Science.gov

Sample records for nile tilapia fed

  1. Susceptibility of Nile tilapia (Oreochromis niloticus) fed dietary sodium chloride to nitrite toxicity

    USDA-ARS?s Scientific Manuscript database

    Juvenile Nile tilapia (Oreochromis niloticus) were fed diets supplemented with 0 or 6% NaCl for 10 weeks. Tilapia were exposed to approximately 21 mg/l nitrite-N after five and ten weeks of feeding to determine the effect of dietary NaCl supplementation on resistance to nitrite toxicity. Fish were...

  2. Nutrient retention capabilities of Nile tilapia ( Oreochromis niloticus) fed bio-regenerative life support system (BLSS) waste residues

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Brown, Paul B.

    Nile tilapia were evaluated as a bio-regenerative sub-process for reducing solid waste potentially encountered in bio-regenerative life support systems. Ten juvenile Nile tilapia (mean weight = 2.05 g) were stocked into triplicate aquaria and fed one of seven experimental diets consisting of vegetable, bacterial, or food waste for a period of seven weeks. Weight gain (g), specific growth rate (mg/d), and daily consumption (g) was significantly higher ( p < 0.05) in the control group (13.80, 281.60, and 47.49, respectively) followed by the wheat bran/wheat germ group (4.25, 86.87, and 24.24). Carbon and crude lipid retention was significantly higher ( p < 0.001) in fish fed the control diet (37.99 and 68.54, respectively) followed by fish fed the wheat bran/wheat germ diet (23.19 and 63.67, respectively). Nitrogen, sulfur, and crude protein retention was significantly higher ( p < 0.001) in fish fed the wheat bran/wheat germ group (40.73, 98.65, and 40.75, respectively) followed by fish fed the control diet (23.68, 21.89, and 23.68, respectively). A general loss of minerals was observed among all groups. Strong associations were observed between crude lipid retention and sulfur retention ( r2 = 0.94), crude lipid retention and carbon retention ( r2 = 0.92), WG and fiber content of dietary treatments ( r2 = 0.92), WG and carbon retention and ( r2 = 0.88), WG and lysine content of waste residues ( r2 = 0.86), crude protein retention and carbon retention ( r2 = 0.84), sulfur retention and crude protein retention ( r2 = 0.84), and total sulfur amino acid (TSAA) content of residues and WG ( r2 = 0.81). Weaker associations existed between WG and crude lipid retention ( r2 = 0.77), crude fiber content and carbon retention ( r2 = 0.76), and WG and methionine content of waste residues ( r2 = 0.75). Additional research is needed to improve the nutritional quality of fibrous residues as a means to improve tilapia's ability to utilize these residues as a food source in bio

  3. Growth Responses and Resistance to Streptococccus iniae of Nile Tilapia, Oreochromis niloticus Fed Diets Containing Distiller's Dried Grains with Solubles

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the effect of dietary levels of distiller’s dried grains with solubles (DDGS) on growth performance, body composition, hematology, immune response and resistance of Nile tilapia to Streptococcus iniae challenge. Five isocaloric diets containing DDGS at levels of ...

  4. Performance characteristics of Nile Tilapia Oreochromis Niloticus fed diets containing graded levels of distillers dried grains with solubles

    USDA-ARS?s Scientific Manuscript database

    Two feeding trials were performed to investigate levels of dried distiller’s grains with solubles (DDGS) as a supplemental protein source for juvenile Nile tilapia Oreochromis niloticus. In trial 1, three isocaloric (2.32 ± 0.09 kcal/g SE), isonitrogenous (28.03 ± 0.03% protein) experimental diets w...

  5. Growth performance and nutrient composition of juvenile Nile tilapia (Oreochromis niloticus) fed Spirulina flakes, rice bran and mustard oil cake.

    PubMed

    Sultana, N; Noor, P; Abdullah, A T M; Hasan, M R; Ahmed, K M; Naser, M N

    2012-08-01

    Tilapia (Oreochromis niloticus) is an important cultured fish that is widely distributed in Bangladesh. This study was conducted to improve the growth performance and nutrient contents of the fish using five different types of feeds. Tilapia fingerlings were fed two types of commercial fish feeds (Feed-1 and Feed-2), Spirulina flakes (Feed-3), Feed-2 mixed with Spirulina flakes (Feed-4) and manually mixed feed made from a mixture of mustard oil cake and rice bran (Feed-5). After 4 weeks of being fed with the diets, growth parameters and meat nutrient composition of the tilapia fingerlings were recorded. Significant growth in length and weight was observed in juvenile tilapia fish fed with commercial Feed-1 only, while growth performance varied significantly among fingerlings fed other types of feeds. Body tissue calcium (92.8 mg/100 g), iron (1.29 mg/100 g) was higher in fishes fed with dry Spirulina flakes (Feed 3), while the highest amount of zinc (2.09 mg/100 g) was recorded in fishes fed Feed-5. Protein (13.32%) content was highest in fish fed Feed-2 mixed with Spirulina flakes (Feed-4). Meat nutritional quality of tilapia can be improved by combining commercial feeds with Spirulina flakes, compared with feeding commercial feeds in isolation.

  6. Non-specific immune parameters and physiological response of Nile tilapia fed β-glucan and vitamin C for different periods and submitted to stress and bacterial challenge.

    PubMed

    Barros, Margarida Maria; Falcon, Dario Rocha; Orsi, Ricardo de Oliveira; Pezzato, Luiz Edivaldo; Fernandes, Ademir Calvo; Guimarães, Igo Gomes; Fernandes, Ary; Padovani, Carlos Roberto; Sartori, Maria Márcia Pereira

    2014-08-01

    This study attempts to describe the effects of different administration periods of dietary β-glucan and Vit C on the non-specific immune response, physiological parameters and disease resistance of Nile tilapia against Aeromonas hydrophila infection. Therefore, a feeding trial (288 fish) was conducted to determine the best administration period (7, 15, 30 and 45 days) for a Nile tilapia diet supplemented with 0.1% β-glucan and 600 mg Vit C/kg diet. After the administration period, three different groups of 96 fish were exposed to one of the following three stresses: cold-induced stress, transport-induced stress, and A. hydrophila challenge. Hematological, biochemical and immunological responses were analyzed before and/or after stress. Cold-induced stress increased cortisol levels and reduced the leukocyte count in fish fed the test diet for seven days compared with the other periods. After transport-induced stress, fish fed the test diet for seven days required more hours to return to the baseline levels of cortisol and neutrophils. Moreover, independently of the administration period, fish needed 24 h for leukocyte and glucose levels to return to the initial values. The lowest survival after bacterial infection was observed in fish test diet for seven days. Based on fish hematological and biochemical responses, diet supplemented with 0.1% of β-glucan and 600 mg of Vit C/kg fed for at least 15 days is recommended for Nile tilapia especially when fish are likely to encounter transport-induced stress, and this stress was more severe than cold-induced stress or bacterial challenge.

  7. Control of voluntary feed intake in fish: a role for dietary oxygen demand in Nile tilapia (Oreochromis niloticus) fed diets with different macronutrient profiles.

    PubMed

    Saravanan, S; Geurden, I; Figueiredo-Silva, A C; Kaushik, S J; Haidar, M N; Verreth, J A J; Schrama, J W

    2012-10-28

    It has been hypothesised that, at non-limiting water oxygen conditions, voluntary feed intake (FI) in fish is limited by the maximal physiological capacity of oxygen use (i.e. an 'oxystatic control of FI in fish'). This implies that fish will adjust FI when fed diets differing in oxygen demand, resulting in identical oxygen consumption. Therefore, FI, digestible energy (DE) intake, energy balance and oxygen consumption were monitored at non-limiting water oxygen conditions in Nile tilapia fed diets with contrasting macronutrient composition. Diets were formulated in a 2 × 2 factorial design in order to create contrasts in oxygen demand: two ratios of digestible protein (DP):DE ('high' v. 'low'); and a contrast in the type of non-protein energy source ('starch' v. 'fat'). Triplicate groups of tilapia were fed each diet twice daily to satiation for 48 d. FI (g DM/kg(0·8) per d) was significantly lower (9·5%) in tilapia fed the starch diets relative to the fat diets. The DP:DE ratio affected DE intakes (P < 0·05), being 11% lower with 'high' than with 'low' DP:DE ratio diets, which was in line with the 11·9% higher oxygen demand of these diets. Indeed, DE intakes of fish showed an inverse linear relationship with dietary oxygen demand (DOD; R 2 0·81, P < 0·001). As hypothesised ('oxystatic' theory), oxygen consumption of fish was identical among three out of the four diets. Altogether, these results demonstrate the involvement of metabolic oxygen use and DOD in the control of FI in tilapia.

  8. Acute inflammation and hematological response in Nile tilapia fed supplemented diet with natural extracts of propolis and Aloe barbadensis.

    PubMed

    Dotta, G; Ledic-Neto, J; Gonçalves, E L T; Brum, A; Maraschin, M; Martins, M L

    2015-05-01

    This study evaluated the acute inflammatory response induced by carrageenin in the swim bladder of Nile tilapia supplemented with the mixture of natural extracts of propolis and Aloe barbadensis (1:1) at a concentration of 0.5%, 1% and 2% in diet during 15 days. Thirty-six fish were distributed into four treatments with three replicates: fish supplemented with 0.5% of admix of extracts of propolis and Aloe (1:1) injected with 500 µg carrageenin; fish supplemented with 1% of admix of extracts of propolis and Aloe (1:1) injected with 500 µg carrageenin; fish supplemented with 2% of admix of extracts of propolis and Aloe (1:1), injected with 500 µg carrageenin and unsupplemented fish injected with 500 µg carrageenin. Six hours after injection, samples of blood and exudate from the swim bladder of fish were collected. It was observed an increase in the leukocyte count in the swim bladder exudate of fish supplemented with extracts of propolis and Aloe injected with carrageenin. The most frequent cells were macrophages followed by granular leukocytes, thrombocytes and lymphocytes. Supplementation with propolis and Aloe to 0.5% caused a significant increase in the number of cells on the inflammatory focus mainly macrophages, cells responsible for the phagocytic activity in tissues, agent of innate fish immune response.

  9. Leukocyte phagocytosis and lysozyme activity in Nile tilapia fed supplemented diet with natural extracts of propolis and Aloe barbadensis.

    PubMed

    Dotta, Geovana; de Andrade, Jaqueline Inês Alves; Tavares Gonçalves, Eduardo Luiz; Brum, Aline; Mattos, Jacó Joaquim; Maraschin, Marcelo; Martins, Maurício Laterça

    2014-08-01

    Although there is evidence on the benefits in the use of immunostimulants in aquaculture, there are few commercial products being used. This study evaluated the use of natural substances as potential sources for the production of immunostimulants. Propolis and Aloe barbadensis have been widely studied and its extracts have different chemical constituents responsible for antimicrobial, anti-inflammatory and immunostimulant. Tilapia juveniles were fed for two weeks with diets supplemented mix of propolis extracts and aloe (1:1) in different concentrations: 0.5, 1 e 2%. After the experimental period, fish blood was collected for hematoimmunological as follows : hematocrit, total plasma protein, erythrocytes (RBC), leukocytes (WBC), differential leukocyte count, phagocytic activity, serum lysozyme activity, and serum antimicrobial activity, serum antimicrobial activity (evaluated against Aeromonas hydrophila, Enterococcus durans and Escherichia coli). Except for higher number of thrombocytes in 1%-supplemented fish, the rest did not show significant difference. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of NovaSil dietary supplementation on the growth and health performance of Nile tilapia (Oreochromis niloticus) fed aflatoxin-B1 contaminated feed

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to evaluate the ability of NovaSil (NS) clay to sorb and mitigate the toxic effects of aflatoxin B1 (AFB1) in Nile tilapia (Oreochromis niloticus). Growth performance, specific innate immunological function, intestinal microbial community, and histology were evaluate...

  11. Growth, nutrient utilization and parameters of mineral metabolism in Nile tilapia Oreochromis niloticus (Linnaeus, 1758) fed plant-based diets with graded levels of microbial phytase.

    PubMed

    Portz, L; Liebert, F

    2004-10-01

    Diets with graded levels of the experimental microbial phytase SP1002 (0, 500, 1000, 2000 and 4000 FTU/kg) were fed to juvenile Nile tilapia (average BW = 68.8 g) for 60 days (n = 4). A digestibility trial ran parallel to the growth trial using 0.3 g TiO2/100 g as an indigestible marker. The efficiency of phytase supplementation was evaluated by parameters of growth response, crude protein and mineral utilization (using body composition data), apparent nutrient digestibility, mineral content in scale and vertebra and inorganic phosphorus in blood plasma. Data were submitted to ANOVA and Tukey-test using SAS-program. Significant improvements (p < 0.01) were found for growth, FCR and SGR, mainly for diets with 1000 and 2000 FTU/kg phytase supplementation. Protein utilization was significantly increased and maximized between 1000 and 2000 FTU/kg. Phosphorus utilization increased significantly up to 4000 FTU/kg. Digestibility of protein and phosphorus was also significantly improved. Phosphorus concentration in the blood, vertebra and scale increased significantly after phytase addition. Similarly, calcium and magnesium concentration in vertebra and scale were increased. Generally, phytase supplementation between 1000 and 2000 FTU/kg resulted in growth rates and mineralization parameters similar to a control diet with inorganic phosphorus.

  12. Diet supplemented with probiotic for Nile tilapia in polyculture system with marine shrimp.

    PubMed

    Jatobá, Adolfo; Vieira, Felipe do Nascimento; Buglione-Neto, Celso Carlos; Mouriño', José Luiz Pedreira; Silva, Bruno Corrêa; Seiftter, Walter Quadros; Andreatta, Edemar Roberto

    2011-12-01

    The aim of this study was to assess the effect of a probiotic (Lactobacillus plantarum) supplemented diet on Nile tilapia (Oreochromis niloticus) in a polyculture system with marine shrimp (Litopenaeus vannamei) as regards culture performance, hematology, and gut bacterial microbiota. Ten 20-m² pens were arranged in one earthen pond and stocked with 2 fish (41.9 g) m(-2) and 10 shrimp (2.3 g) m(-2), in total of 40 Nile tilapias and 200 shrimp per experimental unit. Tilapia groups in five of the experimental units were fed a commercial diet supplemented with L. plantarum and the other five with an unsupplemented commercial diet (control). After 12 weeks of culture, the tilapia groups fed the probiotic-supplemented diet presented values 13.6, 7.5, and 7.1% higher for feed efficiency, yield, and final weight, respectively. Viable culturable heterotrophic bacteria counts were reduced, and the number of lactic acid bacteria was increased in the gut of fish and shrimp fed the probiotic-supplemented diet. Hematological analyses showed higher number of thrombocytes and leukocytes in tilapia fed the supplemented diet. L. plantarum utilized in this study colonized the gut of tilapia and shrimp and resulted in reduced number of total bacteria and increased tilapia final weight and feed efficiency.

  13. Nile tilapia and blue tilapia fry production in a subtropical climate

    USDA-ARS?s Scientific Manuscript database

    The relationship between production in earthen ponds located in a subtropical climate of fry suitable for hormonal sex inversion and degree-days was quantified for Nile tilapia (Oreochromis niloticus; Egypt strain) and blue tilapia (O. aureus). Degree-days were calculated for each trial as the sum o...

  14. Growth response and resistance to Streptococcus iniae of Nile tilapia, Oreochromis niloticus, fed diets containing different levels of wheat distiller dried grains with solubles with or without lysine supplementation

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the effect of dietary levels of wheat distiller’s dried grains with solubles (DDGS) with or without lysine supplementation on growth, body composition, hematology, immune response, and resistance of Nile tilapia, Oreochromis niloticus, to Streptococcus iniae challen...

  15. Determination of florfenicol dose rate in feed for control of mortality in nile tilapia Oreochromis nilotica infected with streptococcus iniae

    USDA-ARS?s Scientific Manuscript database

    A dose titration study was conducted to determine the dosage of florfenicol (FFC) in feed to control Streptococcus iniae-associated mortality in Nile tilapia Oreochromis niloticus. Six tanks were assigned to each of five treatments: (1) not challenged with S. iniae and fed unmedicated feed; (2) chal...

  16. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus).

    PubMed

    Evans, Joyce J; Klesius, Phillip H; Pasnik, David J; Bohnsack, John F

    2009-05-01

    Streptococcus agalactiae, the Lancefield group B streptococcus (GBS) long recognized as a mammalian pathogen, is an emerging concern with regard to fish. We show that a GBS serotype Ia multilocus sequence type ST-7 isolate from a clinical case of human neonatal meningitis caused disease and death in Nile tilapia (Oreochromis niloticus).

  17. Substratum choice for nesting in male Nile tilapia Oreochromis niloticus.

    PubMed

    Mendonça, F Z; Volpato, G L; Costa-Ferreira, R S; Gonçalves-de-Freitas, E

    2010-10-01

    Four substrata were offered to groups of adult Nile tilapia Oreochromis niloticus (one male and two females) simultaneously: pure sand, a mixture of sand and shells, stones and no substratum. The results showed that males chose to dig nests in a lighter and more homogeneous substratum.

  18. Environmental color affects Nile tilapia reproduction.

    PubMed

    Volpato, G L; Duarte, C R A; Luchiari, A C

    2004-04-01

    We investigated the effects of environmental color on the reproductive behavior of Nile tilapia, Oreochromis niloticus. Two environmental colors were tested by covering the aquarium (60 x 60 x 40 cm) with white (12 groups) or blue (13 groups) cellophane and observing reproductive behavior in groups of 2 males (10.27 +/- 0.45 cm) and 3 females (10.78 +/- 0.45 cm) each. After assignment to the respective environmental color (similar luminosity = 100 to 120 Lux), the animals were observed until reproduction (identified by eggs in the female's mouth) or up to 10 days after the first nest building. Photoperiod was from 6:00 h to 18:00 h every day. Food was offered in excess once a day and water quality was similar among aquaria. Daily observations were made at 8:00, 11:00, 14:00 and 17:00 h regarding: a) latency to the first nest, b) number of nests, c) gravel weight removed (the male excavates the nest in the bottom of the aquarium), d) nest area, and e) mouthbrooding incubation (indication of reproduction). The proportion of reproducing fish was significantly higher (6 of 13) in the group exposed to the blue color compared the group exposed to the white color (1 of 12; Goodman's test of proportions). Moreover, males under blue light removed significantly larger masses of gravel (blue = 310.70 +/- 343.50 g > white = 130.38 +/- 102.70 g; P = 0.01) and constructed wider nests (blue = 207.93 +/- 207.80 cm(2) > white = 97.68 +/- 70.64 cm(2); P = 0.03) than the control (white). The other parameters did not differ significantly between light conditions. We concluded that reproduction in the presence of blue light was more frequent and intense than in the presence of white light.

  19. Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus).

    PubMed

    Saputra, Febriyansyah; Shiu, Ya-Li; Chen, Yo-Chia; Puspitasari, Asthervina Widyastami; Danata, Ridha Handriany; Liu, Chun-Hung; Hu, Shao-Yang

    2016-11-01

    Bacillus amyloliquefaciens has attracted attention as a probiotic in aquaculture due to its immunostimulatory activity against pathogenic infection. Xylanases are extensively used in animal feed to degrade plant ingredients, enhancing nutrient utilization and increasing the growth rate of various animals. In the present study, the effects of dietary supplementation with B. amyloliquefaciens and xylanase-expressing B. amyloliquefaciens R8 on the growth of Nile tilapia (Oreochromis niloticus) and immunity against Aeromonas hydrophila were evaluated. The results showed that the xylanase activity in the intestine, weight gain (WG), feed efficiency (FE) and condition factor (CF) of Nile tilapia fed B. amyloliquefaciens R8 for 2 months were significantly increased compared with those of the fish fed the control diet and B. amyloliquefaciens. Moreover, the mRNA expression of growth- and metabolism-related genes, such as insulin-like growth factor-1 (igf-1), glucokinase (GK), glucose-6-phosphate 1-dehydrogenase (G6PD), and glucose-6-phosphatase (G6Pase), was significantly induced in Nile tilapia fed administered B. amyloliquefaciens R8, and this group also exhibited a higher survival rate than the control fish following a challenge with A. hydrophila. The phagocytic activity and respiratory burst activity of head kidney leukocytes as well as the serum lysozyme activity of B. amyloliquefaciens R8-fed Nile tilapia were significantly higher than those of fish fed the control diet for 2 months. Superoxide dismutase (SOD) levels in the head kidney leukocytes of Nile tilapia fed B. amyloliquefaciens R8 differed from those of fish fed the control diet, but this was not significant. These results indicate that dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity and disease resistance against A. hydrophila in Nile tilapia.

  20. Masculinization of Nile tilapia (Oreochromis niloticus) by immersion in androgens

    USGS Publications Warehouse

    Gale, W.L.; Fitzpatrick, M.S.; Lucero, M.; Contreras-Sanchez, W.M.; Schreck, C. B.

    1999-01-01

    The use of all-male populations increases the efficiency and feasibility of tilapia aquaculture. The objective of this study was to determine the efficacy of a short-term immersion procedure for masculinizing Nile tilapia (Oreochromis niloticus). Two synthetic androgens were evaluated: 17α-methyldihydrotestosterone (MDHT) and 17α-methyltestosterone (MT). Exposure (3 h) on 10 and again on 13 days post-fertilization to MDHT at 500 μg/1 successfully masculinized fry in all experiments, resulting in 100, 94 and 83 ± 2% males in Experiments 1, 2 and 3, respectively. Immersions in MDHT or MT at 100 μg/1 resulted in significantly skewed sex ratios in Experiments 1 and 3 (MT resulted in 73 and 83 ± 3% males; and MDHT resulted in 72 and 91 ± 1% males) but not in Experiment 2. Immersion in MT at 500 μg/1 only caused masculinization in Experiment 3. Although further research and refinement is needed, immersion of Nile tilapia in MDHT may provide a practical alternative to the use of steroid-treated feed. Furthermore, when compared with current techniques for steroid-induced sex inversion of tilapia, short-term immersion reduces the period of time that workers are exposed to anabolic steroids.

  1. Incorporation of conjugated fatty acids into Nile tilapia (Oreochromis niloticus).

    PubMed

    Bonafé, Elton G; de Figueiredo, Luana C; Martins, Alessandro F; Monteiro, Johny P; Junior, Oscar Os; Canesin, Edmilson A; Maruyama, Swami Arêa; Visentainer, Jesuí V

    2017-08-01

    The aim of this work was to improve the nutritional quality of Nile tilapia meat through enriched diets with conjugated isomers of linolenic acid from tung oil. The transfer process of conjugated fatty acids (CFAs) into fish muscle tissue was evaluated by gas chromatography-flame ionization detection (GC-FID) and easy ambient sonic-spray ionization mass spectrometry (EASI-MS). The results showed that conjugated fatty acids were transferred from enriched diet for muscle tissue of Nile tilapia. Conjugated linoleic acids biosynthesis from conjugated linolenic acids was also observed after 10 days. Other important fatty acids such as docosahexaenoic (DHA), eicosapentaenoic (EPA) and arachidonic (AA) acids were also identified over time; however, DHA showed the highest concentration when compared with EPA and AA compounds. Therefore, the nutritional quality of Nile tilapia was improved through feeding with enriched diets. The ingestion of these fish may contribute to reaching adequate levels of daily CFA consumption. Furthermore, other important substances which play an important role in human metabolism, such as EPA, DHA and AA, can also be ingested together with CFA. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.).

    PubMed

    Tattiyapong, Puntanat; Dachavichitlead, Worawan; Surachetpong, Win

    2017-08-01

    Since 2015, a novel orthomyxo-like virus, tilapia lake virus (TiLV) has been associated with outbreaks of disease and massive mortality of cultured Nile and red tilapia (Oreochromis niloticus and Oreochromis spp., respectively) in Thailand. In this study, TiLV was isolated from field samples and propagated in the permissive E-11 cell line, with cytopathic effect (CPE) development within 3-5days post-inoculation. Electron micrographs of infected E-11 cells and fish tissues confirmed the rounded, enveloped virions of 60 to 80nm with characteristics very similar to those of Orthomyxoviridae. In vivo challenge studies showed that high mortality in Nile (86%) and red tilapia (66%) occurred within 4-12days post-infection. The virus was re-isolated from challenged fish tissues in the permissive cell line, and PCR analysis confirmed TiLV as a causative pathogen. The distinct histopathology of challenged fish included massive degeneration and inflammatory cell infiltration in the liver and brain as well as the presence of eosinophilic intracytoplasmic inclusions in hepatocytes and splenic cells. Our results fulfilled Koch's postulates and confirmed that TiLV is an etiologic agent of mass mortality of tilapia in Thailand. The emergence of this virus in many countries has helped increase awareness that it is a potential threat to tilapia aquacultured in Thailand, Asia, and worldwide. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections

    USDA-ARS?s Scientific Manuscript database

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  4. Aggression and mortality among Nile tilapia (Oreochromis niloticus) maintained in the laboratory at different densities

    USDA-ARS?s Scientific Manuscript database

    Because Nile tilapia (Oreochromis niloticus) density may affect stress levels, metabolism, and survival among tilapia in experimental studies and thus may affect experimental results, tilapia were held in a commonly-used commercial tank system to assess the relationship between fish density and beha...

  5. Effects of dietary genistein on GH/IGF-I axis of Nile tilapia Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2016-09-01

    There is considerable concern that isoflavones, such as genistein in fish feed composed of soybean protein, aff ects somatic growth in fish. Our previous works demonstrated that 30 and 300 μg/g dietary genistein had no significant eff ect on growth performance in Nile tilapia ( Oreochromis niloticus), but the higher level of genistein (3 000 μg/g) significantly depressed growth. This study was conducted to further examine the eff ects of dietary genistein on the endocrine disruption on growth hormone/insulin-like growth factor-I (GH/IGF-I) axis in Nile tilapia ( O. niloticus). Juvenile fish were fed by hand twice daily to satiation with one of four isonitrogenous and isoenergetic diets, each containing either 0, 30, 300 or 3 000 μg/g genistein. Following an 8-week feeding period, plasma GH and IGF-I levels were investigated by radioimmunoassay and gene expression levels of gh, ghrelin, gnrhs, ghr, npy, npyrs, pacap, ghrs, i gf-I, igf-Ir, and igfbp3 were examined by real-time PCR. The results show that no significant change in plasma GH and IGF-I levels in fish fed with diets containing 30 μg/g and 300 μg/g genistein. mRNA expression of genes along the GH/IGF-I axis remained unaff ected, except for igf-Ir, which was stimulated by the 300 μg/g genistein diet. While in fish fed the 3 000 μg/g genistein diet, the plasma GH and IGF-I levels decreased, and mRNA expression of gh, ghr2, npyr1, igf-I, and igf-Ir were also significantly depressed. In contrast, npy and igfbp3 mRNA expression were enhanced. This study provides convincing evidence for growth impediment by genistein by disturbing the GH/IGF-I axis in Nile tilapia O. niloticus.

  6. Impact of introduced Nile tilapia (Oreochromis niloticus) on non-native aquatic ecosystems.

    PubMed

    Vicente, I S T; Fonseca-Alves, C E

    2013-02-01

    The global invasion of non-native aquatic ecosystems by Nile tilapia (Oreochromis niloticus) is well documented and coincides with their increased use as an aquaculture species. Aquaculture can be defined as the farming of fish or other aquatic organisms and it varies considerably in terms of production practices. Generally, freshwater finfish, such as Nile tilapia, are reared in inland ponds (closed systems). However, in several countries, floating cages are increasingly used to rear Nile tilapia in open water bodies. In such systems, escape is inevitable. The Nile tilapia is considered an omnivorous species and it ingests zooplankton, phytoplankton, or debris present in rivers. As a consequence, the release of Nile tilapia into non-native aquatic ecosystems may result in competition for food and space, thereby damaging native species. The wide environmental tolerance and high reproductive rate of Nile tilapia facilitate its use for aquaculture, but also render the species highly invasive. Here, we review the high frequency of Nile tilapia in non-native biodiversity and indicate the existence of the species under feral conditions in every country in which it has been introduced through farming systems.

  7. Thermal preference predicts animal personality in Nile tilapia Oreochromis niloticus.

    PubMed

    Cerqueira, Marco; Rey, Sonia; Silva, Tome; Featherstone, Zoe; Crumlish, Margaret; MacKenzie, Simon

    2016-09-01

    Environmental temperature gradients provide habitat structure in which fish orientate and individual thermal choice may reflect an essential integrated response to the environment. The use of subtle thermal gradients likely impacts upon specific physiological and behavioural processes reflected as a suite of traits described by animal personality. In this study, we examine the relationship between thermal choice, animal personality and the impact of infection upon this interaction. We predicted that thermal choice in Nile tilapia Oreochromis niloticus reflects distinct personality traits and that under a challenge individuals exhibit differential thermal distribution. Nile tilapia were screened following two different protocols: 1) a suite of individual behavioural tests to screen for personality and 2) thermal choice in a custom-built tank with a thermal gradient (TCH tank) ranging from 21 to 33 °C. A first set of fish were screened for behaviour and then thermal preference, and a second set were tested in the opposite fashion: thermal then behaviour. The final thermal distribution of the fish after 48 h was assessed reflecting final thermal preferendum. Additionally, fish were then challenged using a bacterial Streptococcus iniae model infection to assess the behavioural fever response of proactive and reactive fish. Results showed that individuals with preference for higher temperatures were also classified as proactive with behavioural tests and reactive contemporaries chose significantly lower water temperatures. All groups exhibited behavioural fever recovering personality-specific thermal preferences after 5 days. Our results show that thermal preference can be used as a proxy to assess personality traits in Nile tilapia and it is a central factor to understand the adaptive meaning of animal personality within a population. Importantly, response to infection by expressing behavioural fever overrides personality-related thermal choice.

  8. Acute hypoxia-reperfusion triggers immunocompromise in Nile tilapia.

    PubMed

    Choi, K; Lehmann, D W; Harms, C A; Law, J M

    2007-06-01

    Inadequate dissolved oxygen in the aquatic environment is a well-established cause of fish morbidity and mortality. The specific effects of hypoxia on immune function in fish, however, are not well characterized. In this study, the effects of acute hypoxia followed by reoxygenation (rapid tissue reperfusion) as a source of immunocompromise in Nile tilapia Oreochromis niloticus were investigated. Using a precision apparatus developed in our laboratory for hypoxia exposures, a series of assays of increasing specificity for immune function were performed on acutely hypoxia-stressed Nile tilapia: tier I consisted of histopathology, tier II of hematology, plasma chemistry, and determining cortisol concentration, and tier III of determining the phagocytic index and analyzing the expression of the cytokines transforming growth factor-beta (TGF-beta) and interleukin-1beta (IL-1beta). Nile tilapia were exposed to 7% oxygen saturation for 96 h, then tank water was rapidly reoxygenated. Sampling intervals were 48 and 96 h during hypoxia and 12 and 84 h during reperfusion. Histopathology showed no remarkable microscopic abnormalities in lymphoid or other tissues. Lymphopenia and neutrophilia were observed in peripheral blood. Plasma total protein, partial pressure of oxygen, and oxygen saturation were decreased in response to hypoxia. Plasma lipase decreased in response to hypoxia but returned to normal during reperfusion. Phagocytic capability and the phagocytic index decreased during hypoxia and 12 h reperfusion, whereas these values were recovered by 84 h reperfusion. The TGF-beta transcription continued to increase during the exposures, the greatest production being at 12 h reperfusion, whereas IL-1beta transcription decreased in response to hypoxia and reperfusion. We conclude that acute hypoxia triggered an overall downregulation of the immune system in the test fish. This suggests a possible factor in the pathogenesis of disease outbreaks in fish in which repeated

  9. Effects of dietary levels of vitamin A on growth, hematology, immune response and resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to evaluate the effect of supplemental levels of vitamin A (0, 2,500, 5,000, 10,000, and 20,000 IU/kg diet) on the growth performance, hematology, immune response and resistance of Nile tilapia, Oreochromis niloticus to Streptococcus iniae challenge. Each diet was fed to Nil...

  10. Production of oocytes of Nile tilapia (Oreochromis niloticus) for in vitro fertilization via hormonal treatments.

    PubMed

    Fernandes, A F A; Alvarenga, É R; Oliveira, D A A; Aleixo, C G; Prado, S A; Luz, R K; Sarmento, N L A F; Teixeira, E A; Luz, M R; Turra, E M

    2013-12-01

    Only a few studies have described hormonal treatments for induction of synchronicity and gamete collection in Nile tilapia (Oreochromis niloticus), both important for assortative matings in breeding programmes and essential for polyploidy technologies. In this study, we compared the effectiveness of carp pituitary extract (CPE), Nile tilapia pituitary extract (TPE), human chorionic gonadotropin (hCG) and gonadotropin-releasing hormone (GnRH) protocols on the induction of spawning and egg production in Nile tilapia. Among the hormonal treatments analysed, only hCG was effective for producing viable gametes for in vitro fertilization. To verify the viability of this hormonal treatment, hCG was tested using different doses (1000, 2000, 3000, 4000 and 5000 IU/kg) in a large number of females (208 animals) from two Nile tilapia lines. The results indicated that hCG doses between 1000 and 5000 IU/kg could be used to induce final oocyte maturation in Nile tilapia with collection of stripped oocytes. This is the first study to report differential reproductive responses to hormonal treatment between tilapia lines: line 1 was more efficient at producing eggs and post-hatching larvae after hCG induction than line 2. In conclusion, we demonstrated that the hCG protocol may be applied on a large scale to induce final oocyte maturation in Nile tilapia. The development of a protocol for in vitro fertilization in Nile tilapia may aid in breeding programmes and biotechnological assays for the development of genetically modified lines of Nile tilapia. © 2013 Blackwell Verlag GmbH.

  11. Body composition and compensatory growth in Nile tilapia Oreochromis niloticus under different feeding intervals

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Wang, Ziwei; Hur, Jun-wook; Lee, Jeong-Yeol

    2015-07-01

    We investigated the growth and body composition of Nile tilapia under five different feeding regimes. A control group was fed to satiation twice daily for 185 days; four treatment groups were fed at intervals of 2, 3, 4 or 7 days (dietary `restricted' period, days 0-80) and then fed to satiation (`refeeding' period, days 80-185). Compensatory growth in weight and length of the feed-restricted groups was observed during the refeeding period. However, the growth of none of the restricted groups caught up with that of the control group over the experimental period. Feed intake upon refeeding increased with the duration of deprivation. There were no significant differences in feed efficiency between the restricted and control groups during the refeeding stage, suggesting that hyperphagia was the mechanism responsible for the increased growth rates during this period. Tilapia preferentially used n-3 polyunsaturated fatty acids and nonessential amino acids during the restricted-feeding period. Higher production was achieved by higher feed consumption. We suggest that if attainment of market size in minimum time is required, fish should be consistently fed to satiation, while taking care to avoid the possible negative consequences of overfeeding.

  12. The effects of composting on the nutritional composition of fibrous bio-regenerative life support systems (BLSS) plant waste residues and its impact on the growth of Nile tilapia ( Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Lowry, Brett A.; Brown, Paul B.; Beyl, Caula A.; Nyochemberg, Leopold

    2009-04-01

    Utilization of bio-regenerative life support systems (BLSS) plant waste residues as a nutritional source by Nile tilapia ( Oreochromis niloticus) has proven problematic as a result of high concentrations of fibrous compounds in the plant waste residues. Nutritional improvement of plant waste residues by composting with the oyster mushroom ( Pleurotus ostreatus), and the effects on growth and nutrient utilization of Nile tilapia fed such residues were evaluated. Five Nile tilapia (mean weight = 70.9 ± 3.1 g) were stocked in triplicate aquaria and fed one of two experimental diets, cowpea (CP) and composted cowpea (CCP), twice daily for a period of 8 weeks. Composting of cowpea residue resulted in reduced concentrations of nitrogen-free extract, hemi-cellulose and trypsin inhibitor activity, though trypsin inhibitor activity remained high. Composting did not reduce crude fiber, lignin, or cellulose concentrations in the diet. No significant differences ( P < 0.05) were observed in weight gain, specific growth rate, survival rate, daily consumption, and food conversion ratio between tilapia fed CP and CCP. These results suggest that P. ostreatus is not a suitable candidate for culture in conjunction with the culture of Nile tilapia. Additional work is needed to determine what, if any, benefit can be obtained from incorporating composted residue as feed for Nile tilapia.

  13. A comparative study of the metabolic response in rainbow trout and Nile tilapia to changes in dietary macronutrient composition.

    PubMed

    Figueiredo-Silva, A Cláudia; Saravanan, Subramanian; Schrama, Johan W; Panserat, Stéphane; Kaushik, Sadasivam; Geurden, Inge

    2013-03-14

    Metabolic mechanisms underlying the divergent response of rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus) to changes in dietary macronutrient composition were assessed. Fish were fed one of four isoenergetic diets having a digestible protein-to-digestible energy (DP:DE) ratio above or below the optimal DP:DE ratio for both species. At each DP:DE ratio, fat was substituted by an isoenergetic amount of digestible starch as the non-protein energy source (NPE). Dietary DP:DE ratio did not affect growth and only slightly lowered protein gains in tilapia. In rainbow trout fed diets with low DP:DE ratios, particularly with starch as the major NPE source, growth and protein utilisation were highly reduced, underlining the importance of NPE source in this species. We also observed species-specific responses of enzymes involved in amino acid catabolism, lipogenesis and gluconeogenesis to dietary factors. Amino acid transdeamination enzyme activities were reduced by a low dietary DP:DE ratio in both species and in tilapia also by the substitution of fat by starch as the NPE source. Such decreased amino acid catabolism at high starch intakes, however, did not lead to improved protein retention. Our data further suggest that a combination of increased lipogenic and decreased gluconeogenic enzyme activities accounts for the better use of carbohydrates and to the improved glycaemia control in tilapia compared with rainbow tront fed starch-enriched diets with low DP:DE ratio.

  14. Edwardsiella ictaluri as the causative agent of mortality in cultured Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Edwardsiella ictaluri was consistently isolated from the spleens, livers, and head kidneys of diseased Nile tilapia Oreochromis niloticus from a farm experiencing mortality events in several culture ponds. We describe the first published outbreak of E. ictaluri–induced Edwardsiellosis in Nile tilapi...

  15. Intraperitoneal germ cell transplantation in the Nile tilapia Oreochromis niloticus.

    PubMed

    Farlora, Rodolfo; Hattori-Ihara, Shoko; Takeuchi, Yukata; Hayashi, Makoto; Octavera, Anna; Alimuddin; Yoshizaki, Goro

    2014-06-01

    Germ cell transplantation offers promising applications in finfish aquaculture and the preservation of endangered species. Here, we describe an intraperitoneal spermatogonia transplantation procedure in the Nile tilapia Oreochromis niloticus. Through histological analysis of early gonad development, we first determined the best suitable stage at which exogenous germ cells should be transplanted into the recipients. For the transplantation procedure, donor testes from a transgenic Nile tilapia strain carrying the medaka β-actin/enhanced green fluorescent protein (EGFP) gene were subjected to enzymatic dissociation. These testicular cells were then stained with PKH26 and microinjected into the peritoneal cavity of the recipient fish. To confirm colonization of the donor-derived germ cells, the recipient gonads were examined by fluorescent and confocal microscopy. PKH26-labeled cells exhibiting typical spermatogonial morphology were incorporated into the recipient gonads and were not rejected within 22 days posttransplantation. Long-term survival of transgenic donor-derived germ cells was then verified in the gonads of 5-month-old recipients and in the milt and vitelogenic oocytes of 1-year-old recipients, by means of PCR using EGFP-specific primers. EGFP-positive milt from adult male recipients was used to fertilize non-transgenic oocytes and produced transgenic offspring expressing the donor-derived phenotype. These results imply that long-term survival, proliferation, and differentiation of the donor-derived spermatogonia into vitelogenic oocytes and functional spermatozoa are all possible. Upon further improvements in the transplantation efficiency, this intraperitoneal transplantation system could become a valuable tool in the conservation of genetic resources for cichlid species.

  16. Visual communication stimulates reproduction in Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Castro, A L S; Gonçalves-de-Freitas, E; Volpato, G L; Oliveira, C

    2009-04-01

    Reproductive fish behavior is affected by male-female interactions that stimulate physiological responses such as hormonal release and gonad development. During male-female interactions, visual and chemical communication can modulate fish reproduction. The aim of the present study was to test the effect of visual and chemical male-female interaction on the gonad development and reproductive behavior of the cichlid fish Nile tilapia, Oreochromis niloticus (L.). Fifty-six pairs were studied after being maintained for 5 days under one of the four conditions (N = 14 for each condition): 1) visual contact (V); 2) chemical contact (Ch); 3) chemical and visual contact (Ch+V); 4) no sensory contact (Iso) - males and females isolated. We compared the reproductive behavior (nesting, courtship and spawning) and gonadosomatic index (GSI) of pairs of fish under all four conditions. Visual communication enhanced the frequency of courtship in males (mean +/- SEM; V: 24.79 +/- 3.30, Ch+V: 20.74 +/- 3.09, Ch: 0.1 +/- 0.07, Iso: 4.68 +/- 1.26 events/30 min; P < 0.05, two-way ANOVA with LSD post hoc test), induced spawning in females (3 spawning in V and also 3 in Ch+V condition), and increased GSI in males (mean +/- SEM; V: 1.39 +/- 0.08, Ch+V: 1.21 +/- 0.08, Ch: 1.04 +/- 0.07, Iso: 0.82 +/- 0.07%; P < 0.05, two-way ANOVA with LSD post hoc test). Chemical communication did not affect the reproductive behavior of pairs nor did it enhance the effects of visual contact. Therefore, male-female visual communication is an effective cue, which stimulates reproduction among pairs of Nile tilapia.

  17. The response of New-season Nile tilapia to Aeromonas hydrophila vaccine.

    PubMed

    Aly, Salah M; Albutti, Aqel S; Rahmani, Arshad H; Atti, Nashwa M Abdel

    2015-01-01

    The present study was conducted to recognize the response of new-season Nile tilapia to Aeromonas hydrophila vaccine. Four hundred new-season Nile tilapia were used in this study and divided into two equal groups, the first group served as control and the 2(nd) group was vaccinated with Aeromonas hydrophila vaccine via intraperitoneal injection. The antibody titer, Hematocrit level (HCV), Nitroblue tetrazolium activity (NBT) and lysozyme activity of new-season Nile tilapia was measured at the end of the 1(st), 2(nd), 3(rd), 4(th), 6(th), 8(th) and 10(th) week post vaccination (PV). Challenge with A. hydrophila was carried out at the end of the 6(th), 8(th) and 10(th) week PV. The antibody titer of vaccinated new-season tilapia showed significant higher values than unvaccinated group at all periods. The hematocrit and lysozymes activity values showed, a non significant increased in comparison with unvaccinated group at all periods PV. The NBT was significantly increased in vaccinated tilapia in comparison with unvaccinated group at all periods except one week PV. The relative level of protection of vaccinated tilapia after challenge infection was highest at 6(th) week PV in the new-season tilapia. We conclude that, vaccination against A. hydrophila increase the resistance of tilapia to such infection and consequently improve the survival and economic outcome. Other more applicable routes of vaccination should be investigated to be used on a large scale.

  18. Identification and transcriptional profile of multiple genes in the posterior kidney of Nile tilapia at 6h post bacterial infections

    USDA-ARS?s Scientific Manuscript database

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophi...

  19. BIOLOG MICROLOG® IDENTIFICATION OF Lactococcus garvieae INFECTION IN NILE TILAPIA Oreochromis niloticus AND PINTADO Pseudoplathystoma corruscans FROM BRAZIL

    USDA-ARS?s Scientific Manuscript database

    Lactococcus garvieae infection in cultured Nile tilapia, Oreochromis niloticus, and pintado, Pseudoplathystoma corruscans from Brazil is reported. This is the first evidence of the presence of this pathogen from Brazilian fish and the first report of L. garvieae infection in either Nile tilapia or ...

  20. Investigation of antiaromatase activity using hepatic microsomes of Nile tilapia (Oreochromis niloticus).

    PubMed

    Sassa-Deepaeng, Tanongsak; Chaisri, Wasana; Pikulkaew, Surachai; Okonogi, Siriporn

    2017-03-19

    Microsomal aromatase enzymes of humans and rats have been used in antiaromatase assays, but enzyme activity is species-specific. The current study extracted hepatic microsomes of Nile tilapia (Oreochromis niloticus) to investigate and compare the antiaromatase activity of chrysin, quercetin, and quercitrin. This activity was evaluated using a dibenzylfluorescein (DBF) assay. Results revealed that the age and body weight of Nile tilapia affected the yield of extracted microsomes. Extraction of hepatic microsomes of Nile tilapia was most effective when using a reaction medium with a pH of 8.0. A DBF assay using Nile tilapia microsomes revealed significant differences in levels of antiaromatase activity for chrysin, quercetin, and quercitrin. Chrysin was the most potent aromatase inhibitor, with an IC50 of 0.25 mg/mL. In addition, chrysin is an aromatase inhibitor that also inhibits the proliferation of cancer cells. Hepatic microsomes of Nile tilapia can be used to investigate and compare the antiaromatase activity of different compounds.

  1. Can the parasitic fauna on Nile tilapias be affected by different production systems?

    PubMed

    Martins, Maurício L; Azevedo, Tatiana M P; Ghiraldelli, Luciana; Bernardi, Neuza

    2010-06-01

    This study compared the parasitic fauna on Nile tilapias kept with swine dejects and tilapia from fee fishing fed commercial ration. A total of 360 fish were analyzed from August 2003 to July 2004 in a facility situated in Nova Trento, Santa Catarina, Brazil. No significant difference was observed in both systems. The parasite fauna in both systems were slightly similar, with the presence of the following parasites: Trichodina magna and T compacta (Ciliophora); Cichlidogyrus sclerosus and Cichlidogyrus sp. (Monogenoidea); and Lamproglena sp. (Lernaeidae). Parasitological analyzes did not differ among fishes kept with swine dejects and in fee fishing with commercial diet (P >0.05). The total prevalence of trichodinids in the gills of fish kept with swine dejects was 1.7% as compared to the one kept in fee fishing with commercial diet (0.6%). The Monogenoidea prevalence and mean intensity in the gills and body of fish from fee fishing was 16.5% and 2.6, and compared to other system was 13.2% and 0.8, respectively. This study showed that low stocking density and low water temperature in that region were responsible for the maintenance of good health and lower parasitism rate.

  2. The effect of mistletoe, Viscum album coloratum, extract on innate immune response of Nile tilapia (Oreochromis niloticus).

    PubMed

    Park, Kwan-Ha; Choi, Sang-Hoon

    2012-06-01

    The purpose of the present study was to evaluate the effect of dietary mistletoe extracts on non-specific immune response and disease resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila infection. Tilapia fingerlings were fed with a diet containing 0 mg as a control, 10 mg, 50 mg, and 200 mg mistletoe powder kg(-1) dry diet for 80 days. The immunological parameters, respiratory burst activity, lysozyme activity, alternative complement haemolysis activity (ACH(50)), and phagocytic activity of fish were investigated following 20, 40 and 80 days of feeding. Fish were challenged with A. hydrophila on 80 days after feeding and mortalities were checked over 10 days post-infection. The results show that fish fed with mistletoe extract exhibited an increase in activity in all immunological parameters (P < 0.05) compared to the control group depending on feeding periods and doses of mistletoe. Following challenge with A. hydrophila, 42% less survivability was observed in the control group than in other experimental diet groups. The highest survival rate (83%) was shown in the group fed with a 50 mg mistletoe kg(-1) diet. The results suggest that mistletoe enables tilapia to promote immunity and be more resistant to A. hydrophila infection.

  3. Identification and expression profiles of multiple genes in Nile tilapia in response to bacterial infections.

    PubMed

    Pridgeon, Julia W; Aksoy, Mediha; Klesius, Phillip H; Li, Yuehong; Mu, Xingjiang; Srivastava, Kunwar; Reddy, Gopal

    2011-11-15

    To understand the molecular mechanisms involved in response of Nile tilapia (Oreochromis niloticus) to bacterial infection, suppression subtractive cDNA hybridization technique was used to identify upregulated genes in the posterior kidney of Nile tilapia at 6h post infection with Aeromonas hydrophila. A total of 31 unique expressed sequence tags (ESTs) were identified from 192 clones of the subtractive cDNA library. Quantitative PCR revealed that nine of the 31 ESTs were significantly (p<0.05) upregulated in Nile tilapia at 6h post infection with A. hydrophila at an injection dose of 10(5)CFU per fish (≈ 20% mortality). Of the nine upregulated genes, four were also significantly (p<0.05) induced in Nile tilapia at 6h post infection with A. hydrophila at an injection dose of 10(6)CFU per fish (≈ 60% mortality). Of the four genes induced by A. hydrophila at both injection doses, three were also significantly (p<0.05) upregulated in Nile tilapia at 6h post infection with Streptococcus iniae at doses of 10(6) and at 10(5)CFU per fish (≈ 70% and ≈ 30% mortality, respectively). The three genes induced by both bacteria included EST 2A05 (similar to adenylate kinase domain containing protein 1), EST 2G11 (unknown protein, shared similarity with Salmo salar IgH locus B genomic sequence with e value of 0.02), and EST 2H04 (unknown protein). Significant upregulation of these genes in Nile tilapia following bacterial infections suggested that they might play important roles in host response to infections of A. hydrophila and S. iniae.

  4. Nutritional background changes the hypolipidemic effects of fenofibrate in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Ning, Li-Jun; He, An-Yuan; Lu, Dong-Liang; Li, Jia-Min; Qiao, Fang; Li, Dong-Liang; Zhang, Mei-Ling; Chen, Li-Qiao; Du, Zhen-Yu

    2017-01-01

    Peroxisome proliferation activated receptor α (PPARα) is an important transcriptional regulator of lipid metabolism and is activated by high-fat diet (HFD) and fibrates in mammals. However, whether nutritional background affects PPARα activation and the hypolipidemic effects of PPARα ligands have not been investigated in fish. In the present two-phase study of Nile tilapia (Oreochromis niloticus), fish were first fed a HFD (13% fat) or low-fat diet (LFD; 1% fat) diet for 10 weeks, and then fish from the first phase were fed the HFD or LFD supplemented with 200 mg/kg body weight fenofibrate for 4 weeks. The results indicated that the HFD did not activate PPARα or other lipid catabolism-related genes. Hepatic fatty acid β-oxidation increased significantly in the HFD and LFD groups after the fenofibrate treatment, when exogenous substrates were sufficiently provided. Only in the HFD group, fenofibrate significantly increased hepatic PPARα mRNA and protein expression, and decreased liver and plasma triglyceride concentrations. This is the first study to show that body fat deposition and dietary lipid content affects PPARα activation and the hypolipidemic effects of fenofibrate in fish, and this could be due to differences in substrate availability for lipid catabolism in fish fed with different diets. PMID:28139735

  5. Sinuolinea niloticus n. sp., a myxozoan parasite that causes disease in Nile tilapia (Oreochromis niloticus).

    PubMed

    Vaz Rodrigues, Marianna; Francisco, Claire Juliana; Biondi, Germano Francisco; Júnior, João Pessoa Araújo

    2016-11-01

    Sinuolinea species are myxozoans of the order Bivalvulida, suborder Variisporina, and family Sinuolineidae, which can be parasites for freshwater and marine fish. The aim of this study was to describe the occurrence of Sinuolinea niloticus n. sp. infecting Nile tilapia (Oreochromis niloticus) from aquaculture and from river sources with morphological and molecular analyses. Between March 2010 and November 2012, 116 Nile tilapia were randomly sampled from aquaculture net fishing (n = 56) in Mira Estrela, São Paulo, and from the Capivari River (n = 60) in Botucatu, São Paulo. The fishes that were sampled were examined by necropsy, microscopic observation and molecular techniques for detection and identification of the myxozoan causing disease in tilapia. All of the tissues that were sampled for analysis showed the presence of the parasite. It was observed by microscopy that the myxozoan belongs to the Sinuolinea genus. This identification was performed based on morphological characteristics and histopathology findings, such as structures consistent with myxozoan in the interstices in all analysed tissues, coagulative necrosis, haemorrhage, inflammatory processes, presence of melano-macrophages and eosinophils. The results of the molecular analyses revealed that the myxozoan detected and identified in this study is sister to a group of other Sinuolinea species. Because this is the first report of this parasite in Nile tilapia, the parasite was named S. niloticus n. sp. This is the first report of a Sinuolinea species in Brazil and in tilapia.

  6. Streptococcus iniae outbreaks in Brazilian Nile tilapia (Oreochromis niloticus L:) farms.

    PubMed

    Figueiredo, H C P; Netto, L Nobrega; Leal, C A G; Pereira, Ulisses P; Mian, Glaúcia F

    2012-04-01

    This is the first report of outbreaks of Streptococcus iniae in Nile tilapia farms in South America. Seven isolates were identified by biochemical, serological and molecular tests. Their 16S rRNA gene sequences showed 100% similarity with S. iniae ATCC 29178 and two distinct PFGE patterns were observed for Brazilian isolates.

  7. Effect of parasitism on vaccine efficacy against Streptococcus iniae in Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Limited information is available on vaccine performance in parasitized fish. The objective of this study was to determine if parasitism of fish affected vaccine efficacy. Antibody level, hematology and survival of Nile tilapia vaccinated with a modified S. iniae bacterin were compared among non-para...

  8. Complete genome sequence of a virulent Streptococcus agalactiae strain 138P isolated from diseased Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Streptococcus agalactiae strain 138P was isolated from the kidney of diseased Nile tilapia in Idaho during a 2007 streptococcal disease outbreak. The full genome of S. agalactiae 138P is 1,838,716 bp. The availability of this genome will allow comparative genomics to identify genes for antigen disco...

  9. Bacterial distribution and tissue targets following experimental Edwardsiella ictaluri infection in nile tilapia Oreochromis niloticus

    USDA-ARS?s Scientific Manuscript database

    Edwardsiella ictaluri, a Gram-negative enteric bacterium, is the known etiological agent of enteric septicemia of catfish. In the last few years, different strains have been implicated as the causative agent of mortality events in cultured fish, including Nile tilapia Oreochromis niloticus L. Due to...

  10. Utilization of diets containing graded levels of ethanol production co-products by Nile Tilapia

    USDA-ARS?s Scientific Manuscript database

    A feeding trial was performed to investigate levels of distillers dried grains with solubles (DDGS) as a supplemental nutrient source for juvenile Nile tilapia Oreochromis niloticus. Six isocaloric (4.43 ± 0.20 kcal/g), isonitrogenous (39.3 ± 0.4% protein) experimental diets were formulated to conta...

  11. Optimizing fish meal-free commercial diets for Nile Tilapia, Oreochromis niloticus

    USDA-ARS?s Scientific Manuscript database

    A feeding trial was conducted in a closed recirculating aquaculture system with Nile tilapia Oreochromis niloticus juveniles (mean weight, 6.81 g) to examine the response to a practical diet containing protein primarily from menhaden fish meal (FM) and soybean meal (SBM) (control, Diet 1) or to diet...

  12. Preference index supported by motivation tests in Nile tilapia

    PubMed Central

    2017-01-01

    The identification of animal preferences is assumed to provide better rearing environments for the animals in question. Preference tests focus on the frequency of approaches or the time an animal spends in proximity to each item of the investigated resource during a multiple-choice trial. Recently, a preference index (PI) was proposed to differentiate animal preferences from momentary responses (Sci Rep, 2016, 6:28328, DOI: 10.1038/srep28328). This index also quantifies the degree of preference for each item. Each choice response is also weighted, with the most recent responses weighted more heavily, but the index includes the entire bank of tests, and thus represents a history-based approach. In this study, we compared this PI to motivation tests, which consider how much effort is expended to access a resource. We performed choice tests over 7 consecutive days for 34 Nile tilapia fish that presented with different colored compartments in each test. We first detected the preferred and non-preferred colors of each fish using the PI and then tested their motivation to reach these compartments. We found that fish preferences varied individually, but the results were consistent with the motivation profiles, as individual fish were more motivated (the number of touches made on transparent, hinged doors that prevented access to the resource) to access their preferred items. On average, most of the 34 fish avoided the color yellow and showed less motivation to reach yellow and red colors. The fish also exhibited greater motivation to access blue and green colors (the most preferred colors). These results corroborate the PI as a reliable tool for the identification of animal preferences. We recommend this index to animal keepers and researchers to identify an animal’s preferred conditions. PMID:28426689

  13. Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes

    PubMed Central

    Fujimura, Koji; Conte, Matthew A.; Kocher, Thomas D.

    2011-01-01

    vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes. PMID:22216289

  14. Cinnamon (Cinnamomum sp.) inclusion in diets for Nile tilapia submitted to acute hypoxic stress.

    PubMed

    M Dos Santos, Welliene; S de Brito, Túlio; de A Prado, Samuel; G de Oliveira, Camila; C De Paula, Andréia; C de Melo, Daniela; A P Ribeiro, Paula

    2016-07-01

    The aim of this study was to evaluate the possible effects of diets supplemented with probiotics and different cinnamon levels (powder and essential oil) on immunological parameters of Nile tilapia after being subjected to acute stress by hypoxia. Three hundred and thirty juvenile male tilapia fish (66.08 ± 2.79 g) were distributed in 30 tanks of 100 L capacity (11/cage) with a water recirculation system. The animals were fed for 71 days with diets containing extruded cinnamon powder at different levels (0.5, 1, 1.5, 2%), cinnamon essential oil (0.05, 0.1, 0.15; 0.2%) and probiotics (0.4%), all in triplicate. At the end of the experiment, the fish (200.36 ± 19.88 g) of the different groups were subjected to stress by hypoxia. Hypoxia was achieved by capturing the animals with a net, keeping them out of the water for three minutes, and then sampling the blood 30 min after the procedure to determine the levels of cortisol, glucose, haematocrit, lysozyme, bactericidal index, total protein, and its fractions. The animals kept blood homeostasis after hypoxic stress. Diet supplementation with 0.5% cinnamon powder improved the fish immune response, since it resulted in an increase of 0.5% in γ-globulin level. Administration of 0.15% cinnamon essential oil resulted in an increase of α1 and α2-globulins, which may be reflected in increased lipid content of the carcass and the hepatosomatic index. More studies are necessary to better understand the effects of these additives for fish immunity.

  15. Antagonistic activity of dietary allicin against deltamethrin-induced oxidative damage in freshwater Nile tilapia; Oreochromis niloticus.

    PubMed

    Abdel-Daim, Mohamed M; Abdelkhalek, Nevien K M; Hassan, Ahmed M

    2015-01-01

    Allicin, the main biologically active component of garlic clove extracts, has been evaluated for its' efficacy in preventing deltamethrin-induced oxidative damage in Nile tilapia; Oreochromis niloticus. Fish were fed on 2 different doses of 0.5 g and 1 g of allicin/kg diet for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), cholesterol, urea, uric acid, creatinine, total protein, albumin and globulin were estimated. Moreover, the level of malonaldehyde (MDA) was analyzed as a lipid peroxidation marker. In addition, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) were analyzed as antioxidant biomarkers in liver, kidney and gills. Results show that deltamethrin subacute intoxication (1.46 µg/L for 28 days) increased serum AST, ALT, ALP, cholesterol, urea, uric acid, creatinine and tissue MDA. At the same time, serum total protein and albumin as well as tissue level of GSH, GSH-Px, SOD and CAT were reduced. Allicin supplemented diets enhanced all the altered serum biochemical parameters as well as tissues' lipid peroxidation and antioxidant biomarkers in a dose-dependent manner. The results suggest that feeding allicin can ameliorate deltamethrin-induced oxidative stress and might have some therapeutic properties to protect Nile tilapia on subacute deltamethrin toxicity.

  16. Preliminary study of acceleration based sensor to record nile tilapia (Oreochromis niloticus) feeding behavior at water surface

    NASA Astrophysics Data System (ADS)

    Subakti, Aji; Khotimah, Zarah F.; Darozat, Fajar M.

    2017-01-01

    In this preliminary study, the acceleration based sensor was developed to monitor the activity of Nile tilapia (Oreochromis niloticus) feeding behavior at the water surface. This study was conducted for three weeks in a fish pond with 40 m2 in size, stocked with 850 fingerlings of Nile tilapia strain Nirwana-2 (average biomass of 13 g, fed four times a day at 8 am, 12 pm, 4 pm, and 8 pm). The acceleration sensor system was installed floating in the pond and was designed in a way so that the xz plane of the sensor will be parallel with water surface, while the y-axis will be pointing downward. By sensing the acceleration caused by the surface wave, the activities of fish near surface water could be monitored. The result showed that there were three distinctive patterns could be observed which was related to the feeding activity of fish. Generally, it can be concluded that this acceleration based sensor system can be integrated with automatic feeder machine, in particular by analyzing the recorded patter, it is possible to monitor when the fish stop eating, and so the right amount of feed could be given to the fish.

  17. Parasitism affects vaccine efficacy against Streptococcus iniae in Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Tilapia culture worldwide is estimated to be US$ 5 billion and is important to domestic and global food security. Parasites and bacteria co-occur in both extensive and intensive production of tilapia. The effect of parasitism on vaccine performance in fish is little studied. The objective of this ...

  18. Complete genome sequence of Edwardsiella ictaluri isolate RUSVM-1 recovered from nile tilapia (Oreochromis niloticus) in the Western Hemisphere

    USDA-ARS?s Scientific Manuscript database

    Edwardsiella ictaluri is a Gram-negative, bacillus that has recently been implicated in disease outbreaks in tilapia and zebrafish. We report here the complete and annotated genome of an isolate from a Nile Tilapia (Oreochromis niloticus), which contains a chromosome of 3,630,639 bp and two plasmids...

  19. Induction of liver GST transcriptions by tert-butylhydroquinone reduced microcystin-LR accumulation in Nile tilapia (Oreochromis niloticus).

    PubMed

    He, Shan; Liang, Xu-Fang; Sun, Jian; Shen, Dan

    2013-04-01

    The cyanobacterial toxin, MC-LR, is predominantly presented during toxic cyanobacterial blooms and is consumed by phytoplanktivorous fish and zooplanktivorous fish directly. Detoxification of MC-LR in liver was believed to begin with conjugate formation with GSH, catalyzed by GSTs. MC-LR GSH conjugates display increased solubility and are subjected to accelerated biliary excretion. In this study, we showed that the mRNA transcriptions of GSTA, GPX and UCP2 were increased within 8h following MC-LR exposure in isolated hepatocytes of Nile tilapia, confirming the roles of phase II enzymes, especially GSTs, in MC-LR detoxification in tilapia. The widely used food-additive, synthetic antioxidant, tert-butylhydroquinone (tBHQ) has been shown to induce phase II enzymes including GSTs, via the antioxidant responsive elements (ARE) locate in the regulatory regions of these genes. Our results also showed that the transcription of various GSTs, including GSTA, GSTR2 and GSTT were significantly induced by tBHQ in Nile tilapia. In consistence, fish fed on tBHQ-containing diet (0.01 percent tBHQ) showed significantly reduced MC-LR accumulation in liver tissues 48 h after an oral administration of a single dose of 250 μg MC-LR/kg body weight (bwt). The findings in this research suggested that tBHQ could reduce MC-LR accumulations in liver, likely through the induction of phase II metabolizing enzymes such as GSTs. Subacute effects of tBHQ and its potential applications in fishery need to be further investigated. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  20. Vitamin C modulates cadmium-induced hepatic antioxidants' gene transcripts and toxicopathic changes in Nile tilapia, Oreochromis niloticus.

