayed fully formed temperature- and frequency-dependent out-of-phase peaks for the [Ni(II)6Dy(III)3] analogue, establishing its single molecule magnetism behavior with Ueff = 24 K.

  12. Synthesis, structure, DNA-binding properties and antioxidant activity of a nickel(II) complex with bis(N-allylbenzimidazol-2-ylmethyl)benzylamine.

    PubMed

    Wu, Huilu; Yuan, Jingkun; Bai, Ying; Pan, Guolong; Wang, Hua; Shu, Xingbin

    2012-02-01

    A V-shape ligand bis(N-allylbenzimidazol-2-ylmethyl)benzylamine (babb) and its nickel complex, [Ni(babb)(2)](pic)(2) (pic=picrate), have been synthesized and characterized by physico-chemical and spectroscopic methods. Single-crystal X-ray revealed that the coordination sphere around Ni(II) is distorted octahedral with a N(6) ligand set, in which six nitrogen atoms were afforded by two tridentate ligand babb. The DNA-binding properties of the free ligand babb and Ni(II) complex have been investigated by electronic absorption, fluorescence, and viscosity measurements. The results suggest that babb and Ni(II) complex both bind to DNA via an intercalative binding mode, and the affinity for DNA is more strong in case of Ni(II) complex when compared with babb. The intrinsic binding constants (K(b)) of the Ni(II) complex and ligand with DNA were 3.65×10(4) M(-1) and 2.26×10(3) M(-1), respectively. Additionally, Ni(II) complex also exhibited potential antioxidant properties in vitro studies. PMID:22226085

  13. Tailoring the structure of two-dimensional self-assembled nanoarchitectures based on ni(ii) -salen building blocks.

    PubMed

    Viciano-Chumillas, Marta; Li, Dongzhe; Smogunov, Alexander; Latil, Sylvain; Dappe, Yannick J; Barreteau, Cyrille; Mallah, Talal; Silly, Fabien

    2014-10-13

    The synthesis of a series of Ni(II) -salen-based complexes with the general formula of [Ni(H2 L)] (H4 L=R(2) -N,N'-bis[R(1) -5-(4'-benzoic acid)salicylidene]; H4 L1: R(2) =2,3-diamino-2,3-dimethylbutane and R(1) =H; H4 L2: R(2) =1,2-diaminoethane and R(1) =tert-butyl and H4 L3: R(2) =1,2-diaminobenzene and R(1) =tert-butyl) is presented. Their electronic structure and self-assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self-assembly through hydrogen bonding. In addition, other substituents, that is, tert-butyl and diamine bridges (2,3-diamino-2,3-dimethylbutane, 1,2-diaminobenzene or 1,2-diaminoethane), were used to tune the two-dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self-assemble into three different 2D nanoarchitectures at the solid-liquid interface on graphite. Two structures are porous and one is close-packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized. PMID:25225027

  14. Benzimidazole based ratiometric and colourimetric chemosensor for Ni(II)

    NASA Astrophysics Data System (ADS)

    Sarkar, Deblina; Pramanik, Ajoy Kumar; Mondal, Tapan Kumar

    2016-01-01

    A highly sensitive and selective benzimidazole based colourimetric chemosensor (HL) for the efficient detection of Ni2 + has been reported. The synthesized chemosensor HL is highly efficient in detecting Ni2 + over other metal ions that commonly coexist with Ni2 + in physiological and environmental samples. HL also shows distinct color change from orange yellow to blue visible under the naked eye due to specific binding with Ni2 +. This color change corresponds to a large red shift of the UV-Vis spectrum from 403 nm to 600 nm with a distinct isosbestic point at around 500 nm. The cation sensing property of the receptor HL has been examined by UV-Vis spectroscopy. Electronic structure of the HL-Ni2 + complex and sensing mechanism has been interpreted by DFT and TDDFT calculations.

  15. Transition Metal Ion Complexes of Schiff-bases. Synthesis, Characterization and Antibacterial Properties

    PubMed Central

    Munawar, Asifa; Supuran, Claudiu T.

    2001-01-01

    Some novel transition metal [Co(II), Cu(II), Ni(II) and Zn(II)] complexes of substituted pyridine Schiff-bases have been prepared and characterized by physical, spectral and analytical data. The synthesized Schiff-bases act as deprotonated tridentate for the complexation reaction with Co(II), Ni(II) and Zn(II) ions. The new compounds, possessing the general formula [M(L)2] where [M=Co(II), Cu(II), Ni(II) and Zn(II) and HL=HL1, HL2, HL3 and HL4] show an octahedral geometry. In order to evaluate the effect of metal ions upon chelation, the Schiff bases and their complexes have been screened for antibacterial activity against the strains such as Escherichia coli,Staphylococcus aureus, and Pseudomonas aeruginosa. The complexed Schiff bases have shown to be more antibacterial against one more bacterial species as compared to uncomplexed Schiff-bases. PMID:18475987

  16. Nickel(II) and copper(II) complexes with humic acid anions and their derivatives

    SciTech Connect

    Ryabova, I.N.

    2008-01-15

    Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

  17. Adsorption of Cu(II), Ni(II) and Zn(II) on modified jute fibres.

    PubMed

    Shukla, S R; Pai, Roshan S

    2005-09-01

    The potential of a lignocellulosic fibre, jute, was assessed for adsorption of heavy metal ions like Cu(II), Ni(II) and Zn(II) from their aqueous solutions. The fibre was also used as adsorbent after chemically modifying it by two different techniques viz, loading of a dye with specific structure, C.I. Reactive Orange 13, and oxidising with hydrogen peroxide. Both the modified jute fibres gave higher metal ion adsorption. Thus, the dye loaded jute fibres showed metal ion uptake values of 8.4, 5.26 and 5.95 mg/g for Cu(II), Ni(II) and Zn(II), respectively, while the corresponding values for oxidised jute fibres were 7.73, 5.57 and 8.02 mg/g, as against 4.23, 3.37 and 3.55 mg/g for unmodified jute fibres. Adsorption isotherm models indicated best fit for Langmuir model for the modified jute fibres. The adsorption values decreased with lowering of pH. The desorption efficiency, regenerative and reuse capacity of these adsorbents were also assessed for three successive adsorption-desorption cycles. The adsorptive capacity was retained only when the caustic soda regeneration is carried out as an intermediate step after desorption. Possible mechanism has been given.

  18. Removal of Ni(II) from aqueous solution using Moringa oleifera seeds as a bioadsorbent.

    PubMed

    Marques, Thiago L; Alves, Vanessa N; Coelho, Luciana M; Coelho, Nívia M M

    2012-01-01

    Metal contaminants are generally removed from effluents by chemical and physical processes which are often associated with disadvantages such as the use of toxic reagents, generation of toxic waste and high costs. Hence, new techniques have been developed, among them the study of natural adsorbents, for instance, the use of Moringa oleifera seeds. The potential of M. oleifera seeds for nickel removal in aqueous systems was investigated. The seeds utilized were obtained from plants grown in Uberlândia/Brazil. After being dried and pulverized, the seeds were treated with 0.1 mol/L NaOH. Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analyses were used for the characterization of the material. Using the optimized methodology (50 mL of 4.0 mg/L Ni(II), pH range of 4.0-6.0, agitation time of 5 min and adsorption mass of 2.0 g) more than 90% of Ni(II) could be removed from water samples. The sorption data were fitted satisfactorily by the Langmuir adsorption model. Evaluation applying the Langmuir equation gave the monolayer sorption capacity as 29.6 mg/g. The results indicate that this material could be employed in the extraction of nickel, considering its ease of use, low cost and environmental viability, which make it highly attractive for application in developing countries. PMID:22466590

  19. Preparation and properties of cubic ZrO2 stabilized with Ni(ii). Technical report

    SciTech Connect

    Smith, K.E.; Kershaw, R.; Dwight, K.; Wold, A.

    1987-05-15

    The Fischer-Tropsch activity of the nickel-zirconia system has been investigated and preparations of the catalyst involving coprecipitation gave a significantly more active catalyst than did preparations involving impregnation. Stabilization towards reduction has been observed when certain transition-metal ions such as Rh(III) are inserted into the fluorite ZrO2 structure. Recent investigations using the NiO/ZrO2 system have concluded that NiO does not interact with zirconium oxide, but the materials were prepared by incipient wetness. It was the purpose of this study to investigate the formation of cubic ZrO2 stabilized with Ni(II) and to relate the structural properties of the catalyst with its observed stability in reducing atmospheres. These properties were then compared to those of catalysts prepared by incipient wetness. Changes in the structure of ZrO2 and in the temperatures at which reduction of Ni(II) to Ni metal occurred were then related to the relative strengths of the catalyst-support interaction.

  20. Preparation and use of samarium diiodide (SmI(2)) in organic synthesis: the mechanistic role of HMPA and Ni(II) salts in the samarium Barbier reaction.

    PubMed

    Sadasivam, Dhandapani V; Choquette, Kimberly A; Flowers, Robert A

    2013-02-04

    reduction potential of SmI(2) by coordinating to the samarium metal center, producing a more powerful,(13-14,18) sterically encumbered reductant(19-21) and in some cases playing an integral role in post electron-transfer steps facilitating subsequent bond-forming events.(22) In the Sm-Barbier reaction, HMPA has been shown to additionally activate the alkyl halide by forming a complex in a pre-equilibrium step.(23) Ni(II) salts are a catalytic additive used frequently in Sm-mediated transformations.(24-27) Though critical for success, the mechanistic role of Ni(II) was not known in these reactions. Recently it has been shown that SmI(2) reduces Ni(II) to Ni(0), and the reaction is then carried out through organometallic Ni(0) chemistry.(28) These mechanistic studies highlight that although the same Barbier product is obtained, the use of different additives in the SmI(2) reaction drastically alters the mechanistic pathway of the reaction. The protocol for running these SmI(2)-initiated reactions is described.

  1. Preparation and Use of Samarium Diiodide (SmI2) in Organic Synthesis: The Mechanistic Role of HMPA and Ni(II) Salts in the Samarium Barbier Reaction

    PubMed Central

    Sadasivam, Dhandapani V.; Choquette, Kimberly A.; Flowers, Robert A.

    2013-01-01

    coordinating to the samarium metal center, producing a more powerful,13-14,18 sterically encumbered reductant19-21 and in some cases playing an integral role in post electron-transfer steps facilitating subsequent bond-forming events.22 In the Sm-Barbier reaction, HMPA has been shown to additionally activate the alkyl halide by forming a complex in a pre-equilibrium step.23 Ni(II) salts are a catalytic additive used frequently in Sm-mediated transformations.24-27 Though critical for success, the mechanistic role of Ni(II) was not known in these reactions. Recently it has been shown that SmI2 reduces Ni(II) to Ni(0), and the reaction is then carried out through organometallic Ni(0) chemistry.28 These mechanistic studies highlight that although the same Barbier product is obtained, the use of different additives in the SmI2 reaction drastically alters the mechanistic pathway of the reaction. The protocol for running these SmI2-initiated reactions is described. PMID:23407417

  2. Rapid and direct electrochemical determination of Ni(II) in industrial discharge water.

    PubMed

    Ferancová, Adriana; Hattuniemi, Maarit K; Sesay, Adama M; Räty, Jarkko P; Virtanen, Vesa T

    2016-04-01

    Industrial water contains a number of contaminants, such as organic pollutants and heavy metals, which can significantly affect the quality of soil, ground and environmental waters. We have successfully optimized and tested an electrochemical method and sensor modified with dimethylglyoxime for monitoring of nickel(II). The detection limit was 0.03mg/L and determination limit was 0.09mg/L. Linear concentration range was observed from 0.06 to 0.5mg/L Ni(II) and it is suitable for the analysis of environmental waters. The effect of all parameters important for on-site measurements (such as interferences, presence of dissolved oxygen, temperature) was investigated and considered in the analysis of mine discharge water. Water samples were analyzed without any pretreatment or filtration. A low level of error (5.6%) was observed for analysis demonstrating the usability of the optimized sensor and method for on-site measurements.

  3. Rapid and direct electrochemical determination of Ni(II) in industrial discharge water.

    PubMed

    Ferancová, Adriana; Hattuniemi, Maarit K; Sesay, Adama M; Räty, Jarkko P; Virtanen, Vesa T

    2016-04-01

    Industrial water contains a number of contaminants, such as organic pollutants and heavy metals, which can significantly affect the quality of soil, ground and environmental waters. We have successfully optimized and tested an electrochemical method and sensor modified with dimethylglyoxime for monitoring of nickel(II). The detection limit was 0.03mg/L and determination limit was 0.09mg/L. Linear concentration range was observed from 0.06 to 0.5mg/L Ni(II) and it is suitable for the analysis of environmental waters. The effect of all parameters important for on-site measurements (such as interferences, presence of dissolved oxygen, temperature) was investigated and considered in the analysis of mine discharge water. Water samples were analyzed without any pretreatment or filtration. A low level of error (5.6%) was observed for analysis demonstrating the usability of the optimized sensor and method for on-site measurements. PMID:26686524

  4. Adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II), and As(V) on bacterially produced metal sulfides.

    PubMed

    Jong, Tony; Parry, David L

    2004-07-01

    The adsorption of Pb(II), Cu(II), Cd(II), Zn(II), Ni(II), Fe(II) and As(V) onto bacterially produced metal sulfide (BPMS) material was investigated using a batch equilibrium method. It was found that the sulfide material had adsorptive properties comparable with those of other adsorbents with respect to the specific uptake of a range of metals and, the levels to which dissolved metal concentrations in solution can be reduced. The percentage of adsorption increased with increasing pH and adsorbent dose, but decreased with increasing initial dissolved metal concentration. The pH of the solution was the most important parameter controlling adsorption of Cd(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), and As(V) by BPMS. The adsorption data were successfully modeled using the Langmuir adsorption isotherm. Desorption experiments showed that the reversibility of adsorption was low, suggesting high-affinity adsorption governed by chemisorption. The mechanism of adsorption for the divalent metals was thought to be the formation of strong, inner-sphere complexes involving surface hydroxyl groups. However, the mechanism for the adsorption of As(V) by BPMS appears to be distinct from that of surface hydroxyl exchange. These results have important implications to the management of metal sulfide sludge produced by bacterial sulfate reduction.

  5. p53 activation by Ni(II) is a HIF-1α independent response causing caspases 9/3-mediated apoptosis in human lung cells

    SciTech Connect

    Wong, Victor C.; Morse, Jessica L.; Zhitkovich, Anatoly

    2013-06-15

    Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl{sub 2} caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen. - Highlights: • Ni(II) is a strong activator of the transcription factor p53. • Apoptosis is a principal form of death by Ni(II) in human lung epithelial cells. • Ni(II)-activated p53 triggers caspases 9/3-mediated apoptotic program. • NOXA and PUMA are two main proapoptotic genes induced by Ni(II). • HIF-1α and p53 are independent

  6. Removal of Ni(II) and Cu(II) ions using native and acid treated Ni-hyperaccumulator plant Alyssum discolor from Turkish serpentine soil.

    PubMed

    Bayramoglu, Gulay; Arica, M Yakup; Adiguzel, Nezaket

    2012-09-01

    Alyssum discolor biomass was collected from serpentine soil and was used for removal of metal ions. The plant species grown on serpentine soils are known to be rich with metals ions and thus have more capability for accumulating heavy metals. Native and acid-treated biomass of A. discolor (A. discolor) were utilized for the removal of Ni(II) and Cu(II) ions from aqueous solutions. The effects of contact time, initial concentration, and pH on the biosorption of Ni(II) and Cu(II) ions were investigated. Biosorption equilibrium was established in about 60 min. The surface properties of the biomass preparations were varied with pH, and the maximum amounts of Ni(II) and Cu(II) ions on both A. discolor biomass preparations were adsorbed at pH 5.0. The maximum biosorption capacities of the native, and acid-treated biomass preparations for Ni(II) were 13.1 and 34.7 mgg(-1) and for Cu(II) 6.15 and 17.8 mgg(-1) dry biomass, respectively. The biosorption of Ni(II) and Cu(II) ions from single and binary component systems can be successfully described by Langmuir and Freundlich isotherms. When the heavy metal ions were in competition, the amounts of biosorbed metal ions on the acid treated plant biomass were found to be 0.542 mmolg(-1) for Ni(II) and 0.162 mmolg(-1) for Cu(II), the A. discolor biomass was significantly selective for Ni(II) ions. The information gained from these studies was expected to indicate whether the native, and acid-treated forms can have the potential to be used for the removal and recovery of Ni(II) ions from wastewaters. PMID:22608134

  7. Synthesis, Characterization and Biological Properties of Tridentate NNO, NNS and NNN Donor Thiazole-Derived Furanyl, Thiophenyl and Pyrrolyl Schiff Bases and Their Co(II), Cu(II), Ni(II) and Zn(II) Metal Chelates

    PubMed Central

    Kausar, Samina

    2000-01-01

    2-Aminothiazole undergoes condensation reactions with furane-, thiophene- and pyrrole-2-carboxylaldehyde to give tridentate NNO, NNS and NNN Schiff bases respectively. These tridentate Schiff bases formed complexes of the type [M (L)2]X2 where [M=Co(II), Cu(II), Ni(II) or Zn(II), L=N-(2-furanylmethylene)-2-aminothiazole (L1), N-(2-thiophenylmethylene)-2-aminothiazole (L2, N-(2-pyrrolylmethylene)-2-aminothiazole (L3) and X=Cl. The structures of these Schiff bases and of their complexes have been determined on the basis of their physical, analytical and spectral data. The screening results of these compounds indicated them to possess excellent antibacterial activity against tested pathogenic bacterial organisms e.g., Escherichia coli, Staphylococcus aureous and Pseudomonas aeruginosa. However, in comparison, their metal chelates have been shown to possess more antibacterial activity than the uncomplexed Schiff bases. PMID:18475919

  8. Synthesis, Characterization and Biological Properties of Tridentate NNO, NNS and NNN Donor Thiazole-Derived Furanyl, Thiophenyl and Pyrrolyl Schiff Bases and Their Co(II), Cu(II), Ni(II) and Zn(II) Metal Chelates.

    PubMed

    Chohan, Z H; Kausar, S

    2000-01-01

    2-Aminothiazole undergoes condensation reactions with furane-, thiophene- and pyrrole-2-carboxylaldehyde to give tridentate NNO, NNS and NNN Schiff bases respectively. These tridentate Schiff bases formed complexes of the type [M (L)(2)]X(2) where [M=Co(II), Cu(II), Ni(II) or Zn(II), L=N-(2-furanylmethylene)-2-aminothiazole (L(1)), N-(2-thiophenylmethylene)-2-aminothiazole (L(2), N-(2-pyrrolylmethylene)-2-aminothiazole (L(3)) and X=Cl. The structures of these Schiff bases and of their complexes have been determined on the basis of their physical, analytical and spectral data. The screening results of these compounds indicated them to possess excellent antibacterial activity against tested pathogenic bacterial organisms e.g., Escherichia coli, Staphylococcus aureous and Pseudomonas aeruginosa. However, in comparison, their metal chelates have been shown to possess more antibacterial activity than the uncomplexed Schiff bases.

  9. A recyclable perfluoroalkylated PCP pincer palladium complex.

    PubMed

    Duncan, Daniel; Hope, Eric G; Singh, Kuldip; Stuart, Alison M

    2011-03-01

    A new fluorous PCP pincer ligand has been coordinated to Ni(II), Pd(II) and Pt(II). The air stable palladium complex, which promotes Heck reactions between methyl acrylate and either aryl bromides or iodides, can be recovered intact by fluorous solid-phase extraction and was reused four times in the Heck reaction between methyl acrylate and 4-bromoacetophenone without loss in catalytic activity. PMID:21264422

  10. Synthesis, structural and electrochemical properties of nickel(II) sulfamethazine complex with diethylenetriamine ligand.

    PubMed

    Bulut, İclal; Öztürk, Filiz; Bulut, Ahmet

    2015-03-01

    In this study, [Ni(dien)2]⋅smz2⋅(Hsmz: sulfamethazine and dien: diethylenetriamine) complex has been synthesized and its crystal structure has been determined by X-ray diffraction technique. The title complex crystallizes in orthorhombic system with space group Pbnb [a=8.556(5), b=16.228(5), c=28.209(5)Å, V=3917(3)Å(3) and Z=4]. The nickel(II) ion has distorted octahedral coordination geometry. The metal atom, which rides on a crystallographic center of symmetry, is coordinated by six nitrogen atoms of two dien ligands to form a discrete [Ni(dien)2](2+) unit, which captures two sulfamethazine ions, each through intermolecular hydrogen bonds. The powder EPR spectrum of Cu(2+) doped Ni(II) complex was recorded at room temperature. The vibrational investigation has been carried out by considering the characteristic bands related to the functional groups of the complex. The electrochemical behavior of Ni(II) ions in the presence and in the absence of smz and dien were studied by square wave and cyclic voltammetry. A well-defined irreversible peak at -1.112V different from those of the Ni(II)-smz (-0.876V) and the Ni(II)-dien complex (-1.064V) was observed in the solution containing Ni(II) ions, which was attributed to the formation of the new mixed ligand complex of Ni(II) with smz and dien.

  11. EDTA functionalized silica for removal of Cu(II), Zn(II) and Ni(II) from aqueous solution.

    PubMed

    Kumar, R; Barakat, M A; Daza, Y A; Woodcock, H L; Kuhn, J N

    2013-10-15

    Ethylenediaminetetraacetic acid (EDTA) functionalized silica adsorbent has been synthesized using (3-aminopropyl) triethoxylsilane (APTES) as a bridging link between silanol groups (SiOH) of silica and carboxylic group of EDTA. Fourier transform infrared spectroscopy (FTIR) and Temperature-programmed oxidation (TPO) analysis confirmed the grafting of EDTA onto the silica. The synthesized EDTA-silica was investigated as an adsorbent for removal of Cu(II), Zn(II) and Ni(II) from aqueous solution. The effect of solution pH, initial solution concentration, and contact time were studied. The removal of metal ions increased with the increase in solution pH, contact time and concentration. The maximum equilibrium time was found to be 45min for all three metal ions. Kinetics studies revealed that the adsorption of Cu(II), Zn(II) and Ni(II) onto EDTA-silica followed the pseudo-second order kinetics and film diffusion and intra-particle diffusion mechanism were involved. Adsorption equilibrium data were well fitted to Langmuir isotherm model and maximum monolayer adsorption capacity for Cu(II), Zn(II) and Ni(II) was 79.36, 74.07 and 67.56mg g(-1), respectively. Thermodynamic results reveal that the removal of metals onto EDTA-silica was endothermic and spontaneous in nature.

  12. Synthesis, characterization and antimicrobial studies of Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Ahmad, Anis; Khan, Asad U.; Khan, Tahir Ali

    2015-10-01

    The Schiff base complexes, MLCl2 [M = Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)] have been synthesized by the template reaction of respective metal ions with 2-acetylpyrrole and 1,3-diaminopropane in 1:2:1 M ratio. The complexes have been characterized by elemental analyses, ESI - mass, NMR (1H and 13C), IR, XRD, electronic and EPR spectral studies, magnetic susceptibility and molar conductance measurements. These studies show that all the complexes have octahedral arrangement around the metal ions. The molar conductance measurements of all the complexes in DMSO indicate their non-electrolytic nature. The complexes were screened for their antibacterial activity in vitro against Gram-positive (Streptococcus pyogenes) and Gram-negative (Klebsiella pneumoniae) bacteria. Among the metal complexes studied the copper complex [CuLCl2], showed highest antibacterial activity nearly equal to standard drug ciprofloxacin. Other complexes also showed considerable antibacterial activity. The relative order of activity against S. Pyogenes is as Cu(II) > Zn(II) > Co(II) = Fe(II) > Ni(II) and with K. Pneumonia is as Cu(II) > Co(II) > Zn(II) > Fe(II) > Ni(II).

  13. Covalent attachment of diphosphine ligands to glassy carbon electrodes via Cu-catalyzed alkyne-azide cycloaddition. Metallation with Ni(II).

    PubMed

    Das, Atanu K; Engelhard, Mark H; Lense, Sheri; Roberts, John A S; Bullock, R Morris

    2015-07-21

    Covalent tethering of P(Ph)2N(C6H4C≡CH)2 ligands (P(Ph)2N(C6H4C≡CH)2 = 1,5-di-(4-ethynylphenyl)-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane) to planar, azide-terminated glassy carbon electrode surfaces has been accomplished using a Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) coupling reaction, using a BH3←P protection-deprotection strategy. Deprotected, surface-confined ligands were metallated using [Ni(II)(MeCN)6](BF4)2. X-ray photoelectron spectroscopic measurements demonstrate that metallation introduced 1.3 equivalents Ni(II) per diphosphine onto the electrode surface. Exposure of the surface to a second diphosphine ligand, P(Ph)2N(Ph)2, resulted in the removal of Ni from the surface. Protection, coupling, deprotection, and metallation conditions were optimized using solution-phase model systems, with benzyl azide as a model for the azide-terminated carbon surface; these reactions generate a [Ni(II)(diphosphine)2](2+) complex. PMID:25811536

  14. Uptake, p53 Pathway Activation, and Cytotoxic Responses for Co(II) and Ni(II) in Human Lung Cells: Implications for Carcinogenicity

    PubMed Central

    Luczak, Michal W.; Zhitkovich, Anatoly

    2013-01-01

    Cobalt(II) and nickel(II) ions display similar chemical properties and act as hypoxia mimics in cells. However, only soluble Co(II) but not soluble Ni(II) is carcinogenic by inhalation. To explore potential reasons for these differences, we examined responses of human lung cells to both metals. We found that Co(II) showed almost 8 times higher accumulation than Ni(II) in H460 cells but caused a less efficient activation of the transcriptional factor p53 as measured by its accumulation, Ser15 phosphorylation, and target gene expression. Unlike Ni(II), Co(II) was ineffective in downregulating the p53 inhibitor MDM4 (HDMX). Co(II)-treated cells continued DNA replication at internal doses that caused massive apoptosis by Ni(II). Apoptosis and the overall cell death by Co(II) were delayed and weaker than by Ni(II). Inhibition of caspases but not programmed necrosis pathways suppressed Co(II)-induced cell death. Knockdown of p53 produced 50%–60% decreases in activation of caspases 3/7 and expression of 2 most highly upregulated proapoptotic genes PUMA and NOXA by Co(II). Overall, p53-mediated apoptosis accounted for 55% cell death by Co(II), p53-independent apoptosis for 20%, and p53/caspase-independent mechanisms for 25%. Similar to H460, normal human lung fibroblasts and primary human bronchial epithelial cells had several times higher accumulation of Co(II) than Ni(II) and showed a delayed and weaker caspase activation by Co(II). Thus, carcinogenicity of soluble Co(II) could be related to high survival of metal-loaded cells, which permits accumulation of genetic and epigenetic abnormalities. High cytotoxicity of soluble Ni(II) causes early elimination of damaged cells and is expected to be cancer suppressive. PMID:24068677

  15. Recovery and reuse of Ni(II) from rinsewater of electroplating industries.

    PubMed

    Priya, P Gomathi; Basha, C Ahmed; Ramamurthi, V; Begum, S Nathira

    2009-04-30

    Discharge of nickel compounds, which may occur in both liquid and solid phases, can cause severe environmental problems. In this work, 'point of source' treatment strategy is followed and reduced the nickel content of rinsewater to about less than 1 mg L(-1) by ion-exchange method using a packed column involving batch recirculation mode of operation and to recovered Ni(II) content by desorption. The treated water could be recycled for rinsing operation. The nickel from resin is first precipitated as nickel hydroxide to synthesize positive active material and that was used in Nickel/Metal hydride cell. The performances in terms of electrochemical utilization of nickel hydroxide, specific capacity as a function of discharge current density and cycle life were examined and the nickel hydroxide electrode with 5% CaCO(3) addition, having 200 mAh g(-1) specific capacity, could be subjected to charge/discharge cycles at C/5 rate for more than 200 cycles without the capacity fading.

  16. Synthesis, molecular modeling and spectroscopic characterization of nickel(II), copper(II), complexes of new 16-membered mixed-donor macrocyclic schiff base ligand incorporating a pendant alcohol function

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Ruchi; Qanungo, Kushal; Sharma, Saroj K.

    2011-09-01

    Complexes of Cu(II) and Ni(II) of the composition [M(L)X] [where M = Ni(II), Cu(II) and X = Cl -, NO 3-, CH 3COO -] were synthesized with 1,5-dioxo-9,10-diaza-3,ol-tribenzo-(7,6,10,11,14,15) peptadecane, a N 2O 2 macrocyclic ligand. The complexes were characterized by elemental analysis, molar conductance measurements, UV-vis, IR, 1H NMR, 13C NMR, EPR and molecular modeling studies. All the complexes are non-electrolyte in nature. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and a tetragonal geometry for Cu(II) complexes.

  17. Adsorption of Cd(II), Cu(II) and Ni(II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres.

    PubMed

    Zeng, Lixuan; Chen, Yufei; Zhang, Qiuyun; Guo, Xingmei; Peng, Yanni; Xiao, Huijuan; Chen, Xiaocheng; Luo, Jiwen

    2015-10-01

    Chitosan/rectorie (CTS/REC) nano-hybrid composite microsphere was prepared by changing the proportion of CTS/REC with 2:1, 3:1 and 4:1. Compared with the pure cross-linking chitosan microsphere, the nano-hybrid composite microsphere was proved to have better sorption capacity of Cd(II), Cu(II) and Ni(II), especially 2:1(CTS/REC-1). The adsorption behavior of the microsphere of Cd(II), Cu(II) and Ni(II) was investigated in single and binary metal systems. In single system, the equilibrium studies showed that the adsorption of Cd(II), Cu(II) and Ni(II) followed the Langmuir model and the pseudo-second-order kinetic model. The negative values of (ΔG) suggested that the adsorption process was spontaneous. In binary system, the combined action of the metals was found to be antagonistic and the metal sorption followed the order of Cu(II)>Cd(II)>Ni(II). The regeneration studies indicated that EDTA desorbed Cd(II), Cu(II) and Ni(II) from cross-linking microspheres better than HCl. The FT-IR and XPS spectra showed that coordination bonds were formed between Cd(II), Cu(II) and Ni(II) and the nitrogen atoms of cross-linking CTS/REC nano-hybrid composite microspheres. PMID:26076634

  18. Synthesis and characterization of hydroxyapatite nanoparticles impregnated on apple pomace to enhanced adsorption of Pb(II), Cd(II), and Ni(II) ions from aqueous solution.

    PubMed

    Chand, Piar; Pakade, Yogesh B

    2015-07-01

    Hydroxyapatite nanoparticles were synthesized, characterized, and impregnated onto apple pomace surface (HANP@AP) for efficient removal of Pb(II), Cd(II), and Ni(II) ions from water. HANP@AP was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD), and surface area analysis. Batch sorption studies were carried out to investigate the influence of different parameters as amount of dose (g), pH, time (min), and initial concentration (mg L(-1)) on adsorption process. Experimental kinetic data followed pseudo-second-order model and equilibrium data well fitted to Langmuir adsorption model with maximum adsorption capacities of 303, 250, and 100 mg g(-1) for Pb(II), Cd(II), and Ni(II) ions, respectively. Competitive adsorption of Pb(II), Cd(II), and Ni(II) ions in presences of each other was studied to evaluate the removal efficiency of HANP@AP against multi metal-loaded water. HANP@AP was successfully applied to real industrial wastewater with 100 % removal of all three metal ions even at high concentration. HANP@AP could be recycled for four, four, and three cycles in case of Pb(II), Cd(II) and Ni(II), respectively. The study showed that HANP@AP is fast, cost effective, and environmental friendly adsorbent for removal of Pb(II), Cd(II), and Ni(II) ions from real industrial wastewater.

  19. The binding of Ni(II) ions to hexahistidine as a model system of the interaction between nickel and His-tagged proteins.

    PubMed

    Valenti, Laura E; De Pauli, Carlos P; Giacomelli, Carla E

    2006-02-01

    The aim of this work is to study the binding of nickel ions to hexahistidine (His(6)) combining potentiometric titrations and spectroscopic (UV-Vis and circular dichroism) determinations in order to establish the species distribution as a function of the pH, their stoichiometry, stability and geometry. For comparative purposes, the same procedure was applied to the Ni-histidine (His) system. His behaves as a tridentate ligand, coordinating the carboxyl group, the imidazole and the amino nitrogen atoms to Ni(II) ions in an octahedral coordination and a bis(histidine) complex is formed at pH higher than 5. For the Ni-His(6) system, the complex formation starts at pH 4 and five different species (Ni(His(6))H, Ni(His(6)), Ni(n)(His(6))(n), Ni(n)(His(6))(n)H(-n/2), Ni(n)(His(6))(n)H(-n)) are formed as a function of the pH. Ni(His(6))H involves the coordination of the imidazole nitrogen and a deprotonated amide nitrogen (N(Im), N(-)) resulting in an octahedral geometry. In Ni(His(6)), an imidazole nitrogen is deprotonated and coordinated (2N(Im), N(-)) to the metal ion with a square planar geometry. The aggregated forms result from the extra Ni-N(Im) coordination, resulting in a 4N square planar geometry that is stabilized by inter/intramolecular hydrogen bonds. This coordination mode is not altered during the deprotonation steps from Ni(n)(His(6))(n). PMID:16376429

  20. Adsorption of Cu(II), Hg(II), and Ni(II) ions by modified natural wool chelating fibers.

    PubMed

    Monier, M; Ayad, D M; Sarhan, A A

    2010-04-15

    The graft copolymerization of ethyl acrylate (EA) onto natural wool fibers initiated by potassium persulphate and Mohr's salt redox initiator system in limited aqueous medium was carried out in heterogeneous media. Ester groups of the grafted copolymers were partially converted into hydrazide function groups followed by hydrazone formation through reaction with isatin. Also the application of the modified fibers for metal ion uptake was studied using Cu(II), Hg(II) and Ni(II). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:19962235

  1. Anion Binding by Dimetallic Nickel(II) and Nickel(III) Complexes of a Face-to-Face Bicyclam: Looking for a Bimacrocyclic Effect.

    PubMed

    Boiocchi, Massimo; Fabbrizzi, Luigi; Fusco, Nadia; Invernici, Michele; Licchelli, Maurizio; Poggi, Antonio

    2016-03-21

    The dinickel(II) complex of the face-to-face bicyclam ligand α,α'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene (L∩L) in a dimethyl sulfoxide solution exists as a mixture of high- and low-spin forms and uptakes up to three halide and pseudohalide ions (X(-)), according to stepwise equilibria, whose constants were determined through spectrophotometric titration experiments. In the case of halides, the first anion goes into the intermetallic cavity, whereas pseudohalides first coordinate the metal center from outside. Comparison with equilibrium data for the complex with the macrocycle 5,7-dimethyl-6-benzyl-1,4,8,11-tetraazacyclotetradecane (L) shows that the dinuclear complex [Ni(II)2(L∩L)](4+) displays an affinity for the first halide distinctly higher than the mononuclear complex [Ni(II)(L)](2+), thus disclosing the existence of a bimacrocyclic effect for anion binding. Differential pulse voltammetry studies typically showed a three-peak profile: the most anodic pertaining to the [Ni(II)2(L∩L)](4+) → Ni(III)2(L∩L)](6+) two-electron process, then one originating from the [Ni(II)2(L∩L)X](3+) → Ni(III)2(L∩L)X](5+) two-electron process, and one deriving from the two two-electron half reactions [Ni(II)2(L∩L)X2](2+) → Ni(III)2(L∩L)X2](4+) and [Ni(II)2(L∩L)X3](+) → Ni(III)2(L∩L)X3](3+), taking place at nearly the same potential. The crystal structure of the [Ni(II)2(L∩L)(μ-NCO)(NCO)2]ClO4·2.5H2O complex salt showed a caterpillar arrangement of the three metal-bound cyanate ions. PMID:26930304

  2. Anion Binding by Dimetallic Nickel(II) and Nickel(III) Complexes of a Face-to-Face Bicyclam: Looking for a Bimacrocyclic Effect.

    PubMed

    Boiocchi, Massimo; Fabbrizzi, Luigi; Fusco, Nadia; Invernici, Michele; Licchelli, Maurizio; Poggi, Antonio

    2016-03-21

    The dinickel(II) complex of the face-to-face bicyclam ligand α,α'-bis(5,7-dimethyl-1,4,8,11-tetraazacyclotetradecan-6-yl)-o-xylene (L∩L) in a dimethyl sulfoxide solution exists as a mixture of high- and low-spin forms and uptakes up to three halide and pseudohalide ions (X(-)), according to stepwise equilibria, whose constants were determined through spectrophotometric titration experiments. In the case of halides, the first anion goes into the intermetallic cavity, whereas pseudohalides first coordinate the metal center from outside. Comparison with equilibrium data for the complex with the macrocycle 5,7-dimethyl-6-benzyl-1,4,8,11-tetraazacyclotetradecane (L) shows that the dinuclear complex [Ni(II)2(L∩L)](4+) displays an affinity for the first halide distinctly higher than the mononuclear complex [Ni(II)(L)](2+), thus disclosing the existence of a bimacrocyclic effect for anion binding. Differential pulse voltammetry studies typically showed a three-peak profile: the most anodic pertaining to the [Ni(II)2(L∩L)](4+) → Ni(III)2(L∩L)](6+) two-electron process, then one originating from the [Ni(II)2(L∩L)X](3+) → Ni(III)2(L∩L)X](5+) two-electron process, and one deriving from the two two-electron half reactions [Ni(II)2(L∩L)X2](2+) → Ni(III)2(L∩L)X2](4+) and [Ni(II)2(L∩L)X3](+) → Ni(III)2(L∩L)X3](3+), taking place at nearly the same potential. The crystal structure of the [Ni(II)2(L∩L)(μ-NCO)(NCO)2]ClO4·2.5H2O complex salt showed a caterpillar arrangement of the three metal-bound cyanate ions.

  3. 2-(1,2,3-Triazol-4-yl)pyridine-containing ethynylarenes as selective ‘turn-on’ fluorescent chemosensors for Ni(II)

    PubMed Central

    Christensen, Joseph A.; Fletcher, James T.

    2014-01-01

    A series of ethynylarene compounds containing 2-(1,2,3-triazol-4-yl)pyridine chelating units were studied as fluorescent chemosensors for metal cations in aqueous solution. Analogs possessing two chelating units bridged by either 1,4-diethynylphenyl or 2,7-diethynylnaphthyl subunits displayed large hypsochromic shifts coupled with signal intensification when exposed to increasing concentrations of Ni(II), a unique response among 22 metal cation analytes. This response was shown to be reversible, and is proposed to derive from disruption of aggregate formation upon Ni(II) binding at the peripheral chelating units. PMID:25089063

  4. Electronic structure study of seven-coordinate first-row transition metal complexes derived from 1,10-diaza-15-crown-5: a successful marriage of theory with experiment.

    PubMed

    Platas-Iglesias, Carlos; Vaiana, Lea; Esteban-Gómez, David; Avecilla, Fernando; Real, José Antonio; de Blas, Andrés; Rodríguez-Blas, Teresa

    2005-12-26

    A detailed study of the electronic structure of seven-coordinate Mn(II), Co(II), and Ni(II) complexes with the lariat ether N,N'-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L(1)) is presented. These complexes represent new examples of structurally characterized seven-coordinate (pentagonal bipyramidal) complexes for the Mn(II), Co(II), and Ni(II) ions. The X-ray crystal structures of the Mn(II) and Co(II) complexes show C(2) symmetries for the [M(L(1))](2+) cations, whereas the structures of the Ni(II) complexes show a more distorted coordination environment. The magnetic properties of the Mn(II) complex display a characteristic Curie law, whereas those of the Co(II) and Ni(II) ions show the occurrence of zero-field splitting of the S = 3/2 and 1 ground states, respectively. Geometry optimizations of the [M(L(1))](2+) systems (M = Mn, Co, or Ni) at the DFT (B3LYP) level of theory provide theoretical structures in good agreement with the experimental data. Electronic structure calculations predict a similar ordering of the metal-based beta spin frontier MO for the Mn(II) and Co(II) complexes. This particular ordering of the frontier MO leads to a pseudodegenerate ground state for the d(8) Ni(II) ion. The distortion of the C(2) symmetry in [Ni(L(1))](2+) is consistent with a Jahn-Teller effect that removes this pseudodegeneracy. Our electronic structure calculations predict that the binding strength of L(1) should follow the trend Co(II) approximately Mn(II) > Ni(II), in agreement with experimental data obtained from spectrophotometric titrations.

  5. Hybrid porous phosphate heterostructures as adsorbents of Hg(II) and Ni(II) from industrial sewage.

    PubMed

    Jiménez-Jiménez, J; Algarra, M; Rodríguez-Castellón, E; Jiménez-López, A; da Silva, J C G Esteves

    2011-06-15

    Porous phosphate heterostructures (PPH), functionalized with different ratios of aminopropyl and mercaptopropyl groups, labelled as N(x=5,25,50)-PPH and S(x=5,25,50)-PPH, respectively, were tested as adsorbents for Ni(II) and Hg(II) found in industrial sewage from electroplating processes and button battery recycling. X-ray diffraction was used to study the structures. The specific surface area of the pristine material (PPH) was 620 m(2)g(-1), whereas the specific surface areas of the modified mercaptopropyl (S(5)-PPH) and aminopropyl (N(5)-PPH) were 472 and 223 m(2)g(-1), respectively. The adsorption data were fitted to a Langmuir isotherm model. The S(5)-PPH material was saturated by 120 mmol Hg(II) per 100g of material, whereas for Ni(II) adsorption, N(25)-PPH material displayed the highest adsorption with a saturation value of 43.5 mmol per 100g. These results suggest that functionalized PPH materials may be promising toxic metal scavengers and that they may provide an alternative environmental technology.

  6. Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater.