    PubMed

    El-Sayed, Yasser S; El-Gazzar, Ahmed M; El-Nahas, Abeer F; Ashry, Khaled M

    2016-01-01

    Cadmium (Cd) is one of the naturally occurring heavy metals having adverse effects, while vitamin C (L-ascorbic acid) is an essential micronutrient for fish, which can attenuate tissue damage owing to its chain-breaking antioxidant and free radical scavenger properties. The adult Nile tilapia fish were exposed to Cd at 5 mg/l with and without vitamin C (500 mg/kg diet) for 45 days in addition to negative and positive controls fed with the basal diet and basal diet supplemented with vitamin C, respectively. Hepatic relative mRNA expression of genes involved in antioxidant function, metallothionein (MT), glutathione S-transferase (GST-α1), and glutathione peroxidase (GPx1), was assessed using real-time reverse transcription polymerase chain reaction (RT-PCR). Hepatic architecture was also histopathologically examined. Tilapia exposed to Cd exhibited upregulated antioxidants' gene transcript levels, GST-⍺1, GPx1, and MT by 6.10-, 4.60-, and 4.29-fold, respectively. Histopathologically, Cd caused severe hepatic changes of multifocal hepatocellular and pancreatic acinar necrosis, and lytic hepatocytes infiltrated with eosinophilic granular cells. Co-treatment of Cd-exposed fish with vitamin C overexpressed antioxidant enzyme-related genes, GST-⍺1 (16.26-fold) and GPx1 (18.68-fold), and maintained the expression of MT gene close to control (1.07-fold), averting the toxicopathic lesions induced by Cd. These results suggested that vitamin C has the potential to protect Nile tilapia from Cd hepatotoxicity via sustaining hepatic antioxidants' genes transcripts and normal histoarchitecture.

  1. Activity of Brazilian propolis against Aeromonas hydrophila and its effect on Nile tilapia growth, hematological and non-specific immune response under bacterial infection.

    PubMed

    Orsi, Ricardo O; Santos, Vivian G Dos; Pezzato, Luiz E; Carvalho, Pedro L P F DE; Teixeira, Caroline P; Freitas, Jakeline M A; Padovani, Carlos R; Sartori, Maria M P; Barros, Margarida M

    2017-07-31

    The effect of the ethanolic extract of propolis (EEP) on Aeromonas hydrophila was analyzed by determination of minimum inhibitory concentration (MIC). Then, the effects of crude propolis powder (CPP) on growth, hemato-immune parameters of the Nile tilapia, as well as its effects on resistance to A. hydrophila challenge were investigated. The CPP (0.5, 1.0, 1.5, 2.0, 2.5 and 3.0%) was added to the diet of 280 Nile tilapia (50.0 ± 5.7 g fish-1). Hemato-immune parameters were analyzed before and after the bacterial challenge. Red blood cell, hematocrit, hemoglobin, mean corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC), and hydrogen peroxide (H2O2) and nitric oxide (NO) were evaluated. The MIC of the EEP was 13% (v/v) with a bactericidal effect after 24 hours. Growth performance was significantly lower for those fish fed diets containing 2.5 and 3% of CPP compared to the control diet. Differences in CPP levels affected fish hemoglobin, neutrophils number and NO following the bacterial challenge. For others parameters no significant differences were observed. Our results show that although propolis has bactericidal properties in vitro, the addition of crude propolis powder to Nile tilapia extruded diets does not necessarily lead to an improvement of fish health.

  2. Jatropha platyphylla kernel meal as feed ingredient for Nile tilapia (Oreochromis niloticus L.): growth, nutrient utilization and blood parameters.

    PubMed

    Akinleye, A O; Kumar, V; Makkar, H P S; Angulo-Escalante, M A; Becker, K

    2012-02-01

    Jatropha platyphylla is a multipurpose and drought-resistant shrub, available in Mexico, locally known as 'sangregrado' and belonging to the family Euphorbiaceae. Its seeds are rich in oil and protein and do not contain the main toxin, phorbol esters present in other Jatropha species. Jatropha platyphylla kernel meal (JPKM) obtained after oil extraction contained 70-75% crude protein (CP); however, it contained phytate, lectin and trypsin-inhibitor. The levels of essential amino acids (except lysine) were higher in JPKM than in soybean meal (SBM). Using Nile tilapia (Oreochromis niloticus) fingerlings a 12-week experiment was conducted to evaluate the nutritional quality of the heated JPKM and compare with that of SBM and fishmeal. Fingerlings (15 fish; average weight 13.7 ± 0.21g) were randomly distributed in three treatment groups with five replicates. Fish were fed three isonitrogenous diets (CP 36%): control diet containing fishmeal-based protein and two other diets replacing 62.5% fishmeal protein with JPKM (Jatropha group) and SBM (Soybean group). The growth performance, feed conversion ratio, protein efficiency ratio, protein productive and energy retention did not differ significantly among the three groups. A lower apparent lipid conversion was observed in the plant protein-fed group than in the control group. RBC count, haematocrit and blood glucose contents were higher in plant-protein fed groups than control group. Other haematological parameters (WBC count, haemoglobin, mean cell volume: calcium and sodium ions, total bilirubin and urea-nitrogen in the blood) and metabolic enzymes (alkaline phosphatase and alanine transaminase) activities in blood did not differ significantly among the three groups. The results from the present study established that JPKM is a promising and good quality protein source for Nile tilapia feed.

  3. Individual protein balance strongly influences δ15N and δ13C values in Nile tilapia, Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Gaye-Siessegger, Julia; Focken, Ulfert; Abel, Hansjörg; Becker, Klaus

    Although stable isotope ratios in animals have often been used as indicators of the trophic level and for the back-calculation of diets, few experiments have been done under standardized laboratory conditions to investigate factors influencing δ15N and δ13C values. An experiment using Nile tilapia [Oreochromis niloticus (L.)] was therefore carried out to test the effect of different dietary protein contents (35.4, 42.3, and 50.9%) on δ15N and δ13C values of the whole tilapia. The fish were fed the isoenergetic and isolipidic semi-synthetic diets at a relatively low level. δ15N and δ13C values of the lipid-free body did not differ between the fish fed the diets with different protein contents, but the trophic shift for N and C isotopes decreased with increasing protein accretion in the individual fish, for N from 6.5‰ to 4‰ and for C in the lipid-free body from 4‰ to 2.5‰. This is the first study showing the strong influence of the individual protein balance to the degree to which the isotopic signature of dietary protein was modified in tissue protein of fish. The extrapolation of the trophic level or the reconstruction of the diet of an animal from stable isotope ratios without knowledge of the individual physiological condition and the feeding rate may lead to erroneous results.

  4. Effects of Microcystis on Hypothalamic-Pituitary-Gonadal-Liver Axis in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Chen, Jiazhang; Meng, Shunlong; Xu, Hai; Zhang, Zhen; Wu, Xiangyang

    2017-04-01

    In the present study, Nile tilapia (Oreochromis niloticus) were used to assess the endocrine disruption potential of Microcytis aeruginosa. Male Nile tilapia were exposed to lyophilized M. aeruginosa or purified microcystin-LR (8.3 μg/L) for 28 days. The levels of serum hormones (17β-estradiol and testosterone) and transcripts of selected genes in the hypothalamus-pituitary-gonadal-liver axis were analyzed. The results showed that serum hormones were significantly up-regulated, and transcripts of 13 genes (GHRH, PACAP, GH, GHR1, GHR2, IGF1, IGF2, CYP19a, CYP19b, 3β-HSD1, 20β-HSD, 17β-HSD1 and 17β-HSD8) were significantly altered after Microcytis exposure. These results indicate that fish reproduction can be altered in a Microcystis bloom-contaminated aquatic environment.

  5. Spatio-temporal expression patterns of anterior Hox genes during Nile tilapia (Oreochromis niloticus) embryonic development.

    PubMed

    Lyon, R Stewart; Davis, Adam; Scemama, Jean-Luc

    2013-01-01

    Hox genes encode transcription factors that function to pattern regional tissue identities along the anterior-posterior axis during animal embryonic development. Divergent nested Hox gene expression patterns within the posterior pharyngeal arches may play an important role in patterning morphological variation in the pharyngeal jaw apparatus (PJA) between evolutionarily divergent teleost fishes. Recent gene expression studies have shown the expression patterns from all Hox paralog group (PG) 2-6 genes in the posterior pharyngeal arches (PAs) for the Japanese medaka (Oryzias latipes) and from most genes of these PGs for the Nile tilapia (Oreochromis niloticus). While several orthologous Hox genes exhibit divergent spatial and temporal expression patterns between these two teleost species in the posterior PAs, several tilapia Hox gene expression patterns from PG3-6 must be documented for a full comparative study. Here we present the spatio-temporal expression patterns of hoxb3b, c3a, b4a, a5a, b5a, b5b, b6a and b6b in the neural tube and posterior PAs of the Nile tilapia. We show that several of these tilapia Hox genes exhibit divergent expression patterns in the posterior PAs from their medaka orthologs. We also compare these gene expression patterns to orthologs in other gnathostome vertebrates, including the dogfish shark.

  6. Edwardsiella ictaluri as the causative agent of mortality in cultured Nile tilapia.

    PubMed

    Soto, Esteban; Griffin, Matt; Arauz, Maziel; Riofrio, Andres; Martinez, Alexis; Cabrejos, Maria Eugenia

    2012-06-01

    Edwardsiella ictaluri was consistently isolated from the spleens, livers, and head kidneys of diseased Nile tilapia Oreochromis niloticus from a farm experiencing mortality events in several culture ponds. We describe the first published outbreak of E. ictaluri-induced edwardsiellosis in Nile tilapia. Pure cultures of the isolated bacteria were characterized both biochemically and molecularly. Biochemical analysis was performed using the API-20E and RapID One systems, and antimicrobial susceptibility was determined by the broth microdilution method. Molecular analysis involved sequencing of the 16S rRNA gene, species-specific real-time polymerase chain reaction (PCR), and PCR-mediated genomic fingerprinting (rep-PCR). Pairwise sequence analysis of the 16S rRNA gene identified the case isolates to be a 100% match to E. ictaluri cultured from channel catfish in the southeastern United States. However, rep-PCR analysis identified the case isolates to be genetically different from representative strains isolated from disease outbreaks in cultured channel catfish in Mississippi. Infectivity challenges (intraperitoneal injection and immersion) demonstrated that a representative E. ictaluri strain isolated from tilapia was pathogenic to naive tilapia, reproducing clinical signs and mortality, thereby establishing Koch's postulates.

  7. Multi pesticide and PCB residues in Nile tilapia and catfish in Assiut city, Egypt.

    PubMed

    Yahia, Doha; Elsharkawy, Eman E

    2014-01-01

    The current study investigated the levels of multi pesticide residues in the highly consumed types of Nile fish in Egypt: tilapia and cat fish. A total of 50 Nile tilapia (Oreochromis niloticus) and 50 African catfish (Clarias gariepinus) were collected from two areas in Assiut city, where most industries are situated and where agricultural activities and raising of farm animals are the main activities. In the first area, Elwasta, there is an electrical power station, and the second area, Mankbad, there is a cement factory. Fish samples were analyzed by High Resolution Gas Chromatography/Mass Spectrometry. Average pesticide residue concentrations±SE in muscle of tilapia and catfish (n = 10 pooled samples with five fish each) were determined. The results indicated the presence of different types of organophosphorous (OPs), organochlorine (OC), polychlorinated biphenyles (PCBs), hexachlorobenzene (HCB) and trifluralin pesticides in Elwasta and Mankbad in varying degrees. Diazenon was the only OP pesticide which exceeded the permissible limit in both investigated areas with the two types of fish. On the other hand, OCs, PCBs, HCB and trifluralin pesticide residue levels have not exceeded the maximum allowable concentration limit. In general, a higher pesticide residue level was obtained in Mankbad than Elwasta. In addition, higher values are realized for the detected pesticide residues in cat fish than tilapia. The results of the study have shown the extensive and recent use of these types of pesticides in the present time in Egypt. © 2013 Elsevier B.V. All rights reserved.

  8. Development of a bacterial challenge test for gnotobiotic Nile tilapia Oreochromis niloticus larvae.

    PubMed

    Situmorang, Magdalena Lenny; Dierckens, Kristof; Mlingi, Frank Thomas; Van Delsen, Bart; Bossier, Peter

    2014-04-23

    Gastrointestinal microbiota have an important impact on fish health and disease, stimulating interest in a better understanding of how these gastrointestinal microbial communities are composed and consequently affect host fitness. In this respect, probiotic microorganisms have been extensively used in recent aquaculture production. To study the use of probiotics in the treatment of infectious diseases, the establishment of a method of experimental infection to obtain consistent results for mortality and infection in challenge tests is important. In pathogen-screening tests, 4 candidate pathogenic bacteria strains (Edwardsiella ictaluri gly09, E. ictaluri gly10, E. tarda LMG2793 and Streptococcus agalactiae LMG15977) were individually tested on xenic Nile tilapia larvae. Only Edwardsiella strains delivered via Artemia nauplii, with or without additional pathogen delivery via the culture water, led to increased mortality in fish larvae. A gnotobiotic Nile tilapia larvae model system was developed to provide a research tool to investigate the effects and modes-of-action of probiotics under controlled conditions. A double disinfection procedure using hydrogen peroxide and sodium hypochlorite solution was applied to the fish eggs, which were subsequently incubated in a cocktail of antibiotic and antifungal agents. In the gnotobiotic challenge test, E. ictaluri gly09R was added to the model system via Artemia nauplii and culture water, resulting in a significant mortality of the gnotobiotic fish larvae. The developed gnotobiotic Nile tilapia model can be used as a tool to extend understanding of the mechanisms involved in host-microbe interactions and to evaluate new methods of disease control.

  9. Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation.

    PubMed

    Hu, Zhang; Yang, Ping; Zhou, Chunxia; Li, Sidong; Hong, Pengzhi

    2017-03-30

    Burns can cause tremendous economic problems associated with irreparable harm to patients and their families. To characterize marine collagen peptides (MCPs) from the skin of Nile tilapia (Oreochromis niloticus), molecular weight distribution and amino acid composition of MCPs were determined, and Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemical structure. Meanwhile, to evaluate the wound healing activity, in vitro and in vivo experiments were carried out. The results showed that MCPs prepared from the skin of Nile tilapia by composite enzymatic hydrolysis were composed of polypeptides with different molecular weights and the contents of polypeptides with molecular weights of less than 5 kDa accounted for 99.14%. From the amino acid composition, the majority of residues, accounting for over 58% of the total residues in MCPs, were hydrophilic. FTIR indicated that the main molecular conformations inside MCPs were random coil. In vitro scratch assay showed that there were significant effects on the scratch closure by the treatment of MCPs with the concentration of 50.0 μg/mL. In the experiments of deep partial-thickness scald wound in rabbits, MCPs could enhance the process of wound healing. Therefore, MCPs from the skin of Nile tilapia (O. niloticus) have promising applications in wound care.

  10. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker

    PubMed Central

    Halvorsen, Michele B.; Casper, Brandon M.; Matthews, Frazer; Carlson, Thomas J.; Popper, Arthur N.

    2012-01-01

    Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)—with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)—with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)—a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SELcum and SELss respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders. PMID:23055066

  11. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker.

    PubMed

    Halvorsen, Michele B; Casper, Brandon M; Matthews, Frazer; Carlson, Thomas J; Popper, Arthur N

    2012-12-07

    Pile-driving and other impulsive sound sources have the potential to injure or kill fishes. One mechanism that produces injuries is the rapid motion of the walls of the swim bladder as it repeatedly contacts nearby tissues. To further understand the involvement of the swim bladder in tissue damage, a specially designed wave tube was used to expose three species to pile-driving sounds. Species included lake sturgeon (Acipenser fulvescens)--with an open (physostomous) swim bladder, Nile tilapia (Oreochromis niloticus)--with a closed (physoclistous) swim bladder and the hogchoker (Trinectes maculatus)--a flatfish without a swim bladder. There were no visible injuries in any of the exposed hogchokers, whereas a variety of injuries were observed in the lake sturgeon and Nile tilapia. At the loudest cumulative and single-strike sound exposure levels (SEL(cum) and SEL(ss) respectively), the Nile tilapia had the highest total injuries and the most severe injuries per fish. As exposure levels decreased, the number and severity of injuries were more similar between the two species. These results suggest that the presence and type of swim bladder correlated with injury at higher sound levels, while the extent of injury at lower sound levels was similar for both kinds of swim bladders.

  12. Complete mitochondrial DNA sequences of the Nile tilapia (Oreochromis niloticus) and Blue tilapia (Oreochromis aureus): genome characterization and phylogeny applications.

    PubMed

    He, Anyuan; Luo, Yongju; Yang, Hong; Liu, Liping; Li, Sifa; Wang, Chenghui

    2011-03-01

    Cichlid fishes have played an important role in evolutionary biology and aquaculture industry. Nile tilapia (Oreochromis niloticus), blue tilapia (Oreochromis aureus) and Mozambique tilapia (Oreochromis mossambicus), the useful models in studying evolutionary biology within Cichlid fishes, are also mainly cultured species in aquaculture with great economic importance. In this paper, the complete nucleotide sequence of the mitochondrial genome for O. niloticus and O. aureus were determined and phylogenetic analyses from mitochondrial protein-coding genes were conducted to explore their phylogenetic relationship within Cichlids. The mitogenome is 16,625 bp for O. niloticus and 16,628 bp for O. aureus, containing the same gene order and an identical number of genes or regions with the other Cichlid fishes, including 13 protein-coding genes, two rRNA genes, 22 tRNA genes and one putative control region. Phylogenetic analyses using three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian method) show O. niloticus and O. mossambicus are closely related, and O. aureus has remotely phylogenetic relationship from above two fishes.

  13. Enhancing growth and non-specific immunity of grass carp and Nile tilapia by incorporating Chinese herbs (Astragalus membranaceus and Lycium barbarum) into food waste based pellets.

    PubMed

    Mo, Wing Yin; Lun, Clare Hau In; Choi, Wai Ming; Man, Yu Bon; Wong, Ming Hung

    2016-12-01

    The effects of Astragalus membranaceus and Lycium barbarum on the growth performance and non-specific immunity of grass carp and Nile tilapia were studied. Herb extracts of Chinese medicinal herbs (2 g kg(-1) or 20 g kg(-1)) were incorporated into food waste based fish feed pellets. Fish growth and selected non-specific immune parameters of grass carp and Nile tilapia were studied in two separate feeding trials. Both grass carp and Nile tilapia fed diets of feed pellets containing 2 g kg(-1)Lycium barbarum extract achieved the best relative weight gain, feed conversion ratio, specific growth rate and protein efficiency ratio among all experimental diets. Fish fed with diets containing 2 g kg(-1)Lycium barbarum also resulted in significantly higher total immunoglobin, bactericidal activity and anti-protease activity; and also a lower mortality when challenged with pathogenic bacteria. On the other hand, both fish species fed with diets containing 20 g kg(-1) of Astragalus membranaceus and 20 g kg(-1)Lycium barbarum, resulted in significantly impaired weight gain. In addition, incorporation of 2 g kg(-1)Lycium barbarum extract would be a more suitable dose for both fish species, in terms of achieving better feed conversion ratio, specific growth rate, protein digestibility, and improved non-specific immune parameters. Based on this study, it can be concluded that waste based feed pellets incorporated with Chinese medicinal herb extracts have the ability to enhance growth and immunity of fish. Therefore, the use of Chinese medicinal herbs in aquaculture should be encouraged, in order to replace certain antibiotics known to impose environmental and health effects through the discharge of aquaculture effluents.

  14. Chemical compositions and muddy flavour/odour of protein hydrolysate from Nile tilapia and broadhead catfish mince and protein isolate.

    PubMed

    Yarnpakdee, Suthasinee; Benjakul, Soottawat; Penjamras, Pimpimol; Kristinsson, Hordur G

    2014-01-01

    Chemical compositions and muddy compounds in dorsal and ventral muscles of Nile tilapia and broadhead catfish were comparatively studied. On a dry weight basis, Nile tilapia was rich in protein (93.1-93.8%), whilst broadhead catfish contained protein (55.2-59.5%) and lipid (36.6-42.4%) as the major constituents. Ventral portion had higher lipid or phospholipid contents with coincidentally higher geosmin and/or 2-methylisoborneol (2-MIB) contents. Geosmin was found in mince of Nile tilapia and broadhead catfish at levels of 1.5 and 3.2μg/kg, respectively. Broadhead catfish mince had 2-MIB at level of 0.8μg/kg, but no 2-MIB was detected in Nile tilapia counterpart. When pre-washing and alkaline solubilisation were applied for preparing protein isolate (PI), lipid and phospholipid contents were lowered with concomitant decrease in geosmin and 2-MIB contents. Protein hydrolysate produced from PI had a lighter colour and a lower amount of muddy compounds, compared with that prepared from mince. Therefore, PI from both Nile tilapia and broadhead catfish could serve as the promising proteinaceous material, yielding protein hydrolysate with the negligible muddy odour and flavour.

  15. Effects of some dietary crude plant extracts on the growth and gonadal maturity of Nile tilapia (Oreochromis niloticus) and their resistance to Streptococcus agalactiae infection.

    PubMed

    Kareem, Zana H; Abdelhadi, Yasser M; Christianus, Annie; Karim, Murni; Romano, Nicholas

    2016-04-01

    A 90-day feeding trial was conducted on the growth performance, feeding efficacy, body indices, various hematological and plasma biochemical parameters, and histopathological examination of the gonads from male and female Nile tilapia fingerlings when fed different crude plant extracts from Cinnamomum camphora, Euphorbia hirta, Azadirachta indica, or Carica papaya at 2 g kg(-1) compared to a control diet. This was followed by a 14-day challenge to Streptococcus agalactiae. All treatments were triplicated, and each treatment consisted of 30 fish. Results showed that C. papaya extracts were the most effective at delaying gonadal maturation to both male and female tilapia, as well as significantly increasing (P < 0.05) growth performance compared to the control treatment. Similarly, dietary C. camphora and E. hirta extracts also significantly improved growth, while no significant growth effect was detected between the A. indica and control treatments (P > 0.05). Further, crude body lipid was lower in the C. camphora, E. hirta and C. papaya treatments, but was only significantly lower for the E. hirta treatment compared to the control. Meanwhile, none of the hematological or biochemical parameters were significantly affected, although plasma ALT was significantly lower for tilapia fed A. indica compared to the control. After the 14-day bacterial challenge, tilapia fed C. camphora supplementation had significantly higher survival, compared to the control, but was not significantly higher than the other supplemented diets. Results indicate that dietary C. papaya extract can significantly promote growth and delay gonadal maturation to both male and female tilapia, while C. camphora was the most effective prophylactic to S. agalactiae and may be a cost-effective and eco-friendly alternative to antibiotics.

  16. Ameliorating effect of β-carotene on antioxidant response and hematological parameters of mercuric chloride toxicity in Nile tilapia (Oreochromis niloticus).

    PubMed

    Elseady, Y; Zahran, E

    2013-08-01

    The impact of different levels of dietary β-carotene to alleviate the effect of mercuric chloride toxicity in Nile tilapia was assessed. Semi-purified diets containing 0, 40, and 100 mg β-carotene kg(-1) dry diet were fed for 21 days, which were subjected to sublethal concentration of mercuric chloride (0.05 ppm). Hematological and biochemical parameters, lipid profile, and antioxidant response were examined. All hematological parameters of tilapia fish starting from second week of toxicity were significantly decreased. A significant increasing trend in liver enzymes (ALT and AST) were observed parallel to the time of toxicity and peroxide radicals (MDA) appearing significantly increased in toxicated group without carotene supplement, although carotene supplementation return all parameters within the control levels. Mercury accumulated significantly in fish liver and white muscles in toxicated group while it showed a significant reduction in dietary β-carotene-treated group. Overall, it can be used as immunostimulant and alleviate the suppression effect resulted from immune depressive stressful condition in farmed Nile tilapia.

  17. Efficiency of eugenol as anesthetic for the early life stages of Nile tilapia (Oreochromis niloticus).

    PubMed

    Ribeiro, Paula A P; Miranda-Filho, Kleber C; Melo, Daniela C de; Luz, Ronald K

    2015-03-01

    In aquaculture, activities with anesthetic compounds are usually used in order to ensure the welfare of farmed fish, allowing handling out of water with decreased trauma by stress. Presently, there is no information about anesthetic action of eugenol in early life stages of Nile tilapia (Oreochromis niloticus). The objective of this study was to evaluate different concentrations of eugenol for larvae and juveniles of Nile tilapia. Sixty animals were used for each group of weight, group I = 0.02 g; group II = 0.08 g; group III = 0.22 g; group IV = 2.62 g; and group V = 11.64 g. The eugenol concentrations tested were 50, 75, 100, 125, 150 and 175 mg L-1. No mortality was reported during the tests with eugenol. Tilapia larvae with 0.02 g and juveniles around 11.64 g can be anesthetized with eugenol concentrations between 150 and 175 mg L-1, since they determine the shortest sedation time (23 and 72 seconds, for the group of lowest and highest weights, respectively).

  18. Successful xenogeneic germ cell transplantation from Jundia catfish (Rhamdia quelen) into adult Nile tilapia (Oreochromis niloticus) testes.

    PubMed

    Silva, M A; Costa, G M J; Lacerda, S M S N; Brandão-Dias, P F P; Kalapothakis, E; Silva Júnior, A F; Alvarenga, E R; França, L R

    2016-05-01

    Fish germ cell transplantation presents several important potential applications for aquaculture, including the preservation of germplasm from endangered fish species with high genetic and commercial values. Using this technique in studies developed in our laboratory with adult male Nile tilapias (Oreochromis niloticus), all the necessary procedures were successfully established, allowing the production of functional sperm and healthy progeny approximately 2months after allogeneic transplantation. In the present study, we evaluated the viability of the adult Nile tilapia testis to generate sperm after xenogeneic transplant of germ cells from sexually mature Jundia catfish (Rhamdia quelen) that belong to a different taxonomic order. Therefore, in order to investigate at different time-periods post-transplantation, the presence and development of donor PKH26 labeled catfish germ cells were followed in the tilapia seminiferous tubules. From 7 to 20days post-transplantation, only PKH26 labeled spermatogonia were observed, whereas spermatocytes at different stages of development were found at 70days. Germ cell transplantation success and progression of spermatogenesis were indicated by the presence of labeled PKH26 spermatids and sperm on days 90 and 120 post-transplantation, respectively. Confirming the presence of the catfish genetic material in the tilapia testis, all recipient tilapias evaluated (n=8) showed the genetic markers evaluated. Therefore, we demonstrated for the first time that the adult Nile tilapia testis offers the functional conditions for development of spermatogenesis with sperm production from a fish species belonging to a different order, which provides an important new venue for aquaculture advancement.

  19. Blockage of progestin physiology disrupts ovarian differentiation in XX Nile tilapia (Oreochromis niloticus)

    SciTech Connect

    Zhou, Linyan; Luo, Feng; Fang, Xuelian; Charkraborty, Tapas; Wu, Limin; Wei, Jing; Wang, Deshou

    2016-04-22

    Previous studies indicated that maturation inducing hormone, 17α, 20β-Dihydroxy-4-pregnen-3-one (DHP), probably through nuclear progestin receptor (Pgr), might be involved in spermatogenesis and oogenesis in fish. To further elucidate DHP actions in teleostean ovarian differentiation, we analyzed the expression of pgr in the ovary of Nile tilapia (Oreochromis niloticus), and performed RU486 (a synthetic Pgr antagonist) treatment in XX fish from 5 days after hatching (dah) to 120dah. Tilapia Pgr was abundantly expressed in the follicular cells surrounding oocytes at 30 and 90dah. Continuous RU486 treatment led to the blockage of oogenesis and masculinization of somatic cells in XX fish. Termination of RU486 treatment and maintenance in normal condition resulted in testicular differentiation, and estrogen compensation in RU486-treated XX fish successfully restored oogenesis. In RU486-treated XX fish, transcript levels of female dominant genes were significantly reduced, while male-biased genes were evidently augmented. Meanwhile, both germ cell mitotic and meiotic markers were substantially reduced. Consistently, estrogen production levels were significantly declined in RU486-treated XX fish. Taken together, our data further proved that DHP, possibly through Pgr, might be essential in the ovarian differentiation and estrogen production in fish. - Highlights: • DHP plays a critical role in early stage oogenesis of XX tilapia. • Blockage of DHP actions by RU486 treatment led to masculinization and/or sex reversal in XX tilapia. • Both DHP and estrogen are indispensable for ovarian differentiation.

  20. Bacterial distribution and tissue targets following experimental Edwardsiella ictaluri infection in Nile tilapia Oreochromis niloticus.

    PubMed

    Soto, Esteban; Illanes, Oscar; Revan, Floyd; Griffin, Matt; Riofrio, Andrés

    2013-05-27

    Edwardsiella ictaluri, a Gram-negative enteric bacterium, is the known etiological agent of enteric septicemia of catfish. In the last few years, different strains have been implicated as the causative agent of mortality events in cultured fish, including Nile tilapia Oreochromis niloticus L. Due to the emergent nature of edwardsiellosis in non-ictalurid fish, little is known about the dynamics of E. ictaluri infection in tilapia. The purpose of this study was to gain a better understanding of the pathogenesis of edwardsiellosis in tilapia by determining the median lethal and infective doses, tissue targets of infection, rate of bacterial dissemination, and the specific tissue response to E. ictaluri following an immersion challenge with bacterial strains recovered from outbreak events in tilapia. In addition to histopathology assessment, the bacterial burdens in several tissues of infected fish were determined over a 2 wk course of infection using quantitative real-time PCR (qPCR). The collected data suggest the cutaneous and oral routes as the main ports of entry for the organism, which later spreads hematogenously throughout the body. Even though histopathological assessment of infected fish revealed involvement of a wide range of tissues, the severity of the necrotizing and granulomatous lesions in the spleen and head kidney, with concomitant high levels of bacterial DNA in these organs determined by qPCR, identifies them as the main targets of infection.

  1. Comprehensive evaluation of immunomodulation by moderate hypoxia in S. agalactiae vaccinated Nile tilapia.

    PubMed

    Gallage, Sanchala; Katagiri, Takayuki; Endo, Masato; Maita, Masashi

    2017-07-01

    Streptococcus agalactiae is a major bacterial pathogen in tilapia aquaculture. Vaccines are known to provide protection but S. agalactiae clearance in tilapia can be reduced by marginal environmental conditions. Therefore, the purpose of this study is to examine S. agalactiae clearance in vaccinated Nile tilapia under moderate hypoxic (55± 5% DO) and normoxic (85 ± 5%DO) conditions. Fish were acclimatized to either moderate hypoxia or normoxia and immunized with formalin-inactivated S. agalactiae. Fish were experimentally challenged with S. agalactiae at 30 days post-vaccination. Serum antibody titer was significantly higher in vaccinated fish kept under normoxic condition compared to the moderate hypoxic condition at fifteen and thirty days post-vaccination. The cumulative mortality following challenge was significantly reduced in vaccinated fish kept under normoxic condition compared to those in moderate hypoxic condition reflecting that pre-challenge antibody titer may correlate with survival of fish. Blood and tissue pathogen burden detection of S. agalactiae studies revealed that culturable S. agalactiae cells could not be detected in the blood of normoxic vaccinated fish at all the sampling points. In contrast, fish vaccinated in moderate hypoxic condition had considerable number of culturable S. agalactiae cells in their blood up to 5 days following challenge. Phagocytosis and intracellular reactive oxygen species (ROS) production were lowered by moderate hypoxia in vitro. Furthermore, presence of specific antibodies and higher specific antibody level in the serum increased phagocytosis, ROS production and lowered intracellular survival of S. agalactiae in head kidney leukocytes. Overall this study has highlighted that S. agalactiae clearance in vaccinated Nile tilapia is modulated by moderate hypoxia. One of the possible explanations for this might be less efficient phagocytic activities due to low oxygen availability and lower specific

  2. Global DNA Methylation Changes in Nile Tilapia Gonads during High Temperature-Induced Masculinization.

    PubMed

    Sun, Li-Xue; Wang, Yi-Ya; Zhao, Yan; Wang, Hui; Li, Ning; Ji, Xiang Shan

    2016-01-01

    In some fish species, high or low temperature can switch the sex determination mechanisms and induce fish sex reversal when the gonads are undifferentiated. During this high or low temperature-induced sex reversal, the expressions of many genes are altered. However, genome-wide DNA methylation changes in fish gonads after high or low temperature treatment are unclear. Herein, we compared the global DNA methylation changes in the gonads from control females (CF), control males (CM), high temperature-treated females (TF), and high temperature-induced males (IM) from the F8 family of Nile tilapia (Oreochromis niloticus) using methylated DNA immunoprecipitation sequencing. The DNA methylation level in CF was higher than that in CM for various chromosomes. Both females and males showed an increase in methylation levels on various chromosomes after high-temperature induction. We identified 64,438 (CF/CM), 63,437 (TF/IM), 98,675 (TF/CF), 235,270 (IM/CM) and 119,958 (IM/CF) differentially methylated regions (DMRs) in Nile tilapia gonads, representing approximately 0.70% (CF/CM), 0.69% (TF/IM), 1.07% (TF/CF), 2.56% (IM/CM), and 1.30% (IM/CF)of the length of the genome. A total of 89 and 65 genes that exhibited DMRs in their gene bodies and promoters were mapped to the Nile tilapia genome. Furthermore, more than half of the genes with DMRs in the gene body in CF/CM were also included in the IM/CM, TF/CF, TF/IM, and IM/CF groups. Additionally, many important pathways, including neuroactive ligand-receptor interaction, extracellular matrix-receptor interaction, and biosynthesis of unsaturated fatty acids were identified. This study provided an important foundation to investigate the molecular mechanism of high temperature-induced sex reversal in fish species.

  3. Global DNA Methylation Changes in Nile Tilapia Gonads during High Temperature-Induced Masculinization

    PubMed Central

    Wang, Hui; Li, Ning

    2016-01-01

    In some fish species, high or low temperature can switch the sex determination mechanisms and induce fish sex reversal when the gonads are undifferentiated. During this high or low temperature-induced sex reversal, the expressions of many genes are altered. However, genome-wide DNA methylation changes in fish gonads after high or low temperature treatment are unclear. Herein, we compared the global DNA methylation changes in the gonads from control females (CF), control males (CM), high temperature-treated females (TF), and high temperature-induced males (IM) from the F8 family of Nile tilapia (Oreochromis niloticus) using methylated DNA immunoprecipitation sequencing. The DNA methylation level in CF was higher than that in CM for various chromosomes. Both females and males showed an increase in methylation levels on various chromosomes after high-temperature induction. We identified 64,438 (CF/CM), 63,437 (TF/IM), 98,675 (TF/CF), 235,270 (IM/CM) and 119,958 (IM/CF) differentially methylated regions (DMRs) in Nile tilapia gonads, representing approximately 0.70% (CF/CM), 0.69% (TF/IM), 1.07% (TF/CF), 2.56% (IM/CM), and 1.30% (IM/CF)of the length of the genome. A total of 89 and 65 genes that exhibited DMRs in their gene bodies and promoters were mapped to the Nile tilapia genome. Furthermore, more than half of the genes with DMRs in the gene body in CF/CM were also included in the IM/CM, TF/CF, TF/IM, and IM/CF groups. Additionally, many important pathways, including neuroactive ligand-receptor interaction, extracellular matrix-receptor interaction, and biosynthesis of unsaturated fatty acids were identified. This study provided an important foundation to investigate the molecular mechanism of high temperature-induced sex reversal in fish species. PMID:27486872

  4. Biochemical alterations in caged Nile tilapia Oreochromis niloticus.

    PubMed

    Franco, Jeferson Luis; Trevisan, Rafael; Posser, Thais; Trivella, Daniela B B; Hoppe, Roberto; Martins Rosa, Juliana; Fernandes Dinslaken, Daniel; Decker, Helena; Inês Tasca, Carla; Bainy Leal, Rodrigo; Freire Marques, Maria Risoleta; Dias Bainy, Afonso Celso; Luiz Dafre, Alcir

    2010-07-01

    Joinville is an important industrial city in Santa Catarina, southern Brazil, and also a risk factor for the Babitonga drainage basin. Oxidative stress-related parameters were evaluated in caged tilapia (Oreochromis niloticus) exposed for 7 days (sites S1 and S2) in a Babitonga drainage basin tributary river. Site S1 showed enhanced levels of hepatic CYP1A, CYP2B-like and glutathione S-transferase activity, while site S2 showed decreased levels of glutathione and increased lipoperoxidation indexes, catalase, glutathione peroxidase and glutathione reductase activity. Correlation analyses revealed that oxidative stress-related parameters behaved like a group of interrelated variables, while CYPs and glutathione S-transferase seem to be independent. New putative biomarkers were evaluated in the tilapia brain. Caspase-3 activation (both sites), decreased in p38MAPK phosphorylation (site S2) and decreased expression in HSP70 (site S1) were observed. Data indicate that employed variables, when used as a group (oxidative stress-related parameters, CYP1A/2B-like, caspase-3, HSP70 and protein kinases) can be useful as predictors of pollution.

  5. Mianserin affects alarm reaction to conspecific chemical alarm cues in Nile tilapia.

    PubMed

    Barreto, Rodrigo Egydio

    2017-02-01

    In this study, I show that mianserin, a chemical with serotonin and adrenoceptor antagonist activities, increases fish vulnerability to a potential predator threat, when prey fish must deal with this threat based on conspecific chemical alarm cues. For that, I evaluated whether mianserin, diluted in the water, influences the behavioral responses of Nile tilapia (Oreochromis niloticus) to conspecific skin extract (chemical alarm cues). I found that, while mianserin did not abolished antipredator responses, this drug mitigates some components of this defensive reaction. Thus, a potential decrease in serotonin and adrenergic activities reduces the ability of dealing with predators when perceiving conspecific chemical alarm cues.

  6. Improvement of immunity and disease resistance in the Nile tilapia, Oreochromis niloticus, by dietary supplementation with Bacillus amyloliquefaciens.

    PubMed

    Selim, Khaled M; Reda, Rasha M

    2015-06-01

    Probiotics can be used as immunostimulants in aquaculture. The aim of this study was to evaluate the immune responses of Nile tilapia Oreochromis niloticus following feeding with Bacillus amyloliquefaciens spores at concentrations of 1 × 10(6) (G3) and 1 × 10(4) (G2) colony-forming units per gram (CFU/g) of feed compared with a basal diet with no probiotics (G1). A total of 180 fingerlings (27.7 ± 0.22 g) were divided into three groups (G1-G3 of 20 fish per group) in triplicate. Innate immunities were measured every two weeks based on serum bactericidal activity, lysozyme activity, a nitric oxide assay (mmo/l) and phagocytic activity, and the expressions of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF α) were examined after one month. Moreover, the survival of tilapia upon challenge with Yersinia ruckeri or Clostridium perfringens type D was determined at the end of feeding trial. After 15 d, the serum killing percentages and phagocytic activities were significantly higher in G3 than in G1 and G2, whereas the same parameters had significantly higher values in G3 and G2 than in G1 after 30 d. After both 15 d and 30 d, the lysozyme activities and nitric oxide assay results (mmo/l) were significantly higher in G3 than G2, and the lowest values were observed in G1. The percentage of serum killing, serum nitric oxide and serum lysozyme activity were significantly increased by the time of B. amyloliquefaciens administration independently of the probiotic dose, and the phagocytic activity percentage was significantly decreased at the end of the experiment. Dietary B. amyloliquefaciens caused significant increases in IL-1 and TNF α mRNA levels in the kidneys in the following pattern: G3 > G2 > G1. Fish that were fed B. amyloliquefaciens exhibited better relative survival percentages than the controls when challenged by Y. ruckeri or C. perfringens type D. Dietary supplementation with B. amyloliquefaciens improves immune status and disease

  7. Regulation of insulin gene expression and insulin production in Nile tilapia (Oreochromis niloticus).

    PubMed

    Hrytsenko, Olga; Wright, James R; Pohajdak, Bill

    2008-01-15

    Compared to mammals, little is known about insulin gene expression in fish. Using transient transfection experiments and mammalian insulinoma cell lines we demonstrate that transcription of the Nile tilapia (Oreochromis niloticus) insulin gene is (a) regulated in a beta-cell-specific manner; and (b) not sensitive to the glucose stimulations. Deletion analysis of the 1575 bp 5' insulin gene flanking sequence revealed that cooperative interactions between regulatory elements within the proximal (-1 to -396 bp) and the distal (-396 bp to -1575 bp) promoter regions were necessary for induction of the beta-cell-specific transcription. Effects of glucose and arginine on endogenous insulin secretion, translation, and transcription in isolated tilapia Brockmann bodies were determined using Northern hybridization, Western analysis, and quantitative RT-PCR. Similar to the regulation of mammalian insulin, we found that increases of glucose (1-70 mM) and arginine (0.4-25 mM) induced insulin secretion. However, transcription of the insulin gene was activated only by extremely high concentrations of glucose and arginine added simultaneously. When stimulated for 24 h with low concentrations of both inducers or with either of them added separately, tilapia beta-cells were able to replenish secreted insulin and to maintain insulin stores at a constant level without elevations of the insulin mRNA levels. Since the basal level of insulin mRNA was approximately 3.7-fold higher in tilapia beta-cells than it is in mammalian beta-cells, insulin production in tilapia cells probably relies on an enlarged intracellular insulin mRNA pool and does not require the transcriptional activation of the insulin gene.

  8. Protection induced by a CpG oligonucelotide in Nile tilapia against Streptococcus iniae infection and identification of upregulated genes

    USDA-ARS?s Scientific Manuscript database

    At two days post treatment, a CpG oligodeoxynucleotide (CpG 120818-9A) offered Nile tilapia (Oreochromis niloticus L.) significant (P<0.05) protection against Streptococcus iniae infection, with relative percent survival up to 63%. To understand the molecular mechanisms involved in the protective im...

  9. Efficacy of QCDCR formulated CpG ODN 2007 in Nile tilapia against Streptococcus iniae and identification of upregulated genes

    USDA-ARS?s Scientific Manuscript database

    The potential of using a QCDCR (quilA:cholesterol:dimethyl dioctadecyl ammonium bromide:carbopol:R1005 glycolipid) formulated CpG oligodeoxynucleotide (ODN), ODN 2007, to confer protection in Nile tilapia against Streptococcus iniae infection was evaluated in this study. At two days post treatment, ...

  10. Development and efficacy of novobiocin and rifampicin-resistant Aeromonas hydrophila as novel vaccines in channel catfish and Nile tilapia.

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H

    2011-10-19

    Three attenuated Aeromonas hydrophila vaccines were developed from the virulent 2009 West Alabama isolates through selection for resistance to both novobiocin and rifampicin. When channel catfish (Ictalurus punctatus) were IP injected with 4×105 colony-forming unit (CFU) of the mutants, no fish died. However, when the same age and size matched channel catfish were IP injected with similar amount of their virulent parents, 80-100% fish died. Similarly, when Nile tilapia (Oreochromis niloticus) were IP injected with 2×108 CFU of the mutants, no fish died. However, when Nile tilapia were IP injected with similar amount of the mutants, all fish died. Vaccination of channel catfish with the mutants at dose of 4×105 CFU/fish offered 86-100% protection against their virulent parents at 14 days post vaccination (dpv). Vaccination of Nile tilapia with the mutants at dose of 2×108 CFU/fish offered 100% protection against their virulent parents at 14, 28, and 56 dpv. Agglutination assay results suggested that protection elicited by the mutants was partially due to antibody-mediated immunity. Taken together, our results suggest that the three attenuated vaccines might be used to protect channel catfish and Nile tilapia against the highly virulent 2009 West Alabama isolates of A. hydrophila.

  11. Effects of Yeast Oligosaccharide Diet Supplements on Growth and Disease Resistance in Juvenile Nile Tilapia, Oreochromis niloticus

    USDA-ARS?s Scientific Manuscript database

    Commercially available yeast, and yeast subcomponents consisting mainly of beta-glucan or oligosaccharide feed additives, were added to diets of juvenile (12-18g) Nile tilapia (Oreochromis niloticus) at rates recommended by suppliers. Three experiments followed a basic protocol with varied rates of...

  12. Modulatory role of dietary Chlorella vulgaris powder against arsenic-induced immunotoxicity and oxidative stress in Nile tilapia (Oreochromis niloticus).

    PubMed

    Zahran, Eman; Risha, Engy

    2014-12-01

    Arsenic intoxicant have long been regarded as an impending carcinogenic, genotoxic, and immunotoxic heavy metal to human and animals as well. In this respect, we evaluated biomarkers of the innate immune response and oxidative stress metabolism in gills and liver of Nile tilapia (Oreochromis niloticus) after arsenic exposure, and the protective role of Chlorella vulgaris (Ch) dietary supplementation were elucidated. Protective role of C. vulgaris (Ch), as supplementary feeds (5% and 10% of the diet) was studied in Nile tilapia (O. niloticus) against arsenic induced toxicity (NaAsO2 at 7 ppm) for 21 days exposure period. A significant down-regulation in innate immune response; including, respiratory burst, lysozyme, and bactericidal activity followed due to deliberately As(+3) exposure. Similarly, oxidative stress response; like nitric oxide (NO), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx), malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels were significantly decreased. Combined treatment of Ch and As(+3) significantly enhanced the innate immune response and antioxidant activity. Strikingly, Ch supplementation at 10% has been considered the optimum for Nile tilapia since it exhibited enhancement of innate immune response and antioxidant activity over the level 5%, and even better than that of control level. Thus, our results concluded that dietary Ch supplementation could protect Nile tilapia against arsenic induced immunosuppression and oxidative stresses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Edwardsiella tarda and Aeromonas hydrophila isolated from diseased Southern flounder (Paralichthys lethostigma) are virulent to channel catfish and Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    The aim of this study is to identify bacterial pathogens isolated from diseased Southern flounder and determine their virulence to channel catfish and Nile tilapia. Twenty five Gram-negative bacteria isolates were recovered from five tissues (skin lesions, brain, liver, intestine, and posterior kidn...

  14. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus.

    PubMed

    Tian, Juan; Wu, Fan; Yang, Chang-Geng; Jiang, Ming; Liu, Wei; Wen, Hua

    2015-02-01

    The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) m

  15. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract.

    PubMed

    Sayed, Alaa El-Din H; Elbaghdady, Heba Allah M; Zahran, Eman

    2015-12-01

    Arsenic (As) is one of the most relevant environmental global single substance toxicants that have long been regarded as a carcinogenic and genotoxic potential. In this respect, we evaluated the cytogenetic effect of arsenic exposure in Nile tilapia (Oreochromis niloticus), in terms of erythrocyte alteration, apoptosis, and induction of micronuclei. Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phytoantioxidant, anti-inflammatory, and anti-cancerous properties supplementation. The protective role of Spirulina as supplementary feeds was studied in Nile tilapia (O. niloticus) against arsenic-induced cytogenotoxicity. Four groups were assigned as control group (no SP or As), As group (exposed to water-born As in the form of NaAsO2 at 7 ppm), SP1 (SP at 7.5% + As at the same level of exposure), and SP2 (SP at 10% + As at the same level of exposure). As-treated group had a significant increase in all cytogenetic analyses including erythrocyte alteration, apoptosis, and induction of micronuclei after 2 weeks with continuous increase in response after 3 weeks. The combined treatment of Spirulina at two different concentrations of 7.5 and 10% had significantly declined the induction of erythrocyte alteration, apoptosis, and micronuclei formation induced by arsenic intoxication.

  16. Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus).

    PubMed

    Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat

    2009-05-01

    Six herbs were assessed for their antimicrobial activity against Streptococcus agalactiae, a major fish pathogen causing streptococcosis. Each herb was extracted with 3 solvents: water, 95% ethanol, and methanol. Using swab paper disc assays, aqueous extracts of Andrographis paniculata and Allium sativum produced the largest (27.5 mm) and smallest (10.3 mm) inhibition zones, respectively. Determination of minimal inhibitory concentration (MIC) of herb extracts against S. agalactiae showed that the aqueous extract of A. paniculata had the lowest MIC value (31.25 microg/mL). Aqueous extract of A. sativum was the only herb extract with a MIC > 500 microg/mL. Based on mortalities in 2 weeks after intraperitoneal S. agalactiae injection, the median lethal dose (LD(50)) of S. agalactiae for Nile tilapia (Oreochromis niloticus) was 3.79 x 10(5) CFU/mL. In vivo experiments showed that fish feed supplemented with either A. paniculata leaf powder or dried matter of A. paniculata aqueous extract reduced mortality of S. agalactiae infected Nile tilapia. In addition, no mortality was found in fish receiving dried matter of A. paniculata aqueous extract supplemented feeds at ratios (w/w) of 4:36 and 5:35. During 2 weeks of feeding with A. paniculata supplemented feeds, no adverse effects on appearance, behavior, or feeding responses were observed.

  17. Genotyping of Streptococcus dysgalactiae strains isolated from Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Costa, F A A; Leal, C A G; Leite, R C; Figueiredo, H C P

    2014-05-01

    Streptococcus dysgalactiae is an emerging fish pathogen that is responsible for outbreaks of disease on fish farms around the world. Recently, this bacterium was associated with an outbreak at a Nile tilapia, Oreochromis niloticus (L.), farm in Brazil. The aim of this study was to evaluate the genetic diversity, best genotyping method and aspects of molecular epidemiology of S. dysgalactiae infections in Nile tilapia farms in Brazil. Twenty-one isolates from four farms located in different Brazilian states were characterized genetically using pulsed-field gel electrophoresis (PFGE), ERIC-PCR, REP-PCR and sodA gene sequencing. The discriminatory power of the different typing methods was compared using Simpson's index of diversity. Identical sodA gene sequences were obtained from all isolates, and ERIC-PCR and REP-PCR were unable to discriminate among the isolates. PFGE typing detected three different genetic patterns between the 21 strains evaluated; thus, it was the best genotyping method for use with this pathogen. The strains from Ceará State were genetically divergent from those from Alagoas State. The S. dysgalactiae isolates analysed in this study constituted a genetically diverse population with a clear association between geographical origin and genotype. © 2013 John Wiley & Sons Ltd.

  18. New hosts and genetic diversity of Flavobacterium columnare isolated from Brazilian native species and Nile tilapia.

    PubMed

    Barony, G M; Tavares, G C; Assis, G B N; Luz, R K; Figueiredo, H C P; Leal, C A G

    2015-11-17

    Flavobacterium columnare is responsible for disease outbreaks in freshwater fish farms. Several Brazilian native fish have been commercially exploited or studied for aquaculture purposes, including Amazon catfish Leiarius marmoratus × Pseudoplatystoma fasciatum and pacamã Lophiosilurus alexandri. This study aimed to identify the aetiology of disease outbreaks in Amazon catfish and pacamã hatcheries and to address the genetic diversity of F. columnare isolates obtained from diseased fish. Two outbreaks in Amazon catfish and pacamã hatcheries took place in 2010 and 2011. Four F. columnare strains were isolated from these fish and identified by PCR. The disease was successfully reproduced under experimental conditions for both fish species, fulfilling Koch's postulates. The genomovar of these 4 isolates and of an additional 11 isolates from Nile tilapia Oreochromis niloticus was determined by 16S rRNA restriction fragment length polymorphism PCR. The genetic diversity was evaluated by phylogenetic analysis of the 16S rRNA gene and repetitive extragenic palindromic PCR (REP-PCR). Most isolates (n = 13) belonged to genomovar II; the remaining 2 isolates (both from Nile tilapia) were assigned to genomovar I. Phylogenetic analysis and REP-PCR were able to demonstrate intragenomovar diversity. This is the first report of columnaris in Brazilian native Amazon catfish and pacamã. The Brazilian F. columnare isolates showed moderate diversity, and REP-PCR was demonstrated to be a feasible method to evaluate genetic variability in this bacterium.

  19. The Physiological and Metabolic Differences between Visceral and Subcutaneous Adipose Tissues in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Wang, Ya-Wen; Zhang, Ji-Lei; Jiao, Jian-Gang; Du, Xiao-Xia; Limbu, Samwel Mchele; Qiao, Fang; Zhang, Mei-Ling; Li, Dong-Liang; Du, Zhen-Yu

    2017-08-16

    Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SCAT) have different structures and metabolic functions, and play different roles in the regulation of mammal systemic endocrine. However, little is known about morphology and physiological and metabolic functions between VAT and SCAT in fish. We compared the morphological, physiological and biochemical characteristics of VAT and SCAT in Nile Tilapia and measured their functions in energy intake flux, lipolytic ability, and gene expression patterns. SCAT contained more large adipocytes and non-adipocytes than VAT in Nile tilapia. VAT had a higher lipid and was the primary site for lipid deposition. Conversely, SCAT had higher hormone-induced lipolytic activity. Furthermore, SCAT had a higher percentage of monounsaturated and lower polyunsaturated fatty acids than VAT. SCAT had higher mitochondrial DNA, gene expression for fatty acid β-oxidation, adipogenesis and brown adipose tissue characteristics, but it also had a lower gene expression for inflammation and adipocyte differentiation than VAT. SCAT and VAT have different morphological structures, as well as physiological and metabolic functions in fish. VAT is the preferable lipid deposition tissue, whereas SCAT exhibits higher lipid catabolic activity than VAT. The physiological functions of SCAT in fish are commonly overlooked. The present study indicates SCAT has specific metabolic characteristics that differ VAT. The differences between VAT and SCAT should be considered in future metabolism studies using fish as models, either in biomedical or aquaculture studies. Copyright © 2017, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology.

  20. Oxidative damage in gills and liver in Nile tilapia (Oreochromis niloticus) exposed to diazinon.

    PubMed

    Toledo-Ibarra, G A; Díaz Resendiz, K J G; Ventura-Ramón, G H; González-Jaime, F; Vega-López, A; Becerril-Villanueva, E; Pavón, L; Girón-Pérez, M I

    2016-10-01

    Agricultural activity demands the use of pesticides for plague control and extermination. In that matter, diazinon is one of the most widely used organophosphorus pesticides (OPs). Despite its benefits, the use of OPs in agricultural activities can also have negative effects since the excessive use of these substances can represent a major contamination problem for water bodies and organisms that inhabit them. The aim of this paper was to evaluate oxidative damage in lipids and proteins of Nile tilapia (Oreochromis niloticus) exposed acutely to diazinon (0.97, 1.95 and 3.95ppm) for 12 or 24h. The evaluation of oxidative damage was determined by quantifying lipid hydroperoxides (Fox method) and oxidized proteins (DNPH method). The data from this study suggest that diazinon induces a concentration-dependent oxidative damage in proteins, but not lipids, of the liver and gills of Nile tilapia. Furthermore, the treatment leads to a decrease in the concentration of total proteins, which can have serious consequences in cell physiology and fish development. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Comparative transcriptome analysis of Nile tilapia (Oreochromis niloticus) in response to alkalinity stress.

    PubMed

    Zhao, Y; Wang, J; Thammaratsuntorn, J; Wu, J W; Wei, J H; Wang, Y; Xu, J W; Zhao, J L

    2015-12-22

    To identify genes of potential importance to alkalinity tolerance, RNA sequencing (RNA-Seq) was performed to survey gill transcriptome profiles from freshwater (FW) and alkaline water (AW) exposed Nile tilapia (Oreochromis niloticus). A total of 22,724,036 (AW)/16,461,040 (FW) single-end reads were generated in which 20,304,348 (AW)/14,681,290 (FW) reads (90.0/89.72%) were aligned to the reference genome. Differential expression analysis revealed 302 up-regulated and 193 down-regulated genes between AW- and FW-exposed fish. These differentially expressed genes were enriched in several Gene Ontology (GO) terms related to "stress response", "heme binding", and "carbonate dehydratase activity". Meanwhile, significant KEGG pathways were enriched in energy metabolism, including nitrogen and sulfur metabolism. These results demonstrate the response of Nile tilapia exposed to alkaline-water and might provide valuable information to further understand the molecular mechanisms of adaptation of fish to alkaline environments.

  2. Metacercarial Infection of Wild Nile Tilapia (Oreochromis niloticus) from Brazil

    PubMed Central

    Pinto, Hudson A.; Mati, Vitor L. T.; Melo, Alan L.

    2014-01-01

    Fingerlings of Oreochromis niloticus collected in an artificial urban lake from Belo Horizonte, Minas Gerais, Brazil, were evaluated for natural infection with trematodes. Morphological taxonomic identification of four fluke species was performed in O. niloticus examined, and the total prevalence of metacercariae was 60.7% (37/61). Centrocestus formosanus, a heterophyid found in the gills, was the species with the highest prevalence and mean intensity of infection (31.1% and 3.42 (1–42), resp.), followed by the diplostomid Austrodiplostomum compactum (29.5% and 1.27 (1-2)) recovered from the eyes. Metacercariae of Drepanocephalus sp. and Ribeiroia sp., both found in the oral cavity of the fish, were verified at low prevalences (8.2% and 1.6%, resp.) and intensities of infection (only one metacercaria of each of these species per fish). These species of trematodes are reported for the first time in O. niloticus from South America. The potential of occurrence of these parasites in tilapia farming and the control strategies are briefly discussed. PMID:25485302

  3. Pesticide residues in Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) from Southern Lake Victoria, Tanzania.

    PubMed

    Henry, L; Kishimba, M A

    2006-03-01

    Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) samples were collected from fish landing stations in nine riparian districts on the Tanzanian side of Lake Victoria and screened for residues of 64 organochlorine, organophosphorus, carbamate, and pyrethroid pesticides. The residue levels in the fish fillet were up to 0.003, 0.03 and 0.2 mg/kg fresh weight (0.7, 3.8 and 42 mg/kg lipid weight) of fenitrothion, DDT and endosulfan, respectively. Mean levels within sites were up to 0.002, 0.02 and 0.1 mg/kg fresh weight (0.5, 0.5 and 16 mg/kg lipid weight), respectively. The detection of higher levels of p,p'-DDT than the degradation products (p,p'-DDD and p,p'-DDE), and higher levels of endosulfan isomers (alpha and beta) than the sulphate, in fish samples, implied recent exposure of fish to DDT and endosulfan, respectively. Generally, most of the fish samples had residue levels above the average method detection limits (MDLs), but were within the calculated ADI.

  4. First isolation and characterization of Lactococcus garvieae from Brazilian Nile tilapia, Oreochromis niloticus, (L.), and pintado, Pseudoplathystoma corruscans (Spix and Agassiz)

    USDA-ARS?s Scientific Manuscript database

    Lactococcus garvieae infection in cultured Nile tilapia, Oreochromis niloticus, (Linnaeus) and pintado, Pseudoplathystoma corruscans, (Spix and Agassiz) from Brazil is reported. The commercial bacterial identification system, Biolog Microlog®, confirmed the identity of L. garvieae. Infectivity tri...

  5. Dietary administration of Bacillus subtilis on hematology and non-specific immunity of Nile tilapia Oreochromis niloticus raised at different stocking densities.

    PubMed

    Telli, Guilherme Silveira; Ranzani-Paiva, Maria José Tavares; Dias, Danielle de Carla; Sussel, Fabio Rosa; Ishikawa, Carlos Massatoshi; Tachibana, Leonardo

    2014-08-01

    An 84-day feeding trial was conducted to evaluate the effect of the dietary administration of Bacillus subtilis on the growth performance, body composition, intestinal probiotic recovery, hematology, and non-specific immunity of Nile tilapia (Oreochromis niloticus) raised at two stocking densities. Five hundred twenty male Nile tilapias (32.63 ± 1.25 g) were distributed in 16,800-L tanks. The experimental design was completely randomized using four replications and a 2 × 2 factorial scheme with two stocking densities (18.75 fish m(-3) 62.50 fish m(-3)) and two diets (control and with probiotic). The probiotic-supplemented diet included 5 × 10(6) CFU g feed(-1). There were no significant differences (P > 0.05) in the growth performance, body composition, and levels of cortisol and glucose between the animals fed with the control diet and the animals fed with the probiotic-supplemented diet. Differences in the growth performance were observed between the fish reared at different stocking densities; in particular, the fish raised at the high stocking density exhibited reduced weight gain, feed intake, and specific growth rate compared with those raised at the low stocking density. The B. subtilis remained viable after its inclusion in the feed, storage, and passage through the stomach, which demonstrations the feasibility of using this bacteria as a probiotic. Higher values (P < 0.05) in the plasma lysozyme levels and phagocytic activity were observed in the fish that received the probiotic-supplemented diet and reared at the high stocking density, but this difference was not observed in the fish raised at the low stocking density and fed the different diets. The administration of the probiotic caused decreases in the number of erythrocytes and the hematocrit level in the fish reared at the high stocking density, but these erythrocytes showed higher values of mean corpuscular hemoglobin. The stocking density was shown to be a stressor agent that causes a lower fish

  6. The effects of dietary kefir and low molecular weight sodium alginate on serum immune parameters, resistance against Streptococcus agalactiae and growth performance in Nile tilapia (Oreochromis niloticus).

    PubMed

    Van Doan, Hien; Hoseinifar, Seyed Hossein; Tapingkae, Wanaporn; Khamtavee, Pimporn

    2017-03-01

    The present study evaluates the effects of dietary kefir and low molecular weight sodium alginate (LWMSA) (singular or combined) on non-specific immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Fish with average weight of 18.60 ± 0.04 g were supplied and randomly stocked in sixteen glass tanks (150 L) at density of 20 fish per tank. Fish were fed experimental diets as follows: 0 g kg(-1) LMWSA (Control, Diet 1), 10 g kg(-1) LMWSA (Diet 2), 40 g kg(-1) kefir (Diet 3), and 10 g kg(-1) LMWSA + 40 g kg(-1) kefir (Diet 4) for 50 days. At the end of the feeding trial, serum lysozyme (SL), phagocytosis (PI), respiratory burst (RB), and alternative complement (ACH50) activities as well as growth performance were measured. Singular and combined administration of kefir and low molecular weight sodium alginate (LMWSA) significantly increased serum SL, PI, RB, and ACH50 activities compared control group (P < 0.05); the highest innate immune responses were observed in fish fed combinational diet (kefir + LMWSA) (P < 0.05). The results of experimental challenge revealed significantly higher resistance against Streptococcus agalactiae in fish fed supplemented diets and the highest post challenge survival rate was observed in synbiotic diet (P < 0.05). Similar results obtained in case of growth parameters. Feeding on supplemented diet significantly improved SGR and FCR and the highest growth parameters was observed in fish fed synbiotic diet (P < 0.05). These finding revealed that combined administration of dietary kefir and LMWSA can be considered for improving immune response, disease resistance and growth performance of Nile tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Combined administration of low molecular weight sodium alginate boosted immunomodulatory, disease resistance and growth enhancing effects of Lactobacillus plantarum in Nile tilapia (Oreochromis niloticus).

    PubMed

    Van Doan, Hien; Hoseinifar, Seyed Hossein; Tapingkae, Wanaporn; Tongsiri, Sudaporn; Khamtavee, Pimporn

    2016-11-01

    The present study investigates the effects of combined or singular administration of low molecular weight sodium alginate (LWMSA) and Lactobacillus plantarum on innate immune response, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Three hundred and twenty fish were supplied and randomly stocked in sixteen glass tanks (150 L) assigned to four treatments as follows: 0 g kg(-1) LMWSA (Control, Diet 1), 10 g kg(-1) LMWSA (Diet 2), 10(8) CFU g(-1)L. plantarum (Diet 3), and 10 g kg(-1) LMWSA + 10(8) CFU g(-1)L. plantarum (Diet 4). Following 30 and 60 days of the feeding trial, serum lysozyme, phagocytosis, respiratory burst and alternative complement activities as well as growth performance parameters (specific growth rate, feed conversion ratio) were measured. Serum lysozyme, phagocytosis, respiratory burst, and alternative complement activities of fish were significantly stimulated by both LMWSA and L. plantarum diets, however, the highest innate immune response were observed in fish fed synbiotic diet. At the end of the experiment, eight fish per replication were randomly selected for a challenge test against Streptococcus agalactiae. The survival rate of the fish fed supplemented diets was significantly greater than the control treatment and the highest post challenge survival rate was observed in synbiotic diet. Furthermore, SGR and FCR were significantly improved in fish fed supplemented diets after 60 days and the highest growth performance was observed in fish fed synbiotic diet. These results suggest combined LMWSA and L. plantarum can be considered as a promising immunostimulant and growth enhancer in Nile tilapia diet.

  8. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus).

    PubMed

    Guerra-Santos, Bartira; López-Olmeda, José Fernando; de Mattos, Bruno Olivetti; Baião, Alice Borba; Pereira, Denise Soledade Peixoto; Sánchez-Vázquez, Francisco Javier; Cerqueira, Robson Bahia; Albinati, Ricardo Castelo Branco; Fortes-Silva, Rodrigo

    2017-02-01

    The light-dark cycle and feeding can be the most important factors acting as synchronizers of biological rhythms. In this research we aimed to evaluate synchronization to feeding schedule of daily rhythms of locomotor activity and digestive enzymes of tilapia. For that purpose, 120 tilapias (65.0±0.6g) were distributed in 12 tanks (10 fish per tank) and divided into two groups. One group was fed once a day at 11:00h (zeitgeber time, ZT6) (ML group) and the other group was fed at 23:00h (ZT18) (MD group). The fish were anesthetized to collect samples of blood, stomach and midgut at 4-hour intervals over a period of 24h. Fish fed at ML showed a diurnal locomotor activity (74% of the total daily activity occurring during the light phase) and synchronization to the feeding schedule, as this group showed anticipation to the feeding time. Fish fed at MD showed a disruption in the pattern of locomotor activity and became less diurnal (59%). Alkaline protease activity in the midgut showed daily rhythm with the achrophase at the beginning of the dark phase in both ML and MD groups. Acid protease and amylase did not show significant daily rhythms. Plasma glucose showed a daily rhythm with the achrophase shifted by 12h in the ML and MD groups. These results revealed that the feeding time and light cycle synchronize differently the daily rhythms of behavior, digestive physiology and plasma metabolites in the Nile tilapia, which indicate the plasticity of the circadian system and its synchronizers.

  9. Survival, Growth and Reproduction of Non-Native Nile Tilapia II: Fundamental Niche Projections and Invasion Potential in the Northern Gulf of Mexico

    DTIC Science & Technology

    2012-07-27

    Nile tilapia can alter the function of aquatic systems through eutrophication [76,77], altered trophic dynamics [12], and local extinction of native fish...Starling FLRM, Lazzaro X, Cavalcanti C, Moreira R (2002) Contribution of omnivorous tilapia to eutrophication of a shallow tropical reservoir: evidence

  10. Determining the cleavage site for the mature antimicrobial peptide of Nile tilapia β-defensin using 2D electrophoresis, western blot, and mass spectrometry analysis.

    PubMed

    Chang, Chin-I; Chen, Li-Hao; Hu, Yeh-Fang; Wu, Chia-Che; Tsai, Jyh-Ming

    2017-03-01

    Several proteomic techniques were used to determine the cleavage site of the mature antimicrobial peptide of Nile tilapia β-defensin. The computer-predicted Nile tilapia β-defensin ((25)ASFPWSCLSLSGVCRKVCLPTELFFGPLGCGKGSLCCVSHFL(66)) composed of 42 amino acids was chemically synthesized and prepared to produce an antibody for Western blotting. Total proteins from the skin of the Nile tilapia were separated on two-dimensional electrophoresis, and the spot of Nile tilapia β-defensin was recognized using Western blot analysis. It was then excised and extracted from the gel. The precise molecular mass of this spot was determined by LC-MS/MS spectrometry. Four major peptides were discovered, with molecular weights of 4293.2 Da, 4306.5 Da, 4678.9 Da, and 4715.0 Da. The calculated mass of the 40-amino-acid sequence ((27)FPWSCLSLSGVCRKVCLPTELFFGPLGCGKGSLCCVSHFL(66)) of Nile tilapia β-defensin starting from Phe27 and ending with Leu66 was 4293.18 Da, which completely matched the 4293.2 Da peptide that was obtained from the mass spectrometry analysis. This result confirmed that the cleavage site for the mature C-terminal Nile tilapia β-defensin is at residue Ser26-Phe27, not at Ala24-25 as predicted by computer analysis. This study provides a simple but reliable model to determine the cleavage site for a mature antimicrobial peptide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, cichlidae).

    PubMed

    Agnèse, J F; Adépo-Gourène, B; Abban, E K; Fermon, Y

    1997-07-01

    We analysed the genetic differentiation among 17 natural populations of the Nile tilapia Oreochromis niloticus (Linnaeus, 1758) using allozymes and restriction fragment length polymorphism (RFLP) of mitochondrial DNA (mtDNA). The populations studied, from the River Senegal to Lake Tana and from Lake Manzalla to Lake Baringo, represent all subspecies which have been previously described. Sixteen variable nuclear loci showed that these populations can be clustered in three groups: (1) West African populations (Senegal, Niger, Volta and Chad drainages), (2) Ethiopian Rift Valley populations (Lakes Awasa, Ziway, Koka and the Awash River) and (3) Nile drainage (Manzalla, Cairo, Lake Edward) and Kenyan Rift Valley populations (Lakes Turkana, Baringo and River Suguta). Nine different mtDNA haplotypes were found in the RFLP analysis of a 1 kb portion of the D-loop region. The network obtained showed that there are three geographically distinct groups; all West African populations and O. aureus are clustered, the two Ethiopian Rift Valley populations are distinct and between these two groups are the Kenyan and Ugandan Rift Valley populations. Nile populations show affinities both with West African populations and with specimens from Lakes Tana and Turkana. Taxonomic and biogeographical implications of these results are discussed.

  12. Live transport of Yellow Perch and Nile Tilapia in AQUI-S 20E (10% Eugenol) at high loading densities

    USGS Publications Warehouse

    Cupp, Aaron R.; Schreier, Theresa M.; Schleis, Sue M.

    2017-01-01

    Fish transport costs are a substantial portion of the operational expenses for aquaculture facilities in the USA. Safely transporting higher loading densities of fish would benefit haulers by increasing efficiency and reducing costs, but research evaluating transport for individual species is generally lacking. In this study, Yellow Perch Perca flavescens and Nile Tilapia Oreochromis niloticus were transported for 6 h immersed in water containing AQUI-S 20E (10% eugenol) at fish loading densities of 240 g/L (2 lb/gal) for perch and 480 g/L (4 lb/gal) for tilapia. Survival was quantified for fish transported in AQUI-S 20E concentrations of (1) control or 0 mg/L of water, (2) 100 mg/L, or (3) 200 mg/L. Yellow Perch had 98–100% survival, and Nile Tilapia had 100% survival up to through 14 d after transport across all AQUI-S 20E levels, including the control. Eugenol concentrations decreased rapidly in transport tank water, and fish showed no signs of sedation by the end of transport. We conclude that live transport of Yellow Perch and Nile Tilapia at higher loading densities resulted in high survival regardless of the AQUI-S 20E concentrations we tested.

  13. Two Myxobolus spp. infecting the kidney of Nile tilapia (Oreochromis niloticus) in the River Nile at Beni-Suef governorate, Egypt, and the associated renal changes.

    PubMed

    Abdel-Baki, Abdel-Azeem S; Abdel-Haleem, Heba M; Sakran, Thabet; Zayed, Eman; Ibrahim, Khalid E; Al-Quraishy, Saleh

    2015-03-01

    Two Myxobolus spp. are described from the kidney of the Nile tilapia (Oreochromis niloticus) collected from the River Nile, Egypt. The prevalence of infection was 61 % (47/77), with the infected fish in each case parasitized by the two Myxobolus species simultaneously. The infection was exhibited as free spores in Bowman capsules and renal glomeruli, which makes their original structures difficult to discern. In some cases, the infection appeared as a fibrous plasmodia-like structure containing degenerated developmental stages and spores in the interstitium. The paper identifies each species based on the morphological characteristics of its spores and identifies the histological impacts of Myxobolus infection in this species of fish.

  14. Pituitary control of branchial NCC, NKCC and Na(+), K (+)-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus.

    PubMed

    Breves, Jason P; Seale, Andre P; Moorman, Benjamin P; Lerner, Darren T; Moriyama, Shunsuke; Hopkins, Kevin D; Grau, E Gordon

    2014-05-01

    This study investigated endocrine control of branchial ionoregulatory function in Nile tilapia (Oreochromis niloticus) by prolactin (Prl188 and Prl177), growth hormone (Gh) and cortisol. Branchial expression of Na(+)/Cl(-) cotransporter (ncc) and Na(+)/K(+)/2Cl(-) cotransporter (nkcc) genes were employed as specific markers for freshwater- and seawater-type ionocytes, respectively. We further investigated whether Prl, Gh and cortisol direct expression of two Na(+), K(+)-ATPase (nka)-α1 subunit genes, denoted nka-α1a and nka-α1b. Tilapia transferred to fresh water following hypophysectomy failed to adequately activate gill ncc expression; ncc expression was subsequently restored by Prl replacement. Prl188 and Prl177 stimulated ncc expression in cultured gill filaments in a concentration-related manner, suggesting that ncc is regulated by Prl in a gill-autonomous fashion. Tilapia transferred to brackish water (23 ‰) following hypophysectomy exhibited a reduced capacity to up-regulate nka-α1b expression. However, Gh and cortisol failed to affect nka-α1b expression in vivo. Similarly, we found no clear effects of Gh or cortisol on nkcc expression both in vivo and in vitro. When considered with patterns previously described in euryhaline Mozambique tilapia (O. mossambicus), the current study suggests that ncc is a conserved target of Prl in tilapiine cichlids. In addition, we revealed contrasting dependencies upon the pituitary to direct nka-α1b expression in hyperosmotic environments between Nile and Mozambique tilapia.

  15. Molecular cloning and expression analysis of Foxp3 from Nile tilapia.

    PubMed

    Wei, Jing; Yu, Lintian; Sun, Lina; Zhang, Xiaoping; Li, Minghui; Qi, Wenchuang; Zhou, Linyan; Wang, Deshou

    2013-09-01

    Foxp3 is a crucial transcription factor for the development and function of CD4(+)CD25(+) regulatory T cells (Tr) which play a key role in preventing autoimmune diseases and maintaining maternal-fetal tolerance in mammals. However, the knowledge of Foxp3 and its regulation in teleosts is limited. In the present study, the Foxp3 cDNA was cloned from Nile tilapia and characterized. The full length cDNA of Nile tilapia (nt)Foxp3 contained a 5'UTR of 104 bp, a 3'UTR of 239 bp and an open reading frame of 1134 bp. The putative ntFoxp3 contained a C2H2 zinc finger domain, a winged-helix/fork head domain and a leucine zipper-like domain with a consensus of V-x(6)-L-x(6)-L-x(6)-L, which are typical motifs of a Foxp3. The highest mRNA expression of ntFoxp3 was observed in the spleen, with moderate expression in the head kidney, intestine, kidney, liver and brain. Stimulation of peripheral blood mononuclear cells with PHA and LPS led to a significant increase of ntFoxp3 mRNA expression at 6 and 24h, respectively. In contrast, stimulation with PMA had no effect during the sampling period. After injecting 1×10(7) cells of live Aeromonas hydrophila into adult female Nile tilapias, the mRNA expression of ntFoxp3 significantly increased in the gill and intestine at 6h, while unchanged in the spleen. In all the tissues examined, a clearly up-regulation of ntFoxp3 expression was detected at 24h after the second challenge. These results suggest that ntFoxp3 might be involved into lymphocyte activation and immune responses as reported in mammals. Meanwhile, the correlation between the expression profile of ntFoxp3 and serum estrogen (17-beta-estradiol, E2) concentration was investigated by real-time PCR and enzyme immunoassay. The results showed that E2 could regulate the expression of ntFoxp3 in the intestine and kidney but not in the spleen. This work will help future investigations into Tr cells and extend our understanding of interactions between sex hormones and immune related

  16. A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs

    PubMed Central

    2012-01-01

    Background The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. Results We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR3500 and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. Conclusion The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia

  17. Effect of the hydrostatic pressure on otolith growth of early juveniles of Nile tilapia Oreochromis niloticus.

    PubMed

    Correia, A T; Coimbra, A M; Damasceno-Oliveira, A

    2012-07-01

    Nile tilapia Oreochromis niloticus early juveniles were maintained for 2 weeks in a pressurized system under a controlled photoperiod, at constant salinity and temperature. Groups of fish were exposed to one of three absolute hydrostatic pressure (HP) regimes: (1) a constant normal atmospheric pressure (100 kPa), (2) a constant 40 m pressure (500 kPa) or (3) a semi-diurnal cyclic vertical migration (100-500 kPa). No significant differences were detected in otolith size and incremental periodicity among the three HP treatments, suggesting that HP does not affect otolith growth of early juveniles O. niloticus. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Immunologic parameters evaluations in Nile tilapia (Oreochromis niloticus) exposed to sublethal concentrations of diazinon.

    PubMed

    Girón-Pérez, M I; Velázquez-Fernández, J; Díaz-Resendiz, K; Díaz-Salas, F; Canto-Montero, C; Medina-Díaz, I; Robledo-Marenco, M; Rojas-García, A; Zaitseva, G

    2009-08-01

    Fish resistance to microorganisms depends basically on the immune response. Although there are several studies on the diazinon mammalian immunotoxicity, in the case of fish there are only few. The aim of present study was to evaluate the effect of diazinon on immunological parameters (relative spleen weight, splenocytes count, lysozyme activity, respiratory burst and IgM concentration) in Nile tilapia. Diazinon at sublethal concentrations (0.39 and 0.78 mg/L) did not alter RSW, splenocytes count or lysozyme activity. However, at the highest concentration tested (1.96 mg/L) diazinon significantly increased respiratory burst and IgM concentration. In summary, diazinon (and perhaps other pesticides) could alter immunological response and induce oxidative stress.

  19. Nitrogen and phosphorus flux from the production of Nile tilapia through the application of environmental indicators.

    PubMed

    Osti, J A S; Moraes, M A B; Carmo, C F; Mercante, C T J

    2017-07-10

    We aimed in this study utilize environmental indicators as a quantitative method to evaluate and discuss the nitrogen (TN) and phosphorus (TP) flux by a production stage grow-out (termination) of Nile tilapia (Oreochromis niloticus) in fishpond. The TN and TP load, the mass balance, the input of TN and TP via feed and the converted nutrients in fish biomass are the environmental indicators applied in this study. During the production cycle (128 days), the system exported 15,931 g TN and 4,189 g TP that were related to the amount of feed supplied (r Pearson = 0.8825 and r = 0.8523, respectively), corroborated by the feed conversion ratio (1.61:1). The indicators showed that 26% TN and 45% TP were reversed into fish biomass, 62% TN and 40% TP were retained in the fishpond, and 12% TN and 15% TP were exported via effluent. The largest contribution of nutrients generated by the system and exported via effluent was observed in phase III and IV. This result is supported by the feed conversion ratio 2.14 and 2.21:1 obtained at this phase, a fact explained by the amount of feed offered and the fish metabolism. Application of environmental indicators showed to be an efficient tool to quantify flux of TN and TP produced during the grow-out period of Nile tilapia and therefore, guide management practices more sustainable. Concerning the environmental sustainability of the activity the implementation of best management practices such as the better control of the feed amount offered would lead to a smaller loss of TN and TP to the water. Furthermore, the use of better quality feeds would allow greater nutrient assimilation efficiency.

  20. Role of catalase on the hypoxia/reoxygenation stress in the hypoxia-tolerant Nile tilapia.

    PubMed

    Welker, Alexis F; Campos, Elida G; Cardoso, Luciano A; Hermes-Lima, Marcelo

    2012-05-01

    The specific contribution of each antioxidant enzyme to protection against the reoxygenation-associated oxidative stress after periods of hypoxia is not well understood. We assessed the physiological role of catalase during posthypoxic reoxygenation by the combination of two approaches. First, catalase activity of Nile tilapias (Oreochromis niloticus) was 90% suppressed by intraperitoneal injection of 3-amino-1,2,4-triazole (ATZ, 1g/kg). In ATZ-injected fish, liver GSH levels, oxidative stress markers, and activities of other antioxidant enzymes remained unchanged. Second, animals with depleted catalase activity (or those saline-injected) were subjected to a cycle of severe hypoxia (dissolved O(2) = 0.28 mg/l for 3 h) followed by reoxygenation (0.5 to 24 h). Hypoxia did not induce changes in the above-mentioned parameters, either in saline- or in ATZ-injected animals. Reoxygenation increased superoxide dismutase activity in saline-injected fish, whose levels were similar to ATZ-injected animals. The activities of glutathione S-transferase, selenium-dependent glutathione peroxidase, and total-GPX and the levels of GSH-eq, GSSG, and thiobarbituric acid reactive substances remained unchanged during reoxygenation in both saline- and ATZ-injected fish. The GSSG/GSH-eq ratio in ATZ-injected fish increased at 30 min of reoxygenation compared with saline-injected ones. Reoxygenation also increased carbonyl protein levels in saline-injected fish, whose levels were similar to the ATZ-injected group. Our work shows that inhibition of liver tilapia catalase causes a redox imbalance during reoxygenation, which is insufficient to induce further oxidative stress. This indicates the relevance of hepatic catalase for hypoxia/reoxygenation stress in tilapia fish.

  1. Five Different Piscidins from Nile Tilapia, Oreochromis niloticus: Analysis of Their Expressions and Biological Functions

    PubMed Central

    Peng, Kuan-Chieh; Lee, Shu-Hua; Hour, Ai-Ling; Pan, Chieh-Yu; Lee, Lin-Han; Chen, Jyh-Yih

    2012-01-01

    Piscidins are antimicrobial peptides (AMPs) that play important roles in helping fish resist pathogenic infections. Through comparisons of tilapia EST clones, the coding sequences of five piscidin-like AMPs (named TP1∼5) of Nile tilapia, Oreochromis niloticus, were determined. The complete piscidin coding sequences of TP1, -2, -3, -4, and -5 were respectively composed of 207, 234, 231, 270, and 195 bases, and each contained a translated region of 68, 77, 76, 89, and 64 amino acids. The tissue-specific, Vibrio vulnificus stimulation-specific, and Streptococcus agalactiae stimulation-specific expressions of TP2, -3, and -4 mRNA were determined by a comparative RT-PCR. Results of the tissue distribution analysis revealed high expression levels of TP2 mRNA in the skin, head kidneys, liver, and spleen. To study bacterial stimulation, S. agalactiae (SA47) was injected, and the TP4 transcript was upregulated by >13-fold (compared to the wild-type (WT) control, without injection) and was 60-fold upregulated (compared to the WT control, without injection) 24 h after the S. agalactiae (SA47) injection in the spleen and gills. Synthesized TP3 and TP4 peptides showed antimicrobial activities against several bacteria in this study, while the synthesized TP1, -2, and -5 peptides did not. The synthesized TP2, -3, and -4 peptides showed hemolytic activities and synthesized TP3 and TP4 peptides inhibited tilapia ovary cell proliferation with a dose-dependent effect. In summary, the amphiphilic α-helical cationic peptides of TP3 and TP4 may represent novel and potential antimicrobial agents for further peptide drug development. PMID:23226256

  2. Blocking of progestin action disrupts spermatogenesis in Nile tilapia (Oreochromis niloticus).

    PubMed

    Liu, Gang; Luo, Feng; Song, Qiang; Wu, Limin; Qiu, Yongxiu; Shi, Hongjuan; Wang, Deshou; Zhou, Linyan

    2014-08-01

    In vitro studies have indicated that the maturation-inducing hormone 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP, DHP), probably through nuclear progestin receptor (Pgr), might be involved in the proliferation of spermatogonial cells and the initiation of meiosis in several fish species. However, further in vivo evidence is required to elucidate the role of DHP in spermatogenesis during sexual differentiation in teleosts. In this study, we cloned pgr and analyzed its expression in Nile tilapia (Oreochromis niloticus) and treated XY fish with RU486 (a synthetic Pgr antagonist) from 5 days after hatching (dah) to determine the role of DHP in spermatogenesis. Sequence and phylogenetic analyses revealed that the Pgr identified in tilapia is a genuine Pgr. Pgr was found to be expressed in the Sertoli cells surrounding spermatogonia and spermatids in the testis of tilapia. Real-time PCR analysis revealed that the expression of pgr in the testis was significantly upregulated from 10 dah, further increased at 50 dah, and persisted until adulthood in fish. In the testis of RU486-treated fish, the transcript levels of germ cell markers and a meiotic marker were substantially reduced. However, the expression of markers in Sertoli cells remained unchanged. Moreover, the production of 11-ketotestosterone and the expression of genes encoding various steroidogenic enzymes were also not altered. In contrast, the expression of cyp17a2, encoding one of the critical steroidogenic enzymes involved in DHP biosynthesis, declined significantly, possibly indicating the inhibition of DHP production by RU486. RU486 treatment given for 2 months did not affect spermatogenesis; however, treatment given for more than 3 months resulted in a decrease in spermatogonial cell numbers and depletion of later-phase spermatogenic cells. Simultaneous excessive DHP supplementation restored spermatogenesis in RU486-treated XY fish. Taken together, our data further indicated that DHP, possibly through

  3. Fatty acid concentration, proximate composition, and mineral composition in fishbone flour of Nile Tilapia.

    PubMed

    Petenuci, Maria Eugênia; Stevanato, Flávia Braidoti; Visentainer, Jeane Eliete Laguila; Matsushita, Makoto; Garcia, Edivaldo Egea; de Souza, Nilson Evelázio; Visentainer, Jesui Vergilio

    2008-03-01

    Nile tilapia (Oreochormis niloticus) fishbone is a fish part with unknown composition. After elaboration of flour fishbone of tilapia it was analysede. The results in 100 g of flour were: moisture (14.2%), protein (40.8%), total lipids (25.3%), and ash (18.3%), and mineral (in 100 g) was 2715.9 mg (calcium), 1.3 mg (iron), and 1132.7 mg (phosphorus). A total of 22 fatty acids were detected in fishbone flour total lipids (TL), being the major ones in (g) of total lipids: 16:0 (208.5 mg); 18:1n-9 (344.3 mg); and 18:2n-6 (109.6 mg). The concentration of linolenic acid--LNA (18:3n-3); eicopentaenoic acid--EPA (20:5n-3), and docosahexaenoic acid--DHA (22:6n-3) were (29.9 mg), (3.3 mg), and (12.9 mg), respectively. The content to saturated (SFA) were (296.2 mg), monounsaturated (MUFA) 415.0 mg, and polyunsaturated (PUFA) 175.6 mg. The ratio PUFA:MUFA:SFA was 1:2.4:1.7, and the ratio omega-6/omega-3 fatty acids were 2.8. The last is within the recommended values. The results show low concentrations of omega-3 fatty acids in flour. The value caloric and calcium, iron, phosphorus, and protein content the fishbone flour of tilapia may results a valuable alternative food in the human diet.

  4. Establishment of a model of Streptococcus iniae meningoencephalitis in Nile tilapia (Oreochromis niloticus).

    PubMed

    Baums, C G; Hermeyer, K; Leimbach, S; Adamek, M; Czerny, C-P; Hörstgen-Schwark, G; Valentin-Weigand, P; Baumgärtner, W; Steinhagen, D

    2013-07-01

    Streptococcus iniae is an invasive pathogen causing meningitis and other lesions in various fish species. Furthermore, S. iniae is an emerging zoonotic agent that causes cellulitis in man. The aims of this study were to establish an intraperitoneal infection model for S. iniae in Nile tilapia (Oreochromis niloticus) and to develop a new histopathological scoring system to reflect the degree and extent of inflammation as well as the presence of necrosis in the brain and eye. Intraperitoneal administration of 10(6) colony-forming units (CFU) led to 80% mortality and numerous fish developing clinical signs of central nervous system dysfunction. Microscopical examination of four regions of the brain (olfactory bulb, cerebellum, cerebrum and optical lobe) and the eye revealed the presence of lymphohistiocytic leptomeningitis, meningoencephalitis and endophthalmitis. Lesions were dominated by macrophages that often contained intracellular bacteria. Necrosis was recorded in some cases. Bacteriological screening revealed that multiple organs, including brain and eye, were infected with S. iniae and S. iniae colonized the scales and gills in high number. S. iniae was detected in tank water during the first week post infection, suggesting that infected tilapia might shed up to 3 × 10(7) CFU of S. iniae within 24 h. A multiplex polymerase chain reaction allowed confirmation of the challenge strain by detection of the virulence factors simA, scpI, cpsD, pgi, pgm and sagA.

  5. Reduction of copper-induced histopathological alterations by calcium exposure in Nile tilapia (Oreochromis niloticus).

    PubMed

    Kosai, Piya; Jiraungkoorskul, Wannee; Thammasunthorn, Tawan; Jiraungkoorskul, Kanitta

    2009-09-01

    This study was undertaken to determine whether calcium could render any protection against copper (Cu) toxicity in Nile tilapia with emphasis on histopathological and histochemical analysis. The copper LC(50) values for 24, 48, 72, and 96 h to tilapia in the laboratory were 210.27, 213.34, 193.30, and 185. 75 mg/L, respectively. Prior to Cu exposure, fish were exposed to 0 (G1 and G3) and 30 mg/L calcium carbonate (G2 and G4) for 4 days. After that, fish were exposed to 46 mg/L copper, which corresponds to 25% of the 96 h LC(50) (G3 and G4) for 96 h and 7 days. In the gills of the copper treatment group, primary filament cell hyperplasia, epithelial lifting, or edema, secondary lamellar fusion, and aneurysm were observed. Swollen hepatocytes showing vacuoles and congestion in sinusoids were observed. Necrosis was observed in some areas. In the kidney, glomerulus's atrophy, tubular swelling, and also necrosis were seen. Fish that were pre-exposed to calcium showed slight alteration when compared to copper alone-treatment groups. Histochemical staining for calcium and copper by alizarin red S and rhodanine staining, respectively, indicated no accumulation of calcium and copper in kidney, liver, gills, and muscle. In conclusion, calcium appears to be beneficial in reducing the effects of heavy metal contaminations in aquatic organisms.

  6. Antimicrobial Susceptibility of Escherichia coli Isolated from Fresh-Marketed Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Rocha, Rafael dos Santos; Leite, Lana Oliveira; de Sousa, Oscarina Viana; Vieira, Regine Helena Silva dos Fernandes

    2014-01-01

    The contamination of seafood by bacteria of fecal origin, especially Escherichia coli, is a widely documented sanitary problem. The objective of the present study was to isolate E. coli strains from the gills, muscle, and body surface of farmed Nile tilapias (Oreochromis niloticus) fresh-marketed in supermarkets in Fortaleza (Ceará, Brazil), to determine their susceptibility to antibiotics of different families (amikacin, gentamicin, imipenem, cephalothin, cefotaxime, ciprofloxacin, aztreonam, ampicillin, nalidixic acid, tetracycline, and sulfametoxazol-trimetoprim), and to determine the nature of resistance by plasmid curing. Forty-four strains (body surface = 25, gills = 15, muscle = 4) were isolated, all of which were susceptible to amikacin, aztreonam, cefotaxime, ciprofloxacin, gentamicin, and imipenem. Gill and body surface samples yielded 11 isolates resistant to ampicillin, tetracycline, and sulfametoxazol-trimetoprim, 4 of which of plasmidial nature. The multiple antibiotic resistance index was higher for strains isolated from body surface than from gills. The overall high antibiotic susceptibility of E. coli strains isolated from fresh-marketed tilapia was satisfactory, although the occasional finding of plasmidial resistance points to the need for close microbiological surveillance of the farming, handling, and marketing conditions of aquaculture products. PMID:24808957

  7. Estrogenic activities of diuron metabolites in female Nile tilapia (Oreochromis niloticus).

    PubMed

    Pereira, Thiago Scremin Boscolo; Boscolo, Camila Nomura Pereira; Felício, Andreia Arantes; Batlouni, Sergio Ricardo; Schlenk, Daniel; de Almeida, Eduardo Alves

    2016-03-01

    Some endocrine disrupting chemicals (EDCs) can alter the estrogenic activities of the organism by directly interacting with estrogen receptors (ER) or indirectly through the hypothalamus-pituitary-gonadal axis. Recent studies in male Nile tilapia (Oreochromis niloticus) indicated that diuron may have anti-androgenic activity augmented by biotransformation. In this study, the effects of diuron and three of its metabolites were evaluated in female tilapia. Sexually mature female fish were exposed for 25 days to diuron, as well as to its metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenylurea (DCPU) and 3,4-dichlorophenyl-N-methylurea (DCPMU), at concentrations of 100 ng/L. Diuron metabolites caused increases in E2 plasma levels, gonadosomatic indices and in the percentage of final vitellogenic oocytes. Moreover, diuron and its metabolites caused a decrease in germinative cells. Significant differences in plasma concentrations of the estrogen precursor and gonadal regulator17α-hydroxyprogesterone (17α-OHP) were not observed. These results show that diuron metabolites had estrogenic effects potentially mediated through enhanced estradiol biosynthesis and accelerated the ovarian development of O. niloticus females. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Figla Favors Ovarian Differentiation by Antagonizing Spermatogenesis in a Teleosts, Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Sun, Lina; Wei, Jing; Nagahama, Yoshitaka; Wang, Deshou; Zhou, Linyan

    2015-01-01

    Figla (factor in the germ line, alpha), a female germ cell-specific transcription factor, had been shown to activate genetic hierarchies in oocytes. The ectopic expression of Figla was known to repress spermatogenesis-associated genes in male mice. However, the potential role of Figla in other vertebrates remains elusive. The present work was aimed to identify and characterize the functional relevance of Figla in the ovarian development of Nile tilapia (Oreochromis niloticus). Tissue distribution and ontogeny analysis revealed that tilapia Figla gene was dominantly expressed in the ovary from 30 days after hatching. Immunohistochemistry analysis also demonstrated that Figla was expressed in the cytoplasm of early primary oocytes. Intriguingly, over-expression of Figla in XY fish resulted in the disruption of spermatogenesis along with the depletion of meiotic spermatocytes and spermatids in testis. Dramatic decline of sycp3 (synaptonemal complex protein 3) and prm (protamine) expression indicates that meiotic spermatocytes and mature sperm production are impaired. Even though Sertoli cell (dmrt1) and Leydig cell (star and cyp17a1) marker genes remained unaffected, hsd3b1 expression and 11-KT production were enhanced in Figla-transgene testis. Taken together, our data suggest that fish Figla might play an essential role in the ovarian development by antagonizing spermatogenesis. PMID:25894586

  9. Effect of N-acetyl cysteine and glycine supplementation on growth performance, glutathione synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus.

    PubMed

    Xie, Shiwei; Zhou, Weiwen; Tian, Lixia; Niu, Jin; Liu, Yongjian

    2016-08-01

    An 8-week feeding trial was conducted to evaluate the effect of N-acetyl cysteine (NAC) and glycine supplementation on growth performance, glutathione (GSH) synthesis, anti-oxidative and immune ability of Nile tilapia, Oreochromis niloticus. Four practical diets were formulated, control, control +0.2% NAC, control +0.5% glycine, control +0.2% NAC +0.5% glycine. Each diet was randomly assigned to quadruplicate groups of 30 fish (approximately 9.5 g). The weight gain and specific growth rate were significantly increased with the supplementation of NAC and glycine. While they had no effect on feed efficiency feed intake and survival. Glutathion peroxidase (GPx) was increased by NAC and γ-glutamine cysteine synthase (γ-GCS) in plasma were increased by glycine. After the feeding trail, fish were challenged by Streptococcus iniae, fish fed the diet supplemented with NAC obtained significantly higher survival rate after 72 h challenge test. NAC also decreased malonaldehyde (MDA) in liver, increased glutathione S-transferase (GST) activity in plasma, up-regulated mRNA expression of Superoxide dismutase (SOD) and GPx in liver and headkidney. Dietary supplementation of glycine increased the anti-oxidative ability of tilapia through increase anti-oxidative enzyme activity (SOD, glutathione reductase, myeloperoxidase) and up-regulate anti-oxidative gene expression (SOD). Immune ability only enhanced by the supplementation of NAC through increased interleukin-1β (IL-1β) mRNA expression. These results clearly indicated that the supplementation of NAC and glycine can significantly improve the growth performance of tilapia, and NAC also enhance the anti-oxidative and immune capacity of tilapia, glycine could only enhance the anti-oxidative ability.

  10. Effects of Cordyceps militaris spent mushroom substrate and Lactobacillus plantarum on mucosal, serum immunology and growth performance of Nile tilapia (Oreochromis niloticus).

    PubMed

    Van Doan, Hien; Hoseinifar, Seyed Hossein; Dawood, Mahmoud A O; Chitmanat, Chanagun; Tayyamath, Khambou

    2017-09-04

    An 8-weeks feeding trial was performed to investigate the possible effects of supplementation of Nile tilapia diet with Cordyceps militaris spent mushroom substrate (SMS) single or combined with Lactobacillus plantarum on immune parameters and growth performance. For this aim, Nile tilapia fingerlings were fed with four experimental diets namely: Diet 1 (0 - control), Diet 2 (10 g kg(-1) SMS), Diet 3 (10(8) CFU g(-1)L. plantarum), and Diet 4 (10 g kg(-1) SMS + 10(8) CFU g(-1)L. plantarum). At the end of feeding trial, skin mucus parameters, serum immune parameters, and growth performance were measured. The results indicated that supplementations SMS + L. plantarum or/and resulted in a significant increase in skin mucus lysozyme and peroxidase activities compared with the control group after 8 weeks of feeding trial (P < 0.05). The highest values of these parameters were recorded for fish fed both SMS + L. plantarum supplementations. Nonetheless, no significant difference was recorded between other supplemented groups (P < 0.05). For serum immunology, the results showed that serum lysozyme activity, alternative complement, phagocytosis, serum peroxidase, and respiratory burst activities were significantly higher in supplemented groups compared to the control (P < 0.05). The highest values were recorded in fish fed both SMS and L. plantarum with respect to the individual application. No significant differences were observed between fish fed SMS and L. plantarum (P < 0.05). Results on growth performance indicated that fish fed supplemented diets showed a statistically significant increase in the specific growth rate (SGR), weight gain (WG), final weight (FW) compared to the control group (P < 0.05). The highest SGR and WG values were observed in fish fed both dietary SMS and L. plantarum. However, no significant differences in these parameters were observed in fish fed SMS or L. plantarum alone (P > 0.05). The FCR was significantly

  11. Effect of sub-lethal concentrations of endosulfan on phagocytic and hematological parameters in Nile tilapia (Oreochromis niloticus).

    PubMed

    Girón-Pérez, M I; Montes-López, M; García-Ramírez, L A; Romero-Bañuelos, C A; Robledo-Marenco, M L

    2008-03-01

    The effect of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), an organochlorine pesticide, was evaluated on phagocytic (phagocytic index and percentage of active cells) and hematological parameters in Nile tilapia. Experimental data showed that an acute exposure to endosulfan (4.0 and 7.0 microg/L) induces a significant decrease in the phagocytic index and the percentage of active cells in peripherical blood of Nile tilapia. However, hemoglobin concentration (Hb), hematocrit (Hto), red blood cell count (RBC), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC) were not significantly altered in fish exposed to endosulfan compared with control group.

  12. Effects of dietary levels of carbohydrate, lipid, phosphorus and zinc on the growth, feed conversion and protein efficiency ratio of Nile tilapia ( Oreochromis niloticus)

    NASA Astrophysics Data System (ADS)

    Li, Zhongjie; Lei, Wu; Yang, Yunxia; Ye, Jun

    1993-09-01

    A 54-day feeding experiment was conducted on juvenile Nile tilapia using isonitrogenous, isocaloric semipurified diets. The carbohydrate content in the diet was 9%, 32% and 50%; the corresponding lipid content was 22.2%, 12%, and 4%. The diets were supplemented with 0.85% or 1.5% phosphorus and 40 mg/kg or 100 mg/kg zinc. The experiment was carried out in flow-through aquaria using dechlorinated tap water at 23 26°C. The experiment showed that the increase of the carbohydrate content in the diets resulted in a 43 249% increase in weight gain, a 27 59% decrease in feed conversion ratio, and a 65 121% increase in protein efficiency ratio. In fish fed diets containing 36 50% carbohydrate, an increase in supplemented phosphorus to 1.5% greatly increased the weight gain. On the contrary, a high content of supplemented zinc (100 mg/kg) inhibited growth and increased feed conversion ratio.

  13. The potential effects of Spirulina platensis (Arthrospira platensis) on tissue protection of Nile tilapia (Oreochromis niloticus) through estimation of P53 level

    PubMed Central

    Ibrahem, Mai D.; Ibrahim, Marwa A.

    2013-01-01

    The current study was designed to investigate the potential effect of Spirulina platensis, Arthrospira platensis, (SP) on tissue protection of Nile tilapia (Oreochromis niloticus) through estimation of P53 level. Five isonitrogenous and isocaloric rations containing graded levels of dried SP 5, 7.5,10, 15, and 20 g/kg diet were fed separately to five equal groups of O. niloticus fingerlings, additional control group was assigned for 3 months. Liver samples were separately collected from each group by the end of each month. The expression level of P53 showed a substantial decrease among the treated groups in a time-dependent manner. It is therefore advisable to incorporate SP in diets for tissue protection and antioxidant effects in cultured O. niloticus. PMID:25685480

  14. Nile tilapia Oreochromis niloticus as a food source in advanced life support systems: Initial considerations

    NASA Astrophysics Data System (ADS)

    Gonzales, John M.; Brown, Paul B.

    2006-01-01

    Maintenance of crew health is of paramount importance for long duration space missions. Weight loss, bone and calcium loss, increased exposure to radiation and oxidative stress are critical concerns that need to be alleviated. Tilapia are currently under evaluation as a source of food and their contribution to reducing waste in advanced life support systems (ALSS). The nutritional composition of tilapia whole bodies, fillet, and carcass residues were quantitatively determined. Carbon and nitrogen free-extract percentages were similar among whole body (53.76% and 6.96%, respectively), fillets (47.06% and 6.75%, respectively), and carcass (56.36% and 7.04%, respectively) whereas percentages of N, S, and protein were highest in fillet (13.34, 1.34, and 83.37%, respectively) than whole body (9.27, 0.62, and 57.97%, respectively) and carcass (7.70, 0.39, and 48.15%, respectively). Whole body and fillet meet and/or exceeded current nutritional recommendations for protein, vitamin D, ascorbic acid, and selenium for international space station missions. Whole body appears to be a better source of lipids and n-3 fatty acids, calcium, and phosphorous than fillet. Consuming whole fish appears to optimize equivalent system mass compared to consumption of fillets. Additional research is needed to determine nutritional composition of tilapia whole body, fillet, and carcass when fed waste residues possibly encountered in an ALSS.

  15. Ecotoxicological effects of carbofuran and oxidised multiwalled carbon nanotubes on the freshwater fish Nile tilapia: nanotubes enhance pesticide ecotoxicity.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani T; Alves, Oswaldo L; Leonardo, Antônio Fernando Gervásio; Barbieri, Edison

    2015-01-01

    The interactions of carbon nanotubes with pesticides, such as carbofuran, classical contaminants (e.g., pesticides, polyaromatic hydrocarbons, heavy metals, and dyes) and emerging contaminants, including endocrine disruptors, are critical components of the environmental risks of this important class of carbon-based nanomaterials. In this work, we studied the modulation of acute carbofuran toxicity to the freshwater fish Nile tilapia (Oreochromis niloticus) by nitric acid treated multiwalled carbon nanotubes, termed HNO3-MWCNT. Nitric acid oxidation is a common chemical method employed for the purification, functionalisation and aqueous dispersion of carbon nanotubes. HNO3-MWCNT were not toxic to Nile tilapia at concentrations ranging from 0.1 to 3.0 mg/L for exposure times of up to 96 h. After 24, 48, 72 and 96 h, the LC50 values of carbofuran were 4.0, 3.2, 3.0 and 2.4 mg/mL, respectively. To evaluate the influence of carbofuran-nanotube interactions on ecotoxicity, we exposed the Nile tilapia to different concentrations of carbofuran mixed together with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, and 96 h of exposure, the LC50 values of carbofuran plus nanotubes were 3.7, 1.6, 0.7 and 0.5 mg/L, respectively. These results demonstrate that HNO3-MWCNT potentiate the acute toxicity of carbofuran, leading to a more than five-fold increase in the LC50 values. Furthermore, the exposure of Nile tilapia to carbofuran plus nanotubes led to decreases in both oxygen consumption and swimming capacity compared to the control. These findings indicate that carbon nanotubes could act as pesticide carriers affecting fish survival, metabolism and behaviour. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Gill oxidative stress and histopathological biomarkers of pollution impacts in Nile tilapia from Lake Mariut and Lake Edku, Egypt.

    PubMed

    Abdel-Moneim, Ashraf M; El-Saad, Ahmed M Abu; Hussein, Hussein K; Dekinesh, Samir I

    2012-09-01

    Various oxidative stress and histopathological biomarkers in gill tissues of Nile tilapia Oreochromis niloticus were investigated. Fish were collected from four sites that differ in their extent of pollution load, including heavy metals: the southeast basin (SEB), main basin (MB), and northwest basin (NWB) of Lake Mariut; and Boughaz El-Maadiya, a channel in Lake Edku. The oxidative stress biomarkers that were analyzed included lipid peroxidation (LPO), superoxide dismutase (SOD), catalase (CAT), and glutathione redox cycle enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]). Levels of reduced glutathione (GSH) were also evaluated. Gill morphology was analyzed by light microscopy and scanning electron microscopy (SEM). Gill LPO was significantly higher in gill tissues of fish collected from the more heavily contaminated MB (40.0%) and NWB (51.4%) sites than in gill samples from the less-contaminated (reference) site, the SEB. Gill LPO in fish from Lake Edku was intermediate but was not significantly higher (17.1%) than the reference. The activities of antioxidant enzymes and the redox-sensitive thiol compound GSH were significantly lower in gill samples from the disturbed sites than in samples from the reference site. Specifically, SOD in MB, NWB, and Lake Edku samples; CAT and GPx in NWB samples; and GR activity and GSH content in MB and NWB samples were lower than those in SEB samples. In most cases, gill tissues from Lake Edku fish had intermediate levels of antioxidants. The main histopathological alterations observed in gills were epithelial lifting, hyperplasia and hypertrophy of the respiratory epithelium, lamellar fusion, and aneurysms. In addition, SEM results demonstrated transformation of the surface structure of epithelial pavement cells. Pathological reactions in the gills of Nile tilapia were most severe at the MB and NWB sites. Our findings suggest that Nile tilapia responded differently according to the environmental stress index

  17. Physiological, biochemical and histometric responses of Nile tilapia (Oreochromis niloticus L.) by dietary organic chromium (chromium picolinate) supplementation.

    PubMed

    Mehrim, Ahmed I

    2014-05-01

    Chromium has been recognized as a new and important micro-nutrient, essential for both human and animal nutrition. This study was conducted to evaluate the appropriateness and/or the use of safety level of dietary chromium picolinate (Cr-Pic), and its effects on the physiological responses, the histometric characteristics, and the chemical analysis of dorsal muscles of mono-sex Nile tilapia, Oreochromis niloticus. A total of 420 fingerlings (28.00 ± 0.96 g) were randomly distributed into 21 fiberglass tanks representing seven treatments at a rate of 20 fish m(-3). The control fish group (T1) was fed a Cr-Pic free basal diet. Other fish groups were fed the basal diet supplemented with 200 (T2), 400 (T3), 600 (T4), 800 (T5), 1000 (T6) and 1200 μg Cr-Pic kg(-1) diet (T7). Diets were offered to fish at a feeding rate of 3% of life body weight for 12 weeks. Results revealed that blood hematological parameters (hemoglobin, red blood cells, packed cell volume, mean corpuscular hemoglobin concentration, blood platelets, and white blood cells lymphocytes); serum biochemical measurements (total testosterone, high density lipoprotein, total protein, albumin, and globulin); and the dry matter and crude protein of the fish dorsal muscles all have significantly increased (P ⩽ 0.05) in the T3 treatment compared with the other treatments. Meanwhile, no significant differences were found among all treatments with regard to the histometric characteristics. It can be concluded that Cr-Pic at 400 μg kg(-1) diet (T3) seems to be the most appropriate level for O. niloticus fingerlings.

  18. Gyrodactylus malalai sp. nov. (Monogenea, Gyrodactylidae) from Nile tilapia, Oreochromis niloticus (L.) and Redbelly tilapia, Tilapia zillii (Gervais) (Teleostei, Cichlidae) in the Lake Turkana, Kenya.

    PubMed

    Přikrylová, Iva; Radim, Blažek; Gelnar, Milan

    2012-06-01

    Gyrodactylus malalai sp. nov. is described from the fin surface of cichlid fishes Oreochromis niloticus (L.) and Tilapia zillii (Gervais) caught in Lake Turkana (Kenya). The new species morphologically resembles Gyrodactylus nyanzae Paperna, 1973, but can be readily distinguished by the shape of the marginal hook sickles and the size of its hamuli. The sequence data of rDNA spanning partial 18S, internal transcribe spacer 1 and 2 and the 5.8S gene is unique within GenBank. Genetically, as most similar Gyrodactylus ergensi Přikrylová, Matějusová, Musilová et Gelnar, 2009 was found (97.5%). Moreover, a specimen of G. cichlidarum from O. niloticus, and a specimen G. ergensi from Sarotherodon galilaeus (L.) were collected during sampling in Kenya. Likewise, additional sampling of O. niloticus from the Blue Nile in Sudan revealed the presence of the newly described species. These findings represent the first records of gyrodactylids in both African countries.

  19. Outbreaks and genetic diversity of Francisella noatunensis subsp orientalis isolated from farm-raised Nile tilapia (Oreochromis niloticus) in Brazil.

    PubMed

    Leal, C A G; Tavares, G C; Figueiredo, H C P

    2014-07-25

    Francisella noatunensis subsp orientalis (FNO) is an emerging pathogen of warm water tilapia in a number of different countries. The disease caused by this bacterium in fish is characterized by a systemic granulomatous infection that causes high mortality rates during outbreaks. FNO has been previously described in Asia, Europe, and Central and North America. Its occurrence in South America has never been described. Since 2012, outbreaks of a granulomatous disease have been recorded in cage farms of Nile tilapia (Oreochromis niloticus L.) in Brazil. The current study aimed to identify the etiologic agent of recent francisellosis outbreaks at Brazilian tilapia farms, and to characterize the genetic diversity of the pathogen from farms with distinct geographic origins and without epidemiological connections. Bacteriological analysis of 44 diseased Nile tilapia collected from five cage farms in Brazil was performed during 2012 and 2013. The farms were in different locations and had no recent history of animal or biological material transport between each other. Sixty-two FNO isolates were identified on the basis of FNO-specific qPCR. The main predisposing factors for the occurrence of outbreaks on Brazilian farms were lower water temperature (<22°C) and life stage of fish, affecting mainly fry, fingerlings and young adults (live weight <100 g). The genetic diversity of the Brazilian FNO isolates was evaluated using repetitive extragenic palindromic-PCR. The isolates from different origins were shown to be clonally related. This is the first report of the occurrence and genetic diversity of FNO in South America.

  20. Molecular characterization and expression of Lck in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Lu, Yishan; Zhu, Weiwei; Huang, Yu; Jian, JiChang; Wu, Zaohe

    2015-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a critical role in effective signal transductions that are fundamental to T cell differentiation, proliferation, and effector functions. In this paper, the Lck gene of Nile tilapia, Oreochromis niloticus (designated as On-Lck), was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed important structural characteristics required for T cell receptor (TCR) signal transduction were detected in the deduced amino acid sequence of On-Lck, and the deduced genomic structure of On-Lck was similar to the known Lck. In healthy Nile tilapia, the On-Lck transcripts were mainly detected in the thymus, spleen, head kidney, and gill. When immunized with inactivated S. agalactiae, the On-Lck mRNA expression was significantly upregulated in the thymus, spleen, and head kidney. Moreover, there was a clear time-dependent expression pattern of On-Lck after immunization, and the expression reached the highest level at 48 h in the spleen and thymus and at 72 h in the head kidney, respectively. This is the first report on the expression of Lck induced by intracellular bacteria vaccination in teleosts. These findings indicated that On-Lck may play an important role in the immune response to intracellular bacteria in Nile tilapia.

  1. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus

    PubMed Central

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-01-01

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain’s cDNA is composed of 3347 bp with a 31 bp of 5′-UTR, 3015 bp open reading frame (ORF) and 301 bp 3′-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia. PMID:27005611

  2. Relationship between antibiotic residues and occurrence of resistant bacteria in Nile tilapia (Oreochromisniloticus) cultured in cage-farm.

    PubMed

    Monteiro, Sérgio H; Garcia, Fabiana; Gozi, Kátia S; Romera, Daiane M; Francisco, Jeane G; Moura-Andrade, Graziela C R; Tornisielo, Valdemar L

    2016-12-01

    The aim of this study was to investigate the relationship between antibiotic residues found in the muscle of cage-farm-raised Nile tilapia (Oreochromisniloticus), the occurrence of resistant bacteria, and the sanitary practices adopted by farmers in Ilha Solteira reservoir, Brazil. Nine fish (three small fish, 40-200 g; three medium-sized fish, 200-500 g; and three large fish, 500-800 g) were collected from four cage farms every three months from April 2013 to January 2014. Ten antibiotic residues were determined using liquid chromatography-mass spectrometry, and bacteria were isolated and tested for antibiotic resistance to determine the multiple antibiotic resistance (MAR) index. Only three antibiotics (oxytetracycline, tetracycline, and florfenicol) were detected in the muscle of Nile tilapia, and their residues were the highest in small fish; however, the MAR index was higher in large fish. In addition, a direct positive relationship between the MAR index and the concentration of antibiotic residues in Nile tilapia was found. Overall, the adoption of prophylactic management practices improved the sanitary status of cage farms, reducing bacterial infections and hampering the development of antibiotic-resistant bacteria.

  3. Defining a breeding objective for Nile tilapia that takes into account the diversity of smallholder production systems.

    PubMed

    Omasaki, S K; van Arendonk, J A M; Kahi, A K; Komen, H

    2016-10-01

    In general, livestock and fish farming systems in developing countries tend to be highly diverse in terms of agro-ecological conditions and market orientation. There are no studies that have investigated if and how this diversity translates to varying preferences for breeding objective traits. This is particularly important for breeding programmes that are organized on a national level (e.g. government-supported nucleus breeding programmes). The aim of this study was to investigate whether Nile tilapia farmers with diverse production systems and economic constraints have different preferences for breeding objective traits. The second objective was to derive a consensus breeding goal, using weighted goal programming that could be used for a national breeding programme for Nile tilapia. A survey was conducted among 100 smallholder Nile tilapia farmers in Kenya to obtain preference values for traits of economic importance, by using multiple pairwise comparisons. Individual and group preference values were estimated using analytical hierarchy process. Low-income farmers preferred harvest weight, while medium- and high-income farmers preferred growth rate and survival. Grouping farmers according to market objective (fingerling production or fattening) showed that fingerling producers preferred growth rate and survival, while fattening farmers preferred harvest weight, height and thickness. Weighted goal programming was used to obtain consensus preference values, and these were used to derive desired gains for a breeding goal of a national breeding programme that takes into account the diversity of smallholder production systems.

  4. Molecular Cloning and Expression Analysis of IgD in Nile Tilapia (Oreochromis niloticus) in Response to Streptococcus agalactiae Stimulus.

    PubMed

    Wang, Bei; Wang, Pei; Wu, Zao-He; Lu, Yi-Shan; Wang, Zhong-Liang; Jian, Ji-Chang

    2016-03-08

    IgD is considered to be a recently-evolved Ig and a puzzling molecule, being previously found in all vertebrate taxa, except for birds. Although IgD likely plays an important role in vertebrate immune responses, the function of IgD in Nile tilapia (Oreochromis niloticus) is virtually unknown. In the present study, a membrane form of IgD (mIgD) heavy chains were cloned from the GIFT strain of Nile tilapia (designated On-mIgD). The On-mIgD heavy chain's cDNA is composed of 3347 bp with a 31 bp of 5'-UTR, 3015 bp open reading frame (ORF) and 301 bp 3'-UTR, encoding a polypeptide of 1004 amino acids (GenBank accession no: KF530821). Phylogenetic analysis revealed that On-mIgD heavy chains showed the highest similarity to Siniperca chuatsi. Quantitative real-time PCR (qRT-PCR) analysis showed that On-mIgD expression occurred predominately in head kidney, thymus, spleen, and kidney. After Streptococcus agalactiae infection, transcripts of On-mIgD increased and reached its peak at 48 h in the head kidney and thymus, and 72 h in the spleen, respectively. Taken together, these results collectively indicated that IgD could possibly have a key role to play in the immune response when bacterial infections in Nile tilapia.

  5. Dietary nutrient composition affects digestible energy utilisation for growth: a study on Nile tilapia (Oreochromis niloticus) and a literature comparison across fish species.

    PubMed

    Schrama, J W; Saravanan, S; Geurden, I; Heinsbroek, L T N; Kaushik, S J; Verreth, J A J

    2012-07-01

    The effect of the type of non-protein energy (NPE) on energy utilisation in Nile tilapia was studied, focusing on digestible energy utilisation for growth (k(gDE)). Furthermore, literature data on k(gDE) across fish species were analysed in order to evaluate the effect of dietary macronutrient composition. A total of twelve groups of fish were assigned in a 2 × 2 factorial design: two diets ('fat' v. 'starch') and two feeding levels ('low' v. 'high'). In the 'fat'-diet, 125 g fish oil and in the 'starch'-diet 300 g maize starch were added to 875 g of an identical basal mixture. Fish were fed restrictively one of two ration levels ('low' or 'high') for estimating k(gDE). Nutrient digestibility, N and energy balances were measured. For estimating k(gDE), data of the present study were combined with previous data of Nile tilapia fed similar diets to satiation. The type of NPE affected k(gDE) (0.561 and 0.663 with the 'starch' and 'fat'-diets, respectively; P < 0.001). Across fish species, literature values of k(gDE) range from 0.31 to 0.82. Variability in k(gDE) was related to dietary macronutrient composition, the trophic level of the fish species and the composition of growth (fat:protein gain ratio). The across-species comparison suggested that the relationships of k(gDE) with trophic level and with growth composition were predominantly induced by dietary macronutrient composition. Reported k(gDE) values increased linearly with increasing dietary fat content and decreasing dietary carbohydrate content. In contrast, k(gDE) related curvilinearly to dietary crude protein content. In conclusion, energy utilisation for growth is influenced by dietary macronutrient composition.

  6. Effects of dietary live and heat-inactive baker's yeast on growth, gut health, and disease resistance of Nile tilapia under high rearing density.

    PubMed

    Ran, Chao; Huang, Lu; Hu, Jun; Tacon, Philippe; He, Suxu; Li, Zhimin; Wang, Yibing; Liu, Zhi; Xu, Li; Yang, Yalin; Zhou, Zhigang

    2016-09-01

    In this study, the effects of baker's yeast as probiotics was evaluated in Nile tilapia reared at high density. Juvenile tilapia were distributed to tanks at high density (436 fish/m(3)) and fed with basal diet (CK) or diets supplemented with live (LY) or heat-inactivated yeast (HIY). Another group of fish reared at low density (218 fish/m(3)) and fed with basal diet was also included (LowCK). After 8 weeks of feeding, growth, feed utilization, gut microvilli morphology, digestive enzymes, and expressions of hsp70 and inflammation-related cytokines in the intestine were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Fish were challenged with Aeromonas hydrophila to evaluate disease resistance. High rearing density significantly decreased the growth, feed utilization, microvilli length, and disease resistance of fish (CK versus LowCK). Moreover, the intestinal hsp70 expression was increased in fish reared at high density, supporting a stress condition. Compared to CK group, supplementation of live yeast significantly increased gut microvilli length and trypsin activity, decreased intestinal hsp70 expression, and enhanced resistance of fish against A. hydrophila (reflected by reduced intestinal alkaline phosphatase activity 24 h post infection). The gut microbiota was not markedly influenced by either rearing density or yeast supplementation. Heat-inactivated yeast (HIY) didn't display the beneficial effects observed in LY except an increase in gut trypsin activity, suggesting the importance of yeast viability and thus secretory metabolites of yeast. In conclusion, live baker's yeast may alleviate the negative effects induced by crowding stress, and has the potential to be used as probiotics for tilapia reared at high density.

  7. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus).

    PubMed

    Kayansamruaj, Pattanapon; Pirarat, Nopadon; Hirono, Ikuo; Rodkhum, Channarong

    2014-08-06

    Temperature strongly affects the health of aquatic poikilotherms. In Nile tilapia (Oreochromis niloticus), elevated water temperatures increase the severity of streptococcosis. Here we investigated the effects of temperature on the vulnerability and inflammatory response of Nile tilapia to Streptococcus agalactiae (Group B streptococci; GBS). At 35 and 28 °C, GBS took 4 and 7h, respectively to reach the log-phase and, when incubated with tilapia whole blood, experienced survival rates of 97% and 2%, respectively. The hemolysis activity of GBS grown at 35 °C was five times higher than that of GBS grown at 28 °C. GBS expressed cylE (β-hemolysin/cytolysin), cfb (CAMP factor) and PI-2b (pili-backbone) much more strongly at 35 °C than at 28 °C. Challenging Nile tilapia reared at 35 and 28 °C with GBS resulted in accumulated mortalities of about 85% and 45%, respectively. At 35 °C, infected tilapia exhibited tremendous inflammatory responses due to a dramatic up-regulation (30-40-fold) of inflammatory-related genes (cyclooxygenase-2, IL-1β and TNF-α) between 6 and 96 h-post infection. These results suggest that the increase of GBS pathogenicity to Nile tilapia induced by elevated temperature is associated with massive inflammatory responses, which may lead to acute mortality.

  8. Immunoproteomic analysis of the antibody response obtained in Nile tilapia following vaccination with a Streptococcus iniae vaccine.

    PubMed

    LaFrentz, Benjamin R; Shoemaker, Craig A; Klesius, Phillip H

    2011-09-28

    Streptococcus iniae is one of the most economically important Gram-positive pathogens in cultured fish species worldwide. The USDA-ARS Aquatic Animal Health Research Unit developed a modified (contains concentrated culture supernatant) S. iniae bacterin that has been demonstrated to be efficacious, and protection is mediated by specific anti-S. iniae antibodies. Although effective, the specific vaccine components important for efficacy are not known. In the present study, an immunoproteomic approach was utilized to identify whole-cell lysate proteins of S. iniae that stimulated specific antibody production in Nile tilapia (Oreochromis niloticus) following vaccination. Groups of tilapia were vaccinated by intraperitoneal injection with the modified S. iniae bacterin or were mock-vaccinated, and at 30 d post-vaccination sera samples were obtained from individual fish. Vaccination of tilapia with the S. iniae vaccine stimulated significantly elevated specific antibody responses against proteins of the bacterium and passive immunization of tilapia with this serum demonstrated the antibodies were highly protective. Whole-cell lysate proteins of S. iniae were separated by 2D-PAGE and were probed with a pooled serum sample from vaccinated tilapia. A total of eleven unique immunogenic proteins were positively identified by mass spectrometry. Based on research conducted on homologous proteins in other Streptococcus spp., antibodies specific for three of the identified proteins, enolase, glyceraldehyde-3-phosphate dehydrogenase, and fructose-bisphosphate aldolase, are likely involved in protection from streptococcosis caused by S. iniae.

  9. Effect of dietary genistein on growth performance, digestive enzyme activity, and body composition of Nile tilapia Oreochromis niloticus

    NASA Astrophysics Data System (ADS)

    Chen, Dong; Wang, Wei; Ru, Shaoguo

    2015-01-01

    An 8-week feeding experiment was performed to evaluate the effect of dietary genistein on growth performance, body composition, and digestive enzymes activity of juvenile Nile tilapia ( Oreochromis niloticus). Four isonitrogenous and isoenergetic diets were formulated containing four graded supplements of genistein: 0, 30, 300, and 3 000 μg/g. Each diet was randomly assigned in triplicate to tanks stocked with 15 juvenile tilapia (10.47±1.24 g). The results show that 30 and 300 μg/g dietary genistein had no significant effect on growth performance of Nile tilapia, but the higher level of genistein (3 000 μg/g) significantly depressed the final body weight and specific growth rate. There was no significant difference in survival rate, feed intake, feed efficiency ratio or whole body composition among all dietary treatments. An assay of digestive enzymes showed that the diet containing 3 000 μg/ggenistein decreased stomach and hepatopancreas protease activity, and amylase activity in the liver and intestine, while a dietary level of 300 μg/g genistein depressed stomach protease and intestine amylase activities. However, no significant difference in stomach amylase activity was found among dietary treatments. Overall, the results of the present study indicate that a high level of dietary genistein (3 000 μg/g, or above) would significantly reduce the growth of Nile tilapia, partly because of its inhibitory effect on the activity of major digestive enzymes. Accordingly, the detrimental effects of genistein, as found in soybean products, should not be ignored when applied as an alternative ingredient source in aquaculture.

  10. Differential expression analysis of genes involved in high-temperature induced sex differentiation in Nile tilapia.

    PubMed

    Li, Chun Ge; Wang, Hui; Chen, Hong Ju; Zhao, Yan; Fu, Pei Sheng; Ji, Xiang Shan

    2014-01-01

    Nowadays, high temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. In this study, a systematic differential expression analysis of genes involved in high temperature-induced sex differentiation was done in the Nile tilapia gonad and brain. Our results showed that high temperature caused significant down-regulation of CYP19A1A in the gonad of both sexes in induction group, and FOXL2 in the ovary of the induction group. The expressions of GTHα, LHβ and ERα were also significantly down-regulated in the brain of both sexes in the induction and recovery groups. On the contrary, the expression of CYP11B2 was significantly up-regulated in the ovary, but not in the testis in both groups. Spearman rank correlation analysis showed that there are significant correlations between the expressions of CYP19A1A, FOXL2, or DMRT1 in the gonads and the expression of some genes in the brain. Another result in this study showed that high temperature up-regulated the expression level of DNMT1 in the testis of the induction group, and DNMT1 and DNMT3A in the female brain of both groups. The expression and correlation analysis of HSPs showed that high temperature action on tilapia HSPs might indirectly induce the expression changes of sex differentiation genes in the gonads. These findings provide new insights on TSD and suggest that sex differentiation related genes, heat shock proteins, and DNA methylation genes are new candidates for studying TSD in fish species.

  11. Retinal light input is required to sustain plasma melatonin rhythms in Nile tilapia Oreochromis niloticus niloticus.

    PubMed

    Martinez-Chavez, C C; Migaud, H

    2009-05-07

    The aim of this work was to confirm previous findings suggesting that the eyes are required for night-time melatonin production in Nile tilapia and further characterise this divergent circadian organisation. To do so, melatonin levels were firstly measured in eyecups and plasma to determine circadian patterns of melatonin production. Secondly, the effect of partial ophthalmectomy on the suppression of melatonin production was determined in vivo as well as ex vivo pineal light/dark sensitivity. Finally, to investigate whether such findings could be related to post-surgery stress, melatonin analyses were performed in the subsequent 24 h and 7 days post-ophthalmectomy with cortisol levels assessed as an indicator of stress. Our results showed an inverse pattern of melatonin production in the eye cups of tilapia compared to blood circulating levels, suggesting different roles played by melatonin in these two tissues. Results then demonstrated that total or partial ophthalmectomy resulted in the suppression of night-time melatonin production. Furthermore, although pineals in culture were shown to be photosensitive, night-time melatonin levels were much lower than seen in other species. Finally, when performing sampling immediately or one week post-surgery, no difference in the melatonin profiles were observed. It is therefore unlikely that post-surgery stress would explain such suppression in melatonin production although all fish displayed high cortisol levels most probably due to social and handling stress. Taken together, these results provide further evidence of a new type of circadian organisation in a teleost species where the eyes are required to sustain night-time melatonin levels.