    PubMed

    Ajmal, M; Rao, R A; Ahmad, R; Ahmad, J

    2000-12-01

    The ability of fruit peel of orange to remove Zn, Ni, Cu, Pb and Cr from aqueous solution by adsorption was studied. The adsorption was in the order of Ni(II)>Cu(II)>Pb(II)>Zn(II)>Cr(II). The extent of removal of Ni(II) was found to be dependent on sorbent dose, initial concentration, pH and temperature. The adsorption follows first-order kinetics. The process is endothermic showing monolayer adsorption of Ni(II), with a maximum adsorption of 96% at 50 degrees C for an initial concentration of 50 mg l(-1) at pH 6. Thermodynamic parameters were also evaluated. Desorption was possible with 0.05 M HCl and was found to be 95.83% in column and 76% in batch process, respectively. The spent adsorbent was regenerated and recycled thrice. The removal and recovery was also done in wastewater and was found to be 89% and 93.33%, respectively. PMID:11040390

  7. Hybrid porous phosphate heterostructures as adsorbents of Hg(II) and Ni(II) from industrial sewage.

    PubMed

    Jiménez-Jiménez, J; Algarra, M; Rodríguez-Castellón, E; Jiménez-López, A; da Silva, J C G Esteves

    2011-06-15

    Porous phosphate heterostructures (PPH), functionalized with different ratios of aminopropyl and mercaptopropyl groups, labelled as N(x=5,25,50)-PPH and S(x=5,25,50)-PPH, respectively, were tested as adsorbents for Ni(II) and Hg(II) found in industrial sewage from electroplating processes and button battery recycling. X-ray diffraction was used to study the structures. The specific surface area of the pristine material (PPH) was 620 m(2)g(-1), whereas the specific surface areas of the modified mercaptopropyl (S(5)-PPH) and aminopropyl (N(5)-PPH) were 472 and 223 m(2)g(-1), respectively. The adsorption data were fitted to a Langmuir isotherm model. The S(5)-PPH material was saturated by 120 mmol Hg(II) per 100g of material, whereas for Ni(II) adsorption, N(25)-PPH material displayed the highest adsorption with a saturation value of 43.5 mmol per 100g. These results suggest that functionalized PPH materials may be promising toxic metal scavengers and that they may provide an alternative environmental technology. PMID:21536377

  8. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety

    NASA Astrophysics Data System (ADS)

    Justin Dhanaraj, Chellaian; Johnson, Jijo

    2014-01-01

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and 1H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77 K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  9. Synthesis, characterization, electrochemical and biological studies on some metal(II) Schiff base complexes containing quinoxaline moiety.

    PubMed

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2014-01-24

    Novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of Schiff base derived from quinoxaline-2,3-(1,4H)-dione and 4-aminoantipyrine (QDAAP) were synthesized. The ligand and its complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., mass and (1)H NMR spectral studies. The X band ESR spectrum of the Cu(II) complex at 300 and 77K were also recorded. Thermal studies of the ligand and its complexes show the presence of coordinated water in the Ni(II) and Zn(II) complexes. The coordination behavior of QDAAP is also discussed. All the complexes are mono nuclear and tetrahedral geometry was found for Co(II) complex. For the Ni(II) and Zn(II) complexes, octahedral geometry was assigned and for the Cu(II) complex, square planar geometry has been suggested. The grain size of the complexes was estimated using powder XRD. The surface morphology of the compounds was studied using SEM analysis. Electrochemical behavior of the synthesized complexes in DMF at room temperature was investigated by cyclic voltammetry. The in vitro biological screening of QDAAP and its metal complexes were tested against bacterial species Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. The fungal species include Aspergillus niger, Aspergillus flavus and Candida albicans. The DNA cleavage activity of QDAAP and its complexes were also discussed.

  10. Synthesis, structural characterization and antimicrobial activity evaluation of metal complexes of sparfloxacin

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.; Zayed, M. A.

    2011-11-01

    The synthesis and characterization of binary Cu(II)- ( 1), Co(II)- ( 2), Ni(II)- ( 3), Mn(II)- ( 4), Cr(III)- ( 5), Fe(III)- ( 6), La(III)- ( 7), UO 2(VI)- ( 8) complexes with sparfloxacin ( HL1) and ternary Cu(II)- ( 9), Co(II)- ( 10), Ni(II)- ( 11), Mn(II)- ( 12), Cr(III)- ( 13), Fe(III)- ( 14), La(III)- ( 15), UO 2(VI)- ( 16) complexes with sparfloxacin ( HL1) and DL-alanine ( H2L2) complexes are reported using elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, thermal analysis and 1H-NMR spectral studies. The molar conductance measurements of all the complexes in DMF solution correspond to non-electrolytic nature. All complexes were of the high-spin type and found to have six-coordinate octahedral geometry except the Cu(II) complexes which were four coordinate, square planar and U- and La-atoms in the uranyl and lanthanide have a pentagonal bipyramidal coordination sphere. The antimicrobial activity of these complexes has been screened against two Gram-positive and two Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug sparfloxacin. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)- and Mn(II) complexes exhibited higher potency as compared to the parent drug against Gram-negative bacteria.

  11. The effect of continuous Ni(II) exposure on the organic degradation and soluble microbial product (SMP) formation in two-phase anaerobic reactor.

    PubMed

    Wu, Wei; Duan, Tengteng; Song, Hailiang; Li, Yan; Yu, Ang; Zhang, Long; Li, Aimin

    2015-07-01

    A two-phase anaerobic reactor fed with glucose substrate (3 g chemical oxygen demand (COD)/L) was used to investigate the effects of toxic metals on the degradation of organics and the soluble microbial product (SMP) formation. Low concentrations of Ni(II) (5 and 10 mg/L) promoted the acid phase, whereas high concentrations (15, 20, and 25 mg/L) exhibited an inhibitory effect on, but did not alter the fermentative method, which mainly involved the fermentation of propionic acid. The methanogenic microorganism exhibited a strong capability adapting constantly increased Ni(II) levels. The acid phase was an accumulation stage of SMP. In the absence of Ni(II), the high-molecular-weight material in the effluent SMP mainly contained polysaccharide, tryptophan, and casein. Methanogens metabolized most of the polysaccharide, the whole tryptophan content, and part of the casein, leading to the presence of humic acid and protein in effluent. After Ni(II) dosage, the protein and polysaccharide of the acid phase increased, and tryptophan changed, while casein remained stable. More protein than polysaccharide was produced, suggesting the prominent function of protein when addressing the negative effect of toxic metals. The analysis of DNA confirmed the change of bacterial activity. PMID:26141880

  12. Stability Constants of Mixed Ligand Complexes of Nickel(II) with Adenine and Some Amino Acids

    PubMed Central

    Türkel, Naciye

    2015-01-01

    Nickel is one of the essential trace elements found in biological systems. It is mostly found in nickel-based enzymes as an essential cofactor. It forms coordination complexes with amino acids within enzymes. Nickel is also present in nucleic acids, though its function in DNA or RNA is still not clearly understood. In this study, complex formation tendencies of Ni(II) with adenine and certain L-amino acids such as aspartic acid, glutamic acid, asparagine, leucine, phenylalanine, and tryptophan were investigated in an aqueous medium. Potentiometric equilibrium measurements showed that both binary and ternary complexes of Ni(II) form with adenine and the above-mentioned L-amino acids. Ternary complexes of Ni(II)-adenine-L-amino acids are formed by stepwise mechanisms. Relative stabilities of the ternary complexes are compared with those of the corresponding binary complexes in terms of Δlog10⁡K, log10⁡X, and % RS values. It was shown that the most stable ternary complex is Ni(II):Ade:L-Asn while the weakest one is Ni(II):Ade:L-Phe in aqueous solution used in this research. In addition, results of this research clearly show that various binary and ternary type Ni(II) complexes are formed in different concentrations as a function of pH in aqueous solution. PMID:26843852

  13. Preparation and Reactions of the 1,1-Dithiolato Complexes of Ni(II). An Undergraduate Coordination Chemistry Experiment.

    ERIC Educational Resources Information Center

    Ballester, L.; Perpinan, M. F.

    1988-01-01

    Described is an undergraduate coordination chemistry experiment that enables students to relate concepts developed in class about the stereochemistry and coordination numbers to the interpretation of the electronic and infrared spectra and their magnetic behavior. Indicates that thermal decomposition and x-ray diffraction studies can also be…

  14. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    SciTech Connect

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-13

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  15. Design and synthesis of novel complexes containing N-phenyl-1H-pyrazole moiety: Ni complex as potential antifungal and antiproliferative compound

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.; Farghaly, Thoraya A.

    2013-11-01

    Cu(II) (1), Ni(II) (2), Cr(III) (3) and Fe(III) (4) complexes with 3-acetyl-4-benzoyl-1-phenyl-1H-pyrazole (L1) were prepared and structurally characterized. Usual coordination of L1 was achieved through nitrogen of pyrazole moiety and carbonyl acetyl group. Electronic spectra of the complexes indicate that the geometry of the metal center was six coordinate octahedral. In vitro antimicrobial activity of the ligand and complex compounds was screened in terms of antibacterial effect on Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and antifungal effect on the fungi Aspergillus flavus and candida albicans using the modified Kirby-Bauer disc diffusion and minimum inhibitory concentrations (MIC) methods. Ni(II) complex (2) exhibited remarkable antifungal inhibition against Candida albicans equal to the standard antifungal agent. To continue our study some structural modifications are formed by adding 4-fluoro-benzoyl moiety to L1 in different forms to produce different ligands, 3-acetyl-4-(4-flourobenzoyl)-1-phenyl-1H-pyrazole (L2) and 3-[(3-acetyl-1-phenyl-1H-4-pyrazolyl)carbonyl]-1-phenyl-4-(4-flourobenzoyl)-1H-pyrazole (L3), Ni complexes (5 and 6) are prepared and comparable in vitro antimicrobial study is evaluated. In vitro cytotoxicity of the Ni(II) complex (2) is studied using MTT assay. The analysis of the cell test showed that (2) displayed quite small cytotoxic response at the higher concentration level which indeed would further enable us for more opportunities in therapeutic and biomedical challenges. Both of the capability as a potent in vitro antifungal agent and the cell test analysis show Ni(II) complex (2) as a promising material in the translation of observed in vitro biological phenomenon into clinical therapies settings.

  16. Interaction of Co(II), Ni(II) and Cu(II) with dibenzo-substituted macrocyclic ligands incorporating both symmetrically and unsymmetrically arranged N, O and S donors.

    PubMed

    Vasilescu, I M; Baldwin, D S; Bourne, D J; Clegg, J K; Li, F; Lindoy, L F; Meehan, G V

    2011-09-14

    The synthesis and characterisation of four 17-membered, dibenzo-substituted macrocyclic ligands incorporating unsymmetrical arrangements of their N(3)S(2), N(3)O(2) and N(3)OS (two ligands) donor atoms are described; these rings complete the matrix of related macrocyclic systems incorporating both symmetric and unsymmetric donor sets reported previously. The X-ray structures of three of the new macrocycles are reported. In two of the Cu(II) structures only three of the possible five donor atoms present in the corresponding macrocyclic ligand bind to the Cu(II) site, whereas all five donors are coordinated in each of the remaining complexes. The interaction of Co(II), Ni(II) and Cu(II) with the unsymmetric macrocycle series has been investigated by potentiometric (pH) titration in 95% methanol; X-ray structures of two nickel and three copper complexes of these ligands, each exhibiting 1:1 (M:L) ratios, have been obtained. The results are discussed in the context of previous results for these metals with the analogous 17-membered ring systems incorporating symmetrical arrangements of their donor atoms, with emphasis being given to both the influence of the donor atom set, as well as the donor atom sequence, on the nature of the resulting complexes.

  17. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    SciTech Connect

    Smith, M.E.

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C{sub 5}-symmetrical cyclopentadienyl rings.

  18. Complexation of 1-hexadecyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide with nickel nitrate in acetone

    NASA Astrophysics Data System (ADS)

    Zhiltsova, E. P.; Lukashenko, S. S.; Ibatullina, M. R.; Kutyreva, M. P.; Zakharova, L. Ya.

    2016-07-01

    The complexation of 1-hexadecyl-4-aza-1-azoniabicyclo[2.2.2]octane bromide with Ni(II) nitrate in acetone is studied by means of spectrophotometry (the Job-Ostromisslensky technique and molar ratios). The formation of 3: 1 and 1: 1 ligand: metal complexes is established and confirmed by mathematical modeling. The stability constants of the complexes and the change in the Gibbs free energy are determined.

  19. The oxidation of Ni(II) N-confused porphyrins (NCPs) with azo radical initiators and an unexpected intramolecular nucleophilic substitution reaction via a proposed Ni(III) NCP intermediate.

    PubMed

    Jiang, Hua-Wei; Chen, Qing-Yun; Xiao, Ji-Chang; Gu, Yu-Cheng

    2009-07-01

    The oxidation of Ni(II) N-confused porphyrins (NCPs) with azo radical initiators resulted in an unexpected intramolecular nucleophilic substitution reaction via a proposed Ni(III) NCP intermediate, which could be detected by HRMS.

  20. Ferromagnetic coupling and spin canting behaviour in heterobimetallic Re(IV)M(II/III) (M = Co(II/III), Ni(II)) species.

    PubMed

    Martínez-Lillo, José; Armentano, Donatella; De Munno, Giovanni; Julve, Miguel; Lloret, Francesc; Faus, Juan

    2013-02-01

    Three novel heterobimetallic Re(IV) compounds of formulae [ReBr(4)(μ-ox)M(4,7-Cl(2)phen)(2)]·CH(3)CN·CH(3)NO(2) [M = Co(II) (1) and Ni(II) (2)] and [ReBr(4)(ox)](3)[Co(III)(5,6-dmphen)(3)](2)·CH(3)CN·2CH(3)NO(2)·4H(2)O (3) [ox = oxalate, 4,7-Cl(2)phen = 4,7-dichloro-1,10-phenanthroline and 5,6-dmphen = 5,6-dimethyl-1,10-phenanthroline] have been synthesised and the structures of 1 and 3 determined by single crystal X-ray diffraction. Compound 1 is an oxalato-bridged Re(IV)Co(II) heterodinuclear complex where the [ReBr(4)(ox)](2-) unit acts as a bidentate ligand towards the [Co(4,7-Cl(2)phen)(2)](2+) entity, the separation between Re(IV) and Co(II) across the oxalate being 5.482(1) Å. Compound 3 is an ionic salt whose structure is made up of [Re(IV)Br(4)(ox)](2-) anions and [Co(III)(5,6-dmphen)(3)](3+) cations plus acetonitrile, nitromethane and water as solvent molecules. The magnetic properties of 1-3 were investigated in the temperature range 1.9-300 K. Relatively large ferromagnetic interactions between Re(IV) and M(II) through the bis(bidentate) oxalato occur in 1 and 2 [J(ReM) = +11.0 (1) and +12.2 cm(-1) (2), the Hamiltonian being defined as Ĥ = -J(ReM)Ŝ(Re)·Ŝ(M)] which are explained on the basis of orbital symmetry considerations. A behaviour typical of a magnetically diluted Re(IV) complex with a large and positive value of zero-field splitting for the ground level (D(Re) = +43 cm(-1)) is observed for 3 in the high temperature range, whereas it exhibits spin canting in the low temperature domain as well as magnetic ordering below ca. 4.8 K.

  1. Efficient masking of corrosion and fission products such as Ni(II) and Pd(II) in the presence of the minor actinide Am(III) using hydrophilic anionic or cationic bis-triazines.

    PubMed

    Lewis, Frank W; Harwood, Laurence M; Hudson, Michael J; Müllich, Udo; Geist, Andreas

    2015-06-01

    Water soluble anionic and cationic bis-triazine ligands are able to suppress (mask) the extraction of corrosion and fission products such as Ni(II) and Pd(II) that are found in PUREX raffinates. Thus it is possible to separate these elements from the minor actinide Am(III). Although some masking agents have previously been developed that retard the extraction of Pd(II), this is the first time a masking agent has been developed for Ni(II).

  2. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes.

  3. Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage.

    PubMed

    Shakeri Yekta, Sepehr; Lindmark, Amanda; Skyllberg, Ulf; Danielsson, Asa; Svensson, Bo H

    2014-03-30

    The objective of the present study was to assess major chemical reactions and chemical forms contributing to solubility and speciation of Fe(II), Co(II), and Ni(II) during anaerobic digestion of sulfur (S)-rich stillage in semi-continuous stirred tank biogas reactors (SCSTR). These metals are essential supplements for efficient and stable performance of stillage-fed SCSTR. In particular, the influence of reduced inorganic and organic S species on kinetics and thermodynamics of the metals and their partitioning between aqueous and solid phases were investigated. Solid phase S speciation was determined by use of S K-edge X-ray absorption near-edge spectroscopy. Results demonstrated that the solubility and speciation of supplemented Fe were controlled by precipitation of FeS(s) and formation of the aqueous complexes of Fe-sulfide and Fe-thiol. The relatively high solubility of Co (∼ 20% of total Co content) was attributed to the formation of compounds other than Co-sulfide and Co-thiol, presumably of microbial origin. Nickel had lower solubility than Co and its speciation was regulated by interactions with FeS(s) (e.g. co-precipitation, adsorption, and ion substitution) in addition to precipitation/dissolution of discrete NiS(s) phase and formation of aqueous Ni-sulfide complexes. PMID:24576559

  4. Copper(II) and nickel(II) complexes of benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone: Synthesis, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    Prathima, B.; Subba Rao, Y.; Adinarayana Reddy, S.; Reddy, Y. P.; Varada Reddy, A.

    2010-09-01

    Benzyloxybenzaldehyde-4-phenyl-3-thiosemicarbazone ligand (L) has been synthesized from benzyloxybenzaldehyde and 4-phenyl-3-thiosemicarbazide. Complexes of this ligand with chlorides of Cu(II) and Ni(II) have been prepared. The structure of the ligand (L) is proposed based on elemental analysis, IR and 1H NMR spectra. Its complexes with Cu(II) and Ni(II) ions are characterized from the studies of electronic as well as EPR spectra. On the basis of electronic and EPR studies, rhombically distorted octahedral structure has been proposed for Cu(II) complex while the Ni(II) complex has been found to acquire an octahedral structure. The ligand and their metal complexes have been tested in vitro for their biological effects. Their antibacterial activities against Gram-negative bacteria ( Escherichia coli and Klebsiella pneumoniae) and Gram-positive bacteria ( Staphylococcus aureus and Bacillus subtilis) have been investigated. The prepared metal complexes exhibit higher antibacterial activities than the parent ligand. The in vitro antioxidant activity of free ligand and its metal(II) complexes have also been investigated and the results however reveal that the ligand exhibits greater antioxidant activity than its complexes.

  5. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  6. Wet oxidative method for removal of 2,4,6-trichlorophenol in water using Fe(III), Co(II), Ni(II) supported MCM41 catalysts.

    PubMed

    Chaliha, Suranjana; Bhattacharyya, Krishna Gopal

    2008-02-11

    Chlorophenols in water are resistant to biological oxidation and they have to be destroyed by chemical oxidation. In the present work, Fe(III), Co(II) and Ni(II) incorporated MCM41 mesoporous solids were used as catalysts for oxidation of 2,4,6-trichlorophenol in water with or without the oxidant, H(2)O(2). The catalysts were prepared by impregnation and were characterized by XRD and FTIR measurements. The parent MCM41, Fe(III), Co(II) and Ni(II) impregnated MCM41 had cation exchange capacity of 20.5, 25.5, 24.2, 26.0 mequiv./100g, respectively. The catalysts were used after calcination at 773-873 K for 5 h. The reactions were carried out in a high pressure stirred reactor at 0.2 MPa (autogenous) and 353 K under various reaction conditions. The conversion achieved with Fe(III), Co(II) and Ni(II) incorporated MCM41 in 5h is respectively 59.4, 50.0 and 65.6% with 2,4,6-TCP:H(2)O(2) molar ratio of 1:1, and 60.2, 60.9 and 68.8% in absence of H(2)O(2). The oxidation has a first order rate coefficient of (1.2-4.8)x10(-3)min(-1). The results show that introduction of Fe(III), Co(II) and Ni(II) into MCM-41 through impregnation produces very effective catalysts for wet oxidation of 2,4,6-trichlorophenol.

  7. Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease.

    PubMed

    Miraula, Manfredi; Ciurli, Stefano; Zambelli, Barbara

    2015-06-01

    Urease is a Ni(II) enzyme present in every domain of life, in charge for nitrogen recycling through urea hydrolysis. Its activity requires the presence of two Ni(II) ions in the active site. These are delivered by the concerted action of four accessory proteins, named UreD, UreF, UreG and UreE. This process requires protein flexibility at different levels and some disorder-to-order transition events that coordinate the mechanism of protein-protein interaction. In particular, UreG, the GTPase in charge of nucleotide hydrolysis required for urease activation, presents a significant degree of intrinsic disorder, existing as a conformational ensemble featuring characteristics that recall a molten globule. Here, the folding properties of UreG were explored in Archaea hyperthermophiles, known to generally feature significantly low level of structural disorder in their proteome. UreG proteins from Methanocaldococcus jannaschii (Mj) and Metallosphaera sedula (Ms) were structurally and functionally analyzed by integrating circular dichroism, NMR, light scattering and enzymatic assays. Metal-binding properties were studied using isothermal titration calorimetry. The results indicate that, as the mesophilic counterparts, both proteins contain a significant amount of secondary structure but maintain a flexible fold and a low GTPase activity. As opposed to other UreGs, secondary structure is lost at high temperatures (68 and 75 °C, respectively) with an apparent two-state mechanism. Both proteins bind Zn(II) and Ni(II), with affinities two orders of magnitude higher for Zn(II) than for Ni(II). No major modifications of the average conformational ensemble are observed, but binding of Zn(II) yields a more compact dimeric form in MsUreG. PMID:25846143

  8. Anti-inflammatory properties of diclofenac transition metalloelement complexes.

    PubMed

    Konstandinidou, M; Kourounakis, A; Yiangou, M; Hadjipetrou, L; Kovala-Demertzi, D; Hadjikakou, S; Demertzis, M

    1998-04-01

    As part of our research into understanding drug-metalloelement interactions, we have prepared complexes of Cu(II), Co(II), Ni(II), Mn(II), Fe(II), Fe(III), and Pd(II) with Diclofenac, in order to investigate their anti-inflammatory activity. Their inhibitory effects on rat or mouse paw edema induced by Carrageenan, Con-A, Nystatin, and Baker's yeast were compared with those of Diclofenac. Furthermore, the action of Diclofenac's metalloelement complexes on phagocytosis of yeast by rat peritoneal cells, as well as the capacity of some of the metalloelement complexes to inhibit lipid peroxidation of liver microsomal membranes was also investigated. These complexes exhibited a strong inhibitory effect on Carrageenan-, ConA-, and Nystatin-induced edemas (35-80% inhibition) comparable to the inhibition caused by Diclofenac (61-76% inhibition). Furthermore, complexes with Co(II), Ni(II), Pd(II), and Mn(II) were found to have an anti-inflammatory profile (35-50% inhibition) superior to diclofenac (17% inhibition) when inhibiting inflammations due to Baker's yeast, the mechanism of which involves mainly the activation of lipoxygenase and/or complement system. Complexes of Ni(II) and Pd(II), which showed significant inhibition of induced-edemas in rats, were also tested in mice at lower and higher doses and showed a significant dose-dependent inhibition of edemas in mice. Some of these complexes also interfere with in vitro phagocytosis. The most active anti-inflammatory complexes Co(II), Pd(II), and Ni(II), also offered significant protection against lipid peroxidation in vitro, acting as antioxidant compounds, properties that are not demonstrated by Diclofenac. Finally, it is noted that almost all metalloelement complexes of Diclofenac showed high anti-inflammatory activity at molecular concentrations much lower than that of Diclofenac. From the present study it is suggested that the anti-inflammatory activity of Diclofenac is enhanced by the formation of coordination

  9. Application of carrier element free coprecipitation (CEFC) method for determination of Co(II), Cu(II) and Ni(II) ions in food and water samples.

    PubMed

    Serencam, Huseyin; Duran, Celal; Ozdes, Duygu; Bektas, Hakan

    2013-01-01

    A simple and highly sensitive separation and preconcentration procedure, which has minimal impact on the environment, has been developed. The procedure is based on the carrier element free coprecipitation (CEFC) of Co(II), Cu(II), and Ni(II) ions by using 2-{4-[2-(1H-indol-3-yl)ethyl]-3-(4-methylbenzyl)-5-oxo-4,5-dihydro- 1H-1,2,4-triazol-l-yl}-N'-(pyridin-2-yl methylidene)acetohydrazide (IMOTPA), as an organic coprecipitant. The levels of analyte ions were determined by flame atomic absorption spectrometry (FAAS). The detection limits for Co(II), Cu(II) and Ni(II) ions were found to be 0.40, 0.16 and 0.17 microg L(-1), respectively, and the relative standard deviations for the analyte ions were lower than 3.0%. Spike tests and certified reference material analyses were performed to validate the method. The method was successfully applied for the determination of Co(II), Cu(II) and Ni(II) ions levels in sea and stream water as liquid samples and red pepper, black pepper, and peppermint as solid samples. PMID:23878931

  10. Preconcentration of Cu(II), Co(II), and Ni(II) using an Optimized Enrichment Procedure: Useful and Alternative Methodology for Flame Atomic Absorption Spectrometry.

    PubMed

    Tokay, Feyzullah; Bağdat, Sema

    2016-03-01

    In this paper, a new solid phase extraction procedure is described for Cu(II), Co(II), and Ni(II). Silica gel which was coated with N,N'-bis(4-methoxysalicylidene) ethylenediamine (MSE) is used as a sorbent. Three independent variables were optimized using central composite design (CCD) for sorption and elution of metal ions. The optimum values of sorption and elution variables allowed simultaneous preconcentration of the ions in same conditions as follows, for sorption, pH 6.9, flow rate 5.4 mL min(-1), sample volume 50.0 mL, and for elution, flow rate 2.6 mL min(-1), eluent concentration 1.0 mol L(-1), eluent volume 5.0 mL. The detection limits (LOD) were found to be 1.1 µg L(-1) for Cu(II), 7.4 µg L(-1) for Co(II), and 7.5 µg L(-1) for Ni(II) and preconcentration factor was 200 for each of the ions. The accuracy of the method was tested with Lake Ontario water and multi-element standard solution. The proposed method was also applied to various water samples. The proposed method can be alternatively suggested as accurate, precise, easy, and a cheap method for Cu(II), Co(II), and Ni(II) determination. PMID:26823544

  11. Biomass assisted synthesis of alumina by Gardenia Jasminoides Ellis and their application for removal of Ni(II) from aqueous solution.

    PubMed

    Zheng, Nan; Zhao, Yusheng; Song, Qianqian; Jia, Lishan; Fang, Weiping

    2013-09-15

    A simple and novel process has been proposed to synthesize alumina using gardenia extract and aluminum salts in an aqueous solution. The alumina sample notated as "bio-Al₂O₃" was characterized by X-ray diffraction (XRD) and nitrogen adsorption-desorption experiment. The results indicated that the existence of the gardenia biomass enlarged the surface area of alumina and reached 256 m(2)/g. The thermo gravimetric (TG), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) results showed that gardenia biomass bound to the surface of the alumina has substantially improved the adsorption capacity of Ni(II) and the adsorption behavior of nickel ion was related to the biomass functional groups. The results of three adsorption-desorption cycles showed that the bio-Al₂O₃ using as the adsorbent for Ni(II) was relatively stable. The kinetic of the Ni(II) adsorption by the bio-Al₂O₃ followed pseudo-second-order equation. Langmuir and Freundlich isotherm models were applied to analyze the experimental data and the result demonstrated that the adsorption isotherms followed Langmuir isotherm model. PMID:23892172

  12. Synthesis, spectral characterization, computational calculations and biological activity of complexes designed from NNO donor Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; El-Reash, G. M. Abu; Yousef, T. A.; Mefreh, M.

    2015-07-01

    A new series of Co(II), Ni(II) and Cu(II) complexes of (Z)-2-oxo-2-(phenylamino)-N‧-(1-(pyridin-2-yl)ethylidene)acetohydrazide (H2OPPAH) have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand acts as neutral or mononegative NNO tridentate. On the basis of magnetic and electronic spectral data an octahedral geometry for Ni(II) and Cu(II) complexes and a tetrahedral geometry for Co(II) complex have been proposed. The molecular modeling using DFT method are drawn showing the bond length, bond angle, chemical reactivity, energy components (kcal/mol) and binding energy (kcal/mol) for all title compounds. The Kinetic parameters were determined for each thermal degradation stages of the ligand and its complexes using Coats-Redfern and Horowitz-Metzger methods. Also, the compounds were screened for antioxidant activity using ABTS free radical, anti-hemolytic, and in vitro cytotoxic assay. H2OPPAH showed the potent antioxidant activity followed by Co(II) and Cu(II) complexes. On the other hand Ni(II) complex exhibited weak antioxidant activity using ABTS free radical and Erlich and strong erythrocyte hemolysis activity.

  13. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se4 Coordination Complex.

    PubMed

    Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis

    2015-10-14

    The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

  14. Metal- and anion-directed assemblies of CuII, CoII, NiII, and ZnII coordination polymers based on a bent dipyridyl ligand 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole and malonic acid

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng-Hui; Qi, Yan-Mei; Sun, Yu; Chi, Qin; Guo, Ya-Mei

    2012-06-01

    This work presents six CuII, CoII, NiII, and ZnII coordination polymers assembled from a bent dipyridyl ligand 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-bpt) and malonic acid (H2mal), which have been prepared at ambient conditions in water-methanol solution. Single-crystal X-ray diffraction indicates that these complexes show a variety of 1-D (for 2-6) and 2-D (for 1) coordination patterns. The results evidently reveal the versatility of 3-bpt with different configurations and binding modes in coordination assemblies, which will be profoundly influenced by the metal ions and even inorganic counter anions. Furthermore, extended supramolecular architectures are constructed via multiple secondary interactions such as hydrogen bonding and aromatic stacking.

  15. Computational simulation and biological studies on 3-(2-(2-hydroxybenzoyl)hydrazono)-N-(pyridine-2-yl)butanamide complexes

    NASA Astrophysics Data System (ADS)

    Ibrahim, K. M.; Zaky, R. R.; Gomaa, E. A.; Yasin, L. A.

    2015-12-01

    A number of Cu(II), Co(II), Ni(II), Cd(II) and Hg complexes with 3-(2-(2-hydroxybenzoyl)hydrazono)-N-(pyridine-2-yl)butanamide were synthesized. The structures were elucidated by elemental and thermal analysis, as well as spectroscopic techniques (1H NMR, IR, UV-visible, MS) and physical measurements (magnetic susceptibility and molar conductance). The IR and 1H NMR data suggested that H2SHAH acted as a tridentate and/or tetradentate ligand. The electronic spectrum plus magnetic moments suggesting octahedral geometry of all isolated complexes except [Cu(HSHAH)Cl] complex has square planner structure. The kinetic and thermodynamic parameters of the Ni(II) and Cu(II) complexes were measured using the Coats-Redfern approach. The DFT used to confirm the geometry of the isolated compounds. Also, the association and formation constants of Ni(II), Co(II) and Cu(II) ions in mixed solvent at 298.15 K were intended by employing electrical conductance. The biological activity (antimicrobial, antioxidant & cytotoxic) were carried out on the prepared compounds. The Cd(II) complex has the most potent biological activity among all the other compounds.

  16. Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime

    PubMed Central

    Williams, Owen M.; Cowley, Alan H.

    2016-01-01

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd), namely bis­[μ2-9,10-bis­(oxido­imino)­phenanthrene]­bis­[μ2-10-(oxido­imino)phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8, has been isolated and its crystal structure determined. This complex features three independent NiII atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar NiII atoms and a third pseudo-octa­hedral NiII atom. While the square-planar NiII atoms are stacked, there are no ligand bridges between them. Each square-planar NiII atom, however, bridges with the pseudo-octa­­hedral NiII atom through Ni—N—O—Ni and Ni—O—Ni bonds. A fluorido­bor­ation reaction of the proton-bridged species gave the analogous complex bis­(μ2-bis­{[10-(oxido­imino)-9,10-di­hydro­phenanthren-9-yl­idene]amino}di­fluorido­borato)(phenanthrene-9,10-dione dioxime)trinickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O2)4(C14H10N2O2)]·3CH2Cl2, which shows the same binding structure, but features a widened Ni—Ni inter­action between the square-planar NiII atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar NiII atoms by means of an O—H⋯O hydrogen bond. Both compounds feature O—H⋯N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct inter­action with their nearest neighbors in the extended lattice. Two π-stacking inter­actions between adjacent mol­ecules are found: one with a centroid–centroid distance of 3.886 (2) Å and the other with a centroid–centroid distance of 4.256 (3) Å. In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene mol­ecules occupy the solvent channels that are

  17. Extraction of nickel from edible oils with a complexing agent prior to determination by FAAS.

    PubMed

    Tokay, Feyzullah; Bağdat, Sema

    2016-04-15

    In the present work, a new extraction method for separation of nickel from edible oils and determination by FAAS is reported. This method is based on extraction of Ni(II) ions from the oil to aqueous phase with N,N'-bis(4-methoxysalicylidene) ethylenediamine (MSE) and determination by FAAS. Properties of the complex formed between MSE and Ni(II) were investigated spectrophotometrically. Central composite design (CCD) was utilized for optimization of MSE to oil, stirring time and temperature, which were 0.97 mL g(-1), 15.4 min, and 29.7°C, respectively. The developed method was tested with an oil-based metal standard and the recovery was 93.8±3.9%. The proposed method was applied with five different edible oils. PMID:26616973

  18. Trinuclear nickel coordination complexes of phenanthrene-9,10-dione dioxime.

    PubMed

    Williams, Owen M; Cowley, Alan H

    2016-04-01

    A trinuclear nickel complex of phenanthrene-9,10-dione dioxime (H2pqd), namely bis-[μ2-9,10-bis-(oxido-imino)-phenanthrene]-bis-[μ2-10-(oxido-imino)phenanthrene-9-one oxime](phenanthrene-9,10-dione dioxime)trinickel(II) toluene disolvate, [Ni3(C14H8N2O2)2(C14H9N2O2)2(C14H10N2O2)]·2C7H8, has been isolated and its crystal structure determined. This complex features three independent Ni(II) atoms that are arranged in a triangular fashion along with five supporting ligands. There are two square-planar Ni(II) atoms and a third pseudo-octa-hedral Ni(II) atom. While the square-planar Ni(II) atoms are stacked, there are no ligand bridges between them. Each square-planar Ni(II) atom, however, bridges with the pseudo-octa--hedral Ni(II) atom through Ni-N-O-Ni and Ni-O-Ni bonds. A fluorido-bor-ation reaction of the proton-bridged species gave the analogous complex bis-(μ2-bis-{[10-(oxido-imino)-9,10-di-hydro-phenanthren-9-yl-idene]amino}di-fluorido-borato)(phenanthrene-9,10-dione dioxime)trinickel(II) dichloromethane trisolvate, [Ni3(C28H16BF2N4O2)4(C14H10N2O2)]·3CH2Cl2, which shows the same binding structure, but features a widened Ni-Ni inter-action between the square-planar Ni(II) atoms. The proton-bridged complex completes the macrocyclic coordination around the square-planar Ni(II) atoms by means of an O-H⋯O hydrogen bond. Both compounds feature O-H⋯N hydrogen bonds between the oxime and the N atoms attached to square-planar nickel atom. The nickel units show no direct inter-action with their nearest neighbors in the extended lattice. Two π-stacking inter-actions between adjacent mol-ecules are found: one with a centroid-centroid distance of 3.886 (2) Å and the other with a centroid-centroid distance of 4.256 (3) Å. In the latter case, although not aromatic, the distance to the centroid of the central phenanthrene ring is shorter, with a distance of 3.528 (3) Å. Toluene mol-ecules occupy the solvent channels that are oriented along the c axis. In

  19. Synthesis, Spectroscopic Characterization, and Biological Evaluation Studies of 5-Bromo-3-(((hydroxy-2-methylquinolin-7-yl)methylene)hydrazono)indolin-2-one and Its Metal (II) Complexes

    PubMed Central

    Siddappa, Kuruba; Mayana, Nabiya Sultana

    2014-01-01

    The Schiff base ligand 5-bromo-3-(((8-hydroxy-2-methylquinolin-7-yl)methylene)hydrazono)indolin-2-one (BHMQMHI) was prepared via condensation of 5-bromo-3-hydrazonoindolin-2-one and 7-formyl-8-hydroxy-2-methylquinoline and its Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized by elemental analysis, conductance data, magnetic susceptibility measurements, IR, UV-Vis, mass spectrometry, 1H NMR, ESR, XRD, and thermal studies. By these spectral studies it is found that Co(II), Ni(II), and Cu(II) complexes have exhibited octahedral geometry whereas the Zn(II), Cd(II), and Hg(II) complexes have exhibited tetrahedral geometry. Potentiometric studies have been carried out on complexes of Schiff base (BHMQMHI) with Cu(II), Co(II), and Ni(II). Calvin-Bjerrum pH-titration technique as used by Irving and Rossotti has been applied to determine stability constants in mixed solvents at 25 ± 1°C. The present study reports the protonation constants of this ligand and stability constants of its metal complexes in dioxane-water (50%, v/v) mixtures. Metal-ligand stability constants fall in the order of Cu(II) > Co(II) > Ni(II) which is in agreement with those reported by Irving stability order. The Schiff base (BHMQMHI) and its metal complexes have been screened for their in vitro antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activities of all the complexes were studied by agarose gel electrophoresis method. In addition, the free ligand along with its complexes has been studied for their antioxidant activity. PMID:25371658

  20. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    SciTech Connect

    Taha, Mohd F. Shaharun, Maizatul S.; Shuib, Anis Suhaila Borhan, Azry

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  1. On the ortho-positronium quenching reactions promoted by Fe(II), Fe(III), Co(III), Ni(II), Zn(II) and Cd(II) cyanocomplexes

    NASA Astrophysics Data System (ADS)

    Fantola Lazzarini, Anna L.; Lazzarini, Ennio

    The o-Ps quenching reactions promoted in aqueous solutions by the following six cyanocomplexes: [Fe(CN) 6] 4-; [Co(CN) 6] 3-; [Zn(CN) 4] 2-; [Cd(CN) 6] 2-; [Fe(CN) 6] 3-; [Ni(CN) 4] 2- were investigated. The first four reactions probably consist in o-Ps addition across the CN bond, their rate constants at room temperature, Tr, being ⩽(0.04±0.02) × 10 9 M -1 s -1, i.e. almost at the limit of experimental errors. The rate constant of the fifth reaction, in o-Ps oxydation, at Tr is (20.3±0.4) × 10 9 M -1 s -1. The [Ni(CN) 4] 2-k value at Tr, is (0.27±0.01) × 10 9 M -1 s -1, i.e. 100 times less than the rate constants of o-Ps oxydation, but 10 times larger than those of the o-Ps addition across the CN bond. The [Ni(CN) 4] 2- reaction probably results in formation of the following positronido complex: [Ni(CN) 4Ps] 2-. However, it is worth noting that the existence of such a complex is only indirectly deduced. In fact it arises from comparison of the [Ni(CN) 4] 2- rate constant with those of the Fe(II), Zn(II), Cd(II), and Co(III) cyanocomplexes, which, like the Ni(II) cyanocomplex, do not promote o-Ps oxydation or spin exchange reactions.

  2. Dinuclear metallacycles with single M-O(H)-M bridges [M = Fe(II), Co(II), Ni(II), Cu(II)]: effects of large bridging angles on structure and antiferromagnetic superexchange interactions.

    PubMed

    Reger, Daniel L; Pascui, Andrea E; Foley, Elizabeth A; Smith, Mark D; Jezierska, Julia; Ozarowski, Andrew

    2014-02-17

    The reactions of M(ClO4)2·xH2O and the ditopic ligands m-bis[bis(1-pyrazolyl)methyl]benzene (Lm) or m-bis[bis(3,5-dimethyl-1-pyrazolyl)methyl]benzene (Lm*) in the presence of triethylamine lead to the formation of monohydroxide-bridged, dinuclear metallacycles of the formula [M2(μ-OH)(μ-Lm)2](ClO4)3 (M = Fe(II), Co(II), Cu(II)) or [M2(μ-OH)(μ-Lm*)2](ClO4)3 (M = Co(II), Ni(II), Cu(II)). With the exception of the complexes where the ligand is Lm and the metal is copper(II), all of these complexes have distorted trigonal bipyramidal geometry around the metal centers and unusual linear (Lm*) or nearly linear (Lm) M-O-M angles. For the two solvates of [Cu2(μ-OH)(μ-Lm)2](ClO4)3, the Cu-O-Cu angles are significantly bent and the geometry about the metal is distorted square pyramidal. All of the copper(II) complexes have structural distortions expected for the pseudo-Jahn-Teller effect. The two cobalt(II) complexes show moderate antiferromagnetic coupling, -J = 48-56 cm(-1), whereas the copper(II) complexes show very strong antiferromagnetic coupling, -J = 555-808 cm(-1). The largest coupling is observed for [Cu2(μ-OH)(μ-Lm*)2](ClO4)3, the complex with a Cu-O-Cu angle of 180°, such that the exchange interaction is transmitted through the dz(2) and the oxygen s and px orbitals. The interaction decreases, but it is still significant, as the Cu-O-Cu angle decreases and the character of the metal orbital becomes increasingly d(x(2)-y(2)). These intermediate geometries and magnetic interactions lead to spin Hamiltonian parameters for the copper(II) complexes in the EPR spectra that have large E/D ratios and one g matrix component very close to 2. Density functional theory calculations were performed using the hybrid B3LYP functional in association with the TZVPP basis set, resulting in reasonable agreement with the experiments.

  3. Synthesis, spectral characterization, molecular modeling and in vitro antibacterial activity of complexes designed from O2, NO and NO donor Schiff-base ligand

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; Abu El-Reash, G.; Ahmed, S. F.

    2015-01-01

    A new chelating agent, N‧-(4-methoxybenzylidene)-2-oxo-2-(phenylamino)acetohydrazide (H2OMPH) and its complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and U(IV)O22+ ions have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand coordinates as neutral bidentate with Cu(II), Mn(II), U(IV)O22+ and Hg(II), neutral tridentate with Ni(II), mononegative tridentate with Co(II) and binegative tetradentate with Zn(II) ions. On basis of magnetic and electronic spectral data an octahedral geometry for Mn(II), Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complex have been proposed and confirmed by applying geometry optimization and conformational analysis. The protonation constants of H2OMPH and the stepwise stability constants of its complexes are calculated at 298, 308 and 318 k as well as their thermodynamic parameters. Also, the Kinetic parameters (Ea, A, ΔH*, ΔS* and ΔG*) were determined for each thermal degradation stage of some complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and some complexes were screened for in vitro antibacterial activity against Staphylococcus epidermalies (St. epid); Streptococcus pyagenies (Strp. py.) as Gram +ve bacteria and Escherichia coli (E. coli); Klebsiella spp. (kleb. spp.) as Gram -ve bacteria using inhibition zone diameter.