  12. Role of Hox PG2 genes in Nile tilapia pharyngeal arch specification: implications for gnathostome pharyngeal arch evolution.

    PubMed

    Le Pabic, Pierre; Scemama, Jean-Luc; Stellwag, Edmund J

    2010-01-01

    Phylogenetic reconstructions suggest that the ancestral osteichthyan Hox paralog group 2 gene complement was composed of two genes, Hoxa2 and b2, both of which have been retained in tetrapods, but only one of which functions as a selector gene of second pharyngeal arch identity (PA2). Genome duplication at the inception of the teleosts likely generated four Hox PG2 genes, only two of which, hoxa2b and b2a, have been preserved in zebrafish, where they serve as functionally redundant PA2 selector genes. Evidence from our laboratory has shown that other telelosts, specifically striped bass and Nile tilapia, harbor three transcribed Hox PG2 genes, hoxa2a, a2b, and b2a, with unspecified function(s). We have focused on characterizing the function of the three Nile tilapia Hox PG2 genes as a model to examine the effects of postgenome duplication gene loss on the evolution of developmental gene function. We studied Hox PG2 gene function in tilapia by examining the effects of independent morpholino oligonucleotide (MO)-induced knockdowns on pharyngeal arch morphology and Hox gene expression patterns. Morphological defects resulting from independent MO-induced knockdowns of tilapia hoxa2a, a2b, and b2a included the expected PA2 to PA1 homeotic transformations previously observed in tetrapods and zebrafish, as well as concordant and unexpected morphological changes in posterior arch-derived cartilages. Of particular interest, was the observation of a MO-induced supernumerary arch between PA6 and PA7, which occurred concomitantly with other MO-induced pharyngeal arch defects. Beyond these previously unreported morphant-induced transformations, a comparison of Hox PG2 gene expression patterns in tilapia Hox PG2 morphants were indicative of arch-specific auto- and cross-regulatory activities as well as a Hox paralog group 2 interdependent regulatory network for control of pharyngeal arch specification.

  13. Micrococcus luteus and Pseudomonas species as probiotics for promoting the growth performance and health of Nile tilapia, Oreochromis niloticus.

    PubMed

    Abd El-Rhman, Azza M; Khattab, Yassir A E; Shalaby, Adel M E

    2009-08-01

    Micrococcus luteus and Pseudomonas species were isolated from the gonads and intestine of Nile tilapia, Oreochromis niloticus. M. luteus and Ps. species antagonized Aeromonas hydrophila with inhibition zone of 4 and 9 cm diameter, respectively. Both microorganisms were added to artificial basal diet with 30% crude protein to evaluate their efficacy on the growth-performance and survival rate, besides some blood-parameters and chemistry. Two hundred and forty O. niloticus with average body-weight of 2.35 +/- 0.1 g/fish were equally divided into four treatments of triplet replicates. T(1) was given basal diet (control), T(2) was given basal diet with M. luteus, T(3) was given basal diet with Ps. species, T(4) was given basal diet with both M. luteus and Ps. Species. Fishes were fed twice daily at the rate of 3% of their live body-weight, for six days a week during the experimental periods (90 day). Fish were challenged by A. hydrophila (0.3 x 10(7) cells ml(-1)) via intra-peritoneal injection and kept for 14 more days. The best growth rate, feed utilization and survival rate were noticed with T(2). The erythrocyte-count was significantly higher with T(2) than T(3) than the control T(1). The hematocrit-values (HCT) and hemoglobin-content (Hb) were significantly decreased with T(3) and T(4). The highest glucose-level was recorded with T(3). The challenged fish of T(2) showed 25% mortality, while T(1), T(3) and T(4) showed 80-90% mortality. M. luteus enhanced the fish growth and health. It is recommended to use M. luteus as a probiotic in vivo, while Pseudomonas species showed probiotic effects in vitro only.

  14. Endocrine cells producing peptide hormones in the intestine of Nile tilapia: distribution and effects of feeding and fasting on the cell density.

    PubMed

    Pereira, Raquel Tatiane; de Freitas, Thaiza Rodrigues; de Oliveira, Izabela Regina Cardoso; Costa, Leandro Santos; Vigliano, Fabricio Andrés; Rosa, Priscila Vieira

    2017-05-13

    Endocrine cells (ECs) act as a luminal surveillance system responding to either the presence or absence of food in the gut through the secretion of peptide hormones. The aim of this study was to analyze the effects of feeding and fasting on the EC peptide-specific distribution along the intestine of Nile tilapia. We assessed the density of ECs producing gastrin (GAS), cholecystokinin-8 (CCK-8), neuropeptide Y (NPY), and calcitonin gene-related peptide (CGRP) in nine segments of the intestine using immunohistochemistry. Our results show that ECs immunoreactive to CCK-8, GAS, NPY, and CGRP can be found along all the intestinal segments sampled, from the midgut to hindgut, although differences in their distribution along the gut were observed. Regarding nutrient status, we found that the anterior segments of the midgut seem to be the main site responding to luminal changes in Nile tilapia. The NPY+ and CGRP+ EC densities increased in the fasted group, while the amount of CCK-8+ ECs were higher in the fed group. No effects of fasting or feeding were found in the GAS+ EC densities. Changes in ECs density were found only at the anterior segments of the intestine which may be due to the correlation between vagus nerve anatomy, EC location, and peptide turnover. Lastly, ECs may need to be considered an active cell subpopulation that may adapt and respond to different nutrient status as stimuli. Due to the complexity of the enteroendocrine system and its importance in fish nutrition, much remains to be elucidated and it deserves closer attention.

  15. Effects of Cordyceps militaris spent mushroom substrate on mucosal and serum immune parameters, disease resistance and growth performance of Nile tilapia, (Oreochromis niloticus).

    PubMed

    Doan, Hien Van; Hoseinifar, Seyed Hossein; Tapingkae, Wanaporn; Chitmanat, Chanagun; Mekchay, Supamit

    2017-08-01

    The aim of present study was determination effects of dietary administration of C. militaris spent mushroom substrate (SMS) on mucosal and serum immune parameters, disease resistance, and growth performance of Nile tilapia (Oreochromis niloticus). Two hundred twenty five fish of similar weight (37.28 ± 0.10 g) were assigned to the following diets [0 (T1- Control), 5 (T2), 10 (T3), 20 (T4) and 40 g kg(-1) (T5) SMS]. After 60 days of feeding trial, growth performance, skin mucus lysozyme and peroxidase activities as well as serum innate immune were measured. In addition, survival rate and innate immune responses were calculated after challenge test (15 days) against Streptococcus agalactiae. The results revealed that regardless of inclusion levels, feeding Nile tilapia with SMS supplemented diets significantly increased skin mucus lysozyme and peroxidase activities as well as serum immune parameters (SL, ACH50, PI, RB, and RB) compared control group (P < 0.05). The highest increment of immune parameters was observed in fish fed 10 g kg(-1) SMS which was significantly higher than other treatments (P < 0.05). Also, the relative percent survival (RSP) in T2, T3, T4, and T5 was 61.11%, 88.89%, 66.67, and 55.56%, respectively. Among the supplemented groups, fish fed 10 g kg(-1) SMS showed significant higher RPS and resistance to S. agalactiae than other groups (P < 0.05). Regarding the growth performance, SGR, WG, FW, and FCR were remarkably improved (P < 0.05) in SMS groups; the highest improvement observed in 10 g kg(-1) SMS treatment. According to these finding, administration of 10 g kg(-1) SMS is suggested in tilapia to improve growth performance and health status. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Molecular characterization and expression of CD2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Tang, Jufen; Lu, Yishan; Jian, JiChang; Wu, Zaohe; Nie, Pin

    2016-03-01

    The cluster of differentiation 2 (CD2), functioning as a cell adhesion and costimulatory molecule, plays a crucial role in T-cell activation. In this paper, the CD2 gene of Nile tilapia, Oreochromis niloticus (designated as On-CD2) was cloned and its expression pattern under the stimulation of Streptococcus agalactiae was investigated. Sequence analysis showed On-CD2 protein consists of two extracellular Ig-like domains, a transmembrane region, and a long proline-rich cytoplasmic tail, which is a hallmark of CD2, and several important structural characteristics required for T-cell activation were detected in the deduced amino acid sequence of On-CD2. In healthy tilapia, the On-CD2 transcripts were mainly detected in the head kidney, spleen, blood and thymus. Moreover, there was a clear time-dependent expression pattern of On-CD2 after immunized by formalin-inactivated S. agalactiae and the expression reached the highest level at 12 h in the brain and head kidney, 48 h in the spleen, and 72 h in the thymus, respectively. This is the first report on the expression of CD2 induced by bacteria vaccination in teleosts. These findings indicated that On-CD2 may play an important role in the immune response to intracellular bacteria in Nile tilapia.

  17. RAPD-SCAR Markers for Genetically Improved NEW GIFT Nile Tilapia (Oreochromis niloticus niloticus L.) and Their Application in Strain Identification.

    PubMed

    Li, Si-Fa; Tang, Shou-Jie; Cai, Wan-Qi

    2010-04-01

    The NEW GIFT Nile tilapia (Oreochromis niloticus niloticus L.) is a nationally certificated new strain selected over 14 years and 9 generations from the base strain of GIFT Nile tilapia, introduced in 1994. This new variety has been extended in most of areas of China. The management of genetically improved strains, including the genetic markers for identification is needed urgently. RAPD analysis was conducted and their conversion to SCAR markers was developed. From NEW GIFT Nile tilapia, two strain-specific RAPD bands, S(304 )(624 bp ) and S(36 )(568 bp ) were identified. The strain-specific RAPD bands were gel-purified, cloned, and sequenced. Locus-specific primers were then designed to amplify the strain-specific bands. PCR amplification was conducted to test the variations in allele frequencies of two converted SCAR markers among the NEW GIFT Nile tilapia and its base strains, as well as 7 additional farmed strains worldwide. The frequency of SCAR marker I (553 bp) was 85.7% in NEW GIFT Nile tilapia, but 16.7% in the base strain. The frequency of SCAR marker II (558 bp) was 91.4% in NEW GIFT Nile tilapia, but 0% - 70% in the 7 other strains. In order to confirm the utility of these two markers, an examination was conducted for a wild population from Egypt, resulted the frequency of SCAR I and II was 10% and 70%, respectively, much lower than that of New GIFT strain. The increase in allele frequency of these two SCAR markers suggests that these markers might be genetically linked to the quantitative trait loci (QTL) underlining the performance traits by long term selection, and indicate the bright potential of SCAR marker technology for tracking generations during selection progress and for distinguishing among genetically improved strain and other strains.

  18. Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus.

    PubMed

    Reda, Rasha M; Mahmoud, Rania; Selim, Khaled M; El-Araby, Iman E

    2016-03-01

    between G1 and G2 after 30 d. The lowest immune parameters were recorded in G4. After 30 d, the highest expression of interleukin-1β and tumor necrosis factor-alpha in the liver and kidney were found in G3. The best protection against challenged Aeromonas sobria was in G3, followed by G2 and G4. Dietary supplementation with a combination of formic acid, propionic acid and calcium propionate improves the performance of Nile tilapia.

  19. Utilization of diets containing graded levels of ethanol production co-products by Nile tilapia.

    PubMed

    Schaeffer, T W; Brown, M L; Rosentrater, K A; Muthukumarappan, K

    2010-12-01

    A feeding trial was performed to investigate inclusion levels of distillers dried grains with solubles (DDGS) as a fishmeal replacement for juvenile Nile tilapia (Oreochromis niloticus). On a dry matter basis, five isocaloric [19.3 ± 0.4 kJ/g (mean ± SE)], isonitrogenous (39.1 ± 0.5% crude protein) diets were formulated to contain 17.5%, 20%, 22.5%, 25%, and 27.5% DDGS and compared against a 0% DDGS, reference diet (gross energy = 14.5 kJ/g; crude protein = 39.8%). The reference diet resulted in significantly higher body weight gain (BWG), food conversion ratio (FCR), and protein efficiency ratio (PER) than experimental diets except that 17.5% DDGS provided similar FCR and PER. The diet containing 27.5% DDGS had significantly lower FCR and PER values than all other diets even though apparent digestibility did not significantly differ among experimental diets. Although DDGS can be incorporated at higher levels, 20% DDGS provided the highest apparent BWG among experimental diets, while 17.5% promoted the best FCR and PER. Fishmeal may be replaced with low levels of fuel-based DDGS to reduce feeding cost; however, additional supplements should be considered to enhance fish performance.

  20. Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus (L.)

    USGS Publications Warehouse

    El Gamal, A.-R.A.; Davis, K.B.; Jenkins, J.A.; Les, Torrans E.

    1999-01-01

    Induction of triploidy and tetraploidy in Nile tilapia, Oreochromis niloticus, was investigated by heat shock, cold shock, hydrostatic pressure, and/ or chemicals (cytochalasin A, B, and D). Additionally, efficacy of combined protocols was determined. Heat shock 10 min after fertilization induced triploidy when incubation temperature was 24 C but not when incubation temperature was 31 C. Heat shock of 40-41 C at 4-6 min after fertilization was effective in inducing up to 100% triploidy with hatchability similar to controls. Cold shock at 13 C for 45 min five min after fertilization induced 85-100% triploids. Heat shock and multiple heat shocking were the most effective treatments for the induction of tetraploidy. Two heat treatments of 41 C applied at 65 and 80 min after fertilization for 5 min each produced approximately 80% tetraploidy in hatched fry. Immersion of fertilized eggs in cytochalasin A, B, or D at concentrations up to 10 ??g/L applied at various times and durations was ineffective in inducing triploidy or tetraploidy.

  1. Eutrophication, Ammonia Intoxication, and Infectious Diseases: Interdisciplinary Factors of Mass Mortalities in Cultured Nile Tilapia.

    PubMed

    Abu-Elala, Nermeen M; Abd-Elsalam, Reham M; Marouf, Sherif; Abdelaziz, Mohamed; Moustafa, Mohamed

    2016-09-01

    The present study was designed to assess the possible causes of the mass mortalities of Nile Tilapia Oreochromis niloticus at El-Behera Governorate, Egypt, in relationship to environmental and microbiotic factors. Water samples were collected from fish farms at different locations and from Lake Edku to analyze water temperature, water pH, salinity, biological oxygen demand, dissolved oxygen, total ammonia nitrogen, and un-ionized ammonia. A number of moribund and freshly dead fish were sampled and submitted to our laboratory for microbiological, molecular, and histopathological examination. Water analysis of the fish farms revealed noticeable increases in the previously mentioned physicochemical parameters. Clinical examinations of moribund fish showed severe gill rot and massive external and internal hemorrhages. Ordinary and molecular laboratory findings confirmed the presence of Branchiomyces sp. in gill tissue and mixed bacterial fish pathogens (Streptococcus agalactiae, Vibrio alginolyticus, V. parahaemolyticus, Pseudomonas anguilliseptica, and P. aeruginosa) in visceral organs. The histopathological and transmission electron microscopic examinations revealed severe necrosis of gill filaments and blockage of branchial blood vessels and lamellar capillaries with Branchiomyces sp. hyphae and spores mixed with different shapes of bacteria. Severe inflammations were detected in liver, kidney, heart, and brain tissues. Ultimately, we can conclude that the syndrome of mass fish kills in this area is a consequence of ecological damage to the aquatic environment, which is mainly related to natural and anthropogenic factors, as well as to the presence of infectious agents. Received September 30, 2015; accepted April 12, 2016.

  2. High temperature-induced sterility in the female Nile tilapia, Oreochromis niloticus.

    PubMed

    Pandit, Narayan Prasad; Bhandari, Ramji Kumar; Kobayashi, Yasuhisa; Nakamura, Masaru

    2015-03-01

    High temperature treatments induce germ cell loss in gonads of vertebrate animals, including fish. It could be a reliable source for induction of sterility if the treatments led to a permanent loss of germ cells. Here we report that heat treatment at 37 °C for 45-60 days caused a complete loss of germ cells in female Nile tilapia, Oreochromis niloticus, and that sterility was achieved in fish at all stages of their life cycle. Unlike previous observations, germ cells did not repopulate even after returning them to the water at control conditions suggesting permanent depletion of germ cells. Gonadal somatic cells immunopositive for 3β-hydroxysteroid dehydrogenase (3β-HSD) were clustered at one end of the germ cell depleted gonads close to the blood vessel. Serum level of testosterone, 11-ketotestosterone, and 17β-estradiol was significantly decreased in sterile fish compared to control. Body weight of sterile fish was higher than control fish at the end of experiment. Our observations of increased growth and permanent sterilization in the high temperature-treated fish suggest that this method could be an appropriate and eco-friendly tool for inducing sterility in fish with a higher thermal tolerance.

  3. Effects of diazinon on the lymphocytic cholinergic system of Nile tilapia fish (Oreochromis niloticus).

    PubMed

    Toledo-Ibarra, G A; Díaz-Resendiz, K J G; Pavón-Romero, L; Rojas-García, A E; Medina-Díaz, I M; Girón-Pérez, M I

    2016-08-01

    Fish rearing under intensive farming conditions can be easily disturbed by pesticides, substances that have immunotoxic properties and may predispose to infections. Organophosphorus pesticides (OPs) are widely used in agricultural activities; however, the mechanism of immunotoxicity of these substances is unclear. The aim of this study was to evaluate the effect of diazinon pesticides (OPs) on the cholinergic system of immune cells as a possible target of OP immunotoxicity. We evaluated ACh levels and cholinergic (nicotinic and muscarinic) receptor concentration. Additionally, AChE activity was evaluated in mononuclear cells of Nile tilapia (Oreochromis niloticus), a freshwater fish mostly cultivated in tropical regions around the world. The obtained results indicate that acute exposure to diazinon induces an increase in ACh concentration and a decrease in nAChR and mAChR concentrations and AChE activity in fish immune cells, This suggests that the non-neuronal lymphocytic cholinergic system may be the main target in the mechanism of OP immunotoxicity. This study contributes to the understanding of the mechanisms of immunotoxicity of pollutants and may help to take actions for animal health improvement. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Identification of (L)-fucose-binding proteins from the Nile tilapia (Oreochromis niloticus L.) serum.

    PubMed

    Argayosa, Anacleto M; Lee, Yuan C

    2009-09-01

    Lectins are carbohydrate-binding proteins with many biological functions including cellular recognition and innate immunity. In this study, a major l-fucose-binding lectin from the serum of Nile tilapia (Oreochromis niloticus L.), designated as TFBP, was isolated by l-fucose-BSA Sepharose CL6B affinity chromatography. The SDS-PAGE (10%) analysis of TFBP revealed a major band of approximately 23 kDa with an N-terminal amino acid sequence of DQTETAGQQSXPQDIHAVLREL which did not give significant similarities to the protein databases using BLASTp searches. Ruthenium red staining indicate positive calcium-binding property of TFBP. The purified TFBP agglutinated human type O erythrocytes but not the type A and B fresh erythrocytes. Live Aeromonas hydrophila and Enterococcus faecalis cells were also agglutinated by the lectin. The fucose-binding proteins were detected in the soluble protein extracts from the gills, gut, head kidneys, liver, serum and spleen using a fucose-binding protein probe (l-fucose-BSA-horseradish peroxidase). The binding of TFBP with the l-fucose-BSA probe was inhibited by l-fucose but not by alpha-methyl-d-mannose.

  5. Assessment of benthic macroinvertebrates at Nile tilapia production using artificial substrate samplers.

    PubMed

    Moura E Silva, M S G; Graciano, T S; Losekann, M E; Luiz, A J B

    2016-05-17

    Biomonitoring is a cheap and effective tool for evaluation of water quality, and infer on the balance of aquatic ecosystems. The benthic macroinvertebrates are bioindicators sensitive to environmental changes, and can assist in detecting and preventing impacts such as organic enrichment and imbalance in the food chain. We compared the structure of benthic communities on artificial substrate samplers located in places near and far from net cages for production of Nile tilapia (Oreochromis niloticus). Samplers were manufactured with nylon net, using substrates such as crushed stone, gravel, loofah and cattail leaves. Samples were collected after 30 days of colonization, rinsed and then the specimens were identified and quantified. The following metrics were calculated: richness of Operational Taxonomic Units, Margalef richness, abundance of individuals, Shannon index and evenness index. The macrobenthic community structure was strongly modified according to the proximity of the net cages. Metrics showed significant differences (p < 0.05) between near and distant sites, for both periods (dry and rainy seasons). The position of the samplers significantly affected the structure of macroinvertebrate community, as near sites showed higher values for the community metrics, such as richness and diversity. Near sites presented a larger number of individuals, observed both in the dry and rainy seasons, with a predominance of Chironomidae (Diptera) in the dry season and Tubificidae (Oligochaeta) in the rainy season.

  6. Modulation of environmental light alters reception and production of visual signals in Nile tilapia.

    PubMed

    Hornsby, Mark A W; Sabbah, Shai; Robertson, R Meldrum; Hawryshyn, Craig W

    2013-08-15

    Signal reception and production form the basis of animal visual communication, and are largely constrained by environmental light. However, the role of environmental light in producing variation in either signal reception or production has not been fully investigated. To chart the effect of environmental light on visual sensitivity and body colouration throughout ontogeny, we measured spectral sensitivity, lens transmission and body pattern reflectance from juvenile and adult Nile tilapia held under two environmental light treatments. Spectral sensitivity in juveniles reared under a broad-spectrum light treatment and a red-shifted light treatment differed mostly at short wavelengths, where the irradiance of the two light treatments differed the most. In contrast, adults held under the same two light treatments did not differ in spectral sensitivity. Lens transmission in both juveniles and adults did not differ significantly between environmental light treatments, indicating that differences in spectral sensitivity of juveniles originated in the retina. Juveniles and adults held under the two environmental light treatments differed in spectral reflectance, and adults transferred to a third, white light treatment differed in spectral reflectance from their counterparts held under the two original treatments. These results demonstrate that environmental light plays a crucial role in shaping signal reception in juveniles and signal production throughout ontogeny, reinforcing the notion that environmental light has the capacity to influence animal communication, and suggesting that the characteristics of environmental light should be considered in models of ecological speciation.

  7. Ectoparasites of Nile tilapia (Oreochromis niloticus) in cage farming in a hydroelectric reservoir in Brazil.

    PubMed

    Zago, Aline Cristina; Franceschini, Lidiane; Garcia, Fabiana; Schalch, Sérgio Henrique Canello; Gozi, Kátia Suemi; Silva, Reinaldo José da

    2014-01-01

    For this study, we performed a parasitological analysis of cage-cultured Nile tilapia (Oreochromis niloticus) from the Água Vermelha Reservoir, Southeastern Brazil, and verified relationships with limnological data, seasonality, and fish growth phase. From March 2010 to March 2011, sixty-three specimens of O. niloticus in three growth phases (i.e., initial, intermediate, and final) were collected. All fish specimens were infested with at least one ectoparasite species (prevalence = 100%). Five species of protozoans (Trichodina compacta, Trichodina magna, Ichthyophthirius multifiliis, Piscinoodinium pillulare, and Epistylis sp.) and five species of monogenoids (Cichlidogyrus halli, Cichlidogyrus thurstonae, Cichlidogyrus sp. 1, Scutogyrus longicornis, and Gyrodactylus sp.) were observed. The abundance of Trichodina spp. and the prevalence of Epistylis sp. were higher in the dry season, and the prevalence of C. halli was higher in the rainy season. For the majority of ectoparasites found in this study, fish in the intermediate and final phases had higher parasitism rates than those in the initial phase. The data presented may help fish farmers to understand the parasite dynamics of the fish species studied in cage-farming systems.

  8. Integrated cytogenetics and genomics analysis of transposable elements in the Nile tilapia, Oreochromis niloticus.

    PubMed

    Valente, Guilherme; Kocher, Thomas; Eickbush, Thomas; Simões, Rafael P; Martins, Cesar

    2016-06-01

    Integration of cytogenetics and genomics has become essential to a better view of architecture and function of genomes. Although the advances on genomic sequencing have contributed to study genes and genomes, the repetitive DNA fraction of the genome is still enigmatic and poorly understood. Among repeated DNAs, transposable elements (TEs) are major components of eukaryotic chromatin and their investigation has been hindered even after the availability of whole sequenced genomes. The cytogenetic mapping of TEs in chromosomes has proved to be of high value to integrate information from the micro level of nucleotide sequence to a cytological view of chromosomes. Different TEs have been cytogenetically mapped in cichlids; however, neither details about their genomic arrangement nor appropriated copy number are well defined by these approaches. The current study integrates TEs distribution in Nile tilapia Oreochromis niloticus genome based on cytogenetic and genomics/bioinformatics approach. The results showed that some elements are not randomly distributed and that some are genomic dependent on each other. Moreover, we found extensive overlap between genomics and cytogenetics data and that tandem duplication may be the major mechanism responsible for the genomic dynamics of TEs here analyzed. This paper provides insights in the genomic organization of TEs under an integrated view based on cytogenetics and genomics.

  9. Heterogeneous growth fingerlings of the Nile tilapia Oreochromis niloticus: effects of density and initial size variability.

    PubMed

    Barbosa, J M; Brugiolo, S S S; Carolsfeld, J; Leitão, S S

    2006-05-01

    In this study, the effect of initial heterogeneity of weight and density on heterogeneous growth (HetG) evaluated by the coefficient of the variation of weight in the young Nile tilapia Oreochromis niloticus of the territorial species was tested. Fish were maintained in a glass aquarium (8 and 2 L of water) with two levels of initial heterogeneity of weight: low and high, under two density conditions: low and high, thus constituting four conditions (six replications for each). Initially, the weights of the animals were taken after 8, 16, 22 and 30 days (end of experiment). The results, evaluated by the non-parametric test of Kruskal- Wallis, demonstrated that in the groups where the animals were stored under high initial HetG, there was a reduction of the same and that in the groups where the animals were stored under high density, there was exacerbation or maintained high values of HetG. High density in association with high initial heterogeneity caused more exacerbation of HetG in such a way that the density appeared to be a determining factor for exacerbation or the maintenance of high values of HetG, whereas the initial heterogeneity of the weight could be a secondary factor.

  10. Oxidative stress in tissues of Nile Tilapia (Oreochromis niloticus) from a polluted site

    SciTech Connect

    Bainy, A.C.D.; Carvalho, P.S.M.; Saito, E.; Leitao, M.A.S.; Junqueira, V.B.C.

    1995-12-31

    Pro and antioxidant parameters were compared in the erythrocytes, gill, liver and kidney of Nile Tilapia from a fish farm (Reference group) and from a polluted site at Billings Reservoir (Reservoir group). The erythrocyte oxidative stress was characterized by the increased oxygen uptake and decreased time induction (induced by t-butyl hydroperoxide, t-BHP) evidencing a higher susceptibility to oxidative damage. Moreover, a decrease in both catalase (CAT) activity and total glutathione content (GSH) in erythrocytes of Reservoir fish were observed. The higher gill cytochrome b{sub 5} levels is probably related to the enhanced oxyradical production. This fact associated to the diminished CAT and G6PDH activities establish a gill oxidative stress of Reservoir fish. The liver pro-oxidant parameters were greatly increased in the Reservoir fish. These results together with the increase in SOD activity and decrease in CAT, glutathione reductase (GR) and G6PDH activities indicate a liver oxidative stress condition. The observed increase in kidney NADH cytochrome c reductase and in both P-450 and b{sub 5} contents did not reflect in enhanced oxyradical production. The decrease in GSH observed in this tissue is probably associated to the conjugation reactions for ulterior excretion. These results furnish useful data for prospections of polluted aquatic sites in order to correlate the presence of pollutants to associated biological effects.

  11. Pathogenicity and oxidative stress in Nile tilapia caused by Aphanomyces laevis and Phoma herbarum isolated from farmed fish.

    PubMed

    Ali, Esam H; Hashem, Mohamed; Al-Salahy, M Bassam

    2011-03-16

    Identified (n = 17) and unidentified (n = 1) fish-pathogenic fungal species from 10 genera of Oomycetes and soil fungi were isolated from 40 infected freshwater fish samples of the species Oreochromis niloticus niloticus (Nile tilapia) and Clarias gariepinus (African catfish). Samples were collected from various fish farms in the Nile Delta, Egypt. Nile tilapia were tested in aquaria for their susceptibility to the commonest Oomycetes species, Aphanomyces laevis and Achlya klebsiana, and also against the 2 most prevalent pathogenic soil fungi, Paecilomyces lilacinus and Phoma herbarum. Two techniques were used: water bath exposure and intramuscular (subcutaneous) injection. Water bath exposure to the 2 species of Oomycetes caused greater mortalities of O. niloticus niloticus than intramuscular injection, but the reverse was true of the soil fungal species. Regardless of the infection method, the 2 Oomycetes species were more potent pathogens than the soil fungal species. In both gills and mytomal muscles of fish infected by A. laevis and P. herbarum, we measured and compared with controls the oxidative stress parameters total peroxide (TP), lipid peroxidation (LPO) and nitric oxide (NO), as well as levels of the antioxidants vitamin E and glutathione (GSH), and superoxide dismutase (SOD) and catalase (CAT) activities. Infection by these 2 fungal species through either spore suspension or spore injection significantly increased oxidative damage in gills and induced marked decrease in most studied antioxidants. In addition, both routes showed similar effects and A. laevis depressed the antioxidants CAT, vitamin E and GSH more than P. herbarum.

  12. Competitive Interactions between Invasive Nile Tilapia and Native Fish: The Potential for Altered Trophic Exchange and Modification of Food Webs

    PubMed Central

    Martin, Charles W.; Valentine, Marla M.; Valentine, John F.

    2010-01-01

    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important. PMID:21200433

  13. A piscirickettsiosis-like syndrome in cultured Nile tilapia in Latin America with Francisella spp. as the pathogenic agent.

    PubMed

    Mauel, M J; Soto, E; Moralis, J A; Hawke, J

    2007-03-01

    In 2004, cultured Nile tilapia Oreochromis niloticus in several Latin America farms began to succumb to a disease similar to the piscirickettsiosis-like syndrome previously reported in tilapia in Taiwan and the United States. Mortality increased during 2005; reductions in tilapia biomass ranged from 5% to 80% in individual ponds and averaged 50% overall. All ages of fish have been involved. Clinical signs include lethargy, loss of appetite, petechia, exophthalmia, and abnormal swimming behavior. Gross lesions have included splenomegaly, renomegaly, and numerous white nodules observed in the spleen, kidney, testes, heart, ovaries, and occasionally the liver. A previously unreported black granulomatous lesion was reported in up to 30% of the fillets. Histologically, granulomatous infiltrates were observed in the kidney, spleen, liver, testes, ovary, and choroid gland, and rarely in the brain and heart. A small pleomorphic bacterium was observed in Giemsa-stained blood smears and spleen imprints. The bacterium did not grow on standard microbiological media and has not been isolated in cell culture. We obtained a near-complete 16S ribosomal DNA sequence with high similarity to Francisella spp. sequences previously identified in tilapias Oreochromis spp. (Taiwan), Atlantic cod Gadus morhua (Norway), and three-line grunts Parapristipoma trilineatum (Japan).

  14. Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs.

    PubMed

    Martin, Charles W; Valentine, Marla M; Valentine, John F

    2010-12-21

    Recent studies have highlighted both the positive and negative impacts of species invasions. Most of these studies have been conducted on either immobile invasive plants or sessile fauna found at the base of food webs. Fewer studies have examined the impacts of vagile invasive consumers on native competitors. This is an issue of some importance given the controlling influence that consumers have on lower order plants and animals. Here, we present results of laboratory experiments designed to assess the impacts of unintended aquaculture releases of the Nile tilapia (Oreochromis niloticus), in estuaries of the Gulf of Mexico, on the functionally similar redspotted sunfish (Lepomis miniatus). Laboratory choice tests showed that tilapia prefer the same structured habitat that native sunfish prefer. In subsequent interspecific competition experiments, agonistic tilapia displaced sunfish from their preferred structured habitats. When a piscivore (largemouth bass) was present in the tank with both species, the survival of sunfish decreased. Based on these findings, if left unchecked, we predict that the proliferation of tilapia (and perhaps other aggressive aquaculture fishes) will have important detrimental effects on the structure of native food webs in shallow, structured coastal habitats. While it is likely that the impacts of higher trophic level invasive competitors will vary among species, these results show that consequences of unintended releases of invasive higher order consumers can be important.

  15. Microbiological and chemical safety concerns regarding frozen fillets obtained from Pangasius sutchi and Nile tilapia exported to European countries.

    PubMed

    Kulawik, Piotr; Migdał, Władysław; Gambuś, Florian; Cieślik, Ewa; Özoğul, Fatih; Tkaczewska, Joanna; Szczurowska, Katarzyna; Wałkowska, Izabela

    2016-03-15

    Microbiological and chemical safety concerns regarding frozen fillets from pangasius catfish (Pangasius hypophthalmus) exported to Poland, Germany and Ukraine and Nile tilapia (Oreochromis niloticus) exported to Poland and Germany were investigated by analyzing heavy metal residues, microbiological hazards, biogenic amines, and thiobarbituric acid (TBA) and total volatile basic nitrogen (TVB-N) content. The heavy metal residues from all studied samples were far lower than the limits established by authorities. The most abundant biogenic amine found was histamine, with a maximum content of 9.6 mg 100 g(-1) , found in pangasius exported to Poland. The total viable counts were from 2.8 log cfu g(-1) in pangasius exported to Ukraine to 4.3 log cfu g(-1) in pangasius exported to Germany. Vibrio spp. were present in 70-80% of all studied pangasius groups, whereas there no Vibrio spp. were found in the studied tilapia samples. 30% of Pangasius fillets exported to Poland were contaminated with coagulase-positive staphylococci. No E. coli was found in any of the studied samples. Although the results of TBA analysis differed significantly between studied groups, the malonic aldehyde content in all studied groups was still very low. The TVB-N content in frozen fillets from pangasius was significantly lower than in frozen tilapia fillets. We reported that pangasius catfish frozen fillets were widely contaminated with Vibrio spp., which could prove hazardous for the final consumer if the fish is eaten raw or undercooked. The rest of the analysis showed no other reason for concern associated with Nile tilapia and Pangasius catfish frozen fillet consumption. © 2015 Society of Chemical Industry.

  16. Digestive enzyme activity in the intestine of Nile tilapia (Oreochromis niloticus L.) under pond and cage farming systems.

    PubMed

    Santos, Juliana Ferreira; Soares, Karollina Lopes Siqueira; Assis, Caio Rodrigo Dias; Guerra, Carlos Augusto Martins; Lemos, Daniel; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza

    2016-10-01

    The effect of different farming systems (cage, pond) upon digestive enzyme activities of Nile tilapia was evaluated. Juvenile Nile tilapia (87.61 ± 1.52 g) were simultaneously cultured in pond and cage systems during 90 days. Cages used nutritional biphasic plan (35 and 32 % crude protein-CP feeds) and ponds used nutritional triphasic plan (35, 32 and 28 % CP feeds). Biometric measurements were monthly performed for adjustments in feeding regimes and removal of intestine tissues to evaluate the performance of enzyme activities. Total proteolytic, amylase and lipase activities were not statistically different between the treatments throughout the periods analyzed (31, 63 and 94 days of culture). However, trypsin and chymotrypsin activities were higher with 31 and 63 days of culture in fish from pond system, suggesting that natural food may have influenced these activities. A positive correlation was observed between the recommended concentration of essential amino acids for Nile tilapia and specific aminopeptidases activity in fish cage system. Substrate-SDS-PAGE revealed 12 active proteolytic bands in both systems. However, integrated density (ID) values were higher in the bands of ponds. Specimens of either cage or pond exhibited five bands of amylolytic activity. Fish from cage and pond systems showed the highest values of ID within 31 days of cultivation. In this study, the complexity of digestive functions could be verified for animals maintained under commercial conditions. Some of the assessed enzymes may show adaptations of their activities and/or expression that allow the fish to achieve a more efficient nutrient assimilation.

  17. The Expression Pattern of Melatonin Receptor 1a Gene during Early Life Stages in the Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Jin, Ye Hwa; Park, Jin Woo; Kim, Jung-Hyun; Kwon, Joon Yeong

    2013-01-01

    The action of melatonin within the body of animals is known to be mediated by melatonin receptors. Three different types of melatonin receptors have been identified so far in fish. However, which of these are specifically involved in puberty onset is not known in fish. We cloned and analyzed the sequence of melatonin receptor 1a (mel 1a) gene in Nile tilapia Oreochromis niloticus. In addition, we examined the tissue distribution of gene expressions for three types of receptors, mel 1a, 1b and lc and investigated which of them is involved in the onset of puberty by comparing their expression with that of gonadotropin-releasing hormone receptor I (GnRHr I) gene using quantitative real-time PCR from 1 week post hatch (wph) to 24 wph. The mel 1a gene of Nile tilapia consisted of two exons and one bulky intron between them. Mel 1a gene was found to be highly conserved gene showing high homology with the corresponding genes from different teleost. All three types of melatonin receptor genes were expressed in the brain, eyes and ovary in common. Expression of mel 1a gene was the most abundant and ubiquitous among 3 receptors in the brain, liver, gill, ovary, muscle, eye, heart, intestine, spleen and kidney. Mel 1b and mel 1c genes were, however, expressed in fewer tissues at low level. During the development post hatch, expressions of both mel 1a and GnRHr I genes significantly increased at 13 wph which was close to the putative timing of puberty onset in this species. These results suggest that among three types of receptors mel 1a is most likely associated with the action of melatonin in the onset of puberty in Nile tilapia. PMID:25949120

  18. Effect of poly-β-hydroxybutyrate on growth and disease resistance of Nile tilapia Oreochromis niloticus juveniles.

    PubMed

    Situmorang, Magdalena Lenny; De Schryver, Peter; Dierckens, Kristof; Bossier, Peter

    2016-01-01

    The growth promoting effect of the bacterial storage compound poly-β-hydroxybutyrate (PHB) has been studied for young fish of high trophic level (European sea bass) and intermediate trophic level (Siberian sturgeon). Here, the effect of PHB on growth, digestive enzyme activities, body composition and diseases resistance of juvenile Nile tilapia (Oreochromis niloticus) of low trophic level was investigated. Although dietary PHB supplementation (5, 25 and 50 g PHB kg(-1) formulated semi-purified diet) during 28 days resulted in a trend of increased weight gain, there was no significant difference in the mean final body weight (258-284 mg) when compared to the fish from the control group (on average 218 mg). Lipase activity increased significantly with about 20-40% by the supplementation of PHB in the diet, which may have led to the significant increase in total lipid content with about 10% in the PHB treatment groups. However, the profile of total (n-6) fatty acids (FAs), total monounsaturated FAs and total saturated FAs relative to the total lipid was similar among various PHB treatments. An additional challenge test on gnotobiotic Nile tilapia larvae using the pathogen Edwardsiella ictaluri gly09R showed that feeding challenged larvae with PHB-enriched Artemia nauplii resulted in a 20% higher survival as compared to the challenged control larvae. Overall, it is suggested that the trend of increased body weight gain resulted from intestinal lipid digestion, absorption and deposition and that PHB is effective as an antimicrobial agent for application in Nile tilapia larviculture.

  19. Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition.

    PubMed

    Fan, Zhenhua; Liu, Linyan; Huang, Xiaohuan; Zhao, Yang; Zhou, Linyan; Wang, Deshou; Wei, Jing

    2017-02-01

    Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world-wide commercial farmed fish. These cell lines, designated as TES1-3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder-free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26-labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non-protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES-based biotechnology in commercial fish.

  20. Expression patterns of gonadotropin hormones and their receptors during early sexual differentiation in Nile tilapia Oreochromis niloticus.

    PubMed

    Yan, Hongwei; Ijiri, Shigeho; Wu, Quan; Kobayashi, Tohru; Li, Shuang; Nakaseko, Taro; Adachi, Shinji; Nagahama, Yoshitaka

    2012-11-01

    In Nile tilapia, sex-specific expression of foxl2 and cyp19a1a in XX gonads and dmrt1 in XY gonads at 5-6 days after hatching (dah) is critical for differentiation of the gonads into either ovaries or testes. The factors triggering sexually dimorphic expression of these genes are unknown, and whether the gonadotropin hormones are involved in early gonadal sex differentiation of the Nile tilapia has been unclear. In the present study, we determined the precise timing of expression of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary and that of their receptors (fshra and lhcgrbb) in the undifferentiated gonad in both XX and XY tilapia fry by quantitative RT-PCR and immunohistochemical analysis. Expression of fshb mRNA and Fsh protein in the pituitary was detected from the first sampling day (3 dah) to 25 dah in both XX and XY tilapia larvae without sexual dimorphism and increased gradually after 25 dah in the pituitary. fshra mRNA was expressed beginning 5 dah and was present at significantly higher levels in XX gonads than in the XY gonads at 6-25 dah. These results indicate that the level of Fsh protein in the pituitary was not critical for differentiation of gonads into ovaries or testes, but the expression level of its receptor, fshra, in undifferentiated gonads appeared to be involved in determining gonadal sexual differentiation. Based on these observations, it is likely that in XX gonads, up-regulation of fshra may be necessary to induce cyp19a1a expression, which stimulates estradiol-17beta (E(2)) production and subsequent ovarian differentiation. On the other hand, lhb mRNA was not detected until 25 dah in the pituitaries of both sexes, and sexual dimorphism in lhcgrbb mRNA levels appeared later (10-25 dah) than that of fshra in the gonads, indicating the limited role of LH and lhcgrbb in gonadal differentiation of the Nile tilapia.

  1. Molecular characterization and expression of CD2BP2 in Nile tilapia (Oreochromis niloticus) in response to Streptococcus agalactiae stimulus.

    PubMed

    Gan, Zhen; Wang, Bei; Lu, Yishan; Cai, Shuanghu; Cai, Jia; Jian, JiChang; Wu, Zaohe

    2014-09-10

    CD2BP2 (CD2 cytoplasmic tail binding protein 2), one of several proteins interacting with the cytoplasmic tail of CD2, plays a crucial role in CD2-triggered T cell activation and nuclear splicing. The studies on CD2BP2 have tended to be confined to a few mammals, and little information is available to date regarding fish CD2BP2. In this paper, a CD2BP2 gene (On-CD2BP2) was cloned from Nile tilapia, Oreochromis niloticus. Sequence analysis showed that the full length of On-CD2BP2 cDNA was 1429 bp, containing a 5'untranslated region (UTR) of 111 bp, a 3'-UTR of 193 bp and an open reading frame of 1125 bp which is encoding 374 amino acids. Two important structural features, a GYF domain and a consensus motif GPFXXXXMXXWXXXGYF were detected in the deduced amino acid sequence of On-CD2BP2, and the deduced genomic structure of On-CD2BP2 was similar to the known CD2BP2. The mRNA expression of On-CD2BP2 in various tissues of Nile tilapia was analyzed by fluorescent quantitative real-time PCR. In healthy Nile tilapia, the On-CD2BP2 transcripts were mainly detected in the head kidney and spleen. While vaccinated with inactivated Streptococcus agalactiae, the On-CD2BP2 mRNA expression was significantly up-regulated in the head kidney, spleen and brain 48 h post immunization. Moreover, there was a clear time-dependent expression pattern of On-CD2BP2 after immunization and the expression reached the highest level at 24h in the brain and 48 h in the head kidney and spleen. This is the first report of proving the presence of a CD2BP2 ortholog in fish, and investigating its tissue distribution and expression profile in response to bacterial stimulus. These findings indicated that On-CD2BP2 may play an important role in the immune response to bacteria in Nile tilapia.

  2. Molecular characterization, functional analysis, and defense mechanisms of two CC chemokines in Nile tilapia (Oreochromis niloticus) in response to severely pathogenic bacteria.

    PubMed

    Nakharuthai, Chatsirin; Areechon, Nontawith; Srisapoome, Prapansak

    2016-06-01

    Two full-length cDNAs encoding CC chemokine genes in Nile tilapia (Oreochromis niloticus) (On-CC1 and On-CC2) were cloned and characterized. On-CC1 and On-CC2 showed signature cysteine motifs consisting of four cysteines. The expression levels of On-CC1 and On-CC2 were analyzed by RT-PCR, which showed that low expression of these two genes was only observed in the peripheral blood leukocytes (PBLs) and spleen of normal fish. Expression levels of these two molecules were quantified in 13 tissues of fish infected with virulent strains of Streptococcus agalactiae and Flavobacterium columnare. Most tissues, especially PBLs, the spleen and the liver, expressed significantly higher mRNA levels than the controls, particularly at 12 and 24 h after infection (P < 0.05). The current study strongly indicates that CC chemokine genes in Nile tilapia are crucially involved in the early immune responses to pathogens. Functional analyses clearly demonstrated that 10 and 100 μg/ml of recombinant rOn-CC1 and rOn-CC2 proteins efficiently enhanced the phagocytic activity (in vitro) of Nile tilapia phagocytes. Finally, Southern blot analysis and searching in Ensembl databases demonstrated that two different functional CC chemokine genes and other pseudogene fragments were discovered in the Nile tilapia genome.

  3. Complete Genome Sequence of Streptococcus iniae UEL-Si1, Isolated in Diseased Nile Tilapia (Oreochromis niloticus) from Northern Paraná, Southern Brazil

    PubMed Central

    Gonçalves, Kátia B.; Scarpassa, Josiane A.; Pretto-Giordano, Lucienne G.

    2017-01-01

    ABSTRACT The Streptococcus iniae UEL-Si1 strain was isolated from diseased Nile tilapia within the Paranapanema River Basin, Northern Paraná, Brazil. This is an emerging infectious disease agent of fish from Brazil, and sequencing of the complete genome is fundamental to understanding aspects relative to pathogenesis, infection, epidemiology, and immunity. PMID:28082497

  4. Use of biofuel by-product from the green algae Desmochloris sp. and diatom Nanofrustulum sp. meal in diets for nile tilapia Oreochromis niloticus

    USDA-ARS?s Scientific Manuscript database

    Algal by-product meals from the Hawaiian biofuels industry were evaluated as protein ingredients in diets for juveniles of Nile tilapia (Oreochromis niloticus). Four experimental diets were formulated to contain 40% protein and were made with fish meal, soybean meal, whole diatom (Nanofrustulum sp.)...

  5. Draft Genome Sequence of Francisella noatunensis subsp. orientalis STIR-GUS-F2f7, a Highly Virulent Strain Recovered from Diseased Red Nile Tilapia Farmed in Europe

    PubMed Central

    Larsson, Pär; Wehner, Stefanie; Bekaert, Michaël; Öhrman, Caroline; Metselaar, Matthijs; Thompson, Kimberly Dawn; Richards, Randolph Harvey; Penman, David James; Adams, Alexandra

    2017-01-01

    ABSTRACT A highly virulent strain of Francisella noatunensis subsp. orientalis, STIR-GUS-F2f7, was isolated from moribund red Nile tilapia (Oreochromis niloticus) farmed in Europe. In this communication, the complete genome sequencing of this bacterium is reported. PMID:28302784

  6. Use of distiller’s dried grains with solubles, which had been used as substrate for black soldier fly larvae, in diets for nile tilapia Oreochromis niloticus

    USDA-ARS?s Scientific Manuscript database

    A feeding trial was conducted in a closed system with Nile tilapia, Oreochromis niloticus, juveniles (mean initial weight, 2.66 g) to examine total replacement of menhaden fish meal (MFM) with distiller’s dried grains with solubles (DDGS), which had been used as substrate for the production of black...

  7. Evaluation of plant and animal protein sources as partial or total replacement of fish meal in diets for juvenile Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    A feeding trial was conducted in a closed system with Nile tilapia (Oreochromis niloticus) juveniles (mean weight, 2.84 g) to examine the effects of total replacement of fish meal (FM), with and without supplementation of DL-methionine (Met) and L-lysine (Lys), by plant protein sources. Fish were f...

  8. Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus).

    PubMed

    Mansour, Abdallah Tageldien; Esteban, Maria Ángeles

    2017-05-01

    The efficacy of different biofloc treatments (BFTs) to compensate for a reduction in dietary protein level under zero-water exchange systems was studied during a 10 weeks experiment, assessing the effect on water quality, growth, immune and antioxidant status of Nile tilapia (Oreochromis niloticus) fingerlings. Six groups were established and fed the same plant-based feed containing 20 or 30% crude protein: two groups in clear water conditions with no added carbon source, two biofloc groups given a wheat milling by-product (WMB) as additional carbon source and two biofloc groups given rice bran (RB). The results showed that biofloc volume was higher when WMB was used as carbon source. The highest growth performance were obtained with the biofloc system and the higher dietary protein level. Fish fed 20% crude protein and stocked in WMB biofloc significantly outperformed the fish fed 30% crude protein and stocked in clear water. Significant improvements in hematocrit, white blood cells, lymphocytes, plasma proteins, and humoral (immunoglobulin, lysozyme, myeloperoxidase and ACH50) and cellular (phagocytosis activity and respiratory burst) immune parameters were observed in all BFT fish. BFT also increased superoxide dismutase and catalase activities. Moreover, the fish fed 20% dietary protein and reared in both biofloc conditions showed equal or superior levels of the immunological criteria to fish fed 30% protein in clear water conditions. In conclusion, using WMB as carbon source could make up for a reduction in dietary protein levels of 10% and improve growth performance, and the immune and antioxidant status of O. niloticus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Nile tilapia skin collagen sponge modified with chemical cross-linkers as a biomedical hemostatic material.

    PubMed

    Sun, Leilei; Li, Bafang; Jiang, Dandan; Hou, Hu

    2017-07-26

    Nile tilapia skin collagen sponges were fabricated by freeze-drying technology and modified with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide in the presence of N-hydroxysuccinimide (EDC/NHS), genipin+PBS, genipin+ethanol, tea polyphenol (TP), nordihydroguaiaretic acid (NDGA) and diphenyl phosphoryl azide (DPPA). Physicochemical and biological properties, micromorphology and compatibility before and after modification were investigated to evaluate collagen sponge as a hemostatic biomedical material. The mechanical property of collagen sponges strengthened after cross-linking. The elongation at break of cross-linked collagen sponges decreased except for EDC/NHS, which was close to that of non-crosslinked. The collagen sponge cross-linked with EDC/NHS exhibited the highest hygroscopicity in comparison with other cross-linkers. The resistance to collagenase biodegradation of collagen sponges after cross-linking strengthened significantly except for NDGA. Collagen sponges cross-linked with EDC/NHS, TP and NDGA maintained high porosity (97-98%), similar to non-crosslinked (98.42%). Collagen sponges could shorten the blood coagulation time. From the variations of the FTIR spectrum pattern and SEM, DPPA could change the secondary structure of collagen and destroy the spongy structure of collagen sponge, which was not suitable for the cross-linking of collagen sponge. Whereas, EDC/NHS was recognized as a perfect cross-linker owing to its excellent properties and porous microstructure. All fabricated collagen sponges were recognized to be biocompatible by the hemolysis assay in vitro. Therefore, collagen sponge modified with EDC/NHS could be used as a perfect biomedical hemostatic material. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes.

    PubMed

    Campos-Garcia, Janaína; Martinez, Diego Stéfani Teodoro; Rezende, Karina Fernandes Oliveira; da Silva, José Roberto Machado Cunha; Alves, Oswaldo Luiz; Barbieri, Edison

    2016-11-01

    Carbofuran is a nematicide insecticide with a broad spectrum of action. Carbofuran has noxious effects in several species and has been banned in the USA and Europe; however, it is still used in Brazil. Aquatic organisms are not only exposed to pesticides but also to manufactured nanoparticles, and the potential interaction of these compounds therefore requires investigation. The aim of this study was to examine the histopathological alterations in the gills of Nile tilapia (Oreochromis niloticus) to determine possible effects of exposure to carbofuran, nitric acid-treated multiwalled carbon nanotubes (HNO3-MWCNTs) and the combination of carbofuran with nanotubes. Juvenile fish were exposed to different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L), different concentrations of HNO3-MWCNTs (0.5, 1.0 and 2.0mg/L) or different concentrations of carbofuran (0.1, 0.5, 2.0, 4.0 and 8.0mg/L) with 1.0mg/L of HNO3-MWCNTs. After 24h of exposure, the animals were removed from the aquarium, the spinal cord was transversely sectioned, and the second gill arch was removed for histological evaluation. Common histological changes included dislocation of the epithelial cells, hyperplasia of the epithelial cells along the secondary lamellae, aneurism, and dilation and disarrangement of the capillaries. All the groups exposed to carbofuran demonstrated a dose-dependent correlation in the Histological Alteration Index; the values found for carbofuran and carbon nanotubes were up to 25% greater than for carbofuran alone. This result indicates an interaction between these toxicants, with enhanced ecotoxic effects. This work contributes to the understanding of the environmental impacts of nanomaterials on aquatic organisms, which is necessary for the sustainable development of nanotechnologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Haploinsufficiency of SF-1 Causes Female to Male Sex Reversal in Nile Tilapia, Oreochromis niloticus.

    PubMed

    Xie, Qing-Ping; He, Xue; Sui, Yi-Ning; Chen, Li-Li; Sun, Li-Na; Wang, De-Shou

    2016-06-01

    Steroidogenic factor-1 (Sf-1) (officially designated nuclear receptor subfamily 5 group A member 1 [NR5A1]) is a master regulator of steroidogenesis and reproduction in mammals. However, its function remains unclear in nonmammalian vertebrates. In the present study, we used immunohistochemistry to detect expression of Sf-1 in the steroidogenic cells, the interstitial, granulosa, and theca cells of the ovary, and the Leydig cells of the testis, in Nile tilapia. Clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (Cas9) cleavage of sf-1 resulted in a high mutation rate in the F0 generation and a phenotype of gonadal dysgenesis and reduced steroidogenic cells in XX and XY fish. Sf-1 deficiency also resulted in decreased cytochrome P450, family 19, subfamily A, polypeptide 1a, forkhead box L2 expression, and serum estradiol-17β in XX fish. In XY fish, Sf-1 deficiency increased cytochrome P450, family 19, subfamily A, polypeptide 1a and forkhead box L2 expression but decreased cytochrome P450, family 11, subfamily B, polypeptide 2 expression and serum 11-ketotestosterone levels. 17α-methyltestosterone treatment successfully rescued the gonadal phenotype of Sf-1-deficient XY fish, as demonstrated by normal spermatogenesis and production of F1 mutants. In contrast, estradiol-17β treatment only partially rescued the gonadal phenotype of Sf-1-deficient XX fish, as demonstrated by the appearance of phase II oocytes. Furthermore, both sf-1(+/-) F1 XX and XY mutants developed as fertile males, although spermatogenesis was delayed and efferent duct formation was disordered. Our data suggest that Sf-1 is a major regulator of steroidogenesis and reproduction in fish, as it is in mammals. Sf-1 deficiency resulted in gonadal dysgenesis and feminization of XY gonads. However, unlike in mammals, Sf-1 deficiency also resulted in female to male sex reversal in 8.1% of F0 and 92.1% of sf-1(+/-) F1 in XX fish.

  12. Vitamin C Modulates the Immunotoxic Effect of 17α-Methyltestosterone in Nile Tilapia.

    PubMed

    Abo-Al-Ela, Haitham G; El-Nahas, Abeer F; Mahmoud, Shawky; Ibrahim, Essam M

    2017-04-11

    The synthetic androgen 17α-methyltestosterone (MT) is profusely used and practically needed in the production of all-male Nile tilapia fry; however, such androgenic hormones badly disrupt the immune system. This study aimed to alleviate or counteract the immunotoxic effect of MT using vitamin C (ascorbic acid or vit C). Our results show that the highest phagocytic activity (PA), phagocytic index (PI), and lysozyme activity were detected in the vit C group and the MT plus vit C group. Furthermore, PA and PI were significantly suppressed, but lysozyme activity was stronger in the MT group than in the control. No differences were detected in the differential leukocyte count among the studied groups. Moreover, vit C obviously reduced the upregulated expression level of the innate immune-related genes, interleukin 1β (il1β), interleukin 8 (il8), tumor necrosis factor α (tnfα), CC-chemokine, Toll-like receptor 7 (tlr7), immunoglobulin M (IgM) heavy chain, and cellular apoptosis susceptibility (cas) induced by MT, excluding tnfα in the liver and CC-chemokine and tlr7 in the kidney. The micronucleus frequency was found to significantly improve in the vit C plus MT group in comparison to that in the MT group. Normal histoarchitecture of the liver, kidney, and spleen was observed in all the groups, except for the frequently observed melanomacrophage centers in the spleen and kidney of the fish that were treated with vit C and vit C plus MT. More importantly, our findings demonstrate that the upregulation of immune-related genes is not necessarily a sign of a stimulated or enhanced immune system.

  13. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus).

    PubMed

    Sarker, Pallab K; Kapuscinski, Anne R; Lanois, Alison J; Livesey, Erin D; Bernhard, Katie P; Coley, Mariah L

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds.

  14. Towards Sustainable Aquafeeds: Complete Substitution of Fish Oil with Marine Microalga Schizochytrium sp. Improves Growth and Fatty Acid Deposition in Juvenile Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Sarker, Pallab K.; Kapuscinski, Anne R.; Lanois, Alison J.; Livesey, Erin D.; Bernhard, Katie P.; Coley, Mariah L.

    2016-01-01

    We conducted a 84-day nutritional feeding experiment with dried whole cells of DHA-rich marine microalga Schizochytrium sp. (Sc) to determine the optimum level of fish-oil substitution (partial or complete) for maximum growth of Nile tilapia. When we fully replaced fish oil with Schizochytrium (Sc100 diet), we found significantly higher weight gain and protein efficiency ratio (PER), and lower (improved) feed conversion ratio (FCR) and feed intake compared to a control diet containing fish oil (Sc0); and no significant change in SGR and survival rate among all diets. The Sc100 diet had the highest contents of 22:6n3 DHA, led to the highest DHA content in fillets, and consequently led to the highest DHA:EPA ratios in tilapia fillets. Schizochytrium sp. is a high quality candidate for complete substitution of fish oil in juvenile Nile tilapia feeds, providing an innovative means to formulate and optimize the composition of tilapia juvenile feed while simultaneously raising feed efficiency of tilapia aquaculture and to further develop environmentally and socially sustainable aquafeeds. Results show that replacing fish oil with DHA-rich marine Sc improves the deposition of n3 LC PUFA levels in tilapia fillet. These results support further studies to lower Schizochytrium production costs and to combine different marine microalgae to replace fish oil and fishmeal into aquafeeds. PMID:27258552

  15. Structural and functional characterization of microcystin detoxification-related liver genes in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus).

    PubMed

    Wang, Lin; Liang, Xu-Fang; Liao, Wan-Qin; Lei, La-Mei; Han, Bo-Ping

    2006-11-01

    Liver genes related to phase I and phase II detoxification, as well as inhibition of reactive oxygen species (ROS) production, were cloned, and their response to microcystin-LR (MC-LR) and lipopolysaccharide (LPS) exposure via intraperitoneal injection, was determined in a phytoplanktivorous fish, Nile tilapia (Oreochromis niloticus). The cloned full-length cDNA of tilapia soluble glutathione S-transferase (sGST) was classified as alpha-class GST based on their amino acid sequence identity with other species. The tilapia sGST clone was 861 bp in length, and contained a 25 bp 5'-UTR, a 167 bp 3'-UTR and an open reading frame of 669 bp, encoding a polypeptide of 222 amino acids. Using genome walker method, a 366 bp 5'-flanking sequence of tilapia sGST gene was further obtained, and the possible regulatory elements were identified. Partial cDNA sequences of glutathione peroxidase (GPX) and uncoupling protein 2 (UCP2) were also obtained by PCR using degenerate primers from tilapia liver. To study the transcriptional response of liver genes to microcystin treatment, tilapia were respectively exposed to a single 50 microg kg(-1) body weight (bwt) dose of pure MC-LR, a single 2 mg kg(-1) bwt dose of LPS and a co-exposure MC-LR and LPS (50 microg kg(-1) bwt+2 mg kg(-1) bwt), and were then sacrificed at 24 h post-exposure. Using beta-actin as external control, a significant increase (about 80%) in sGST mRNA expression was found in response to the MC-LR exposure after 24 h (P < 0.05), indicating the importance of sGST in microcystin detoxification. A slight decrease of sGST mRNA expression was observed in the liver of tilapia, exposed to LPS and MC-LR+LPS. It seems that the LPS response element (LPSRE), identified in the promoter region of tilapia sGST gene, may be functional at a rather low level. In contrast, the levels of cytochrome P450 1A (CYP1A) mRNA expression were found to keep unchanged to either MC-LR, or LPS, or MC-LR+LPS treatment, indicating that unlike the

  16. Ecological Risk Assessment of Metal Pollution along Greater Cairo Sector of the River Nile, Egypt, Using Nile Tilapia, Oreochromis niloticus, as Bioindicator

    PubMed Central

    Omar, Wael A.; Mikhail, Wafai Z. A.; Abdo, Hanaa M.; Abou El Defan, Tarek A.; Poraas, Mamdouh M.

    2015-01-01

    The present work aims to evaluate seasonal metal pollution along Greater Cairo sector of the River Nile, Egypt, using wild Nile tilapia, Oreochromis niloticus, as bioindicator and to conduct a risk assessment for human consumers. Greater Cairo is the largest populated area along the whole course of River Nile with a wide range of anthropogenic activities. Effects of metal pollution on fish body indices were studied using condition factor (CF) and scaled mass index (SMI). Metal pollution index (MPI) showed that the total metal load in fish organs followed the follwoing order: kidney > liver > gill > muscle which gives a better idea about the target organs for metal accumulation. Metal concentrations in fish muscle (edible tissue) showed the following arrangement: Fe > Zn > Cu > Mn > Pb > Cd. Metal's bioaccumulation factor (BAF) in fish muscle showed the following arrangement: Zn > Cu > Fe > Mn > Cd and Pb. The hazard index (HI) as an indicator of human health risks associated with fish consumption showed that adverse health effects are not expected to occur in most cases. However, the metals' cumulative risk effects gave an alarming sign specifically at high fish consumption rates. PMID:26617637

  17. Identification and expression profile of multiple genes in Nile tilapia in response to formalin killed Streptococcus iniae vaccination.

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H

    2011-08-15

    Twenty-eight expressed sequence tags (ESTs) were isolated from a Nile tilapia (Oreochromis niloticus) vaccinated vs non-vaccinated subtractive library at 12-h post injection of a formalin killed Streptococcus iniae ARS-98-60 vaccine. The 28 ESTs were classified in terms of their putative functions. Half of the ESTs identified were unknown proteins. Of the remaining half ESTs, 17% have putative functions in protein biosynthesis and 11% have putative functions in immunity, energy production, and signal transduction, respectively. Immunity-related ESTs identified included high density lipoprotein-binding protein vigilin, immunoglobulin heavy chain, and QM-like protein. Quantitative PCR revealed that one EST (cytochrome c oxidase subunit II) was highly upregulated (1825 ± 336 fold) in vaccinated fish compared to that in non-vaccinated fish. Of the remaining 27 ESTs, nine were significantly (P<0.05) upregulated (<20 fold) in vaccinated fish. The nine significantly upregulated genes included five unknown or hypothetical proteins and four known proteins (high density lipoprotein-binding protein vigilin, QM-like protein, ribosomal protein S13, and ribosomal protein L5). The upregulation of these genes induced by killed S. iniae vaccines suggest that they might play important role in Nile tilapia defense against S. iniae infection.

  18. ABC transporters, CYP1A and GSTα gene transcription patterns in developing stages of the Nile tilapia (Oreochromis niloticus).

    PubMed

    Costa, Joana; Reis-Henriques, Maria Armanda; Castro, L Filipe C; Ferreira, Marta

    2012-09-15

    In fish, some ABC transporters are implicated in a multixenobiotic resistance (MXR) mechanism to deal with the presence of xenobiotics, by effluxing them, or their metabolites, from inside the cells. These efflux transporters have been considered an integral part of cellular detoxification pathways, acting in coordination with phase I and II detoxification enzymes. However, the full characterization of this detoxification system is still incomplete, especially during the developmental stages of aquatic organisms, which are particularly sensitive periods to the presence of anthropogenic contamination. The goal of this study was to evaluate the mRNA expression dynamics of putatively important MXR proteins (ABCB1b, ABCB11, ABCC1, ABCC2 and ABCG2a) and phase I (CYP1A) and II (GSTα) biotransformation enzymes, during the embryonic and larval developments of the specie Oreochromis niloticus (Nile tilapia). Our results showed that ABCB1b, ABCC1, CYP1A and GSTα transcripts are maternally transmitted. Transcripts for ABCB11, ABCC2 and ABCG2a were only detected after the pharyngula period, which precedes a highly sensitive stage in the embryonic development, the hatching. This study has shown, for the first time, very distinct expression patterns of genes encoding for proteins involved in protection mechanisms against pollutants during the development of Nile tilapia. Moreover, the temporal pattern of gene expression suggests that increased intrinsic protection levels are required at specific developmental stages.

  19. Use of asiatic pennywort Centella asiatica aqueous extract as a bath treatment to control columnaris in Nile tilapia.

    PubMed

    Rattanachaikunsopon, P; Phumkhachorn, P

    2010-03-01

    To develop antibiotic-free and chemical-free aquaculture, it is necessary to have natural substances to control diseases of aquatic animals. The aim of this study was to find an herb having therapeutic effect against columnaris, a fish disease caused by the bacterium Flavobacterium columnare. Of all tested herbs (including kalmegh Andrographis paniculata, candle bush Cassia alata, Asiatic pennywort Centella asiatica, mangosteen Garcinia mangostana, pomegranate Punica granatum, and guava Psidium guajava), the aqueous extract of Asiatic pennywort exhibited the strongest antimicrobial activity against F. columnare; the minimal inhibitory concentration was 31.25 lg/mL. It was also found to have a bactericidal effect on F. columnare. When experimental bath exposures of Nile tilapia Oreochromis niloticus to F. columnare were performed, the median lethal dose was determined to be 2.37 x 10(5) colony forming units/mL. For in vivo trials, six different concentrations (0, 20, 40, 60, 80, and 100 mg/L) of Asiatic pennywort aqueous extract were used as bath treatments to control experimentally induced columnaris in Nile tilapia. The decrease in fish mortality was dose dependent, and at a concentration of 100 mg/L no mortality or adverse effects were noted in the infected fish. This study suggests that Asiatic pennywort aqueous extract has the potential to control disease caused by F. columnare.

  20. Development of a freeze-dried mixture of Nile tilapia (Oreochromis niloticus) croquette using a GA-based multiobjective optimisation.

    PubMed

    Fuchs, Renata H B; Ribeiro, Ricardo P; Bona, Evandro; Matsushita, Makoto

    2013-03-30

    The mechanically separated meat (MSM) of Nile tilapia is an example of a by-product that can be used in the development of new foods. The aim of this study was to optimise the mixture of different flours in the development of a freeze-dried mixture of fish croquette using Nile tilapia MSM. Flavour, texture and overall acceptance of seven formulations were evaluated by an acceptance test. A genetic algorithm (GA) with desirability functions was combined with a multiobjective optimisation of the response surface models. The combination of flours was chosen to minimise cost and maximise overall acceptance and fibre content. Overall acceptance showed a statistically significant correlation (P ≤ 0.05) with flavour (r = 0.67) and texture (r = 0.61). The GA-based approach indicated that the highest overall acceptance was obtained when using wheat and rye flours in equal parts. This formulation had an overall acceptance of 7.52, a fibre content of 11.50 g kg⁻¹ and a cost of US$2.21/kg. After 24 h of freeze-drying, the water activity of the mixture was 0.11. The GA-based approach was able to optimise the croquette formulation. The freeze-drying process contributed to the development of a value-added product with high quality and long shelf-life. © 2012 Society of Chemical Industry.

  1. Changes in lipids and fishy odour development in skin from Nile tilapia (Oreochromis niloticus) stored in ice.

    PubMed

    Sae-Leaw, Thanasak; Benjakul, Soottawat; Gokoglu, Nalan; Nalinanon, Sitthipong

    2013-12-01

    Changes in lipids, lipoxygenase activity and fishy odour development in the skin of Nile tilapia (Oreochromis niloticus) during iced storage of 18 days were monitored. Triacylglycerol content of skin decreased with coincidental increases in free fatty acid, monoacylglycerol, diacylglycerol and phospholipid contents during storage (p<0.05). During iced storage, peroxide value increased at day 9 and subsequently decreased up to 18 days (p<0.05). Thiobarbituric acid reactive substances values and lipoxygenase activity increased throughout 18 days of iced storage (p<0.05). With increasing storage time, a progressive formation of hydroperoxide was found as evidenced by the increase in amplitude of peak at 3600-3200 cm(-1) in Fourier transform infrared spectra. Those changes indicated that lipid oxidation took place during iced storage. The increase in fishy odour of skin was observed as the storage time increased. The development of fishy odour in Nile tilapia skin during iced storage was mostly governed by lipid oxidation via autoxidation or induced by lipoxygenase. Thus, the extended storage time of whole fish resulted in the pronounced changes in lipids and the increased fishy odour in the skin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Characterization of fatty acid delta-6 desaturase gene in Nile tilapia and heterogenous expression in Saccharomyces cerevisiae.

    PubMed

    Tanomman, Supamas; Ketudat-Cairns, Mariena; Jangprai, Araya; Boonanuntanasarn, Surintorn

    2013-10-01

    Fatty acid delta-6 desaturase (fads2)-like gene from Nile tilapia (Oreochromis niloticus) was characterized and designated as oni-fads2. The Oni-FADS2 showed the typical structure of microsomal FADS2. The presence of oni-fads2 transcripts in unfertilized eggs demonstrated the maternal role of Nile tilapia in providing the oni-fads2 transcript in their eggs. In addition, the expression of oni-fads2 was detectable in embryos throughout the hatching stage. Real-time reverse transcription-PCR revealed that oni-fads2 was expressed at a high level in all the brain regions, liver, and testis. Recombinant yeast (RY) was generated by transformation of Saccharomyces cerevisiae with the plasmid containing oni-fads2 driven by the Gal1 promoter (pYoni-fads2). The conspicuous expression of RY was detectable by RT-PCR after induction with galactose for 24h. When RY was induced with galactose, it exhibited 39% and 7% of delta-6 desaturase (∆6) activity toward C18:2n6 and C18:3n3, respectively. Additionally, it displayed 4% of delta-5 desaturase (∆5) activity toward C20:3n6, indicating that Oni-FADS2 had ∆5 and ∆6 bifunction. © 2013.

  3. Morphometry of white muscle fibers and performance of Nile tilapia (Oreochromis niloticus) fingerlings treated with methyltestosterone or a homeopathic complex.

    PubMed

    Júnior, R P; Vargas, L; Valentim-Zabott, M; Ribeiro, R P; da Silva, A V; Otutumi, L K

    2012-07-01

    Nile tilapia (Oreochromis niloticus), are widely used in fish farming, hormonal treatments are used to increase productivity. Studies of the characteristics of the fiber types are important in species that have well developed muscle mass, such as Nile tilapia. A total of 4800 post-larval fish were randomly assigned by tank to receive one of three treatments: Control (30°GL alcohol), Homeopathic complex (Homeopatila RS) or Hormone (17-α-methyltestosterone) supplemented in the feed for 28 days. Survival and morphological parameters were measured at day 45. At day 45, the survival rates were 54.1% (Control), 87.8% (Homeopathy), 50.3% (Hormone). The mean final weight for Homeopathy was statistically significantly lower (1.07 g) than the other two groups: Control (1.81 g) and Hormone (2.04 g). Mean total lengths were Control (4.75 cm), Hormone (4.49 cm), statistically significantly different from Homeopathy (3.83 cm). Average partial length, trunk length, height and body width were significantly lower for Homeopathy than Control or Hormone (p<0.05) Homeopathy treated fish had significantly greater muscle fiber diameter than the other two groups. Fish treated with the homeopathic complex had improved survival and muscle fiber hypertrophy, but were smaller (probably related to increased survival and overcrowding) compared to fingerlings treated with synthetic hormone or control. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  4. DNA methylation of pituitary growth hormone is involved in male growth superiority of Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhong, Huan; Xiao, Jun; Chen, Wenzhi; Zhou, Yi; Tang, Zhanyang; Guo, Zhongbao; Luo, Yongju; Lin, Zhengbao; Gan, Xi; Zhang, Ming

    2014-05-01

    Growth hormone (GH) and its receptors are critical regulators of somatic growth and metabolism. It has been shown in mammals that the methylation of cytosines within the GH promoter plays a key role in regulating transcripts expression. In the present study, the GH, GHR1 and GHR2 proximal promoters were identified and the methylation levels of these genes in corresponding tissues were assayed. The results suggested that significant arising of GH putative promoter methylation levels in pituitary was observed in females compared with males. However, no such sex-specific changes were found in GHR1 and GHR2 promoters. The GH mRNA expression also was influenced by GH promoter methylation levels in pituitary, which resulted in the higher growth rate of Nile tilapia males. Meanwhile, the methylation levels of GH putative promoter were negatively correlated with growth rate as well as mRNA expression of GH. Furthermore, the methylation of specific E-Box CpG site is also negatively related to the mRNA expression of GH in pituitary. Taken together, our data provide an epigenetic mechanism of explicating the sex duality in phenotypic plasticity of growth rate in male and female of Nile tilapia.

  5. Efficiency of essential oils of Ocimum basilicum and Cymbopogum flexuosus in the sedation and anaesthesia of Nile tilapia juveniles.

    PubMed

    Netto, José D Limma; Oliveira, Rebeca S M; Copatti, Carlos Eduardo

    2017-08-31

    This study aimed to verify the sedative and anaesthetic effect of the essential oils of basil (Ocimum basilicum) (EOOB) and lemongrass (Cymbopogum flexuosus) (EOCF) in Nile tilapia juveniles. The fish were transferred to aquaria containing different concentrations of each essential oil: 10, 25, 50, 100, 200, 400 and 600 μL L-1. The time of sedation ranged from 7 to 31 seconds and the recommended concentration was 10 or 25 μL L-1 for both essential oils. The best times for anaesthesia and recovery were found for the concentrations of 400 μL L-1 for EOOB (135.2 and 199.1 seconds, respectively) and 600 μL L-1 for EOCF (327.1 and 374.8 seconds, respectively). In conclusion, we recommend the use of EOOB and EOCF for the sedation and anaesthesia of Nile tilapia at concentrations of 10-25 (for both), 400 and 600 μL L-1, respectively.

  6. Effects of temperature and salt concentration on Francisella noatunensis subsp. orientalis infections in Nile tilapia Oreochromis niloticus.

    PubMed

    Soto, Esteban; Abrams, Stephanie B; Revan, Floyd

    2012-11-19

    Little is known about the environmental conditions that allow Francisella noatunensis subsp. orientalis, a worldwide emergent bacterial fish pathogen, to colonize and infect wild and cultured fish. We evaluated the effect of temperature and salinity on the infectivity of F. noatunensis subsp. orientalis in Nile tilapia Oreochromis niloticus (L). Immersion challenges of tilapia with F. noatunensis subsp. orientalis at water temperatures of 25 and 30°C in both sea and fresh water were conducted for 14 d. Morbidity and mortality were recorded daily, and at the completion of the study, a quantitative assessment of the splenic bacterial burden was performed in surviving fish. Fish maintained at 25°C developed francisellosis and had considerably higher mortality and splenic bacterial concentrations compared to control fish and fish maintained at 30°C. Moreover, increasing the water temperature from 25 to 30°C prevented the development of clinical signs and mortality in Francisella-challenged fish. In conclusion, temperature significantly influenced the development of francisellosis in tilapia, whereas salinity had no effect. Our findings may be useful in the establishment of improved prophylactic practices and in the management of outbreaks of francisellosis in the aquaculture industry.

  7. Development and efficacy of a novobiocin-resistant Streptococcus iniae as a novel vaccine in Nile tilapia (Oreochromis niloticus).

    PubMed

    Pridgeon, Julia W; Klesius, Phillip H

    2011-08-11

    A novel attenuated Streptococcus iniae vaccine was developed from a virulent strain of Streptococcus iniae (ISET0901) through selection for novobiocin resistance (named ISNO). The safety of ISNO was then evaluated in Nile tilapia (Oreochromis niloticus) through intraperitoneal (IP) injection. When male tilapia (average weight 10 g) were IP injected with 2×10(7) colony-forming units (CFU) of the attenuated S. iniae vaccine strain, no fish died. However, when the same age and size matched tilapia were IP injected with 2×10(7) and 1×10(5)CFU of the virulent parent strain of S. iniae, 100 and 90% fish died, respectively. Backpassage safety studies revealed that ISNO was unable to revert back to a virulent state. When IP vaccinated fish were challenged by the virulent ISET0901 strain of S. iniae, relative percent survival (RPS) values of vaccinated fish at 14, 28, 60, 90, and 180 days post ISNO vaccination (dpv) were 100, 100, 100, 89, and 75%, respectively, The RPS values of ISNO vaccinated fish (IP vaccination) against infections by five heterologous virulent strains of S. iniae (F3CB, 102 F1K, 405 F1K, IF6, and ARS60) at 60 dpv were 78, 90, 100, 100, and 100%, respectively. When tilapia were IP vaccinated by ISNO at dose of 1×10(2), 1×10(3), 1×10(4), 1×10(5), 1×10(6), and 1×10(7)CFU/fish, RPS values at 28 dpv were 81, 94, 100, 100, 100, and 100%, respectively. At 28 dpv, RPS of vaccinated fish by ISNO through bath immersion (1×10(7)CFU/ml) was 88%. ELISA results revealed that protection elicited by ISNO was due to antibody- as well as cell- mediated immunity. Our results suggest that ISNO could be used as a novel safe and efficacious vaccine to protect Nile tilapia from S. iniae infections.

  8. Survival, Growth and Reproduction of Non-Native Nile Tilapia II: Fundamental Niche Projections and Invasion Potential in the Northern Gulf of Mexico

    PubMed Central

    Lowe, Michael R.; Wu, Wei; Peterson, Mark S.; Brown-Peterson, Nancy J.; Slack, William T.; Schofield, Pamela J.

    2012-01-01

    Understanding the fundamental niche of invasive species facilitates our ability to predict both dispersal patterns and invasion success and therefore provides the basis for better-informed conservation and management policies. Here we focus on Nile tilapia (Oreochromis niloticus Linnaeus, 1758), one of the most widely cultured fish worldwide and a species that has escaped local aquaculture facilities to become established in a coastal-draining river in Mississippi (northern Gulf of Mexico). Using empirical physiological data, logistic regression models were developed to predict the probabilities of Nile tilapia survival, growth, and reproduction at different combinations of temperature (14 and 30°C) and salinity (0–60, by increments of 10). These predictive models were combined with kriged seasonal salinity data derived from multiple long-term data sets to project the species' fundamental niche in Mississippi coastal waters during normal salinity years (averaged across all years) and salinity patterns in extremely wet and dry years (which might emerge more frequently under scenarios of climate change). The derived fundamental niche projections showed that during the summer, Nile tilapia is capable of surviving throughout Mississippi's coastal waters but growth and reproduction were limited to river mouths (or upriver). Overwinter survival was also limited to river mouths. The areas where Nile tilapia could survive, grow, and reproduce increased during extremely wet years (2–368%) and decreased during extremely dry years (86–92%) in the summer with a similar pattern holding for overwinter survival. These results indicate that Nile tilapia is capable of 1) using saline waters to gain access to other watersheds throughout the region and 2) establishing populations in nearshore, low-salinity waters, particularly in the western portion of coastal Mississippi. PMID:22848533

  9. Survival, growth and reproduction of non-native Nile tilapia II: fundamental niche projections and invasion potential in the northern Gulf of Mexico.

    PubMed

    Lowe, Michael R; Wu, Wei; Peterson, Mark S; Brown-Peterson, Nancy J; Slack, William T; Schofield, Pamela J

    2012-01-01

    Understanding the fundamental niche of invasive species facilitates our ability to predict both dispersal patterns and invasion success and therefore provides the basis for better-informed conservation and management policies. Here we focus on Nile tilapia (Oreochromis niloticus Linnaeus, 1758), one of the most widely cultured fish worldwide and a species that has escaped local aquaculture facilities to become established in a coastal-draining river in Mississippi (northern Gulf of Mexico). Using empirical physiological data, logistic regression models were developed to predict the probabilities of Nile tilapia survival, growth, and reproduction at different combinations of temperature (14 and 30°C) and salinity (0-60, by increments of 10). These predictive models were combined with kriged seasonal salinity data derived from multiple long-term data sets to project the species' fundamental niche in Mississippi coastal waters during normal salinity years (averaged across all years) and salinity patterns in extremely wet and dry years (which might emerge more frequently under scenarios of climate change). The derived fundamental niche projections showed that during the summer, Nile tilapia is capable of surviving throughout Mississippi's coastal waters but growth and reproduction were limited to river mouths (or upriver). Overwinter survival was also limited to river mouths. The areas where Nile tilapia could survive, grow, and reproduce increased during extremely wet years (2-368%) and decreased during extremely dry years (86-92%) in the summer with a similar pattern holding for overwinter survival. These results indicate that Nile tilapia is capable of 1) using saline waters to gain access to other watersheds throughout the region and 2) establishing populations in nearshore, low-salinity waters, particularly in the western portion of coastal Mississippi.

  10. Survival, growth and reproduction of non-native Nile tilapia II: fundamental niche projections and invasion potential in the northern Gulf of Mexico

    USGS Publications Warehouse

    Lowe, Michael R.; Wu, Wei; Peterson, Mark S.; Brown-Peterson, Nancy J.; Slack, William T.; Schofield, Pamela J.

    2012-01-01

    Understanding the fundamental niche of invasive species facilitates our ability to predict both dispersal patterns and invasion success and therefore provides the basis for better-informed conservation and management policies. Here we focus on Nile tilapia (Oreochromis niloticus Linnaeus, 1758), one of the most widely cultured fish worldwide and a species that has escaped local aquaculture facilities to become established in a coastal-draining river in Mississippi (northern Gulf of Mexico). Using empirical physiological data, logistic regression models were developed to predict the probabilities of Nile tilapia survival, growth, and reproduction at different combinations of temperature (14 and 30°C) and salinity (0–60, by increments of 10). These predictive models were combined with kriged seasonal salinity data derived from multiple long-term data sets to project the species' fundamental niche in Mississippi coastal waters during normal salinity years (averaged across all years) and salinity patterns in extremely wet and dry years (which might emerge more frequently under scenarios of climate change). The derived fundamental niche projections showed that during the summer, Nile tilapia is capable of surviving throughout Mississippi's coastal waters but growth and reproduction were limited to river mouths (or upriver). Overwinter survival was also limited to river mouths. The areas where Nile tilapia could survive, grow, and reproduce increased during extremely wet years (2–368%) and decreased during extremely dry years (86–92%) in the summer with a similar pattern holding for overwinter survival. These results indicate that Nile tilapia is capable of 1) using saline waters to gain access to other watersheds throughout the region and 2) establishing populations in nearshore, low-salinity waters, particularly in the western portion of coastal Mississippi.

  11. Controlled laboratory challenge demonstrates substantial additive genetic variation in resistance to Streptococcus iniae in Nile tilapia

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae is an etiologic agent of streptococcal disease in tilapia and is one of several Streptococcus spp. that negatively impact worldwide tilapia production. Methods for the prevention and control of S. iniae include vaccines, management strategies, and antibiotics. An alternative and ...

  12. Spring forward with improved Nile tilapia Oreochromis niloticus resistant to Streptococcus iniae and Streptococcus agalactiae IB

    USDA-ARS?s Scientific Manuscript database

    Tilapia aquaculture worldwide is valued around US $ 7 billion. Tilapia are an important source of protein for domestic (top 5 most consumed seafoods) and global food security. Two gram postitive bacteria, Streptococcus iniae and S. agalactiae, are responsible for billion dollar losses annually. Gen...

  13. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa

    PubMed Central

    2011-01-01

    Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (RST = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro

  14. Prevalence and seasonal variation of ectoparasites in cultured Nile tilapia Oreochromis niloticus in Saudi Arabia.

    PubMed

    Suliman, El Amin M; Al-Harbi, Ahmed H

    2016-12-01

    The prevalence, mean intensity and abundance of ectoparasites (monogeneans and trichodinids) from Nile tilapia Oreochromis niloticus were investigated during different seasons of two consecutive years, from January 2011 to December 2012. A total of 360 O. niloticus was collected from three fish farms located in the central region of Saudi Arabia. Prevalence, mean intensity and mean abundance of monogeneans on fish gills were found to be significantly (p < 0.01) higher in farm(C) (81.67, 495.23, 405.84 %) than farm (A) (7.5, 81.25, 8.34 %) and farm (B) (4.17, 62.5, 5 %) respectively. Similarly, the same parameters for trichodinids on gills were found to be significantly (p < 0.01) higher in farm (C) (97.5, 97.5, 97.5 %), followed by farm (A) (39.17, 234.37, 35.00 %) and farm (B) (6.67, 347.92, 30.00 %) respectively. The results of monogenean parameter on fish skin were found to be significantly (p < 0.01) higher in farm (C) (66.67, 443.68, 294.16) followed by farm (A) (16.67, 124.58, 21.67 %) then farm (B) (0.83, 25, 0.83 %) respectively. Similar results for trichodinid parameters on the skin were found to be higher (p < 0.01) in farm (C) (97.5, 875, 857.5 %), then farm (A) (26.67, 399.70, 215.01 %) and farm (B) (4.17, 154.17, 12.5 %) respectively. These results indicated that water quality and nutritional qualities were the major factors that affecting parasite occurrence, while the effect of temperature, seasonality and stocking density might have a secondary role on ectoparasite occurrence. Further studies should investigate that how the nutritional and water qualities affect the immunity of the fish to resist parasite infection.

  15. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus) across Africa.

    PubMed

    Bezault, Etienne; Balaresque, Patricia; Toguyeni, Aboubacar; Fermon, Yves; Araki, Hitoshi; Baroiller, Jean-François; Rognon, Xavier

    2011-12-09

    Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the

  16. Characterization of two paralogous StAR genes in a teleost, Nile tilapia (Oreochromis niloticus).

    PubMed

    Yu, Xiangguo; Wu, Limin; Xie, Lang; Yang, Shijie; Charkraborty, Tapas; Shi, Hongjuan; Wang, Deshou; Zhou, Linyan

    2014-07-05

    Steroidogenic acute regulatory protein (StAR) transports cholesterol, the substrate for steroid synthesis, to the inner membranes of mitochondria. It is well known that estrogen is essential for female sex determination/differentiation in fish. However, no reports showed that the conventional StAR, which was supposed to be essential for estrogen production, was expressed in female gonads during the critical timing of sex determination/differentiation. In this study, two different StAR isoforms, named as StAR1 and StAR2, were characterized from the gonads of Nile tilapia (Oreochromis niloticus). Phylogenetic and synteny analysis revealed that two StAR genes existed in teleosts, Xenopus and chicken indicating that the duplication event occurred before the divergence of teleosts and tetrapods. Real-time PCR revealed that StAR1 was dominantly expressed in the testis, head kidney and kidney; while StAR2 was expressed exclusively in the gonads. In situ hybridization and immunohistochemistry demonstrated that StAR1 was expressed in the interrenal cells of the head kidney and Leydig cells of the testis; while StAR2 was expressed in the Leydig cells of the testis and the interstitial cells of the ovary. Ontogenic analysis demonstrated that StAR2 was expressed abundantly from 5 days after hatching (dah) in the somatic cells in XX gonads, whereas in XY gonads, both StARs could be detected from 30 dah until adulthood. Intraperitoneal injection of human chorionic gonadotropin experiments showed that expression of StAR1 and 2 was significantly elevated at 8h and persisted until 24h after injection in the testis. Taken together, our data suggested that StAR1 is likely to be required for cortisol production in the head kidney, and StAR2 is probably involved in estrogen production during early sex differentiation in XX gonads. In contrast, both StARs might be required for androgen production in testes. For the first time, our data demonstrated that two fish StARs might be involved

  17. Stress responses of the fish Nile tilapia subjected to electroshock and social stressors.

    PubMed

    Barreto, R E; Volpato, G L

    2006-12-01

    Plasma cortisol and glucose levels were measured in 36 adult Nile tilapia males, Oreochromis niloticus (standard length, mean +/- SD, 14.38 +/- 1.31 cm), subjected to electroshock and social stressors. Pre-stressor levels were determined 5 days after the adjustment of the fish to the experimental aquaria (1 fish/aquarium). Five days later, the effects of stressors on both cortisol and glucose levels were assessed. The following stressors were imposed for 60 min: pairing with a larger resident animal (social stressor), or a gentle electroshock (AC, 20 V, 15 mA, 100 Hz for 1 min every 4 min). Each stressor was tested in two independent groups, one in which stress was quantified immediately after the end of the 60-min stressor imposition (T60) and the other in which stress was quantified 30 min later (T90). Pre-stressor values for cortisol and glucose were not statistically different between groups. Plasma cortisol levels increased significantly and were of similar magnitude for both electroshock and the social stressor (mean +/- SD for basal and final samples were: electroshock T60 = 65.47 +/- 15.3, 177.0 +/- 30.3; T90 = 54.8 +/- 16.0, 196.2 +/- 57.8; social stress T60 = 47.1 +/- 9.0, 187.6 +/- 61.7; T90 = 41.6 +/- 8.1, 112.3 +/- 26.8, respectively). Plasma glucose levels increased significantly for electroshock at both time points (T60 and T90), but only at T90 for the social stressor. Initial and final mean (+/- SD) values are: electroshock T60 = 52.5 +/- 9.2, 115.0 +/- 15.7; T90 = 35.5 +/- 1.1, 146.3 +/- 13.3; social stress T60 = 54.8 +/- 8.8, 84.4 +/- 15.0; T90 = 34.5 +/- 5.6, 116.3 +/- 13.6, respectively. Therefore, electroshock induced an increase in glucose more rapidly than did the social stressor. Furthermore, a significant positive correlation between cortisol and glucose was detected only at T90 for the social stressor. These results indicate that a fish species responds differently to different stressors, thus suggesting specificity of fish stress

  18. Genome-wide identification, phylogeny, and gonadal expression of fox genes in Nile tilapia, Oreochromis niloticus.

    PubMed

    Yuan, Jing; Tao, Wenjing; Cheng, Yunying; Huang, Baofeng; Wang, Deshou

    2014-08-01

    The fox genes play important roles in various biological processes, including sexual development. In the present study, we isolated 65 fox genes, belonging to 18 subfamilies named A-R, from Nile tilapia through genome-wide screening. Twenty-four of them have two or three (foxm1) copies. Furthermore, 16, 25, 68, and 45 fox members were isolated from nematodes, protochordates, teleosts, and tetrapods, respectively. Phylogenetic analyses indicated fox gene family had undergone three expansions parallel to the three rounds of genome duplication during evolution. We also analyzed the clustered fox genes and found that apparent linkage duplication existed in teleosts, which further supported fish-specific genome duplication hypothesis. In addition, species- and lineage-specific duplication is another reason for fox gene family expansion. Based on the four pairs of XX and XY gonadal transcriptome data from four critical developmental stages, we analyzed the expression profile of all fox genes and identified sexually dimorphic fox genes at each stage. All fox genes were detected in gonads, with 15 of them at the background expression level (total read per kb per million reads, RPKM < 10), 29 at moderate expression level (10 < total RPKM < 100), and 21 at high expression level (total RPKM > 100). There are 27, 24, 28, and 9 sexually dimorphic fox genes at 5, 30, 90, and 180 days after hatching (dah), respectively. foxq1a, foxf1, foxr1, and foxr1 were identified as the most differentially expressed genes at each stage. foxl2 was characterized as XX-dominant gene, while foxd5, foxi3, foxn3, foxj1a, foxj3b, and foxo6b were characterized as XY-dominant genes. qPCR and in situ hybridization of foxh1 and foxj1a were performed to confirm the expression profiles and to validate the transcriptome data. Our results suggest that fox genes might play important roles in sex determination and gonadal development in teleosts.

  19. Transcriptome profiling and digital gene expression analysis of Nile tilapia (Oreochromis niloticus) infected by Streptococcus agalactiae.

    PubMed

    Zhang, Rui; Zhang, Li-li; Ye, Xing; Tian, Yuan-yuan; Sun, Cheng-fei; Lu, Mai-xin; Bai, Jun-jie

    2013-10-01

    Tilapia is an important freshwater aquaculture species worldwide. In recent years, streptococcal diseases have severely threatened development of tilapia aquaculture, while effective prevention and control methods have not yet been established. In order to understand the immunological response of tilapia to infection by Streptococcus agalactiae (S. agalactiae), this study employed Solexa/Illumina RNA-seq and digital gene expression (DGE) technology to investigate changes in the tilapia transcriptome before and after S. agalactiae infection. We obtained 82,799 unigenes (mean size: 618 bp) using de novo assembly. Unigenes were annotated by comparing against databases including Nr, Swissprot, cluster of orthologous groups of proteins, Kyoto encyclopedia of genes and genomes, and gene ontology. Combined with DGE technology, transcriptomic changes in tilapia before and after bacteria challenging were examined. A total of 774 significantly up-regulated and 625 significantly down-regulated unigenes were identified, among which 293 were mapped to 181 signaling pathways including 17 immune-related pathways involving 65 differentially expressed genes. We observed a change in the expression of six genes in the Toll-like receptor signaling pathway, and this was subsequently confirmed via quantitative real-time PCR. This comparative study of the tilapia transcriptome before and after S. agalactiae infection identified important differentially-expressed immune-related genes and signaling pathways that will provide useful insights for further analysis of the mechanisms of tilapia defense against S. agalactiae infection.

  20. Supplemental effects of mixed ingredients and rice bran on the growth performance, survival and yield of Nile tilapia, Oreochromis niloticus reared in fertilized earthen ponds.

    PubMed

    Limbu, S M; Shoko, A P; Lamtane, H A; Kishe-Machumu, M A; Joram, M C; Mbonde, A S; Mgana, H F; Mgaya, Y D

    2016-01-01

    Unaffordability of commercial feeds to semi-intensive Nile tilapia, Oreochromis niloticus farmers has led to reliance on supplemental feeding and fertilization for nutrition of their fish without a scientific basis. This study compared the growth, survival, condition factor and yield performance of O. niloticus fed on mixed ingredients (MI) and rice bran alone (RB) diets reared in fertilized earthen ponds in small scale farmers' ponds. The study also determined phytoplankton composition, biomass and abundance in the experimental ponds. Quadruplicate ponds were stocked with O. niloticus and African sharptooth catfish, Clarias gariepinus at a stocking ratio of 1:3. The initial mean weights of O. niloticus and C. gariepinus were 14.62 ± 0.61 and 20.34 ± 1.44 g respectively. The fish were fed on MI and RB diets with protein content of 184.74 and 126.06 g kg(-1) respectively for 270 days. The results showed that growth performance, survival rate and condition factor of O. niloticus were not affected by either feeding with MI or RB diet (p > 0.05). Moreover, there were no significant differences obtained in phytoplankton biomass and abundance in O. niloticus ponds fed on the two diets (p > 0.05). Furthermore, feeding O. niloticus either on MI or RB diet did not affect the net and gross fish yields (p > 0.05). The study revealed that the use of either MI or RB diet does not significantly affect the performance of O. niloticus cultured in semi-intensive earthen ponds where natural food organisms are an integral part of the culture system. Rice bran could be used for semi-intensive culture of O. niloticus in fertilized ponds to boost the production based on its availability and low cost.

  1. Characterization and expression analysis of the transferrin gene in Nile tilapia (Oreochromis niloticus) and its upregulation in response to Streptococcus agalactiae infection.

    PubMed

    Poochai, Watsida; Choowongkomon, Kiattawee; Srisapoome, Prapansak; Unajak, Sasimanas; Areechon, Nontawith

    2014-10-01

    In this study, full-length tilapia transferrin (OnTF) isolated from liver cDNA of Nile tilapia (Oreochromis niloticus) was found to have an open reading frame of 2,091-bp encoding 696 amino acid residues. Two additional amino acids: Gly(369) and Gly(370) were observed compared with the reported Nile tilapia transferrin protein sequence. Pre-mature protein has a predicted molecular weight of 78.2 kDa, while mature protein is 73.28 kDa in size. Comparative sequence analysis with transferrin from other species revealed two major putative iron-binding domains designated as the N-lobe and the C-lobe in accordance with the transferrin protein characteristics. The predicted tertiary structure of tilapia transferrin confirmed the presence of iron and anion-binding sites on both lobes that are conserved among transferrins from other species. Quantitative real-time PCR analysis showed significantly higher expression of tilapia transferrin gene in liver than in other tissues (p < 0.05). Transferrin expression in tilapia experimentally infected with 10(6) and 10(8) colony-forming units mL(-1) of Streptococcus agalactiae was significantly upregulated at 24 and 12 h post-infection (hpi), respectively, and decreased afterward. Iron-deficiency in serum of bacterially infected fish was detected at 48 and 24 hpi, respectively. The expression pattern of the transferrin gene and the iron levels of infected tilapia in this study were consistent with the function of transferrin in innate immunity.

  2. Echinacea purpurea and Allium sativum as immunostimulants in fish culture using Nile tilapia (Oreochromis niloticus).

    PubMed

    Aly, S M; Mohamed, M F

    2010-10-01

    The study was conducted to evaluate the efficiency of echinacea (E) and garlic (G) supplemented diets as immunostimulant for tilapia (Oreochromis niloticus). Seven treatments were designed including a control (C). Fish were fed on 35% protein diet at a rate of 3% body weight per day. Echinacea (1.0 ppt) and garlic (3%) were incorporated in the feed, which was administered for periods of 1, 2 and 3 months (summer season), followed by basal diet for 4 more months (winter season). Neutrophil adherence and haematocrit values increased in both supplemented groups with prolonging period of application. The neutrophils adherence was significantly increased in all treatments except group administered echinacea for 1 month. The lymphocytic counts were significantly (p < 0.004) elevated that resulted in a significant increase in the total leucocytic count in groups administered echinacea for 1 and 2 months when compared with the control and/or other treatments. The gain in the body weight and specific growth rate was significantly increased in all supplemented groups (p < 0.004) during summer, but remained without any significant increase after winter. The survival rate was significantly high (>85%) in all the supplemented groups. The percentage of protection, after challenge infection using pathogenic Aeromonas hydrophila was the highest in groups supplemented with echinacea and garlic for 3 months after summer and winter seasons. It could be concluded that echinacea and garlic improve the gain in body weight, survival rate and resistance against challenge infection. Both compounds showed extended effects after withdrawal and improved resistance to cold stress during the winter season. However, a full commercial cost benefit analysis is necessary before recommending their application in aquaculture. © 2010 Blackwell Verlag GmbH.

  3. Biodegradation of 17alpha-methyltestosterone and isolation of MT-degrading bacterium from sediment of Nile tilapia masculinization pond.

    PubMed

    Homklin, Supreeda; Wattanodorn, Theerachit; Ong, Say Kee; Limpiyakorn, Tawan

    2009-01-01

    The fast growing and highly tolerant fish Nile tilapia is one of the most commonly raised fish in the aquaculture industry. To produce an all-male population, a common practice is to feed the Nile tilapia fry with 17alpha-methyltestosterone (MT)-impregnated food. Uneaten fish food with MT may accumulate in the masculinization ponds and be released into the receiving waters. Not much is known about the fate of MT in the fish farms and in the receiving streams. The objective of this study is to investigate the biodegradation of MT under aerobic condition and to isolate responsible microorganisms. Aerobic biodegradation tests were conducted with MT concentrations of 0.3, 1.0, 5.0, 7.0, and 10.0 mg/L using sediment from the masculinization pond as microbial seed. The results suggested that MT is biodegradable. Lag phase was not observed in all cases. With initial concentrations of 0.3, 1.0, 5.0, 7.0, and 10.0 mg/l, the first-order degradation rates were 0.52, 0.23, 0.17, 0.13 and 0.10 day(-1), respectively. Degradation rates were found to decrease with an increase in the initial MT concentration. Analysis of 16S rRNA gene sequences of a strain isolated from the sediment indicated that the strain was highly similar to Pimelobacter simplex strain S151 (100%) which is in the genus Nocardioidaceae. Using this strain, MT is degraded with a first-order degradation rate of 0.044 h(-1) excluding the lag phase. This is the first work reporting biodegradation of MT and isolation of MT-degrading bacterium from environment.

  4. Molecular characterization of Galectin-8 from Nile tilapia (Oreochromis niloticus Linn.) and its response to bacterial infection.

    PubMed

    Unajak, Sasimanas; Pholmanee, Nutthida; Songtawee, Napat; Srikulnath, Kornsorn; Srisapoome, Prapansak; Kiataramkul, Asama; Kondo, Hidehiro; Hirono, Ikuo; Areechon, Nontawith

    2015-12-01

    Galectins belong to the family of galactoside-binding proteins and play a major role in the immune and inflammatory responses of vertebrates and invertebrates. The galectin family is divided into three subtypes based on molecular structure; prototypes, chimera types, and tandem-repeated types. We isolated and characterized the cDNA of galectin-8 (OnGal-8) in Nile tilapia (Oreochromis niloticus). OnGal-8 consisted of a 966 bp open reading frame (ORF) that encoded a 321 amino acid protein (43.47 kDa). Homology and phylogenetic tree analysis suggested the protein was clustered with galectin-8s from other animal species and shared at least 56.8% identity with salmon galectin-8. Structurally, the amino acid sequence included two distinct N- and C- terminus carbohydrate recognition domains (CRDs) of 135 and 133 amino acids, respectively, that were connected by a 39 amino acid polypeptide linker. The N- and C-CRDs contained two conserved WG-E-I and WG-E-T motifs, suggesting they have an important role in mediating the specific interactions between OnGal-8 and saccharide moieties such as β-galactoside. The structure of OnGal-8 was characterized by a two-fold symmetric pattern of 10-and 12-stranded antiparallel ß-sheets of both N- and C-CRDs, and the peptide linker presumably formed a random coil similar to the characteristic tandem-repeat type galectin. The expression of OnGal-8 in healthy fish was highest in the skin, intestine, and brain. Experimental challenge of Nile tilapia with S. agalactiae resulted in significant up-regulation of OnGal-8in the spleen after 5 d. Our results suggest that OnGal-8 is involved in the immune response to bacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Duplication of neuropeptide Y and peptide YY in Nile tilapia Oreochromis niloticus and their roles in food intake regulation.

    PubMed

    Yan, Peipei; Jia, Jirong; Yang, Guokun; Wang, Dongfang; Sun, Caiyun; Li, Wensheng

    2017-02-01

    In vertebrates, the neuropeptide Y (NPY) family peptides have been recognized as key players in food intake regulation. NPY centrally promotes feeding, while peptide YY (PYY) and pancreatic polypeptide (PP) mediate satiety. The teleost tetraploidization is well-known to generate duplicates of both NPY and PYY; however, the functional diversification between the duplicate genes, especially in the regulation of food intake, remains unknown. In this study, we identified the two duplicates of NPY and PYY in Nile tilapia (Oreochromis niloticus). Both NPYa and NPYb were primarily expressed in the central nervous system (CNS), but the mRNA levels of NPYb were markedly lower than those of NPYa. Hypothalamic mRNA expression of NPYa, but not NPYb, decreased after feeding and increased after 7-days of fasting. However, both NPYa and NPYb caused a significant increase in food intake after an intracranial injection of 50ng/g body weight dose. PYYb, one of the duplicates of PYY, had an extremely high expression in the foregut and midgut, whereas another form of duplicate PYYa showed only moderate expression in the CNS. Both hypothalamic PYYa and foregut PYYb mRNA expression increased after feeding and decreased after 7-days of fasting. Furthermore, the intracranial injection of PYYb decreased food intake, but PYYa had no significant effect. Our results suggested that although the mature peptides of NPYa and NPYb can both stimulate food intake, NPYa is the main endogenous functional NPY for feeding regulation. A functional division has been identified in the duplicates of PYY, which deems PYYb as a gut-derived anorexigenic peptide and PYYa as a CNS-specific PYY in Nile tilapia. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Munang’andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-01-01

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy. PMID:27983591

  7. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Munang'andu, Hetron Mweemba; Paul, Joydeb; Evensen, Øystein

    2016-12-13

    Streptococcus agalactiae is an emerging infectious disease adversely affecting Nile tilapia (Niloticus oreochromis) production in aquaculture. Research carried out in the last decade has focused on developing protective vaccines using different strategies, although no review has been carried out to evaluate the efficacy of these strategies. The purpose of this review is to provide a synopsis of vaccination strategies and antigen delivery systems currently used for S. agalactiae vaccines in tilapia. Furthermore, as shown herein, current vaccine designs include the use of replicative antigen delivery systems, such as attenuated virulent strains, heterologous vectors and DNA vaccines, while non-replicative vaccines include the inactivated whole cell (IWC) and subunit vaccines encoding different S. agalactiae immunogenic proteins. Intraperitoneal vaccination is the most widely used immunization strategy, although immersion, spray and oral vaccines have also been tried with variable success. Vaccine efficacy is mostly evaluated by use of the intraperitoneal challenge model aimed at evaluating the relative percent survival (RPS) of vaccinated fish. The major limitation with this approach is that it lacks the ability to elucidate the mechanism of vaccine protection at portals of bacterial entry in mucosal organs and prevention of pathology in target organs. Despite this, indications are that the correlates of vaccine protection can be established based on antibody responses and antigen dose, although these parameters require optimization before they can become an integral part of routine vaccine production. Nevertheless, this review shows that different approaches can be used to produce protective vaccines against S. agalactiae in tilapia although there is a need to optimize the measures of vaccine efficacy.

  8. Flow cytometric evaluation of antibiotic effects on viability and mitochondrial function of refrigerated spermatozoa of Nile tilapia

    USGS Publications Warehouse

    Segovia, M.; Jenkins, J.A.; Paniagua-Chavez, C.; Tiersch, T.R.

    2000-01-01

    Improved techniques for storage and evaluation of fish sperm would enhance breeding programs around the world. The goal of this study was to test the effect of antibiotics on refrigerated sperm from Nile tilapia (Oreochromis niloticus) by use of flow cytometry with 2 dual-staining protocols for objective assessment of sperm quality. Concentrations of 1 x 109 sperm/mL were suspended in Ringer's buffer at 318 mOsmol/kg (pH 8.0). The fluorescent stains Sybr 14 (10 ??M), propidium iodide (2.4 mM), and rhodamine 123 (0.13 ??M) were used to assess cell viability and mitochondrial function. Three concentrations of ampicillin, gentamicin, and an antibiotic/antimycotic solution were added to fresh spermatozoa. Motility estimates and flow cytometry measurements were made daily during 7 d of refrigerated storage (4 ??C). The highest concentrations of gentamicin and antibiotic/antimycotic and all 3 concentrations of ampicillin significantly reduced sperm viability. The highest of each of the 3 antibiotic concentrations significantly reduced mitochondrial function. This study demonstrates that objective sperm quality assessments can be made using flow cytometry and that addition of antibiotics at appropriate concentrations can lengthen refrigerated storage time for tilapia spermatozoa. With minor modifications, these protocols can be adapted for use with sperm from other species and with other tissue types.

  9. Does selection in a challenging environment produce Nile tilapia genotypes that can thrive in a range of production systems?

    PubMed

    Thoa, Ngo Phu; Ninh, Nguyen Huu; Knibb, Wayne; Nguyen, Nguyen Hong

    2016-02-19

    This study assessed whether selection for high growth in a challenging environment of medium salinity produces tilapia genotypes that perform well across different production environments. We estimated the genetic correlations between trait expressions in saline and freshwater using a strain of Nile tilapia selected for fast growth under salinity water of 15-20 ppt. We also estimated the heritability and genetic correlations for new traits of commercial importance (sexual maturity, feed conversion ratio, deformity and gill condition) in a full pedigree comprising 36,145 fish. The genetic correlations for the novel characters between the two environments were 0.78-0.99, suggesting that the effect of genotype by environment interaction was not biologically important. Across the environments, the heritability for body weight was moderate to high (0.32-0.62), indicating that this population will continue responding to future selection. The estimates of heritability for sexual maturity and survival were low but significant. The additive genetic components also exist for FCR, gill condition and deformity. Genetic correlations of harvest body weight with sexual maturity were positive and those between harvest body weight with FCR were negative. Our results indicate that the genetic line selected under a moderate saline water environment can be cultured successfully in freshwater systems.

  10. Effects of exercise training on carbohydrate and lipid catabolism in the swimming muscles of Nile tilapia (Oreochromis niloticus).

    PubMed

    Li, D; Wei, X L; Lin, X T; Xu, Z N; Mu, X P

    2015-10-01

    This study aims to determine the effects of exercise training on carbohydrate and lipid catabolism in the swimming muscles of Nile tilapia (Oreochromis niloticus) by measuring the levels of related enzymes, lipids and free fatty acids. We designed one control group and two training groups of fish that were exercised at different training intensities [0, 1 and 1.5 body lengths per second (bl/s)]. The fish in the experimental groups were trained for 12 h/day for 4 weeks. Compared with the control group, the 1 and 1.5 bl/s groups showed significantly increased hexokinase and pyruvate kinase activities in red muscle (p < 0.05). In white muscle, pyruvate kinase activity was significantly higher in the 1.5 bl/s group than in the control group (p < 0.05), and hexokinase activity did not significantly differ between the groups. The activities of hormone-sensitive lipase and carnitine palmitoyltransferase I in both muscle types were significantly lower in the training groups than in the control group (p < 0.05). The plasma-free fatty acid level decreased (p < 0.05), while the lipid percentages increased in red muscle (p < 0.05) after exercise training. These findings clearly indicated that with exercise training, glycolysis increased and lipid oxidation decreased in the swimming muscle of tilapia. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.

  11. Hepatic antioxidant enzymes SOD and CAT of Nile tilapia (Oreochromis niloticus) in response to pesticide methomyl and recovery pattern.

    PubMed

    Meng, Shun Long; Chen, Jia Zhang; Xu, Pao; Qu, Jian Hong; Fan, Li Min; Song, Chao; Qiu, Li Ping

    2014-04-01

    Hepatic antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) of Nile tilapia in response to pesticide methomyl and recovery pattern were researched by exposing tilapia to sub-lethal methomyl concentrations of 0, 0.2, 2, 20 and 200 μg/L for 30 days, and then transferred to methomyl-free water for 18 days. Hepatic SOD and CAT were measured at 10 min (day 0), 6, 12, 18, 24 and 30 days after starting the experiment and at 18 days after transferring to methomyl-free water. The results showed hepatic SOD and CAT activities in 2, 20 and 200 μg/L groups were affected significantly, however, that in 0.2 μg/L group didn't change significantly compared to control during 30-day exposure period. Thus it would appear the 0.2 μg/L methomyl might be considered the no observed adverse effect level. Recovery data showed that, for SOD, the effects produced by lower concentration of methomyl 2 μg/L were reversible but not at concentrations higher than 20 μg/L, however, for CAT, the effects produced by all the concentrations were reversible.

  12. Hydroyeast Aquaculture® as a reproductive enhancer agent for the adult Nile tilapia (Oreochromis niloticus Linnaeus, 1758).

    PubMed

    Mehrim, Ahmed I; Khalil, Fathy F; Hassan, Montaha E

    2015-04-01

    Tilapias are becoming increasingly popular culture fish because of their superior culture adaptability. In recent years, there has been a great interest in the use of probiotics in fish aquaculture. The objectives of the present study were to evaluate the effect of dietary graded levels (0, 5, 10, and 15 g/kg commercial diet, referred to treatments numbers T1, T2, T3, and T4, for males and T5, T6, T7, and T8 treatments for females) of a new probiotic Hydroyeast Aquaculture(®) on hematological and biochemical parameters, serum sex hormones, and the reproductive efficiency parameters of the adult Nile tilapia Oreochromis niloticus for 8 weeks. Results revealed that high levels of probiotics diet, 15 g (T4, ♂) and 10 g (T7, ♀) probiotic/kg diet, significantly (P ≤ 0.05) enhanced the physiological responses (hematological as well as serum biochemical parameters) together with, reproductive performances (sex hormones, testes and sperm quality parameters, absolute and relative fecundity, and ovarian measurements). Therefore, it could be conclude that Hydroyeast Aquaculture(®) is useful at levels of 15 g (T4) and 10 g (T7)/kg diet in improving the reproductive efficiency of adult O. niloticus males and females, respectively. Thus, the use of Hydroyeast Aquaculture(®) may be economically important for fish hatcheries.

  13. Cichlidogyrus sclerosus (Monogenea: Ancyrocephalinae) and its host, the Nile tilapia (Oreochromis niloticus), as bioindicators of chemical pollution.

    PubMed

    Sanchez-Ramirez, Claudia; Vidal-Martinez, Victor M; Aguirre-Macedo, Maria L; Rodriguez-Canul, Rossanna P; Gold-Bouchot, Gerardo; Sures, Bernd

    2007-10-01

    Experimental results showed that the gill monogenean Cichlidogyrus sclerosus and its host, the Nile tilapia Oreochromis niloticus, exhibited significant numerical and physiological responses after exposure to sediments polluted with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and heavy metals in comparison with control fishes. After 15 days of exposure, C. sclerosus abundance significantly increased in treatments with low to fairly high sediment pollutant concentrations, but declined at high sediment pollutant concentrations. Hypertrophy and hyperplasia in secondary gill lamellae and the spleen melanomacrophage centers were significantly higher at extremely high sediment pollutant concentrations compared with the controls. Spleen lymphocyte and monocyte counts were significantly lower at extremely high sediment pollutant concentrations and were significantly correlated with high fluorescent aromatic compound concentrations measured as PAH exposure indicators. A multivariate redundancy analysis showed significant statistical association between sediment pollutant concentration, C. sclerosus abundance, and tilapia physiological variables. The polluted sediments negatively affected monogenean abundance and induced immunosuppression in hosts, consequently increasing histological damage in hosts and allowing persistent C. sclerosus infection. This study documents evidence suggesting that C. sclerosus and its host are indeed excellent models to test environmental quality in tropical freshwater ecosystems.

  14. Does selection in a challenging environment produce Nile tilapia genotypes that can thrive in a range of production systems?

    PubMed Central

    Thoa, Ngo Phu; Ninh, Nguyen Huu; Knibb, Wayne; Nguyen, Nguyen Hong

    2016-01-01

    This study assessed whether selection for high growth in a challenging environment of medium salinity produces tilapia genotypes that perform well across different production environments. We estimated the genetic correlations between trait expressions in saline and freshwater using a strain of Nile tilapia selected for fast growth under salinity water of 15–20 ppt. We also estimated the heritability and genetic correlations for new traits of commercial importance (sexual maturity, feed conversion ratio, deformity and gill condition) in a full pedigree comprising 36,145 fish. The genetic correlations for the novel characters between the two environments were 0.78–0.99, suggesting that the effect of genotype by environment interaction was not biologically important. Across the environments, the heritability for body weight was moderate to high (0.32–0.62), indicating that this population will continue responding to future selection. The estimates of heritability for sexual maturity and survival were low but significant. The additive genetic components also exist for FCR, gill condition and deformity. Genetic correlations of harvest body weight with sexual maturity were positive and those between harvest body weight with FCR were negative. Our results indicate that the genetic line selected under a moderate saline water environment can be cultured successfully in freshwater systems. PMID:26892814

  15. Identification and characterization of microRNAs in ovary and testis of Nile tilapia (Oreochromis niloticus) by using solexa sequencing technology.

    PubMed

    Xiao, Jun; Zhong, Huan; Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction.

  16. Identification and Characterization of MicroRNAs in Ovary and Testis of Nile Tilapia (Oreochromis niloticus) by Using Solexa Sequencing Technology

    PubMed Central

    Zhou, Yi; Yu, Fan; Gao, Yun; Luo, Yongju; Tang, Zhanyang; Guo, Zhongbao; Guo, Enyan; Gan, Xi; Zhang, Ming; Zhang, Yaping

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs which play important roles in the regulation of gene expression by cleaving or inhibiting the translation of target gene transcripts. Thereinto, some specific miRNAs show regulatory activities in gonad development via translational control. In order to further understand the role of miRNA-mediated posttranscriptional regulation in Nile tilapia (Oreochromis niloticus) ovary and testis, two small RNA libraries of Nile tilapia were sequenced by Solexa small RNA deep sequencing methods. A total of 9,731,431 and 8,880,497 raw reads, representing 5,407,800 and 4,396,281 unique sequences were obtained from the sexually mature ovaries and testes, respectively. After comparing the small RNA sequences with the Rfam database, 1,432,210 reads in ovaries and 984,146 reads in testes were matched to the genome sequence of Nile tilapia. Bioinformatic analysis identified 764 mature miRNA, 209 miRNA-5p and 202 miRNA-3p were found in the two libraries, of which 525 known miRNAs are both expressed in the ovary and testis of Nile tilapia. Comparison of expression profiles of the testis, miR-727, miR-129 and miR-29 families were highly expressed in tilapia ovary. Additionally, miR-132, miR-212, miR-33a and miR-135b families, showed significant higher expression in testis compared with that in ovary. Furthermore, the expression patterns of the miRNAs were analyzed in different developmental stages of gonad. The result showed different expression patterns were observed during development of testis and ovary. In addition, the identification and characterization of differentially expressed miRNAs in the ovaries and testis of Nile tilapia provides important information on the role of miRNA in the regulation of the ovarian and testicular development and function. This data will be helpful to facilitate studies on the regulation of miRNAs during teleosts reproduction. PMID:24466258

  17. Morphological re-description and phylogenetic relationship of five myxosporean species of the family Myxobolidae infecting Nile tilapia.

    PubMed

    Abdel-Gaber, Rewaida; Abdel-Ghaffar, Fathy; Maher, Sherein; El-Mallah, Al-Mahy; Al Quraishy, Saleh; Mehlhorn, Heinz

    2017-05-11

    Freshwater fish have a major economic and nutritional importance worldwide. Myxosporeans are highly dangerous parasites that infect different fish species, causing severe damage to a large number of economically important species, especially in aquaculture. We conducted a survey of myxosporean parasites infecting Nile tilapia Oreochromis niloticus (Perciformes: Cichlidae) collected from different localities along the River Nile passing through Giza province, Egypt. Out of 100 fish specimens collected, 45 were found to be naturally infected with these parasites in the region of the trunk kidney. Light microscopic examination revealed the presence of 5 distinct myxosporean species belonging to 2 different genera, viz. Myxobolus and Triangula, belonging to the family Myxobolidae; all 5 species have been previously described. Morphological characteristics, host specificity and geographical distribution, tissue tropism, and molecular analysis of the partial sequence of small subunit ribosomal DNA gene revealed that the recovered myxosporean species described herein were genetically distinct from other myxozoan species but had 95% sequence similarity to M. cerebralis. Also, phylogenetic analysis placed the present myxosporean species in the freshwater Myxobolus clade, which is a sister group of freshwater Myxobolus/Henneguya species.

  18. Isolation and molecular identification of the etiological agents of streptococcosis in Nile tilapia (Oreochromis niloticus) cultured in net cages in Lake Sentani, Papua, Indonesia.

    PubMed

    Anshary, Hilal; Kurniawan, Rio A; Sriwulan, Sriwulan; Ramli, Ramli; Baxa, Dolores V

    2014-01-01

    Infections with Streptococcus spp. were observed in Nile tilapia cultured in net cages in Lake Sentani, Papua, Indonesia. Clinical signs included exophthalmia, erratic swimming, ascites in abdominal cavity, and external hemorrhages. Four types of bacterial colonies (SK, K10, P20, and M12) were isolated from the brain, kidney, and eyes. Based on phenotypic and genetic (16S rDNA sequencing) characteristics, the isolates were identified as Streptococcus iniae (SK), Streptococcus agalactiae (K10 and P20) and Lactococcus garvieae (M12). The latter species has not been previously isolated or reported from fish streptococcosis in Indonesia. Intraperitoneal injection of healthy tilapia with the bacterial species caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post injection. Experimental infections and reisolation of the bacteria from morbid and dead fish suggest they are the causative agents of streptococcosis, which rendered high mortality among cage cultured Nile tilapia in Lake Sentani. Our results suggest the need for developing diagnostic tools for accurate identification of the agents of streptococcosis. As tilapia aquaculture continues to expand as a means of food production and livelihood in Indonesia, it becomes crucial to ensure that fish resources are monitored and protected from the adverse effects of infectious diseases.

  19. Enzymatic characterizations and activity regulations of N-acetyl-β-D-glucosaminidase from the spermary of Nile tilapia (Oreochromis niloticus).

    PubMed

    Zhang, Wei-Ni; Bai, Ding-Ping; Huang, Yi-Fan; Hu, Chong-Wei; Chen, Qing-Xi; Huang, Xiao-Hong

    2014-02-01

    N-Acetyl-β-D-glucosaminidase (NAGase) is proved to be correlated with reproduction of male animals. In this study, enzymatic characterizations of NAGase from spermary of Nile tilapia (Oreochromis niloticus) were investigated in order to further study its reproductive function in fish. Tilapia NAGase was purified to be PAGE homogeneous by the following techniques: (NH4)2SO4 fractionation (40-55%), DEAE-cellulose (DE-32) ion exchange chromatography, Sephadex G-200 gel filtration and DEAE-Sephadex (A-50). The specific activity of the purified enzyme was 4100 U/mg. The enzyme molecular weight was estimated as 118.0 kD. Kinetic studies showed that the hydrolysis of p-nitrophenyl-N-acetyl-β-D-glucosaminide (pNP-NAG) by the enzyme followed Michaelis-Menten kinetics. The Michaelis-Menten constant (Km) and maximum velocity (Vm) were determined to be 0.67 mM and 23.26 μM/min, respectively. The optimum pH and optimum temperature of the enzyme for hydrolysis of pNP-NAG was to be at pH 5.7 and 55°C, respectively. The enzyme was stable in a pH range from 3.3 to 8.1 at 37°C, and inactive at temperature above 45°C. The enzyme activity was regulated by the following ions in decreasing order: Hg(2+) > Zn(2+) > Cu(2+) > Pb(2+) > Mn(2+). The IC50 of Cu(2+), Zn(2+) and Hg(2+) was 1.23, 0.28, and 0.0027 mM, respectively. However, the ions Li(+), Na(+), K(+), Mg(2+) and Ca(2+) had almost no influence on enzyme activity. In conclusion, the enzymatic characterizations of NAGase from tilapia were special to the other animals, which were correlated with its living habit; besides, CuSO4 and ZnSO4 should used very carefully as insecticides in tilapia cultivation since they both had strong regulations on the enzyme.

  20. Two types of aromatase with different encoding genes, tissue distribution and developmental expression in Nile tilapia (Oreochromis niloticus).

    PubMed

    Chang, Xiaotian; Kobayashi, Thoru; Senthilkumaran, Balasubramanian; Kobayashi-Kajura, Hiroko; Sudhakumari, Cheni Chery; Nagahama, Yoshitaka

    2005-04-01

    We isolated a novel type of aromatase cDNA from a Nile tilapia (Oreochromis niloticus) ovary cDNA library. Because this aromatase is phylogenetically related to brain aromatase (CYP19b) of goldfish, zebrafish and sea bass, we named it tilapia CYP19b (tCYP19b). tCYP19b encodes a protein that is predicted to consist of 495 residues and have 63.8% homology with the aromatase (tCYP19a) we previously isolated from the same source. In vitro transient transfection of cultured COS7 cells demonstrated that tCYP19b codes a functional protein to catalyze estrogen production from an androgen substrate. RT-PCR and Northern hybridization analysis showed that tCYP19b was expressed at a high level in the brain and at a low level in a wide variety of other tissues, whereas tCYP19a was mainly present in the ovary and its level significantly increased during the vitellogenic stage. RT-PCR also detected tCYP19b expression in brain and gonad tissues of both female and male tilapia during sex differentiation, but tCYP19a was only found in the ovary of the fry at that period. These results suggest that tCYP19a plays a key role in sex differentiation and ovarian development. We also isolated genes of two tilapia aromatases. Based on the location of the transcription initiation site, we predicted that there is one promoter for tCYP19a and three promoters for tCYP19b. Although the two aromatase isoforms have similar gene structures in the coding region, we found that the binding regions of SF-1/Ad4 BP region, WT1-KTS and SRY, which are sex-determining factors in mammals, are present in the 5' flank region of tCYP19a but not tCYP19b. A similar situation is present in promoters of zebrafish and goldfish aromatase isoforms. This data indicates that CYP19a plays a decisive role in sex differentiation of those species. The unique presence of the ERE motif in the tCYP19b promoter and the high expression of tCYP19b in the brain support that CYP19b is mainly involved in estrogen-mediated neural

  1. Gene transfer and mutagenesis mediated by Sleeping Beauty transposon in Nile tilapia (Oreochromis niloticus).

    PubMed

    He, Xiaozhen; Li, Jie; Long, Yong; Song, Guili; Zhou, Peiyong; Liu, Qiuxiang; Zhu, Zuoyan; Cui, Zongbin

    2013-10-01

    The success of gene transfer has been demonstrated in many of vertebrate species, whereas the efficiency of producing transgenic animals remains pretty low due to the random integration of foreign genes into a recipient genome. The Sleeping Beauty (SB) transposon is able to improve the efficiency of gene transfer in zebrafish and mouse, but its activity in tilapia (Oreochromis niloticus) has yet to be characterized. Herein, we demonstrate the potential of using the SB transposon system as an effective tool for gene transfer and insertional mutagenesis in tilapia. A transgenic construct pT2/tiHsp70-SB11 was generated by subcloning the promoter of tilapia heat shock protein 70 (tiHsp70) gene, the SB11 transposase gene and the carp β-actin gene polyadenylation signal into the second generation of SB transposon. Transgenic tilapia was produced by microinjection of this construct with in vitro synthesized capped SB11 mRNA. SB11 transposon was detected in 28.89 % of founders, 12.9 % of F1 and 43.75 % of F2. Analysis of genomic sequences flanking integrated transposons indicates that this transgenic tilapia line carries two copies of SB transposon, which landed into two different endogenous genes. Induced expression of SB11 gene after heat shock was detected using reverse transcription PCR in F2 transgenic individuals. In addition, the Cre/loxP system was introduced to delete the SB11 cassette for stabilization of gene interruption and bio-safety. These findings suggest that the SB transposon system is active and can be used for efficient gene transfer and insertional mutagenesis in tilapia.

  2. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-01-01

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts. PMID:26907269

  3. Genome-Wide Identification and Transcriptome-Based Expression Profiling of the Sox Gene Family in the Nile Tilapia (Oreochromis niloticus).