  4. Synthesis, spectral characterization, molecular modeling and in vitro antibacterial activity of complexes designed from OO, NO and NN donor Schiff-base ligand [corrected].

    PubMed

    El-Gammal, Ola A; Abu El-Reash, G; Ahmed, S F

    2015-01-25

    A new chelating agent, N'-(4-methoxybenzylidene)-2-oxo-2-(phenylamino)acetohydrazide (H2OMPH) and its complexes with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Hg(II) and U(IV)O2(2+) ions have been prepared and characterized by conventional techniques. The spectral data indicated that the ligand coordinates as neutral bidentate with Cu(II), Mn(II), U(IV)O2(2+) and Hg(II), neutral tridentate with Ni(II), mononegative tridentate with Co(II) and binegative tetradentate with Zn(II) ions. On basis of magnetic and electronic spectral data an octahedral geometry for Mn(II), Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complex have been proposed and confirmed by applying geometry optimization and conformational analysis. The protonation constants of H2OMPH and the stepwise stability constants of its complexes are calculated at 298, 308 and 318 k as well as their thermodynamic parameters. Also, the Kinetic parameters (Ea, A, ΔH(*), ΔS(*) and ΔG(*)) were determined for each thermal degradation stage of some complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and some complexes were screened for in vitro antibacterial activity against Staphylococcus epidermalies (St. epid); Streptococcus pyagenies (Strp. py.) as Gram +ve bacteria and Escherichia coli (E. coli); Klebsiella spp. (kleb. spp.) as Gram -ve bacteria using inhibition zone diameter.

  5. Synthesis Characterization and Antimicrobial Activity Studies of Some Transition Metal Complexes Derived from 3-Chloro-N′-[(1E)-(2-hydroxy phenyl)methylene]-6-methoxy-1-benzothiophene-2-carbohydrazide

    PubMed Central

    Biradar, Vivekanand D.; Mruthyunjayaswamy, B. H. M.

    2013-01-01

    A series of new coordination complexes of Cu(II), Co(II), Ni(II), Zn(II), Hg(II), Mn(II), and Fe(III) with the Schiff base 3-chloro-N′-[(1E)-(2-hydroxy phenyl)methylene]-6-methoxy-1-benzothiophene-2-carbohydrazide (HL) have been synthesized and characterized by elemental analysis, electrical conductivity measurements, IR spectra, 1H NMR, mass spectral data, electronic spectra, magnetic susceptibility, ESR spectra, TGA, and Powder XRD data. The Schiff base behaves as tridentate ONO donor ligand and forms the complexes of the type ML2 (metal-ligand) stoichiometry for Cu(II), Co(II), Ni(II), and Mn(II) complexes and ML stoichiometry for Zn(II), Hg(II), and Fe(III) complexes. All the complexes are colored and nonelectrolytes. It is found that Cu(II), Co(II), Ni(II), Mn(II) and Fe(III) complexes have exhibited octahedral geometry whereas Zn(II) and Hg(II) complexes exhibited tetrahedral geometry. The ligand and its metal complexes have been screened for their antibacterial activity against E. coli and S. aureus and antifungal activity against A. niger and A. flavus. PMID:24453851

  6. Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base.

    PubMed

    Monier, M; Ayad, D M; Abdel-Latif, D A

    2012-06-01

    The adsorption of Cu(II), Cd(II) and Ni(II) ions from aqueous solution by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff's base resin (CSAP) was studied in a batch adsorption system. Cu(II), Cd(II) and Ni(II) removal is pH dependent and the optimum adsorption was observed at pH 5.0. The adsorption was fast with estimated initial rate of 2.7, 2.4 and 1.4 mg/(g min) for Cu(2+), Cd(2+) and Ni(2+) respectively. The adsorption data could be well interpreted by the Langmuir, Freundlich and Temkin model. The maximum adsorption capacities obtained from the Langmuir model were 124±1, 84±2 and 67±2 mg g(-1) for Cu(2+), Cd(2+) and Ni(2+) respectively. The adsorption process could be described by pseudo-second-order kinetic model. Thermodynamic parameters revealed the feasibility, spontaneity and exothermic nature of adsorption. The sorbents were successfully regenerated using EDTA and HCl solutions. PMID:22386793

  7. Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline.

    PubMed

    Liu, Haibin; Wang, Cuiping; Liu, Jingting; Wang, Baolin; Sun, Hongwen

    2013-10-15

    The adsorption of Cd(II), Zn(II) and Ni(II) from aqueous solutions in binary and ternary component systems by tourmaline was investigated. Kinetic data were accurately fitted to pseudo-second order and internal diffusion models, which indicated that the adsorption of heavy metals occurred on the interior surface of the sorbent and internal diffusion was the controlling mechanism during heavy metal ion adsorption but was not the only rate-controlling step. Additionally, tourmaline had a very good adsorption capacity for Cd(II), Zn(II) and Ni(II) in multi-component aqueous solutions at strongly acidic pH values (in contrast to industrial wastewater pH values). This good adsorption capacity is attributed to the fact that tourmaline can automatically adjust the pH values of acidic (except pH 2.0 and 3.0), neutral or alkaline aqueous solutions to 6.0. Adsorption isotherms and separation factors showed that tourmaline displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Cd(II) > Zn(II) > Ni(II). Thermodynamic parameters indicated that heavy metal adsorption was feasible, spontaneous, and endothermic. Therefore, tourmaline should be explored as a material for removing pollutants from the strongly acidic wastewater. PMID:23851318

  8. 2,4-Dinitrophenylhydrazine functionalized sodium dodecyl sulfate-coated magnetite nanoparticles for effective removal of Cd(II) and Ni(II) ions from water samples.

    PubMed

    Sobhanardakani, Soheil; Zandipak, Raziyeh

    2015-07-01

    2,4-Dinitrophenylhydrazine immobilized on sodium dodecyl sulfate (SDS)-coated magnetite and was used for removal of Cd(II) and Ni(II) ions from aqueous solution. The prepared product was characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The size of the nanoparticles according to SEM was obtained around 20-35 nm. In batch tests, the effects of pH, contact time, initial metal concentration, and temperature were studied. The kinetic and equilibrium data were modeled with recently developed models. The adsorption kinetics and isotherms were well fitted by the fractal-like pseudo-second-order model and Langmuir-Freundlich model, respectively. Maximum adsorption capacity by this adsorbent is 255.1 mg g(-1) for Cd(II) ion and 319.6 mg g(-1) for Ni(II) ion at pH 7.0 and 25 °C. The method was successfully applied to the removal of metal cations in real samples (tap water, river water, and petrochemical wastewater).

  9. Competitive adsorption of Cd(II), Zn(II) and Ni(II) from their binary and ternary acidic systems using tourmaline.

    PubMed

    Liu, Haibin; Wang, Cuiping; Liu, Jingting; Wang, Baolin; Sun, Hongwen

    2013-10-15

    The adsorption of Cd(II), Zn(II) and Ni(II) from aqueous solutions in binary and ternary component systems by tourmaline was investigated. Kinetic data were accurately fitted to pseudo-second order and internal diffusion models, which indicated that the adsorption of heavy metals occurred on the interior surface of the sorbent and internal diffusion was the controlling mechanism during heavy metal ion adsorption but was not the only rate-controlling step. Additionally, tourmaline had a very good adsorption capacity for Cd(II), Zn(II) and Ni(II) in multi-component aqueous solutions at strongly acidic pH values (in contrast to industrial wastewater pH values). This good adsorption capacity is attributed to the fact that tourmaline can automatically adjust the pH values of acidic (except pH 2.0 and 3.0), neutral or alkaline aqueous solutions to 6.0. Adsorption isotherms and separation factors showed that tourmaline displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Cd(II) > Zn(II) > Ni(II). Thermodynamic parameters indicated that heavy metal adsorption was feasible, spontaneous, and endothermic. Therefore, tourmaline should be explored as a material for removing pollutants from the strongly acidic wastewater.

  10. Transition Metal(II) Complexes with Cefotaxime-Derived Schiff Base: Synthesis, Characterization, and Antimicrobial Studies

    PubMed Central

    Amzoiu, Emilia; Spînu, Cezar Ionuţ

    2014-01-01

    New [ML2(H2O)2] complexes, where M = Co(II), Ni(II), Cu(II), and Zn(II) while L corresponds to the Schiff base ligand, were synthesized by condensation of cefotaxime with salicylaldehyde in situ in the presence of divalent metal salts in ethanolic medium. The complexes were characterized by elemental analyses, conductance, and magnetic measurements, as well as by IR and UV-Vis spectroscopy. The low values of the molar conductance indicate nonelectrolyte type of complexes. Based on spectral data and magnetic moments, an octahedral geometry may be proposed for Co(II), Ni(II), and Zn(II) complexes while a tetragonal geometry for Cu(II) complex. Molecular structure of the Schiff base ligand and its complexes were studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. All the synthesized complexes were tested for in vitro antibacterial activity against some pathogenic bacterial strains, namely Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus. The MIC values shown by the complexes against these bacterial strains revealed that the metal complexes possess superior antibacterial activity than the Schiff base. PMID:24688454

  11. Metalloantibiotic Mn(II)-bacitracin complex mimicking manganese superoxide dismutase

    SciTech Connect

    Piacham, Theeraphon; Isarankura-Na-Ayudhya, Chartchalerm; Nantasenamat, Chanin; Yainoy, Sakda; Ye Lei; Buelow, Leif; Prachayasittikul, Virapong . E-mail: mtvpr@mucc.mahidol.ac.th

    2006-03-24

    Superoxide dismutase (SOD) activities of various metallobacitracin complexes were evaluated using the riboflavin-methionine-nitro blue tetrazolium assay. The radical scavenging activity of various metallobacitracin complexes was shown to be higher than those of the negative controls, e.g., free transition metal ions and metal-free bacitracin. The SOD activity of the complex was found to be in the order of Mn(II) > Cu(II) > Co(II) > Ni(II). Furthermore, the effect of bacitracin and their complexation to metals on various microorganisms was assessed by antibiotic susceptibility testing. Moreover, molecular modeling and quantum chemical calculation of the metallobacitracin complex was performed to evaluate the correlation of electrostatic charge of transition metal ions on the SOD activity.

  12. Complexes With Biologically Active Ligands. Part 71 Synthesis and Fungitoxic Activity of Metal Complexes Containing 1,3,5-tris-(8-Hydroxyquinolino)- Trichlorocyclo-Triphosphazatriene

    PubMed Central

    Barboiu, Mihai; Guran, Cornelia; Jitaru, Ioana; Cimpoesu, Marilena

    1996-01-01

    Complexes containing 1,3,5-tris-(8-hydroxyquinolino)-trichlorocyclotriphosphazatriene, a new cyclophosphazene ligand, and Co(II), Cu(II) and Ni(II) were prepared. The new complexes, having the general formula [MLCl2], [ML2]Cl2, (M=Cu, Co, Ni); [NiLAc], [NiL2Ac]Ac and [ML3]X3 (M=Ni, Co, X=Cl, Ac) were characterised by elemental analysis, electronic-, IR spectroscopy, and electrical conductivity measurements. Some of them inhibited the growth of several fungi species (Aspergillus and Candida spp.) PMID:18472899

  13. Synthesis, characterisation, spectral, thermal, XRD, molecular modelling and potential antibacterial study of metal complexes containing octadentate azodye ligands

    NASA Astrophysics Data System (ADS)

    Mahapatra, Bipin Bihari; Chaulia, Satyanarayan; Sarangi, Ashish Kumar; Dehury, Satyanarayan; Panda, Jnyanaranjan

    2015-05-01

    Twelve tetrametallic complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with two new octadentate azodye ligands, 4,4‧-bis(2‧,4‧-dihydroxy-5‧carboxyphenylazo) diphenylether (LH6) and 4,4‧-bis(2‧,4‧-dihydroxy-5‧-acylphenylazo) diphenylether (L‧H4) have been synthesised. The structural elucidation of the complexes was made basing upon analytical, conductance, magnetic susceptibility, IR, electronic spectra, ESR, NMR, ESI-MS, TG, DTG, DTA and X-ray diffraction (powder pattern) data. The cobalt (II) and nickel (II) complexes are found to be octahedral, copper (II) complexes are distorted octahedral and a tetrahedral stereochemistry has been suggested to zinc (II), cadmium (II) and mercury (II) complexes. The thermal analysis data provided the kinetic parameters as order of decomposition reaction, activation energy and frequency factor. The geometry of the ligands and their Co(II), Ni(II), Cu(II) and Zn(II) complexes were optimised and their physicochemical properties were calculated by using molecular modelling procedure. The ESI-MS determination supports the molecular formula and molecular weight of the ligands and the complexes. The Ni(II) complex is found to have a triclinic crystal system. The potential antibacterial study of the two ligands and eight metal complexes was made by cup-plate method against one gram positive and one gram negative bacteria. The results showed increase in the activity of some metal complexes as compare with azodye ligands.

  14. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  15. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI).

    PubMed

    Felipe-Sotelo, M; Edgar, M; Beattie, T; Warwick, P; Evans, N D M; Read, D

    2015-12-30

    The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH)2 solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2-4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH)2 (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca(2+). Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes. PMID:26253235

  16. Synthesis, spectra and DNA interactions of certain mononuclear transition metal(II) complexes of macrocyclic tetraaza diacetyl curcumin ligand

    NASA Astrophysics Data System (ADS)

    Rajesh, Jegathalaprathaban; Gubendran, Ammavasi; Rajagopal, Gurusamy; Athappan, Periyakaruppan

    2012-02-01

    A series of mononuclear transition metal(II) complexes of type [M(LL)]2+ (LL = the template condensate of orthophenylene diamine and benzilidene diacetyl curcumin (ben-diacecur) and M = Cu(II) (1) or Co(II) (2) or Ni(II) (3) or Mn(II) (4)), have been isolated and the spectral behaviors are discussed. The ligand and complexes have also been characterized by the analytical and spectral methods like UV-Visible, FT-IR, NMR and EPR. Further, the interaction of the transition metal complexes with Calf thymus (CT) DNA have also been studied by the use of physical methods like UV-Visible, emission and CD spectroscopic techniques. The electrochemical responses of these metal complexes both in presence and absence of DNA have also been demonstrated. All these findings support the hypothesis of DNA interactions of all these metal complexes through the grooves with a higher degree of interaction by complex 1 (Kb = 1.4 × 105) possibly through the interposition of the aromatic rings of the ligand compared to complexes, 2-4. The complex 1 display significant oxidative cleavage of circular plasmid pUC18 DNA in the presence of H2O2 using the singlet oxygen as a reactive species. The spectral and electrochemical response of these complexes designate that the square-planar Cu(II), Ni(II) and Co(II) complexes interact much better than the axially coordinated octahedral Mn(II) complex.

  17. 1,3,4-Thiadiazole Derivatives. Part 91. Synthesis and Biological Activity of Metal Complexes of 5-(2-Aminoethyl)-2-Amino-1,3,4-Thiadiazole

    PubMed Central

    Barboiu, Mihai; Cimpoesu, Marilena; Guran, Cornelia

    1996-01-01

    Metal complexes of the title ligand (L) containing Co(II), Ni(II) and Cu(II) were prepared and characterized by elemental analysis, IR, electronic spectroscopy and conductimetry. The new derivatives, possessing the following formulae, CuL2(OH)2, NiL2Cl2, and [Co2LCl4]n showed in vitro antifungal activity against Aspergillus and Candida spp. PMID:18472898

  18. 1,3,4-thiadiazole derivatives. Part 9. Synthesis and biological activity of metal complexes of 5-(2-aminoethyl)-2-amino-1,3,4-thiadiazole.

    PubMed

    Barboiu, M; Cimpoesu, M; Guran, C; Supuran, C T

    1996-01-01

    Metal complexes of the title ligand (L) containing Co(II), Ni(II) and Cu(II) were prepared and characterized by elemental analysis, IR, electronic spectroscopy and conductimetry. The new derivatives, possessing the following formulae, CuL(2)(OH)(2), NiL(2)Cl(2), and [Co(2)LCl(4)](n) showed in vitro antifungal activity against Aspergillus and Candida spp.

  19. Preparation and Characterization of Bi-metallic and Tri-metallic Metal Organic Frameworks Based on Trimesic Acid and Co(II), Ni(II), and Cu(II) Ions

    NASA Astrophysics Data System (ADS)

    Sahiner, Nurettin; Demirci, Sahin; Yildiz, Mustafa

    2016-10-01

    Trimesic acid-M1(II):M2(II) (M1,2(II)=M(II)=Co(II), Ni(II) and Cu(II)) bi-metallic or tri-metallic organic frameworks (MOFs) were synthesized by the reaction of trimesic acid (H3BTC) ligand with the corresponding MCl2nH2O aqueous solutions. Here, bi- and tri-metallic MOF preparations were demonstrated by using H3BTC as an organic linker, with dual metal ion mixtures at different mole ratios such as Co(II):Ni(II), Ni(II):Cu(II), and Cu(II):Co(II) as metal ion sources in the synthesis of bi-metallic MOFs, and the triple metal ion mixture of Co(II):Ni(II):Cu(II) as the metal ion source in the synthesis of tri-metallic MOFs. The bi- or tri-metallic MOFs were characterized via the Brunauer-Emmett-Teller method, thermogravimetric analyzer (TGA), and magnetic susceptibility measurements with the Gouy method, FT-IR spectroscopy, and electronic spectral studies. The results revealed that the H3BTC MOFs have octahedral and distorted octahedral arrangement around the metal ions, and the d-d transition was not observed in the complex. It was further found that all the prepared MOFs contain water molecules confirmed by Fourier transform infrared (FT-IR) and TGA analyses. The FT-IR spectra of the MOF complexes were characterized by the appearance of a broad band in the region of 3454-3300 cm-1 due to the ν(-OH) of the coordinated water; therefore, the location of the two water molecules was assumed to be inside the complex structure. Remarkably, the synthesized bi-metallic MOFs had unique and distinct colors depending on the amounts of metal ions used in the feed, implying that these bi-metallic MOFs with tunable M1(II) and M2(II) ratios offer great potential in the design of color-coded materials for use as sensors.

  20. Coordination of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with 2,5-hexanedione bis(thiosemicarbazone), HBTS: Crystal structure of cis-[Pd(HBTS)]Cl2 and 1-(2,5-dimethyl-1H-pyrrol-yl)-thiourea

    NASA Astrophysics Data System (ADS)

    Jeragh, Bakir; El-Asmy, Ahmed A.

    2014-09-01

    Metal complexes of Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pd2+ or Pt2+ with 2,5-hexanedione bis(thiosemicarbazone), HBTS; have been prepared and spectroscopically investigated. The empirical formulae of the complexes were suggested based on the elemental analysis. Single crystal of Pd(II) has been solved to be cis-form of square-planar geometry by the X-ray crystallography. 1H and 13C NMR spectra have been recorded for HBTS, Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) complexes, in DMSO-d6, showing the mode of chelation. The ligand acts as a neutral or a binegative tetradentate (N2S2) or neutral bidentate on the basis of FT-IR. The magnetic moments and electronic spectra provide information about the geometry of the complexes which supported by calculating the ligand field parameters for the Co(II) and Fe(III) complexes. The Ni(II) complex has subnormal magnetic moment (0.71 BM) indicative of a mixed stereochemistry of square-planar and tetrahedral structure. [Cu(HBTS-2H)] measured 0.93 BM indicating high interaction between the copper centers. The ligand may be ordered at the top of the spectrochemical series which giving high ligand field splitting energy (10Dq = 17,900 cm-1 for Co2+ complex). The mass spectra of some complexes proved their stable chemical formulae while the TGA depicts the degradation steps and the final residue. In evaporating the mother liquor during the preparation of HBTS, new compound is obtained naming 1-(2,5-dimethyl-1H-pyrrol-yl)thiourea and its crystal was solved.

  1. Coordination of Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) with 2,5-hexanedione bis(thiosemicarbazone), HBTS: crystal structure of cis-[Pd(HBTS)]Cl2 and 1-(2,5-dimethyl-1H-pyrrol-yl)-thiourea.

    PubMed

    Jeragh, Bakir; El-Asmy, Ahmed A

    2014-09-15

    Metal complexes of Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pd2+ or Pt2+ with 2,5-hexanedione bis(thiosemicarbazone), HBTS; have been prepared and spectroscopically investigated. The empirical formulae of the complexes were suggested based on the elemental analysis. Single crystal of Pd(II) has been solved to be cis-form of square-planar geometry by the X-ray crystallography. 1H and 13C NMR spectra have been recorded for HBTS, Zn(II), Cd(II), Hg(II), Pd(II) and Pt(II) complexes, in DMSO-d6, showing the mode of chelation. The ligand acts as a neutral or a binegative tetradentate (N2S2) or neutral bidentate on the basis of FT-IR. The magnetic moments and electronic spectra provide information about the geometry of the complexes which supported by calculating the ligand field parameters for the Co(II) and Fe(III) complexes. The Ni(II) complex has subnormal magnetic moment (0.71 BM) indicative of a mixed stereochemistry of square-planar and tetrahedral structure. [Cu(HBTS-2H)] measured 0.93 BM indicating high interaction between the copper centers. The ligand may be ordered at the top of the spectrochemical series which giving high ligand field splitting energy (10 Dq=17,900 cm(-1) for Co2+ complex). The mass spectra of some complexes proved their stable chemical formulae while the TGA depicts the degradation steps and the final residue. In evaporating the mother liquor during the preparation of HBTS, new compound is obtained naming 1-(2,5-dimethyl-1H-pyrrol-yl)thiourea and its crystal was solved.

  2. Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif

    2016-05-01

    We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.

  3. Nickel(II) Complexation with Nitrate in Dry [C4mim][Tf2N] Ionic Liquid: A Spectroscopic, Microcalorimetric, and Molecular Dynamics Study.

    PubMed

    Melchior, Andrea; Gaillard, Clotilde; Gràcia Lanas, Sara; Tolazzi, Marilena; Billard, Isabelle; Georg, Sylvia; Sarrasin, Lola; Boltoeva, Maria

    2016-04-01

    The complex formation of nitrate ions with nickel(II) in dry [C4mim][Tf2N] ionic liquid (IL) was investigated by means of UV-visible spectrophotometry, isothermal titration calorimetry (ITC), extended X-ray absorption fine structure spectroscopy (EXAFS), and molecular dynamics (MD) simulations. EXAFS spectroscopy and MD simulations show that the solvated Ni(II) cation is initially coordinated by the oxygens of the [Tf2N](-) anion of IL, which can behave either as mono- or bidentate. Spectroscopic and thermodynamic data show that Ni(II) is able to form up to three stable mononuclear complexes with nitrate in this solvent. The stability constants for Ni(NO3)j complexes (j = 1-3) calculated from spectrophotometry and ITC experiments decrease in the order log K1 > log K2 > log K3. The formation of the first two species is enthalpy-driven, while the third species is entropy-stabilized. The UV-vis spectra of solutions containing different nitrate/Ni(II) ratios show that the metal ion retains the six-coordinate geometry. Furthermore, the EXAFS evidences that nitrate is always bidentate. Molecular dynamics simulations show that the [Tf2N](-) anions bind Ni(II) through the sulfonyl oxygen atoms and can coordinate either as monodentate or chelate. The analysis of the MD data shows that introduction of nitrates in the first coordination sphere of the metal ion results in remarkable structural rearrangement of the ionic liquid. PMID:26999457

  4. In situ ligand generation for novel Mn(II) and Ni(II) coordination polymers with disulfide ligand: Solvothermal syntheses, structures and magnetic properties

    SciTech Connect

    Han, Yinfeng Wang, Chang'an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping

    2015-07-15

    Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.

  5. Characterization and application of expanded graphite modified with phosphoric acid and glucose for the removal of Ni(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhang, Jian; Xu, Xiaoli; Zhang, Jie; Liu, Hai; Guo, Zizhang; Kang, Yan; Li, Yiran; Xu, Jingtao

    2015-12-01

    Three kinds of modified expanded graphite (EG), impregnated with phosphoric acid (H3PO4) (P-EG), impregnated with glucose (G-EG), and impregnated with H3PO4 and glucose (G-P-EG), were prepared under a low temperature (150 °C). The adsorption capacity of G-P-EG (Qm = 7.016 mg/g) is much higher than original expanded graphite (EG Qm = 0.423 mg/g) and other two kinds of modified expanded graphite (P-EG Qm = 0.770 mg/g; G-EG Qm = 0.507 mg/g). The physicochemical properties of EG and G-P-EG were characterized by N2 adsorption/desorption, Boehm's titration and X-ray photoelectron spectroscopy (XPS). EG exhibited higher values of BET surface area (11.357 m2/g) and total pore volume (0.0303 cm3/g) than that of G-P-EG (4.808 m3/g and 0.0109 cm3/g). However, the results of Bohm's titration and XPS showed that G-P-EG contained more surface oxygen-containing functional groups. The Ni(II) adsorption equilibrium data agreed well with the Langmuir model. And the experimental data of EG and G-P-EG fitted better by pseudo-second order model. Based on the results of batch adsorption experiments and XPS analysis, there were several possible mechanisms for Ni(II) adsorption on the G-P-EG, including chemical adsorption, cation exchange, electrostatic attraction and surface complication.

  6. Synthesis, characterization, and ligand exchange reactivity of a series of first row divalent metal 3-hydroxyflavonolate complexes.

    PubMed

    Grubel, Katarzyna; Rudzka, Katarzyna; Arif, Atta M; Klotz, Katie L; Halfen, Jason A; Berreau, Lisa M

    2010-01-01

    A series of divalent metal flavonolate complexes of the general formula [(6-Ph(2)TPA)M(3-Hfl)]X (1-5-X; X = OTf(-) or ClO(4)(-); 6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine; M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II); 3-Hfl = 3-hydroxyflavonolate) were prepared and characterized by X-ray crystallography, elemental analysis, FTIR, UV-vis, (1)H NMR or EPR, and cyclic voltammetry. All of the complexes have a bidentate coordinated flavonolate ligand. The difference in M-O distances (Delta(M-O)) involving this ligand varies through the series, with the asymmetry of flavonolate coordination increasing in the order Mn(II) approximately Ni(II) < Cu(II) < Zn(II) < Co(II). The hypsochromic shift of the absorption band I (pi-->pi*) of the coordinated flavonolate ligand in 1-5-OTf (relative to that in free anion) increases in the order Ni(II) < Mn(II) < Cu(II) < Zn(II), Co(II). Previously reported 3-Hfl complexes of divalent metals fit well with this ordering. (1)H NMR studies indicate that the 3-Hfl complexes of Co(II), Ni(II), and Zn(II) exhibit a pseudo-octahedral geometry in solution. EPR studies suggest that the Mn(II) complex 1-OTf may form binuclear structures in solution. The mononuclear Cu(II) complex 4-OTf has a distorted square pyramidal geometry. The oxidation potential of the flavonolate ligand depends on the metal ion present and/or the solution structure of the complex, with the Mn(II) complex 1-OTf exhibiting the lowest potential, followed by the pseudo-octahedral Ni(II) and Zn(II) 3-Hfl complexes, and the distorted square pyramidal Cu(II) complex 4-OTf. The Mn(II) complex [(6-Ph(2)TPA)Mn(3-Hfl)]OTf (1-OTf) is unique in the series in undergoing ligand exchange reactions in the presence of M(ClO(4))(2).6H(2)O (M = Co, Ni, Zn) in CD(3)CN to produce [(6-Ph(2)TPA)M(CD(3)CN)(n)](X)(2), [Mn(3-Hfl)(2).0.5H(2)O], and MnX(2) (X = OTf(-) or ClO(4)(-)). Under similar conditions, the 3-Hfl complexes of Co(II), Ni(II), and Cu(II) undergo

  7. Metal Complexes of Macrocyclic Schiff-Base Ligand: Preparation, Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Hasan, Hasan A.; Al-Jeboori, Mohamad J.

    2013-01-01

    A new macrocyclic multidentate Schiff-base ligand Na4L consisting of two submacrocyclic units (10,21-bis-iminomethyl-3,6,14,17-tricyclo[17.3.1.18,12]tetracosa-1(23),2,6,8,10,12(24),13,17,19,21,-decaene-23,24-disodium) and its tetranuclear metal complexes with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) are reported. Na4L was prepared via a template approach, which is based on the condensation reaction of sodium 2,4,6-triformyl phenolate with ethylenediamine in mole ratios of 2 : 3. The tetranuclear macrocyclic-based complexes were prepared from the reaction of the corresponding metal chloride with the ligand. The mode of bonding and overall geometry of the compounds were determined through physicochemical and spectroscopic methods. These studies revealed tetrahedral geometries about Mn, Co, and Zn atoms. However, square planar geometries have been suggested for NiII and CuII complexes. Biological activity of the ligand and its metal complexes against Gram positive bacterial strain Staphylococcus aureus and Gram negative bacteria Escherichia coli revealed that the metal complexes become more potentially resistive to the microbial activities as compared to the free ligand. However, these metal complexes do not exhibit any effects on the activity of Pseudomonas aeruginosa bacteria. There is therefore no inhibition zone. PMID:23935414

  8. Synthesis of two nickel (II) complexes bearing pyrrolide-imine ligand and their catalytic effects on thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Zhuo, Ji-Bin; Ma, Zai-He; Lin, Cai-Xia; Xie, Li-Li; Bai, Sha; Yuan, Yao-Feng

    2015-04-01

    Two pyrrolide-imine chelating Ni(II) complexes {[2-(2-CH3O-C6H4-NCH)C4H3N]2Ni (2a) and [(Fc-NCH)]C4H3N]2Ni (2b, Fc = ferrocenyl)} were prepared via treating corresponding Schiff base with 0.5 equiv. NiCl2·6H2O in moderate yields. The crystal structures of 2a and 2b were determined by single-crystal X-ray diffraction. Atom Ni(II) of 2a was coordinated by two pyrrolide-imine ligands in trans position to display a twisted octahedral coordination geometry. Ni(II) of 2b had a distorted square-planar geometry, bonded with two ferrocenyl pyrrole-imine ligands, each ferrocene and pyrrole of ligands adopting a trans conformation. The UV-vis spectroscopy and electrochemical measurements were investigated. The catalytic efficiency of the complexes on the thermal decomposition of ammonium perchlorate (AP) was studied by differential scanning calorimetry (DSC) and thermogravimetry (TG). Compared with the thermal decomposition of pure AP, the decomposition temperatures were decreased by 27 °C, 77 °C, 88 °C and 172 °C, respectively when 1a, 1b, 2a and 2b were added in AP. The results indicated that the Ni(II) complex 2b bearing ferrocene-based pyrrolide-imine N,N-chelate ligand displayed an excellent catalytic efficiency on the thermal decomposition of AP.

  9. Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2](-): structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes.

    PubMed

    Thirumoorthi, Ramalingam; Chivers, Tristram; Häggman, Susanna; Mansikkamäki, Akseli; Morgan, Ian S; Tuononen, Heikki M; Lahtinen, Manu; Konu, Jari

    2016-08-01

    A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctly different Ni-S bond lengths (2.3487(8), 2.4500(9) and 2.5953(10) Å). By contrast, in the red-brown square-planar complex 5b the two ligands are S,S'-chelated to Ni(ii) (d(Ni-S) = 2.165(2) and 2.195(2) Å) with one pendant PPh2S group. DFT calculations revealed that the energetic difference between singlet and triplet state octahedral and square-planar isomers of the Ni(ii) complex is essentially indistinguishable. Consistently, VT and (31)P CP/MAS NMR spectroscopic investigations indicated that a mixture of isomers exists in solution at room temperature, while the singlet state square-planar isomer 5b becomes favoured at -40 °C. PMID:27453403

  10. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: synthesis, spectral characterization, antibacterial, fluorescence and thermal studies.

    PubMed

    Ali, Omyma A M; El-Medani, Samir M; Abu Serea, Maha R; Sayed, Abeer S S

    2015-02-01

    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π(∗)) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  11. Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Abu Serea, Maha R.; Sayed, Abeer S. S.

    2015-02-01

    A series of eight metal Schiff base complexes were synthesized by the thermal reaction of Cu(II), Ni(II), Fe(III), Co(II), Zn(II), Hg(II), La(III) or Sm(III) with a Schiff base "L" produced by the condensation of furfuraldehyde and 1,2-diaminobenzene. These compounds were characterized by elemental analysis, UV-Vis, FT-IR, molar conductance, mass spectrometry, thermal and fluorescence studies. The studies suggested the coordination of the ligand L to metal through azomethine imine nitrogen and furan oxygen atoms of Schiff base moiety. Thermogravimetric (TG/DTG) analyses data were studied and indicated high stability for all complexes and suggested the presence of lattice and/or coordinated water molecules in the complexes. Coats-Redfern method has been used to calculate the kinetic and thermodynamic parameters of the metal complexes. The spectral and thermal analysis reveal that all complexes have octahedral geometry except Cu(II) and Ni(II) complexes which can attain a square planner arrangements. The ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. Both the ligand and its complexes have been screened for antibacterial activities.

  12. Complexes With Biologically Active Ligands. Part 101 Inhibition of Carbonic Anhydrase Isozymes I and II With Metal Complexes of Imidazo[2,1−b ]-1,3,4-Thiadiazole-2-Sulfonamide

    PubMed Central

    Scozzafava, Andrea

    1997-01-01

    The title compound was prepared by an improved variant of the literature procedure, and metal complexes containing its anion and the following metal ions: Zn(II), Cd(II), Hg(II), Co(II), Ni(II), Cu(II), V(IV), Fe(III) and Ag(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic, NMR and EPR spectroscopy; TG, magnetic and conductimetric measurements). The parent sulfonamide and its metal complexes are potent inhibitors of two carbonic anhydrase (CA) isozymes, CA I and II, and they might possess applications as selective cerebrovasodilating agents. PMID:18475761

  13. Complexes With Biologically Active Ligands. Part 91 Metal Complexes of 5-Benzoylamino- and 5-(3-Nitrobenzoyl-Amino)-1,3,4-Thiadiazole-2-Sulfonamide as Carbonic Anhydrase Inhibitors

    PubMed Central

    Jitianu, Andrei; llies, Marc A.; Briganti, Fabrizio; Scozzafava, Andrea

    1997-01-01

    Complexes containing the anions of 5-benzoylamido-1,3,4-thiadiazole-2-sulfonamide and 5-(3-nitro-benzoylamido)-1,3,4-thiadiazole-2-sulfonamid as ligands, and V(IV); Cr(III); Fe(III); Co(II); Ni(II); Cu(II) and Ag(I) were synthesized and characterized by standard procedures (elemental analysis; IR, electronic, and EPR spectroscopy; TG, magnetic and conductimetric measurements). The original sulfonamides and their metal complexes are strong inhibitors of two carbonic anhydrase (CA) isozymes, CA I and II. PMID:18475759

  14. Solid phase extraction of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180.

    PubMed

    Tokalioğlu, Serife; Yilmaz, Vedat; Kartal, Senol

    2009-05-01

    A new method for separation and preconcentration of trace amounts of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) ions in various matrices was proposed. The method is based on the adsorption and chelation of the metal ions on a column containing Amberlite XAD-1180 resin impregnated with 1-(2-thiazolylazo)-2-naphthol (TAN) reagent prior to their determination by flame atomic absorption spectrometry (FAAS). The effect of pH, type, concentration and volume of eluent, sample volume, flow rates of sample and elution solutions, and interfering ions have been investigated. The optimum pH for simultaneous retention of all the metal ions was 9. Eluent for quantitative elution was 20 ml of 2 mol l(-1) HNO(3). The optimum sample and eluent flow rates were found as 4 ml min(-1), and also sample volume was 500 ml, except for Mn (87% recovery). The sorption capacity of the resin was found to be 0.77, 0.41, 0.57, and 0.30 mg g(-1) for Cu(II), Ni(II), Cd(II), and Mn(II), respectively. The preconcentration factor of the method was 200 for Cu(II), 150 for Pb(II), 100 for Cd(II) and Ni(II), and 50 for Mn(II). The recovery values for all of the metal ions were > or = 95% and relative standard deviations (RSDs) were < or = 5.1%. The detection limit values were in the range of 0.03 and 1.19 microg l(-1). The accuracy of the method was confirmed by analysing the certified reference materials (TMDA 54.4 fortified lake water and GBW 07605 tea samples) and the recovery studies. This procedure was applied to the determination of Cu(II), Ni(II), Pb(II), Cd(II) and Mn(II) in waste water and lake water samples.

  15. Mass, EPR, IR and electronic spectroscopic studies on newly synthesized macrocyclic ligand and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Manganese(II), cobalt(II), nickel(II) and copper(II) complexes have been synthesized with a new tetradentate ligand viz. 1,3,7,9-tetraaza-2,4,8,10-tetraketo-6,12-diphenyl-cyclododecane (L) and characterized by the elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, 1H NMR, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to be nonelectrolytic nature for Mn(II), Co(II) and Cu(II) while 1:2 electrolytes for Ni(II) complexes. Thus, these complexes may be formulated as [M(L)X 2] and [Ni(L)]X 2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl - and NO 3-). On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Mn(II) and Co(II) complexes, square-planar for Ni(II) whereas tetragonal for Cu(II) complexes. The ligand and its complexes were also evaluated against the growth of bacteria and pathogenic fungi in vitro.

  16. Synthesis, characterization, antibacterial and anti-inflammatory activities of enoxacin metal complexes.

    PubMed

    Arayne, Saeed; Sultana, Najma; Haroon, Urooj; Mesaik, M Ahmed

    2009-01-01

    The present work comprises the synthesis of enoxacin (Heno) complexes with various transition metals. Two types of complexes [M(eno)(2)(H(2)O)(2)]3H(2)O(M = Cu(II), Ni(II) or Mn(II)) and [M(eno)(H(2)O)(2)]Cl . 4H(2)O (M = Fe(III)) were obtained. The complexes were characterized by different physicochemical, spectroscopic, and elemental analysis. Results suggest that enoxacin interacts with the metals as a monoanionic bidentate ligand. These complexes were also tested for their antibacterial activity against eleven (11) different microorganisms, and the results were compared with the parent drug. Moreover all the metal complexes were also tested for their ability to scavenge reactive oxygen species where by Mn(II) and Cu(II) complexes exhibited potential to mediate anti-inflammatory response.

  17. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other

  18. Mixed ligand complex via zinc(II)-mediated in situ oxidative heterocyclization of hydrochloride salt of 2-chlorobenzaldehyde hydralazine hydrazone as potential of antihypertensive agent.

    PubMed

    Bakale, Raghavendra P; Naik, Ganesh N; Mangannavar, Chandrashekhar V; Muchchandi, Iranna S; Shcherbakov, I N; Frampton, Chris; Gudasi, Kalagouda B

    2014-02-12

    An unusual tetrahedral mixed ligand Zn(II) complex ZnT(L)Cl, where L = 2-chlorobenzaldehyde hydralazine hydrazone and T = in situ generated 3-(2-chlorophenyl)-1,2,4-triazolo[3,4-a]phthalazine is reported. Structure of the fused triazole has been confirmed by single crystal X-ray diffraction studies. Structure of Co(II), Ni(II), Cu(II) and Zn(II) complexes has been confirmed by spectral and analytical methods. Metal complexes have exhibited better activity in the fructose induced hypertension studies in animal model and are comparable with the standard.

  19. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. PMID:26067934

  20. Structural features of a series of S-alkylated and non-S-alkylated aminothiolate nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Chohan, B. S.

    2014-12-01

    The structural aspects of a family of S-alkylated complexes, generated by reacting iodoacetamide or iodoethanol with two mononuclear Ni(II) diaminodithiolate complexes are discussed. The S-alkylation reactions were investigated with particular attention paid to the size of the chelate ring that straps the N,N'-methylamine donors. In one complex the N-methyl groups are cis to each other and in the other they are trans. Both complexes undergo S-alkylation with two equivalents of either reagent, that coordinates through the pendant oxygen to the Ni(II), forming dications with an N2S2O2 ligand donor set. Crystal structures of [NiC12H26N4O2S2]I2 · MeOH, [NiC12H28N2O2S2]I2, and [NiC13H30N2O2S2]I2 · 1/2 MeOH, are determined by single crystal X-ray analysis. The N-methyl groups in each of the alkylated derivatives are trans to each other, suggesting that the cis configuration is highly unfavored for such complexes in octahedral conformation. Crystal packing data shows that each of the alkylated complexes interacts closely with the iodide counterions, and with solvent if present; some of these interactions include H-bonds. Only the iodoacetamide derivative shows any significant interaction with a neighboring molecule.

  1. Nickel(II) complexes containing thiosemicarbazone and triphenylphosphine: Synthesis, spectroscopy, crystallography and catalytic activity

    NASA Astrophysics Data System (ADS)

    Priyarega, S.; Kalaivani, P.; Prabhakaran, R.; Hashimoto, T.; Endo, A.; Natarajan, K.

    2011-09-01

    Four new Ni(II) complexes of the general formula [Ni(PPh 3)(L)] (L = dibasic tridentate ligand derived from 4-diethylamino-salicylaldehyde and thiosemicarbazide or 4-N-substituted thiosemicarbazide) have been reported. The new complexes have been synthesized and characterized by analytical and spectroscopic (IR, electronic, 1H NMR and 31P NMR) techniques. Molecular structure of one of the complexes has been determined by X-ray crystallography. The complex, [Ni(PPh 3)(L4)] (H 2L4 = thiosemicarbazone prepared from 4-diethylamino-salicylaldehyde and 4-phenylthiosemicarbazide) crystallized in monoclinic space group with two molecules per unit cell and has the dimensions of a = 13.232(6) Å, b = 10.181(5) Å, c = 13.574(7) Å, α = 90°, β = 98.483(2)° and γ = 90°. Catalytic activity of the complexes has been explored for aryl-aryl coupling reaction.

  2. Spectroscopic and biological studies on newly synthesized nickel(II) complexes of semicarbazones and thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar

    2005-12-01

    Nickel(II) complexes, having the general composition Ni(L) 2X 2, have been synthesized [where L: isopropyl methyl ketone semicarbazone (LLA), isopropyl methyl ketone thiosemicarbazone (LLB), 4-aminoacetophenone semicarbazone (LLC) and 4-aminoacetophenone thiosemicarbazone (LLD) and X = Cl -, 1/2SO 42-]. All the Ni(II) complexes reported here have been characterized by elemental analyses, magnetic moments, IR, electronic and mass spectral studies. All the complexes were found to have magnetic moments corresponding to two unpaired electrons. The possible geometries of the complexes were assigned on the basis of electronic and infrared spectral studies. Newly synthesized ligand and its nickel(II) complexes have been screened against different bacterial and fungal growth.

  3. Coordination properties of hydralazine Schiff base. Synthesis and equilibrium studies of some metal ion complexes

    NASA Astrophysics Data System (ADS)

    Shoukry, Azza A.; Shoukry, Mohamed M.

    2008-08-01

    In the present study, a new ligand is prepared by condensation of hydralazine (1-Hydralazinophthalazine) with 2-butanon-3-oxime. The acid-base equilibria of the schiff-base and the complex formation equilibria with the metal ions as Cu(II), Ni(II), Co(II), Cd(II), Mn(II) and Zn(II) are investigated potentiometrically. The stability constants of the complexes are determined and the concentration distribution diagrams of the complexes are evaluated. The effect of metal ion properties as atomic number, ionic radius, electronegativity and ionization potential are investigated. The isolated solid complexes are characterized by conventional chemical and physical methods. The potential coordination sites are assigned using the i.r. and 1H NMR spectra. The structures of the isolated solid complexes are proposed on the basis of the spectral and magnetic studies.

  4. Electrochemical Determination of Bisphenol A with Pencil Graphite Electrodes Modified with Co(II), Ni(II), Cu(II) and Fe(II) Phthalocyaninetetrasulfonates.

    PubMed

    Özcan, Levent; Altuntas, Muhammet; Büyüksagis, Aysel; Türk, Hayrettin; Yurdakal, Sedat

    2016-01-01

    Pencil graphite electrodes modified with Co(II), Ni(II), Cu(II) and Fe(II) metallophthalocyaninetetrasulfonates (MePcTSs) were investigated for an electrochemical determination of bisphenol A (BPA). The electrochemical performances of the modified electrodes for different pH values in phosphate and the Britton-Robinson buffers were determined by cyclic voltammetry; the electrode performances were better in the Britton-Robinson buffer. NiPcTS and CoPcTS modifications of the electrodes had remarkable enhancements on their performances. The differential pulse voltammetry parameters for the electrodes were optimized, and we found that the electrochemical response versus the concentration of BPA is linear from 5.0 × 10(-7) to 1.0 × 10(-5) M for the NiPcTS and CoPcTS modified electrodes. The detection limits of these modified electrodes are 2.9 × 10(-7) and 4.3 × 10(-7) M, respectively, and the effects of interfering species are less than 5%. The results show that NiPcTS and CoPcTS modified pencil graphite electrodes could be used for electrochemical determinations of BPA for analytical purposes. PMID:27506715

  5. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer.

    PubMed

    Hajeeth, T; Vijayalakshmi, K; Gomathi, T; Sudha, P N

    2013-11-01

    The extraction of cellulose from sisal fiber was done initially using the steam explosion method. The batch adsorption studies were conducted using the cellulose extracted from the sisal fiber and cellulose-g-acrylic acid as an adsorbent for the removal of Cu(II) and Ni(II) metal ions from aqueous solution. The effect of sorbent amount, agitation period and pH of solution that influence sorption capacity were investigated. From the observed results, it was evident that the adsorption of metal ions increases with the increase in contact time and adsorbent dosage. The optimum pH was found to be 5.0 for the removal of copper(II) and nickel(II) for both the extracted cellulose and cellulose-g-acrylic acid copolymer. The adsorption data were modeled using Langmuir and Freundlich isotherms. The experimental results of the Langmuir, Freundlich isotherms revealed that the adsorption of Cu(II) and nickel(II) ion onto cellulose extracted from the sisal fiber and cellulose-g-acrylic acid copolymer was found to fit well with Freundlich isotherm. The kinetics studies show that the adsorption follows the pseudo-second-order kinetics. From the above results, it was concluded that the cellulose-g-acrylic acid copolymer was found to be an efficient adsorbent. PMID:23994787

  6. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    PubMed

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry.

  7. Simultaneous removal of Ni(II), As(III), and Sb(III) from spiked mine effluent with metakaolin and blast-furnace-slag geopolymers.

    PubMed

    Luukkonen, Tero; Runtti, Hanna; Niskanen, Mikko; Tolonen, Emma-Tuulia; Sarkkinen, Minna; Kemppainen, Kimmo; Rämö, Jaakko; Lassi, Ulla

    2016-01-15

    The mining industry is a major contributor of various toxic metals and metalloids to the aquatic environment. Efficient and economical water treatment methods are therefore of paramount importance. The application of natural or low-cost sorbents has attracted a great deal of interest due to the simplicity of its process and its potential effectiveness. Geopolymers represent an emerging group of sorbents. In this study, blast-furnace-slag and metakaolin geopolymers and their raw materials were tested for simultaneous removal of Ni(II), As(III) and Sb(III) from spiked mine effluent. Blast-furnace-slag geopolymer proved to be the most efficient of the studied materials: the experimental maximum sorption capacities for Ni, As and, Sb were 3.74 mg/g, 0.52 mg/g, and 0.34 mg/g, respectively. Although the capacities were relatively low due to the difficult water matrix, 90-100% removal of Ni, As, and Sb was achieved when the dose of sorbent was increased appropriately. Removal kinetics fitted well with the pseudo-second-order model. Our results indicate that geopolymer technology could offer a simple and effective way to turn blast-furnace slag to an effective sorbent with a specific utilization prospect in the mining industry. PMID:26598283

  8. Synthesis, physico-chemical characterization and antimicrobial activities of 3-methoxysalicylaldehyde-2-aminobenzoylhydrazone and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Badiger, Dayananda S.; Hunoor, Rekha S.; Patil, Basavaraj R.; Vadavi, Ramesh S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2012-07-01

    The transition metal complexes of 3-methoxysalicylaldehyde-2-aminobenzhydrazone (H2L) were synthesized and characterized by various spectroscopic (IR, NMR, UV-Vis, mass), thermal and other physicochemical methods. The ligand acts both in monobasic as well as dibasic manner and coordinates in tridentate fashion with carbonyl oxygen, azomethine nitrogen and phenolic oxygen via deprotonation except in Cu(II) complex where the ligand coordinates via enolization and deprotonation of amide proton. An octahedral geometry was assigned for Mn(II), Co(II), Ni(II) and Zn(II) complexes and square planar for Cu(II) complex. The ligand and its metal complexes have been screened for their in vitro antimicrobial activities using serial dilution method. Metal complexes in general have exhibited better antibacterial and antifungal activity than the free ligand. The Cu(II) complex exhibited highest antimicrobial activity among the compounds tested.

  9. Quinoxaline based bio-active mixed ligand transition metal complexes: Synthesis, characterization, electrochemical, antimicrobial, DNA binding, cleavage, antioxidant and molecular docking studies.

    PubMed

    Dhanaraj, C Justin; Johnson, Jijo

    2015-10-01

    Co(II), Ni(II), Cu(II) and Zn(II) mixed ligand complexes have been synthesized from N(2), N(3)-bis(4-nitrophenyl)quinoxaline-2,3-diamine and 1,10-phenanthroline. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility, IR, UV-Vis., (1)H NMR, mass and ESR spectra. Octahedral geometry has been assigned for Co(II), Ni(II) and Zn(II) complexes and distorted octahedral geometry for Cu(II) complex. Electrochemical behavior of the synthesized complexes was studied using cyclic voltammetry. Grain size and surface morphologies of the complexes were determined by powder XRD and SEM analyses. The mixed ligand metal complexes were screened for antimicrobial activity against bacterial species Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species Aspergillus niger, and Candida albicans by disc diffusion method. The DNA binding and DNA cleavage activities of the compounds were determined using electronic absorption titration and agarose gel electrophoresis respectively. The superoxide radical scavenging and free radical scavenging activities of the Cu(II) complex was also evaluated. Molecular docking studies of the synthesized mixed ligand metal complexes were carried out against B-DNA dodecamer and the protein Plasmodium falciparum dihydrofolate reductase (pf DHFR).

  10. Synthesis, spectroscopic characterization and antimicrobial activity of mono-, bi- and tri-nuclear metal complexes of a new Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Ahmed, Saleh A.; Medien, Hesham A. A.

    2010-09-01

    Condensation of o-acetoacetylphenol and 1,2-diaminopropane in 1:1 molar ratio under condition of high dilution yielded the mono-condensed dibasic Schiff base ligand with a N 2O 2 donors. The mono-condensed ligand has been used for further condensation with 2-hydroxy-5-nitrobenzaldehyde to obtain the new asymmetrical dicompartmental Schiff base ligand, H 3L, with N 2O 3 donors. The structure of the ligand was elucidated by analytical and spectroscopic tools (IR, 1H and 13C NMR spectra) which indicated that the coordinating sites are oxygen atoms of the phenolic OH groups, nitrogen atoms of the azomethine groups and the oxygen atom of the ketonic group. Reactions of the ligand with metal salts yielded mono- and homo-bi-nuclear complexes formulated as [M(HL)], where M dbnd Co(II), Ni(II) and Cu(II), [Fe(H 2L)Cl 2(H 2O)]ṡ2½H 2O, [Fe 2(HL)(ox)Cl 3(H 2O) 2]ṡ5H 2O, [UO 2(H 2L)(OAc)(H 2O) 2], [VO(H 3L)(SO 4)(H 2O)]ṡH 2O, [M 2(L)Cl(H 2O) 2]ṡ½H 2O, where M dbnd Co(II) and Ni(II) and [Cu(H 2L)Cl]. The mononuclear Ni(II) complex, [Ni(HL)], was used to synthesize homo- and hetero-bi- and tri-nuclear complexes with the molecular formulae [Ni 2(L)Cl(H 2O) 2], [Ni 2(L) 2FeCl(H 2O)]ṡH 2O and [Ni 2(HL) 2CoCl 2]. The structures of the complexes were characterized by various techniques such as elemental and thermal analyses, IR, 1H and 13C NMR, mass and electronic spectra as well as conductivity and magnetic moment measurements. Square-planar and octahedral geometries are suggested for the Cu(II), Co(II) and Ni(II) complexes, octahedral geometry for the Fe(III) and VO 2+ complexes while uranium(VI) ion is octa-coordinated in its complex. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli) and fungi ( Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active.

  11. Crystal structure of D-psicose 3-epimerase from Agrobacterium tumefaciens and its complex with true substrate D-fructose: a pivotal role of metal in catalysis, an active site for the non-phosphorylated substrate, and its conformational changes.

    PubMed

    Kim, Kwangsoo; Kim, Hye-Jung; Oh, Deok-Kun; Cha, Sun-Shin; Rhee, Sangkee

    2006-09-01

    D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.

  12. Spectroscopic characterization and biological activity of dihydrazone transition metal complexes: Crystal structure of 2,3-butanedione bis(isonicotinylhydrazone)

    NASA Astrophysics Data System (ADS)

    El-Sayed, Ahmed E. M.; Al-Fulaij, O. A.; Elaasar, A. A.; El-Defrawy, M. M.; El-Asmy, A. A.

    2015-01-01

    Metal complexes of the chloride, nitrate and acetate salts of Co(II), Ni(II) Cu(II), Zn(II), Cd(II) or Hg(II) with 2,3-butanedione bis(isonicotinylhydrazone) [BBINH] have been synthesized and structurally characterized. The crystal of BBINH was solved to crystallize as monoclinic system with space group of P121/c14. The formulae of the complexes were assigned based on the elemental analysis and mass spectra. The formation of BBINH complexes depend on the metal anion used. All complexes are nonelectrolytes except for the complexes 2, 3, 4 are (1:1) and 13 and 14 which are 1:2 electrolytes. BBINH behaves as a neutral tetradentate (N2O2) in the chloride complexes of Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). In [Co2(BBINH)(H2O)Cl3]ClṡH2O, BBINH has the same dentate but with the two Co(II) ions. In the acetate complexes, [Ni2(BBINH-2H)(H2O)2(OAc)2]ṡ3H2O and [Cu2(BBINH-2H)(OAc)2]ṡ5H2O, BBINH acts as a binegative tetradentate with the two metal ions. The ligand in the nitrate complexes acts as a neutral bidentate via the two hydrazone azomethine Cdbnd NHy; the nitrate ions are ionic in the Cd(II) and Zn(II) complexes and covalent in the Ni(II) complex. The data are supported by NMR (1H and 13C) spectra. The magnetic moments and electronic spectra of all complexes provide tetrahedral, square planar and/or octahedral structure. The decomposition of the complexes revealed the outer and inner solvents as well as the remaining residue based on TGA. The complexes have variable activities against some bacteria and fungi. The ligand is inactive against all tested organisms. The activity of Cd(II) and Hg(II) may be related to the geometry of the complexes.

  13. High resolution crystal structures of triosephosphate isomerase complexed with its suicide inhibitors: The conformational flexibility of the catalytic glutamate in its closed, liganded active site

    PubMed Central

    Venkatesan, Rajaram; Alahuhta, Markus; Pihko, Petri M; Wierenga, Rik K

    2011-01-01

    The key residue of the active site of triosephosphate isomerase (TIM) is the catalytic glutamate, which is proposed to be important (i) as a catalytic base, for initiating the reaction, as well as (ii) for the subsequent proton shuttling steps. The structural properties of this glutamate in the liganded complex have been investigated by studying the high resolution crystal structures of typanosomal TIM, complexed with three suicide inhibitors: (S)-glycidol phosphate ((S)-GOP, at 0.99 Å resolution), (R)-glycidol phosphate, ((R)-GOP, at 1.08 Å resolution), and bromohydroxyacetone phosphate (BHAP, at 1.97 Å resolution). The structures show that in the (S)-GOP active site this catalytic glutamate is in the well characterized, competent conformation. However, an unusual side chain conformation is observed in the (R)-GOP and BHAP complexes. In addition, Glu97, salt bridged to the catalytic lysine in the competent active site, adopts an unusual side chain conformation in these two latter complexes. The higher chemical reactivity of (S)-GOP compared with (R)-GOP, as known from solution studies, can be understood: the structures indicate that in the case of (S)-GOP, Glu167 can attack the terminal carbon of the epoxide in a stereoelectronically favored, nearly linear O–C–O arrangement, but this is not possible for the (R)-GOP isomer. These structures confirm the previously proposed conformational flexibility of the catalytic glutamate in its closed, liganded state. The importance of this conformational flexibility for the proton shuttling steps in the TIM catalytic cycle, which is apparently achieved by a sliding motion of the side chain carboxylate group above the enediolate plane, is also discussed. PMID:21633986

  14. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde.

    PubMed

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B S; Sharma, Deepansh

    2015-05-15

    A series of two biologically active Schiff base ligands L(1), L(2) have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by (1)H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  15. Synthesis, spectroscopic characterization, electrochemical behaviour, reactivity and antibacterial activity of some transition metal complexes with 2-(N-salicylideneamino)-3-carboxyethyl-4,5-dimethylthiophene.

    PubMed

    Daniel, Varughese P; Murukan, B; Kumari, B Sindhu; Mohanan, K

    2008-07-01

    Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with a potentially tridentate Schiff base, formed by condensation of 2-amino-3-carboxyethyl-4,5-dimethylthiophene with salicylaldehyde were synthesized and characterized on the basis of elemental analyses, molar conductance values, magnetic susceptibility measurements, UV-vis, IR, EPR and NMR spectral data, wherever possible and applicable. Spectral studies reveal that the free ligand exists in a bifunctionally hydrogen bonded manner and coordinates to the metal ion in a tridentate fashion through the deprotonated phenolate oxygen, azomethine nitrogen and ester carbonyl group. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each complex. The EPR spectral data of the Cu(II) complex showed that the metal-ligand bonds have considerable covalent character. The Ni(II) complex has undergone facile transesterification reaction when refluxed in methanol for a lengthy period. X-ray diffraction studies of Cu(II) complex showed that the complex has an orthorhombic crystal lattice. In view of the biological activity of thiophene derivatives, the ligand and the complexes were subjected to antibacterial screening. It has been observed that the antibacterial activity of the ligand increased on chelation with metal ion. PMID:18165148

  16. Synthesis, spectroscopic characterization, electrochemical behaviour, reactivity and antibacterial activity of some transition metal complexes with 2-( N-salicylideneamino)-3-carboxyethyl-4,5-dimethylthiophene

    NASA Astrophysics Data System (ADS)

    Daniel, Varughese P.; Murukan, B.; Kumari, B. Sindhu; Mohanan, K.

    2008-07-01

    Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with a potentially tridentate Schiff base, formed by condensation of 2-amino-3-carboxyethyl-4,5-dimethylthiophene with salicylaldehyde were synthesized and characterized on the basis of elemental analyses, molar conductance values, magnetic susceptibility measurements, UV-vis, IR, EPR and NMR spectral data, wherever possible and applicable. Spectral studies reveal that the free ligand exists in a bifunctionally hydrogen bonded manner and coordinates to the metal ion in a tridentate fashion through the deprotonated phenolate oxygen, azomethine nitrogen and ester carbonyl group. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry has been proposed for each complex. The EPR spectral data of the Cu(II) complex showed that the metal-ligand bonds have considerable covalent character. The Ni(II) complex has undergone facile transesterification reaction when refluxed in methanol for a lengthy period. X-ray diffraction studies of Cu(II) complex showed that the complex has an orthorhombic crystal lattice. In view of the biological activity of thiophene derivatives, the ligand and the complexes were subjected to antibacterial screening. It has been observed that the antibacterial activity of the ligand increased on chelation with metal ion.

  17. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and Antioxidant Studies of Some Metal Complexes Derived from Schiff Base Containing Indole and Quinoline Moieties

    PubMed Central

    Karekal, Mahendra Raj; Biradar, Vivekanand; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2013-01-01

    A new Schiff base of 5-chloro-3-phenyl-1H-indole-2-carboxyhydrazide and 3-formyl-2-hydroxy-1H-quinoline (HL), and its Cu(II), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes have been synthesized and characterized in the light of microanalytical, IR, H1 NMR, UV-Vis, FAB-mass, ESR, XRD, and TGA spectral studies. The magnetic susceptibility measurements and low conductivity data provide evidence for monomeric and neutral nature of the complexes. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as tridentate ligand. The Cu(II), Co(II), and Ni(II) complexes were octahedral, whereas Zn(II), Cd(II), and Hg(II) complexes were tetrahedral in nature. The redox behavior of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage experiment performed using agarose gel electrophoresis method showed the cleavage of DNA by all the metal complexes. The free radical scavenging activity of newly synthesized compounds has been determined at a different concentration range by means of their interaction with the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). PMID:24194692

  18. Bio-sensitive activities of coordination compounds containing 1,10-phenanthroline as co-ligand: Synthesis, structural elucidation and DNA binding properties of metal(II) complexes

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Mahalakshmi, Rajkumar; Mitu, Liviu

    2014-10-01

    Present work reports the DNA binding and cleavage characteristics of a series of mixed-ligand complexes having the composition [M(L)(phen)2]Cl2 (where M = Cu(II), Ni(II), Co(II) and Zn(II) and phen as co-ligand) in detail. Their structural features and other properties have been deduced from their elemental analyses, magnetic susceptibility and molar conductivity as well as from IR, UV-Vis, 1H NMR and EPR spectral studies. The UV-Vis, magnetic susceptibility and EPR spectral data of metal complexes suggest an octahedral geometry. The binding properties of these complexes with calf thymus DNA (CT-DNA) have been explored using electronic absorption spectroscopy, viscosity measurement, cyclic voltammetry and differential pulse voltammetry. The DNA-binding constants for Cu(II), Ni(II), Co(II), and Zn(II) complexes are 6.14 × 105 M-1, 1.8 × 105 M-1, 6.7 × 104 M-1 and 2.5 × 104 M-1 respectively. Detailed analysis reveals that these complexes interact with DNA through intercalation binding. Nuclease activity has also been investigated by gel electrophoresis. Moreover, the synthesized Schiff base and its mixed-ligand complexes have been screened for antibacterial and antifungal activities. The data reveal that the complexes exhibit higher activity than the parent ligand.

  19. Design, spectral characterization, DFT and biological studies of transition metal complexes of Schiff base derived from 2-aminobenzamide, pyrrole and furan aldehyde

    NASA Astrophysics Data System (ADS)

    Tyagi, Prateek; Chandra, Sulekh; Saraswat, B. S.; Sharma, Deepansh

    2015-05-01

    A series of two biologically active Schiff base ligands L1, L2 have been synthesized in equimolar reaction of 2-aminobenzamide with pyrrol-2-carboxaldehyde and furan-2-carboxaldehyde. The synthesized Schiff bases were used for complexation with different metal ions like Co(II), Ni(II) and Cu(II) by using a molar ratio of ligand: metal as 2:1. The characterization of newly formed complexes was done by 1H NMR, UV-Vis, TGA, IR, mass spectrophotometry, EPR and molar conductivity studies. The thermal studies suggested that the complexes are more stable as compared to ligand. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31+g(d,p) basis set. On the basis of the spectral studies an octahedral geometry has been assigned for Co(II) and Ni(II) complexes and distorted octahedral geometry for Cu(II) complexes. All the synthesized compounds, were studied for their in vitro antimicrobial activities, against four bacterial strains and two fungal strains by using serial dilution method. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  20. Trithiocyanurate complexes of iron, manganese and nickel and their anticholinesterase activity.

    PubMed

    Kopel, Pavel; Dolezal, Karel; Langer, Vratislav; Jun, Daniel; Adam, Vojtech; Kuca, Kamil; Kizek, Rene

    2014-04-08

    The complexes of Fe(II), Mn(II) and Ni(II) with a combination of a Schiff base, nitrogen-donor ligand or macrocyclic ligand and trithiocyanuric acid (ttcH3) were prepared and characterized by elemental analysis and spectroscopies. Crystal and molecular structures of the iron complex of composition [Fe(L1)](ttcH2)(ClO4)·EtOH·H2O (1), where L1 is Schiff base derived from tris(2-aminoethyl)amine and 2-pyridinecarboxaldehyde, were solved. It was found that the Schiff base is coordinated to the central iron atom by six nitrogens forming deformed octahedral arrangement, whereas trithiocyanurate(1-) anion, perchlorate and solvent molecules are not coordinated. The X-ray structure of the Schiff base sodium salt is also presented and compared with the iron complex. The anticholinesterase activity of the complexes was also studied.

  1. Synthesis, characterization and biological activity of transition metal complexes with Schiff bases derived from 2-nitrobenzaldehyde with glycine and methionine

    NASA Astrophysics Data System (ADS)

    Singh, Bibhesh K.; Rajour, Hemant K.; Prakash, Anant

    Schiff bases derived from 2-nitrobenzaldehyde with amino acids (glycine, methionine) and their Co(II), Ni(II) and Cu(II) complexes have been synthesized and characterized by various physico-chemical techniques. From spectral studies, it has been concluded that the ligands acts as bidentate molecule, coordinates metal through azomethine nitrogen and carboxylate oxygen. Mass spectrum explains the successive degradation of the molecular species in solution and justifies ML2 complexes. X-ray powder diffraction helps to determine the cell parameters of the complexes. Molecular structure of the complexes has been optimized by MM2 calculations and suggests a square planar geometry. The ligands and their metal complexes have been tested in vitro against Streptococcus, Staph, Staphylococcus aureus and Escherchia coli bacteria in order to assess their antibacterial potential. The results indicate that the biological activity increases on complexation.

  2. Metal complexes derived from hydrazoneoxime ligands: V. Spectral and structural studies on diacetylmonoxime n-alkanoylhydrazones and their nickel(II) and copper(II) complexes.

    PubMed

    Salem, Nahed M H; El Sayed, Laila; Haase, Wolfgang; Iskander, Magdi F

    2015-01-01

    A series of diacetylmonoxime n-alkanoylhydrazones (H₂L(n), n=4, 5, 6, 12 and 16) were prepared by the condensation of diacetylmonoxime with the corresponding n-alkanoylhydrazine in ethanol. The X-ray crystal structure of diacetylmonoxime octadecanoyl hydrazone has been solved and its molecular and supramolecular structures have been discussed. Both neutral dinuclear Cu(II) and Ni(II) complexes, [{M(L(n))}₂] (M=Cu, Ni and n=4, 5, 6, 12 and 16) as well as cationic dinuclear Cu(II) complexes, [Cu₂(L(n))(HL(n))]NO₃ (n=12 and 16) have been also prepared and characterized by elemental analyses, FD- and ESI-mass spectra as well as IR, UV-Vis, (1)H NMR, (13)C NMR spectra. Variable temperature magnetic susceptibility measurements for dinuclear Cu(II) complexes have been also discussed.

  3. Metal complexes derived from hydrazoneoxime ligands: V. Spectral and structural studies on diacetylmonoxime n-alkanoylhydrazones and their nickel(II) and copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Salem, Nahed M. H.; El Sayed, Laila; Haase, Wolfgang; Iskander, Magdi F.

    2015-01-01

    A series of diacetylmonoxime n-alkanoylhydrazones (H2Ln, n = 4, 5, 6, 12 and 16) were prepared by the condensation of diacetylmonoxime with the corresponding n-alkanoylhydrazine in ethanol. The X-ray crystal structure of diacetylmonoxime octadecanoyl hydrazone has been solved and its molecular and supramolecular structures have been discussed. Both neutral dinuclear Cu(II) and Ni(II) complexes, [{M(Ln)}2] (M = Cu, Ni and n = 4, 5, 6, 12 and 16) as well as cationic dinuclear Cu(II) complexes, [Cu2(Ln)(HLn)]NO3 (n = 12 and 16) have been also prepared and characterized by elemental analyses, FD- and ESI-mass spectra as well as IR, UV-Vis, 1H NMR, 13C NMR spectra. Variable temperature magnetic susceptibility measurements for dinuclear Cu(II) complexes have been also discussed.

  4. Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa Eldin H.; Abd El-Aziz, Dina M.; Abd El-Zaher, Eman H.; Ali, Elham A.

    2011-09-01

    N-(thiophen-2-ylmethylene)benzo[ d]thiazol-2-amine Schiff base (L) derived from 2-aminobenzothiazole and 2-thiophenecarboxaldehyde was synthesized and characterized using elemental analysis, IR, mass spectra, 1H NMR and UV-vis spectra. Its complexes with Cu(II), Fe(III), Ni(II) and Zn(II) were prepared and isolated as solid products and characterized by elemental and thermal analyses, spectral techniques as well as magnetic susceptibility. The IR spectra showed that the Schiff base under investigation behaves as bidentate ligand. The UV-vis spectra and magnetic moment data suggested octahedral geometry around Cu(II) and Fe(III) and tetrahedral geometry around Ni(II) and Zn(II). In view of the biological activity of the Schiff base and its complexes, it has been observed that the antimicrobial activity of the Schiff base increased on complexation with the metal ion. In vitro antitumor activity assayed against five human tumor cell lines furnished the significant toxicities of the Schiff base and its complexes.

  5. Synthesis, characterization and application of enrofloxacin complexes as thermal stabilizers for rigid poly(vinyl chloride).

    PubMed

    el-Gamel, Nadia E A; Mohamed, Riham R; Zayed, M A

    2012-02-14

    Synthesis and characterization of both binary Co(II)- (1), Ni(II)- (2) complexes with enrofloxacin drug (HL(1)) and ternary Co(II)- (3), Ni(II)- (4) complexes in presence of DL-alanine (H(2)L(2)) are reported using physico-chemical techniques. The antimicrobial activity of these complexes has been screened against two gram-positive and two gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with reference drug. All the binary and ternary complexes showed remarkable potential antimicrobial activity higher than the recommended standard agents. Ni(II)-complexes exhibited higher potency as compared to the parent drug against bacterial and fungal strain. In addition, it was of interest to investigate the reported complexes as thermal stabilizers and co-stabilizers for rigid PVC in air at 180 °C. Their high stabilizing efficiency is detected by their high induction period values (T(s)) compared with some of the common reference stabilizers used industrially, such as dibasic lead carbonate (DBLC) and calcium-zinc soap. Blending these complexes with some of the reference stabilizers in different ratios had a synergistic effect on both induction period as it gave better thermal stability and lower extent of discoloration. The stabilizing efficiency is attributed at least partially to the ability of the metal complex stabilizer to be incorporated in the polymeric chains, thus disrupting the chain degradation and replace the labile chlorine atoms on PVC chains by a relatively more s moiety of the inorganic stabilizer. Their amenability to use as a biomedical additives for PVC, has afforded them great potential for various medical applications. PMID:22159190

  6. Structural, spectral, thermal and biological studies on (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its metal complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Rakhawy, E. R.

    2014-12-01

    Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and U(VI)O2 with (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2PHAT) were synthesized and characterized by different physicochemical methods, elemental analysis, (UV-vis, IR and 1H NMR spectra) and thermal analysis (TG and DTG) techniques. Spectral data showed that H2PHAT behaves as a NS bidentate ligand through both thione sulphur or thiol sulphur and the nitrogen of the pyridine ring or azomethine nitrogen, NSN tridentate ligand through both thione sulphur or thiol sulphur, the nitrogen of the pyridine ring and azomethine nitrogen. ESR spectrum data for Cu(II) solid complex confirms the square planar state is the most fitted one for the coordinated structure. The kinetic parameters were determined for each thermal degradation stage of the complexes using Coats-Redfern and Horowitz-Metzger methods. From modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. The biological activity was tested against DNA showing that Cd(II), U(VI)O2, Ni(II) and Mn(II) complexes had powerful and complete degradation effect. Also, the ligand and its complexes were screened against Bacillus thuringiensis as Gram-positive bacteria and Pseudomonas aeuroginosa as Gram-negative bacteria using the inhibitory zone diameter.

  7. Structural, spectral, thermal and biological studies on (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide and its metal complexes.

    PubMed

    Yousef, T A; Abu El-Reash, G M; El-Rakhawy, E R

    2014-12-10

    Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and U(VI)O2 with (E)-2-(1-(4-hydroxyphenyl)ethylidene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2PHAT) were synthesized and characterized by different physicochemical methods, elemental analysis, (UV-vis, IR and (1)H NMR spectra) and thermal analysis (TG and DTG) techniques. Spectral data showed that H2PHAT behaves as a NS bidentate ligand through both thione sulphur or thiol sulphur and the nitrogen of the pyridine ring or azomethine nitrogen, NSN tridentate ligand through both thione sulphur or thiol sulphur, the nitrogen of the pyridine ring and azomethine nitrogen. ESR spectrum data for Cu(II) solid complex confirms the square planar state is the most fitted one for the coordinated structure. The kinetic parameters were determined for each thermal degradation stage of the complexes using Coats-Redfern and Horowitz-Metzger methods. From modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligand and their investigated complexes. The biological activity was tested against DNA showing that Cd(II), U(VI)O2, Ni(II) and Mn(II) complexes had powerful and complete degradation effect. Also, the ligand and its complexes were screened against Bacillus thuringiensis as Gram-positive bacteria and Pseudomonas aeuroginosa as Gram-negative bacteria using the inhibitory zone diameter.

  8. Sorption of heavy metal metatartrate complexes on polystyrene anion exchangers.

    PubMed

    Hubicki, Zbigniew; Geca, Marzena; Kołodyńska, Dorota

    2011-04-01

    The performance of polystyrene anion exchangers in purifying wastewaters containing metatartaric acid and heavy metal ions (especially those from electroless plating processes) was investigated. The following anion exchangers were selected: Lewatit MonoPlus M 500, Lewatit MonoPlus MP 64, Lewatit MP 62 and Amberlite IRA 402. A batch method was used to study the influence of: phase contact time (1-120 min); solution pH (2-9); concentration of initial heavy metal Cu(II), Zn(II), Co(II) and Ni(II) complexes (1.25 x 10(-4) M to 8.0 x 10(-3) M); temperature (303-333K); and interfering ions (Cl-, NO3-, SO4(2-), Ca2+, Mg2+). The amounts of Cu(II), Zn(II), Co(II) and Ni(II) complexes with metatartaric acid sorbed at equilibrium using the strongly basic anion exchanger Lewatit MonoPlus M 500 were equal to 7.25 mg/g, 3.21 mg/g, 3.78 mg/g and 3.98 mg/g, respectively. The equilibrium sorption capacity increased slightly with increasing temperature. The optimal pH sorption was found to be 6.5. The experimental data were analysed using the Langmuir and Freundlich models. The maximum adsorption capacities q(0) determined from the Langmuir adsorption equation equal to 7.53 mg/g, 3.75 mg/g, 3.55 mg/g and 4.60 mg/g were in good agreement with the experimental values for Lewatit MonoPlus M 500. The kinetic data obtained at different concentrations were modelled using pseudo first order, pseudo second order and intraparticle diffusion equations. The experimental data were well described by the pseudo second order kinetic model.

  9. Synthesis, spectral and thermal studies of some transition metal mixed ligand complexes: Modeling of equilibrium composition and biological activity

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran

    2011-09-01

    Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.

  10. Spectroscopic and density functional theory investigation of novel Schiff base complexes.

    PubMed

    Hassan, Walid M I; Zayed, Ehab M; Elkholy, Asmaa K; Moustafa, H; Mohamed, Gehad G

    2013-02-15

    Novel Schiff base (H(2)L, 1,2-bis[(2-(2-mercaptophenylimino)methyl)phenoxy] ethane) derived from condensation of bisaldehyde and 2-aminothiophenol was prepared in a molar ratio 1:2. The ligand and its metal complexes are fully characterized with analytical and spectroscopic techniques. The metal complexes with Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Th(IV) have been prepared and characterized by elemental analyses, IR and (1)H-NMR spectroscopy, thermal and magnetic measurements. The results suggested that the Schiff base is a bivalent anion with hexadentate OONNSS donors derived from the etheric oxygen (O, O'), azomethine nitrogen (N, N') and thiophenolic sulphur (S, S'). The formulae of the complexes were found to be [ML]·xH(2)O (M=Mn(II) (x=0), Co(II) (x=1), Ni(II), (x=1), Cu(II) (x=2) and Zn(II) (x=0)) and [ML]·nCl (M=Cr(III) (n=1), Fe(III) (n=1) and Th(IV) (n=2)). The thermogravimetric analysis of the complexes shows metal oxide remaining as the final product at 700-1000 °C. Density functional theory at the B3LYP/6-31G(*) level of theory was used to investigate molecular geometry, Mulliken atomic charges and energetics. The synclinal-conformer was found to be responsible for complex formation. The calculation showed that ligand has weak field. Structural deformation and the dihedral angles rotation during complexation were investigated. The binding energy of each complex was calculated. The calculated results are in good agreement with experimental data. PMID:23266605

  11. Synthesis and spectral studies of metal complexes of a Schiff base derived from (2-amino-5-chlorophenyl)phenyl methanone.

    PubMed

    Mini, S; Sadasivan, V; Meena, S S; Bhatt, Pramod

    2015-01-01

    Some new complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Fe(III) with the Schiff base 5-chloro-2-(furan-2-yl methylamino)phenyl)phenyl methanone has been synthesized and characterized by elemental analysis, spectroscopic data including FT-IR, (1)H NMR, Electronic, ESI mass, Mössbauer & ESR. It has been found that the Schiff base behaves as a neutral bidentate N, O donor which chelates with the metal ions in 1:2 stoichiometry. Magnetic moment and electrolytic conductance data confirms this. The Schiff base and selected complexes were screened for antimicrobial activity. The complexes and the Schiff base were subjected to antioxidant study. The antitumor activity of Co(II) complex was tested by MTT assay. The result indicates the viability of the complex against tested cell lines.

  12. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water.

    PubMed

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-08-15

    In the present study, a kind of graphenes magnetic material (Fe3O4-GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effective for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pHZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe3O4-GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g(-1) for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature. PMID:25016452

  13. A New Chelating Reagent: Its Synthesis/Characterization and Application for the Determination of Cd(II) and Ni(II) in Various Food and Make-Up Product Samples by FAAS Using Simultaneous Microextraction Sampling.

    PubMed

    Saçmacı, Şerife; Saçmacı, Mustafa

    2016-07-01

    A new and simple dispersive liquid-liquid simultaneous microextraction procedure was developed for the rapid separation and simultaneous extraction/preconcentration of Cd(II) and Ni(II) at ultratrace amounts. Microextraction of the analytes was carried out in the presence of 2-methyl-5-[(Z)-pyridin-4-yldiazenyl]quinolin-8-ol as the chelating reagent. Chloroform and ethanol were used as the extraction and dispersive solvents. Various parameters that influence the microextraction procedure's efficiency-such as pH, centrifugation rate and time, reagent concentration, and sampling volume on the recovery of analytes-were examined. The calibration curves were linear in the range of 0.01-1.25 and 0.075-5 mg/L with LODs of 0.25 and 0.84 μg/L, and with a preconcentration factor of 94, for Cd(II) and Ni(II), respectively. Precision was >1.0%. The accuracy of the method was confirmed by analyzing the Certified Standard Reference Material (CWW-TMD: Certified wastewater-Trace metals, wastewater). The results show that the dispersive liquid-liquid simultaneous microextraction pretreatment is a sensitive, rapid, simple, green, and safe method for the separation/preconcentration of cadmium and nickel. PMID:27301349

  14. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water.

    PubMed

    Guo, Xiaoyao; Du, Bin; Wei, Qin; Yang, Jian; Hu, Lihua; Yan, Liangguo; Xu, Weiying

    2014-08-15

    In the present study, a kind of graphenes magnetic material (Fe3O4-GS) was prepared by compositing graphene sheet with ferroferric oxide, and shown to be effective for removing Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) ions from aqueous solution. The synthesized sorbent was characterized by SEM, TEM, FTIR, XRD, XPS and BET, respectively. The pHZPC value of the sorbent was estimated to be 3.5 by alkaline-titration methods. Fe3O4-GS can be simply recovered from water with magnetic separation at low magnetic field within one minute. The sorption capacities of the metals were 17.29, 27.95, 23.03, 27.83 and 22.07 mg g(-1) for Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II), respectively. Kinetic data showed good correlation with pseudo-second-order equation and the Freundlich model was found to fit for the isotherm data of all the heavy metal ions. It was found that the metals sorption was accomplished mainly via chelation or ion exchange. The results of thermodynamic studies illustrate that the adsorption process was endothermic and spontaneous in nature.

  15. Spectroscopic and computational studies of a mu-eta(2):eta(2)-disulfido-bridged dinickel(II) species, [{(PhTt(tBu))Ni}(2)(mu-eta(2):eta(2)-S(2))]: comparison of side-on disulfido and peroxo bonding in (Ni(II))(2) and (Cu(II))(2) species.

    PubMed

    Van Heuvelen, Katherine M; Cho, Jaeheung; Riordan, Charles G; Brunold, Thomas C

    2010-04-01

    In this study, a combined spectroscopic and computational approach has been employed to generate a detailed description of the electronic structure of a binuclear side-on disulfido (Ni(II))(2) complex, [{(PhTt(tBu))Ni}(2)(mu-eta(2):eta(2)-S(2))] (1, where PhTt(tBu) = phenyltris[(tert-butylthio)methyl]borate). The disulfido-to-Ni(II) charge-transfer transitions that dominate the electronic absorption spectrum have been assigned on the basis of time-dependent density functional theory (DFT) calculations. Resonance Raman spectroscopic studies of 1 have revealed that the S-S stretching mode occurs at 446 cm(-1), indicating that the S-S bond is weaker in 1 than in the analogous mu-eta(2):eta(2)-S(2) dicopper species. DFT computational data indicate that the steric bulk of PhTt(tBu) stabilize the side-on core enough to prevent its conversion to the electronically preferred bis(mu-sulfido) (Ni(III))(2) structure. Hence, 1 provides an interesting contrast to its O(2)-derived analogue, [{(PhTt(tBu))Ni}(2)(mu-O)(2)], which was shown previously to assume a bis(mu-oxo) (Ni(III))(2) "diamond core". By a comparison of 1 to analogous disulfidodicopper and peroxodinickel species, new insight has been obtained into the roles that the metal centers, bridging ligands, and supporting ligands play in determining the core structures and electronic properties of these dimers. PMID:20199100

  16. Synthesis and Reactivity of Four- and Five-Coordinate Low-Spin Cobalt(II) PCP Pincer Complexes and Some Nickel(II) Analogues

    PubMed Central

    2014-01-01

    Anhydrous CoCl2 or [NiCl2(DME)] reacts with the ligand PCPMe-iPr (1) in the presence of nBuLi to afford the 15e and 16e square planar complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3), respectively. Complex 2 is a paramagnetic d7 low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag+ and CO the cationic complex [Co(PCPMe-iPr)(CO)2]+ (6) is afforded. The effective magnetic moments μeff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 μB. This is consistent with a d7 low-spin configuration with some degree of spin–orbit coupling. Oxidation of 2 with CuCl2 affords the paramagnetic Co(III) PCP complex [Co(PCPMe-iPr)Cl2] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-iPr)(CO)2] (8) was achieved by stirring 2 in toluene with KC8 in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-iPr)(CO)]+ (10) was obtained by reacting complex 3 with 1 equiv of AgSbF6 in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-iPr)(CO)]n (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in 4 deviates significantly from linearity, with a Co–C–O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect.