    PubMed

    Wei, Ling; Yang, Chao; Tao, Wenjing; Wang, Deshou

    2016-02-23

    The Sox transcription factor family is characterized with the presence of a Sry-related high-mobility group (HMG) box and plays important roles in various biological processes in animals, including sex determination and differentiation, and the development of multiple organs. In this study, 27 Sox genes were identified in the genome of the Nile tilapia (Oreochromis niloticus), and were classified into seven groups. The members of each group of the tilapia Sox genes exhibited a relatively conserved exon-intron structure. Comparative analysis showed that the Sox gene family has undergone an expansion in tilapia and other teleost fishes following their whole genome duplication, and group K only exists in teleosts. Transcriptome-based analysis demonstrated that most of the tilapia Sox genes presented stage-specific and/or sex-dimorphic expressions during gonadal development, and six of the group B Sox genes were specifically expressed in the adult brain. Our results provide a better understanding of gene structure and spatio-temporal expression of the Sox gene family in tilapia, and will be useful for further deciphering the roles of the Sox genes during sex determination and gonadal development in teleosts.

  4. The Fish Immune System, with Particular Emphasis on Nile Tilapia (Oreochromis niloticus)

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the immune system is important for a better understanding of disease resistance mechanisms and the development of vaccine strategies. This understanding is also relevant in the control of infectious diseases under intensive tilapia farming. The immune system first recognizes the patho...

  5. The use of nile tilapia (Oreochromis niloticus) cultivation wastewater for the production of romaine lettuce (Lactuca sativa L. var. longifolia) in water recirculation system

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Wahyuningsih, Sri; Wardiatno, Yusli

    2016-05-01

    In the recirculation aquaponic system (RAS), fish farming waste was utilized as a nutrient for plant, minimizing the water need, reducing the waste disposal into the environment, and producing the fish and plant as well. The study aimed to examine the growth of romaine lettuce (Lactuca sativa L. var. Longifolia) in aquaponic system without the addition of artificial nutrient. The nutrient relies solely on wastewater of nile tilapia (Oreochromis niloticus) cultivation circulated continuously on the aquaponic system. The results showed that tilapia weight reached 48.49 ± 3.92 g of T3 (tilapia, romaine lettuce, and inoculated bacteria), followed by T2 (tilapia and romaine lettuce) and T1 (tilapia) of 47.80 ± 1.97 and 45.89 ± 1.10 g after 35 days of experiment. Tilapia best performance in terms of growth and production occurred at T3 of 3.96 ± 0.44 g/day, 12.10 ± 0.63 %/day, 96.11 ± 1.44 % and 1.60 ± 0.07 for GR, SGR, SR, and FCR, respectively. It is also indicated by better water quality characteristic in this treatment. Romaine lettuce harvests of T2 and T3 showed no significant difference, with the final weight of 61.87 ± 5.59 and 57.74 ± 4.35 g. Overall, the integration of tilapia fish farming and romaine lettuce is potentially a promising aquaponic system for sustainable fish and horticulture plant production.

  6. Allelic variant in the anti-Müllerian hormone gene leads to autosomal and temperature-dependent sex reversal in a selected Nile tilapia line.

    PubMed

    Wessels, Stephan; Sharifi, Reza Ahmad; Luehmann, Liane Magdalena; Rueangsri, Sawichaya; Krause, Ina; Pach, Sabrina; Hoerstgen-Schwark, Gabriele; Knorr, Christoph

    2014-01-01

    Owing to the demand for sustainable sex-control protocols in aquaculture, research in tilapia sex determination is gaining momentum. The mutual influence of environmental and genetic factors hampers disentangling the complex sex determination mechanism in Nile tilapia (Oreochromis niloticus). Previous linkage analyses have demonstrated quantitative trait loci for the phenotypic sex on linkage groups 1, 3, and 23. Quantitative trait loci for temperature-dependent sex reversal similarly reside on linkage group 23. The anti-Müllerian hormone gene (amh), located in this genomic region, is important for sexual fate in higher vertebrates, and shows sexually dimorphic expression in Nile tilapia. Therefore this study aimed at detecting allelic variants and marker-sex associations in the amh gene. Sequencing identified six allelic variants. A significant effect on the phenotypic sex for SNP ss831884014 (p<0.0017) was found by stepwise logistic regression. The remaining variants were not significantly associated. Functional annotation of SNP ss831884014 revealed a non-synonymous amino acid substitution in the amh protein. Consequently, a fluorescence resonance energy transfer (FRET) based genotyping assay was developed and validated with a representative sample of fish. A logistic linear model confirmed a highly significant effect of the treatment and genotype on the phenotypic sex, but not for the interaction term (treatment: p<0.0001; genotype: p<0.0025). An additive genetic model proved a linear allele substitution effect of 12% in individuals from controls and groups treated at high temperature, respectively. Moreover, the effect of the genotype on the male proportion was significantly higher in groups treated at high temperature, giving 31% more males on average of the three genotypes. In addition, the groups treated at high temperature showed a positive dominance deviation (+11.4% males). In summary, marker-assisted selection for amh variant ss831884014 seems to be

  7. Are Tilapia Infected with Gyrodactylus More Susceptible to Streptococcus?

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae and Gyrodactylus niloticus are two common pathogens of cultured Nile tilapia, Oreochromis niloticus. We studied concurrent infection of tilapia by G. niloticus and S. iniae and evaluated whether parasitism in tilapia with Gyrodactylus increased susceptibility and mortality follo...

  8. Β-defensin in Nile tilapia (Oreochromis niloticus): Sequence, tissue expression, and anti-bacterial activity of synthetic peptides.

    PubMed

    Dong, Jun-Jian; Wu, Fang; Ye, Xing; Sun, Cheng-Fei; Tian, Yuan-Yuan; Lu, Mai-Xin; Zhang, Rui; Chen, Zhi-Hang

    2015-07-15

    Beta-defensins (β-defensins) are small cationic amphiphilic peptides that are widely distributed in plants, insects, and vertebrates, and are important for their antimicrobial properties. In this study, the β-defensin (Onβ-defensin) gene of the Nile tilapia (Oreochromis niloticus) was cloned from spleen tissue. Onβ-defensin has a genomic DNA sequence of 674 bp and produces a cDNA of 454 bp. Sequence alignments showed that Onβ-defensin contains three exons and two introns. Sequence analysis of the cDNA identified an open reading frame of 201 bp, encoding 66 amino acids. Bioinformatic analysis showed that Onβ-defensin encodes a cytoplasmic protein molecule containing a signal peptide. The deduced amino acid sequence of this peptide contains six conserved cysteine residues and two conserved glycine residues, and shows 81.82% and 78.33% sequence similarities with β-defensin-1 of fugu (Takifugu rubripes) and rainbow trout (Oncorhynchus mykiss), respectively. Real-time quantitative PCR showed that the level of Onβ-defensin expression was highest in the skin (307.1-fold), followed by the spleen (77.3-fold), kidney (17.8-fold), and muscle (16.5-fold) compared to controls. By contrast, low levels of expression were found in the liver, heart, intestine, stomach, and gill (<3.0-fold). Artificial infection of tilapia with Streptococcus agalactiae (group B streptococcus [GBS] strain) resulted in a significantly upregulated expression of Onβ-defensin in the skin, muscle, kidney, and gill. In vitro antimicrobial experiments showed that a synthetic Onβ-defensin polypeptide had a certain degree of inhibitory effect on the growth of Escherichia coli DH5α and S. agalactiae. The results indicate that Onβ-defensin plays a role in immune responses that suppress or kill pathogens.

  9. The influence of stress on thyroid hormone production and peripheral deiodination in the Nile tilapia (Oreochromis niloticus).

    PubMed

    Walpita, Chaminda N; Grommen, Sylvia V H; Darras, Veerle M; Van der Geyten, Serge

    2007-01-01

    The existence of an interaction between the adrenal/interrenal axis and the thyroidal axis has since long been established in vertebrates, including fish. However, in contrast to mammals, birds and amphibians, no effort was made in fish to expand these studies beyond the level of measuring plasma thyroid hormones. We therefore set out to examine the acute effects of a single dose of dexamethasone (DEX) on plasma thyroxine (T(4)) and 3,5,3'-triiodothyronine (T(3)) levels, as well as on the activity and mRNA expression of the different iodothyronine deiodinases in liver, gills, kidney and brain in Nile tilapia. To take into account the effect of handling stress, this treatment was compared both to a non-treated and to a saline injected group. In general, the observed changes were acute (3 and 6h) while values had returned to control levels by 24h post-injection. Only DEX administration caused an acute drop in circulating T(3) levels compared to non-treated animals, while none of the treatments affected plasma T(4) levels. This indicates that the DEX induced decrease in plasma T(3) levels was not due to a lowered thyroidal hormone production and secretion. DEX injection provoked a decrease in peripheral T(3) production capacity via a decrease in hepatic outer ring deiodination activity (both D1 and D2), whereas T(3) clearance increased by induction of the inner ring deiodinating D3 pathway in liver and in gills. Deiodination activities in kidney and brain were not affected. Effects of saline injection were only observed in liver, where D1 activity decreased and D3 activity increased as in the DEX group, but to a lesser extent. Real-time PCR showed that the changes in hepatic D3 were clearly regulated at the pretranslational level, while this was not confirmed for the other changes. Our results show that both handling stress and DEX injection acutely disturb peripheral deiodination activity in Nile tilapia. However, the effects of the long acting glucocorticoid

  10. Francisella noatunensis subsp. orientalis pathogenesis analyzed by experimental immersion challenge in Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Soto, Esteban; Kidd, Scott; Mendez, Susan; Marancik, David; Revan, Floyd; Hiltchie, David; Camus, Alvin

    2013-05-31

    Francisella noatunensis subsp. orientalis (Fno) (syn. F. asiatica) is an emergent warmwater fish pathogen and the causative agent of francisellosis in tilapia (Oreochromis sp). To study the pathogenesis of this bacterium, tilapia fingerlings were experimentally infected by immersion challenge with wild type (WT) Fno and the distribution of bacteria to multiple organs, as well as associated lesion development, investigated after 3, 24, 48, 96, and 192h by real-time PCR and histopathological examination. Surface mucus collected 3h post-infection contained the highest number of Fno genome equivalents (GE). After 96h, marked increases of WT Fno GE were detected in spleen, anterior kidney, posterior kidney, gill, heart, liver, brain, gonad, and the gastrointestinal tract. Increases in bacterial GE also corresponded to the appearance, size and number of granulomas typical of francisellosis, predominantly in the spleen and anterior and posterior kidney segments. A simultaneous comparison was also made in tilapia challenged with an attenuated Fno strain containing a mutation in the intracellular growth locus C (iglC) gene, essential to intracellular survival. Compared to the WT, the mutant iglC strain was present in most tissues in similar numbers prior to 48h post-challenge. While the mutant did not replicate significantly or produce lesions in any tissue, it persisted for up to 192h. These findings provide insight into the pathophysiology of francisellosis in tilapia, which may also prove useful as a model for the study of mammalian tularemia, and advance our understanding of the utility of the ΔiglC mutant as a potential vaccine candidate.

  11. Tilapia show immunization response against Ich

    USDA-ARS?s Scientific Manuscript database

    This study compares the immune response of Nile tilapia and red tilapia against parasite Ichthyophthirius multifiliis (Ich) using a cohabitation challenge model. Both Nile and red tilapia showed strong immune response post immunization with live Ich theronts by IP injection or immersion. Blood serum...

  12. Linkage and Physical Mapping of Sex Region on LG23 of Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Eshel, O.; Shirak, A.; Weller, J. I.; Hulata, G.; Ron, M.

    2012-01-01

    Evidence supports that sex determination (SD) in tilapia is controlled by major genetic factors that may interact with minor genetic as well as environmental factors, thus implying that SD should be analyzed as a quantitative trait. Quantitative trait loci (QTL) for SD in Oreochromis niloticus were previously detected on linkage groups (LG) 1 and 23. Twenty-one short single repeats (SSR) of >12 TGs and one single nucleotide polymorphism were identified using the unpublished tilapia genome sequence on LG23. All markers showed two segregating alleles in a mapping family that was obtained by a cross between O. niloticus male (XY) and sex-reversed female (ΔXY) yielding 29 females (XX) and 61 males (XY and YY). Interval mapping analysis mapped the QTL peak between SSR markers ARO172 and ARO177 with a maximum F value of 78.7 (P < 7.6 × 10−14). Twelve adjacent markers found in this region were homozygous in females and either homozygous for the alternative allele or heterozygous in males. This segment was defined as the sex region (SR). The SR encompasses 1.5 Mbp on a single tilapia scaffold (no. 101) harboring 51 annotated genes. Among 10 candidate genes for SD that were tested for gene expression, anti-Müllerian hormone (Amh), which is located in the center of the SR, showed the highest overexpression in male vs. female embryos at 3 to 7 days postfertilization. PMID:22384380

  13. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México.

    PubMed

    Paredes-Trujillo, Amelia; Velázquez-Abunader, Iván; Torres-Irineo, Edgar; Romero, David; Vidal-Martínez, Víctor Manuel

    2016-02-03

    In Yucatán State, southern México, as in many other parts of the world where tilapia has been introduced for aquaculture, the deficient application of management measures has led to the establishment of non-native parasites. The aims of this study were to describe the geographical distribution of protozoan and helminth parasites of farmed Nile tilapia Oreochromis niloticus (L.) throughout the Yucatán and to examine the potential statistical associations of the prevalence and mean abundance of these parasites with management and environmental variables. All 29 Nile tilapia farms currently operating in Yucatán were surveyed. Maps were created to describe the geographical location of the parasites infecting Nile tilapia at each farm. We evaluated the statistical associations of management and environmental variables with the mean abundance values of each parasite species using a multivariate redundancy analysis (RDA) and generalized additive models (GAM). We also used Ripley's K to determine whether there were significant clusters of the mean abundance of particular parasite species in specific regions of the Yucatán State. A total of 580 O. niloticus were examined, and 11 species of parasites were recorded. Cichlidogyrus sclerosus was the most frequent and abundant parasite at all 29 farms, whereas Gyrodactylus cichlidarum was found in 26 of the 29 farms. The RDA showed that the most important predictors were the concentration of nitrites and ammonium and the water exchange rate. The GAM showed the significant effect of the tank capacity, no use of quarantine area and no use of prophylactic treatments on the mean abundance of G. cichlidarum. The geographical distribution patterns of the mean abundance of most parasite species exhibited clustering near to the coast of Yucatán. Two groups of farms were distinguished: (i) farms with medium to high technology, where the most frequent and abundant parasite was G. cichlidarum, and (ii) farms with low technology

  14. Ameliorative effects of Rosmarinus officinalis leaf extract and Vitamin C on cadmium-induced oxidative stress in Nile tilapia Oreochromis niloticus.

    PubMed

    Al-Anazi, Marim Saleh; Virk, Promy; Elobeid, Mai; Siddiqui, Muzammil Iqbal

    2015-11-01

    The present studywas undertaken to assess the bioaccumulation potential of cadmium in liver, kidney, gills and muscles of freshwater fish, Nile tilapia Oreochromis niloticus and the changes in oxidative stress indices in liver and kidney with or without simultaneous treatment with waterborne vitamin C and rosemary leaf extract. Adult tilapia were divided into seven groups. Six groups were exposed to sublethal concentrations of Cd, three groups to 5 ppm, while other three to 10 ppm. Two groups from each of the Cd exposed groups were treated with Vitamin C (5ppm) and rosemary leaf extract (2.5 ppm) for a period of 21 days. Cadmium concentration in liver, kidneys and gills was significantly higher in the cadmium exposed groups being invariably high in the groups exposed to 10 ppm CdCl2.H2O.Treatment with Vitamin C and rosemary leaf extract significantly reduced cadmium concentration in comparison to non-treated Cd exposed groups. Treatment with Vitamin C and rosemary leaf extract significantly reduced oxidative stress in Cd exposed fish as evidenced from lower concentration of lipid peroxides and reduced activity of catalase and higher activity of superoxide dismutase in liver and kidney as compared to control fish. Reduction in Cd induced oxidative stress and bioaccumulation was comparable between the two antioxidant treatments, Vitamin C and rosemary leaf extract. The key findings suggest that both the antioxidants used showed ameliorative potential to reduce tissue accumulation of Cd and associated oxidative stress in fresh water fish, Nile tilapia.

  15. Survival, growth and reproduction of non-indigenous Nile tilapia, Oreochromis niloticus (Linnaeus 1758). I. Physiological capabilities in various temperatures and salinities

    USGS Publications Warehouse

    Schofield, Pamela J.; Peterson, Mark S.; Lowe, Michael R.; Brown-Peterson, Nancy J.; Slack, William T.

    2011-01-01

    The physiological tolerances of non-native fishes is an integral component of assessing potential invasive risk. Salinity and temperature are environmental variables that limit the spread of many non-native fishes. We hypothesised that combinations of temperature and salinity will interact to affect survival, growth, and reproduction of Nile tilapia, Oreochromis niloticus, introduced into Mississippi, USA. Tilapia withstood acute transfer from fresh water up to a salinity of 20 and survived gradual transfer up to 60 at typical summertime (30°C) temperatures. However, cold temperature (14°C) reduced survival of fish in saline waters ≥10 and increased the incidence of disease in freshwater controls. Although fish were able to equilibrate to saline waters in warm temperatures, reproductive parameters were reduced at salinities ≥30. These integrated responses suggest that Nile tilapia can invade coastal areas beyond their point of introduction. However, successful invasion is subject to two caveats: (1) wintertime survival depends on finding thermal refugia, and (2) reproduction is hampered in regions where salinities are ≥30. These data are vital to predicting the invasion of non-native fishes into coastal watersheds. This is particularly important given the predicted changes in coastal landscapes due to global climate change and sea-level rise.

  16. Molecular and functional characterization of peptidoglycan-recognition protein SC2 (PGRP-SC2) from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae.

    PubMed

    Gan, Zhen; Chen, Shannan; Hou, Jing; Huo, Huijun; Zhang, Xiaolin; Ruan, Baiye; Laghari, Zubair Ahmed; Li, Li; Lu, Yishan; Nie, Pin

    2016-07-01

    PGRP-SC2, the member of PGRP family, plays an important role in regulation of innate immune response. In this paper, a PGRP-SC2 gene of Nile tilapia, Oreochromis niloticus (designated as On-PGRP-SC2) was cloned and its expression pattern under the infection of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for amidase activity were detected in the deduced amino acid sequence of On-PGRP-SC2. In healthy tilapia, the On-PGRP-SC2 transcripts could be detected in all the examined tissues, with the most abundant expression in the muscle. When infected with S. agalactiae, there was a clear time-dependent expression pattern of On-PGRP-SC2 in the spleen, head kidney and brain. The assays for the amidase activity suggested that recombinant On-PGRP-SC2 protein had a Zn(2+)-dependent PGN-degrading activity. Moreover, our works showed that recombinant On-PGRP-SC2 protein could significantly reduce bacterial load in target organs attacked by S. agalactiae. These findings indicated that On-PGRP-SC2 may play important roles in the immune response to S. agalactiae in Nile tilapia.

  17. Nile Tilapia Neu3 sialidases: molecular cloning, functional characterization and expression in Oreochromis niloticus.

    PubMed

    Chigwechokha, Petros Kingstone; Komatsu, Masaharu; Itakura, Takao; Shiozaki, Kazuhiro

    2014-11-15

    Mammalian Neu3 is a ganglioside specific sialidase. Gangliosides are involved in various physiological events such as cell growth, differentiation and diseases. Significance of Neu3 and gangliosides is still unclear in aquaculture fish species. To gain more insights of fish Neu3 sialidases, molecular cloning and characterization were carried out in tilapia (Oreochromis niloticus). A tilapia genome-wide search for orthologues of human NEU1, NEU2, NEU3 and NEU4 yielded eight putative tilapia sialidases, five of which were neu3-like and designated as neu3a, neu3b, neu3c, neu3d and neu3e. Among five neu3 genes, neu3a, neu3d and neu3e were amplified by PCR from adult fish brain cDNA with consensus sequences of 1227bp, 1194bp and 1155bp, respectively. Multiple alignments showed conserved three Asp-boxes (SXDXGXTW), YRIP and VGPG motifs. The molecular weights for Neu3a, Neu3d and Neu3e were confirmed using immunoblotting analysis as 45.9kDa, 44.4kDa and 43.6kDa, respectively. Lysate from neu3 genes transfected HEK293 cells showed sialidase activity in Neu3a towards ganglioside mix optimally at pH4.6. Using pure gangliosides as substrates, highest sialidase activity for Neu3a was observed towards GD3 followed by GD1a and GM3, but not GM1. On the other hand, sialidase activities were not observed in Neu3d and Neu3e towards various sialoglycoconjugates. Indirect immunofluorescence showed that tilapia Neu3a and Neu3d are localized at the plasma membrane, while most Neu3e showed a cytosolic localization. RT-PCR analyses for neu3a showed significant expression in the brain, liver, and spleen tissues, while neu3d and neu3e showed different expression patterns. Based on these results, tilapia Neu3 exploration is an important step towards full understanding of a more comprehensive picture of Neu3 sub-family of proteins in fish.

  18. Inhibition of cadmium- induced genotoxicity and histopathological changes in Nile tilapia fish by Egyptian and Tunisian montmorillonite clay.

    PubMed

    Mahrous, Karima F; Hassan, Aziza M; Radwan, Hasnaa A; Mahmoud, M A

    2015-09-01

    Cadmium (Cd) is an important inorganic toxicant widely distributed in the environment because of its various industrial uses. The aims of the current study were to investigate the efficacy of purified Egyptian and Tunisian montmorillonite clays (EMC and TMC) to inhibit genotoxicity and histological alterations induced by cadmium chloride (CdCl2) utilizing the Nile tilapia fish as an in vivo model. Chromosomal aberrations (CAs), micronucleus (MN) frequencies and DNA fingerprinting profile were genotoxic end points and histopathological changes that were used in this investigation. Six groups of fish were treated for 2 weeks and included control group, CdCl2-treated group and groups treated with EMC or TMC alone or in combination with CdCl2. The present results revealed that, treatment of fish with CdCl2 exhibited significant increased in the number of micronucleated erythrocytes (MnRBCs), frequency of CAs and instability of genomic DNA. Treatment of EMC and TMC in combination with CdCl2 significantly reduced the frequency of MnRBCs by the percentage of 53.28% and 60.77% and the frequency of CAs by 43.91% and 52.17% respectively. As well as, normalized DNA fingerprinting profile and significantly improved histopathological picture induced by Cadmium treatment. It is worth mention that both clays have the ability to tightly bind CdCl2 and decreased its cytotoxicity and genotoxicity; however, Tunisian clay was more efficient in binding with the CdCl2 than Egyptian clay.

  19. Acanthocephalan Parasites (Acanthogyrus sp.) of Nile Tilapia (Oreochromis niloticus) as Biosink of Lead (Pb) Contamination in a Philippine Freshwater Lake.

    PubMed

    Paller, Vachel Gay V; Resurreccion, Dan Jacob B; de la Cruz, Christian Paul P; Bandal, Modesto Z

    2016-06-01

    The potential use of acanthocephalans as bioindicators of Lead (Pb) pollution in Sampaloc Lake, Laguna, Philippines was investigated. Nile tilapias (Oreochromis niloticus) were collected and Pb concentrations were determined in fish tissues and in their acanthocephalan parasites, Acanthogyrus sp. Significantly higher levels of Pb were detected in the parasites relative to the fish host tissues (p = 0.001). Bioaccumulation capacity of the parasites against fish tissues were 102, 119, and 147 times higher than the fish intestine, liver, and muscles, respectively. Pb sensitivity of the parasites was quantified by exact logistic analysis showing higher odds of Pb detection ranging from 18 to 45 folds (p = 0.001-0.009). Interestingly, infected fish showed significantly lower Pb concentration in their tissues compared to uninfected fish (p = 0.001), suggesting parasites were able to sequester Pb and served as active biosinks. The Pb levels in the parasites were also hundred folds higher (988 times) relative to the ambient waters, indicating a potential role of fish parasites as metal biosinks in aquatic ecosystems.

  20. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus

    PubMed Central

    Xu, Zhixin; Gan, Lei; Li, Tongyu; Xu, Chang; Chen, Ke; Wang, Xiaodan; Qin, Jian G.; Chen, Liqiao; Li, Erchao

    2015-01-01

    Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu). Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1), steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2), ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3), protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis—keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus. PMID:26305564

  1. First evidence for family-specific QTL for temperature-dependent sex reversal in Nile tilapia (Oreochromis niloticus).

    PubMed

    Lühmann, L M; Knorr, C; Hörstgen-Schwark, G; Wessels, S

    2012-01-01

    This study for the first time screens microsatellite markers for associations with the temperature-dependent sex of Oreochromis niloticus. Previous studies revealed markers on linkage groups (LG) 1, 3, and 23 to be linked to the phenotypic sex of Oreochromis spp. at normal rearing temperatures. Moreover, candidate genes for sex determination and differentiation have been mapped to these linkage groups. Here, 6 families of a temperature-treated genetically all-female (XX) F(1)-population were genotyped for 21 microsatellites on the 3 LGs. No population-wide QTL (quantitative trait loci) or marker trait associations could be detected. However, family-specific QTL were found on LG 1 flanked by UNH995 and UNH104, on LG 3 at the position of GM213, and on LG 23 next to GM283. Moreover, family-specific single marker associations for UNH995 and UNH104 on LG 1, GM213 on LG 3, as well as for UNH898 and GM283 on LG 23 were detected. Yet, marker trait associations could not explain the temperature-dependent sex of all fish in the respective families. The molecular cue for the temperature-dependent sex in Nile tilapia might partially coincide with allelic variants at major and minor genetic sex determining factors. Moreover, additional QTL contributing to variable liabilities towards temperature might persist on other LGs. Copyright © 2012 S. Karger AG, Basel.

  2. Transcriptome Profiling and Molecular Pathway Analysis of Genes in Association with Salinity Adaptation in Nile Tilapia Oreochromis niloticus.

    PubMed

    Xu, Zhixin; Gan, Lei; Li, Tongyu; Xu, Chang; Chen, Ke; Wang, Xiaodan; Qin, Jian G; Chen, Liqiao; Li, Erchao

    2015-01-01

    Nile tilapia Oreochromis niloticus is a freshwater fish but can tolerate a wide range of salinities. The mechanism of salinity adaptation at the molecular level was studied using RNA-Seq to explore the molecular pathways in fish exposed to 0, 8, or 16 (practical salinity unit, psu). Based on the change of gene expressions, the differential genes unions from freshwater to saline water were classified into three categories. In the constant change category (1), steroid biosynthesis, steroid hormone biosynthesis, fat digestion and absorption, complement and coagulation cascades were significantly affected by salinity indicating the pivotal roles of sterol-related pathways in response to salinity stress. In the change-then-stable category (2), ribosomes, oxidative phosphorylation, signaling pathways for peroxisome proliferator activated receptors, and fat digestion and absorption changed significantly with increasing salinity, showing sensitivity to salinity variation in the environment and a responding threshold to salinity change. In the stable-then-change category (3), protein export, protein processing in endoplasmic reticulum, tight junction, thyroid hormone synthesis, antigen processing and presentation, glycolysis/gluconeogenesis and glycosaminoglycan biosynthesis-keratan sulfate were the significantly changed pathways, suggesting that these pathways were less sensitive to salinity variation. This study reveals fundamental mechanism of the molecular response to salinity adaptation in O. niloticus, and provides a general guidance to understand saline acclimation in O. niloticus.

  3. Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination.

    PubMed

    Pasnik, David J; Evans, Joyce J; Klesius, Phillip H

    2005-09-05

    Streptococcus agalactiae is a major piscine pathogen that causes significant morbidity and mortality among numerous species of freshwater, estuarine and marine fishes. Considering the economic importance of fishes susceptible to S. agalactiae throughout the world, an efficacious S. agalactiae vaccine was developed using an extracellular product (ECP) fraction and formalin-killed whole cells of S. agalactiae. A vaccine study was conducted by intraperitoneal (i.p.) injection in Nile tilapia Oreochromis niloticus in order to determine the duration of protection and its correlation to antibodies specific for this pathogen. After 47, 90 or 180 d post-vaccination (DPV), the fish were i.p. challenged with approximately 2.0 x 10(4) S. agalactiae colony-forming units (CFU) fish(-1) to determine the duration of protective immunity. The percent survival in control fish i.p.-injected with sterile TSB was 16,16, and 4% on 47, 90 and 180 DPV, respectively, while the percent survival for the vaccinated fish was 67, 62 and 49%, respectively. The specific mean antibody concentration of the vaccinated fish was significantly higher than that of the control fish, with significant correlation between the ELISA optical density (OD) and protection. These results indicate that the specific antibody has a correlation with protection following immunization with the S. agalactiae vaccine and that the vaccine can confer protection against S. agalactiae up to 180 DPV.

  4. Effects of dietary Astragalus polysaccharides (APS) on growth performance, immunological parameters, digestive enzymes, and intestinal morphology of Nile tilapia (Oreochromis niloticus).

    PubMed

    Zahran, Eman; Risha, Engy; Abdelhamid, Fatma; Mahgoub, Hebata Allah; Ibrahim, Tarek

    2014-05-01

    This work investigated the potential immunomodulatory and growth-promoting effects of Astragalus polysaccharides (APS) in Nile tilapia (Oreochromis niloticus). The dietary supplementation with APS (1500 mg/kg of diet) caused a significant increase in growth parameters (initial and final weight, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR) and feed intake (FI), when compared to non-supplemented control basal diet. In addition, APS upregulated the phagocytic activity, the respiratory burst activity, plasma lysozyme, the bactericidal activity, superoxide dismutase (SOD), glutathione peroxidase (GPx), and amylase activity. However, it had no effect on serum nitric oxide (NO) or Malondialdehyde (MDA) levels. While APS had no effect of intestinal histology, a slight increase in the villi length was recorded. Collectively, our results indicate that dietary APS supplementation could improve the growth performance and the immune parameters of cultured tilapia fish. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Pre-Slaughter Stress Affects Ryanodine Receptor Protein Gene Expression and the Water-Holding Capacity in Fillets of the Nile Tilapia.

    PubMed

    Goes, Elenice S R; Lara, Jorge A F; Gasparino, Eliane; Del Vesco, Ana P; Goes, Marcio D; Alexandre Filho, Luiz; Ribeiro, Ricardo P

    2015-01-01

    Current study evaluated the effect of pre-slaughter stress on serum cortisol levels, pH, colorimetry, water-holding capacity (WHC) and gene expression of ryanodine receptors (RyR1 and RyR3) in the Nile tilapia. A 3x4 factorial scheme experiment was conducted comprising three densities (100, 200, 400 kg/m³) with four transportation times (60, 120, 180, and 240 minutes).Transportation times alone reduced cortisol levels up to 180 minutes, followed by increased WHC and mRNA expression, RyR1 and RyR3 (200 kg/m³ density). No effect of density x transportation time interacted on the evaluated parameters. Results provided the first evidence that pre-slaughter stress affected ryanodine gene expression receptors and, consequently, the water-holding capacity in tilapia fillets.

  6. Pre-Slaughter Stress Affects Ryanodine Receptor Protein Gene Expression and the Water-Holding Capacity in Fillets of the Nile Tilapia

    PubMed Central

    Lara, Jorge A. F.; Gasparino, Eliane; Del Vesco, Ana P.; Goes, Marcio D.; Alexandre Filho, Luiz

    2015-01-01

    Current study evaluated the effect of pre-slaughter stress on serum cortisol levels, pH, colorimetry, water-holding capacity (WHC) and gene expression of ryanodine receptors (RyR1 and RyR3) in the Nile tilapia. A 3x4 factorial scheme experiment was conducted comprising three densities (100, 200, 400 kg/m³) with four transportation times (60, 120, 180, and 240 minutes).Transportation times alone reduced cortisol levels up to 180 minutes, followed by increased WHC and mRNA expression, RyR1 and RyR3 (200 kg/m³ density). No effect of density x transportation time interacted on the evaluated parameters. Results provided the first evidence that pre-slaughter stress affected ryanodine gene expression receptors and, consequently, the water-holding capacity in tilapia fillets. PMID:26053858

  7. Effects of malachite green on the mRNA expression of detoxification-related genes in Nile tilapia (Oreochromis niloticus) and other major Chinese freshwater fishes.

    PubMed

    Li, Guangyu; Shen, Dan; Liang, Xu-Fang; He, Yan; He, Shan

    2013-03-01

    The use of malachite green (MG) in fish farming is prohibited in China due to its potentially toxicological and carcinogenic nature, but it is still illegally used in some places. The aim of this study was to investigate the time and concentration-dependent responses of xenobiotic metabolizing and detoxification-related genes in diverse fishes exposed to MG both in vivo and in vitro. Experimental fish were administered to two exposure groups of malachite green (MG) (0.10 and 0.50 mg L⁻¹) for 8 h. The hepatocytes isolated from Nile tilapia were incubated with MG (0.5, 1.0, and 2.0 mg L⁻¹) for 8 and 24 h, respectively. In vivo, exposure to 0.10 and 0.50 mg L⁻¹ MG for 8 h caused significant changes of the detoxification-related genes on the mRNA expression levels. Low-concentration (0.10 mg L⁻¹) level of MG induced significant increase on the mRNA expression level of GSTR gene in Nile tilapia and other fishes. The mRNA expression of grass carp UCP2 was significantly induced when exposed to 0.5 mg L⁻¹ MG. However, the mRNA expression levels of GSTA, CYP1A, and GPX were inhibited significantly by 0.5 mg L⁻¹ MG in Nile tilapia, grass carp, and Taiwan snakehead. In vitro, the significant increase of mRNA expression of these genes was detected after exposure to 0.5 mg L⁻¹ MG (UCP2), and 1.0 mg L⁻¹ MG (CYP1A1, GSTA, GSTR, and UCP2). The induction of hepatic CYP1A1, GSTA, GSTR, and UCP2 in response to MG suggested a potential role of fish CYP1A1, GSTA, GSTR, and UCP2 in MG metabolism.

  8. Molecular cDNA cloning and analysis of the organization and expression of the IL-1beta gene in the Nile tilapia, Oreochromis niloticus.

    PubMed

    Lee, Dae-Sim; Hong, Su Hee; Lee, Hyun-Jeong; Jun, Lyu Jin; Chung, Joon-Ki; Kim, Ki Hong; Jeong, Hyun Do

    2006-03-01

    The full-length cDNA sequence of interleukin-1beta (IL-1beta) from the Nile tilapia, Oreochromis niloticus, was determined by using PCR with primers designed from known fish IL-1beta sequences followed by elongation of the 5' and 3' ends using Rapid Amplification of cDNA Ends (RACE). The cDNA contains a 92-bp 5' untranslated region (UTR), a single open reading frame (ORF) of 732 bp that translates into a 243-amino acid molecule, a 341-bp 3' UTR with four cytokine RNA instability motifs (ATTTA), and a polyadenylation signal (AATAAA) at 15 nucleotides upstream of the poly(A) tail. The organization of the genomic IL-1beta based on the cDNA sequence appeared to be 4 introns and 5 exons. In comparison with known IL-1beta amino acid sequences, including human, catshark, trout, turbot, carp, sea bream, sea bass and goldfish, the amino acid sequence deduced from the cDNA sequence of Nile tilapia showed different levels of identity ranging from 25.32% to 66.80% and homology ranging from 41.88% to 82.19%. Although the entire cDNA sequence of Nile tilapia IL-1beta showed from 49.45% to 67.05% identity to those of other reported IL-1beta cDNAs, each exon also showed different levels of identity to the corresponding exons of other reported IL-1beta cDNAs. The highest nucleotide sequence identity for exon 1 and exons 2-5 of Nile tilapia IL-1beta was found in the corresponding exons of sea bream and sea bass, respectively. After in vitro stimulation with lipopolysaccharide (LPS), we found an increased level of IL-1beta expression in head kidney cells compared to that of unstimulated cells. However, this difference was no longer apparent after 4 h of stimulation, at which time the levels were similar in stimulated and unstimulated cells. Head kidney cells stimulated in vivo by an intraperitoneal injection of LPS showed a peak level of IL-1beta expression after 1 day and a decreased level after 3 days. At 7 days after stimulation, we were hardly able to detect IL-1beta expression.

  9. Innate immune defenses exhibit circadian rhythmicity and differential temporal sensitivity to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus).

    PubMed

    Lazado, Carlo C; Skov, Peter Vilhelm; Pedersen, Per Bovbjerg

    2016-08-01

    The present study investigated the daily dynamics of humoral immune defenses and the temporal influence in the sensitivity of these responses to a bacterial endotoxin in Nile tilapia (Oreochromis niloticus). The first experiment subjected the fish to two photoperiod conditions, 12L:12D (LD) and 0L:24D (DD), for 20 days to characterize the rhythms of humoral immunity. Serum alkaline phosphatase (ALP), lysozyme (LYZ), peroxidase (PER) and protease (PRO) exhibited significant rhythmicity under LD but not in DD. No significant rhythms were observed in esterase (ESA) and anti-protease (ANTI) in both photoperiod conditions. Fish reared under LD were subsequently subjected to DD while the group previously under DD was exposed to LD, and this carried on for 3 days before another set of samples was collected. Results revealed that the rhythms of LYZ, PER and PRO but not ALP persisted when photoperiod was changed from LD to DD. Nonetheless, immune parameters remained arrhythmic in the group subjected from DD to LD. Cluster analysis of the humoral immune responses under various light conditions revealed that each photic environment had distinct daily immunological profile. In the second experiment, fish were injected with bacterial endotoxin lipopolysaccharide (LPS) either at ZT3 (day) or at ZT15 (night) to evaluate the temporal sensitivity of humoral immunity to a pathogen-associated molecular pattern. The results demonstrated that responses to LPS were gated by the time of day. LPS significantly modulated serum ALP and ANTI activities but only when the endotoxin was administered at ZT3. Serum LYZ and PER were stimulated at both injection times but with differing response profiles. Modulated LYZ activity was persistent when injected at ZT3 but transient when LPS was applied at ZT15. The magnitude of LPS-induced PER activity was higher when the endotoxin was delivered at ZT3 versus ZT15. It was further shown that plasma cortisol was significantly elevated but only when LPS

  10. Rapid decreases in salinity, but not increases, lead to immune dysregulation in Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Choi, K; Cope, W G; Harms, C A; Law, J M

    2013-04-01

    Rapid changes in salinity, as with other environmental stressors, can have detrimental effects on fish and may trigger increased susceptibility to disease. However, the precise mechanisms of these effects are not well understood. We examined the effects of sudden increases or decreases in salinity on teleost immune function using Nile tilapia, Oreochromis niloticus (L.), as the fish model in a battery of bioassays of increasing immune system specificity. Two different salinity experiments were performed: one of increasing salinity (0 to 5, 10 and 20 g L(-1) ) and one of decreasing salinity (20 to 15, 10 and 5 g L(-1) ). Histopathology of anterior kidney, gills, gonads, intestines and liver of exposed fish was performed, but no remarkable lesions were found that were attributable to the salinity treatment regimes. The spleen was removed from each fish for analysis of cytokine expression, and peripheral blood was used for haematology, cortisol and phagocytosis assays. In the increasing salinity experiments, no significant changes were observed in any immune system assays. However, in the decreasing salinity experiments, lymphopenia, neutrophilia and monocytosis were observed in the peripheral blood without modification of the packed cell volume, plasma protein or plasma cortisol levels. Phagocytosis was increased in response to decreases in salinity from 20 g L(-1) to 15 g L(-1) , 10 g L(-1) and 5 g L(-1) , whereas phagocytic index was not significantly altered. Transforming growth factor-β (TGF-β) transcription increased during the same decreases in salinity. However, the TGF-β value at 5 g L(-1) was less than those in the 15 and 10 g L(-1) salinity treatments. Interleukin-1β (IL-1β) transcription did not significantly respond to either salinity regime. In total, acute salinity changes appeared to trigger reactive dysregulation of the immune response in tilapia, a situation which, when combined with additional co-occurring stressors such as

  11. RING Finger Protein 38 Is a Neuronal Protein in the Brain of Nile Tilapia, Oreochromis niloticus

    PubMed Central

    Cham, Kai Lin; Soga, Tomoko; Parhar, Ishwar S.

    2017-01-01

    Really interesting new gene (RING) finger protein is a type of zinc-binding motif found in a large family of functionally distinct proteins. RING finger proteins are involved in diverse cellular processes including apoptosis, DNA repair, cell cycle, signal transduction, tumour suppressor, vesicular transport, and peroxisomal biogenesis. RING finger protein 38 (RNF38) is a member of the family whose functions remain unknown. To gain insight into the putative effects of RNF38 in the central nervous system, we localised its expression. The aim of this study was to identify the neuroanatomical location(s) of rnf38 mRNA and its peptide, determine the type of RNF38-expressing cells, and measure rnf38 gene expression in the brain of male tilapia. The distributions of rnf38 mRNA and its peptide were visualised using in situ hybridisation with digoxigenin-labelled RNA antisense and immunocytochemistry, respectively. Both were identically distributed throughout the brain, including the telencephalon, preoptic area, optic tectum, hypothalamus, cerebellum, and the hindbrain. Double-labelling immunocytochemistry for RNF38 and the neuronal marker HuC/D showed that most but not all RNF38 protein was expressed in neuronal nuclei. Quantitative real-time polymerase chain reaction showed the highest level of rnf38 mRNA in the midbrain, followed by the preoptic area, cerebellum, optic tectum, telencephalon, hindbrain and hypothalamus. These findings reveal a differential spatial pattern of RNF38 in the tilapia brain, suggesting that it has potentially diverse functions related to neuronal activity. PMID:28912690

  12. Salmon testes meal as a functional feed additive in fish meal and plant-protein based diets for rainbow trout(Oncorhynchus mykiss walbaum)and nile tilapia(Oreochromis niloticus L.) fry

    USDA-ARS?s Scientific Manuscript database

    We report that salmon testes meal (TM) produced from Alaskan seafood processing byproducts is a potential protein source for aquafeed formulations. A series of feeding trials was conducted using three different fish species; including Nile tilapia, rainbow trout, and white sturgeon at their early gr...

  13. Mapping and Validation of the Major Sex-Determining Region in Nile Tilapia (Oreochromis niloticus L.) Using RAD Sequencing

    PubMed Central

    Khan, Mohd G. Q.; Taggart, John B.; Gharbi, Karim; McAndrew, Brendan J.; Penman, David J.

    2013-01-01

    Sex in Oreochromis niloticus (Nile tilapia) is principally determined by an XX/XY locus but other genetic and environmental factors also influence sex ratio. Restriction Associated DNA (RAD) sequencing was used in two families derived from crossing XY males with females from an isogenic clonal line, in order to identify Single Nucleotide Polymorphisms (SNPs) and map the sex-determining region(s). We constructed a linkage map with 3,802 SNPs, which corresponded to 3,280 informative markers, and identified a major sex-determining region on linkage group 1, explaining nearly 96% of the phenotypic variance. This sex-determining region was mapped in a 2 cM interval, corresponding to approximately 1.2 Mb in the O. niloticus draft genome. In order to validate this, a diverse family (4 families; 96 individuals in total) and population (40 broodstock individuals) test panel were genotyped for five of the SNPs showing the highest association with phenotypic sex. From the expanded data set, SNPs Oni23063 and Oni28137 showed the highest association, which persisted both in the case of family and population data. Across the entire dataset all females were found to be homozygous for these two SNPs. Males were heterozygous, with the exception of five individuals in the population and two in the family dataset. These fish possessed the homozygous genotype expected of females. Progeny sex ratios (over 95% females) from two of the males with the “female” genotype indicated that they were neomales (XX males). Sex reversal induced by elevated temperature during sexual differentiation also resulted in phenotypic males with the “female” genotype. This study narrows down the region containing the main sex-determining locus, and provides genetic markers tightly linked to this locus, with an association that persisted across the population. These markers will be of use in refining the production of genetically male O. niloticus for aquaculture. PMID:23874606

  14. Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure.

    PubMed

    Zhai, Qixiao; Yu, Leilei; Li, Tianqi; Zhu, Jiamin; Zhang, Chengcheng; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-04-01

    The heavy metal cadmium (Cd) is a hazardous pollutant that exerts various toxic effects on aquatic animals. The biomagnifying effects of this non-essential element in the food chain also pose threats to human health. In this study, the protective effect of a dietary probiotic supplementation, Lactobacillus plantarum CCFM8610, on the intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) exposed to waterborne Cd was evaluated. Two hundred fish were divided into four groups, i.e., control, probiotic-only, Cd-only and Cd-plus-probiotic. The fish were exposed to waterborne Cd at a level of 1 mg L(-1) for 4 weeks and the probiotic was administered twice daily at 10(8) CFU g(-1) in the fish diet. Waterborne Cd exposure caused a profound decline in the gut microbial diversity and marked alterations in the composition of the microbiota. Dietary supplementation with L. plantarum CCFM8610 reversed the changes in the intestinal microbiota composition in the Cd-exposed fish and reduced the abundance of Flavobacterium and Pseudomonas. Compared with the Cd-only group, the probiotic treatment significantly promoted growth performance and prevented the death of the Cd-exposed fish. L. plantarum CCFM8610 supplementation also decreased Cd accumulation and alleviated oxidative stress in the tissues, and reversed the alterations in hemato-biochemical parameters in the blood of fish. The results suggest that L. plantarum CCFM8610 can be considered a safe dietary supplement for the prevention of Cd-exposure-induced problems in aquaculture and food safety.

  15. Characterization of the POU5F1 Homologue in Nile Tilapia: From Expression Pattern to Biological Activity.

    PubMed

    Xiaohuan, Huang; Yang, Zhao; Linyan, Liu; Zhenhua, Fan; Linyan, Zhou; Zhijian, Wang; Ling, Wei; Deshou, Wang; Jing, Wei

    2016-09-15

    POU5F1 (OCT4) is a crucial transcription factor for induction and maintenance of cellular pluripotency, as well as survival of germ cells in mammals. However, the homologues of POU5F1 in teleost fish, including zebrafish and medaka, now named Pou5f3, exhibit considerable differences in expression pattern and pluripotency-maintaining activity. To what extent the POU5F1 homologues are conserved in vertebrates has been unclear. In this study, we report that the POU5F1 homologue from the Nile tilapia (Oreochromis niloticus), OnPou5f3, displays an expression pattern and biological activity somewhat different from those in zebrafish or medaka. The expression of Onpou5f3 at both mRNA and protein levels was abundant in early development embryos until blastula stages, barely detectable as proceeding, and then displayed a transiently strong expression domain in the brain region during neurula stages similar to zebrafish but not medaka. Afterward, OnPou5f3 appeared as germline-restricted (including primordial germ cells and female and male gonad germ cells) expression just like medaka. Notably, OnPou5f3 depletion through morpholino oligos caused blastula blockage or lethality and failure of survival and proliferation of blastula cell-derived cells. These findings indicate that equivalent POU5F1-like expression and activity of Pou5f3 might be conserved accompanying with species-specific expression pattern during evolution. Our study provides insight into the evolutionary conservation of the POU5F1 homologues across vertebrates.

  16. Effect of propolis ethanol extract on myostatin gene expression and muscle morphometry of Nile tilapia in net cages.

    PubMed

    Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M

    2017-03-16

    Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: <20 μm; 20-30 μm; 30-50 μm; and > 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers < 20 µm diameter were more frequent in DPRO than in DCON at all times. Fiber percentages >30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.

  17. Neurotoxic effects, molecular responses and oxidative stress biomarkers in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to verapamil.

    PubMed

    Ajima, Malachy N O; Pandey, Pramod K; Kumar, Kundan; Poojary, Nalini

    2017-06-01

    Pharmaceutical drugs and their metabolites are detected in aquatic ecosystems and have been reported to cause ecotoxicological consequences to resident aquatic organisms. The study investigated the effects of acute and long-term exposure to verapamil on activities of acetylcholinesterase and antioxidant enzymes as well as mRNA expression of stress-related genes in brain and muscle tissues of Nile tilapia, Oreochromis niloticus. The 96h LC50 of verapamil to O. niloticus was 2.29mgL(-1). Exposure to sub-lethal concentrations of verapamil (0.14, 0.29 and 0.57mgL(-1)) for period of 15, 30, 45 and 60days, led to inhibition of acetylcholinesterase activities in the brain and muscle of the fish. The activities of the oxidative enzymes such as the catalase, superoxide dismutase and glutathione peroxidase were also inhibited in both the tissues while there was an increase in the activities of glutathione-S-transferase and reduced glutathione in the muscle after 15 days at 0.29mgL(-1). Lipid peroxidation and carbonyl protein showed elevated level, indicating a positive correlation with both time and concentration. The activities of energy-related biomarker (Na(+)-K(+)-ATPase) in both the tissues were significantly inhibited (p<0.05) compared with the control. Transcription of catalase (cat), superoxide dismutase (sod) and heat shock proteins 70 (hsp70) were up-regulated in both the tissues after the study period. Prolonged exposure to sub-lethal verapamil can result in oxidative stress, up-regulation of stress-related genes and neurotoxicity in O. niloticus. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry.

    PubMed

    Homklin, Supreeda; Ong, Say Kee; Limpiyakorn, Tawan

    2012-06-30

    17α-Methyltestosterone (MT), a synthetic anabolic androgenic steroid, is widely used in aquafarming for the production of an all male fish population such as Nile tilapia. This study isolated, identified and characterized MT-degrading bacteria in the sediment and water from a masculinizing pond of Nile tilapia fry. Based on the phylogeny, physiological properties and cell morphology, the three isolated MT-degrading bacteria were related closely to Rhodococcus equi, Nocardioides aromaticivorans, and Nocardioides nitrophenolicus. Growth of the three isolated strains was found to be inhibited for MT concentrations in the range of 1.0-10mg/L. The inhibition of cell growth was found to be modeled using the Haldane's substrate inhibition model. The kinetic constants ranged from 0.13 to 0.19h(-1) for μ(max), 0.7-24.8mg/L for K(s) and 19.6-76.2mg/L for K(i). Androgenic activity using β-galactosidase assay showed that all strains degraded MT to the products with no androgenic potency.

  19. Gene delivery to Nile tilapia cells for transgenesis and the role of PI3K-c2α in angiogenesis

    PubMed Central

    Tonelli, Fernanda Maria Policarpo; Lacerda, Samyra Maria dos Santos Nassif; Procópio, Marcela Santos; Lemos, Breno Luiz Sales; de França, Luiz Renato; Resende, Rodrigo Ribeiro

    2017-01-01

    Microinjection is commonly performed to achieve fish transgenesis; however, due to difficulties associated with this technique, new strategies are being developed. Here we evaluate the potential of lentiviral particles to genetically modify Nile tilapia cells to achieve transgenesis using three different approaches: spermatogonial stem cell (SSC) genetic modification and transplantation (SC), in vivo transduction of gametes (GT), and fertilised egg transduction (ET). The SC protocol using larvae generates animals with sustained production of modified sperm (80% of animals with 77% maximum sperm fluorescence [MSF]), but is a time-consuming protocol (sexual maturity in Nile tilapia is achieved at 6 months of age). GT is a faster technique, but the modified gamete production is temporary (70% of animals with 52% MSF). ET is an easier way to obtain mosaic transgenic animals compared to microinjection of eggs, but non-site-directed integration in the fish genome can be a problem. In this study, PI3Kc2α gene disruption impaired development during the embryo stage and caused premature death. The manipulator should choose a technique based on the time available for transgenic obtainment and if this generation is required to be continuous or not. PMID:28317860

  20. Sensitivity and specificity of real-time PCR and bacteriological culture for francisellosis in farm-raised Nile tilapia (Oreochromis niloticus L.).

    PubMed

    Assis, G B N; de Oliveira, T F; Gardner, I A; Figueiredo, H C P; Leal, C A G

    2017-06-01

    Despite the worldwide occurrence of Francisella noatunensis subsp. orientalis (Fno) infection in farmed tilapia, sensitivity and specificity estimates of commonly used diagnostic tests have not been reported. This study aimed to estimate the sensitivity and specificity of bacteriological culture and qPCR to detect Fno infection. We tested 559 fish, sampled from four farms with different epidemiological scenarios: (i) healthy fish in a hatchery free of Fno; (ii) targeted sampling of diseased fish with suggestive external clinical signs of francisellosis during an outbreak; (iii) convenience sampling of diseased and clinically healthy fish during an outbreak; and (iv) sampling of healthy fish in a cage farm without a history of outbreaks, but with francisellosis reported in other farms in the same reservoir. The qPCR had higher median sensitivity (range, 48.8-99.5%) than culture (range, 1.6-74.4%). Culture had a substantially lower median sensitivity (1.6%) than qPCR (48.8%) to detect Fno in carrier tilapia (farm 4). Median specificity estimates for both tests were >99.2%. The qPCR is the superior test for use in surveillance and monitoring programmes for francisellosis in farmed Nile tilapia, but both tests have high sensitivity and specificity which make them fit for use in the diagnosis of Fno outbreaks. © 2016 John Wiley & Sons Ltd.

  1. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    PubMed

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  2. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker’s Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast

    PubMed Central

    Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang

    2015-01-01

    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker’s yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker’s yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05), and tended to improve FCR (P = 0.06) of fish compared to the control (no yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001) and density (P < 0.05) while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05) but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05), tgfβ (P < 0.05 under diet A) and il1β (P = 0.08). Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001), indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  3. Gender and sexual behavior modulate the composition of serum lipocalins in Nile tilapia (Oreochromis niloticus).

    PubMed

    Shirak, Andrey; Reicher, Shay; Uliel, Shai; Mehlman, Tevie; Shainskaya, Alla; Ron, Micha; Seroussi, Eyal

    2012-08-01

    In tilapia species, plasma lipoproteins with high electrophoretic mobility function in intra- and intergender communication. Blood samples taken at onset and peak of daily sexual activity from dominant and subordinate Oreochromis niloticus males and females were fractionated by native gel electrophoresis and the fast-migrating proteins were subjected to mass spectrometry. Mining the sequence data of the Cichlid Genome Consortium, we identified 11 proteins from the lipocalin super-family and characterized their genes' structures. Phylogenetic and structural analyses subdivided these genes into two classes: (I) 3-coding-exon apolipoproteins and (II) more complex 6-coding-exon sulfide-bond-containing lipocalins. Five apolipoproteins and PTGDSL1, TBTBP, and MSP proteins were modulated by gender and sexual behavior. PTGDSL1 protein was only observed in the plasma serum of dominant males. However, the cysteine residue in the position that is crucial for synthetase activity in mammalian prostaglandin D synthetases was not conserved in PTGDSL1 or PTGDSL2 proteins. In line with previous reports suggesting their involvement in male functions as pheromone transporters, TBTBP and MSP proteins were not detected in females at the onset of daily activity. Their increasing amount in males was concordant with the increase in apolipoproteins AFP4L, APOA4a, APOA4b, APO14kD and APOC2, which were detected exclusively in dominant males, indicating a possible role in mobilization of the energy required to maintain their social hierarchy. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter.

    PubMed

    Zhang, Lili; Sun, Chengfei; Ye, Xing; Zou, Shuming; Lu, Maixin; Liu, Zhigang; Tian, Yuanyuan

    2014-02-01

    Heat-shock proteins (Hsps), known as stress proteins and extrinsic chaperones, play important roles in the folding, translocation, and refolding/degradation of proteins. In this study, we identified four Hsps in Nile tilapia (Oreochromis niloticus), which display conserved Hsp characteristics in their predicted amino acid sequences. Further analyses on the structures, homology, and phylogenetics revealed that the four Hsps belong to Hsp70 family. One of them does not contain introns and is named Hsp70, while all the other three contain introns and are named Hsc70-1, Hsc70-2, and Hsc70-3. Expressions of the four Hsp proteins were observed in all examined tissues. Six hours after infection of Streptococcus agalactiae in Nile tilapia, the expression of Hsp70 was significantly increased in the liver, head kidney, spleen and gill, while Hsc70s' expression was unchanged in all examined tissues except the head kidney that showed significantly reduced expression of both Hsc70-2 and Hsc70-3. These results suggest that Hsp70 may participate in the defense against S. agalactiae infection. We then isolated the promoter of Hsp70 gene and inserted it into the donor plasmid of Tgf2 transposon system containing green fluorescent protein (GFP) gene. The plasmid was microinjected into zebrafish embryos, where the expression of GFP was induced by heat shock, S. agalactiae immersion challenge, indicating that the isolated Hsp70 promoter has transcriptional activity and is inducible by both heat shock and bacterial challenge. This promoter may facilitate the future construction of disease-resistant transgenic fish. The work also contributes to the further study of immune response of tilapia after bacterial infection.

  5. Genome-wide identification, evolution of chromobox family genes and their expression in Nile tilapia.

    PubMed

    Liu, Xing-Yong; Zhang, Xian-Bo; Li, Ming-Hui; Zheng, Shu-Qing; Liu, Zhi-Long; Cheng, Yun-Ying; Wang, De-Shou

    2017-01-01

    Chromobox (Cbx) family proteins are transcriptional repressors that involved in epigenetic and developmental processes. In this study, comprehensive analyses of Cbxs were performed using available genome databases from representative animal species. The Cbx family were originated from one Polycomb (Pc) gene like the yeast Pc, which duplicated into two and gave rise to the Pc and the Heterochromatin protein 1 (Hp1) identified in invertebrates from protozoon to lancelet. Rapid expansion of Cbx family members was observed in vertebrates as ~8 (5 Pc and 3 Hp1) were identified in spotted gar, coelacanth and tetrapods. Further expansion of the members to ~14 (9 Pc and 5 Hp1) was observed in teleosts due to the third round genome duplication (3R). Based on transcriptome data from eight adult tilapia tissues, most of the Cbxs were found to be dominantly expressed in the brain, testis, ovary and heart. Analyses of the gonadal transcriptome data from four developmental stages revealed that all Cbxs were expressed in both ovary and testis except Cbx7b, with significant increase of the total and average RPKM from 5 to 90dah (days after hatching). By in situ hybridization, the three most highly and sexual dimorphically expressed Cbx genes in gonads, Cbx1b, Cbx3a and Cbx5, were found to be expressed in phase I and II oocytes of the ovary, and in secondary spermatocytes (Cbx1b and Cbx3a) and spermatids (Cbx5) of the testis. Our results revealed the evolution of Cbx genes and indicated a potential role of Cbxs in epigenetic regulation of gametogenesis.

  6. Effect of dietary supplementation with propolis and Aloe barbadensis extracts on hematological parameters and parasitism in Nile tilapia.

    PubMed

    Dotta, Geovana; Brum, Aline; Jeronimo, Gabriela Tomas; Maraschin, Marcelo; Martins, Maurício Laterça

    2015-01-01

    This study evaluated the influence of diet supplementation with propolis and Aloe barbadensis on hematological parameters and parasitism in tilapia. One hundred and eighty fish were distributed among 12 water tanks forming four treatments: fish supplemented with a 1:1 mixture of 0%, 0.5%, 1% and 2% propolis and aloe extracts. After the fish had been fed on the experimental diets for 15 and 21 days, blood samples were taken and parasites collected. The monogeneans Cichlidogyrus sclerosus, C. halli, C. thurstonae and Scutogyrus longicornis were identified in the gills. Between the sampling times, there were increases in the numbers of erythrocytes, leukocytes, thrombocytes and lymphocytes, as observed after 21 days, possibly due to the stress level over the course of the assay and/or accumulation of substances in the organism. Supplementation with the mixture of propolis and aloe for 15 days showed the highest efficacy against the parasites. This was possibly due to the association between the two compounds. The results demonstrated that supplementation with mixtures of extracts did not produce hematological alterations and also favored a significant reduction in the number of gill parasites. The best results were achieved after 15 days of feeding with a diet with 0.5% and 1% supplementation with the extract mixture, which increased efficiency by 83 and 85% respectively.

  7. Resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalatiae Ib is heritable but not correlated

    USDA-ARS?s Scientific Manuscript database

    Tilapia (Oreochromis sp.) are an important source of protein with an ecomonic value approaching US $8 billion yearly. Streptococcal disease, caused by Streptococcus iniae and S. agalactiae (both Gram positive bacteria), is an emerging or re-emerging disease negatively affecting tilapia aquaculture w...

  8. Controlled challenge experiment demonstrates substantial additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae

    USDA-ARS?s Scientific Manuscript database

    Streptococcus iniae is an etiologic agent of streptococcal disease in tilapia and is one of several Streptococcus spp. that negatively impact worldwide tilapia production. Methods for the prevention and control of S. iniae include vaccines, management strategies, and antibiotics. A complimentary pre...

  9. Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein-cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Abdel-Tawwab, Mohsen; Wafeek, Mohammed

    2014-10-01

    Cadmium (Cd) is believed to be one of the most abundant and ubiquitously distributed toxins in the aquatic system. This metal is released to the aquatic environment from both anthropogenic sources, such as industrial, agricultural and urban effluents as well as natural sources, such as rocks and soils. Otherwise, the temperature increase of water bodies, which has been observed due to global climatic changes, has been shown to increase Cd toxicity for several aquatic animal species including fish. In the present study, Nile tilapia, Oreochromis niloticus (L.), (26.0 ± 0.38 g) were reared at 20, 24, 28, or 32 °C and exposed to 0.0 or 0.5mg Cd/L for 8 weeks to investigate effects of water temperature, Cd toxicity and their interaction on fish performance as well as metallothionein (MT) and Cd distribution in different fish organs. It was found that fish reared in Cd-free group at 28 °C showed the optimum growth and feed intake, while Cd-exposed fish showed low growth and feed intake irrespective to water temperature. A synergetic relationship between water temperature and Cd toxicity was observed where Cd toxicity increased as water temperature increased and the worse growth was obtained in Cd-exposed fish reared at 32 °C. Additionally, the highest Cd residues in different fish organs were detected in Cd-exposed fish reared at 32 °C. Similarly, MT concentrations in different fish organs increased as water temperature increased especially in Cd-exposed fish groups. A high positive correlation between MT and Cd concentrations in fish organs was detected. The distribution of MT and Cd levels was in the order of liver>kidney>gills>muscles. The present study revealed that the optimum water temperature suitable for Nile tilapia growth is 28 °C. Additionally, Cd exposure had a deteriorate effect on the growth and health of Nile tilapia. This hazardous effect increased as water temperature increased. Further, liver and kidney were the prime sites of Cd accumulation

  10. Body size-related differences in the inhibition of brain acetylcholinesterase activity in juvenile Nile tilapia (Oreochromis niloticus) by chlorpyrifos and carbosulfan.

    PubMed

    Chandrasekara, L W H U; Pathiratne, A

    2007-05-01

    Influence of body size on inhibition of brain acetylcholinesterase (AChE) activity of juvenile Nile tilapia, Oreochromis niloticus by chlorpyrifos and carbosulfan was investigated concerning its potential use in the biomonitoring of anticholinesterase pesticides in tropical water bodies. Three size groups of fish (fry: 3-4 cm, fingerlings: 6-8 cm, sub-adults: 10-12 cm in total length) were exposed to a series of concentrations of chlorpyrifos (0.5-12 microg L(-1)) or carbosulfan (1-10 microg L(-1)), and concentration-response for inhibition and recovery of the AChE enzyme was evaluated in comparison to the controls at different time points, 2, 6, 10, and 14 d. The AChE activities of the control fish followed the order of decreasing activity, fry>fingerlings>sub-adults. AChE activities of the fry were nearly 2-fold higher than that of the sub-adults. Following 48 h of pesticide exposure, the AChE activity of the three size groups of fish decreased significantly in comparison to the respective controls in a concentration-dependent manner. The activity was greatly inhibited in the fry (39-85%) compared to sub-adults (18-47%) exposed to the most of the similar concentrations of the pesticides. Median effective in vivo inhibition concentrations (48 h IC50) of chlorpyrifos for fry, fingerlings, and sub-adult stages were 0.53, 0.75, and 3.86 microg L(-1), respectively, whereas the corresponding values for carbosulfan were 3.37, 7.02, and 8.72 microg L(-1). When fish were maintained in the initial pesticide medium for 14 days, AChE activity restored gradually depending on the initial pesticide exposure concentration and the size group of the fish. Results indicate that brain AChE of Nile tilapia is a promising biomarker for assessment of anticholinesterase pesticide contaminations in water. However, body size of Nile tilapia should be taken into account when using this biomarker in biomonitoring programmes.

  11. Short periods of fasting followed by refeeding change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus).

    PubMed

    Nebo, Caroline; Portella, Maria Célia; Carani, Fernanda Regina; de Almeida, Fernanda Losi Alves; Padovani, Carlos Roberto; Carvalho, Robson Francisco; Dal-Pai-Silva, Maeli

    2013-04-01

    Muscle growth mechanisms are controlled by molecular pathways that can be affected by fasting and refeeding. In this study, we hypothesized that short period of fasting followed by refeeding would change the expression of muscle growth-related genes in juvenile Nile tilapia (Oreochromis niloticus). The aim of this study was to analyze the expression of MyoD, myogenin and myostatin and the muscle growth characteristics in the white muscle of juvenile Nile tilapia during short period of fasting followed by refeeding. Juvenile fish were divided into three groups: (FC) control, feeding continuously for 42 days, (F5) 5 days of fasting and 37 days of refeeding, and (F10) 10 days of fasting and 32 days of refeeding. At days 5 (D5), 10 (D10), 20 (D20) and 42 (D42), fish (n=14 per group) were anesthetized and euthanized for morphological, morphometric and gene expression analyses. During the refeeding, fasted fish gained weight continuously and, at the end of the experiment (D42), F5 showed total compensatory mass gain. After 5 and 10 days of fasting, a significant increase in the muscle fiber frequency (class 20) occurred in F5 and F10 compared to FC that showed a high muscle fiber frequency in class 40. At D42, the muscle fiber frequency in class 20 was higher in F5. After 5 days of fasting, MyoD and myogenin gene expressions were lower and myostatin expression levels were higher in F5 and F10 compared to FC; at D42, MyoD, myogenin and myostatin gene expression was similar among all groups. In conclusion, this study showed that short periods of fasting promoted muscle fiber atrophy in the juvenile Nile tilapia and the refeeding caused compensatory mass gain and changed the expression of muscle growth-related genes that promote muscle growth. These fasting and refeeding protocols have proven useful for understanding the effects of alternative warm fish feeding strategies on muscle growth-related genes.

  12. Physical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes.

    PubMed

    Ferreira, Irani A; Martins, Cesar

    2008-06-01

    Repetitive DNAs have been extensively applied as physical chromosome markers on comparative studies, identification of chromosome rearrangements and sex chromosomes, chromosome evolution analysis, and applied genetics. Here we report the characterization of repetitive DNA sequences from the Nile tilapia (Oreochromis niloticus) genome by construction and screening of plasmid library enriched with repetitive DNAs, analysis of a BAC-based physical map, and hybridization to chromosomes. The physical mapping of BACs enriched with repetitive sequences and C(o)t-1 DNA (DNA enriched for highly and moderately repetitive DNA sequences) to chromosomes using FISH showed a predominant distribution of repetitive elements in the centromeric and telomeric regions and along the entire length of the largest chromosome pair (X and Y sex chromosomes) of the species. The distribution of repetitive DNAs differed significantly between the p arm of X and Y chromosomes. These findings suggest that repetitive DNAs have had an important role in the differentiation of sex chromosomes.

  13. Assessment and control of an invasive aquaculture species: An update on Nile tilapia (Oreochromis niloticus) in coastal Mississippi after Hurricane Katrina

    USGS Publications Warehouse

    Schofield, Pamela J.; Slack, W. Todd; Peterson, Mark S.; Gregoire, Denise R.

    2007-01-01

    We provide information about the effects of Hurricane Katrina on populations of an invasive fish, the Nile tilapia (Oreochromis niloticus) in southern Mississippi. By resampling areas surveyed before the storm, we attempted to determine whether the species expanded its range by moving with storm-related floods. Additionally, we used rotenone to eradicate individuals of this species at a hurricane-damaged aquaculture facility on the Mississippi coast. Although our survey was limited geographically, we did not find the species to occur beyond the aquaculture facility, other than in an adjacent bayou. Our rotenone treatment of the facility appeared effective with only a single O. niloticus being collected six weeks after the treatment. To reduce the spread of O. niloticus in the southeastern U.S., it is important to continue to control feral populations, work to eliminate vectors for dispersal, and continue monitoring their distribution.

  14. Lead poisoning in Nile tilapia (Oreochromis niloticus): oxidant and antioxidant relationship.

    PubMed

    Tanekhy, Mahmoud

    2015-04-01

    Selenium and vitamin E are very effective antioxidant agents which play important roles in improving and development of aquaculture sector. This study was conducted to determine the protective and treatment effects of vitamin E and selenium against lead toxicity. Administration of both vitamin E and selenium ameliorated the adverse effects of lead acetate toxicity through significant increase in hemoglobin, packed cell volume, RBC count, WBC count, and lymphocytes compared to lead acetate-exposed groups especially after the 10th week. Also, it is revealed that severe decrease of total protein, calcium, phosphorous, and magnesium in lead acetate intoxicated group. On contrary, significant increase of blood parameters upon addition of vitamin E and selenium combined with/without lead. On the other hand, insignificant decreases of sAST, sALT, urea, and creatinine in group fed on vitamin E and selenium, while increase in lead acetate intoxicated group. Lead acetate caused increasing of lipid peroxidation level (malondialdehyde) and decreasing of superoxide dismutase activity and reduced glutathione level. From these results, it is concluded that exposure to lead acetate is considered as hepatotoxic environmental pollutant. Exposure to lead acetate induced significant effects on antioxidant status. Antioxidants (vitamin E and selenium) showed important roles to protect body against lipid peroxidation, which considered as the first step of cell membrane damage, in addition to the improvement of the endogenous antioxidant enzyme activities.

  15. Construction of a Streptococcus iniae sortase A mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus).

    PubMed

    Wang, J; Zou, L L; Li, A X

    2014-10-01

    Streptococcus iniae is a major Gram-positive aquatic pathogen, which causes invasive diseases in cultured fish worldwide. The identification of potential virulence determinants of streptococcal infections will help to understand and control this disease, but only a few have been confirmed in S. iniae. Sortase A (srtA) is the key enzyme that anchors pre-mature cell wall-attached proteins to peptidoglycan and it can affect the correct positioning of surface proteins, as well as the course of Gram-positive bacterial infection, thereby making it a potential target in the study of virulence factors and disease control. In this study, the 759 bp srtA gene was cloned from pathogenic S. iniae TBY-1 strain and the mutant strain TBY-1ΔsrtA was constructed via allelic exchange mutagenesis. We found that srtA shares high similarities with sortase A from other Streptococcus spp. Direct survival rate assay and challenge experiments were performed, which showed that the mutant strain TBY-1ΔsrtA had a lower survival capacity in healthy tilapia blood and it was less virulent than the wild type strain in tilapia, thereby indicating that the deletion of sortase A affects the virulence and infectious capacity of S. iniae. The mutant strain TBY-1ΔsrtA was used as a live vaccine, which was administered via intraperitoneal injection, and it provided the relative percent survival value of 95.5% in Nile tilapia, thereby demonstrating its high potential as an effective attenuated live vaccine candidate.

  16. Cytochrome P450 1C1 complementary DNA cloning, sequence analysis and constitutive expression induced by benzo-a-pyrene in Nile tilapia (Oreochromis niloticus).

    PubMed

    Hassanin, Abeer A I; Kaminishi, Yoshino; Funahashi, Aki; Itakura, Takao

    2012-03-01

    CYP1C is the newest member of the CYP1 family of P450s; however, its physiological significance, inducers, and metabolic functions are unknown. In this study, a new complementary DNA of the CYP1C subfamily encoding CYP1C1 was isolated from Nile tilapia (Oreochromis niloticus) liver after intracoelomic injection with benzo-a-pyrene (BaP). The full-length cDNA was 2223 base pair (bp) long and contained an open reading frame of 1581 bp encoding a protein of 526 amino acids and a stop codon. The sequence exhibited 3' non-coding region of 642 bp. The deduced amino acid sequence of O. niloticus CYP1C1 shows similarities of 86, 82.5, 79.7, 78.7, 77.8, 75.5, 69.6 and 61.3% with scup CYP1C1, killifish CYP1C1,1C2, Japanese eel CYP1C1, zebra fish CYP1C1, common carp CYP1C1, scup CYP1C2, common carp CYP1C2 and zebra fish CYP1C2, respectively. Phylogenetic tree based on the amino acids sequences clearly shows tilapia CYP1C1 and scup CYP1C1 to be more closely related to each other than to CYP1C genes from other species. Furthermore, for measuring BaP induction of CYP1C1 mRNA in different organs of tilapia (O. niloticus), β-actin gene as internal control was selected based on previous studies to assess their expression variability. Real time RCR results revealed that there was a large increase in CYP1C1 mRNA in liver (43.1), intestine (5.1) and muscle (2.4). Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The effect of water quality on the immunoreactivity of stress-response cells and gonadotropin-secreting cells in the pituitary gland of Nile tilapia, Oreochromis niloticus.

    PubMed

    Mousa, Mostafa A; Ibrahim, Amal A E; Hashem, Amal M; Khalil, Noha A

    2015-03-01

    The present experiments investigated the effect of water quality characteristics on the condition factor, the ovarian activity, cortisol level, and the immunoreactivity of stress-response cells (adrenocorticotropic hormone; ACTH- and melanin stimulating hormone; MSH- and somatolactin; SL- secreting cells) and gonadotropin (GTH)-secreting cells in the pituitary gland of Nile tilapia, Oreochromis niloticus. After 3 months of exposure to mixtures of water from different sources (Tap and Lake Manzalah waters), with high levels of minerals and heavy metals, water quality affected the number, size, and immunostaining of stress-response-immunoreactive (ir) cells and GTH-ir cells, which showed a dramatic decrease in their size. The integrated optical density (IOD) of immunoreactivity of MSH- and GTH- cells was significantly increased; however, it was significantly decreased for ACTH- and SL- cells. Also, high levels of cortisol were observed in females exposed to waters with high concentrations of minerals and heavy metals. In parallel, low values of gonadosomatic index (GSI%) and the ovarian histology revealed a decrease of maturing follicles concomitant with an increase of atretic follicles in females exposed to Lake Manzalah polluted water. Taken together, the increased activity of stress-response-ir pituitary cells, serum cortisol level and ovarian atretic follicles in response to elevated concentrations of minerals and heavy metals, supports the possible role of ACTH, MSH, and SL in the adaptive stress response of fish. Therefore, minerals and heavy metals must be considered when discussing tilapia aquaculture status. © 2015 Wiley Periodicals, Inc.

  18. Growth, Feed Utilization and Blood Metabolic Responses to Different Amylose-amylopectin Ratio Fed Diets in Tilapia (Oreochromis niloticus).

    PubMed

    Chen, Meng-Yao; Ye, Ji-Dan; Yang, Wei; Wang, Kun

    2013-08-01

    A feeding trial was conducted in tilapia to determine the growth performance, nutrient digestibility, digestive enzymes, and postprandial blood metabolites in response to different dietary amylose-amylopectin ratios. Five isonitrogenous and isolipidic diets containing an equal starch level with different amylose-amylopectin ratios of 0.11 (diet 1), 0.24 (diet 2), 0.47 (diet 3), 0.76 (diet 4) and 0.98 (diet 5) were formulated using high-amylose corn starch (as the amylose source) and waxy rice (as the amylopectin source). Each diet was hand-fed to six tanks of 15 fish each, three times a day over a 6-wk period. After the growth trial, a postprandial blood metabolic test was carried out. Fish fed diet 2 exhibited the highest percent weight gain and feed efficiency and protein efficiency ratio, whereas fish fed with diet 5 showed the lowest growth and feed utilization among treatments. The digestibility for starch in fish fed diet 1 and 2 was higher than those in fish fed with other diets (p<0.05). The highest activities for protease, lipase and amylase were found in fish fed the diet 2, diet 1, and diet 1 respectively among dietary treatments, while the lowest values for these indexes were observed in fish fed the diet 3, diet 5 and diet 4, respectively. The liver glycogen concentrations in fish fed diets 4 and 5 were found higher than in fish fed other diets (p<0.05). The feeding rate, hepatosomatic index, condition factor, and plasma parmeters (glucose, triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol) did not differ across treatments. In terms of postprandial blood responses, peak blood glucose and triglycerides were lower after 3 or 6 h in the fish fed with diets 3-5 than in the fish fed diet 1, but delayed peak blood total amino acid time was observed in fish fed with the diets 1 or 2. The lowest peak values for each of the three blood metabolites were observed in fish fed diet 5. The results indicate

  19. Analysis of differential gene expression under low-temperature stress in Nile tilapia (Oreochromis niloticus) using digital gene expression.

    PubMed

    Yang, Changgeng; Jiang, Ming; Wen, Hua; Tian, Juan; Liu, Wei; Wu, Fan; Gou, Gengwu

    2015-06-15

    Tilapia (Oreochromis niloticus) do not survive well at low temperatures. Therefore, improvement of the low-temperature resistance has become an important issue for aquaculture development of tilapia. The objective of this study was to construct a digital gene expression tag profile to identify genes potentially related to low temperature in tilapia. In this study, tilapia was treated at 30°C to lethal temperature 10°C in decrement of 1°CD(-1). Digital gene expression analysis was performed using the Illumina technique to investigate differentially expressed genes in tilapia cultured at different temperatures (30°C, 26°C, 20°C, 16°C, and 10°C). A total of 206,861, 188,082, 185,827, 188,067, and 214,171 distinct tags were obtained by sequencing these five libraries, respectively. Compared with the 30°C library, there were 304, 407, 709, and 772 upregulated genes and 342, 793, 771, and 1466 downregulated genes in 26°C, 20°C, 16°C, and 10°C libraries, respectively. Trend analysis of these differentially expressed genes identified six statistically significant trends. Functional annotation analysis of the differentially expressed genes identified various functions associated with the response to low-temperature stress. When tilapia are subjected to low-temperature stress, expression changes were observed in genes associated with nucleic acid synthesis and metabolism, amino acid metabolism and protein synthesis, lipid and carbohydrate content and types, material transport, apoptosis, and immunity. The differentially expressed genes obtained in this study may provide useful insights to help further understand the effects of low temperature on tilapia.

  20. Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections.

    PubMed

    Han, Biao; Long, Wei-Qing; He, Ju-Yun; Liu, Yong-Jian; Si, Yu-Qi; Tian, Li-Xia

    2015-10-01

    The effects of oral administration of Bacillus licheniformis on growth performance, immunity, intestinal morphology and disease resistance of juvenile tilapia were investigated. Six experimental diets supplemented with different concentrations of B. licheniformis (0%, 0.02%, 0.04%, 0.06%, 0.08% and 0.1% of AlCare(®), containing live germ 2 × 10(10) CFU/g) were formulated, viz. control, T1, T2, T3, T4 and T5. Each diet was randomly assigned to triplicate groups of 30 fishes (3.83 ± 0.03 g). After 10 weeks of feeding trial, weight gain (WG), final body wet weight (FBW) and specific growth rate (SGR) increased significantly in groups T2, T3, T4 and T5 compared with control and T1 (p < 0.05). However, survival rate and feed conversion ratio (FCR) were not found to be significantly affected (P > 0.05). Compared with control, dietary B. licheniformis supplementation increased the content of complement C3 in serum significantly (P < 0.05). The lysozyme activity was observed to be highest in T2 (P < 0.05) without differences among other groups. However, SOD activity was not affected by B. licheniformis supplementation (P > 0.05). When tilapia were challenged against Streptococcus iniae, survival rate improved significantly when tilapia fed with T2, T3, T4 and T5 (P < 0.05). Although there was no significant differences in villi length and muscular layer thickness of anterior intestinal among the treatments, intestinal villi of fish fed with higher concentrations of B. licheniformis (T2, T3, T4, T5) tended to be regularly arranged and exhibited less exfoliation, twist and fusion. These results indicated that dietary supplementation of B. licheniformis not only increased the growth, immune response and disease resistance of juvenile tilapia, but also influenced anterior intestinal development and integrity. Furthermore, in our study, the optimal concentration of B. licheniformis in diets for tilapia was greater than or equal to 4.4 × 10(6) CFU/g.

  1. Hepatic transcriptome analysis of juvenile GIFT tilapia (Oreochromis niloticus), fed diets supplemented with different concentrations of resveratrol.

    PubMed

    Zheng, Yao; Wu, Wei; Hu, Gengdong; Zhao, Zhixiang; Meng, Shunlong; Fan, Limin; Song, Chao; Qiu, Liping; Chen, Jiazhang

    2017-09-08

    The GIFT (Genetically Improved Farmed Tilapia) tilapia, Oreochromis niloticus, is cultured widely for the production of freshwater fish in China. Streptococcosis, which is related to pathogenic infections, occurs frequently in juvenile and adult female GIFT individuals. Resveratrol (RES) has been used in feed to control these infections in freshwater tilapia. To address the effects of RES on tilapia, we used high-throughput RNA sequencing technology (RNA-Seq, HiSeq. 2500) to explore the global transcriptomic response and specific involvement of hepatic mRNA of juvenile O. niloticus fed with diets containing different concentrations of (0, 0.025, 0.05, and 0.1g/kg) RES. A total of > 24,513,018 clean reads were generated and then assembled into 23,244 unigenes. The unigenes were annotated by comparing them against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Pfam, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and 12,578 unigenes were annotated to the GO database. A total of 1444 (0.025g/kg RES), 1526 (0.05g/kg RES), and 3135 (0.1g/kg RES) genes were detected as significant differentially expressed genes (DEGs), when compared with the controls. A total of 6 (0.025 vs 0.05g/kg RES), 19 (0.025 vs 0.1g/kg RES), and 124 (0.05 vs 0.1g/kg RES) genes were detected as significant DEGs. Six genes, including dnah7x1, sox4, fam46a, hsp90a, ddit4, and nmrk2, were associated with an immune response. These findings provide information on the innate immunity of GIFT and might contribute to the development of strategies for the effective management of diseases and long-term sustainability of O. niloticus culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The study on the candidate probiotic properties of encapsulated yeast, Saccharomyces cerevisiae JCM 7255, in Nile Tilapia (Oreochromis niloticus).

    PubMed

    Pinpimai, Komkiew; Rodkhum, Channarong; Chansue, Nantarika; Katagiri, Takayuki; Maita, Masashi; Pirarat, Nopadon

    2015-10-01

    Saccharomyces cerevisiae JCM 7255 was tested as a probiotic candidate in tilapia after encapsulating and freeze drying. Viability and morphology during storage and during transit through simulated gut and bile conditions were determined. Growth performance, anti-streptococcal activity and gut mucosal immune parameters were also tested. The viability of encapsulated yeasts was significantly high in simulated gastric and bile conditions and remained high after storage at room temperature for 14 days. The morphology of free S. cerevisiae revealed rough, bumpy, ruptured surface during incubation in gut and bile conditions. Agar spot anti-streptococcal activity showed inhibition of 20 out of 30 strains of Streptococcus agalactiae. Supplementation improved the intestinal structure and growth performance in tilapias. Intraepithelial lymphocytes in the proximal intestine were significantly observed. Lower cumulative mortality after the oral streptococcal challenge was also seen. The results suggest that encapsulated S. cerevisiae JCM 2755 could be a potential probiotic strain in tilapia culture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Draft Genome Sequence of an Attenuated Streptococcus agalactiae Strain Isolated from the Gut of a Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Yu, Angen; Lan, Jiangfeng; Zhang, Yulei; Zhang, Hua; Li, Yuhui; Hu, Minqiang; Cheng, Jiewei

    2017-01-01

    ABSTRACT Streptococcus agalactiae is a pathogen that causes severe anthropozoonosis within a broad range of hosts from aquatic animals to mammals, including human beings. Here, we describe the draft genome of S. agalactiae HZAUSC001, a low-virulent strain isolated from the gut of a moribund tilapia (Oreochromis niloticus) in China. PMID:28183773

  4. Effects of chronic exposure of methomyl on the antioxidant system in kidney of Nile tilapia (Oreochromis niloticus) and recovery pattern.

    PubMed

    Meng, Shun Long; Hu, Geng Dong; Qiu, Li Ping; Song, Chao; Fan, Li Min; Chen, Jia Zhang; Xu, Pao

    2013-01-01

    Tilapia were exposed to sublethal methomyl concentrations of 0, 0.2, 2, 20, or 200 μg/L for 30 d, and then were transferred to methomyl-free water for 18 d. Renal antioxidant parameters, including catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione peroxidase (GPx) , glutathione reductase (GR), total glutathione (GSH), and reduced glutathione (GSSG), were examined in tilapia at d 0, 6, 12, 18, 24, and 30 after starting the experiment and at 18 d after transferring to methomyl-free water. There were no significant changes in enzymatic activity and content of antioxidants in kidney of tilapia exposed to 0.2 μg/L methomyl compared to controls. The results showed significant increases in SOD, CAT, GST, GR, GPx, and level of GSSG accompanied by a decrease in GSH levels following methomyl exposure in tilapia to 2, 20, or 200 μg/L over the 30-d exposure period, suggesting the presence of oxidative stress. Thus, it would appear the 0.2 μg/L methomyl might be considered the no-observed-adverse-effect level (NOAEL). Recovery data showed that the effects produced by lower concentration of methomyl at 20 μg/L were reversible but not at the higher 200 μg/L concentration.

  5. Mutation of foxl2 or cyp19a1a Results in Female to Male Sex Reversal in XX Nile Tilapia.

    PubMed

    Zhang, Xianbo; Li, Mengru; Ma, He; Liu, Xingyong; Shi, Hongjuan; Li, Minghui; Wang, Deshou

    2017-08-01

    It is well accepted that Forkhead box protein L2 (Foxl2) and aromatase (Cyp19a1; the enzyme responsible for estrogen synthesis) are critical for ovarian development in vertebrates. Knockouts of Foxl2 and Cyp19a1 in goat, mouse, and zebrafish have revealed similar but not identical functions across species. Functional analyses of these two genes in other animals are needed to elucidate their conserved roles in vertebrate sexual development. In this study, we established foxl2 and cyp19a1a mutant lines in Nile tilapia. Both foxl2-/- and cyp19a1a-/- XX fish displayed female-to-male sex reversal. Sf1, Dmrt1, and Gsdf were upregulated in the foxl2-/- and the cyp19a1a-/- XX gonads. Downregulation of Cyp19a1a and serum estradiol-17β level, and upregulation of Cyp11b2 and serum 11-ketotestosterone level were observed in foxl2-/- XX fish. The mutant phenotype of foxl2-/- XX individuals could be rescued by 17β-estradiol treatment from 5 to 30 days after hatching (dah). Upregulation of Star1, the enzyme involved in androgen production in tilapia, was also observed in the foxl2-/- XX gonad at 30 and 90 dah. In vitro promoter analyses consistently demonstrated that Foxl2 could suppress the transcription of star1 in a dose-dependent manner. In addition, compared with the control XX gonad, fewer germ cells were detected in the foxl2-/- XX, cyp19a1a-/- XX, and control XY gonads 10 dah. These results demonstrate that Foxl2 promotes ovarian development by upregulating Cyp19a1a expression and repressing male pathway gene expression. These results extend the study of Foxl2 and Cyp19a1a loss of function to a commercially important fish species. Copyright © 2017 Endocrine Society.

  6. Evaluation and Selection of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis of Gene Expression in Nile Tilapia (Oreochromis niloticus) during Vaccination and Infection

    PubMed Central

    Wang, Erlong; Wang, Kaiyu; Chen, Defang; Wang, Jun; He, Yang; Long, Bo; Yang, Lei; Yang, Qian; Geng, Yi; Huang, Xiaoli; Ouyang, Ping; Lai, Weimin

    2015-01-01

    qPCR as a powerful and attractive methodology has been widely applied to aquaculture researches for gene expression analyses. However, the suitable reference selection is critical for normalizing target genes expression in qPCR. In the present study, six commonly used endogenous controls were selected as candidate reference genes to evaluate and analyze their expression levels, stabilities and normalization to immune-related gene IgM expression during vaccination and infection in spleen of tilapia with RefFinder and GeNorm programs. The results showed that all of these candidate reference genes exhibited transcriptional variations to some extent at different periods. Among them, EF1A was the most stable reference with RefFinder, followed by 18S rRNA, ACTB, UBCE, TUBA and GAPDH respectively and the optimal number of reference genes for IgM normalization under different experiment sets was two with GeNorm. Meanwhile, combination the Cq (quantification cycle) value and the recommended comprehensive ranking of reference genes, EF1A and ACTB, the two optimal reference genes, were used together as reference genes for accurate analysis of immune-related gene expression during vaccination and infection in Nile tilapia with qPCR. Moreover, the highest IgM expression level was at two weeks post-vaccination when normalized to EF1A, 18S rRNA, ACTB, and EF1A together with ACTB compared to one week post-vaccination before normalizing, which was also consistent with the IgM antibody titers detection by ELISA. PMID:25941937

  7. Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus).

    PubMed

    Yang, Chang Geng; Wang, Xian Li; Tian, Juan; Liu, Wei; Wu, Fan; Jiang, Ming; Wen, Hua

    2013-09-15

    Quantitative real-time reverse-transcriptase polymerase chain reaction (RT-qPCR) has been used frequently to study gene expression related to fish immunology. In such studies, a stable reference gene should be selected to correct the expression of the target gene. In this study, seven candidate reference genes (glyceraldehyde-3-phosphate dehydrogenase (GADPH), ubiquitin-conjugating enzyme (UBCE), 18S ribosomal RNA (18S rRNA), beta-2-microglobulin (B2M), elongation factor 1 alpha (EF1A), tubulin alpha chain-like (TUBA) and beta actin (ACTB)), were selected to analyze their stability and normalization in seven tissues (liver, spleen, kidney, brain, heart, muscle and intestine) of Nile tilapia (Oreochromis niloticus) challenged with Streptococcus agalactiae or Streptococcus iniae, respectively. The results showed that all the candidate reference genes exhibited tissue-dependent transcriptional variations. With PBS injection as a control, UBCE was the most stable and suitable single reference gene in the intestine, liver, brain, kidney, and spleen after S. iniae infection, and in the liver, kidney, and spleen after S. agalactiae infection. EF1A was the most suitable in heart and muscle after S. iniae or S. agalactiae infection. GADPH was the most suitable gene in intestine and brain after S. agalactiae infection. In normal conditions, UBCE and 18S rRNA were the most stably expressed genes across the various tissues. These results showed that for RT-qPCR analysis of tilapia, selecting two or more reference genes may be more suitable for cross-tissue analysis of gene expression.

  8. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus

    PubMed Central

    Li, Minghui; Sun, Yunlv; Zhao, Jiue; Shi, Hongjuan; Zeng, Sheng; Ye, Kai; Jiang, Dongneng; Zhou, Linyan; Sun, Lina; Tao, Wenjing; Nagahama, Yoshitaka; Kocher, Thomas D.; Wang, Deshou

    2015-01-01

    Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. PMID:26588702

  9. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials.

    PubMed

    Srisapoome, Prapansak; Areechon, Nonthawit

    2017-08-01

    Applications of viable Bacillus pumilus AQAHBS01 isolated from Nile tilapia farms as probiotics were studied in both laboratory and farm conditions. In the laboratory, feeding fish (approximately 50 g) with feed containing viable B. pumilus at concentrations of 1 × 10(7)-10(9) colony forming units (CFU)/kg elevated fish immune responses, as indicated by their phagocytic activity and superoxide anion levels, and led to more effective disease resistance against Streptococcus agalactiae. However, when these concentrations were applied to Nile tilapia cultures growing in cage culture systems, only B. pumilus AQAHBS01 at concentrations of 1 × 10(8) and 10(9) CFU/kg diet could effectively enhance disease resistance against S. agalactiae during the critical period of early to middle April when the temperature reached 33 °C, whereas control fish and fish that consumed B. pumilus AQAHBS01 at concentrations of 1 × 10(7) CFU/kg showed very rapid streptococcosis-induced mortality. However, in late April, massive levels of organic matter-containing water flowed into the culture areas, causing all fish groups to become infected with Flavobacterium columnare. Moreover, the dissolved oxygen levels in the river declined to critical levels of approximately 1.0-1.5 mg/L, causing anorectic effects in fish for long periods of time. This effect may have also gradually killed the cultured fish until the end of the experiment. This information strongly demonstrates the effective application of B. pumilus as a probiotic for streptococcosis resistance in both laboratory and field culture conditions. For on-farm cage culture practices, however, fluctuations in water quality remain a significant constraint for probiotic application, as they usually induce negative effects on fish health. This decline in health makes fish more fragile and more susceptible to problems from both infectious and non-infectious diseases, which farmers must consider carefully. Copyright © 2017

  10. Dispersion of the Vancomycin Resistance Genes vanA and vanC of Enterococcus Isolated from Nile Tilapia on Retail Sale: A Public Health Hazard

    PubMed Central

    Osman, Kamelia M.; Ali, Mohamed N.; Radwan, Ismail; ElHofy, Fatma; Abed, Ahmed H.; Orabi, Ahmed; Fawzy, Nehal M.

    2016-01-01

    Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the

  11. Effect of acute exposure to nonylphenol on biochemical, hormonal, and hematological parameters and muscle tissues residues of Nile tilapia; Oreochromis niloticus

    PubMed Central

    Ismail, Hager Tarek H.; Mahboub, Heba Hassan H.

    2016-01-01

    Aim: This study was aimed to evaluate some biochemical, hormonal, hematological, and histopathological changes in Nile tilapia, Oreochromis niloticus, after acute exposure to nonylphenol (NP). In addition to detection of NP residues in the fish, muscle tissues for human health concern. Materials and Methods: A total of 90 apparently healthy Nile tilapia, O. niloticus, were randomly divided into three equal groups; each containing 30 fish (three replicates). Groups 1 and 2 kept as a control and solvent control (acetone), respectively, and Group 3 exposed to NP at a dose level of 500 µg/L water for 7 successive days. Blood and tissue samples were collected 2 times randomly from each group after 7 days from fish exposure to NP and 10 days from exposure stopping. Results: Fish exposed to NP Group 3 showed anorexia, sluggish movement, erythema of the skin, areas of scales loss, and hemorrhagic ulcers in some areas of body region leading to exposing the viscera. Biochemical results revealed a significant increase in serum total proteins and globulins levels, a highly significant increase in serum alanine aminotransferase and aspartate aminotransferase activities, triglycerides, cholesterol, and creatinine levels, insignificant increase in serum uric acid level, and a highly significant decrease in serum testosterone and estradiol-β17 levels in Group 3 in compare with the control group. Histopathological finding confirms these results. While hematological results of the same group revealed a significant increase in red blood cells count and packed cell volume value, insignificant increase in hemoglobin concentration, leukopenia, lymphopenia, and monocytopenia in compared with the control group. All of these changes appeared after 7 days from fish exposure to NP. Most of these alterations returned toward the normal level after 10 days from stopping exposure to NP. NP residues detected in fish muscle tissues of Group 3 during exposure and after stopping exposure to it

  12. Morphology and muscle gene expression in GIFT and Supreme Nile tilapia varieties reared in two cultivation systems.

    PubMed

    Lima, E C S; Povh, J A; Otonel, R A A; Leonhardt, J H; Alfieri, A A; Headley, S A; Souza, F P; Poveda-Parra, A R; Furlan-Murari, P J; Lopera-Barrero, N M

    2017-03-16

    Tissue growth in most fishes occurs by muscular hyperplasia and hypertrophy, which are influenced by different regulatory factors, such as myostatin. The current study evaluated the influence of cultivation in hapas and earthen ponds on the diameter of white muscle fibers and on the myostatin (MSTN-1) gene in GIFT and Supreme varieties of tilapia. Fish of both varieties were reared for 204 days and then divided into four developmental stages. White muscle samples, corresponding to 100 fibers per slide, were collected from the middle region of fish of each variety and cultivation system, and were measured and divided into two classes representing hyperplasia and hypertrophy. Samples were subjected to real-time PCR to analyze gene expression. Hyperplasia decreased during the developing stages, coupled with increased hypertrophy. There was a higher rate of hypertrophy in fish raised in earthen ponds when compared to those raised in hapas, during juvenile and developing phases, and greater hypertrophic growth was observed in GIFT specimens when compared to Supreme specimens in earthen ponds. Since increased MSTN-1 gene expression was observed in GIFT specimens during the developing phase in pond cultivations, and in Supreme tilapia in hapas, MSTN-1 expression is related to greater hypertrophy. These results demonstrate the capacity for increased muscle growth in earthen pond cultivation in which the GIFT variety developed best. How the environment affects the growth of different tilapia varieties may be employed to optimize culture management and genetic improvement programs. Further investigations should aim to describe mechanisms affecting muscle growth and development.

  13. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-01-01

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts. PMID:25976364

  14. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus).

    PubMed

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-05-15

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts.

  15. Toxicity of sediments from Bahía de Chetumal, México, as assessed by hepatic EROD induction and histology in nile tilapia Oreochromis niloticus.

    PubMed

    Zapata-Pérez, O; Simá-Alvarez, R; Noreña-Barroso, E; Güemes, J; Gold-Bouchot, G; Ortega, A; Albores-Medina, A

    2000-01-01

    The effect of environmental pollutants present in sediments obtained from Bahía de Chetumal, a bay on the border between Mexico and Belize, was studied in nile tilapia (Oreochromis niloticus) intraperitoneally injected with sediment extracts from six different sites of the Bay. Sediment samples used for the study contained a variety of organic chemicals such as organochlorine pesticides, polychlorinated biphenyls (PCBs) and polynuclear aromatic hydrocarbons (PAHs). Total cytochrome P-450 and EROD activity were measured in fish liver. Haematological and histological analyses were also carried out. Hepatic P-450 content in treated fish increased from 43 to 240%, and EROD activity from 85 to 160% compared to controls. Extracts from two sampling sites inhibited EROD activity. There were positive significant correlations between P-450 content and the levels of PCBs 44 and 128. EROD activity correlated to HCB, op'-DDE, pp'-DDE, pp'-DDD, mirex and PCB 18 concentrations. Blood examination showed cell degeneration and binucleated leukocytes with abnormal chromatin. Extract treatment also resulted in foci of hyperplasia on the basement of gill lamellae, hypertrophy and oedema in gills and liver necrosis. Control fish showed no abnormalities. The results demonstrate that sediments from Bahía of Chetumal have the potential to cause histopathological, haematological and biochemical alterations in fish. The administration of sediment extracts to fish may serve as a useful test to screen the toxicity of sediments from different areas.

  16. Histopathological alterations in the liver and intestine of Nile tilapia Oreochromis niloticus exposed to long-term sublethal concentrations of cadmium chloride

    NASA Astrophysics Data System (ADS)

    Younis, Elsayed; Abdel-Warith, Abdel-Wahab; Al-Asgah, Nasser; Ebaid, Hossam

    2015-07-01

    Fingerlings of Nile tilapia Oreochromis niloticus were exposed to 1.68, 3.36, and 5.04 mg/L cadmium (as CdCl2), which represent 10%, 20%, and 30% of their previously determined 96-h LC50. After exposure for 20 days, sections of the liver and intestine of treated fish were examined histologically. Histopathological changes varied from slight to severe structural modification, depending on the exposure concentration. The hepatic tissues of fish exposed to 10% LC50 showed markedly increased vacuolation of the hepatocytes and coarse granulation of their cytoplasm. Abundant erythrocytic infiltration among the hepatocytes was observed in fish exposed to 20% LC50. In the intestinal tissues of fish exposed to all doses, goblet cells proliferated and were greatly increased in size, the longitudinal muscularis mucosa was disturbed and, in the crypts of the sub-mucosal layer, apoptosis increased, indicated by large numbers of degenerated nuclei. Large numbers of inflammatory cells and dilated blood vessels were observed in the intestine of the group treated with 30% LC50.

  17. Analytical approach to the metallomic of Nile tilapia (Oreochromis niloticus) liver tissue by SRXRF and FAAS after 2D-PAGE separation: Preliminary results.

    PubMed

    Lima, Paula M; Neves, Renato de C F; dos Santos, Felipe A; Pérez, Carlos A; da Silva, Marcelo O A; Arruda, Marco A Z; de Castro, Gustavo R; Padilha, Pedro M

    2010-08-15

    An investigation was made into calcium, iron and zinc in protein spots in samples of Nile tilapia (Oreochromis niloticus) liver tissue obtained after protein separation by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and subsequent qualitative and quantitative evaluation by synchrotron radiation X-ray fluorescence (SRXRF) and Flame Atomic Absorption Spectrometry (FAAS). An analysis of the fluorescence spectra indicated the presence of calcium, iron and zinc in 12, 6 and 8 liver protein spots, respectively. The metal ions found were distributed mainly in proteins with a molar mass of less than 40.00 kDa and more than 12.00 kDa, with pI in the range of 4.70-9.40. The only exception was a spot presenting protein with a molar mass of 10.10 kDa. In addition to calcium, iron and zinc, sulfur and phosphorus - which are non-metals that may be part of the protein structure, were also detected. After microwave-assisted acid mineralization of the proteins spots, a FAAS estimation of the concentration of calcium, iron and zinc ions bound to these proteins indicated a range of 1.08-5.80 mg g(-1), 2.02-8.03 mg g(-1) and 1.60-8.55 mg g(-1), respectively. Copyright 2010. Published by Elsevier B.V.

  18. Effects of the pharmaceuticals diclofenac and metoprolol on gene expression levels of enzymes of biotransformation, excretion pathways and estrogenicity in primary hepatocytes of Nile tilapia (Oreochromis niloticus).

    PubMed

    Gröner, Frederike; Ziková, Andrea; Kloas, Werner

    2015-01-01

    The expression levels of key enzymes of the xenobiotic metabolism and excretion pathways concerning biotransformation phases I (cytochrome P4501A), II (glutathione S-transferase) and III (multidrug resistance protein) and of the estrogenic biomarker vitellogenin (vtg) were investigated in primary hepatocytes isolated from male Nile tilapia (Oreochromis niloticus) after exposure to diclofenac and metoprolol, two pharmaceuticals prevalent in the aquatic environment worldwide. The lowest test concentration (4×10(-9) M) was chosen to reflect an environmentally relevant exposure situation. Furthermore concentration dependent effects were investigated. Therefore a series of concentrations higher than the environmentally relevant range were used (10- and 100-fold). Diclofenac significantly induced all chosen biomarkers already at the environmentally relevant concentration indicating that biotransformation and elimination occur via the pathways under investigation. Estrogenic potential of this substance was demonstrated by VTG up-regulation as well. Metoprolol was either less effective than diclofenac or metabolized using different pathways. Key enzymes of the xenobiotic metabolism were less (CYP1A, GST) or not (MDRP) induced and a mild increase in vtg mRNA was detected only for 4×10(-8) M. No concentration-dependency for metoprolol was found.

  19. Assessment of the immune-modulatory and antimicrobial effects of dietary chitosan on Nile tilapia (Oreochrmis niloticus) with special emphasis to its bio-remediating impacts.

    PubMed

    Abu-Elala, Nermeen M; Mohamed, Samah H; Zaki, Manal M; Eissa, Alaa Eldin

    2015-10-01

    Fish, pathogen and environment are three counterparts who are sharing the same circle of life. To keep fish up to their optimal health, environment should be competently improved and pathogen count/virulence should be seized. Using of bioactive immunostimulants to achieve these objectives is the hypothesis under assessment. Thus, the present study was performed to evaluate the use of shrimp shells derived chitosan as an immunostimulant as well as preventive regime against Aeromonas hydrophila infection of Nile tilapia and to assess its antibacterial/aquatic bio-remediating effects. Results achieved by feeding 1% chitosan as preventive/therapeutic regimes have revealed a remarkably enhanced several innate immunological parameters (e.g., Phagocytic activity/index, NBT, Lysozyme activity and ACH50), increased resistance against A. hydrophila and strikingly improved water quality compared to the 0.5 and 2% chitosan containing diets. Conclusively, experimental results suggest the commercial usage of chitosan as an efficient immunostimulant and bio-remediating agent in aquaculture.

  20. Metals concentrations in Nile tilapia Oreochromis niloticus () from illegal fish farm in Al-Minufiya Province, Egypt, and their effects on some tissues structures.

    PubMed

    Authman, Mohammad M N; Abbas, Wafaa T; Gaafar, Alkhateib Y

    2012-10-01

    This study clarified the suitability of fishes caught from illegal fish farms to human consumption and their hazards to public health. For this purpose, the concentrations of some metals (Al, Cd, Pb, Hg and Ni) in water and Nile tilapia (Oreochromis niloticus) fish samples collected from an illegal fish farm, in addition to pathological conditions of the fish tissues, were examined. The illegal farm water was found to be heavily polluted with metals which far exceeded the permissible limits. It was found that metals accumulated in tissues of O. niloticus in concentrations higher than those of farm water. Kidney of O. niloticus contained the highest concentrations of the detected metals, while muscle and skin contained the lowest concentrations. The examination of fish tissues revealed various histopathological lesions which related directly to the pollution of the illegal farm water. Moreover, metals levels in O. niloticus muscle were higher than the maximum permissible levels for human consumption. Consequently, the flesh of fishes from the illegal farms could be considered hazardous to human health. Therefore, warning against eating fish caught from the illegal fish farms should be announced. Moreover, removal of such illegal fish farms is necessary for the public health protection.

  1. Production and characterization of crude and refined oils obtained from the co-products of Nile tilapia and hybrid sorubim processing.

    PubMed

    Menegazzo, Mariana Lara; Petenuci, Maria Eugenia; Fonseca, Gustavo Graciano

    2014-08-15

    In this study, crude oil was extracted by heating and filtering of the residual fat obtained from the processing of mechanically separated meats of Nile tilapia (Oreochromis niloticus) and hybrid sorubim (Pseudoplatystoma corruscans×P. fasciatum) for protein concentrate obtaining. The crude oil was refined by the following steps: degumming with 85% phosphoric acid, neutralization with 20% NaOH, washing with hot water at 85 °C, drying at 90 °C, clarification with activated charcoal and filtration with diatomaceous earth and anhydrous sodium sulfate. The quality of crude and refined oils was verified by acidity, peroxide, iodine, refractive, and saponification indexes, beyond moisture, lipid and free fatty acids contents, and density. The results show that the refining reduced the acidity index of the crude oil, however, favored the oil oxidation, as demonstrated by the increase in peroxide index. In most of the cases there was no change in the identity of the fish oils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Ontogenetic changes in location and morphology of chloride cells during early life stages of the Nile tilapia Oreochromis niloticus adapted to fresh and brackish water.

    PubMed

    Fridman, S; Bron, J E; Rana, K J

    2011-09-01

    Ontogenetic changes in the location, size, density and morphology of chloride cells in the Nile tilapia Oreochromis niloticus adapted to fresh and brackish water are described using Na(+) /K(+) -ATPase immunohistochemistry, light microscopy (LM), scanning electron microscopy (SEM) and confocal scanning laser microscopy (CSLM). The pattern of chloride cell distribution changed during development under both treatments, with chloride cell density decreasing significantly from hatch to 7 days post-hatch, but appearing on the inner opercular area at 3 days post-hatch and increasing significantly thereafter (P < 0·05). Chloride cells were always denser in fresh- than in brackish-water larvae. In both treatments, chloride cells located on the outer operculum and tail showed a marked increase in size with age, but cells located on the abdominal epithelium of the yolk sac and the inner operculum showed a significant decrease in size (P < 0·05). Chloride cells from brackish-water adapted larvae from 1 day post-hatch onwards were always significantly larger (P < 0·05) than those from freshwater-adapted larvae. SEM revealed structural differences in chloride cell apical morphology according to environmental conditions. There appears to be clearly defined temporal staging of the appearance of adaptive mechanisms that confer an ability to cope with varying environmental conditions during early development.

  3. Acute aerocystitis in Nile tilapia bred in net cages and supplemented with chromium carbochelate and Saccharomyces cerevisiae.

    PubMed

    Castro, Marcello P; Claudiano, Gustavo S; Petrillo, Thalita R; Shimada, Marina Tie; Belo, Marco A A; Marzocchi-Machado, Cleni M; Moraes, Julieta R E; Manrique, G Wilson; Moraes, Flávio R

    2014-01-01

    Oreochromis niloticus bred in net cages were supplemented with cell wall of Saccharomyces cerevisiae (Sc) (0.3%) or chromium carbochelate (Cr) (18 mg/kg of feed) or in association (Sc + Cr), for 90 days. After this period, acute inflammation was induced in the swim bladder by inoculation of 3 × 10(8) CFU of inactivated Streptococcus agalactiae, and another group received 0.65% saline solution (control). Twelve, 24, and 48 h after stimulation, the inflammation was evaluated through total and differential counting of accumulated cells, and through leukocyte respiratory burst in the blood, cortisolemia, glycemia and serum lysozyme concentration. The results showed that there were greater total numbers of cells in the exudate of fish inoculated with inactivated bacterium than in those injected with saline solution, with predominance of lymphocytes, thrombocytes, macrophages and granulocytes. Tilapia supplemented with Cr presented increased total numbers of cells with significant accumulation of lymphocytes and reductions in cortisolemia and glycemia, but the different treatments did not have any influence on leukocyte respiratory burst or serum lysozyme concentration. Tilapia supplemented with Sc and the Cr + Sc association did not present significant changes to the variables evaluated, despite higher accumulation of lymphocytes in the inflammatory exudate from fish treated with Sc. The results indicate that tilapia bred in net cages and supplemented with Cr presented higher total accumulation of cells at the inflammatory focus, thus indicating an increase in the inflammatory response induced by the bacterium, probably due to the reduction in cortisolemia and higher glucose consumption. Thus, supplementation with Cr had beneficial action, which facilitated development of acute inflammation induced by the bacterium, but did not affect neither leukocyte respiratory burst in the blood nor serum lysozyme concentration.

  4. Effects of chronic exposure of methomyl on the antioxidant system in liver of Nile tilapia (Oreochromis niloticus).

    PubMed

    Meng, Shun Long; Chen, Jia Zhang; Hu, Geng Dong; Song, Chao; Fan, Li Min; Qiu, Li Ping; Xu, Pao

    2014-03-01

    The chronic effect of methomyl on the antioxidant system in tilapia (Oreochromis niloticus) was investigated. Fish were exposed to sub-lethal concentrations of 0.2, 2, 20 and 200μgL(-1) for 30 days, and then transferred to methomyl-free water for 18 days. Hepatic antioxidant parameters, including Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Glutathione reductase (GR), Reduced glutathione (GSH) and oxidized glutathione (GSSG), were measured at 10min (day 0), 6, 12, 18, 24 and 30 days after starting the experiment and at 18 days after transferring to methomyl-free water. There were no significant changes in enzymatic activity and content of antioxidants in liver of tilapia exposed to 0.2μgL(-1) methomyl compared to controls. However, the results showed significant increases in activities of GST, GR, GPx and levels of GSSG accompanied by a decrease in GSH levels following methomyl exposure in tilapia to 2, 20 or 200μgL(-1) over the 30-day exposure period and the highest induction rates in GST, GR, GPx and GSSG were 150.87%, 163.21%, 189.76%, and 179.56% of the control respectively, and the highest inhibition rate in GSH was 50.67% of the control, suggesting the presence of oxidative stress. Thus it would appear that the 0.2μgL(-1) methomyl might be considered as the no observed adverse effect level (NOAEL). Recovery data showed that the effects produced by lower concentration of methomyl 20μgL(-1) were reversible but not at the higher 200μgL(-1) concentration.

  5. Additive genetic variation in resistance of Nile tilapia (Oreochromis niloticus) to Streptococcus iniae and S. agalactiae capsular type Ib: is genetic resistance correlated?

    USDA-ARS?s Scientific Manuscript database

    Streptococcus (S.) iniae and S. agalactiae are both economically important Gram positive bacterial pathogens affecting the globally farmed tilapia (Oreochromis spp.). Historically control of these bacteria in tilapia culture has included biosecurity, therapeutants and vaccination strategies. Genet...

  6. First description of the adult stage of Clinostomum cutaneum Paperna, 1964 (Digenea: Clinostomidae) from grey herons Ardea cinerea L. and a redescription of the metacercaria from the Nile tilapia Oreochromis niloticus niloticus (L.) in Kenya.

    PubMed

    Gustinelli, Andrea; Caffara, Monica; Florio, Daniela; Otachi, Elick O; Wathuta, Euty M; Fioravanti, Maria L

    2010-05-01

    The combined use of morphological and molecular studies allowed for the first time the recognition and description of the adult stage of Clinostomum cutaneum Paperna, 1964 from the grey heron Ardea cinerea L. in Kenya. A redescription of the metacercaria that infect Nile tilapia Oreochromis niloticus niloticus (L.) from the same aquatic environment is also presented. C. cutaneum differs from all other species of Clinostomum Leidy, 1856 in the shape of its uterus. Sequencing the rRNA confirmed the morphological similarity between adults from the grey heron and the metacercarial stage from tilapia, and a level of genetic similarity with the other previously sequenced Clinostomum spp. was observed. The need for a reorganisation of Clinostomum using both morphological and molecular methods is highlighted.

  7. Molecular and cytogenetic analysis of the telomeric (TTAGGG)n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae).

    PubMed

    Chew, Joyce S K; Oliveira, Claudio; Wright, Jonathan M; Dobson, Melanie J

    2002-03-01

    The majority of chromosomes in Oreochromis niloticus, as with most fish karyotyped to date, cannot be individually identified owing to their small size. As a first step in establishing a physical map for this important aquaculture species of tilapia we have analyzed the location of the vertebrate telomeric repeat sequence, (TTAGGG)n, in O. niloticus. Southern blot hybridization analysis and a Bal31 sensitivity assay confirm that the vertebrate telomeric repeat is indeed present at O. niloticus chromosomal ends with repeat tracts extending for 4-10 kb on chromosomal ends in erythrocytes. Fluorescent in situ hybridization revealed that (TTAGGG)n is found not only at telomeres, but also at two interstitial loci on chromosome 1. These data support the hypothesis that chromosome 1, which is significantly larger than all the other chromosomes in the karyotype, was produced by the fusion of three chromosomes and explain the overall reduction of chromosomal number from the ancestral teleost karyotype of 2n=48 to 2n=44 observed in tilapia.

  8. Comparison of adhesive gut bacteria composition, immunity, and disease resistance in juvenile hybrid tilapia fed two different Lactobacillus strains.

    PubMed

    Liu, Wenshu; Ren, Pengfei; He, Suxu; Xu, Li; Yang, Yaling; Gu, Zemao; Zhou, Zhigang

    2013-07-01

    This study compares the effects of two Lactobacillus strains, highly adhesive Lactobacillus brevis JCM 1170 (HALB) and less-adhesive Lactobacillus acidophilus JCM 1132 (LALB), on the survival and growth, adhesive gut bacterial communities, immunity, and protection against pathogenic bacterial infection in juvenile hybrid tilapia. During a 5-week feeding trial the fish were fed a diet containing 0 to 10(9) cells/g feed of the two Lactobacillus strains. Samples of intestine, kidney, and spleen were taken at the start and at 10, 20, and 35 days for analysis of stress tolerance and cytokine gene mRNA levels and to assess the diversity of adhesive gut bacterial communities. A 14-day immersion challenge with Aeromonas hydrophila NJ-1 was also performed following the feeding trial. The results showed no significant differences in survival rate, weight gain, or feed conversion in the different dietary treatments. The adhesive gut bacterial communities were strikingly altered in the fish fed either the HALB or the LALB, but the response was more rapid and substantial with the adhesive strain. The two strains induced similar changes in the patterns (upregulation or downregulation) of intestinal, splenic or kidney cytokine expression, but they differed in the degree of response for these genes. Changes in intestinal HSP70 expression levels coincided with changes in the similarity coefficient of the adhesive gut bacterial communities between the probiotic treatments. The highest dose of the HALB appeared to protect against the toxic effects of immersion in A. hydrophila (P < 0.05). In conclusion, the degree to which Lactobacillus strains adhere to the gut may be a favorable criterion in selecting probiotic strain for aquaculture.

  9. Growth and production performance of monosex tilapia (Oreochromis niloticus) fed with homemade feed in earthen mini ponds.

    PubMed

    Ahmed, G U; Sultana, N; Shamsuddin, M; Hossain, M Belal

    2013-12-01

    Field experiment was conducted to evaluate the growth performance of monosex tilapia using homemade feed with Peninsula Group fish meal and commercially available feed with local fish meal in earthen mini ponds from June-September 2010. Three ponds (T1) were supplied with prepared feed and the other three ponds (T2) with commercially available fish feed. Fish were fed at the rate of 10% of their body weight for the first thirty days then gradually reduced to 6% for the next ten days, 2% for the next ten days and 3% for remaining days. The temperature were ranged from 31.5-33.0 degrees C, DO from 5.5-15 mg L(-1) in T1 and 6.5-14 mg L(-1) in T2, pH from 7.1-8.0 in T1 and 7.1-7.7 in T2, alkalinity from 105-160 mg L(-1) inT1 and 100-145 mg L(-1) in T2, nitrate was 0.06 mg L(-1) in both treatments and ammonia from 0.02 and 0.04 mg L(-1) in T1 and T2, respectively. The results of the present study showed that the best weight gain was observed as 123.48 g in T1 than T2 (111.82 g). The Specific Growth Rate (SGR) was recorded 3.09 and 2.97 and the Food Conversion Ratio (FCR) was 1.51 and 1.40 in T1 and T2, respectively. There was significant (p < 0.05) variation among the survival rate (%) of fishes which were 75.55 and 90.37% in T1 and T2, respectively. The fish productions were 19076 and 16312.11 kg ha(-1) in T1 and T2. The highest net profit (Taka/ha/70 days) of Tk. 15, 83,213 was obtained with T1 So, the prepared feed showed better performance with monosex tilapia in compared with commercial fish feed with local fish meal.

  10. Cultivation of Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae in Batch culture using Nile tilapia effluent.

    PubMed

    Guerrero-Cabrera, Luis; Rueda, José A; García-Lozano, Hiram; Navarro, A Karin

    2014-06-01

    Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae were cultured in three volumes of Tilapia Effluent Medium (TEM) in comparison with the Bold Basal Medium (BBM) (Nichols and Bold, 1965). Specific growth rate (μ'), biomass dry productivity (Q), volumetric productivity (Qv) as well as lipid and protein content were measured. Then, volumetric productivities for both lipids and proteins were calculated (QVL and QVP). In Scenedesmus sp., BBM produced higher μ' and Qv than TEM in 1.5L volume. Chlorella sp. showed a higher QVL for BBM than TEM. Any observed difference in protein or lipid productivities among volumes was in favor of a greater productivity for 1.5L volume. Even when TEM had a larger protein content in Chlorella sp. than BBM, QVP was not different. Current results imply that TEM can be used as an alternative growth medium for algae when using Batch cultures, yet productivity is reduced.

  11. Major surfome and secretome profile of Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus): Insight into vaccine development.

    PubMed

    Li, Wei; Wang, Hai-Qing; He, Run-Zhen; Li, Yan-Wei; Su, You-Lu; Li, An-Xing

    2016-08-01

    Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel

  12. Aluminium sulfate exposure: A set of effects on hydrolases from brain, muscle and digestive tract of juvenile Nile tilapia (Oreochromis niloticus).

    PubMed

    Oliveira, Vagne Melo; Assis, Caio Rodrigo Dias; Costa, Helane Maria Silva; Silva, Raquel Pereira Freitas; Santos, Juliana Ferreira; Carvalho, Luiz Bezerra; Bezerra, Ranilson Souza

    2017-01-01

    Aluminium is a major pollutant due to its constant disposal in aquatic environments through anthropogenic activities. The physiological effects of this metal in fish are still scarce in the literature. This study investigated the in vivo and in vitro effects of aluminium sulfate on the activity of enzymes from Nile tilapia (Oreochromis niloticus): brain acetylcholinesterase (AChE), muscle cholinesterases (AChE-like and BChE-like activities), pepsin, trypsin, chymotrypsin and amylase. Fish were in vivo exposed during 14days when the following experimental groups were assayed: control group (CG), exposure to Al2(SO4)3 at 1μg·mL(-1) (G1) and 3μg·mL(-1) (G3) (concentrations compatible with the use of aluminium sulfate as coagulant in water treatment). In vitro exposure was performed using animals of CG treatment. Both in vivo and in vitro exposure increased cholinesterase activity in relation to controls. The highest cholinesterase activity was observed for muscle BChE-like enzyme in G3. In contrast, the digestive enzymes showed decreased activity in both in vivo and in vitro exposures. The highest inhibitory effect was observed for pepsin activity. The inhibition of serine proteases was also quantitatively analyzed in zymograms using pixel optical densitometry as area under the peaks (AUP) and integrated density (ID). These results suggest that the inhibition of digestive enzymes in combination with activation of cholinesterases in O. niloticus is a set of biochemical effects that evidence the presence of aluminium in the aquatic environment. Moreover, these enzymatic alterations may support further studies on physiological changes in this species with implications for its neurological and digestive metabolisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia.

    PubMed

    Nachtigall, Pedro G; Dias, Marcos C; Carvalho, Robson F; Martins, Cesar; Pinhal, Danillo

    2015-01-01

    A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates.

  14. Correlated changes in body shape after five generations of selection to improve growth rate in a breeding program for Nile tilapia Oreochromis niloticus in Brazil.

    PubMed

    de Oliveira, Carlos Antonio Lopes; Ribeiro, Ricardo Pereira; Yoshida, Grazyella Massako; Kunita, Natali Miwa; Rizzato, Gabriel Soriani; de Oliveira, Sheila Nogueira; Dos Santos, Alexandra Inês; Nguyen, Nguyen Hong

    2016-11-01

    Body shape is a commercial trait of great interest as it impacts profit and productivity of aquaculture enterprises. In the present study, we examined correlated changes in two measures of body shape (depth to length ratio, DL-R and ellipticity of mid sagittal plane, EL-H) from a selection program for high daily weight gain in a Nile tilapia population reared in freshwater cages in Brazil. Genetic parameters for body shape and its genetic association with growth traits (body weight and daily gain) were also estimated from 8,725 individuals with growth performance recorded over five generations from 2008 to 2013. Mixed model analysis showed that the selection program resulted in substantial improvement in growth performance (about 4 % genetic gain per generation or per year) and also brought about trivial changes in body shape. The heritabilities ranged from 0.470 to 0.564 for growth traits and 0.180 to 0.289 for body shape. The common family effects were low for all traits studied, accounting for only 3-11 % of total phenotypic variance. The genetic correlations between body shape and growth traits were weak, i.e., -0.385 between EL-H and growth traits and 0.28 between DL-R and body weight or daily gain. Strong and negative genetic association was found between the two body shape traits (rg = --0.955). Harvest body weight and daily gain are essentially the same traits, as indicated by the close to one genetic correlations between the two characters. Our results demonstrated that the selection process to increase growth rate had small, but slowly constant effect in body shape traits; and in the long term, the fish would have become rotund.

  15. Effects of sub-lethal and chronic lead concentrations on blood and liver ALA-D activity and hematological parameters in Nile tilapia.

    PubMed

    Dos Santos, Carlucio Rocha; Cavalcante, Ana Luiza Michel; Hauser-Davis, Rachel Ann; Lopes, Renato Matos; Mattos, Rita De Cássia Oliveira Da Costa

    2016-07-01

    Liver and blood δ-aminolevulinic acid dehydratase (ALA-D) inhibition by exposure to sub-lethal lead concentrations over time in Nile tilapia (Oreochromis niloticus) were investigated. All three lead concentrations (1mgkg(-1), 10mgkg(-1) and 100mgkg(-1)) significantly inhibited ALA-D activity in blood (319±29.2; 180±14.6 and 172±19µmols(-1)h(-1)L(-1) respectively) and liver (302±5.84; 201±41.4 and 93±22.1µmols(-1)h(-1)L(-1)) 24h after injection relative to controls (blood: 597±37.0µmols(-1)h(-1)L(-1); liver: 376±23.1µmols(-1)h(-1)L(-1)). Blood ALA-D was greatly inhibited in all but the highest lead dose. Fish were then exposed to 1mgkg(-1) lead for 9 days, and presented short-term hyperglycemia, decreased hemoglobin and hematocrit values and time-dependent blood ALA-D activity inhibition, corroborating blood ALA-D activity as being more suitable for investigating lead effects, showing dose and time-dependent ALA-D inhibition after lead exposure. The results of the present study also demonstrated that fish size affects blood ALA-D activity, as fish from the 24-h assay, which were slightly smaller (approximately 200g), showed higher ALA-D inhibition in response to lead exposure when compared to the fish from the 9-day assay (approximately 500g). Thus, fish size should always be taken into account both in the field and in laboratory settings, and efforts should be made to obtain uniform fish size samples for biomarker studies.

  16. MicroRNA-499 Expression Distinctively Correlates to Target Genes sox6 and rod1 Profiles to Resolve the Skeletal Muscle Phenotype in Nile Tilapia

    PubMed Central

    Carvalho, Robson F.; Martins, Cesar; Pinhal, Danillo

    2015-01-01

    A class of small non-coding RNAs, the microRNAs (miRNAs), has been shown to be essential for the regulation of specific cell pathways, including skeletal muscle development, maintenance and homeostasis in vertebrates. However, the relative contribution of miRNAs for determining the red and white muscle cell phenotypes is far from being fully comprehended. To better characterize the role of miRNA in skeletal muscle cell biology, we investigated muscle-specific miRNA (myomiR) signatures in Nile tilapia fish. Quantitative (RT-qPCR) and spatial (FISH) expression analyses revealed a highly differential expression (forty-four-fold) of miR-499 in red skeletal muscle compared to white skeletal muscle, whereas the remaining known myomiRs were equally expressed in both muscle cell types. Detailed examination of the miR-499 targets through bioinformatics led us to the sox6 and rod1 genes, which had low expression in red muscle cells according to RT-qPCR, FISH, and protein immunofluorescence profiling experiments. Interestingly, we verified that the high expression of miR-499 perfectly correlates with a low expression of sox6 and rod1 target genes, as verified by a distinctive predominance of mRNA destabilization and protein translational decay to these genes, respectively. Through a genome-wide comparative analysis of SOX6 and ROD1 protein domains and through an in silico gene regulatory network, we also demonstrate that both proteins are essentially similar in vertebrate genomes, suggesting their gene regulatory network may also be widely conserved. Overall, our data shed light on the potential regulation of targets by miR-499 associated with the slow-twitch muscle fiber type phenotype. Additionally the results provide novel insights into the evolutionary dynamics of miRNA and target genes enrolled in a putative constrained molecular pathway in the skeletal muscle cells of vertebrates. PMID:25793727

  17. Chronic diclofenac exposure affects gill integrity and pituitary gene expression and displays estrogenic activity in nile tilapia (Oreochromis niloticus).