  17. Synthesis and Reactivity of Four- and Five-Coordinate Low-Spin Cobalt(II) PCP Pincer Complexes and Some Nickel(II) Analogues

    PubMed Central

    2014-01-01

    Anhydrous CoCl2 or [NiCl2(DME)] reacts with the ligand PCPMe-iPr (1) in the presence of nBuLi to afford the 15e and 16e square planar complexes [Co(PCPMe-iPr)Cl] (2) and [Ni(PCPMe-iPr)Cl] (3), respectively. Complex 2 is a paramagnetic d7 low-spin complex, which is a useful precursor for a series of Co(I), Co(II), and Co(III) PCP complexes. Complex 2 reacts readily with CO and pyridine to afford the five-coordinate square-pyramidal 17e complexes [Co(PCPMe-iPr)(CO)Cl] (4) and [Co(PCPMe-iPr)(py)Cl] (5), respectively, while in the presence of Ag+ and CO the cationic complex [Co(PCPMe-iPr)(CO)2]+ (6) is afforded. The effective magnetic moments μeff of all Co(II) complexes were derived from the temperature dependence of the inverse molar magnetic susceptibility by SQUID measurements and are in the range 1.9 to 2.4 μB. This is consistent with a d7 low-spin configuration with some degree of spin–orbit coupling. Oxidation of 2 with CuCl2 affords the paramagnetic Co(III) PCP complex [Co(PCPMe-iPr)Cl2] (7), while the synthesis of the diamagnetic Co(I) complex [Co(PCPMe-iPr)(CO)2] (8) was achieved by stirring 2 in toluene with KC8 in the presence of CO. Finally, the cationic 16e Ni(II) PCP complex [Ni(PCPMe-iPr)(CO)]+ (10) was obtained by reacting complex 3 with 1 equiv of AgSbF6 in the presence of CO. The reactivity of CO addition to Co(I), Co(II), and Ni(II) PCP square planar complexes of the type [M(PCPMe-iPr)(CO)]n (n = +1, 0) was investigated by DFT calculations, showing that formation of the Co species, 6 and 8, is thermodynamically favorable, while Ni(II) maintains the 16e configuration since CO addition is unfavorable in this case. X-ray structures of most complexes are provided and discussed. A structural feature of interest is that the apical CO ligand in 4 deviates significantly from linearity, with a Co–C–O angle of 170.0(1)°. The DFT-calculated value is 172°, clearly showing that this is not a packing but an electronic effect. PMID:27642210

  18. Structural, spectral, thermal and biological studies on 2-oxo-N‧-((4-oxo-4H-chromen-3-yl)methylene)-2-(phenylamino)acetohydrazide (H2L) and its metal complexes

    NASA Astrophysics Data System (ADS)

    El-Gammal, Ola A.; El-Reash, Gaber Abu; Ahmed, Sara F.

    2012-01-01

    A new series of metal complexes formed by the reaction of 2-oxo-N'-((4-oxo-4H-chromen-3-yl)methylene)-2-(phenylamino)acetohydrazide(H 2L) and Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Hg(II) and U(VI) O22+ ions. The isolated complexes have been characterized by elemental analyses, spectral (IR, UV-visible and 1H NMR) as well as magnetic and thermal measurements. The data revealed that the ligand acts as neutral ON or ONO as well as mononegative ONO. On the basis of magnetic and electronic spectral data an octahedral geometry for the Co(II), Cu(II) and U(VI)O 2 complexes, a tetrahedral structure for the Ni(II), Cd(II), Zn(II) and Hg(II) complexes have been proposed. The bond length, bond angle, HOMO, LUMO, dipole moment and charges on the atoms have been calculated to confirm the geometry of the ligand and the investigated complexes. Also, kinetic parameters were determined for each thermal degradation stage of some complexes using Coats-Redfern and Horowitz-Metzger methods. Moreover, the ligand and its complexes were screened against Bacillus thuringiensis ( Bt) as Gram positive bacteria and Pseudomonas aeuroginosa ( Pa) Gram negative bacteria using the inhibitory zone diameter.

  19. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  20. (E)3-2-(1-(2,4-Dihydroxyphenyl)ethyldeneamino)phenyl)-2-methylquinazoline-4(3H)-one Schiff Base and Its Metal Complexes: A New Drug of Choice against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Siddappa, K.; Mane, Sunilkumar B.; Manikprabhu, Deene

    2014-01-01

    The 3-(2-aminophenyl) quinazolin-2-methyl-4(3H)-one and 2,4-dihydroxyacetophenone undergo condensation to afford (E)3-2-(1-(2,4-dihydroxyphenyl)ethyldeneamino)phenyl)-2-methylquinazoline-4(3H)-one Schiff base (DHPEAPMQ). The newly synthesized Schiff base (DHPEAPMQ) and its metal complexes were evaluated for their antimicrobial activity against methicillin-resistant Staphylococcus aureus isolated from the Gulbarga region in India. The Cu(II), Ni(II), and Zn(II) complexes of Schiff base (DHPEAPMQ) showed good antimicrobial activity. So, this could be a new drug of choice. PMID:24733996

  1. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Şenol, Cemal; Hayvali, Zeliha; Dal, Hakan; Hökelek, Tuncer

    2011-06-01

    New Schiff base derivatives ( L 1 and L 2) were prepared by the condensation of 2-hydroxy-3-methoxybenzaldehyde ( o-vanillin) and 3-hydroxy-4-methoxybenzaldehyde ( iso-vanillin) with 5-methylfurfurylamine. Two new complexes [Ni(L 1) 2] and [Cu(L 1) 2] have been synthesized with bidentate NO donor Schiff base ligand ( L 1). The Ni(II) and Cu(II) atoms in each complex are four coordinated in a square planar geometry. Schiff bases ( L 1 and L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] were characterized by elemental analyses, FT-IR, UV-vis, mass and 1H, 13C NMR spectroscopies. The crystal structures of the ligand ( L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] have also been determined by using X-ray crystallographic technique.

  2. Co-ordination behaviour of a novel tristhiourea tripodal ligand; structural variations in a series of transition metal complexes.

    PubMed

    Saad, Fawaz A; Knight, James C; Kariuki, Benson M; Amoroso, Angelo J

    2016-06-21

    The co-ordination chemistry of a tristhiourea tris(2-pyridylmethyl)amine ligand () with a series of transition metal ions has been investigated. Crystallographic data show that large metal ions, with no geometrical preferences, such as Mn(ii) and Cd(ii), will form seven co-ordinate monocapped octahedral complexes, while smaller metal ions such as Zn(ii) favour five co-ordinate trigonal bipyramidal structures. In a similar manner to the related bisthiourea complexes, the Ni(ii) complex shows a strong preference for octahedral geometries resulting in the ligand binding asymmetrically. Spectroscopic (IR and NMR), spectrometric (MS) as well as electrochemical data for these complexes are reported. PMID:27240882

  3. Interfacial charge-transfer transitions and reorganization energies in sulfur-bridged TiO2-x-benzenedithiol complexes (x: o, m, p).

    PubMed

    Fujisawa, Jun-Ichi; Muroga, Ryuki; Hanaya, Minoru

    2016-08-10

    Surface complexes formed between TiO2 nanoparticles and enediol compounds such as 1,2-benzenediol (o-BDO) via Ti-O-C linkages show absorption of visible light due to interfacial charge-transfer (ICT) transitions. The ICT transitions take place from the π-conjugated systems to TiO2. Recently, we reported a surface complex formed between TiO2 and 1,2-benzenedithiol (o-BDT) via Ti-S-C linkages. This sulfur-bridged complex shows ICT transitions from the sulfur bridging atoms to TiO2. Interestingly, it was demonstrated that the ICT transitions in the sulfur-bridged TiO2-o-BDT complex induce photoelectric conversion more efficiently than those in the oxygen-bridged TiO2-o-BDO complex. This result suggests that carrier recombination is suppressed with the sulfur bridging atoms. In this paper, we examine ICT transitions and reorganization energies in the sulfur-bridged TiO2-x-BDT complexes (x: o, m, p) and compare them with those in the oxygen-bridged TiO2-x-BDO complexes. The estimated reorganization energies for the sulfur-bridged TiO2-x-BDT complexes (x: o, m, p) are much smaller than those for the oxygen-bridged TiO2-x-BDO ones. Based on the Marcus theory, the small reorganization energy calculated for the TiO2-o-BDT complex, which is less than half of that for the TiO2-o-BDO complex, increases the activation energy of carrier recombination. The small reorganization energy is attributed to the characteristic distribution of the highest occupied molecular orbital (HOMO) on the sulfur-bridging atoms in the TiO2-o-BDT complex, which inhibits structural changes in the benzene ring in the ICT excited state. Our work reveals the important role of the sulfur bridging atoms in the suppression of carrier recombination. PMID:27456170

  4. Synthesis and spectroscopic studies of some transition metal complexes of a novel Schiff base ligands derived from 5-phenylazo-salicyladehyde and o-amino benzoic acid

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Deen, Ibrahim M.; Ibrahim, Hassan K.; El-Ghool, Samir

    2006-12-01

    Cu(II), Mn(II), Ni(II), and Zn(II) metal complexes with novel heterocyclic Schiff base derived from 5-phenyl azo-salicyladehyde and o-amino benzoic acid have been synthesized and characterized on the basis of elemental analyses, electronic, IR, and 1H NMR spectra, and also by aid of scanning electron microscopy (SEM), X-ray powder diffraction, molar ratio measurements, molar conductivity measurements, and thermogravimetric analyses. It has been found that the Schiff base behaves as neutral tridentate (ONO) ligand forming chelates with 1:1 (metal:ligand) stoichiometry.

  5. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties

    PubMed Central

    Supuran, Claudiu T.

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC50 values around 10−8M against isozyme CA II, and 10−7 M against isozyme CAI. PMID:18472784

  6. Metal Complexes of 1,3,4-Thiadiazole-2,5-Disulfonamide are Strong Dual Carbonic Anhydrase Inhibitors, although the Ligand Possesses very Weak such Properties.

    PubMed

    Supuran, C T

    1995-01-01

    Coordination compounds of Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) with 1,3,4-thiadiazole-2,5-disulfonamide as ligand were synthesized and characterized by IR and UV spectroscopy, conductimetry and thermogravimetry. The parent ligand is a very weak carbonic anhydrase (CA) inhibitor, although it constituted the lead for developing important classes of diuretics. The complex derivatives behave as much stronger CA inhibitors, with IC(50) values around 10(-8)M against isozyme CA II, and 10(-7) M against isozyme CAI.

  7. Designing a heterotrinuclear Cu(II)-Ni(II)-Cu(II) complex from a mononuclear Cu(II) Schiff base precursor with dicyanamide as a coligand: synthesis, crystal structure, thermal and photoluminescence properties.

    PubMed

    Hopa, Cigdem; Cokay, Ismail

    2016-08-01

    Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido-1κN(1))bis(dimethyl sulfoxide)-2κO,3κO-bis{μ-2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ(6)O,O':O,N,N',O';1:3κ(6)O,O':O,N,N',O'-dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155-2269 cm(-1), which clearly proves the presence of terminal bonding dca groups. A single-crystal X-ray study revealed that two [CuL] units coordinate to an Ni(II) atom through the phenolate O atoms, with double phenolate bridges between Cu(II) and Ni(II) atoms. Two terminal dca groups complete the distorted octahedral geometry around the central Ni(II) atom. According to differential thermal analysis-thermogravimetric analysis (DTA-TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π-π*) transitions and fluorescence quenching is observed on complexation of H2L with Cu(II).

  8. Designing a heterotrinuclear Cu(II)-Ni(II)-Cu(II) complex from a mononuclear Cu(II) Schiff base precursor with dicyanamide as a coligand: synthesis, crystal structure, thermal and photoluminescence properties.

    PubMed

    Hopa, Cigdem; Cokay, Ismail

    2016-08-01

    Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido-1κN(1))bis(dimethyl sulfoxide)-2κO,3κO-bis{μ-2,2'-[propane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ(6)O,O':O,N,N',O';1:3κ(6)O,O':O,N,N',O'-dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155-2269 cm(-1), which clearly proves the presence of terminal bonding dca groups. A single-crystal X-ray study revealed that two [CuL] units coordinate to an Ni(II) atom through the phenolate O atoms, with double phenolate bridges between Cu(II) and Ni(II) atoms. Two terminal dca groups complete the distorted octahedral geometry around the central Ni(II) atom. According to differential thermal analysis-thermogravimetric analysis (DTA-TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π-π*) transitions and fluorescence quenching is observed on complexation of H2L with Cu(II). PMID:27487333

  9. Synthesis, spectroscopic, cytotoxic aspects and computational study of N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base and some of its transition metal complexes

    NASA Astrophysics Data System (ADS)

    Abd El-Aziz, Dina M.; Etaiw, Safaa Eldin H.; Ali, Elham A.

    2013-09-01

    N-(pyridine-2-ylmethylene)benzo[d]thiazol-2-amine Schiff base (L) and its Cu(II), Fe(III), Co(II), Ni(II) and Zn(II) complexes were synthesized and characterized by a set of chemical and spectroscopic measurements using elemental analysis, electrical conductance, mass spectra, magnetic susceptibility and spectral techniques (IR, UV-Vis, 1H NMR). Elemental and mass spectrometric data are consistent with the proposed formula. IR spectra confirm the bidentate nature of the Schiff base ligand. The octahedral geometry around Cu(II), Fe(III), Ni(II) and Zn(II) as well as tetrahedral geometry around Co(II) were suggested by UV-Vis spectra and magnetic moment data. The thermal degradation behavior of the Schiff base and its complexes was investigated by thermogravimetric analysis. The structure of the Schiff base and its transition metal complexes was also theoretically studied using molecular mechanics (MM+). The obtained structures were minimized with a semi-empirical (PM3) method. The in vitro antitumor activity of the synthesized compounds was studied. The Zn-complex exhibits significant decrease in surviving fraction of breast carcinoma (MCF 7), liver carcinoma (HEPG2), colon carcinoma (HCT116) and larynx carcinoma (HEP2) cell lines human cancer.

  10. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    PubMed

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established.

  11. Synthesis and spectroscopic studies on the new Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol with 5-aminouracil (BDF5AU) and its transition metal complexes. Influence on biologically active peptides-regulating aminopeptidases.

    PubMed

    Hueso-Ureña, Francisco; Illán-Cabeza, Nuria A; Moreno-Carretero, Miguel N; Martínez-Martos, José M; Ramírez-Expósito, María J

    2003-04-01

    The synthesis, spectroscopic (IR, 1H and 13C NMR, UV-Vis-NIR, EPR), magnetic measurements and biological studies of a number of complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Au(III) and Hg(II) of the Schiff base derived from the 1:2 condensation of 2,6-diformyl-4-methylphenol and 5-aminouracil, ((5-[[(3-[[(2,4-dioxopyrimidin-5(1H,3H)-yl)imino]methyl]-2-hydroxy-5-methylphenyl)methylene]amino]pyrimidine-2,4(1H,3H)-dione, hereafter denoted as BDF5AU) are reported. In all cases, the complexes appear to be monomeric. The deprotonated ligand in the phenolic oxygen atom shows a tridentate coordination mode through the two azomethine nitrogen atoms and the phenolic oxygen atom. The coordination of the neutral ligand takes place through the phenolic oxygen atom and one azomethine nitrogen atom and the carbonylic oxygen atom in fourth position of one uracil ring. The biological properties of some perchlorate complexes on the activity of some neutral, acid, basic and omega aminopeptidases (AP) are assayed, demonstrating a general inhibitory effect. Neutral and basic AP are mainly inhibited by Cu(II), Ni(II) and Cd(II) complexes, although tyrosyl-AP is activated by Zn(II) complex. Glutamyl-AP but not aspartyl-AP is inhibited by all the complexes assayed excepting Zn(II) complex. Finally, omega AP is inhibited by Ni(II) and Cd(II) complexes. PMID:12667703

  12. New non-toxic transition metal nanocomplexes and Zn complex-silica xerogel nanohybrid: Synthesis, spectral studies, antibacterial, and antitumor activities

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Saif, M.; Nabeel, Asmaa I.; Shokry, R.

    2016-08-01

    A new chromone Schiff base and its complexes of Cu(II), Ni(II), Co(II), Fe(III), Zn(II), Cd(II), and UO2(VI) as well as Zn(II) complex-silica xerogel nanohybrid were successfully prepared in a nano domain with crystalline or amorphous structures. Structures of the Schiff base and its complexes were investigated by elemental and thermal analyses, IR, 1H NMR, electronic, ESR, mass spectra, XRD, and TEM, as well as conductivity and magnetic susceptibility measurements. The spectroscopic data revealed that the Schiff base ligand behaves as a monobasic tridentate ligand. The coordination sites with metal ions are γ-pyrone oxygen, azomethine nitrogen, and oxygen of the carboxylic group. The metal complexes exhibited octahedral geometry, except Cu(II) complex, which has a square planar geometry and UO2(VI) complex, in which uranium ion is hepta-coordinated. Transmission electron microscope (TEM) analysis showed that Ni(II) and Zn(II) complexes have aggregated spheres and rod morphologies, respectively. TEM images of Zn(II) complex-silica xerogel nanohybrid showed a nanosheet morphology with 46 nm average size and confirmed that the complex was uniformly distributed into the silica pores. The obtained nanocomplexes were tested as antimicrobial and antitumor agents. The results showed that Zn(II) nanocomplex and Zn(II) complex-silica xerogel nanohybrid have high activity. The toxicity test on mice showed that Zn(II) complex and Zn(II) complex-silica xerogel nanohybrid have lower toxicity than cisplatin.

  13. Formation equilibria of nickel complexes with glycyl-histidyl-lysine and two synthetic analogues.

    PubMed

    Conato, Chiara; Kozłowski, Henryk; Swiatek-Kozłowska, Jolanta; Młynarz, Piotr; Remelli, Maurizio; Silvestri, Sergio

    2004-01-01

    Complex-formation equilibria between the Ni(II) ion and the natural tripeptide glycyl-L-histidyl-L-lysine have been investigated. Two synthetic analogues, where the histidine residue has been substituted with L-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid (L-Spinacine) and L-1,2,3,4-tetrahydro-isoquinolin-3-carboxylic acid (Tic), respectively, have been considered, as well. Different experimental techniques have been employed: potentiometry, calorimetry, visible spectrophotometry and CD spectroscopy. Structural hypotheses on the main complex species are suggested. Evidences on the formation of tetrameric species with the first ligand are shown. No involvement of the side-chain amino group of lysine residue in metal ion coordination was found. PMID:14659644

  14. Interaction of Carbon Dioxide with Transition-Metal-Substituted Heteropolyanions in Nonpolar Solvents. Spectroscopic Evidence for Complex Formation.

    PubMed

    Szczepankiewicz, Steven H.; Ippolito, Calogero M.; Santora, Brian P.; Van De Ven, Thomas J.; Ippolito, Giuseppe A.; Fronckowiak, Louise; Wiatrowski, Fred; Power, Tom; Kozik, Mariusz

    1998-08-24

    Tetraheptylammonium salts of various transition-metal-substituted heteropolyanions with alpha-Keggin ([XW(11)O(39)M](n)()(-)), alpha-Wells-Dawson ([P(2)W(17)O(61)M](m)(-)), and Weakley and Finke structures ([P(2)W(18)O(68)Co(4)](10)(-)) were investigated with respect to their reactivity with CO(2) in nonpolar solvents. It was found that copper(II)- and manganese(III)-substituted heteropolyanions do not react with CO(2). Germano- and silicotungstates with the alpha-Keggin structure do form complexes with CO(2) when substituted with Co(II), Ni(II), and Mn(II). In contrast, boro- and phosphotungstates substituted with Co(II), Ni(II), and Mn(II) are unreactive. The alpha(2) isomers of Wells-Dawson phosphotungstates show reactivity similar to that of alpha-Keggin silicotungstates-i.e., Co(II), Ni(II), and Mn(II) derivatives do react with CO(2). On the other hand, the alpha(1) isomer of the Co(II)-substituted Wells-Dawson anion does not react with CO(2), and neither does the Weakley and Finke cobaltotungstate. When reactions do occur, they are completely reversible. An excess of water decomposes the complexes. Traces of water are, however, necessary for the reactions to take place. The CO(2) adducts were characterized by UV/vis, IR, and (13)C NMR. The IR data could be explained as originating either from CO(2) complexes with a direct eta(1) metal-carbon bond or from bicarbonato complexes. IR spectra with isotopically enriched (13)CO(2) and C(18)O(2) support the presence of a eta(1) metal-carbon bond. The (13)C NMR spectra indicate the presence of two different kinds of paramagnetic CO(2) complexes after the reaction of alpha-[SiW(11)O(39)Co](6)(-) with CO(2) (chemical shifts 792 and 596 ppm at 26 degrees C). The variable-temperature experiments are consistent with the chemical exchange between these two species. UV/vis, IR, and NMR studies in the presence of controlled amounts of water or ethanol suggest the existence of H-bonding in the CO(2) complexes, similar to that

  15. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications.

    PubMed

    Kareem, Abdul; Laxmi; Arshad, Mohammad; Nami, Shahab A A; Nishat, Nahid

    2016-07-01

    Schiff base ligand, (L), derived from condensation reaction of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, (curcumin), with pyridine-3-carboxamide, (nicotinamide), and its complexes of Co(II), Ni(II) and Cu(II) ions, containing 1,10-phenanthroline as auxiliary ligand were synthesized and characterized by various physico-chemical techniques. From the micro analytical data, the stoichiometry of the complexes 1:1 (metal: ligand) was ascertained. The Co(II) and Cu(II) forms octahedral complexes, while the geometric structure around Ni(II) atom can be described as square planar. The catalytic potential of the metal complexes have been evaluated by recording the rate of decomposition of hydrogen peroxide. The results reveal that the percent decomposition of H2O2increases with time and the highest value (50.50%) was recorded for Co(II) complex. The ligand and its complexes were also screened for their in vitro antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pyogenes and Pseudomonas aeruginosa. The relative order of antibacterial activity against S. Pyogenes, S. aureus and E. coli is Cu(II)>Ni(II)>Co(II)>(L); while with P. aeruginosa, K. pneumoniae the order of activity is Cu(II)>Co(II)>Ni(II)>(L). The anthelmintic screening was performed using Pheretima posthuma. The order of anthelmintic activity of ligand and its complexes is [(Phen)CuLCl2]>[(Phen)CoLCl2]>[(Phen)NiL]Cl2>(L).

  16. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications.

    PubMed

    Kareem, Abdul; Laxmi; Arshad, Mohammad; Nami, Shahab A A; Nishat, Nahid

    2016-07-01

    Schiff base ligand, (L), derived from condensation reaction of 1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, (curcumin), with pyridine-3-carboxamide, (nicotinamide), and its complexes of Co(II), Ni(II) and Cu(II) ions, containing 1,10-phenanthroline as auxiliary ligand were synthesized and characterized by various physico-chemical techniques. From the micro analytical data, the stoichiometry of the complexes 1:1 (metal: ligand) was ascertained. The Co(II) and Cu(II) forms octahedral complexes, while the geometric structure around Ni(II) atom can be described as square planar. The catalytic potential of the metal complexes have been evaluated by recording the rate of decomposition of hydrogen peroxide. The results reveal that the percent decomposition of H2O2increases with time and the highest value (50.50%) was recorded for Co(II) complex. The ligand and its complexes were also screened for their in vitro antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pyogenes and Pseudomonas aeruginosa. The relative order of antibacterial activity against S. Pyogenes, S. aureus and E. coli is Cu(II)>Ni(II)>Co(II)>(L); while with P. aeruginosa, K. pneumoniae the order of activity is Cu(II)>Co(II)>Ni(II)>(L). The anthelmintic screening was performed using Pheretima posthuma. The order of anthelmintic activity of ligand and its complexes is [(Phen)CuLCl2]>[(Phen)CoLCl2]>[(Phen)NiL]Cl2>(L). PMID:27107703

  17. Preparation, spectroscopic investigation and antiproliferative capacity of new metal complexes of (3E)-2-(hydroxyimino)-N-P-Tolyl-3-(P-tolylimino) butanamide

    NASA Astrophysics Data System (ADS)

    El-Tabl, Abdou Saad; Abd El-wahed, Moshira Mohamed; Abd El-Razek, Samar Ebrahim

    2013-03-01

    Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Sr(II), Hg(II), Tl(I), UO2(II) and ZrO(II) complexes of (3E)-2-(hydroxyimino)-N-P-Tolyl-3-(P-tolylimino) butanamide have been prepared and characterized by elemental analyses, IR, UV-Vis spectra, magnetic moments, conductances, 1H NMR and mass spectra (ligand and its Zn(II) complex), thermal analyses (DTA and TGA) and ESR measurements. The IR data show that, the ligand behaves as monobasic bidentate or neutral bidentate. Molar conductances in DMF indicate that, the complexes are non-electrolytes. ESR spectra of solid Cu(II) complexes at room temperature show axial type (dx2-y2) with covalent bond character in an octahedral environment. Complexes showed inhibitory activity against hepatocellular carcinoma (HepG-2 cell line).

  18. Spectroscopic studies on 2-[2-(4-methylquinolin-2-yl)hydrazono]-1,2-diphenylethanone molecule and its metal complexes

    NASA Astrophysics Data System (ADS)

    Seleem, H. S.; El-Inany, G. A.; Mousa, M.; Hanafy, F. I.

    2009-11-01

    The electronic absorption spectra of a hydrazone: 2-[2-(4-methylquinolin-2-yl)hydrazono]-1,2-diphenylethanone (BHQ) derived from 2-hydrazino-4-methylquinoline and 1,2-diphenylethan-1,2-dione (benzil) have been studied in various solvents of different polarities. The dependence of the band shift Δ ύ on the solvent parameters viz.D, Z, ET, DN, AN, α, β and π* was discussed. Also, the effect of pH on the free hydrazone and its Co(II), Ni(II) and Cu(II) complexes was studied spectrophotometrically in 75% (v/v) dioxane-water in order to determine the dissociation and stability constants. The stoichiometry of the formed complexes was determined by three different methods: Job's, mole ratio and slope ratio which indicate the formation of 1:2, M:L complexes for Co(II) and Cu(II) and 1:1, Ni(II):L. Beer's law is valid in the range 0.32-7.04 μg/mL depending on the type of the metal ion. The use of BHQ as an indicator via a spectrophotometric titration of Cu(II) and Ni(II) with EDTA was efficient.

  19. Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes

    NASA Astrophysics Data System (ADS)

    Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet

    2011-10-01

    In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.

  20. Synthesis and characterization of metal complexes of Schiff base ligand derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine

    NASA Astrophysics Data System (ADS)

    Selwin Joseyphus, R.; Shiju, C.; Joseph, J.; Justin Dhanaraj, C.; Arish, D.

    2014-12-01

    The Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from imidazole-2-carboxaldehyde and 4-aminoantipyrine were synthesized. These compounds were characterized by elemental analysis, IR, mass, 1H NMR, electronic spectra, magnetic moment, molar conductance, thermal analysis, powder XRD and SEM. The analytical data show that the metal to ligand ratio is 1:1. The IR results show that the ligand acts as a bidentate donor coordinating through the azomethine nitrogen and imidazole nitrogen atoms. From the electronic spectra and magnetic moment value predicts the geometry of the complexes. The surface morphology of the compounds was studied by SEM. The compounds were screened for their antibacterial activity and antifungal activity using Kirby Bayer disc diffusion method. The DNA cleavage and superoxide dismutase activities of the compounds were investigated. The anticancer activities of the complexes have been carried out towards HeLa and HCT116 cancer cells.

  1. Four-arm oligonucleotide Ni(II)-cyclam-centered complexes as precursors for the generation of supramolecular periodic assemblies.

    PubMed

    Stewart, Kristen M; McLaughlin, Larry W

    2004-02-25

    The development of a multiarm metal-centered DNA building block as a precursor for the construction of supramolecular assemblies has relied upon the preparation of a Ni(II)-1,4,8,11-tetrazacyclotetradecane ligand (cyclam) functionalized with four linkers. This complex can be incorporated into a support-bound DNA sequence and the remaining three linkers can then be elongated by DNA synthesis. The result is a Ni(II)-cyclam complex tethering four 20-mer DNA strands. This building block, designed to be tetrahedral in nature, can in principle be used to form tetrahedral assemblies. These assemblies can be designed to be of known size and composition or permitted to grow into complexes of essentially infinite size, ideally the macroscopic version of a crystal.

  2. Spectral studies on cobalt(II), nickel(II) and copper(II) complexes of naphthaldehyde substituted aroylhydrazones.

    PubMed

    Singh, Pramod Kumar; Kumar, Deo Nandan

    2006-07-01

    A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H(2)L(1)) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H(2)L(2)) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, (1)H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes. PMID:16529995

  3. Spectral studies on cobalt(II), nickel(II) and copper(II) complexes of naphthaldehyde substituted aroylhydrazones

    NASA Astrophysics Data System (ADS)

    Singh, Pramod Kumar; Kumar, Deo Nandan

    2006-07-01

    A series of new coordination complexes of cobalt(II), nickel(II) and copper(II) with two new aroylhydrazones, 2-hydroxy-1-naphthaldehyde isonicotinoylhydrazone (H 2L 1) and 2-hydroxy-1-naphthaldehyde-2-thenoyl-hydrazone (H 2L 2) have been synthesized and characterized by elemental analysis, conductance measurements, magnetic susceptibility measurements, 1H NMR spectroscopy, IR spectroscopy, electronic spectroscopy, EPR spectroscopy and thermal analysis. IR spectra suggests ligands acts as a tridentate dibasic donor coordinating through the deprotonated naphtholic oxygen atom, azomethine nitrogen atom and enolic oxygen atom. EPR and ligand field spectra suggests octahedral geometry for Co(II) and Ni(II) complexes and a square planar geometry for Cu(II) complexes.

  4. Heteronuclear Ni(ii)-Ln(iii) (Ln = La, Pr, Tb, Dy) complexes: synthesis and single-molecule magnet behaviour.

    PubMed

    Upadhyay, Apoorva; Das, Chinmoy; Langley, Stuart K; Murray, Keith S; Srivastava, Anant K; Shanmugam, Maheswaran

    2016-02-28

    The reaction of hydrated nickel(II) salts (chloride or nitrate) and hydrated lanthanide nitrate salts with the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol (HL) in methanol resulted in the isolation of three isostructural linear heterometallic trinuclear complexes and a heterometallic tetranuclear complex. The molecular structures of these complexes were determined via single crystal X-ray diffraction revealing molecular structures of formulae [Ni2La(L-)6](NO3)0.55(OH)0.45 (1), [Ni2Pr(L-)6](NO3)0.48(OH)0.52 (2), [Ni2Tb(L-)6](NO3)0.5(Cl)0.5 (3) and [Ni2Dy2(L-2(o-vanillin)2(CO3)2(NO3)2(MeOH)2] (4). Structural analysis for 1-3 reveals that the lanthanide ion is sandwiched between two Ni(II) ions and the Ni⋯Ln⋯Ni metallic core displays a linear arrangement, with an average ∠Ni⋯Ln⋯Ni bond angle of 179.7°. Analysis of 4 reveals the metal ions are arranged such that two Ni-Dy subunits are bridged by two carbonate ligands via the Dy sites. Direct current magnetic susceptibility measurements for complexes 1-4 reveal that the Ni(II) ions are coupled ferromagnetically with the Tb(III) (3) and Dy(III) (4) ions, and antiferromagnetically with the Pr(III) ion (2). For complex 1 a long range intramolecular ferromagnetic interaction is witnessed between the Ni(II) ions (Ni⋯Ni = 6.873(9) Å) via a closed shell La(III) ion. The magnetic data of 1 were fitted using the HDVV Hamiltonian revealing the following parameters; J = +0.46 cm(-1), g = 2.245, D = +4.91 cm(-1). Alternating current magnetic susceptibility measurements performed on complexes 2-4 revealed that 3 and 4 displayed frequency dependent χ′′M signals (Hac = 3.5 Oe and Hdc = 0 Oe) which is a characteristic signature of a single-molecule magnet behaviour. PMID:26810917

  5. Heteronuclear Ni(ii)-Ln(iii) (Ln = La, Pr, Tb, Dy) complexes: synthesis and single-molecule magnet behaviour.

    PubMed

    Upadhyay, Apoorva; Das, Chinmoy; Langley, Stuart K; Murray, Keith S; Srivastava, Anant K; Shanmugam, Maheswaran

    2016-02-28

    The reaction of hydrated nickel(II) salts (chloride or nitrate) and hydrated lanthanide nitrate salts with the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol (HL) in methanol resulted in the isolation of three isostructural linear heterometallic trinuclear complexes and a heterometallic tetranuclear complex. The molecular structures of these complexes were determined via single crystal X-ray diffraction revealing molecular structures of formulae [Ni2La(L-)6](NO3)0.55(OH)0.45 (1), [Ni2Pr(L-)6](NO3)0.48(OH)0.52 (2), [Ni2Tb(L-)6](NO3)0.5(Cl)0.5 (3) and [Ni2Dy2(L-2(o-vanillin)2(CO3)2(NO3)2(MeOH)2] (4). Structural analysis for 1-3 reveals that the lanthanide ion is sandwiched between two Ni(II) ions and the Ni⋯Ln⋯Ni metallic core displays a linear arrangement, with an average ∠Ni⋯Ln⋯Ni bond angle of 179.7°. Analysis of 4 reveals the metal ions are arranged such that two Ni-Dy subunits are bridged by two carbonate ligands via the Dy sites. Direct current magnetic susceptibility measurements for complexes 1-4 reveal that the Ni(II) ions are coupled ferromagnetically with the Tb(III) (3) and Dy(III) (4) ions, and antiferromagnetically with the Pr(III) ion (2). For complex 1 a long range intramolecular ferromagnetic interaction is witnessed between the Ni(II) ions (Ni⋯Ni = 6.873(9) Å) via a closed shell La(III) ion. The magnetic data of 1 were fitted using the HDVV Hamiltonian revealing the following parameters; J = +0.46 cm(-1), g = 2.245, D = +4.91 cm(-1). Alternating current magnetic susceptibility measurements performed on complexes 2-4 revealed that 3 and 4 displayed frequency dependent χ′′M signals (Hac = 3.5 Oe and Hdc = 0 Oe) which is a characteristic signature of a single-molecule magnet behaviour.

  6. Adsorption of Co(II), Ni(II), Cu(II), and Zn(II) on hexagonal templated zirconia obtained thorough a sol-gel process: the effects of nanostructure on adsorption features.

    PubMed

    de Farias, Robson F; do Nascimento, Ana A S; Bezerra, Cícero W B

    2004-09-01

    Using zirconium tetrabutoxide, diaminedecane, and diamineoctane as precursors, a templated hexagonal zirconia matrix is synthesized and characterized by X-ray diffractometry and scanning electron microscopy. The adsorption capacity of such a matrix toward Co(II), Ni(II), Cu(II), and Zn(II) from aqueous solutions is studied. The adsorption affinity of the synthesized hexagonal templated zirconia toward the cations is Cu(II)>Zn(II) >Ni(II)>Co(II). It is also verified that the adsorption of the cations follows a Langmuir and not a Freundlich isotherm. All obtained isotherms are of type I, according to the IUPAC classification. The observed adsorption affinity sequence can be explained by taking into account the velocity constant for the substitution of water molecules into the cation coordination spheres, as well as the Irving-Williams series.

  7. Adsorption of Co(II), Ni(II), Cu(II), and Zn(II) on hexagonal templated zirconia obtained thorough a sol-gel process: the effects of nanostructure on adsorption features.

    PubMed

    de Farias, Robson F; do Nascimento, Ana A S; Bezerra, Cícero W B

    2004-09-01

    Using zirconium tetrabutoxide, diaminedecane, and diamineoctane as precursors, a templated hexagonal zirconia matrix is synthesized and characterized by X-ray diffractometry and scanning electron microscopy. The adsorption capacity of such a matrix toward Co(II), Ni(II), Cu(II), and Zn(II) from aqueous solutions is studied. The adsorption affinity of the synthesized hexagonal templated zirconia toward the cations is Cu(II)>Zn(II) >Ni(II)>Co(II). It is also verified that the adsorption of the cations follows a Langmuir and not a Freundlich isotherm. All obtained isotherms are of type I, according to the IUPAC classification. The observed adsorption affinity sequence can be explained by taking into account the velocity constant for the substitution of water molecules into the cation coordination spheres, as well as the Irving-Williams series. PMID:15276032

  8. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  9. Synthesis, Characterization, Antioxidant, and Antibacterial Studies of Some Metal(II) Complexes of Tetradentate Schiff Base Ligand: (4E)-4-[(2-{(E)-[1-(2,4-Dihydroxyphenyl)ethylidene]amino}ethyl)imino]pentan-2-one

    PubMed Central

    Ejidike, Ikechukwu P.; Ajibade, Peter A.

    2015-01-01

    Co(II), Ni(II), Cu(II), and Zn(II) complexes of (4E)-4-[(2-{(E)-[1-(2,4-dihydroxyphenyl)ethylidene]amino}ethyl)imino]pentan-2-one have been synthesized and characterized by elemental analyses, molar conductance, electronic and IR spectral studies, and XRD. FTIR confirmed the ligand coordinates the metal ion to form mononuclear complex via the oxygen and nitrogen atoms of the phenolic group and azomethine group, respectively. Tetrahedral geometry is proposed for Co(II) complex and square-planar geometry for Ni(II) and Cu(II) complexes. The antibacterial studies of the compounds were determined and they show that the metal complexes are more active than the free ligands. The antioxidant activity by DPPH and ABTS method was examined and it shows Cu(II); IC50 = 2.31 ± 1.54 µM for DPPH and Co(II); IC50 = 1.83 ± 1.08 µM for ABTS were the most active. PMID:26074738

  10. Spectral characterization and 3D molecular modeling studies of metal complexes involving the O, N-donor environment of quinazoline-4(3H)-one Schiff base and their biological studies.

    PubMed

    Siddappa, Kuruba; Mane, Sunilkumar B; Manikprabhu, Deene

    2014-01-01

    A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10 μ g/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278

  11. Spectral Characterization and 3D Molecular Modeling Studies of Metal Complexes Involving the O, N-Donor Environment of Quinazoline-4(3H)-one Schiff Base and Their Biological Studies

    PubMed Central

    Siddappa, Kuruba; Mane, Sunilkumar B.

    2014-01-01

    A simple condensation of 3-amino-2-methylquinazoline-4-one with 2-hydroxy-1-naphthaldehyde produced new tridentate ONO donor Schiff base ligand with efficient yield. The structural characterization of ligand and its Cu(II), Ni(II), Co(II), Mn(II), Zn(II), and Cd(II) complexes were achieved by the aid of elemental analysis, spectral characterization such as (UV-visible, IR, NMR, mass, and ESR), and magnetic data. The analytical and spectroscopic studies suggest the octahedral geometries of Cu(II), Co(II), Ni(II) and Mn(II) complexes and tetrahedral geometry of Zn(II) and Cd(II) complexes with the tridentate ONO Schiff base ligand. Furthermore, the conclusions drawn from these studies afford further support to the mode of bonding discussed on the basis of their 3D molecular modeling studies by considering different bond lengths, bond angles, and bond distance. The ligand and its metal complexes evaluated for their antimicrobial activity against Staphylococcus aureus (MTCC number 7443), Bacillus subtilis (MTCC number 9878), Escherichia coli (MTCC number 1698), Aspergillus niger (MTCC number 281), and Aspergillus flavus (MTCC number 277). The MIC of these compounds was found to be most active at 10 μg/mL concentration in inhibiting the growth of the tested organisms. The DNA cleavage activity of all the complexes was studied by gel electrophoresis method. PMID:24678278

  12. Synthesis, characterization and properties of some divalent metal(II) complexes: Their electrochemical, catalytic, thermal and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Tümer, Mehmet; Ekinci, Duygu; Tümer, Ferhan; Bulut, Akif

    2007-07-01

    In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H 3A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H 3A) with phtaldialdehyde (H 2L), 4-methyl-2,6-di-formlyphenol (H 3L 1) and 4- t-butyl-2,6-di-formylphenol (H 3L 2) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H 2L, H 3L 1 and H 3L 2 have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di- tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di- tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry.

  13. Design, synthesis and DNA binding activities of late first row transition metal(II) complexes of bi- functional tri - and tetratopic imines.

    PubMed

    Netalkar, Priya P; Kamath, Anupama; Netalkar, Sandeep P; Revankar, Vidyanand K

    2012-11-01

    A series of novel Co(II), Ni(II), Cu(II) and Zn(II) complexes of tri and tetratopic hydrazones have been prepared. Ligands L(1)H(2) and L(2)H(2) were synthesized by the condensation of 2-formylphenoxyacetic acid with 2-hydrazinobenzothiazole and 2-hydroxy-3-hydrazinebenzopyrazine, respectively. The prepared complexes were characterized by the analytical and spectral techniques. All the complexes were found to be monomeric in nature with octahedral geometry. Both ligands were found to be electrochemically active in the working potential range showing single electron transfer process attributed to the deprotonation of carboxylic group of the 2-formylphenoxyacetic acid. The potency of the ligand and its complexes as antimicrobial agents has been investigated and made to interact with Escherichia coli DNA to investigate the binding/cleaving ability by absorption, hydrodynamic and electrophoresis studies.

  14. NMR investigation of dynamic processes in complexes of nickel(II) and zinc(II) with iminodiacetate, n-methyliminodiacetate and n-ethyliminodiacetate

    SciTech Connect

    Wagner, M.R.

    1985-11-01

    Analysis of oxygen-17 bulk water relaxation rates with an aqueous solution of 1:1 Ni(II):ida reveals that two rate-limiting processes are involved with solvent exchange. Analysis of carbon-13 longitudinal relaxation rates of the bis-ligand complexes with zinc(II) are used to determine molecular tumbling rates and methyl rotation rates. The carbon-13 transverse relaxation rates for the carbons in the bis-ligand complex with Ni(II) are adequately fitted to the Solomon-Bloembergen equation. Three carboxylate carbon peaks are seen with the /sup 13/C spectrum of the 1:2 Ni(II):ida complex, which coalesce into a single peak above about 360 K. The mechanism and rate of ligand exchange are determined for the complexes Zn(II)L/sub 2//sup -2/ (L = mida, eida) in aqueous solution by total lineshape analysis of the proton spectrum at 500 MHz.

  15. Dinuclear metal(ii)-acetato complexes based on bicompartmental 4-chlorophenolate: syntheses, structures, magnetic properties, DNA interactions and phosphodiester hydrolysis.

    PubMed

    Massoud, Salah S; Ledet, Catherine C; Junk, Thomas; Bosch, Simone; Comba, Peter; Herchel, Radovan; Hošek, Jan; Trávníček, Zdeněk; Fischer, Roland C; Mautner, Franz A

    2016-08-01

    A series of dinuclear metal(ii)-acetato complexes: [Ni2(μ-L(Cl)O)(μ2-OAc)2](PF6)·3H2O (1), [Ni2(μ-L(Cl)O)(μ2-OAc)2](ClO4)·CH3COCH3 (2), [Cu2(μ-L(Cl)O)(μ2-OAc)(ClO4)](ClO4) (3), [Cu2(μ-L(Cl)O)(OAc)2](PF6)·H2O (4), [Zn2(μ-L(Cl)O)(μ2-OAc)2](PF6) (5) and [Mn2(L(Cl)-O)(μ2-OAc)2](ClO4)·H2O (6), where L(Cl)O(-) = 2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-chlorophenolate, were synthesized. The complexes were structurally characterized by spectroscopic techniques and single crystal X-ray crystallography. Six-coordinate geometries with doubly bridged acetato ligands were found in Ni(ii), Zn(ii) and Mn(ii) complexes 1, 2, 5 and 6, whereas with Cu(ii) complexes a five-coordinate species was obtained with 4, and mixed five- and six-coordinate geometries with a doubly bridged dimetal core were observed in 3. The magnetic properties of complexes 1-4 and 6 were studied at variable temperatures and revealed weak to very weak antiferromagnetic interactions in 1, 2, 4 and 6 (J = -0.55 to -9.4 cm(-1)) and ferromagnetic coupling in 3 (J = 15.4 cm(-1)). These results are consistent with DFT calculations performed at the B3LYP/def2-TZVP(-f) level of theory. Under physiological conditions, the interaction of the dinculear complexes 1-5 with supercoiled plasmid ds-DNA did not show any pronounced nuclease activity, but Ni(ii) complexes 1 and 2 revealed a strong ability to unwind the supercoiled conformation of ds-DNA. The mechanistic studies performed on the interaction of the Ni(ii) complexes with DNA demonstrated the important impact of the nickel(ii) ion in the unwinding process. In combination with the DNA study, the phosphatase activity of complexes 1, 3, and 5 was examined by the phosphodiester hydrolysis of bis(2,4-dinitrophenol)phosphate (BDNPP) in the pH range of 5.5-10.5 at 25 °C. The Michaelis-Menten kinetics performed at pH 7 and 10.7 showed that catalytic efficiencies kcat/KM (kcat = catalytic rate constant, KM = substrate binding constant) decrease in the order

  16. Synthesis, structural characterisation, bio-potential efficiency and DNA cleavage applications of nicotinamide metal complexes

    NASA Astrophysics Data System (ADS)

    Surendra Dilip, C.; Siva Kumar, V.; John Venison, S.; Vetha potheher, I.; Rajalaxmi (a) Subahashini, D.

    2013-05-01

    Mixed ligand complexes were synthesised using nicotinamide as the primary ligand and nitrite as the secondary ligand were characterised by FT-IR, UV-Vis, 1H NMR, TG-DTA-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesised complexes a general formula of [M(ONO)2(NA)2] where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) and [Cr2(ONO)6(NA)2] with a distorted octahedral structure were proposed. Thermal analyses show that the complexes lose molecules of hydration initially and subsequently expel anionic and organic ligands in continuous steps. The kinetic parameter values, such as, E*, ΔH*, ΔS* and ΔG* illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficacy of the ligand and its complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to posses efficient antimicrobial properties compared to nicotinamide and a few of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. The intercalating interaction of Cu(II) complex with CT-DNA was inspected by absorption spectral and viscosity studies, thermal denaturation and electro-analytical experiments.

  17. Synthesis and antioxidant activities of transition metal complexes based 3-hydroxysalicylaldehyde-S-methylthiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Bal-Demirci, Tülay; Şahin, Musa; Kondakçı, Esin; Özyürek, Mustafa; Ülküseven, Bahri; Apak, Reşat

    2015-03-01

    The nickel(II), iron(III), oxovanadium(IV) complexes of the 3-hydroxysalicylidene-S-methyl-thiosemicarbazone (L) were obtained from the 3-hydroxysalicyldehyde-S-methylthiosemicarbazone with the R1-substituted-salicylaldehyde (R1: H, 3-OH) in the presence of Ni(II), Fe(III), VO(IV) as template ion. The ligand and its complexes were characterized by elemental analysis, electronic, UV/Vis., 1H NMR, EPR and IR studies. The free ligand and its metal complexes have been tested for in vitro antioxidant capacity by reduction of copper(II) neocuproine (Cu(II)-Nc) using the CUPRAC method. The ligand exhibited more potent in vitro antioxidant capacity than its complexes. The obtained trolox equivalent antioxidant capacity (TEAC) value of the iron(III) complex (TEACCUPRAC = 3.27) was higher than those of other complexes. Furthermore, the antioxidant activity of the free ligand and its complexes were determined by in vitro methods measuring the scavenging activity of reactive oxygen species (ROS) including hydroxyl radical (radOH), superoxide anion radical (O2rad -), and hydrogen peroxide (H2O2), showing that especially the V(IV) and Fe(III) complexes had significant scavenging activity for ROS.

  18. Synthesis, spectroscopic characterization and electrochemical studies of Girard's T chromone complexes

    NASA Astrophysics Data System (ADS)

    Al-Saeedi, Sameerah I.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A.

    2016-05-01

    Complexes of cobalt(II), nickel(II), copper(II) and zinc(II) of general composition [M(L)2] have been. The elemental analyses, molar conductance, spectral, magnetic moment and thermal measurements studies of the compounds led to the conclusion that the ligand acts as a tridentate manner (OON). The molar conductance of the metal complexes in fresh solution of DMSO lies in the range of 8.10-10.18 Ω-1 cm2 mol-1 indicating their non-electrolytic behavior. On the basis of analytical and spectroscopic techniques, octahedral geometry of the complexes was proposed. The ligand field parameters were calculated for Co(II), Ni(II) and Cu(II) complexes and their values were found in the range reported for a octahedral structure. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using different equations. The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. The cyclic voltammograms of the Cu(II)/Co(II)/Ni(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions.

  19. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  20. Effect of template ion-ligand complex stoichiometry on selectivity of ion-imprinted polymers.

    PubMed

    Laatikainen, Katri; Udomsap, Dutduan; Siren, Heli; Brisset, Hugues; Sainio, Tuomo; Branger, Catherine

    2015-03-01

    In order to highlight the importance of the complex stoichiometry during ion imprinted polymer (IIP) synthesis, we investigated the effect of the complex structure on IIPs selectivity by adjusting the complex stoichiometry before polymerization. 2-(aminomethyl)pyridine monomer (amp) was chosen as a functionalized ligand for nickel(II) ions and a polymerizable vinylbenzyl derivative (Vbamp) was prepared. Complex formation was studied by varying the nickel/Vbamp ratio and recording absorption spectra of the complexes at the polymerization conditions. Using a least-squares minimization scheme, the complex species distribution was successfully established. From these results, it was possible to choose the metal/ligand stoichiometry in the complex (1:1; 1:2 or 1:3) by adjusting the initial metal/ligand ratio. IIPs were then prepared by inverse suspension copolymerization of Vbamp with ethyleneglycol dimethacrylate (EDMA). Highly porous particles with good nickel binding capacity and good Ni/Zn selectivity even at acidic conditions were obtained. Equilibrium uptake of Ni(II) at pH 7 ranged from 0.12 to 0.2 mmol g(-1) and relative selective coefficient was as high as 260 for the IIP prepared using the Ni(Vbamp)2 complex.

  1. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  2. Synthesis, structural investigation, DNA and protein binding study of some 3d-metal complexes with N‧-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide

    NASA Astrophysics Data System (ADS)

    Mishra, Monika; Tiwari, Karishma; Shukla, Sachin; Mishra, R.; Singh, Vinod P.

    2014-11-01

    The ligand, N‧-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide (Hpmtc) derived from thiophene-2-carboxylic acid hydrazide and 2-benzoyl pyridine, and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized. These compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, NMR and UV-Vis spectral studies. The molecular structures of Hpmtc and its Co(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4) complexes are finally determined by X-ray crystallography. Various spectral and single-crystal X-ray diffraction studies suggest that Hpmtc coordinates with metal ions as a monobasic tridentate ligand forming mononuclear distorted octahedral complexes of the type [M(pmtc)2]. The molecular structures of the complexes are stabilized by Csbnd H⋯N, Csbnd H⋯O intermolecular H-bonding, and Csbnd H⋯π and π⋯π interactions. The DNA binding experiment of the complexes 1, 3 and 4 by UV-Vis absorption, and EB-DNA displacement by fluorescence spectroscopy, reveal an intercalative mode of binding between CT-DNA (calf-thymus DNA) and the metal complexes. These complexes exhibit a moderate ability to cleave pBR322 plasmid DNA. A comparative bovine serum albumin (BSA) protein binding activity of the complexes 1, 3 and 4 has also been determined by UV-Vis absorption and fluorescence spectroscopy. The DNA binding and protein binding studies suggest that the complex 3 exhibits more effective binding activity (Kb = 5.54 × 105 and Kq = 1.26 × 106 M-1, respectively) than complexes 1 and 4. However, the complex 1 shows better hydrolytic DNA cleavage activity compared to 3 and 4 complexes.

  3. Synthesis, structural investigation, DNA and protein binding study of some 3d-metal complexes with N'-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide.

    PubMed

    Mishra, Monika; Tiwari, Karishma; Shukla, Sachin; Mishra, R; Singh, Vinod P

    2014-11-11

    The ligand, N'-(phenyl-pyridin-2-yl-methylene)-thiophene-2-carboxylic acid hydrazide (Hpmtc) derived from thiophene-2-carboxylic acid hydrazide and 2-benzoyl pyridine, and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized. These compounds are characterized by elemental analyses, magnetic susceptibility measurements, IR, NMR and UV-Vis spectral studies. The molecular structures of Hpmtc and its Co(II) (1), Ni(II) (2), Cu(II) (3) and Zn(II) (4) complexes are finally determined by X-ray crystallography. Various spectral and single-crystal X-ray diffraction studies suggest that Hpmtc coordinates with metal ions as a monobasic tridentate ligand forming mononuclear distorted octahedral complexes of the type [M(pmtc)2]. The molecular structures of the complexes are stabilized by CH⋯N, CH⋯O intermolecular H-bonding, and CH⋯π and π⋯π interactions. The DNA binding experiment of the complexes 1, 3 and 4 by UV-Vis absorption, and EB-DNA displacement by fluorescence spectroscopy, reveal an intercalative mode of binding between CT-DNA (calf-thymus DNA) and the metal complexes. These complexes exhibit a moderate ability to cleave pBR322 plasmid DNA. A comparative bovine serum albumin (BSA) protein binding activity of the complexes 1, 3 and 4 has also been determined by UV-Vis absorption and fluorescence spectroscopy. The DNA binding and protein binding studies suggest that the complex 3 exhibits more effective binding activity (Kb=5.54×10(5) and Kq=1.26×10(6) M(-1), respectively) than complexes 1 and 4. However, the complex 1 shows better hydrolytic DNA cleavage activity compared to 3 and 4 complexes.

  4. Novel heterometallic metal-azido complex synthesized by "one-step" reaction: synthetic strategy and magnetic properties

    NASA Astrophysics Data System (ADS)

    Jiao, Yong-Kun; Li, Xiu-Ping; Zhao, Cui; Wang, Hai-Chao; Xue, Min; Zhao, Jiong-Peng; Liu, Fu-Chen

    2013-06-01

    A novel heterometallic complex, [Ni2Mn(N3)2(nic)4·(H2O)2]n (1) (nic=nicotinate), was obtained by assembling MnCl2·4H2O, Ni(NO3)2·6H2O, NaN3 and nicotinic acid with a "one step" synthetic strategy—hydrothermal reaction. The 3D structure of the complex can be described as end-on (EO) azido and syn,syn carboxylates mixed bridged by alternate Ni-Mn-Ni trimers linked by the nicotinate. Dominant ferromagnetic interactions were observed between the NiII and MnII ions in the trimer.

  5. S-shaped decanuclear heterometallic [Ni8Ln2] complexes [Ln(III) = Gd, Tb, Dy and Ho]: theoretical modeling of the magnetic properties of the gadolinium analogue.

    PubMed

    Hossain, Sakiat; Das, Sourav; Chakraborty, Amit; Lloret, Francesc; Cano, Joan; Pardo, Emilio; Chandrasekhar, Vadapalli

    2014-07-14

    The reaction of 8-quinolinol-2-carboaldoxime (LH2) with Ni(II) and Ln(III) salts afforded the heterometallic decanuclear compounds [Ni8Dy2(μ3-OH)2(L)8(LH)2(H2O)6](ClO4)2·16H2O (1), [Ni8Gd2(μ3-OH)2(L)8(LH)2(H2O)4(MeOH)2](NO3)2·12H2O (2), [Ni8Ho2(μ3-OH)2(L)8(LH)2(H2O)4(MeOH)2](ClO4)2·2MeOH·12H2O (3) and [Ni8Tb2 (μ3-OH)2(L)8(LH)2(MeOH)4(OMe)2]·2CH2Cl2·8H2O (4). While compounds 1-3 are dicationic, compound 4 is neutral. These compounds possess an S-shaped architecture and comprise a long chain of metal ions bound to each other. In all the complexes, the eight Ni(II) and two Ln(III) ions of the multimetallic ensemble are hold together by two μ3-OH, eight dianionic (L(2-)) and two monoanionic oxime ligands (LH(-)) whereas compound 4 has two μ3-OH, eight dianionic (L(2-)), two monoanionic oxime ligands (LH(-)) and two terminal methoxy (MeO(-)) ligands. The central portion of the S-shaped molecular wire is made up of an octanuclear Ni(II) ensemble which has at its two ends the Ln(III) caps. Magnetic studies on 1-4 reveal that the magnetic interactions between neighboring metal ions are negligible at room temperature. On the other hand, at lower temperatures in all the compounds anti-ferromagnetic interactions seem to be dominated. Analysis of the magnetic data for the Gd(III) derivative indicates Ni(II)-Ni(II) anti-ferromagnetic interactions and Gd(III)-Ni(II) ferromagnetic interactions at low temperatures. A theoretical density functional study on the magnetic behavior of the Gd(III) derivative suggests that while the weak ferromagnetic interaction between Gd(III) and Ni(II) is in line with the expectation of the magnetic interactions between orthogonal d and f orbitals, antiferromagnetic Ni(II)-Ni(II) interactions are related to the wide Ni-O-Ni angles (∼102°) and quasi-planar conformation of the Ni2O2 core. PMID:24876072

  6. Correlation between ionic radii of metal azodye complexes and electrical conductivity.

    PubMed

    El-Ghamaz, N A; El-Sonbati, A Z; Diab, M A; El-Bindary, A A; Mohamed, G G; Morgan, Sh M

    2015-08-01

    5-(2,3-Dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) and its metal complexes with copper(II) (1), cobalt(II) (2) and nickel(II) (3) are synthesized and characterized by physico-chemical techniques. The thermal properties of the ligand (HL) and its metal complexes (1-3) are discussed. The thermal activation energies of decomposition (Ea) of HL and its metal complexes with Cu(II), Co(II) and Ni(II) are found to be 48.76, 36.83, 30.59 and 40.45 kJ/mol, respectively. The frequency and temperature dependence of ac conductivity, dielectric constants for HL and its complexes (1-3) are investigated in the temperature range 300-356 K and frequency range 0.1-100 kHz. Both of the ac conductivity and the values of the thermal activation energy for conduction, as well as the dielectric properties of the complexes of HL are found to depend on the nature of the metallic ions. The values of the thermal activation energies of electrical conductivity decrease with increasing the value of test frequency. The small polarons tunneling (SPT) is the dominant conduction mechanism for the ligand (HL), while for complex (2) the overlapping large tunneling model (OLPT) is the dominant conduction mechanism. The correlated barrier hopping (CBH) is the dominant conduction mechanism for both of the complexes (1) and (3).

  7. Novel metal-based pharmacologically dynamic agents of transition metal(II) complexes: Designing, synthesis, structural elucidation, DNA binding and photo-induced DNA cleavage activity

    NASA Astrophysics Data System (ADS)

    Raman, N.; Jeyamurugan, R.; Sakthivel, A.; Mitu, L.

    2010-01-01

    Novel Schiff base Cu(II), Ni(II), Co(II) and Zn(II) complexes have been designed and synthesized using the macrocyclic ligand derived from the condensation of diethylphthalate with Schiff base, obtained from benzene-1,2-diamine and 3-benzylidene-pentane-2,4-dione. The ligand and its complexes have been characterized by analytical and spectral techniques. DNA binding properties of these complexes have been investigated by UV-vis, viscosity measurements, cyclic voltammetric and differential pulse voltammogram studies. The intrinsic binding constants for Co(II), Ni(II), Cu(II) and Zn(II) complexes are 1.6 × 10 6, 1.8 × 10 6, 2.0 × 10 6 and 1.5 × 10 6 M -1 respectively which are obtained from electronic absorption experiment. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder (distamycin) suggest the major groove binding tendency for the synthesized complexes. In the presence of a reducing agent like 3-mercaptopropionic acid (MPA), the synthesized complexes show chemical nuclease activity under dark reaction condition. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 360 nm in the presence of inhibitors. Control experiments show inhibition of cleavage in the presence of singlet oxygen quencher like sodium azide and enhancement of cleavage in D 2O, suggesting the formation of singlet oxygen as a reactive species in a type-II process.

  8. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: a comparative approach.

    PubMed

    Raman, N; Sakthivel, A; Pravin, N

    2014-05-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 10(2) to 10(5) indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  9. DNA binding propensity and nuclease efficacy of biosensitive Schiff base complexes containing pyrazolone moiety: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Paulpandiyan, Rajakkani; Raman, Natarajan

    2016-12-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes (1-8) were synthesized from pyrazolone precursor Schiff base(s), obtained by the condensation of 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrine) with cinnamaldehyde/benzaldehyde and respective metal(II) chloride. They have been characterized by elemental analysis, magnetic susceptibility, molar conductance measurements, UV-Vis., IR, NMR, ESI mass spectra and EPR studies. These complexes show lower conductance values, supporting their non-electrolytic nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry. The binding properties of these complexes with DNA have been explored by electronic absorption spectra, cyclic voltammetry and viscosity measurements which reveal that the complexes have the ability to interact with calf thymus DNA (CT DNA) by intercalative mode. The binding constant (Kb) values clearly signify that the complex 1 has more intercalating ability than other complexes. DNA cleavage efficacy of these complexes with pUC18 DNA has been investigated by gel electrophoresis technique. All the complexes have been found to promote cleavage of pUC18 DNA from the super coiled form I to the open circular form II in presence of hydrogen peroxide. The in vitro antibacterial and antifungal assay, investigated by Minimum Inhibitory Concentration (MIC) method indicates that these complexes are good antimicrobial agents against various pathogens.

  10. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: A comparative approach

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sakthivel, A.; Pravin, N.

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 102 to 105 indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical.

  11. Exploring DNA binding and nucleolytic activity of few 4-aminoantipyrine based amino acid Schiff base complexes: a comparative approach.

    PubMed

    Raman, N; Sakthivel, A; Pravin, N

    2014-05-01

    A series of novel Co(II), Cu(II), Ni(II) and Zn(II) complexes were synthesized from Schiff base(s), obtained by the condensation of 4-aminoantipyrine with furfural and amino acid (glycine(L1)/alanine(L2)/valine(L3)) and respective metal(II) chloride. Their structural features and other properties were explored from the analytical and spectral methods. The binding behaviors of the complexes to calf thymus DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The intrinsic binding constants for the above synthesized complexes are found to be in the order of 10(2) to 10(5) indicating that most of the synthesized complexes are good intercalators. The binding constant values (Kb) clearly indicate that valine Schiff-base complexes have more intercalating ability than alanine and glycine Schiff-base complexes. The results indicate that the complexes bind to DNA through intercalation and act as efficient cleaving agents. The in vitro antibacterial and antifungal assay indicates that these complexes are good antimicrobial agents against various pathogens. The IC50 values of [Ni(L1)2] and [Zn(L1)2] complexes imply that these complexes have preferable ability to scavenge hydroxyl radical. PMID:24566120

  12. Polynuclear transition metal complexes with thiocarbohydrazide and dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Siddiqi, K. S.; Khan, Sadaf; Nami, Shahab A. A.; El-ajaily, M. M.

    2007-07-01

    Sn(tch) 2{MCl 2} 2 was prepared from the precursor Sn(tch) 2 and MCl 2. It was subsequently allowed to react with diethyldithiocarbamate which yielded the trinuclear complexes of the type Sn(tch) 2{M 2(dtc) 4}, where tch = thiocarbohydrazide, M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and dtc = diethyldithiocarbamate. They were characterized on the basis of microanalytical, thermal (TGA/DSC), spectral (IR, UV-vis, EPR, 1H NMR) studies, conductivity measurement and magnetic moment data. On the basis of spectral data a tetrahedral geometry has been proposed for the halide complexes, Sn(tch) 2{MCl 2} 2 except for Cu(II) which exhibits a square planar coordination although the transition metal ion in Sn(tch) 2{M 2(dtc) 4} achieves an octahedral geometry where the dithiocarbamato moiety acts as a symmetrical bidentate ligand. The bidentate nature has been established by the appearance of a sharp single ν(C-S) around 1000 cm -1. A downfield shift observed in NH a and NH b protons on moving from Sn(tch) 2 to Sn(tch) 2{MCl 2} 2 is due to the drift of electrons toward metal atoms. A two-step pyrolysis has been observed in the Sn(tch) 2{MCl 2} 2 complexes while their dithiocarbamato derivatives exhibit a three-stage degradation pattern. Finally, the in vitro antibacterial activity of Sn(tch) 2{M 2(dtc) 4} and the mononuclear Sn(tch) 2 has been carried out on bacterial strains Escherichia coli and Salmonella typhi. The compounds were found to be active against the test organisms. The activity of the complexes is enhanced with increasing concentration. The maximum activity in both the strains was achieved by cobalt(II) dithiocarbamate complex. Minimum activity was found for Sn(tch) 2 which generally increases with the introduction of transition metal ion in the complex.

  13. Synthesis, characterization, and structure of macrocyclic mono- and C2-symmetric, binuclear nickel calixsalen complexes.

    PubMed

    Li, Z; Jablonski, C

    2000-06-12

    Mono- (3a,b) and binuclear (4a,b) tetradentate NiII complexes of a series of 26-membered macrocyclic salen dimers, [salen(CH2)]2, are prepared in good yield by solvent-controlled reaction with Ni(OAc)2. The mononuclear complex 3b crystallizes in the trigonal space group 3P1(#144), a = 18.2566(2) A, c = 15.9244(2) A, V = 4596.57(8) A3, and Z = 3. Refinement converged with R = 0.054 and Rw = 0.049 for 6852 reflections with I > 2.003 sigma(I). The NiII in complex 3b coordinates in an approximate square planar geometry to one of the two available tetradentate salen sites. Complex 4b crystallizes in the orthorhombic space group P2(1)2(1)2(1)(#19), a = 19.531(2) A, b = 22.891(3), c = 13.373(1) A, V = 5960(1) A3, and Z = 4. The refinement converged with R = 0.067 and Rw = 0.065 for 3752 reflections with I > 2.003 sigma(I). Complex 4b coordinates two distorted square planar, cofacially oriented NiII-salen units held 7.1 A apart by a rigid, syn-folded macrocyclic structure. The solution spectroscopic data and solid-state crystallographic data of 3b and 4b demonstrate the presence of a molecular-sized cavity which shows host-guest properties. Reaction of the flexible 32-membered disalen macrocycle [salen(OCH2CH2O)]2 with Ni(OAc)2 resulted in formation of a binuclear complex, 5. Complex 5 crystallizes in the triclinic space group P1(#1), a = 10.366(4) A, b = 12.170(3) A, c = 10.021(2) A, alpha = 106.29(2) degrees, beta = 91.69(2) degrees, gamma = 68.63(2) degrees, V = 1126.3(5) A3, and Z = 1. The refinement converged with R = 0.052 and Rw = 0.053 for 2385 reflections with I > 2.003 sigma(I). The binuclear complex 5 contains two cofacially oriented, square planar NiII-salen groups lying 3.5 A apart in an anti-folded macrocyclic structure. PMID:11196996

  14. Spectroscopic studies of bimetallic complexes derived from tridentate or tetradentate Schiff bases of some di- and tri-valent transition metals

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.; Abou-Hussen, Azza A. A.

    2006-07-01

    Two series of new binuclear complexes with Schiff base ligands, H 4L a or H 2L b, derived from the reaction of 4,6-diacetylresorcinol and ethylenediamine, in the molar ratio 1:1 and 1:2 have been prepared, respectively. The two ligands react with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Cr(III) and Fe(III)-nitrates to get binuclear complexes. The ligands were characterized by elemental analysis, IR, UV-vis, 1H NMR and mass spectra. The complexes were synthesized by direct and template methods. Different types of products were obtained for the same ligand and metal salts according to the method of preparation. The H 4L a ligand behaves as a macrocyclic tetrabasic with two N 2O 2 sits, while the H 2L b ligand behaves as a dibasic with two N 2O sites. The H 4L a ligand is a compartmental ligand which hosts the two metal ions at the centers of two cis-N 2O 2 sites, while the metal complexes of H 2L b ligand are binuclear, where the ligand hosts two metal ions at the centers of two N 2O sites. In both cases, deprotonation of the hydrogen atoms of the phenolic OH groups occur except in the case of the Ni(II), Fe(III) and Cr(III) complexes. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either octahedral or tetrahedral. The structures are consistent with the IR, UV-vis, ESR, 1H NMR, mass spectra, and thermal gravimetric analysis (TGA/DTA) as well as conductivity and magnetic moment measurements.

  15. Synthesis, Characterization and Biological Evaluation of Transition Metal Complexes Derived from N, S Bidentate Ligands

    PubMed Central

    Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina

    2015-01-01

    Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384

  16. Complexity Survey.

    ERIC Educational Resources Information Center

    Gordon, Sandra L.; Anderson, Beth C.

    To determine whether consensus existed among teachers about the complexity of common classroom materials, a survey was administered to 66 pre-service and in-service kindergarten and prekindergarten teachers. Participants were asked to rate 14 common classroom materials as simple, complex, or super-complex. Simple materials have one obvious part,…

  17. A comparative study of the packing of two polymorphs of the nickel(II) pincer complex [2,6-bis(di-tert-butylphosphinoyl)-4-(3,5-dinitrobenzoyloxy)phenyl-κ(3)P,C(1),P']chloridonickel(II).

    PubMed

    García-Eleno, Marco A; Quezada-Miriel, Magdalena; Reyes-Martínez, Reyna; Hernández-Ortega, Simón; Morales-Morales, David

    2016-05-01

    Pincer complexes can act as catalysts in organic transformations and have potential applications in materials, medicine and biology. They exhibit robust structures and high thermal stability attributed to the tridentate coordination of the pincer ligands and the strong σ metal-carbon bond. Nickel derivatives of these ligands have shown high catalytic activities in cross-coupling reactions and other industrially relevant transformations. This work reports the crystal structures of two polymorphs of the title Ni(II) POCOP pincer complex, [Ni(C29H41N2O8P2)Cl] or [NiCl{C6H2-4-[OCOC6H4-3,5-(NO2)2]-2,6-(OP(t)Bu2)2}]. Both pincer structures exhibit the Ni(II) atom in a distorted square-planar coordination geometry with the POCOP pincer ligand coordinated in a typical tridentate manner via the two P atoms and one arene C atom via a C-Ni σ bond, giving rise to two five-membered chelate rings. The coordination sphere of the Ni(II) centre is completed by a chloride ligand. The asymmetric units of both polymorphs consist of one molecule of the pincer complex. In the first polymorph, the arene rings are nearly coplanar, with a dihedral angle between the mean planes of 27.9 (1)°, while in the second polymorph, this angle is 82.64 (1)°, which shows that the arene rings are almost perpendicular to one another. The supramolecular structure is directed by the presence of weak C-H...O=X (X = C or N) interactions, forming two- and three-dimensional chain arrangements. PMID:27146567

  18. Chitosan film loaded with silver nanoparticles-sorbent for solid phase extraction of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II).

    PubMed

    Djerahov, Lubomir; Vasileva, Penka; Karadjova, Irina; Kurakalva, Rama Mohan; Aradhi, Keshav Krishna

    2016-08-20

    The present study describes the ecofriendly method for the preparation of chitosan film loaded with silver nanoparticles (CS-AgNPs) and application of this film as efficient sorbent for separation and enrichment of Al(III), Cd(II), Cu(II), Co(II), Fe(III), Ni(II), Pb(II) and Zn(II). The stable CS-AgNPs colloid was prepared by dispersing the AgNPs sol in chitosan solution at appropriate ratio and further used to obtain a cast film with very good stability under storage and good mechanical strength for easy handling in aqueous medium. The incorporation of AgNPs in the structure of CS film and interaction between the polymer matrix and nanoparticles were confirmed by UV-vis and FTIR spectroscopy. The homogeneously embedded AgNPs (average diameter 29nm, TEM analysis) were clearly observed throughout the film by SEM. The CS-AgNPs nanocomposite film shows high sorption activity toward trace metals under optimized chemical conditions. The results suggest that the CS-AgNPs nanocomposite film can be feasibly used as a novel sorbent material for solid-phase extraction of metal pollutants from surface waters.

  19. Scanning tunneling microscopy investigation of nano-structured α-K5PW11(M x OH2)O39(M = Mn(II), Co(II), Ni(II), and Zn(II)) Keggin heteropolyacid catalyst monolayers.

    PubMed

    Choi, Jung Ho; Kang, Tae Hun; Bang, Yongju; Yoo, Jaekyeong; Jun, Jin Oh; Song, In Kyu

    2014-11-01

    Nano-structured α-K5PW11(M x OH2)O39 (M = Mn(II), Co(II), Ni(II), and Zn(II)) Keggin heteropolyacids (HPAs) were investigated by scanning tunneling microscopy (STM) and tunneling spectroscopy (TS) measurements in order to elucidate their redox property and oxidation catalysis. HPA molecules formed two-dimensional self-assembled monolayer arrays on highly oriented pyrolytic graphite (HOPG) surface. Furthermore, HPAs exhibited a distinctive current-voltage behavior referred to as negative differential resistance (NDR) phenomenon. The measured NDR peak voltage of HPAs was correlated with the reduction potential and the absorption edge energy determined by electrochemical method and UV-visible spectroscopy, respectively. NDR peak voltage of HPAs appeared at less negative voltage with increasing reduction potential and with decreasing UV-visible absorption edge energy. The correlations strongly suggested that NDR phenomenon was closely related to the redox property of HPAs. Vapor-phase oxidation of benzyl alcohol to benzaldehyde was carried out as a model reaction to track the oxidation catalysis of HPAs. NDR peak voltage appeared at less negative voltage with increasing yield for benzaldehyde. PMID:25958620

  20. Two mononuclear octahedral complexes with benzimidazole-2-carboxylate: supramolecular networks constructed by hydrogen bonds.

    PubMed

    Fan, Jun; Cai, Song-Liang; Zheng, Sheng-Run; Zhang, Wei-Guang

    2011-11-01

    The title compounds, trans-bis(1H-benzimidazole-2-carboxylato-κ(2)N(3),O)bis(ethanol-κO)cadmium(II), [Cd(C(8)H(5)N(2)O(2))(2)(C(2)H(6)O)(2)], (I), and trans-bis(1H-benzimidazole-κN(3))bis(1H-benzimidazole-2-carboxylato-κ(2)N(3),O)nickel(II), [Ni(C(8)H(5)N(2)O(2))(2)(C(7)H(6)N(2))(2)], (II), are hydrogen-bonded supramolecular complexes. In (I), the Cd(II) ion is six-coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole-2-carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O-H···O and N-H···O hydrogen bonds results in two-dimensional layers parallel to the ab plane. In (II), the six-coordinated Ni(II) atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the Cd(II) ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N-H···O hydrogen bonds between pairs of HBIC anions connect adjacent Ni(II) coordination units to form a one-dimensional chain parallel to the a axis. Moreover, these one-dimensional chains are further linked via N-H···O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three-dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co-ligands occupy the axial sites in the coordination units.

  1. Synthesis, characterization and biological relevance of some metal (II) complexes with oxygen, nitrogen and oxygen (ONO) donor Schiff base ligand derived from thiazole and 2-hydroxy-1-naphthaldehyde

    NASA Astrophysics Data System (ADS)

    Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2015-04-01

    The novel Schiff base ligand 2-((2-hydroxynaphthalen-1-yl)methylene)-N-(4-phenylthiazol-2-yl)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-hydroxy-1-naphthaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), Zn(II) and Cd(II) complexes have been characterized by microanalysis, molar conductance, IR, 1H NMR, ESI-mass, UV-Visible, TGA/DTA, ESR and powder X-ray diffraction data to explicate their structures. The IR results confirmed the tridentate binding of the ligand involving oxygen atom of amide carbonyl, azomethine nitrogen and naphthol oxygen. 1H NMR spectral data of the ligand (L) and its Zn(II) complex agreed well with the proposed structures. Thermogravimetric studies for Cu(II) and Ni(II) complexes indicated the presence of coordinated water molecules and the final product is the metal oxide. In order to appraise the effect of antimicrobial activity of metal ions upon chelation, the newly synthesized ligand and its metal complexes were screened for their antimicrobial activity by minimum inhibitory concentration (MIC) method. The DNA cleavage activities were studied using plasmid DNA pBR322 (Bangal re Genei, Bengaluru, Cat. No 105850) as a target molecule by agarose gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties against Artemia salina. Furthermore, the antioxidant activity were determined in vitro by reduction of 1,1-diphenyl-2-picryl hydrazyl (DPPH). The ligand exhibited better in vitro-antioxidant activity than its metal complexes.

  2. Three novel dipicolinate complexes with the pyridine-2,6-dimethanol - A combined structural, spectroscopic, antimicrobial and computational study

    NASA Astrophysics Data System (ADS)

    Uçar, İbrahim; Tamer, Ömer; Sarıboğa, Bahtiyar; Büyükgüngör, Orhan

    2013-01-01

    Three new dipicolinate complexes, [M(dmp)(dpc)]·H2O [M = Co(II) (1); Zn(II) (2); Ni(II) (3); dmp: pyridine-2,6-dimethanol; dpc: dipicolinate or pyridine-2,6-dicarboxylate], were synthesized and combined with experimental and theoretical study on molecular, vibrational and electronical properties. The central M(II) ion in all complexes is bonded to dpc and dmp ligands through pyridine nitrogen atom together with two oxygen atom, forming the distorted octahedral geometry. The complex molecules, connected via O-H⋯O hydrogen bonds, form a supramolecular structure. The complexes were also screened for antimicrobial activity against human pathogenic Gram-positive, Gram-negative bacteria and fungi. Among the tested microorganisms, Streptococcus pneumoniae was the most sensitive strain, especially to H2dpc and its complexes. The EPR spectra of Cu2+ doped polycrystalline complexes indicate that the paramagnetic center has a rhombic symmetry. Although the supramolecular interactions have some influences on the molecular geometry in solid state phase, calculated data show that the predicted geometries can reproduce the structural parameters. The electronic station in the frontier orbitals of the dipicolinate complexes calculated from the experimental data is compared to the results of time-depended DFT calculations with the polarizable continuum model and UV-Vis spectrum of the complexes has been discussed on this basis. Calculated vibrational frequencies using the DFT and HF method are consistent with the experimental IR data.

  3. Synthesis, characterization and experimental, theoretical, electrochemical, antioxidant and antibacterial study of a new Schiff base and its complexes

    NASA Astrophysics Data System (ADS)

    Baykara, Haci; Ilhan, Salih; Levent, Abdulkadir; Salih Seyitoglu, M.; Özdemir, Sadin; Okumuş, Veysi; Öztomsuk, Abdussamet; Cornejo, Mauricio

    2014-09-01

    A new Schiff base ligand was synthesized by reaction of salicylaldehyde with 1,6-bis(4-chloro-2-aminophenoxy)hexane. Then the Schiff base complexes were synthesized by metal salts and the Schiff base. The metal to ligand ratio of metal complexes was found to be 1:1. The Cu(II) complex is proposed to be square planar and the Co(II), Ni(II), Mn(II) and Zn(II) complexes are proposed to be tetrahedral geometry. The Ti(III) and V(III) complexes are proposed to be a capped octahedron in which a seventh ligand has been added to triangular face. The complexes are non-electrolytes as shown by their molar conductivities (ΛM). The structure of metal complexes is proposed from elemental analysis, FT-IR, UV-vis, magnetic susceptibility measurements, molar conductivity measurements, Mass Spectra and thermal gravimetric analysis. In addition antimicrobial and antioxidant studies, cyclic voltammetry of the complexes, theoretical 1H NMR and HOMO-LUMO energy calculations of the new di-functional ligand were done.

  4. Synthesis, characterization and biological studies of homo and hetero-binuclear 13-membered pentaaza bis (macrocyclic) complexes

    NASA Astrophysics Data System (ADS)

    Zafar, Hina; Kareem, Abdul; Sherwani, Asif; Mohammad, Owais; Khan, Tahir Ali

    2015-01-01

    A new series of homo and hetero binuclear 13-membered pentaaza bis (macrocyclic) complexes, [MM‧LX4], [M = Cu(II), M‧ = Cu(II), Co(II), Ni(II) and Sn(II); L = ligand and X = Cl or NO3] have been synthesized by the template reaction of dichloro/dinitrato diphenyl sulphone 1,3,6,9,12-tetra hydro pentaazacyclo pantane copper (II) complexes with formaldehyde, triethylenetetraamine, and respective metal salts in 1:2:1:1 molar ratio. The complexes have been characterized by elemental analyses, molar conductance measurements, ESI-mass, 1H, 13C and 119Sn NMR, IR, electronic and EPR spectral studies. The results of elemental analyses, ESI-mass and conductivity measurements confirmed the stoichiometry of the complexes while the characteristic absorption bands and resonance peaks in IR and NMR spectra confirmed the formation of macrocyclic frameworks of the complexes. These studies showed octahedral geometry around the metal ion. The thermal stability of copper complexes was also studied by TGA and DTA analyses. Some complexes of this series were also studied for their in vitro anticancer activity against cancer cells lines: Hep3B, MCF7, and HeLa. The recorded IC50 values for the tested complexes show moderate to good cytotoxicity against these cancer cell lines.

  5. Studies on DNA binding behaviour of biologically active transition metal complexes of new tetradentate N2O2 donor Schiff bases: Inhibitory activity against bacteria

    NASA Astrophysics Data System (ADS)

    Sobha, S.; Mahalakshmi, R.; Raman, N.

    A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H2O2. The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands.

  6. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  7. Design and Synthesis of Metal Complexes of (2E)-2-[(2E)-3-Phenylprop-2-en-1-ylidene]hydrazinecarbothioamide and Their Photocatalytic Degradation of Methylene Blue

    PubMed Central

    Krishna, P. Murali; Reddy, N. B. Gopal; Kottam, Nagaraju; Yallur, B. C.; Katreddi, Hussain Reddy

    2013-01-01

    The photocatalytic degradation has been considered to be an efficient process for the degradation of organic pollutants, which are present in the effluents released by industries. The photocatalytic bleaching of cationic dye methylene blue was carried out spectrometrically on irradiation of UV light using Cu(II), Ni(II), and Co(II) complexes of (2E)-2-[(2E)-3-phenylprop-2-en-1-ylidene]hydrazinecarbothioamide (HL). The effects of pH and metal ion were studied on the efficiency of the reaction. Cu(II) complex shows better catalytic activity and the highest percentage degradation (~88.8%) of methylene blue was observed at pH 12. A tentative mechanism has also been proposed for the photocatalytic degradation of methylene blue. PMID:24363623

  8. Cyclopentadienyl nickel(ii) N,C-chelating benzothiazolyl NHC complexes: synthesis, characterization and application in catalytic C-C bond formation reactions.

    PubMed

    Teo, Wei Jie; Wang, Zhe; Xue, Fei; Andy Hor, T S; Zhao, Jin

    2016-04-25

    Cyclopentadienyl (Cp) Ni(ii) complexes [CpNiL][PF6] containing hybrid N,C chelating benzothiazolyl NHC ligands (L1 = 1-(2-benzothiazolyl)-3-methylimidazol-2-ylidene, ; L2 = 1-(2-benzothiazolyl)-3-allylimidazol-2-ylidene, ; L3 = 1-(2-benzothiazolyl)-3-benzylimidazol-2-ylidene, ) have been synthesized and fully characterized. The catalytic activity of in some C-C bond formation reactions has been examined. They are efficient catalysts for the homo-coupling of benzyl bromide in the presence of MeMgCl at r.t. with good functional group tolerance. Complex is active in the catalytic oxidative homo-coupling of Grignard reagents with 1,2-dichloroethane as an oxidant at r.t. PMID:27011227

  9. Unexpected metal ion-assisted transformations leading to unexplored bridging ligands in Ni(II) coordination chemistry: the case of PO3F(2-) group.

    PubMed

    Dermitzaki, Despina; Raptopoulou, Catherine P; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P; Stamatatos, Theocharis C

    2014-10-21

    The initial 'accidental', metal ion-assisted hydrolysis of PF6(-) to PO3F(2-) has been evolved in a systematic investigation of the bridging affinity of the latter group in Ni(II)/oximate chemistry; mono-, di- and trinuclear complexes have been prepared and confirmed both the rich reactivity of PO3F(2-) and its potential for further use as bridging ligand in high-nuclearity 3d-metal cluster chemistry.

  10. Ni(II) and Cu(II) N(4)-ethylmorpholine citronellalthiosemicarbazonate: a comparative analysis of cytotoxic effects in malignant human cancer cell lines.

    PubMed

    Bisceglie, Franco; Alinovi, Rossella; Pinelli, Silvana; Goldoni, Matteo; Buschini, Annamaria; Franzoni, Susanna; Mutti, Antonio; Tarasconi, Pieralberto; Pelosi, Giorgio

    2013-11-01

    In this paper we report a study conducted with two analogous complexes, bis(N(4)-ethylmorpholine citronellalthiosemicarbazonate) nickel(II) and -copper(II) on four tumour cell lines (U937, HL60, SK-N-MC and HT29). All cell lines appear to be sensitive to both metal complexes, but while in U937, HL60 and SK-N-MC, apoptosis is the main mode through which cell death occurs, HT29 cells undergo necrosis. Among the cell lines which undergo apoptosis, SK-N-MC response is characterized by the intrinsic pathway, whereas U937 and HL60 involve both the intrinsic and the extrinsic pathways. The redox activity of the two complexes provides experimental evidence that they can modulate reactive oxygen species (ROS) production as a function of both the metal and the cell line used. Among the four cell lines, HL60 does not seem to give a significant response to exposure to both compounds. In the case of the nickel derivative, ROS generation is a relatively early event, and ROS could be the mediator leading to cellular damage. HT29 shows a remarkable and rapid ROS increase and a significant induction of membrane peroxidation that could be correlated to the onset of necrosis.

  11. A structurally rigid bis(amido) ligand framework in low-coordinate Ni(I), Ni(II), and Ni(III) analogues provides access to a Ni(III) methyl complex via oxidative addition.

    PubMed

    Lipschutz, Michael I; Yang, Xinzheng; Chatterjee, Ruchira; Tilley, T Don

    2013-10-16

    A structurally persistent bis-amido ligand framework capable of supporting nickel compounds in three different oxidation states has been identified. A highly unusual, isolable Ni(III) alkyl species has been prepared and characterized via a rare example of a two-electron oxidative addition of MeI to Ni(I).

  12. Complex derivatives

    NASA Astrophysics Data System (ADS)

    Battiston, Stefano; Caldarelli, Guido; Georg, Co-Pierre; May, Robert; Stiglitz, Joseph

    2013-03-01

    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems.

  13. Designing Complexity

    ERIC Educational Resources Information Center

    Glanville, Ranulph

    2007-01-01

    This article considers the nature of complexity and design, as well as relationships between the two, and suggests that design may have much potential as an approach to improving human performance in situations seen as complex. It is developed against two backgrounds. The first is a world view that derives from second order cybernetics and radical…

  14. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    PubMed

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-01-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM).

  15. Synthesis, spectroscopic, coordination and biological activities of some transition metal complexes containing ONO tridentate Schiff base ligand.

    PubMed

    Belal, A A M; El-Deen, I M; Farid, N Y; Zakaria, Rosan; Refat, Moamen S

    2015-01-01

    The main target of this paper is to get an interesting data for the preparation and characterizations of metal oxide (MO) nanoparticles using H2L Schiff base complexes as precursors through the thermal decomposition procedure. Five Schiff base complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions were synthesized from 2-[(2-hydroxy-naphthalen-1-ylmethylene)-amino]-benzoic acid new adduct (H2L). Theses complexes were characterized using infrared, electronic, mass and (1)H NMR spectroscopic techniques. The elemental analysis data was confirmed that the stoichiometry of (metal:H2L) is 1:1 molar ratio. The molar conductance indicates that all of complexes are non electrolytic. The general chemical formulas of these complexes is [M(L)(NH3)]·nH2O. All complexes are tetrahedral geometry. The thermal decomposition behavior of H2L hydrated and anhydrous complexes has been discussed using thermogravimetric analysis (TG/DTG) and differential thermal analyses (DTA) under nitrogen atmosphere. The crystalline phases of the reaction products were checked using X-ray diffractometer (XRD) and scanning electron microscopy (SEM). PMID:25989615

  16. Alkylation of a bioinspired high spin Ni(II)N3S2 complex with bifunctional reagents

    NASA Astrophysics Data System (ADS)

    Chohan, B. S.

    2013-12-01

    Crystal structures of two S-alkylated complexes generated from the reaction of iodoacetamide and iodoethanol with an air and moisture sensitive high spin Ni(II) pentacoordinate triaminodithiolate complex, 1 are determined by X-ray structure analysis. Crystals of complex 2, [NiC16H31N5O2S2]I2, are triclinic, sp. gr. , Z = 2. Crystals of complex 3, [NiC16H28N3O2S2]I2, are monoclinic, sp. gr. P21/ c, Z = 4. Structures of complexes 2 and 3 are very similar: one of the S-acetamide ( 2) or S-ethanol ( 3) groups coordinates to the Ni center through the oxygen atom forming N3S2O hexacoordination; the other group remains unbound to the Ni and left dangling. Crystal packing shows that complexes 2 and 3 interact with the iodide counterions, and that only complex 2 interact with neighboring molecules; some of these close intermolecular contacts include H-bonding interactions.

  17. Synthesis, spectral characterization and DNA bindings of tridentate N2O donor Schiff base metal(II) complexes.

    PubMed

    Kathiresan, Sellamuthu; Anand, Thangavel; Mugesh, Subramanian; Annaraj, Jamespandi

    2015-07-01

    To evaluate the biological preference of synthetic small drugs towards DNA target, new metal based chemotherapeutic agents of Cu(II), Co(II), Ni(II) and Zn(II), 2,4-diiodo-6-((pyridin-2-ylmethylimino)methyl)phenol (L) Schiff base complexes (1, 2, 3 &4) having N,N,O donor system respectively were synthesized and thoroughly characterized. The IR results confirmed the tridentate binding of the ligand with metal centre during complexation and reflects the proposed structure. The density function theory calculations were also used to further investigate the electronic structure and properties of ligand and complexes. The preliminary investigation of herring Sperm (HS-DNA) interaction propensity of complexes 1-4 were carried out in Tris-HCl buffer at pH 7.1 to demonstrate their mode of interactions. The obtained results reveal that these complexes significantly interact with DNA on the grooves, further, this observed mode of interactions was also confirmed by molecular docking evaluations. The complexes 1-4 were also screened for antimicrobial evaluations which demonstrated that their significant activity against various human pathogens. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1 as compared to other complexes. PMID:26000741

  18. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.

    2015-06-01

    A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.

  19. Quantitative investigations of cation complexation of photochromic 8-benzothiazole-substituted benzopyran: towards metal-ion sensors.

    PubMed

    Zakharova, Marianna I; Coudret, Christophe; Pimienta, Véronique; Micheau, Jean Claude; Delbaere, Stéphanie; Vermeersch, Gaston; Metelitsa, Anatoly V; Voloshin, Nikolai; Minkin, Vladimir I

    2010-02-01

    The photochromic, thermochromic and metallochromic behaviour of a series of three spiro[indoline-8-(benzothiazol-2-yl)-benzopyrans] has been investigated. The thermodynamic and kinetic parameters of their thermal equilibrium between the ring-closed (spiro) and ring-opened (merocyanine) isomeric forms have been determined using UV-Vis absorption and (1)H NMR spectroscopies. By adding Co(ii) and Ni(ii) ions in acetonitrile solution, 1 : 1 and 1 : 2 metal : merocyanine complexes are formed simultaneously. Using appropriate numerical methods, the kinetic analysis of the complexation allowed us to determine accurately key thermodynamic and spectroscopic parameters of the metal complexes. Results showed that the complexation strength is very sensitive to the size of the indoline nitrogen substituent. Complexation can be reversed by shining white light on the coloured complexes which regenerates the inactive spiropyran form, and releases the metallic ion; hence, these systems display fully reversible negative photochromism. The Zn(ii) complexes exhibit intense fluorescence in the 600-800 nm wavelength range. All these behaviours make these spiropyrans bearing benzothiazole heterocycles promising building blocks for the future construction of photodynamic chemosensors for transition metal ions.

  20. Spectral characterization, electrochemical and anticancer studies on some metal(II) complexes containing tridentate quinoxaline Schiff base

    NASA Astrophysics Data System (ADS)

    Chellaian, Justin Dhanaraj; Johnson, Jijo

    2014-06-01

    Co(II), Ni(II), Cu(II) and Zn(II) complexes of a tridentate ONO donor Schiff base ligand derived from 3-(2-aminoethylamino)quinoxalin-2(1H)-one were synthesized. The ligand and its metal complexes were characterized using elemental analysis, molar conductance, IR, 1H NMR, mass, magnetic susceptibility, electronic spectra and ESR spectral studies. Electrochemical behavior of the synthesized compounds was studied using cyclic voltammetry. The grain size of the synthesized compounds was determined by powder XRD. The Schiff base and its complexes have been screened for their antimicrobial activities against the bacterial species E. coli, K. pneumoniae, P. aeruginosa and S. aureus; fungal species include, A. niger, and C. albicans by disc diffusion method. The results show that the complexes have higher activity than the free ligand. The interaction of the complexes with calf thymus DNA (CT DNA) has been investigated by electronic absorption method. Furthermore, the DNA cleavage activity of the complexes was studied using agarose gel electrophoresis. In vitro anticancer studies of the ligand and its complexes using MTT assay was also done.

  1. Synthesis, spectral characterization and DNA bindings of tridentate N2O donor Schiff base metal(II) complexes.

    PubMed

    Kathiresan, Sellamuthu; Anand, Thangavel; Mugesh, Subramanian; Annaraj, Jamespandi

    2015-07-01

    To evaluate the biological preference of synthetic small drugs towards DNA target, new metal based chemotherapeutic agents of Cu(II), Co(II), Ni(II) and Zn(II), 2,4-diiodo-6-((pyridin-2-ylmethylimino)methyl)phenol (L) Schiff base complexes (1, 2, 3 &4) having N,N,O donor system respectively were synthesized and thoroughly characterized. The IR results confirmed the tridentate binding of the ligand with metal centre during complexation and reflects the proposed structure. The density function theory calculations were also used to further investigate the electronic structure and properties of ligand and complexes. The preliminary investigation of herring Sperm (HS-DNA) interaction propensity of complexes 1-4 were carried out in Tris-HCl buffer at pH 7.1 to demonstrate their mode of interactions. The obtained results reveal that these complexes significantly interact with DNA on the grooves, further, this observed mode of interactions was also confirmed by molecular docking evaluations. The complexes 1-4 were also screened for antimicrobial evaluations which demonstrated that their significant activity against various human pathogens. The cleavage studies with pBR322 plasmid DNA revealed higher nuclease activity of 1 as compared to other complexes.

  2. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases

    NASA Astrophysics Data System (ADS)

    Hanif, Muhammad; Chohan, Zahid H.

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L1-L3 have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination.

  3. New 14-membered octaazamacrocyclic complexes of divalent transition metal ions with their antimicrobial and spectral studies

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Kumar, Krishan; Sharma, Chetan

    2010-01-01

    A novel series of macrocyclic complexes of the type [M(C 18H 14N 10S 2)X 2]; where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); X = Cl -, NO 3-, CH 3COO - has been synthesized by [2+2] condensation of thiocarbohydrazide and isatin in the presence of divalent metal salts in methanolic medium. The complexes have been characterized with the help of elemental analyses, conductance measurements, magnetic measurements, electronic, NMR and infrared spectral studies. The low value of molar conductance indicates them to be non-electrolytes. On the basis of various studies a distorted octahedral geometry may be proposed for all of these complexes. These metal complexes were also tested for their in vitro antimicrobial activities against some Gram-positive bacteria viz. Staphylococcus aureus, Bacillus subtilis, and some Gram-negative bacteria Escherichia coli, Pseudomonas aeruginosa and some fungal strains Aspergillus niger, Aspergillus flavus (molds), Candida albicans, Saccharomyces cerevisiae (yeasts). The results obtained were compared with standard antibiotic: Ciprofloxacin and the standard antifungal drug: Amphotericin-B.

  4. Design, spectral characterization and biological studies of transition metal(II) complexes with triazole Schiff bases.

    PubMed

    Hanif, Muhammad; Chohan, Zahid H

    2013-03-01

    A new series of three biologically active triazole derived Schiff base ligands L(1)-L(3) have been synthesized in equimolar reaction of 3-amino-1H-1,2,4-triazole with pyrrol-2-carboxaldehyde, 4-bromo-thiophene-2-carboxaldehyde, and 5-iodo-2-hydroxy benzaldehyde. The prepared Schiff bases were used for further complex formation reaction with different metal elements like Co(II), Ni(II), Cu(II) and Zn(II) as chlorides by using a molar ratio of ligand:metal as 2:1. The structure and bonding nature of all the compounds were identified by their physical, spectral and analytical data. All the metal(II) complexes possessed an octahedral geometry except the Cu(II) complexes which showed a distorted octahedral geometry. All the synthesized compounds, were studied for their in vitro antibacterial, and antifungal activities, against four Gram-negative (Escherichia coli, Shigella sonnei, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and against six fungal strains (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata) by using agar-well diffusion method. It has been shown that all the synthesized compounds showed moderate to significant antibacterial activity against one or more bacterial strains. In vitro Brine Shrimp bioassay was also carried out to investigate the cytotoxic properties of these compounds. The data also revealed that the metal complexes showed better activity than the ligands due to chelation/coordination. PMID:23277183

  5. Towards a full understanding of the nature of Ni(II) species and hydroxyl groups over highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation method.

    PubMed

    Chen, Bao-Hui; Chao, Zi-Sheng; He, Hao; Huang, Chen; Liu, Ya-Juan; Yi, Wen-Jun; Wei, Xue-Ling; An, Jun-Fang

    2016-02-14

    Highly siliceous HZSM-5 zeolite supported nickel catalysts prepared by a deposition-precipitation (D-P) method were characterized by Fourier transform infrared (FT-IR), hydrogen temperature programmed reduction (H2-TPR), X-ray diffraction (XRD), N2-absorption/desorption, field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and (27)Al magic-angle nuclear magnetic resonance (MAS NMR) techniques. The results showed that the D-P of nickel species occurred predominantly on the internal surface of highly siliceous HZSM-5 zeolite, in which the internal silanol groups located on the hydroxylated mesopores or nanocavities played a key role. During the D-P process, nickel hydroxide was first deposited-precipitated via olation/polymerization of neutral hydroxoaqua nickel species over the HZSM-5 zeolite. With the progress of the D-P process, 1 : 1 nickel phyllosilicate was formed over the HZSM-5 via the hetero-condensation/polymerization between charged hydroxoaqua nickel species and monomer silicic species generated due to the partial dissolution of the HZSM-5 framework. The 1 : 1 nickel phyllosilicate could also be generated via the hydrolytic adsorption of hydroxoaqua nickel species and their subsequent olation condensation. After calcination, the deposited-precipitated nickel hydroxide was decomposed into nickel oxide, while the 1 : 1 nickel phyllosilicate was transformed into 2 : 1 nickel phyllosilicate. According to the above mechanism, Ni(ii) species were present both in the form of nickel oxide and 2 : 1 nickel phyllosilicate, which were mutually separated from each other, being highly dispersed over HZSM-5 zeolite.

  6. A novel azo-aldehyde and its Ni(II) chelate; synthesis, characterization, crystal structure and computational studies of 2-hydroxy-5-{(E)-[4-(propan-2-yl)phenyl]diazenyl}benzaldehyde

    NASA Astrophysics Data System (ADS)

    Eren, Tuğba; Kose, Muhammet; Sayin, Koray; McKee, Vickie; Kurtoglu, Mukerrem

    2014-05-01

    A novel azo-salicylaldeyde, 2-hydroxy-5-{(E)-[4-(propan-2-yl)phenyl]diazenyl} benzaldehyde and its Ni(II) chelate were obtained and characterized by analytical and spectral techniques. Molecular structure of the azo chromophore containing azo-aldehyde was determined by single crystal X-ray crystallography. X-ray data show that the compound crystallizes in the orthorhombic, Pbca space group with unit cell parameters a = 11.2706(9), b = 8.3993(7), c = 28.667(2) Å, V = 2713.7(4) Å3 and Z = 8. There is a strong phenol-aldehyde (OH⋯O) hydrogen bond forming a S(6) hydrogen bonding motif in the structure. There is also a weaker inter-molecular phenol-aldeyhde (OH⋯O) hydrogen bonding resulting in a dimeric structure and generating a D22(4) hydrogen bonding motif. Hydrogen bonded dimers are linked by π-π interactions within the structure. The azo-aldehyde ligand behaved as bidentate, coordinating through the nitrogen atom of the azomethine group and or oxygen atom of phenolic hydroxyl group. Additionally, optimized structures of the three possible tautomers of the compound were obtained using B3LYP method with 6-311++G(d,p), 6-31G and 3-21G basis sets in the gas phase. B3LYP/6-311++G(d,p) level is found to be the best level for calculation. The electronic spectra of the compounds in the 200-800 nm range were obtained in three organic solvents.

  7. Carney Complex

    MedlinePlus

    ... Screening guidelines may change over time as new technologies are developed and more is learned about Carney complex. It is important to talk with your doctor about appropriate screening tests. Learn more about what to expect when having ...

  8. Synthesis, spectroscopic characterization and biological activity of the metal complexes of the Schiff base derived from phenylaminoacetohydrazide and dibenzoylmethane

    NASA Astrophysics Data System (ADS)

    El-Tabl, Abdou Saad; El-Saied, Fathey A.; Plass, Winfried; Al-Hakimi, Ahmed Noman

    2008-11-01

    A new series of mono and binuclear Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), La(III), Ru(III), Hf(IV), ZrO(II) and UO 2(II) complexes of phenylaminodibenzoylhydrazone have been synthesized and characterized by elementals analyses, IR UV-vis spectra, magnetic moments, conductances, thermal analyses (DTA and TGA) and electron spin resonance (ESR) measurements. The IR spectral data show that, the ligand behaves as a neutral bidentate type ( 15 and 16), monobasic bidentate type ( 6), or monobasic tridentate type ( 5, 7, 8, 10, 11, 13, 14, 17- 21) or dibasic tridentate type 2- 4, 9 and 12 towards the metal ion. Molar conductances in DMF solution indicate that, the complexes are non-electrolytes. The ESR spectra of solid complexes ( 9 and 10) show axial and non-axial types indicating a d ground state with significant covalent bond character. However, complexes ( 11 and 12), show isotropic type, indicating manganese(II) octahedral geometry. Antibacterial and antifungal tests of the ligand and its metal complexes are also carried out and it has been observed that the complexes are more potent bactericides and fungicides than the ligand.

  9. Synthesis and spectral studies on metal complexes of s-triazine based ligand and non linear optical properties

    NASA Astrophysics Data System (ADS)

    Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.

    2014-11-01

    A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.

  10. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; Serag El-Din, Azza A.

    2014-11-01

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.

  11. Synthesis, characterization and physiochemical information, along with antimicrobial studies of some metal complexes derived from an ON donor semicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Siji, V. L.; Kumar, M. R. Sudarsana; Suma, S.; Kurup, M. R. Prathapachandra

    2010-06-01

    Eight new transition metal complexes of benzaldehyde- N(4)-phenylsemicarbazone have been synthesized and characterized by elemental analyses, molar conductance, electronic and infrared spectral studies. In all the complexes, the semicarbazone is coordinated as neutral bidentate ligand. 1H NMR spectrum of [Zn(HL) 2(OAc) 2] shows that there is no enolisation of the ligand in the complex. The magnetic susceptibility measurements indicate that Cr(III), Mn(II), Fe(III), Co(II) and Cu(II) complexes are paramagnetic and Ni(II) is diamagnetic. The EPR spectrum of [Mn(HL) 2(OAc) 2] in DMF solution at 77 K shows hyperfine sextet with low intensity forbidden lines lying between each of the two main hyperfine lines. The g values calculated for the [Cu(HL) 2SO 4] complex in frozen DMF, indicate the presence of unpaired electron in the d orbital. The metal ligand bonding parameters evaluated showed strong in-plane σ bonding and in-plane π bonding. The ligand and complexes were screened for their possible antimicrobial activities.

  12. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abd-Elgawad, Mohamed M. A.

    2012-12-01

    In the present study, a new hydrazone ligand (2-((2-phthalazin-1-yl)hydrazono)methyl)phenol) prepared by condensation of hydralazine (1-Hydralazinophthalazine) with salicylaldehyde (SAH). The synthesized SAH-hydrazone and its metal complexes have been characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:1 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated hydrazone ligand. IR spectra show that SAH is coordinated to the metal ions in a tridentate manner through phthalazine-N, azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. Proton-ligand association constants of (SAH) and the stepwise stability constants of its metal complexes are determined potentiometrically in 0.1 M NaNO3 at different temperatures and the corresponding thermodynamic parameters were derived and discussed. The order of -ΔG° and -ΔH° were found to obey Mn2+ < Co2+ < Ni2+ < Cu2+, in accordance with the Irving-Williams order. The complexes were stabilized by enthalpy changes and the results suggest that the complexation is an enthalpy-driven process. The concentration distribution diagrams of the complexes are evaluated.

  13. Synthesis, characterization, biological activity and equilibrium studies of metal(II) ion complexes with tridentate hydrazone ligand derived from hydralazine.

    PubMed

    El-Sherif, Ahmed A; Shoukry, Mohamed M; Abd-Elgawad, Mohamed M A

    2012-12-01

    In the present study, a new hydrazone ligand (2-((2-phthalazin-1-yl)hydrazono)methyl)phenol) prepared by condensation of hydralazine (1-Hydralazinophthalazine) with salicylaldehyde (SAH). The synthesized SAH-hydrazone and its metal complexes have been characterized by elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). The analytical data of the complexes show the formation of 1:1 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated hydrazone ligand. IR spectra show that SAH is coordinated to the metal ions in a tridentate manner through phthalazine-N, azomethine-N and phenolic-oxygen groups. The ligand and their metal chelates have been screened for their antimicrobial activities using the disc diffusion method against the selected bacteria and fungi. Proton-ligand association constants of (SAH) and the stepwise stability constants of its metal complexes are determined potentiometrically in 0.1 M NaNO(3) at different temperatures and the corresponding thermodynamic parameters were derived and discussed. The order of -ΔG° and -ΔH° were found to obey Mn(2+)complexes were stabilized by enthalpy changes and the results suggest that the complexation is an enthalpy-driven process. The concentration distribution diagrams of the complexes are evaluated.

  14. Bio-relevant complexes of novel N2O2 type heterocyclic ligand: Synthesis, structural elucidation, biological evaluation and docking studies.

    PubMed

    Arun, T; Packianathan, S; Malarvizhi, M; Antony, R; Raman, N

    2015-08-01

    Organic and inorganic entities [Cu(II), Co(II), Ni(II) and Zn(II)] have been bridged by N2O2 type heterocyclic imine (CN) ligand for the synthesis of novel organic-inorganic bridged complexes of the type [M(H2L)]. The synthesized complexes were characterized by spectral techniques such as FT-IR, UV-visible, (1)H NMR, (13)C NMR, EPR, ESI-Mass, elemental analysis, magnetic susceptibility and molar conductivity measurements. The metal complexes adopt square planar geometrical arrangement around the metal ions. DNA binding ability of these complexes has been explored by different techniques viz. electronic absorption, fluorescence, cyclic voltammetry, differential pulse voltammetry and viscosity measurements. These studies prove that CT DNA interaction of the complexes follows intercalation mode. The oxidative cleavage of the complexes with pUC19 DNA has been investigated by gel electrophoresis. Molecular docking calculations have been performed to understand the nature of binding of the complexes with DNA. Moreover, the anti-pathogenic actions of the complexes were tested in vitro against few bacteria and fungi by disk diffusion method. The data reveal that the complexes have higher anti-pathogenic activity than the ligand.

  15. Complex networks: Patterns of complexity

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2010-07-01

    The Turing mechanism provides a paradigm for the spontaneous generation of patterns in reaction-diffusion systems. A framework that describes Turing-pattern formation in the context of complex networks should provide a new basis for studying the phenomenon.

  16. Complex chimerism

    PubMed Central

    Ma, Kimberly K.; Petroff, Margaret G.; Coscia, Lisa A.; Armenti, Vincent T.; Adams Waldorf, Kristina M.

    2013-01-01

    Thousands of women with organ transplantation have undergone successful pregnancies, however little is known about how the profound immunologic changes associated with pregnancy might influence tolerance or rejection of the allograft. Pregnant women with a solid organ transplant are complex chimeras with multiple foreign cell populations from the donor organ, fetus, and mother of the pregnant woman. We consider the impact of complex chimerism and pregnancy-associated immunologic changes on tolerance of the allograft both during pregnancy and the postpartum period. Mechanisms of allograft tolerance are likely dynamic during pregnancy and affected by the influx of fetal microchimeric cells, HLA relationships (between the fetus, pregnant woman and/or donor), peripheral T cell tolerance to fetal cells, and fetal minor histocompatibility antigens. Further research is necessary to understand the complex immunology during pregnancy and the postpartum period of women with a solid organ transplant. PMID:23974274

  17. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: Synthesis, characterization and thermodynamics

    NASA Astrophysics Data System (ADS)

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-01

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L1), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L2) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L4). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L3) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, 1H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1 M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  18. New 3,4-diaminobenzoic acid Schiff base compounds and their complexes: synthesis, characterization and thermodynamics.

    PubMed

    Mohammadi, Khosro; Niad, Mahmood; Jafari, Tahereh

    2014-03-25

    Some new tetradentate Schiff base ligands (H3L) were prepared via condensation of 3,4-diaminobenzoic acid with 2-hydroxybenzaldehyde derivatives, such as 3,4-bis((E)-2,4-dihydroxybenzylideneamino)benzoic acid (H3L(1)), 3,4-bis((E)-2-hydroxy-3-methoxybenzylideneamino)benzoic acid (H3L(2)) and 3,4-bis((E)-5-bromo-2-hydroxybenzylideneamino)benzoic acid (H3L(4)). Additionally, a tetradentate Schiff base ligand 3,4-bis((E)-2-hydroxybenzylideneamino)benzoic acid (H3L(3)) and its complexes were synthesized. Their metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were prepared in good yields from the reaction of the ligands with the corresponding metal acetate. They were characterized based on IR, (1)H NMR, Mass spectroscopy and UV-Vis spectroscopy. Also, the formation constants of the complexes were measured by UV-Vis spectroscopic titration at constant ionic strength 0.1M (NaClO4), at 25 °C in dimethylformamide (DMF) as a solvent.

  19. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape.

    PubMed

    Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik

    2015-02-16

    Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable

  20. Square-antiprismatic eight-coordinate complexes of divalent first-row transition metal cations: a density functional theory exploration of the electronic-structural landscape.

    PubMed

    Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik

    2015-02-16

    Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable

  1. Bivalent transition metal complexes of cetirizine: spectroscopic, equilibrium studies and biological activity.

    PubMed

    El-Sherif, Ahmed A; Shoukry, Mohamed M; Abobakr, Lamis O

    2013-08-01

    Metal complexes of cetirizine·2HCl (CTZ=2-[2-[4-[(4-chlorophenyl)phenyl methyl]piperazine-1-yl]-ethoxy]acetic acid, dihydrochloride have been prepared and characterized by elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and UV-Vis spectra. The analytical data of the complexes show the formation of 1:2 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated CTZ ligand. IR spectra show that CTZ is coordinated to the metal ions in a monodentate manner through carboxylate-O atom. Protonation equilibria of CTZ and its metal complexation by some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaCl) using an automatic potentiometric technique. Thermodynamic parameters for the protonation equilibria of CTZ were calculated and discussed. The stability order of M(II)-CTZ complexes were found to obey Mn(2+)complexes in solution is evaluated as a function of pH. The CTZ ligand and its metal complexes were screened for their biological activity against bacterial species (Bacillus subtillis RCMB 010067, Staphylococcus aureus RCMB 010028, Pseudomonas aeuroginosa RCMB 010043, and Escherichia coli RCMB 010052) and fungi as (Aspergillus flavus RCMB 02568, Pencicillium italicum RCMB 03924, Candida albicans RCMB 05031 and Geotricum candidum RCMB 05097). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent CTZ ligand against one or more bacterial or fungi species. MIC was evaluated for the isolated complexes. PMID:23685158

  2. Bivalent transition metal complexes of cetirizine: Spectroscopic, equilibrium studies and biological activity

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Shoukry, Mohamed M.; Abobakr, Lamis O.

    2013-08-01

    Metal complexes of cetirizineṡ2HCl (CTZ = 2-[2-[4-[(4-chlorophenyl)phenyl methyl]piperazine-1-yl]-ethoxy]acetic acid, dihydrochloride have been prepared and characterized by elemental analyses, IR, solid reflectance, magnetic moment, molar conductance, and UV-Vis spectra. The analytical data of the complexes show the formation of 1:2 [M:L] ratio, where M represents Ni(II), Co(II) and Cu(II) ions, while L represents the deprotonated CTZ ligand. IR spectra show that CTZ is coordinated to the metal ions in a monodentate manner through carboxylate-O atom. Protonation equilibria of CTZ and its metal complexation by some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaCl) using an automatic potentiometric technique. Thermodynamic parameters for the protonation equilibria of CTZ were calculated and discussed. The stability order of M(II)-CTZ complexes were found to obey Mn2+ < Co2+ < Ni2+ < Cu2+, in accordance with the Irving-Williams order. The concentration distribution of the complexes in solution is evaluated as a function of pH. The CTZ ligand and its metal complexes were screened for their biological activity against bacterial species (Bacillus subtillis RCMB 010067, Staphylococcus aureus RCMB 010028, Pseudomonas aeuroginosa RCMB 010043, and Escherichia coli RCMB 010052) and fungi as (Aspergillus flavus RCMB 02568, Pencicillium italicum RCMB 03924, Candida albicans RCMB 05031 and Geotricum candidum RCMB 05097). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent CTZ ligand against one or more bacterial or fungi species. MIC was evaluated for the isolated complexes.

  3. Synthesis and characterization of a series of transition metal complexes with a new symmetrical polyoxaaza macroacyclic Schiff base ligand: X-ray crystal structure of cobalt(II) and nickel(II) complexes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura

    2013-01-01

    A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.

  4. Theoretical investigation, biological evaluation and VEGFR2 kinase studies of metal(II) complexes derived from hydrotris(methimazolyl)borate.

    PubMed

    Jayakumar, S; Mahendiran, D; Srinivasan, T; Mohanraj, G; Kalilur Rahiman, A

    2016-02-01

    The reaction of soft tripodal scorpionate ligand, sodium hydrotris(methimazolyl)borate with M(ClO4)2·6H2O [MMn(II), Ni(II), Cu(II) or Zn(II)] in methanol leads to the cleavage of B-N bond followed by the formation of complexes of the type [M(MeimzH)4](ClO4)2·H2O (1-4), where MeimzH=methimazole. All the complexes were fully characterized by spectro-analytical techniques. The molecular structure of the zinc(II) complex (4) was determined by X-ray crystallography, which supports the observed deboronation reaction in the scorpionate ligand with tetrahedral geometry around zinc(II) ion. The electronic spectra of complexes suggested tetrahedral geometry for manganese(II) and nickel(II) complexes, and square-planar geometry for copper(II) complex. Frontier molecular orbital analysis (HOMO-LUMO) was carried out by B3LYP/6-31G(d) to understand the charge transfer occurring in the molecules. All the complexes exhibit significant antimicrobial activity against Gram (-ve) and Gram (+ve) bacterial as well as fungal strains, which are quite comparable to standard drugs streptomycin and clotrimazole. The copper(II) complex (3) showed excellent free radical scavenging activity against DPPH in all concentration with IC50 value of 30μg/mL, when compared to the other complexes. In the molecular docking studies, all the complexes showed hydrophobic, π-π and hydrogen bonding interactions with BSA. The cytotoxic activity of the complexes against human hepatocellular liver carcinoma (HepG2) cells was assessed by MTT assay, which showed exponential responses toward increasing concentration of complexes.

  5. Synthesis, spectroscopic, antimicrobial, DNA binding and cleavage studies of some metal complexes involving symmetrical bidentate N, N donor Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Arish, D.; Nair, M. Sivasankaran

    2011-11-01

    The Schiff base ligand, N, N'-bis-(4-isopropylbenzaldimine)-1,2-diaminoethane (L), obtained by the condensation of 4-isopropylbenzaldehyde and 1,2-diaminoethane, has been used to synthesize the complexes of the type [ML 2X 2] [M = Co(II), Ni(II) and Zn(II); X = Cl and OAc]. The newly synthesized ligand (L) and its complexes have been characterized on the basis of elemental analyses, mass, 1H and 13C-NMR, molar conductance, IR, UV-vis, magnetic moment, CV and thermal analyses, powder XRD and SEM. IR spectral data show that the ligand is coordinated to the metal ions in a bidentate manner. The geometrical structures of these complexes are found to be octahedral. Interestingly, reaction with Cu(II) ion with this ligand undergoes hydrolytic cleavage to form ethylenediamine copper(II) complex and the corresponding aldehyde. The antimicrobial results indicate that the chloro complexes exhibit more activity than the acetato complexes. The complexes bind to CT-DNA by intercalation modes. Novel chloroform soluble ZnL 2Cl 2 complex exhibits tremendous antimicrobial, DNA binding and cleaving properties.

  6. Fluorescence Titrations of Bio-relevant Complexes with DNA: Synthesis, Structural Investigation, DNA Binding/Cleavage, Antimicrobial and Molecular Docking Studies.

    PubMed

    Arun, Thesingu Rajan; Subramanian, Ramasamy; Packianathan, Seemon; Raman, Natarajan

    2015-07-01

    In the present work, we attempted to develop new metal complexes (Cu(II), Co(II), Ni(II) and Zn(II)) of the imine ligand which was synthesized from 9,10-phenanthrenequinone and para-anisidine. With an intention to make the complexes most stable, very special chelating amino acid has been coordinated to the metal centre. The resultant metal complexes have been characterized by variety of techniques including FT-IR, UV-Vis., (1)H NMR, (13)C NMR, powder XRD, EPR and mass spectral studies. The interaction of the complexes with DNA has been effectively examined and explored by fluorescence titration, UV-Vis absorption, viscometer titration, cyclic voltammetry (CV) and differential pulse voltammetry. Moreover, molecular docking analysis has been performed to understand the nature of binding of the complexes with DNA. These studies prove that CT DNA interaction of the complexes follows intercalation mode. The metal complexes exhibit effective cleavage of pUC19 DNA by an oxidative cleavage mechanism. The antimicrobial screening indicates that these complexes are good antimicrobial agents against various organisms.

  7. Effect of DNA interaction involving antioxidative 4-aminoantipyrine incorporating mixed ligand complexes having alpha-amino acid as co-ligand

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Sakthivel, Arunagiri; Selvaganapathy, Muthusamy; Mitu, Liviu

    2014-02-01

    Few new mixed ligand transition metal complexes of the stoichiometry [ML(A)2], where M = Co(II), Ni(II), Cu(II) and Zn(II), L = FFAP (furfurylidene-4-aminoantipyrine) and A = amino acid (glycine/alanine/valine), have been designed, synthesized and characterized. The molar conductivity of the complexes in DMF at 10-3 M concentration shows that they are non-electrolytes. The interaction of these complexes with CT-DNA indicates that the valine mixed ligand complexes are having higher binding constant than alanine and glycine mixed ligand complexes. This analysis reveals that binding constant depends on the size of the alkyl group present in the amino acid. The binding constants of valine mixed ligand complexes are in the order of 104 to 105 M-1 revealing that the complexes interact with DNA through moderate intercalation mode. The metal complexes exhibit effective cleavage of pUC19 DNA but it is not preceded via radical cleavage and superoxide anion radical. They are good antimicrobial agents than the free ligand. On comparing the IC50 values, [Ni(L)(Gly)2] is considered as a potential drug to eliminate the hydroxyl radical.

  8. Researching Complexity.

    ERIC Educational Resources Information Center

    Sumara, Dennis J.

    2000-01-01

    Discusses what Complexity Theory (presented as a rubric that collects theoretical understandings from a number of domains such as ecology, biology, neurology, and education) suggests about mind, selfhood, intelligence, and practices of reading, and the import of these reconceptualizations to reader-response researchers. Concludes that developing…

  9. Complex interactions

    NASA Astrophysics Data System (ADS)

    de Régules, Sergio

    2016-04-01

    Complexity science - which describes phenomena such as collective and emergent behaviour - is the focus of a new centre where researchers are examining everything from the spread of influenza to what a healthy heartbeat looks like. Sergio de Régules reports.

  10. Amorphic complexity

    NASA Astrophysics Data System (ADS)

    Fuhrmann, G.; Gröger, M.; Jäger, T.

    2016-02-01

    We introduce amorphic complexity as a new topological invariant that measures the complexity of dynamical systems in the regime of zero entropy. Its main purpose is to detect the very onset of disorder in the asymptotic behaviour. For instance, it gives positive value to Denjoy examples on the circle and Sturmian subshifts, while being zero for all isometries and Morse-Smale systems. After discussing basic properties and examples, we show that amorphic complexity and the underlying asymptotic separation numbers can be used to distinguish almost automorphic minimal systems from equicontinuous ones. For symbolic systems, amorphic complexity equals the box dimension of the associated Besicovitch space. In this context, we concentrate on regular Toeplitz flows and give a detailed description of the relation to the scaling behaviour of the densities of the p-skeletons. Finally, we take a look at strange non-chaotic attractors appearing in so-called pinched skew product systems. Continuous-time systems, more general group actions and the application to cut and project quasicrystals will be treated in subsequent work.

  11. Synthesis, crystal structures and Hirshfeld surface analyses of two new Salen type nickel/sodium heteronuclear complexes

    NASA Astrophysics Data System (ADS)

    Mahlooji, Niloofar; Behzad, Mahdi; Tarahhomi, Atekeh; Maroney, Michael; Rudbari, Hadi Amiri; Bruno, Giuseppe; Ghanbari, Bahram

    2016-04-01

    Two new heteronuclear Nickel(II)/Sodium(I) complexes of a side-off compartmental Schiff base ligand were synthesized and characterized by spectroscopic methods. Crystal structures of both of the complexes were also obtained. The Schiff base ligand was synthesized from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-3-methoxybenzaldehyde. In both of the complexes the Ni(II) ion is coordinated to the inner N2O2 coordination sphere with square-planar geometry and the Na(I) ion is coordinated to the outer O2 O2‧ coordination sphere. In Complex (1) with general formula [Ni(L)Na(CH3OH)(ClO4)] the sodium ion is seven coordinated while in (2) with general formula [{Ni(L)Na(OH2)}2(μ-Ni(CN)4)] the sodium ion is six coordinated. Intermolecular interactions in two studied complexes were analyzed using 3D Hirshfeld surfaces and corresponding 2D fingerprint plots. This analysis showed that the H … H and C … H/H … C contacts for both structures (altogether 67.5% of total Hirshfeld surface area for (1) and 77.6% for (2)) and the O … H/H … O (24.2%) for (1) and the N … H/H … N (8.1%) contacts for (2) were the characteristic intermolecular contacts in the related crystal structures.

  12. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: Spectral, thermal, XRD and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Sundararajan, M. L.; Jeyakumar, T.; Anandakumaran, J.; Karpanai Selvan, B.

    2014-10-01

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, 1H NMR, 13C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, 1H NMR, 13C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base.

  13. Modern spectroscopic technique in the characterization of biosensitive macrocyclic Schiff base ligand and its complexes: Inhibitory activity against plantpathogenic fungi

    NASA Astrophysics Data System (ADS)

    Tyagi, Monika; Chandra, Sulekh; Akhtar, Jameel; Chand, Dinesh

    2014-01-01

    Complexes of the type [M(L)Cl2], where M = Co(II), Ni(II) and Cu(II) have been synthesized with a macrocyclic Schiff base ligand (1,4,5,7,10,11,12,15-octaaza,5,11,16,18-tetraphenyl, 3,4,12,13-tetramethyl cyclo-octadecane) derived from Schiff base (obtained by the condensation of 4-aminoantipyrine and dibenzoyl methane) and ethylenediamine. The ligand was characterized on the basis of elemental analysis, IR, 1H NMR, EI Mass and molecular modeling studies while the complexes were characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, IR, electronic and EPR spectral studies. All the complexes are non-electrolyte in nature. The covalency factor (β) and coefficient factor (α) suggest the covalent nature of the complexes. The ligand and its metal complexes have shown antifungal activity with their LD50 values determined by probit analysis against two economically important fungal plant pathogens i.e. Macrophomina phaseolina and Fusarium solani.

  14. Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes.

    PubMed

    Abd El-halim, Hanan F; Omar, M M; Mohamed, Gehad G

    2011-01-01

    Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.

  15. Synthesis of metal complexes involving Schiff base ligand with methylenedioxy moiety: spectral, thermal, XRD and antimicrobial studies.

    PubMed

    Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B

    2014-10-15

    Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. PMID:24820326

  16. Mixed ligand complexes of bis(phenylimine) Schiff base ligands incorporating pyridinium moiety. Synthesis, characterization and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Mohamed, Gehad G.; El-Wahab, Zeinab H. Abd

    2005-04-01

    The synthesis and structural characterization of mixed ligand complexes derived from 2,6-pyridinedicarboxaldehydebis( o-hydroxyphenylimine), 2,6-pyridinedicarboxaldehydebis( p-hydroxyphenylimine) (1 ry ligands) and 2-aminopyridne (2 ry ligand) are reported. The ligands and their transition metal complexes were characterized on the bases of their elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The mixed ligand complexes are formed in the 1:1:1 (M:L 1 or L 2:L') ratio as found from the elemental analyses and found to have the formulae [MX 2(L 1 or L 2)(L')]· nH 2O where M = Co(II), Ni(II), Cu(II) and Zn(II), L 1 = 2,6-pyridinedicarboxaldehydebis( p-hydroxyphenylimine), L 2 = 2,6-pyridine dicarboxaldehydebis( o-hydroxyphenylimine), L' = 2-aminopyridine, X = Cl - in case of Cu(II) complex and Br - in case of Co(II), Ni(II) and Zn(II) complexes and y = 0-3. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine- N and two azomethine- N. While 2-aminopyridine coordinated to the metal ions via its pyridine- N. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes are found to be octahedral. The thermal behaviour of these chelates shows that the hydrated water molecules and the anions are removed in a successive two steps followed immediately by decomposition of the ligands (L 1, L 2 and L') in the subsequent steps. The activation thermodynamic parameters, such as, E*, Δ H*, Δ S* and Δ G* are calculated from the TG curves and discussed. The ligands and their metal chelates have been screened for their antimicrobial activities and the findings have been reported, explained and compared with some known antibiotics.

  17. Synthesis, characterization, antimicrobial, DNA-cleavage and antioxidant activities of 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its metal complexes

    NASA Astrophysics Data System (ADS)

    Vivekanand, B.; Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2015-01-01

    Schiff base 3-((5-chloro-2-phenyl-1H-indol-3-ylimino)methyl)quinoline-2(1H)-thione and its Cu(II), Co(II), Ni(II), Zn(II) and Fe(III), complexes have been synthesized and characterized by elemental analysis, UV-Visible, IR, 1H NMR, 13C NMR and mass spectra, molar conductance, magnetic susceptibility, ESR and TGA data. The ligand and its metal complexes have been screened for their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, antifungal activity against Aspergillus niger and Aspergillus flavus in minimum inhibition concentration (MIC) by cup plate method respectively, antioxidant activity using 1,1-diphenyl-2-picryl hydrazyl (DPPH), which was compared with that of standard drugs vitamin-C and vitamin-E and DNA cleavage activity using calf-thymus DNA.

  18. Managing Complexity

    SciTech Connect

    Chassin, David P.; Posse, Christian; Malard, Joel M.

    2004-08-01

    Physical analogs have shown considerable promise for understanding the behavior of complex adaptive systems, including macroeconomics, biological systems, social networks, and electric power markets. Many of today’s most challenging technical and policy questions can be reduced to a distributed economic control problem. Indeed, economically-based control of large-scale systems is founded on the conjecture that the price-based regulation (e.g., auctions, markets) results in an optimal allocation of resources and emergent optimal system control. This paper explores the state of the art in the use physical analogs for understanding the behavior of some econophysical systems and to deriving stable and robust control strategies for them. In particular we review and discussion applications of some analytic methods based on the thermodynamic metaphor according to which the interplay between system entropy and conservation laws gives rise to intuitive and governing global properties of complex systems that cannot be otherwise understood.

  19. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Hossein Pasha; Hadi, Jabbar S.; Abdulnabi, Zuhair A.; Bolandnazar, Zeinab

    2014-01-01

    A new series of metal(II) complexes of Co(II), Ni(II), Cu(II), Zn(II), and Pb(II) have been synthesized from a salen-type Schiff base ligand derived from o-vanillin and 4-methyl-1,2-phenylenediamine and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, 13C NMR and EI-mass), molar conductance measurements and thermal analysis techniques. Coats-Redfern method has been utilized to calculate the kinetic and thermodynamic parameters of the metal complexes. The molecular geometry, Mulliken atomic charges of the studied compounds were investigated theoretically by performing density functional theory (DFT) to access reliable results to the experimental values. The theoretical 13C chemical shift results of the studied compounds have been calculated at the B3LYP, PBEPBE and PW91PW91 methods and standard 6-311+G(d,p) basis set starting from optimized geometry. The comparison of the results indicates that B3LYP/6-311+G(d,p) yields good agreement with the observed chemical shifts. The measured low molar conductance values in DMF indicate that the metal complexes are non-electrolytes. The spectral and thermal analysis reveals that all complexes have octahedral geometry except Cu(II) complex which can attain the square planner arrangement. The presence of lattice and coordinated water molecules are indicated by thermograms of the complexes. The thermogravimetric (TG/DTG) analyses confirm high stability for all complexes followed by thermal decomposition in different steps.

  20. Synthesis, characterization, DNA binding, DNA cleavage and antimicrobial studies of Schiff base ligand and its metal complexes.

    PubMed

    Mendu, Padmaja; Kumari, C Gyana; Ragi, Rajesh

    2015-03-01

    A series of Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) complexes have been synthesized from the Schiff base ligand L. The Schiff base ligand 4-chloro-2-((4-oxo-4H-chromen-3yl) methylene amino) benzoic acid (L) has been synthesized by the reaction between chromone-3-carbaldehyde and 4-chloro-2-amino benzoic acid. The nature of bonding and geometry of the transition metal complexes as well as ligand L have been deduced from elemental analysis, FT-IR, UV-vis, (1)H NMR, (13)C NMR, ESR spectral studies, mass, magnetic susceptibility and molar conductance measurements. The complexes are found to have ML2 composition and are neutral in DMSO. Based on elemental, conductance and spectral studies, six-coordinated geometry was assigned for these complexes. The ligand L acts as tridentate and coordinates through nitrogen atom of azomethine group, hydroxyl of the carboxyl group and oxygen atom of keto group of γ-pyrone ring. The interaction of Cu(II) complex with CT-DNA was carried out by UV-vis, fluorescence titrations and viscosity measurements. The complex binds to DNA through intercalative binding mode. The nuclease activity of the above metal complexes shows that Cu(II) and Co(II) complexes cleave DNA through redox chemistry. The biological activity of the ligand and its complexes have been studied on four bacteria E. coli, B. subtilis, pseudomonas and Edwardella and two fungi penicillium and trichoderma by well disc and fusion method and found that the metal complexes are more active than the free Schiff base ligand.

  1. Synthesis of some transition metal complexes with new heterocyclic thiazolyl azo dye and their uses as sensitizers in photo reactions

    NASA Astrophysics Data System (ADS)

    AL-Adilee, Khalid J.; Abass, Ahmed K.; Taher, Ali M.

    2016-03-01

    A new heterocyclic thiazolylazo dye ligand, 2- [bar2-(4, 5- dimethyl thiazolyl) azo ] -4-Ethoxy Phenol (DMeTAEP), (LH) was synthesized by the diazotization of 4.5-dimethyl thiazolylazonium chloride and coupling with 4- Ethoxy phenol in alkaline alcoholic solution under suitable optimized experimental conditions to yield a new azo dye ligand. The structure of ligand and its complexes was prepared from Co(III), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Ag (I) and Au(III) ions. They confirmed by XRD, SEM, (TG-DTG) thermal analysis, 1H-NMR,UV-visb, mass and FT-IR spectroscopic methods, elemental analysis, atomic absorption, magnetic susceptibility and molar conductance. The mole ratio [M: L], it was also studied which was 1:1 for Ag (I) and Au (III) complexes and 1:2 The rest of the metal complexes. The isolated solid complexes are found to have the general formula [M (L)2 ] Cln.mH2O, where n = 1, m = 0 when M = Co (III) and n = 0, m = 1 when M = Ni (II), and Hg(II) while n = 0 and m = 0 when M = Cu (II), Zn (II), Cd (II) and ]ML (H2O)] of Ag(I) - complex but Au(III)-complex structural formula was [Au(L)Cl] Cl conductivity measurements for prepared complexes showed 1:1 electrolyte for Co(III(and Au(III) complexes and non - electrolyte the rest of complexes. The spectral and analytical data revealed that this ligand behaves as a tridentate chelating agent and coordination number of all metal ions were found to be six except for Ag (I) and Au (III) which was four. The activities of complexes were examined as sensitizers in the photocatalytic reaction of p-nitro aniline (PNA) which is used as a model of water pollutants.

  2. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  3. Spectroscopic and thermal properties of short wavelength metal (II) complexes containing α-isoxazolylazo-β-diketones as co-ligands

    NASA Astrophysics Data System (ADS)

    Huang, Fuxin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi

    2005-10-01

    Two new azo dyes of α-isoxazolylazo-β-diketones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni 2+ and Cu 2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl 3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability.

  4. Correlations between metal spin states and vibrational spectra of a trinuclear Fe(II) complex exhibiting spin crossover

    NASA Astrophysics Data System (ADS)

    Gerasimova, Tatiana P.; Katsyuba, Sergey A.; Lavrenova, Ludmila G.; Pelmenschikov, Vladimir; Kaupp, Martin

    2015-12-01

    Combined IR spectroscopic/quantum-chemical analysis of a 4-propyl-1,2,4-triazole trinuclear Fe(II) complex capable of reversible thermal spin crossover has revealed mid-IR bands of the ligand sensitive to the Fe(II) spin state. The character of the correlations found between the intensity and peak position of the triazole bands and the spin state of the metal center depends neither on the identity of the metal nor on the nuclearity of the complex. The found spectral correlations therefore allow analysis of various similar complexes. This is illustrated by the example of experimental IR spectra reported earlier for Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with triazole ligands. Quantum-chemical IR spectral simulations further suggest that certain ligand bands vary between the states with the same total molecular spin, but different distribution of the spin density between the metal centers. However these variations are too subtle to discriminate between the spin transitions of the central and peripheral Fe(II) ions. The experimentally revealed mid-IR markers are therefore conclusive only for the total molecular spin.

  5. [Carney complex].

    PubMed

    Kacerovská, D; Michal, M; Síma, R; Grossmann, P; Kazakov, D V

    2011-10-01

    Carney complex is a clinically and genetically heterogeneous disease, with at least two genetic loci including the PRKAR1A gene located on chromosome 17 and the CNC2 locus mapped to chromosome 2. Clinically this syndrome is characterized by multiple myxomas occurring in different anatomic sites, mucocutaneous pigmentary lesions, and a variety of non-endocrine and endocrine tumors, often causing endocrine abnormalities, involving various organs. Knowledge of morphological findings in CNC patients with their typical locations is necessary to raise suspicion of this syndrome by pathologists. Confirmation of the diagnosis allows regular clinical check-ups and early treatment of these patients. PMID:22145222

  6. Complex Systems

    PubMed Central

    Goldberger, Ary L.

    2006-01-01

    Physiologic systems in health and disease display an extraordinary range of temporal behaviors and structural patterns that defy understanding based on linear constructs, reductionist strategies, and classical homeostasis. Application of concepts and computational tools derived from the contemporary study of complex systems, including nonlinear dynamics, fractals and “chaos theory,” is having an increasing impact on biology and medicine. This presentation provides a brief overview of an emerging area of biomedical research, including recent applications to cardiopulmonary medicine and chronic obstructive lung disease. PMID:16921107

  7. Effects of reactor decontamination complexing agents on soil adsorption-column studies

    SciTech Connect

    Serne, R. Jeffrey; Lindenmeier, Clark W.; Cantrell, Kirk J.; Owen, Antionette T.

    1999-12-01

    The effects of picolinate, an organic ligand used to decontaminate nuclear reactor cooling systems, in leachates generated from shallow-land burial (SLB) of low-level nuclear wastes (LLW) on soil adsorption was determined. Using batch adsorption tests and varying the concentration of picolinate, the adsorption tendencies of two metals [Ni(II) and U(VI)] and the ligand were measured as a function of solution pH. We found that when total metal concentrations were fixed at 10^-5 M, picolinate at ligand-to-metal [L:M] ratios $10 did significantly reduce adsorption of Ni but even at a L:M ratio of 100 there was no effect on U(VI) adsorption. These results are compared with data on other metals in the presence of picolinate and for metal adsorption in the presence of EDTA. We conclude that picolinic acid is less of a threat than EDTA in waste leachates to reduce metal adsorption (increase mobility) and that picolinate concentrations must reach or exceed 10^-4 M for the most impacted metals (i.e., those that form the very strongest complexes with picolinate). There are no leachate data on these decontamination agents for the common burial technique (disposal of de-watered resins in high integrity containers) that can be used to evaluate potential hazards of these organo-radionuclide complexes.

  8. Combined experimental-theoretical characterization of chelidamate nickel complex with 4-methylpyrimidine

    NASA Astrophysics Data System (ADS)

    Vural, H.; Uçar, İ.; Soylu, M. S.

    2016-01-01

    A new chelidamate complex of nickel(II) ion, [Ni(chel)(H2O)2(mpd)]·2H2O [chel: chelidamate or 4-hydroxypyridine-2,6-dicarboxylate, mpd: 4-methylpyrimidine] was synthesized and characterized by single-crystal X-ray diffraction, UV-Vis and FT-IR spectroscopy. Intermolecular O-H⋯O and O-H⋯N hydrogen bonds and π-π stacking interactions appear to be effective in the stabilization of the crystal structure. Theoretical calculations have been carried out by using Hartree-Fock (HF)/6-31G (d) and Density Functional Theory (DFT)/6-31+G (d). Molecular geometry from X-ray experiment of Ni(II) complex in the ground state was compared using unrestricted hybrid density functional B3LYP. HOMO-LUMO energies, absorption wavelengths and excitation energy were computed by time dependent DFT (TD-DFT) method with polarizable continuum model. The observed FT-IR vibrational frequencies are analyzed and compared with theoretically predicted vibrational frequencies. The natural charges on the atoms and second-order interaction energies were derived from natural bond orbital analysis (NBO).

  9. Carney complex.

    PubMed

    Espiard, Stéphanie; Bertherat, Jérôme

    2013-01-01

    Carney complex is a rare, dominantly inherited multiple endocrine neoplasia syndrome, affecting endocrine glands as the adrenal cortex (causing Cushing's syndrome), the pituitary and the thyroid. It is associated with many other nonendocrine tumors, including cardiac myxomas, testicular tumors, melanotic schwannoma, breast myxomatosis, and abnormal pigmentation (lentiginosis) or myxomas of the skin. The gene located on the CNC1 locus was identified 12 years ago as the regulatory subunit 1A (R1A) of the protein kinase A (PRKAR1A) located at 17q22-24. Inactivating heterozygous germline mutations of PRKAR1A are observed in about two thirds of Carney complex patients with some genotype-phenotype correlation useful for follow-up and prognosis. More rarely, mutations of phosphodiesterase genes have been reported in patients presenting mainly with Cushing's syndrome. In vitro and in vivo studies help to understand how R1A inactivation leads to tumorigenesis. PRKAR1A appears to be a relatively weak tumorigenic signal which can cooperate with other signaling pathways and tumor suppressors. PMID:23652670

  10. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  11. Cosmic Complexity

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2012-01-01

    What explains the extraordinary complexity of the observed universe, on all scales from quarks to the accelerating universe? My favorite explanation (which I certainty did not invent) ls that the fundamental laws of physics produce natural instability, energy flows, and chaos. Some call the result the Life Force, some note that the Earth is a living system itself (Gaia, a "tough bitch" according to Margulis), and some conclude that the observed complexity requires a supernatural explanation (of which we have many). But my dad was a statistician (of dairy cows) and he told me about cells and genes and evolution and chance when I was very small. So a scientist must look for me explanation of how nature's laws and statistics brought us into conscious existence. And how is that seemll"!gly Improbable events are actually happening a!1 the time? Well, the physicists have countless examples of natural instability, in which energy is released to power change from simplicity to complexity. One of the most common to see is that cooling water vapor below the freezing point produces snowflakes, no two alike, and all complex and beautiful. We see it often so we are not amazed. But physlc!sts have observed so many kinds of these changes from one structure to another (we call them phase transitions) that the Nobel Prize in 1992 could be awarded for understanding the mathematics of their common features. Now for a few examples of how the laws of nature produce the instabilities that lead to our own existence. First, the Big Bang (what an insufficient name!) apparently came from an instability, in which the "false vacuum" eventually decayed into the ordinary vacuum we have today, plus the most fundamental particles we know, the quarks and leptons. So the universe as a whole started with an instability. Then, a great expansion and cooling happened, and the loose quarks, finding themselves unstable too, bound themselves together into today's less elementary particles like protons and

  12. DNA interaction, antimicrobial, electrochemical and spectroscopic studies of metal(II) complexes with tridentate heterocyclic Schiff base derived from 2‧-methylacetoacetanilide

    NASA Astrophysics Data System (ADS)

    Raman, Natarajan; Pothiraj, Krishnan; Baskaran, Thanasekaran

    2011-08-01

    A new Schiff base ligand (HL) was synthesized by the condensation reaction between 2'-methyleacetoacetanilide and 2-amino-3-hydroxypyridine. Its Co(II), Ni(II), Cu(II) and Zn(II) complexes were prepared by the interaction of the ligand with metal(II) chloride. They were characterized by elemental analysis, IR, 1H NMR, EPR, UV-Vis, magnetic susceptibility measurements, conductivity measurements and FAB-mass spectra. The interaction of the complexes with calf thymus DNA (CT-DNA) has been investigated by UV absorption, viscosity and cyclic voltammetry methods, and the mode of CT-DNA binding to the complexes has been explored. Furthermore, the DNA cleavage activity by the complexes was performed. It was found to be oxidative hydroxyl radical cleavage in the presence of 3-mercaptopropionic acid (MPA). The Schiff base and its complexes have been screened for their antibacterial ( Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal ( Aspergillus niger, Rhizopus stolonifer, Rhizoctonia bataicola and Candida albicans) activities and the data reveal that the complexes have higher activity than the free ligand.

  13. Synthesis, spectroscopic studies, thermal analyses, biological activity of tridentate coordinated transition metal complexes of bi(pyridyl-2-ylmethyl)amine]ligand

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.

    2016-01-01

    A new tridentate acyclic pincer ligand, [bi(pyridin-2-methyl)amine] (bpma, HL), was synthesized and reacted to form complexes with copper(II), nickel(II), iron(II), cobalt(II) and zinc(II) ions. Both the ligand and its complexes were characterized using elemental analysis, molar conductance, infrared, 1H-NMR-spectroscopy, mass and thermal analyses. According to the spectroscopic data, all of the complexes share the same coordination environment around the metal atoms, consisting two nitrogen-pyridine entities, one nitrogen-methylamine entity, one/two water molecules and/or one/two chloride or bromide ions. Complexes also showed molar conductivity according to the presence of two halide anions outer the coordination sphere except Co(II) and Zn(II) complexes are non electrolytes. Analysis indicates that the metal ions have trigonal bipyramidal structure. Cu(II), Ni(II), Fe(II), Co(II), and Zn(II) metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (G+) and Escherichia coli, and Pseudomonas aeruginosa (G-) bacteria. They showed remarkable antimicrobial activity.

  14. Exploration of cellular DNA lesion, DNA-binding and biocidal ordeal of novel curcumin based Knoevenagel Schiff base complexes incorporating tryptophan: Synthesis and structural validation

    NASA Astrophysics Data System (ADS)

    Chandrasekar, Thiravidamani; Raman, Natarajan

    2016-07-01

    A few novel Schiff base transition metal complexes of general formula [MLCl] (where, L = Schiff base, obtained by the condensation reaction of Knoevenagel condensate of curcumin, L-tryptophan and M = Cu(II), Ni(II), Co(II), and Zn(II)), were prepared by stencil synthesis. They were typified using UV-vis, IR, EPR spectral techniques, micro analytical techniques, magnetic susceptibility and molar conductivity. Geometry of the metal complexes was examined and recognized as square planar. DNA binding and viscosity studies revealed that the metal(II) complexes powerfully bound via an intercalation mechanism with the calf thymus DNA. Gel-electrophoresis technique was used to investigate the DNA cleavage competence of the complexes and they establish to approve the cleavage of pBR322 DNA in presence of oxidant H2O2. This outcome inferred that the synthesized complexes showed better nuclease activity. Moreover, the complexes were monitored for antimicrobial activities. The results exposed that the synthesized compounds were forceful against all the microbes under exploration.

  15. Controlling proton movement: electrocatalytic oxidation of hydrogen by a nickel(II) complex containing proton relays in the second and outer coordination spheres.

    PubMed

    Das, Parthapratim; Ho, Ming-Hsun; O'Hagan, Molly; Shaw, Wendy J; Bullock, R Morris; Raugei, Simone; Helm, Monte L

    2014-02-21

    A nickel bis(diphosphine) complex containing proton relays in the second and outer coordination spheres, Ni(P(Cy)2N((CH2)2OMe))2, (P(Cy)2N((CH2)2OMe) = 1,5-di(methoxyethyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane), is an electrocatalyst for hydrogen oxidation. The addition of hydrogen to the Ni(II) complex results in rapid formation of three isomers of the doubly protonated Ni(0) complex, [Ni(P(Cy)2N((CH2)2OMe)2H)2](2+). The three isomers show fast interconversion at 40 °C, unique to this complex in this class of catalysts. Under conditions of 1.0 atm H2 using H2O as a base, catalytic oxidation proceeds at a turnover frequency of 5 s(-1) and an overpotential of 720 mV, as determined from the potential at half of the catalytic current. Compared to the previously reported Ni(P(Cy)2N(Bn))2 complex, the new complex operates at a faster rate and at a lower overpotential.

  16. Synthesis, characterization, fluorescence and catalytic activity of some new complexes of unsymmetrical Schiff base of 2-pyridinecarboxaldehyde with 2,6-diaminopyridine

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Ahmed, Doaa A.; Nassar, Doaa A.

    2015-06-01

    The Schiff base, 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L) was synthesized by 1:1 condensation of 2-pyridinecarboxaldehyde and 2,6-diaminopyridine. The ligand and its complexes were characterized by different physicochemical studies. The analytical and spectroscopic tools indicated that the synthesized complexes have the general formulae: [M(L)Cl2]·2H2O (M = Cu(II), Ni(II) and Co(II)), [La(L)3](NO3)3·3H2O and [Sm(L)(ClO4)3]·3H2O. Vibrational spectra indicated the coordination of L to metal ions through its pyridyl and azomethine nitrogen atoms. The presence of water molecules in all reported complexes has been supported by TG/DTA studies. Kinetic and thermodynamic parameters were computed using Coats and Redfern method. The prepared ligand and its complexes exhibited intraligand (π-π∗) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes toward the decomposition of hydrogen peroxide was investigated. Both the ligand and its complexes have been screened for antibacterial activities.

  17. Synthesis, Characterization, Antimicrobial, DNA Cleavage, and In Vitro Cytotoxic Studies of Some Metal Complexes of Schiff Base Ligand Derived from Thiazole and Quinoline Moiety

    PubMed Central

    Yernale, Nagesh Gunvanthrao; Bennikallu Hire Mathada, Mruthyunjayaswamy

    2014-01-01

    A novel Schiff base ligand N-(4-phenylthiazol-2yl)-2-((2-thiaxo-1,2-dihydroquinolin-3-yl)methylene)hydrazinecarboxamide (L) obtained by the condensation of N-(4-phenylthiazol-2-yl)hydrazinecarboxamide with 2-thioxo-1,2-dihydroquinoline-3-carbaldehyde and its newly synthesized Cu(II), Co(II), Ni(II), and Zn(II) complexes have been characterized by elemental analysis and various spectral studies like FT-IR, 1H NMR, ESI mass, UV-Visible, ESR, TGA/DTA, and powder X-ray diffraction studies. The Schiff base ligand (L) behaves as tridentate ONS donor and forms the complexes of type [ML(Cl)2] with square pyramidal geometry. The Schiff base ligand (L) and its metal complexes have been screened in vitro for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleavage activity of ligand and its metal complexes were studied using plasmid DNA pBR322 as a target molecule by gel electrophoresis method. The brine shrimp bioassay was also carried out to study the in vitro cytotoxicity properties for the ligand and its metal complexes against Artemia salina. The results showed that the biological activities of the ligand were found to be increased on complexation. PMID:24729778

  18. New macrocyclic schiff base complexes incorporating a homopiperazine unit: Synthesis of some Co(II), Ni(II),Cu(II) and Zn(II) complexes and crystal structure and theoretical studies

    NASA Astrophysics Data System (ADS)

    Keypour, Hassan; Rezaeivala, Majid; Ramezani-Aktij, Ameneh; Bayat, Mehdi; Dilek, Nefise; Ünver, Hüseyin

    2016-07-01

    A new macrocyclic Schiff base ligand, L, was synthesized by condensation reaction of 1,4-bis(2-formylphenyl)homopiperazine and 1,4-diaminobutane in acetonitrile. The Schiff base ligand was characterized by using elemental analyses, FT-IR, 1H, 13C NMR and mass spectroscopic techniques. The metal (II) complexes [ML], were synthesized from the reaction of MCl2.nH2O (M: Co, Ni, Cu and Zn) with Schiff base ligand, L and characterized by elemental analyses and FT-IR. X-ray crystal structure of [CoLCl]+ distorted square pyramidal geometry with an N4Cl core, arising from coordination by the four donor nitrogen atoms from the macrocyclic framework and one Cl atom. It crystallizes triclinic space group, P-1 with a = 7.1777(1) Å, b = 11.0357 (2) Å, c = 15.1520(2) Å, V = 1183.14(3), Z = 2, Dc = 1.556 g cm-3, μ (MoKα) = 0.156 mm-1. Also, the bonding situation between the [MCl]+ and Ligand (L) fragments in [MLCl]ClO4 (M = Co(II), Ni(II), Cu(II), Zn(II)) complexes were carried out by energy-decomposition analysis (EDA). The results showed that there is an increasing trend in the case of ΔEelstat of the complexes by changing the M from Co(II) to Zn(II).

  19. Versatile chemical transformations of benzoxazole based ligands on complexation with 3d-metal ions.

    PubMed

    Iasco, Olga; Novitchi, Ghenadie; Jeanneau, Erwann; Tommasino, Jean Bernard; Roques, Nans; Luneau, Dominique

    2012-02-20

    Two benzoxazoles derivative ligands were synthesized from the condensation of 3,5-di-tert-butyl-o-benzoquinone (DTBBQ) with ethanolamine or 1,3-diamino-2-hydroxypropane in methanol. Condensation of DTBBQ with ethanolamine gives the expected 5,7-di-tert-butyl-2-methylenhydroxylbenzoxazole (HL1) while with 1,3-diamino-2-hydroxypropane it gives (2-hydroxyethyl-2-{2,4-bis(1,1-dimethylethyl)-1-phenol-6 amino}-2{5,7-di-tert-butyl-benzoxazole}) (H(2)L2) with only one benzoxazole ring instead of the symmetric bis-benzoxazole derivative. The structure of HL1 and H(2)L2 were confirmed by NMR-spectroscopy and X-ray diffraction on a single crystal for HL1. The reaction of HL1 with CuCl(2) gives a mononuclear [Cu(II)(HL1)(2)Cl(2)] (1) complex for which the crystal structure shows that HL1 is preserved. In contrast, upon reaction with nickel(II), cobalt(II), and manganese(II) H(2)L2 is further oxidized and transformed in new ligands HL3 in mononuclear complexes [M(II)(L3)(2)] (M = Ni(II) (2); M = Co(II) (3)) and H(2)L4 in tetranuclear complex [Mn(II)(4)(HL4)(4)Cl(4)] (4) as found from the crystal structures of complexes 2-4. Electrochemical studies for complexes 2 and 3 evidence complicated redox properties. [Mn(II)(4)(HL4)(4)Cl(4)] (4) has a cubane-like structure with a "4 + 2" fashion The magnetic susceptibility of 4 is well fitted considering one Mn---Mn interaction J(a)(Mn(II)-Mn(II)) = -0.50(1) cm(-1) with g = 2.00(7).

  20. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.

    PubMed

    Deka, Bharati; Bhattacharyya, K G

    2015-03-01

    In this work, Mn(II), Co(II) and Ni(II) were incorporated into waste coal fly ash used as a catalyst support by refluxing with the appropriate aqueous salt solution. The materials were calcined at 773-873 K for 5 h and the amount of divalent cations entering into the fly ash was determined by AAS measurements. Further characterization included estimation of oxides by XRF, structural properties by XRD, topographical features by SEM, surface functional groups by FT-IR, surface area and pore dimensions by BET N2-adsorption isotherms. The efficiency of the materials as environmental oxidation catalysts were tested with respect to destruction of 4-chlorophenol (4-CP) in water in the presence of hydrogen peroxide. Considered as one of the most persistent, toxic and largely applied organic compound, 4-CP enters water from the effluents of petrochemical, plastic, pesticide, kraft mill and other organochemical industries and research centers. Wet oxidation of 4-CP was tested by varying the mole ratio of 4-CP and H2O2, catalyst load, temperature, reaction time, 4-CP concentration and pH. Oxidation of 4-CP (5 × 10(-3) M or 643 mg L(-1)) was 51.1% for Mn(II)-fly ash, 58.3% for Co(II)-fly ash and 61.0% for Ni(II)-fly ash after 180 min at 323 K with 4-CP: H2O2 mole ratio of 1:1. COD load of the reaction mixture (4-CP: 5 × 10(-3) M, H2O2: 5 × 10(-3) M, catalyst load: 1.0 g L(-1), temperature 323 K, reaction time 0-240 min) decreased from 1480 to 620, 380, and 140 mg L(-1) respectively after oxidation with Mn(II)-fly ash, Co(II)-fly ash and Ni(II)-fly ash (overall COD reduction was 58.0, 74.3 and 90.5% respectively). The oxidation followed second order kinetics with the average rate coefficient of 7.9, 1.3 and 1.2 L mol(-1) min(-1) for Mn(II)-, Co(II)- and Ni(II)-fly ash. Increase in H2O2: 4-CP mole ratio from 1:1 to 20:1 (reaction time 300 min, catalyst load 1.0 g L(-1)) enhanced destruction from 52.1 to 95.6% for Mn(II)-fly ash, 58.3-95.6% for Co(II)-fly ash and from 60.4 to

  1. Using coal fly ash as a support for Mn(II), Co(II) and Ni(II) and utilizing the materials as novel oxidation catalysts for 4-chlorophenol mineralization.

    PubMed

    Deka, Bharati; Bhattacharyya, K G

    2015-03-01

    In this work, Mn(II), Co(II) and Ni(II) were incorporated into waste coal fly ash used as a catalyst support by refluxing with the appropriate aqueous salt solution. The materials were calcined at 773-873 K for 5 h and the amount of divalent cations entering into the fly ash was determined by AAS measurements. Further characterization included estimation of oxides by XRF, structural properties by XRD, topographical features by SEM, surface functional groups by FT-IR, surface area and pore dimensions by BET N2-adsorption isotherms. The efficiency of the materials as environmental oxidation catalysts were tested with respect to destruction of 4-chlorophenol (4-CP) in water in the presence of hydrogen peroxide. Considered as one of the most persistent, toxic and largely applied organic compound, 4-CP enters water from the effluents of petrochemical, plastic, pesticide, kraft mill and other organochemical industries and research centers. Wet oxidation of 4-CP was tested by varying the mole ratio of 4-CP and H2O2, catalyst load, temperature, reaction time, 4-CP concentration and pH. Oxidation of 4-CP (5 × 10(-3) M or 643 mg L(-1)) was 51.1% for Mn(II)-fly ash, 58.3% for Co(II)-fly ash and 61.0% for Ni(II)-fly ash after 180 min at 323 K with 4-CP: H2O2 mole ratio of 1:1. COD load of the reaction mixture (4-CP: 5 × 10(-3) M, H2O2: 5 × 10(-3) M, catalyst load: 1.0 g L(-1), temperature 323 K, reaction time 0-240 min) decreased from 1480 to 620, 380, and 140 mg L(-1) respectively after oxidation with Mn(II)-fly ash, Co(II)-fly ash and Ni(II)-fly ash (overall COD reduction was 58.0, 74.3 and 90.5% respectively). The oxidation followed second order kinetics with the average rate coefficient of 7.9, 1.3 and 1.2 L mol(-1) min(-1) for Mn(II)-, Co(II)- and Ni(II)-fly ash. Increase in H2O2: 4-CP mole ratio from 1:1 to 20:1 (reaction time 300 min, catalyst load 1.0 g L(-1)) enhanced destruction from 52.1 to 95.6% for Mn(II)-fly ash, 58.3-95.6% for Co(II)-fly ash and from 60.4 to

  2. Chromomycin dimer-DNA oligomer complexes. Sequence selectivity and divalent cation specificity.

    PubMed

    Gao, X L; Patel, D J

    1990-12-11

    This paper reports on a solution NMR characterization of the sequence selectivity and metal ion specificity in chromomycin-DNA oligomer complexes in the presence of divalent cations. The sequence selectivity studies have focused on chromomycin complexes with the self-complementary d(A1-A2-G3-G4-C5-C6-T7-T8) duplex containing a pair of adjacent (G3-G4).(C5-C6) steps and the self-complementary d(A1-G2-G3-A4-T5-C6-C7-T8) duplex containing a pair of separated (G2-G3).(C6-C7) steps in aqueous solution. The antitumor agent (chromomycin) and nucleic acid protons have been assigned following analysis of distance connectivities in NOESY spectra and coupling connectivities in DQF-COSY spectra for both complexes in H2O and D2O solution. The observed intermolecular NOEs establish that chromomycin binds as a Mg(II)-coordinated dimer [1 Mg(II) per complex] and contacts the minor-groove edge with retention of 2-fold symmetry centered about the (G3-G4-C5-C6).(G3-G4-C5-C6) segment of the d(A2G2C2T2) duplex. By contrast, complex formation is centered about the (G2-G3-A4-T5).(A4-T5-C6-C7) segment and results in removal of the two fold symmetry of the d(AG2ATC2T) duplex. Thus, the binding of one subunit of the chromomycin dimer at its preferred (G-G).(C-C) site assists in the binding of the second subunit to the less preferred adjacent (A-T).(A-T) site. These observations suggest a hierarchy of chromomycin binding sites, with a strong site detected at the (G-G) step due to the hydrogen-bonding potential of acceptor N3 and donor NH2 groups of guanosine that line the minor groove. The divalent cation specificity has been investigated by studies on the symmetric chromomycin-d(A2G2C2T2) complex in the presence of diamagnetic Mg(II), Zn(II), and Cd(II) cations and paramagnetic Ni(II) and Co(II) cations. A comparative NOESY study of the Mg(II) and Ni(II) symmetric complexes suggests that a single tightly bound divalent cation aligns the two chromomycins in the dimer through coordination to

  3. The advantage of spectrophotometric measurement for size-selective complexing of Cu(II) with O₂N₂-azacrown ligands.

    PubMed

    Ghanbari, Bahram; Gholamnezhad, Parisa

    2015-03-15

    A comparative investigation of the interaction of Cu(II) with a series of 15- to 19-membered mixed-donor dibenzo-substituted macrocyclic ligands, each incorporating an O2N2-donor set, has been carried out using UV-Visible studies in methanol. Although a ring size effect has been reported for a related series of Ni(II) complexes, no such metal ion discrimination has been reported for Cu(II) in terms of its binding constants with 14- to 17-membered macrocycles. Employing Job's method of continuous variation established 1:1 stoichiometry for the interaction between Cu(II) and 1-5. From UV-Visible studies applying the Benesi-Hildebrand equation, the binding constants (K) of Cu(II) with 1-5 were determined to be Cu(II)/1=3330 (±321) dm(3) mol(-1), Cu(II)/2=33,700 (±71) dm(3) mol(-1), Cu(II)/3=7260 (±151) dm(3) mol(-1), Cu(II)/4=57,000 (±257) dm(3) mol(-1) and Cu(II)/5=13,900 (±398) dm(3) mol(-1) in methanol at 25°C, respectively. The calculated binding constants showed a saw-tooth pattern in which 4 (18-membered ring) gives the highest K value for these complexes. The thermodynamic parameters (ΔG, ΔH, and TΔS) of the respective complexes have also been determined.

  4. Preparation, spectral and biological investigation of formaldehyde-based ligand containing piperazine moiety and its various polymer metal complexes.

    PubMed

    Khan, Shamim Ahmad; Nishat, Nahid; Parveen, Shadma; Rasool, Raza

    2011-10-15

    A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, (1)H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand. PMID:21757398

  5. Preparation, spectral and biological investigation of formaldehyde-based ligand containing piperazine moiety and its various polymer metal complexes

    NASA Astrophysics Data System (ADS)

    Khan, Shamim Ahmad; Nishat, Nahid; Parveen, Shadma; Rasool, Raza

    2011-10-01

    A novel tetradentate salicylic acid-formaldehyde ligand containing piperazine moiety (SFP) was synthesized by condensation of salicylic acid, formaldehyde and piperazine in presence of base catalyst, which was subjected for the preparation of coordination polymers with metal ions like manganese(II), cobalt(II), copper(II), nickel(II) and zinc(II). All the synthesized polymeric compounds were characterized by elemental analysis, IR, 1H NMR and electronic spectral studies. The thermal stability was determined by thermogravimetric analysis and thermal data revealed that all the polymer metal complexes show good thermal stability than their parent ligand. Electronic spectral data and magnetic moment values revealed that polymer metal complexes of Mn(II), Co(II) and Ni(II) show an octahedral geometry while Cu(II) and Zn(II) show distorted octahedral and tetrahedral geometry respectively. The antimicrobial screening of the ligand and coordination polymers was done by using Agar well diffusion method against various bacteria and fungi. It was evident from the data that antibacterial and antifungal activity increased on chelation and all the polymer metal complexes show excellent antimicrobial activity than their parent ligand.

  6. Spectroscopic studies of N-salicyl- N'-2-furanthiocarboxy hydrazine and its 3d metal complexes, new potential antitumour agents

    NASA Astrophysics Data System (ADS)

    Agrawal, Seema; Singh, N. K.

    A new ONS donor ligand, N-salicyl- N'-2-furanthiocarboxy hydrazine (H 2sfth) has been synthesized, characterized by i.r., 1H, 13C NMR and mass spectral studies and its VO(IV), Mn(II), Fe(II), CO(II), Ni(II) and Zn(II) chelates of the types M(Hsfth) 2 and M(sfth) · nH 2O, a new class of antitumour compounds, have been synthesized and authenticated by analytical data and by molar conductance, magnetic susceptibility and spectroscopic methods. Electronic, photoacoustic and Mössbauer spectra indicate highspin octahedral geometry for all the complexes. Infrared and PMR spectral studies imply mononegative tridentate and dinegative tetradentate behaviour of the ligand in 1 : 2 and 1 : 1 (polymeric) deprotonated complexes, respectively, the bonding sites being thione sulphur, phenolate oxygen and hydrazinic nitrogen in the former type and thiolo sulphur, enolic oxygen and both of the hydrazinic nitrogens in the latter type. The X-band ESR spectral data are further suggestive of two nitrogen coordination with a d XY ground state for vanadium in VO(sfth) · H 2O and octahedral geometry for Mn(Hsfth) 2. The ligand and its Cu(II) complex has been tested for antineoplastic activity, a full account of which together with the synthesis and characterization of the latter is to be published [1].

  7. Synthesis, characterization, optical band gap, in vitro antimicrobial activity and DNA cleavage studies of some metal complexes of pyridyl thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.; Bedier, R. A.

    2013-03-01

    A new series of Cr(III), Mn(II), Ni(II), Zn(II) and Hg(II) complexes of Schiff-bases derived from the condensation of 4-(2-pyridyl)-3-thiosemicarbazide and pyruvic acid (H2PTP) have been synthesized and characterized by spectroscopic studies. Schiff-base exhibit thiol-thione tautomerism wherein sulfur plays an important role in the coordination. The coordination possibility of the Schiff-bases towards metal ions have been proposed in the light of elemental analysis, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2PTP is coordinated to the metal ions in a mononegative tridentate manner except in Cr(III) complex in which the ligand exhibits mononegative bidentate manner. The parameters total energy, binding energy, isolated atomic energy, electronic energy, heat of formation, dipole moment, HOMO and LUMO were calculated for the ligand and its complexes. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) of the metal complexes has been calculated. The optical transition energy (Eg) is direct and equals 3.20, 3.27 and 3.26 eV for Cr, Mn and Ni complexes, respectively. The synthesized ligand, in comparison to its metal complexes is screened for its antibacterial activity against the bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results show that the metal complexes be more potent in activity antibacterial than the parent Shciff base ligand towards one or more bacterial species. Finally, the biochemical studies showed that, Mn complex have powerful and complete degradation effect on DNA.

  8. [Carney complex].

    PubMed

    Losada Grande, Eladio José; Al Kassam Martínez, Daniel; González Boillos, Margarita

    2011-01-01

    Carney complex (CNC) is an autosomal dominantly inherited syndrome characterized by spotty skin pigmentation, cardiac and cutaneous myxoma, and endocrine overactivity. Skin pigmentation includes lentigines and blue nevi. Myxomas may occur in breast, skin and heart. Cardiac myxomas may be multiple and occur in any cardiac chamber, and are more prone to recurrence. The most common endocrine gland manifestation is an ACTH-independent Cushing's syndrome due to primary pigmented nodular adrenocortical disease (PPNAD). PPNAD may occur isolated, with no other signs of CNC. Pituitary and thyroid glands and gonads are also involved. The PRKAR1A gene, located in 17 q22-24, encodes type 1A regulatory subunit of protein kinase A. Inactivating germline mutations of this gene are found in 70% of patients with CNC. PRKAR1A is a key component of the c-AMP signaling pathway that has been implicated in endocrine tumorigenesis. Many different mutations have been reported in the PRKAR1A gene. In almost all cases the sequence change was predicted to lead to a premature stop codon and the resultant mutant mRNA was subject to nonsense-mediated mRNA decay. There is no clear genotype-phenotype correlation in patients with CNC. Genetic analysis should be performed in all CNC index cases. All affected patients should be monitored for clinical signs of CNC at least once a year. Genetic diagnosis allows for more effective preparation of more appropriate and effective therapeutic strategies and genetic counseling for patients and gene carriers, and to avoid unnecessary tests to relatives not carrying the gene. PMID:21536508

  9. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base

    NASA Astrophysics Data System (ADS)

    Devi, Jai; Batra, Nisha

    2015-01-01

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 μg/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)ṡH2O complex was found to be most potent antimicrobial agent.

  10. Synthesis, characterization and antimicrobial activities of mixed ligand transition metal complexes with isatin monohydrazone Schiff base ligands and heterocyclic nitrogen base.

    PubMed

    Devi, Jai; Batra, Nisha

    2015-01-25

    Mixed ligand complexes of Co(II), Ni(II), Cu(II) and Zn(II) with various uninegative tridentate ligands derived from isatin monohydrazone with 2-hydroxynapthaldehyde/substituted salicylaldehyde and heterocyclic nitrogen base 8-hydroxyquinoline have been synthesized and characterized by elemental analysis, conductometric studies, magnetic susceptibility and spectroscopic techniques (IR, UV-VIS, NMR, mass and ESR). On the basis of these characterizations, it was revealed that Schiff base ligands existed as monobasic tridentate ONO bonded to metal ion through oxygen of carbonyl group, azomethine nitrogen and deprotonated hydroxyl oxygen and heterocyclic nitrogen base 8-hydroxyquinoline existed as monobasic bidentate ON bonded through oxygen of hydroxyl group and nitrogen of quinoline ring with octahedral or distorted octahedral geometry around metal ion. All the compounds have been tested in vitro against various pathogenic Gram positive bacteria, Gram negative bacteria and fungi using different concentrations (25, 50, 100, 200 μg/mL) of ligands and their complexes. Comparative study of antimicrobial activity of ligands, and their mixed complexes indicated that complexes exhibit enhanced activity as compared to free ligands and copper(II) Cu(LIV)(Q)⋅H2O complex was found to be most potent antimicrobial agent. PMID:25129626

  11. Structural, spectral and biological studies of binuclear tetradentate metal complexes of N 3O Schiff base ligand synthesized from 4,6-diacetylresorcinol and diethylenetriamine

    NASA Astrophysics Data System (ADS)

    Emara, Adel A. A.

    2010-09-01

    The binuclear Schiff base, H 2L, ligand was synthesized by reaction of 4,6-diacetylresorcinol with diethylenetriamine in the molar ratio 1:2. The coordination behavior of the H 2L towards Cu(II), Ni(II), Co(II), Zn(II), Fe(III), Cr(III), VO(IV) and UO 2(VI) ions has been investigated. The elemental analyses, magnetic moments, thermal studies and IR, electronic, 1H NMR, ESR and mass spectra were used to characterize the isolated ligand and its metal complexes. The ligand acts as dibasic with two N 3O-tetradentate sites and can coordinate with two metal ions to form binuclear complexes. The bonding sites are the nitrogen atoms of the azomethine and amine groups and the oxygen atoms of the phenolic groups. The metal complexes exhibit either square planar, tetrahedral, square pyramid or octahedral structures. The Schiff base ligand and its metal complexes were tested against four pathogenic bacteria ( Staphylococcus aureus and Streptococcus pyogenes) as Gram-positive bacteria, and ( Pseudomonas fluorescens and Pseudomonas phaseolicola) as Gram-negative bacteria and two pathogenic fungi ( Fusarium oxysporum and Aspergillus fumigatus) to assess their antimicrobial properties. Most of the complexes exhibit mild antibacterial and antifungal activities against these organisms.