    PubMed

    Gröner, Frederike; Höhne, Christin; Kleiner, Wibke; Kloas, Werner

    2017-01-01

    Oreochromis niloticus has been exposed to diclofenac (DCF), a nonsteroidal anti-inflammatory drug prevalent in the aquatic environment, for 80 days post-hatch (dph). Concentrations ranged from environmentally relevant (0.1 μg L(-1) and 1 μg L(-1) DCF) up to 100-fold thereof. Population relevant endpoints (hatching, survival, growth) as well as gill histopathology were analyzed. On this level of examination only gills exhibited mild to moderate alterations. On the contrary, biomarkers associated with reproduction were affected due to DCF exposure, indicating the potential to affect sexual differentiation and gametogenesis by acting as an estrogenic endocrine disrupting compound (EDC) in tilapia. Vitellogenin (VTG) gene expression was significantly induced at 1 μg L(-1) DCF. In order to find an explanation, gene expression patterns of key enzymes of the biotransformation phases I, II, and III have been analyzed. It seems very likely that the detoxification metabolism is induced in a dose dependent manner at higher concentrations of DCF leading to the expression pattern of VTG mRNA. Our results suggest that DCF at environmentally relevant concentrations adversely affects O. niloticus gill histopathology and pituitary gene expression, and has the potential to act as an estrogenic EDC. The sensitivity of various endpoints, however, differs and therefore these endpoints should be linked.

  18. A revised description of Gyrodactylus cichlidarum Paperna, 1968 (Gyrodactylidae) from the Nile tilapia, Oreochromis niloticus niloticus (Cichlidae), and its synonymy with G. niloticus Cone, Arthur et Bondad-Reantaso, 1995.

    PubMed

    García-Vásquez, Adriana; Hansen, Haakon; Shinn, Andrew P

    2007-06-01

    A recent infestation of Gyrodactylus cichlidarum Paperna, 1968 on yolk sac fry of Nile tilapia, Oreochromis niloticus niloticus (L.), in an isolated aquarium system in the U.K. resulted in high mortalities and provided an opportunity to study this species in greater detail. A tentative identification was made using the measurements and drawings of the ventral bar and hamuli provided in the original description; however, details on the morphology of the marginal hooks were lacking. A comparison of the gyrodactylid material collected from O. n. niloticus with the holotype of G. cichlidarum, the only known available specimen, from Mango tilapia, Sarotherodon galilaeus galilaeus (L.), confirmed its identity. Proteolytic digestion and image analysis of the opisthaptoral hard parts were used to obtain tissue-free, accurate measurements as part of a complete revised description of G. cichlidarumn. Further, a comparison of G. cichlidarum from both hosts with the holotype and several paratypes of Gyrodactylus niloticus Cone, Arthur et Bondad-Reantaso, 1995 cited as parasitizing captive stocks of Nile tilapia in the Philippines revealed the two species to be synonymous. An 803 bp fragment of the ribosomal internal transcribed spacers 1 and 2 and the 5.8S was obtained and is provided with the revised description. This is the first DNA sequence from a Gyrodactylus species originating from the African continent. The sequence is very divergent from other species in the genus and only the 5.8S sequence places it unambiguously in the genus Gyrodactylus. In addition to G. cichlidarum, two specimens of another morphological similar species of Gyrodactylus were also found on the UK held stock of O. n. niloticus. These latter specimens, Gyrodacrylus sp., differed from G. cichlidarum in having a longer hamulus point with a smaller hamulus aperture and possessing marginal hook sickles that had a shorter shaft with a longer point giving the sickles a more rounded, closed appearance.

  19. Development of Streptococcus agalactiae vaccines for tilapia.

    PubMed

    Liu, Guangjin; Zhu, Jielian; Chen, Kangming; Gao, Tingting; Yao, Huochun; Liu, Yongjie; Zhang, Wei; Lu, Chengping

    2016-12-21

    Vaccination is a widely accepted and effective method to prevent most pathogenic diseases in aquaculture. Various species of tilapia, especially Nile tilapia Oreochromis niloticus, are farmed worldwide because of their high consumer demand. Recently, the tilapia-breeding industry has been hampered by outbreaks of Streptococcus agalactiae infection, which cause high mortality and huge economic losses. Many researchers have attempted to develop effective S. agalactiae vaccines for tilapia. This review provides a summary of the different kinds of S. agalactiae vaccines for tilapia that have been developed recently. Among the various vaccine types, inactivated S. agalactiae vaccines showed superior protection efficiency when compared with live attenuated, recombinant and DNA vaccines. With respect to vaccination method, injecting the vaccine into tilapia provided the most effective immunoprotection. Freund's incomplete adjuvant appeared to be suitable for tilapia vaccines. Other factors, such as immunization duration and number, fish size and challenge dose, also influenced the vaccine efficacy.

  20. Genetic parameters for uniformity of harvest weight and body size traits in the GIFT strain of Nile tilapia.

    PubMed

    Marjanovic, Jovana; Mulder, Han A; Khaw, Hooi L; Bijma, Piter

    2016-06-10

    Animal breeding programs have been very successful in improving the mean levels of traits through selection. However, in recent decades, reducing the variability of trait levels between individuals has become a highly desirable objective. Reaching this objective through genetic selection requires that there is genetic variation in the variability of trait levels, a phenomenon known as genetic heterogeneity of environmental (residual) variance. The aim of our study was to investigate the potential for genetic improvement of uniformity of harvest weight and body size traits (length, depth, and width) in the genetically improved farmed tilapia (GIFT) strain. In order to quantify the genetic variation in uniformity of traits and estimate the genetic correlations between level and variance of the traits, double hierarchical generalized linear models were applied to individual trait values. Our results showed substantial genetic variation in uniformity of all analyzed traits, with genetic coefficients of variation for residual variance ranging from 39 to 58 %. Genetic correlation between trait level and variance was strongly positive for harvest weight (0.60 ± 0.09), moderate and positive for body depth (0.37 ± 0.13), but not significantly different from 0 for body length and width. Our results on the genetic variation in uniformity of harvest weight and body size traits show good prospects for the genetic improvement of uniformity in the GIFT strain. A high and positive genetic correlation was estimated between level and variance of harvest weight, which suggests that selection for heavier fish will also result in more variation in harvest weight. Simultaneous improvement of harvest weight and its uniformity will thus require index selection.

  1. Evaluation of the dairy/yeast prebiotic, GroBiotic-A, in the diet of the juvenile Nile tilapia, Oreochromis niloticus

    USDA-ARS?s Scientific Manuscript database

    Tilapia production ranks among the highest worldwide due to their fast growth and ability to thrive under various culture conditions. However, tilapias are still susceptible to outbreaks of systemic disease caused by opportunistic bacterial pathogens such as Streptococcus inaie. These epizootic ev...

  2. The role of vitamins A, C, E and selenium as antioxidants against genotoxicity and cytotoxicity of cadmium, copper, lead and zinc on erythrocytes of Nile tilapia, Oreochromis niloticus.

    PubMed

    Harabawy, Ahmed S A; Mosleh, Yahia Y I

    2014-06-01

    This study was carried out to investigate the genotoxic and cytotoxic potentials of sublethal concentration (5mg L(-1)) of combined metals including Cd, Cu, Pb and Zn (1.25mg L(-1) of each) on erythrocytes of Nile tilapia, Oreochromis niloticus after exposure for five and seven days; and to evaluate the protective role of vitamin E alone and a combination of selenium (Se) with vitamins A, C and E which was added to the diet as antioxidants against the genotoxicity and cytotoxicity of these metals. This was accomplished by application of micronuclei (MN), binuclei (BN), nuclear abnormalities (NAs) assays in addition to morphological erythrocyte alteration (MAEs) assay. The results revealed that, exposure of O. niloticus to Cd, Cu, Pb and Zn induced the formation of nine genotoxic endpoints including MN, BN and seven patterns of NAs, kidney-shaped nuclei, blebbed nuclei, lobed nuclei, bilobed nuclei, notched nuclei, hook-shaped nuclei and vacuolated nuclei; and five patterns of morphological malformations were recorded as cytotoxic endpoints including echinocytes, acanthocytes, teardrop-like erythrocytes, microcytes and fused erythrocytes. Frequencies of these abnormalities were significantly different (p<0.05) in comparison to control group. The maximum number of MN, BN and most of NAs and MAEs were recorded in the 5th day of exposure and then start to decrease as recorded in the 7th day. Addition of the vitamin E alone to the diet significantly (p<0.05) decreased the frequencies of MN, BN, and most of NAs and MAEs to become less than those recorded in metals-treated fish. But, addition of a combination of Se with vitamins A, C and E in the diet resulted in more significant decrease (p<0.05) in frequencies of MN, BN, NAs and most MAEs to become less than those recorded in both, fish treated with metals only and fish treated with metals and supplied with vitamin E alone in the diet. Therefore, this study confirms the powerful protective potential of the vitamin E

  3. Growth, body fatty acid composition, immune response and resistance to Streptococcus iniae of hybrid tilapia, Oreochromis niloticus X O. aureus, fed diets containing various levels of linoleic and linolenic acids

    USDA-ARS?s Scientific Manuscript database

    The effects of dietary linoleic (LA) and linolenic acids (LN) on growth and immunity of all-male hybrid tilapia, Oreochromis niloticus × O. aureus, were evaluated for 10 weeks. Fish fed 0.12% LA + 0% LN had the lowest weight gain (WG) but was not significantly different from diets containing 0.5% LA...

  4. Tilapia: profile and economic importance

    USDA-ARS?s Scientific Manuscript database

    Nile tilapia’s various attributes and an increasing global demand for this fish make it one of the most cultured species, with a global production estimated at nearly 2.5 million tonnes in 2010, and an estimated value of approximately $5 billion. Increased demand in the U.S. market for tilapia produ...

  5. First records of Ambiphrya and Vorticella spp. (Protozoa, Ciliophora) in cultured Nile tilapia (Oreochromis niloticus) in the central region of Saudi Arabia

    PubMed Central

    Abdel-Baki, Abdel-Azeem S.; Gewik, Mohamed M.; Al-Quraishy, Saleh

    2014-01-01

    The present study was carried out as part of an ongoing general survey seeking to uncover protozoan parasites infecting cultured tilapia in the central region of Saudi Arabia. In the sample of 400 specimens of tilapia (Oreochromis niloticus) 30 were infested with Ambiphrya ameiuri simultaneously with Vorticella sp. Morphometric criteria were used to describe and identify these species and this study presents the first records of these species among cultured fish in Saudi Arabia. PMID:25473359

  6. First records of Ambiphrya and Vorticella spp. (Protozoa, Ciliophora) in cultured Nile tilapia (Oreochromis niloticus) in the central region of Saudi Arabia.

    PubMed

    Abdel-Baki, Abdel-Azeem S; Gewik, Mohamed M; Al-Quraishy, Saleh

    2014-12-01

    The present study was carried out as part of an ongoing general survey seeking to uncover protozoan parasites infecting cultured tilapia in the central region of Saudi Arabia. In the sample of 400 specimens of tilapia (Oreochromis niloticus) 30 were infested with Ambiphrya ameiuri simultaneously with Vorticella sp. Morphometric criteria were used to describe and identify these species and this study presents the first records of these species among cultured fish in Saudi Arabia.

  7. Growth Performance and Resistance to Streptococcus iniae of Nile Tilapia, Oreochromis niloticus Fed Various Dietary Levels of Thiamin

    USDA-ARS?s Scientific Manuscript database

    Thiamin or vitamin B1 functions in all cells as the coenzyme thiamin pyrophosphate that involves in the oxidative decarboxylation of an alpha-keto acids and the transketolase reactions in the pentose phosphate pathway. Thiamin has been demonstrated to be essential in diets of fish, and quantitative ...

  8. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation.

    PubMed

    Kalujnaia, Svetlana; Hazon, Neil; Cramb, Gordon

    2016-08-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells.

  9. Myo-inositol phosphate synthase expression in the European eel (Anguilla anguilla) and Nile tilapia (Oreochromis niloticus): effect of seawater acclimation

    PubMed Central

    Kalujnaia, Svetlana; Hazon, Neil

    2016-01-01

    A single MIPS gene (Isyna1/Ino1) exists in eel and tilapia genomes with a single myo-d-inositol 3-phosphate synthase (MIPS) transcript identified in all eel tissues, although two MIPS spliced variants [termed MIPS(s) and MIPS(l)] are found in all tilapia tissues. The larger tilapia transcript [MIPS(l)] results from the inclusion of the 87-nucleotide intron between exons 5 and 6 in the genomic sequence. In most tilapia tissues, the MIPS(s) transcript exhibits much higher abundance (generally >10-fold) with the exception of white skeletal muscle and oocytes, in which the MIPS(l) transcript predominates. SW acclimation resulted in large (6- to 32-fold) increases in mRNA expression for both MIPS(s) and MIPS(l) in all tilapia tissues tested, whereas in the eel, changes in expression were limited to a more modest 2.5-fold increase and only in the kidney. Western blots identified a number of species- and tissue-specific immunoreactive MIPS proteins ranging from 40 to 67 kDa molecular weight. SW acclimation failed to affect the abundance of any immunoreactive protein in any tissue tested from the eel. However, a major 67-kDa immunoreactive protein (presumed to be MIPS) found in tilapia tissues exhibited 11- and 54-fold increases in expression in gill and fin samples from SW-acclimated fish. Immunohistochemical investigations revealed specific immunoreactivity in the gill, fin, skin, and intestine taken from only SW-acclimated tilapia. Immunofluorescence indicated that MIPS was expressed within gill chondrocytes and epithelial cells of the primary filaments, basal epithelial cell layers of the skin and fin, the cytosol of columnar intestinal epithelial and mucous cells, as well as unknown entero-endocrine-like cells. PMID:27252471

  10. Comprehensive identification and profiling of Nile tilapia (Oreochromis niloticus) microRNAs response to Streptococcus agalactiae infection through high-throughput sequencing.

    PubMed

    Wang, Bei; Gan, Zhen; Cai, Shuanghu; Wang, Zhongliang; Yu, Dapeng; Lin, Ziwei; Lu, Yishan; Wu, Zaohe; Jian, Jichang

    2016-07-01

    MicroRNAs are a kind of small non-coding RNAs that participate in various biological processes. Deregulated microRNA expression is associated with several types of diseases. Tilapia (Oreochromis niloticus) is an important commercial fish species in China. To identify miRNAs and investigate immune-related miRNAs of O. niloticus, we applied high-throughput sequencing technology to identify and analyze miRNAs from tilapia infected with Streptococcus agalactiae at a timescale of 72 h divided into six different time points. The results showed that a total of 3009 tilapia miRNAs were identified, including in 1121 miRNAs which have homologues in the currently available databases and 1878 novel miRNAs. The expression levels of 218 tilapia miRNAs were significantly altered at 6 h-72 h post-bacterial infection (pi), and these miRNAs were therefore classified as differentially expressed tilapia miRNAs. For the 1121 differentially expressed tilapia miRNAs target 41961 genes. GO and KEGG enrichment analysis revealed that some target genes of tilapia miRNAs were grouped mainly into the categories of apoptotic process, signal pathway, and immune response. This is the first report of comprehensive identification of O. niloticus miRNAs being differentially regulated in spleen in normal conditions relating to S. agalactiae infection. This work provides an opportunity for further understanding of the molecular mechanisms of miRNA regulation in O. niloticus host-pathogen interactions.

  11. Temperature modulates hepatic carbohydrate metabolic enzyme activity and gene expression in juvenile GIFT tilapia (Oreochromis niloticus) fed a carbohydrate-enriched diet.

    PubMed

    Qiang, J; He, J; Yang, H; Wang, H; Kpundeh, M D; Xu, P; Zhu, Z X

    2014-02-01

    The effects of rearing temperature on hepatic glucokinase (GK), glucose-6-phosphatase (G6Pase) and Glucose-6-phosphate dehydrogenase (G6PD) activity and gene expression were studied in GIFT (genetically improved farmed tilapia) tilapia fed a high carbohydrate diet containing 28% crude protein, 5% crude lipid and 40% wheat starch. Triplicate groups of fish (11.28 g initial body weight) were fed the diet for 45 days at 22 °C, 28 °C or 34 °C. At the end of the trial, final body weight of juvenile at 28 °C (59.12 g) was higher than that of the fish reared at 22 °C (27.13 g) and 34 °C (43.17 g). Feed intake, feed efficiency and protein efficiency ratio were also better at 28 °C. Liver glycogen levels were higher at 28 °C, while plasma glucose levels were higher in the 22 °C group. Significant (P<0.05) effects of water temperature on enzymes activities and gene expression were observed. Hepatic GK activity and mRNA level were higher at 28 °C than at 34 °C. Higher G6Pase and G6PD activity and gene expression were observed at 22 °C. Overall, the data show that juveniles reared at 28 °C exhibited enhanced liver glycolytic capacity. In contrast, hepatic gluconeogenesis and lipogenesis were increased by low temperature (22 °C).

  12. An outbreak of disease caused by Francisella sp. in Nile tilapia Oreochromis niloticus at a recirculation fish farm in the UK.

    PubMed

    Jeffery, Keith R; Stone, David; Feist, Stephen W; Verner-Jeffreys, David W

    2010-09-02

    This study details the first diagnosis of Francisella sp. in tilapia in the United Kingdom. Losses of tilapia fry at a recirculation fish farm in England were investigated, giving a presumptive positive diagnosis of infection with Francisella sp. by histopathological examination. Most fish sampled showed moderate to marked pathology of the major organs, with lesions being present in most tissues. The most obvious host response was granuloma formulation. A subsequent follow-up visit provided further evidence for the presence of a Francisella species. PCR amplicons were obtained using Francisella spp.-specific primers that shared 100% sequence identity with the 16S rRNA gene of the type strain of the species F. asiatica previously described as the cause of disease in tilapia in Southeast Asia and Central America. This outbreak and the subsequent investigation emphasise the importance of strict biosecurity at fish farms and the care that needs to be taken when using a new supplier of fish.

  13. Successful production of Nile and blue tilapia fry - findings based on degree days and demonstrated for earthen ponds in subtropical climates

    USDA-ARS?s Scientific Manuscript database

    Degree-days can be used to adjust for seasonal variation in water temperature when planning tilapia fingerling production strategies and are calculated by subtracting a threshold temperature ("biological zero") from the mean daily water temperature; the threshold temperature is the temperature below...

  14. Responses and recovery pattern of sex steroid hormones in testis of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of methomyl.

    PubMed

    Meng, Shun Long; Qiu, Li Ping; Hu, Geng Dong; Fan, Li Min; Song, Chao; Zheng, Yao; Wu, Wei; Qu, Jian Hong; Li, Dan Dan; Chen, Jia Zhang; Xu, Pao

    2016-12-01

    Tilapia were exposed to sublethal methomyl concentrations of 0, 0.2, 2, 20 or 200 μg/L for 30 days, and then transferred to methomyl-free water for 18 days. The sexual steroid hormones 17β-estradiol (E2), testosterone (T), and 11-ketotestosterone (11-KT) in tilapia testes were examined at 0, 6, 12, 18, 24 and 30 days after methomyl exposure, and at 18 days after fish were transferred to methomyl-free water. There were no significant changes in the hormone parameters in testes of tilapia exposed to low concentration 0.2 and 2 μg/L methomyl compared with the controls. However, high concentration 20 and 200 μg/L methomyl had the potential to disrupt the endocrine system of male tilapia, as shown by an increase in E2 and a decrease in T and 11-KT in the testes. Thus, it would appear that the 2 μg/L methomyl might be considered the no-observed-adverse-effect level. Recovery data showed that the effects produced by the lower concentration of 20 μg/L were reversible but the effects were not reversible at the higher concentration of 200 μg/L.

  15. Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus.

    PubMed

    Iwashita, Marina Keiko P; Nakandakare, Ivan B; Terhune, Jeffery S; Wood, Theresa; Ranzani-Paiva, Maria José T

    2015-03-01

    A feeding trial was conducted to investigate the effects of dietary administration of probiotic with Bacillus subtilis, Aspergillus oryzae and Saccharomyces cerevisiae on growth, innate immune response, Hemato-immunological parameters and disease resistance of Nile tilapia, Oreochromis niloticus. Animals were distributed in three equal groups, each of five replicates and received one of the following experimental diets for four weeks: Control, non-supplemented diet; 5 g kg(-1) probiotic mixture (B. subtilis 1.5 × 10(9) CFU g(-1), S. cerevisiae 10(9) CFU g(-1) and A. oryzae 2 × 10(9) CFU g(-1)); and 10 g kg(-1) probiotic mixture (B. subtilis 3.0 × 10(9) CFU g(-1), S. cerevisiae 2.0 × 10(9) CFU g(-1) and A. oryzae 4.0 × 10(9) CFU g(-1)). The respiratory burst activity, white blood cells and hematological parameters were evaluated after four, five and six weeks of feeding. At the end of the growth trial, fish were sampled for intestinal microbiology and challenged by intraperitoneal injection of LD50 concentration of Aeromonas hydrophila and Streptococcus iniae. Mortality was recorded for the following 3 weeks. Results showed that administration of the probiotic had no significant effect on the growth rates of Nile tilapias, although the fish fed probiotics had better feed conversion. Respiratory burst activity, erythrocyte fragility and levels of white blood cells were significantly improved in tilapias fed diet supplemented with probiotic levels (P < 0.05), which may exhibit up-regulating effects on tilapia immune parameters. The cumulative mortality after A. hydrophila and S. iniae challenge decreased in tilapias fed with probiotic (P < 0.05). The present study demonstrated the potential of B. subtilis, S. cerevisiae and A. oryzae combined as beneficial dietary probiotic in juvenile O. niloticus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. First record of three African trichodinids (Ciliophora: Peritrichida) in cultured Nile tilapia (Oreochromis niloticus) in Saudi Arabia with re-evaluation of their host specificity.

    PubMed

    Abdel-Baki, Abdel-Azeem Sh; Al Ghamdi, Ali; Al-Quraishy, Saleh

    2017-02-18

    Saudi Arabia has a developing aquaculture industry that farms primarily tilapia. Although trichodinids are presumably the most usually encountered protozoan parasites in these cultured fish, they have rarely been studied in this context, and there is no data on the species that might infect cultured tilapia in Saudi Arabia. The present study was therefore carried out as a general survey to investigate the occurrence and identify the species of trichodinids that can infect cultured tilapia (Oreochromis niloticus) in Saudi Arabia. A total of 500 tilapia fish were collected from fish farms in Riyadh city and examined in order to determine the species of trichodinids present in the positive specimens. Three species of trichodinids (Trichodina maritinkae, T. centrostrigeata and T. frenata) were isolated and described as new records in Saudi Arabia. These trichodinids were found simultaneously in the same fish with overall prevalence of 20% (100/500). The identification and characterization of these three species are documented based on Riyadh specimens, for the first time. Additionally, the present paper confirms the existence of T. frenata for the second time globally and establishes this trichodinid as a new parasite for O. niloticus. T. maritinkae is highly specific to clariids, and previously, it has not been reported from any fish species other than clariids. The present work also confirmed that T. centrostrigeata can also infest cichlid fish. The list of host records of these species is expanded and their host specificity re-evaluated based on the results of this study in addition to the previously published data. We conclude that there is a need for further study of the impacts of these Trichodina spp. on Saudi Arabian fishery sector.

  17. A New and Fast Technique to Generate Offspring after Germ Cells Transplantation in Adult Fish: The Nile Tilapia (Oreochromis niloticus) Model

    PubMed Central

    Lacerda, Samyra M. S. N.; Batlouni, Sergio R.; Costa, Guilherme M. J.; Segatelli, Tânia M.; Quirino, Bruno R.; Queiroz, Bruno M.; Kalapothakis, Evanguedes; França, Luiz R.

    2010-01-01

    Background Germ cell transplantation results in fertile recipients and is the only available approach to functionally investigate the spermatogonial stem cell biology in mammals and probably in other vertebrates. In the current study, we describe a novel non-surgical methodology for efficient spermatogonial transplantation into the testes of adult tilapia (O. niloticus), in which endogenous spermatogenesis had been depleted with the cytostatic drug busulfan. Methodology/Principal Findings Using two different tilapia strains, the production of fertile spermatozoa with donor characteristics was demonstrated in adult recipient, which also sired progeny with the donor genotype. Also, after cryopreservation tilapia spermatogonial cells were able to differentiate to spermatozoa in the testes of recipient fishes. These findings indicate that injecting germ cells directly into adult testis facilitates and enable fast generation of donor spermatogenesis and offspring compared to previously described methods. Conclusion Therefore, a new suitable methodology for biotechnological investigations in aquaculture was established, with a high potential to improve the production of commercially valuable fish, generate transgenic animals and preserve endangered fish species. PMID:20505774

  18. Responses of glutathione-related antioxidant defense system in serum of Nile tilapia (Oreochromis niloticus) exposed to sublethal concentration of methomyl and recovery pattern.

    PubMed

    Meng, Shun-Long; Qu, Jian-Hong; Fan, Li-Min; Qiu, Li-Ping; Chen, Jia-Zhang; Xu, Pao

    2015-04-01

    Tilapia were exposed to sublethal concentrations of 0, 0.2, 2, 20, or 200 μg/L for 30 days, and then transferred to methomyl-free water for 18 days. GST, GPx, GR, GSH, and GSSG in tilapia serum were examined at 0, 6, 12, 18, 24, and 30 days after methomyl exposure and at 18 days after transferring to methomyl-free water. There were no significant changes in antioxidants activities and contents in serum of tilapia exposed to 0.2 μg/L. Significant increases in GST, GR, GPx, and GSSG accompanied by a decrease in GSH were observed following methomyl exposure to 2, 20, or 200 μg/L, suggesting the presence of oxidative stress. Thus, it would appear the 0.2 μg/L methomyl might be considered the no observed adverse effect level. Recovery data showed that the effects produced by lower concentration of 20 μg/L were reversible but not at the higher 200 μg/L concentration.

  19. Safety and immunogenicity of an oral DNA vaccine encoding Sip of Streptococcus agalactiae from Nile tilapia Oreochromis niloticus delivered by live attenuated Salmonella typhimurium.

    PubMed

    Huang, L Y; Wang, K Y; Xiao, D; Chen, D F; Geng, Y; Wang, J; He, Y; Wang, E L; Huang, J L; Xiao, G Y

    2014-05-01

    Attenuated Salmonella typhimurium SL7207 was used as a carrier for a reconstructed DNA vaccine against Streptococcus agalactiae. A 1.02 kb DNA fragment, encoding for a portion of the surface immunogenic protein (Sip) of S. agalactiae was inserted into pVAX1. The recombinant plasmid pVAX1-sip was transfected in EPC cells to detect the transient expression by an indirect immunofluorescence assay, together with Western blot analysis. The pVAX1-sip was transformed by electroporation into SL7207. The stability of pVAX1-sip into Salmonella was over 90% after 50 generations with antibiotic selection in vitro while remained stable over 80% during 35 generations under antibiotic-free conditions. The LD50 of SL/pVAX1-sip was 1.7 × 10(11) CFU/fish by intragastric administration which indicated a quite low virulence. Tilapias were inoculated orally at 10(8) CFU/fish, the recombinant bacteria were found present in intestinal tract, spleens and livers and eventually eliminated from the tissues 4 weeks after immunization. Fish immunized at 10(7), 10(8) and 10(9) CFU/fish with different immunization times caused various levels of serum antibody and an effective protection against lethal challenge with the wild-type strain S. agalactiae. Integration studies showed that the pVAX1-sip did not integrate with tilapia chromosomes. The DNA vaccine SL/pVAX1-sip was proved to be safe and effective in protecting tilapias against S. agalactiae infection.

  20. SNP marker detection and genotyping in tilapia.

    PubMed

    Van Bers, N E M; Crooijmans, R P M A; Groenen, M A M; Dibbits, B W; Komen, J

    2012-09-01

    We have generated a unique resource consisting of nearly 175 000 short contig sequences and 3569 SNP markers from the widely cultured GIFT (Genetically Improved Farmed Tilapia) strain of Nile tilapia (Oreochromis niloticus). In total, 384 SNPs were selected to monitor the wider applicability of the SNPs by genotyping tilapia individuals from different strains and different geographical locations. In all strains and species tested (O. niloticus, O. aureus and O. mossambicus), the genotyping assay was working for a similar number of SNPs (288-305 SNPs). The actual number of polymorphic SNPs was, as expected, highest for individuals from the GIFT population (255 SNPs). In the individuals from an Egyptian strain and in individuals caught in the wild in the basin of the river Volta, 197 and 163 SNPs were polymorphic, respectively. A pairwise calculation of Nei's genetic distance allowed the discrimination of the individual strains and species based on the genotypes determined with the SNP set. We expect that this set will be widely applicable for use in tilapia aquaculture, e.g. for pedigree reconstruction. In addition, this set is currently used for assaying the genetic diversity of native Nile tilapia in areas where tilapia is, or will be, introduced in aquaculture projects. This allows the tracing of escapees from aquaculture and the monitoring of effects of introgression and hybridization.

  1. In Vitro Evaluation of the Probiotic and Safety Properties of Bacteriocinogenic and Non-Bacteriocinogenic Lactic Acid Bacteria from the Intestines of Nile Tilapia and Common Carp for Their Use as Probiotics in Aquaculture.

    PubMed

    Kaktcham, Pierre Marie; Temgoua, Jules-Bocamdé; Zambou, François Ngoufack; Diaz-Ruiz, Gloria; Wacher, Carmen; Pérez-Chabela, María de Lourdes

    2017-07-27

    In this study, seven bacteriocinogenic and non-bacteriocinogenic LAB strains previously isolated from the intestines of Nile tilapia and common carp and that showed potent antibacterial activity against host-derived and non-host-derived fish pathogens were assayed for their probiotic and safety properties so as to select promising candidates for in vivo application as probiotic in aquaculture. All the strains were investigated for acid and bile tolerances, transit tolerance in simulated gastrointestinal conditions, for cell surface characteristics including hydrophobicity, co-aggregation and auto-aggregation, and for bile salt hydrolase activity. Moreover, haemolytic, gelatinase and biogenic amine-producing abilities were investigated for safety assessment. The strains were found to be tolerant at low pH (two strains at pH 2.0 and all the strains at pH 3.0). All of them could also survive in the presence of bile salts (0.3% oxgall) and in simulated gastric and intestinal juices conditions. Besides, three of them were found to harbour the gtf gene involved in pH and bile salt survival. The strains also showed remarkable cell surface characteristics, and 57.14% exhibited the ability to deconjugate bile salts. When assayed for their safety properties, the strains prove to be free from haemolytic activity, gelatinase activity and they could neither produce biogenic amines nor harbour the hdc gene. They did not also show antibiotic resistance, thus confirming to be safe for application as probiotics. Among them, Lactobacillus brevis 1BT and Lactobacillus plantarum 1KMT exhibited the best probiotic potentials, making them the most promising candidates.

  2. Diplostomiasis in cultured and wild tilapia Oreochromis niloticus in Guerrero State, Mexico.

    PubMed

    Violante-González, Juan; García-Varela, Martín; Rojas-Herrera, Agustín; Guerrero, Salvador Gil

    2009-09-01

    This paper is a comparative study of Diplostomum (Austrodiplostomum) compactum (Lutz, 1928) in Nile tilapia Oreochromis niloticus (Linneo) from two fish farms and two nearby coastal lagoons in Guerrero state, Mexico. The higher infections levels in cultured tilapia than wild tilapia is attributed to higher fish densities in the culture systems and higher abundance of the snail Biomphalaria cf. havanensis (Pteiffer), first intermediate host of this parasite in freshwater and brackish water systems.

  3. Molecular characterization and expression of a granzyme of an ectothermic vertebrate with chymase-like activity expressed in the cytotoxic cells of Nile tilapia (Oreochromis niloticus).

    PubMed

    Praveen, Kesavannair; Leary, John H; Evans, Donald L; Jaso-Friedmann, Liliana

    2006-02-01

    We have identified the gene coding for a novel serine protease with close similarities to mammalian granzymes from nonspecific cytotoxic cells of a teleost fish Oreochromis niloticus. The genomic organization of tilapia granzyme-1 (TLGR-1) has the signature five-exon-four-intron structure shared by all granzymes and similar hematopoietic Ser proteases. Molecular modeling studies suggested a granzyme-like structure for this protein with four disulfide linkages and two additional Cys residues. The expression of this gene is found to be restricted to cytotoxic cell populations with a low level of constitutive expression when compared to similar granzymes in other teleost species. High levels of transcriptional activation of TLGR-1 with different stimuli suggested that this gene is highly induced during immune reactions. Triplet residues around the active site Ser of TLGR, which determines the primary substrate specificity of granzymes, differ significantly from that of other granzymes. Recombinant TLGR-1 was expressed in the mature and proenzyme forms using pPICZ-alpha vector in the Pichia pastoris expression system. Recombinant TLGR-1 was used to determine the primary substrate specificity of this protease using various synthetic thiobenzyl ester substrates. In vitro enzyme kinetics assays suggested a preference for residues with bulky side chains at the P1 site, indicating a chymase-like activity for this protease. These results indicate the presence of novel granzymes in cytotoxic cells from ectothermic vertebrates.

  4. Effects of Dietary Yeast (Saccharomyces cerevisia) Supplementation in Practical Diets of Tilapia (Oreochromis niloticus)

    PubMed Central

    Ozório, Rodrigo O. A.; Portz, Leandro; Borghesi, Ricardo; Cyrino, José E. P.

    2012-01-01

    Simple Summary World communities are concerned about the increasing impact of the aquaculture activities on fisheries resources. Aquaculture sector uses 2–5 times more fishmeal to feed farmed species than what is supplied by the farmed product. Therefore, the reduction of fishmeal dependency may provide more economic and environmentally friendly aquaculture. By identifying alternative protein sources, the authors find that brewer’s yeast is a suitable raw material as fishmeal replacement in feed of tilapia. The 15% inclusion may promote growth without affecting the end-product quality. Abstract A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g) were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3) and fed to apparent satiation six isonitrogenous (27% crude protein) and isoenergetic (19 kJ/g) diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet) in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day) decreased with increasing dietary yeast level (P < 0.0001). Voluntary feed intake (VFI, %BW/day) did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition. PMID:26486773

  5. Molecular characterization and expression analyses of cDNAs encoding the thioredoxin-interacting protein and selenoprotein P genes and histological changes in Nile tilapia (Oreochromis niloticus) in response to silver nanoparticle exposure.

    PubMed

    Thummabancha, Kubpaphas; Onparn, Nuttaphon; Srisapoome, Prapansak

    2016-02-15

    Herein, Nile tilapia thioredoxin-interacting protein (On-TXNIP) and selenoprotein P (On-SEPP) cDNAs were cloned and characterized. The full-length On-TXNIP cDNA contained 2 arrestin domains, 2 conserved cysteine residues that bind to thioredoxin to inhibit thioredoxin function, and 2 PPXY motifs, which negatively regulate the protein by stimulating binding to E3 ubiquitin ligase. The On-SEPP cDNA contained 17 selenocysteines (Sec) encoded by the TGA codon, which can be recognized as either a stop codon or a Sec codon. The On-SEPP cDNA also carried 2 typical SECIS elements located in the 3'UTR that are important for selenocysteine translation. Evolutionary analyses of both the On-TXNIP and On-SEPP genes revealed that these genes are closely related to the TXNIP and SEPP genes in zebrafish (Danio rerio), with amino acid similarities of 91.8% and 61.9%, respectively. A normal tissue distribution analysis indicated that the On-TXNIP and On-SEPP genes were ubiquitously expressed in all tissues examined, and the highest expression levels of these genes were observed in peripheral blood leukocytes (PBLs) and the trunk kidney, respectively. The expression levels of On-TXNIP and On-SEPP transcripts were acutely and chronically analyzed following the injection of fish with 1, 10 or 100mg/kg silver nanoparticles (Ag NPs). Significant up-regulation of On-TXNIP and On-SEPP transcripts was observed in the liver, spleen, and head kidney at the early phase of Ag NP exposure (hours 6 through 48). Down-regulation of On-SEPP transcripts was clearly observed in the liver at weeks 1 to 4. Histopathology analysis demonstrated that the fish livers exhibited a dramatic infiltration of Kupffer cells, elevated bi-nucleated cells, expanded sinusoidal blood congestion and severe necrosis in a dose-dependent manner. Based on these findings, coupling of the expression analysis of these two cellular stress response genes and histopathological observation of fish exposed to Ag NPs should be

  6. Pubertal effects of 17α-methyltestosterone on GH-IGF-related genes of the hypothalamic-pituitary-liver-gonadal axis and other biological parameters in male, female and sex-reversed Nile tilapia.

    PubMed

    Phumyu, Nonglak; Boonanuntanasarn, Surintorn; Jangprai, Araya; Yoshizaki, Goro; Na-Nakorn, Uthairat

    2012-06-01

    The influence of 17α-methyltestosterone (MT) on growth responses, biological parameters and the expression of genes involved in the GH-IGF pathway of the hypothalamic-pituitary-liver-gonadal axis were investigated in female, male, and sex-reversed Nile tilapia to evaluate the relationship between sex and MT-induced changes in these parameters. Female fish had a lower growth rate than male and sex-reversed fish, and MT increased growth performance and duodenal villi in females. Most but not all biological parameters of sex-reversed fish were similar to those of male fish. Male fish had higher red blood cell counts and hemoglobin levels than female and sex-reversed fish, suggesting that these hematological indices reflect a higher metabolic rate in male fish. Greater blood triglyceride levels indicated the vitellogenin process in female fish. MT increased the alternative complement activity in female fish (P<0.05). Sex and MT had no significant effects on the hypothalamic mRNAs of GHRH and PACAP. Although not statistically significant, females tended to have higher GH mRNA levels than male and sex-reversed fish. Additionally, MT tended to decrease and increase GH mRNA levels in female and male fish, respectively. There were significant differences among sexes in the expression of GHR, and IGF mRNAs at the peripheral level in the liver and gonads. Females had lower hepatic GHRs and higher ovarian GHRs than male and sex-reversed fish. While the mRNA levels of IGF-1 were lower in the ovary, the levels of IGF-2 were higher compared with those in testes. A significant correlation between GHRs and IGFs was demonstrated in the liver and gonad (except for IGF-1). Multiple regression analysis showed a significant relationship between GH mRNA and both GHRs and IGFs in the liver and gonad. MT exerted androgenic and, to some extent, estrogenic effects on several physiological parameters and GH-IGF action.

  7. Copy Number Variations in Tilapia Genomes.

    PubMed

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R (2) > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  8. Isolation of phytate from Jatropha curcas kernel meal and effects of isolated phytate on growth, digestive physiology and metabolic changes in Nile tilapia (Oreochromis niloticus L.).

    PubMed

    Kumar, Vikas; Makkar, Harinder P S; Devappa, Rakshit K; Becker, Klaus

    2011-09-01

    Jatropha curcas seeds are rich in oil and protein. The oil is used for biodiesel production. The defatted Jatropha kernel meal obtained after oil extraction is rich in protein (58-66%) and phytate (9-11%). The phytate rich fraction was isolated from defatted kernel meal using organic solvents (acetone and carbon tetracholride). It had 66% phytate and 22% crude protein. The fingerlings (n=50, 16.2 ± 0.64 g) were randomly distributed into five groups containing 10 replicates and fed iso-nitrogenous diets (crude protein 36%): control diet containing casein and gelatin as proteins; control diet containing 1.5% and 3% Jatropha phytate (PWP(1.5) and PWP(3), respectively); and control diet containing 1.5% and 3% Jatropha phytate supplemented with phytase (1500 FTU/kg) (PWP(1.5+Phytase) and PWP(3+Phytase), respectively). Significantly lower (P<0.05) growth and feed utilization in PWP(1.5) and PWP(3) groups than for control and both phytase containing groups were observed; whereas feed gain ratio exhibited opposite trend. Protein and lipid digestibilities of the diets, amylase and protease enzyme activities in the intestine were significantly higher (P<0.05) in PWP(1.5+Phytase) and PWP(3+Phytase) groups than for PWP(1.5) and PWP(3) groups. Lowest red blood cell counts, and hemoglobin and hematocrit concentrations were observed in PWP(3) group which were not statistically different to those for PWP(1.5) group, but were significantly (P<0.05) lower than those for all other groups. Highest albumin, globulin and total protein concentrations were observed in PP(3+Phytase) group and lowest in PWP(1.5) group; and values for the latter were statistically similar to those for control group. Calcium, phosphorus and glucose concentrations in blood and cholesterol concentration in plasma were significantly lower (P<0.05) in the phytate enriched groups compared with control and phytase treated groups (PP(1.5+Phytase) and PP(3+Phytase)). Higher (P<0.05) alkaline phosphatase activity was

  9. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  10. Effectiveness of Aquaflor (50% florfenicol) administered in feed to control mortality associated with Streptococcus iniae in tilapia at a commercial tilapia production facility

    USGS Publications Warehouse

    Gaikowski, Mark P.; Schleis, Susan M.; Leis, Eric; Lasee, Becky A.; Endris, Richard G.

    2014-01-01

    The efficacy of Aquaflor (florfenicol; FFC) to control mortality caused by Streptococcus iniae in tilapia was evaluated under field conditions. The trial was initiated following presumptive diagnosis of S. iniae infection in a mixed group of fingerling (mean, 4.5 g) Nile Tilapia Oreochromis niloticus and a hybrid of Nile Tilapia×Blue Tilapia O. aureus. Diagnoses included mortality in source tank; examination of clinical signs and presence or absence of gram-positive cocci in brain, and collection of samples for microbiological review and disease confirmation of 60 moribund fish. Following presumptive diagnosis, tilapia (83/tank) were randomly transferred to each of 20 test tanks receiving the same water as the source tank (test tank water was not reused). Tilapia were offered either nonmedicated control feed or FFC-medicated feed (FFC at 15 mg/kg body weight/d; 10 tanks per regimen) for 10 consecutive days followed by a 14-d observation period during which only the nonmedicated control feed was offered. Streptococcus iniae was presumptively identified during pretreatment necropsy and confirmed by polymerase chain reaction assay; S. iniae was confirmed in samples taken during the dosing period but was not detected during the postdosing period. The FFC disk diffusion zone of inhibition ranged from 29 to 32 mm, while the minimum inhibitory concentration of FFC ranged from 2 to 4 μg/mL for the S. iniae isolates collected. Survival of tilapia assigned to the FFC-dose group was significantly greater at 14 d posttreatment than that of the nonmedicated controls. The odds of tilapia assigned to the FFC-dose group surviving to the end of the postdosing period were 1.34 times the odds of survival of tilapia assigned to the nonmedicated control group. There were no clinically apparent adverse effects associated with the administration of FFC-medicated feed in this study.

  11. 17a-Methyltestosterone - Medicated feed administered to Tilapia: Survival and pathologies.

    USDA-ARS?s Scientific Manuscript database

    17a-Methyltestosterone (17MT) is used in U.S. aquaculture under an Investigational New Animal Drug exemption to produce male populations of tilapia. Efforts to gain FDA-approval include this Target Animal Safety study. A study was designed to determine its histological safety to tilapia when fed a...

  12. The safety of 17a-Methyltestosterone medicated feed to tilapia

    USDA-ARS?s Scientific Manuscript database

    17a-Methyltestosterone (17MT) is used in U.S. aquaculture under an Investigational New Animal Drug exemption to produce male populations of tilapia. Efforts to gain FDA-approval include this Target Animal Safety study. A study was designed to determine its histological safety to tilapia when fed a...

  13. Host Choice and West Nile Virus Infection Rates in Blood-Fed Mosquitoes, Including Members of the Culex pipiens Complex, from Memphis and Shelby County, Tennessee, 2002–2003

    PubMed Central

    SAVAGE, HARRY M.; AGGARWAL, DEEPAK; APPERSON, CHARLES S.; KATHOLI, CHARLES R.; GORDON, EMILY; HASSAN, HASSAN K.; ANDERSON, MICHAEL; CHARNETZKY, DAWN; M, LARRY; MILLEN, C; UNNASCH, EMILY A.; UNNASCH, THOMAS R.

    2008-01-01

    The source of bloodmeals in 2,082 blood-fed mosquitoes collected from February 2002 through December 2003 in Memphis and surrounding areas of Shelby County, Tennessee were determined. Members of the genus Culex and Anopheles quadrimaculatus predominated in the collections. Members of the Cx. pipiens complex and Cx. restuans were found to feed predominately upon avian hosts, though mammalian hosts made up a substantial proportion of the bloodmeals in these species. No significant difference was seen in the host class of bloodmeals in mosquitoes identified as Cx. pipiens pipiens, Cx. p. quinquefasciatus, or hybrids between these two taxa. Anopheles quadrimaculatus and Cx. erraticus fed primarily upon mammalian hosts. Three avian species (the American Robin, the Common Grackle, and the Northern Cardinal) made up the majority of avian-derived bloodmeals, with the American Robin representing the most frequently fed upon avian host. An analysis of these host feeding data using a modification of a transmission model for Eastern Equine encephalitis virus suggested that the American Robin and Common Grackle represented the most important reservoir hosts for West Nile virus. A temporal analysis of the feeding patterns of the dominant Culex species did not support a shift in feeding behavior away from robins to mammals late in the summer. However, a significant degree of temporal variation was noted in the proportion of robin-derived bloodmeals when the data were analyzed by semi-monthly periods throughout the summers of 2002 and 2003. This pattern was consistent with the hypothesis that the mosquitoes were preferentially feeding upon nesting birds. PMID:17767413

  14. The Nile

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa.

    At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east.

    Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  15. The Nile

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa.

    At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east.

    Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  16. Nile River

    Atmospheric Science Data Center

    2013-04-15

    ... extent of the Nile waters before and after the onset of the rainy seasons of 2000 (top pair) and 2001 (bottom pair). The images are ... poor prior to the flooding due to a late start of the rainy season in parts of the country. Following two consecutive years of serious ...

  17. Oxidative stress responses in gills of tilapia (Oreochromis niloticus) at different salinities

    NASA Astrophysics Data System (ADS)

    Handayani, Kiki Syaputri; Novianty, Zahra; Saputri, Miftahul Rohmah; Irawan, Bambang; Soegianto, Agoes

    2017-08-01

    The objective of present study is to evaluate the impact of different salinities on the levels of CAT, GSH and MDA of the gills of Nile tilapia (Oreochromis niloticus). Nile tilapia was treated by exposure to salinities concentration 0 ‰, 5 ‰ and 10 ‰. Research models were weakened and sacrificed, then took the left and right sides of the gills. The result of gills homogenity was centrifuged for supernatan, then supernatan was proceed with testing levels of CAT, GSH and MDA by ELISA assay methods. The levels of CAT in gills were significantly higher at 10 ‰ than at 5 ‰ and 0 ‰. The levels of GSH in gills were significantly higher at 0 ‰ than 5 ‰. The levels of GSH in gills at 5 ‰ and 10 ‰ salinities were not significantly different. The levels of MDA in gills at salinity 10 ‰ and 5 ‰ were higher than in control gills at 0 ‰ salinities. This occurs because the salinity of 10 ‰ salinity was optimal for live of fish tilapia. In conclusion, salinity impact the increasing of CAT, GSH, and MDA levels in gills of Nile tilapia.

  18. Resource recovery from septic tank effluent using duckweed-based tilapia aquaculture.

    PubMed

    El-Shafai, Saber A; Abdel-Gawad, Fagr Kh; Samhan, Farag; Nasr, Fayza A

    2013-01-01

    Two parallel duckweed ponds were deployed to utilize nutrients from the effluent of a septic tank treating domestic wastewater. The effluent and fresh biomass of duckweed pond were fed to two subsequent fish ponds stocked with Nile tilapia (Oreochromis niloticus). Fish ponds receiving freshwater and commercial feed were used as control. The results of specific growth rate and feed conversion ratio showed no significant difference between the control ponds and treatment ponds. On the other hand, the total and net fish yields were significantly higher in the control. Microbial analysis revealed contamination of gills, intestine and liver of fish in the treatment ponds. The activity of the immune response genes was up-regulated in the brain and liver of the treatment samples. A micronucleus assay revealed a similar percentage of micronuclei in the polychromatic erythrocytes of blood in the control and treatment samples, while the treatment samples a had higher incidence of micronuclei in the polychromatic erythrocytes of gills, compared with the control.

  19. Prevalence of Francisella noatunensis subsp. orientalis in cultured tilapia on the island of Oahu, Hawaii.

    PubMed

    Soto, Esteban; McGovern-Hopkins, Kathleen; Klinger-Bowen, Ruth; Fox, Bradley K; Brock, James; Antonio, Nathene; Waal, Zelda van der; Rushton, Stephen; Mill, Aileen; Tamaru, Clyde S

    2013-06-01

    Francisellosis is an emergent disease in cultured and wild aquatic animals. The causative agent, Francisella noatunensis subsp. orientalis (Fno), is a gram-negative bacterium recognized as one of the most virulent pathogens of warmwater fish. The main objective of this project was to investigate the prevalence of Fno in cultured tilapia (specifically, Mozambique Tilapia Oreochromis mossambicus, Koilapia [also known as Wami Tilapia] O. hornorum, Blue Tilapia O. aureus, and Nile Tilapia O. niloticus hybrids) on the island of Oahu, Hawaii, using conventional and real-time PCR assays followed by statistical modeling to compare the different diagnostic methods and identify potential risk factors. During 2010 and 2012, 827 fish were collected from different geographical locations throughout the island of Oahu. Upon collection of fish, the water temperature in the rearing system and the length of individual fish were measured. Extraction of DNA from different tissues collected aseptically during necropsy served as a template for molecular diagnosis. High correlation between both molecular methods was observed. Moreover, the bacterium was isolated from infected tilapia on selective media and confirmed to be Fno utilizing a species-specific Taqman-based real-time PCR assay. Although a direct comparison of the prevalence of Fno between the different geographical areas was not possible, the results indicate a high prevalence of Fno DNA in cultured tilapia throughout the farm sites located on Oahu. Of the different tilapia species and hybrids currently cultured in Hawaii, Mozambique Tilapia were more susceptible to infection than Koilapia. Water temperature in the rearing systems and fish size also had a strong effect on the predicted level of infection, with fish held at lower temperatures and smaller fish being more susceptible to piscine francisellosis.

  20. Induction of vitellogenin production in male tilapia (Oreochromis mossambicus) by commercial fish diets.

    PubMed

    Davis, Lori K; Fox, Bradley K; Lim, Chhorn; Hiramatsu, Naoshi; Sullivan, Craig V; Hirano, Tetsuya; Grau, E Gordon

    2009-10-01

    Mozambique tilapia, (Oreochromis mossambicus), are a euryhaline teleost and an important biological model species. Captive male tilapia frequently have high levels of the estrogen-induced yolk precursor protein vitellogenin (Vg), a common indicator of exposure to estrogenic compounds. Sex steroids are found in commercial fish diets, but relatively few studies have examined the relationship between commercial diets and Vg production. In a fasting experiment to ascertain a dietary role in male Vg production, plasma Vg was reduced to negligible levels after 2 weeks of fasting, while no change in estrogen receptor (ER) expression was seen. When male tilapia were fed a squid-based diet that replaced the commercial trout diet, plasma Vg was reduced to undetectable levels over 40 days, concomitant with significant reductions in hepatic expression of Vgs A, B, and C, and ERbeta, compared with control fish fed commercial trout diet. Female tilapia fed the squid-based for 20 days had no change in these parameters. When male tilapia were fed a defined, soy-based diet, plasma Vg reduced to 20% of levels in fish given either commercial trout diet or a defined, fishmeal-based diet. Overall, results from these studies suggest that estrogens in a commercial trout diet induce vitellogenin production by increasing expression of Vg, but not ER genes in male tilapia.

  1. MicroRNA repertoire for functional genome research in tilapia identified by deep sequencing.

    PubMed

    Yan, Biao; Wang, Zhen-Hua; Zhu, Chang-Dong; Guo, Jin-Tao; Zhao, Jin-Liang

    2014-08-01

    The Nile tilapia (Oreochromis niloticus; Cichlidae) is an economically important species in aquaculture and occupies a prominent position in the aquaculture industry. MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression involved in diverse biological and metabolic processes. To increase the repertoire of miRNAs characterized in tilapia, we used the Illumina/Solexa sequencing technology to sequence a small RNA library using pooled RNA sample isolated from the different developmental stages of tilapia. Bioinformatic analyses suggest that 197 conserved and 27 novel miRNAs are expressed in tilapia. Sequence alignments indicate that all tested miRNAs and miRNAs* are highly conserved across many species. In addition, we characterized the tissue expression patterns of five miRNAs using real-time quantitative PCR. We found that miR-1/206, miR-7/9, and miR-122 is abundantly expressed in muscle, brain, and liver, respectively, implying a potential role in the regulation of tissue differentiation or the maintenance of tissue identity. Overall, our results expand the number of tilapia miRNAs, and the discovery of miRNAs in tilapia genome contributes to a better understanding the role of miRNAs in regulating diverse biological processes.

  2. Chemical communication in tilapia: a comparison of Oreochromis mossambicus with O. niloticus.

    PubMed

    Hubbard, Peter C; Mota, Vasco C; Keller-Costa, Tina; da Silva, José Paulo; Canário, Adelino V M

    2014-10-01

    In allopatric speciation species differentiation generally results from different selective pressures in different environments, and identifying the traits responsible helps to understand the isolation mechanism(s) involved. Male Mozambique tilapia (Oreochromis mossambicus) use urine to signal dominance; furthermore, 5β-pregnane-3α,17,20β-triol-3α-glucuronide (and its α-epimer, 5β-pregnane-3α,17,20α-triol-3α-glucuronide), in their urine is a potent pheromone, the concentration of which is correlated with social status. The Nile tilapia (Oreochromisniloticus) is a close relative; species divergence probably resulted from geographical separation around 6 million years ago. This raises the question of whether the two species use similar urinary chemical cues during reproduction. The olfactory potency of urine, and crude extracts, from either species was assessed by the electro-olfactogram and the presence of the steroid glucuronides in urine from the Nile tilapia by liquid-chromatography/mass-spectrometry. Both species showed similar olfactory sensitivity to urine and respective extracts from either species, and similar sensitivity to the steroid glucuronides. 5β-Pregnan-3α,17α,20β-triol-3α-glucuronide was present at high concentrations (approaching 0.5mM) in urine from Nile tilapia, with 5β-pregnan-3α,17α,20α-triol-3α-glucuronide present at lower concentrations, similar to the Mozambique tilapia. Both species also had similar olfactory sensitivity to estradiol-3-glucuronide, a putative urinary cue from females. Together, these results support the idea that reproductive chemical cues have not been subjected to differing selective pressure. Whether these chemical cues have the same physiological and behavioural roles in O. niloticus as O. mossambicus remains to be investigated. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Site adaptations of Acanthogyrus (Acanthosentis) tilapiae: Observations through light and scanning electron microscopy

    PubMed Central

    Abd El-Hady, Osman K.; Osman, Hussein A.M.

    2006-01-01

    Acanthogyrus (Acanthosentis) tilapiae parasites were collected from the intestines of 300 fish belonging to three tilapia species sourced at the River Nile, Giza, Egypt. The proboscis of the parasite was characterized by three rows of hooks that curved towards the posterior of the body. The first row is supported by unmodified hooks. The parasite tegument has a series of alternative folds and a large number of pores. Sensory ganglia are located on the surface of the proboscis and body. Acanthogyrus (Acanthosentis) tilapiae provokes an aggressive host response indicated by hyperplasia of the intestinal goblet cells and focal eosinophil infiltrations. This acanthocephalan parasite shows a highly modified adaptation to its site of host infection. PMID:17106224

  4. Evaluation of distiller’s dried grains with solubles (DDGS) from different grain sources as dietary protein for hybrid tilapia, Oreochromis niloticus x O. Aureus

    USDA-ARS?s Scientific Manuscript database

    The effects of distiller’s dried grains with solubles (DDGS) from different sources on growth performance, hematology, and immunity of hybrid tilapia, Oreochromis niloticus x O. aureus, were evaluated. Sex-reversed, all-male hybrid tilapia (3.72 ± 0.08 g initial weight) were fed diets in which 30% o...

  5. West Nile virus

    MedlinePlus

    ... believe West Nile virus is spread when a mosquito bites an infected bird and then bites a ... avoid getting West Nile virus infection after a mosquito bite. People in good health generally do not ...

  6. Ichthyophthirius multifiliis infection induces apoptosis in different species of Tilapia.

    PubMed

    El-Dien, Abdel Hakim S; Abdel-Gaber, Rewaida A

    2009-08-01

    The parasitic ciliate Ichthyophthirius multifiliis (Ich) is one of the most important protozoan pathogens of freshwater fish worldwide. Examination of 4 species of Tilapia from the River Nile recorded highest rate infection in Oreochromis niloticus, followed by Oreochromis aureus, Sarotherodon galilaeus and Tilapia zilli. By electron microscopy, apoptotic cells collected from Tilapia species infected with "Ich" showed an aggregation on the apical and basal parts of the ciliated and non-ciliated endothelial lining the gill epithelium. Ultrastructural analysis showed that the chromatin in the liver of Ich-infected O. niloticus was highly condensed and massed at the center of the nucleus. UItrastructural analysis of "Ich" infected O. aureus showed that the nuclear membrane of hepatocytes was also shrunken. In S. galilaeus, chromatin was highly condensed, fragmented and massed at the nuclear center, occasionally forming crescent-shaped masses. Ultrastructural of O. niloticus spleen showed that the macrophage number was comparatively high as compared to control. In O. aureus, damaged splenic cell number did not change, and phagocytic capacity of macrophages was not very high. In Ich-infected S. galilaeus, a marked decrease in splenic cells number was seen. Analysis of DNA by agarose gel electrophoresis on gill, liver and spleen cells showed a ladder of DNA fragments in multiple of 180bp in length, pointing to an internucleosomal DNA cleavage.

  7. Detection of natural infection of infectious spleen and kidney necrosis virus in farmed tilapia by hydroxynapthol blue-loop-mediated isothermal amplification assay.

    PubMed

    Suebsing, R; Pradeep, P J; Jitrakorn, S; Sirithammajak, S; Kampeera, J; Turner, W A; Saksmerprome, V; Withyachumnarnkul, B; Kiatpathomchai, W

    2016-07-01

    Infectious spleen and kidney necrosis virus (ISKNV) has recently been recognized as a causative agent of serious systemic disease in tilapia. Our objective was to establish a new colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of hydroxynapthol blue (blue-LAMP) to investigate ISKNV transmission in tilapia. The blue-LAMP, targeting a major capsid protein gene of ISKNV, was conducted at 65°C for 45 min, allowing unaided visual detection of the pathogen based on colour change without cross-amplification of other known fish pathogens tested. Comparison of blue-LAMP and PCR assays revealed a higher detection level for blue-LAMP assay (41·33%) in a population of farmed tilapia infected with ISKNV. The investigation of ISKNV transmission pattern in farmed red tilapia using the blue-LAMP revealed a possible matroclinical form. The presence of ISKNV in the gonad samples was confirmed by in situ LAMP assay. Positive signals only appeared in ovarian follicles, and not in oocytes. Moreover, tissue tropism assay revealed that the brain was the main target organ in both farmed red tilapia (40%) and Nile tilapia (20%). The developed blue-LAMP assay has the potential to be used as a viable tool for screening covert and natural infections of ISKNV in tilapia. The evidence of vertical transmission of ISKNV infection in tilapia indicates the seriousness of this disease and will require a close attention and collaboration between tilapia hatcheries and disease experts in order to find a solution. The new blue-LAMP assay is a time-saving and economically viable detection tool, which allows unaided visual detection for ISKNV in tilapia, and it could be applicable for field applications. Evidence on the vertical transmission of ISKNV in farmed tilapia suggests a need for developing farm management practices to control the spread of virus in aquaculture industries. © 2016 The Society for Applied Microbiology.

  8. Colorimetric Method of Loop-Mediated Isothermal Amplification with the Pre-Addition of Calcein for Detecting Flavobacterium columnare and its Assessment in Tilapia Farms.

    PubMed

    Suebsing, Rungkarn; Kampeera, Jantana; Sirithammajak, Sarawut; Withyachumnarnkul, Boonsirm; Turner, Warren; Kiatpathomchai, Wansika

    2015-03-01

    Flavobacterium columnare, the causative agent of columnaris disease in fish, affects many economically important freshwater fish species. A colorimetric method of loop-mediated isothermal amplification with the pre-addition of calcein (LAMP-calcein) was developed and used to detect the presence of F. columnare in farmed tilapia (Nile Tilapia Oreochromis niloticus and red tilapia [Nile Tilapia × Mozambique Tilapia O. mossambicus]) and rearing water. The detection method, based on a change in color from orange to green, could be performed within 45 min at 63°C. The method was highly specific, as it had no cross-detections with 14 other bacterial species, including other fish pathogens and two Flavobacterium species. The method has a minimum detection limit of 2.2 × 10(2) F. columnare CFU; thus, it is about 10 times more sensitive than conventional PCR. With this method, F. columnare was detected in gonad, gill, and blood samples from apparently healthy tilapia broodstock as well as in samples of fertilized eggs, newly hatched fry, and rearing water. The bacteria isolated from the blood were further characterized biochemically and found to be phenotypically identical to F. columnare. The amplified products from the LAMP-calcein method had 97% homology with the DNA sequence of F. columnare.

  9. Tilapia: environmental and nutritional requirements

    USDA-ARS?s Scientific Manuscript database

    Tilapia are an important species to global aquaculture production. Their adaptability to a wide range of environmental and nutritional conditions and their ability to grow and reproduce make them a prime species for aquaculture. Nonetheless, to achieve maximum performance in culture, tilapia requir...

  10. Human Streptococcus agalactiae isolate in Nile tilapia (Oreochromis niloticus)

    USDA-ARS?s Scientific Manuscript database

    Streptococcus agalactiae, the Lancefield group B Streptococcus (GBS), long recognized as a mammalian pathogen, is an emerging pathogen to fish. We show that a GBS serotype Ia, multilocus sequence type ST-7 isolate from a human neonatal meningitis clinical case causes disease signs and mortality in N...

  11. Behaviours Associated with Acoustic Communication in Nile Tilapia (Oreochromis niloticus)

    PubMed Central

    Longrie, Nicolas; Poncin, Pascal; Denoël, Mathieu; Gennotte, Vincent; Delcourt, Johann; Parmentier, Eric

    2013-01-01

    Background Sound production is widespread among fishes and accompanies many social interactions. The literature reports twenty-nine cichlid species known to produce sounds during aggressive and courtship displays, but the precise range in behavioural contexts is unclear. This study aims to describe the various Oreochromis niloticus behaviours that are associated with sound production in order to delimit the role of sound during different activities, including agonistic behaviours, pit activities, and reproduction and parental care by males and females of the species. Methodology/Principal Findings Sounds mostly occur during the day. The sounds recorded during this study accompany previously known behaviours, and no particular behaviour is systematically associated with sound production. Males and females make sounds during territorial defence but not during courtship and mating. Sounds support visual behaviours but are not used alone. During agonistic interactions, a calling Oreochromis niloticus does not bite after producing sounds, and more sounds are produced in defence of territory than for dominating individuals. Females produce sounds to defend eggs but not larvae. Conclusion/Significance Sounds are produced to reinforce visual behaviours. Moreover, comparisons with O. mossambicus indicate two sister species can differ in their use of sound, their acoustic characteristics, and the function of sound production. These findings support the role of sounds in differentiating species and promoting speciation. They also make clear that the association of sounds with specific life-cycle roles cannot be generalized to the entire taxa. PMID:23620756

  12. Screening of multiple hormonal activities in water and sediment from the river Nile, Egypt, using in vitro bioassay and gonadal histology.

    PubMed

    Osman, Alaa G M; AbouelFadl, Khaled Y; Krüger, Angela; Kloas, Werner

    2015-06-01

    In Egypt, until yet no records are available regarding possible multiple hormonal activities in the aquatic systems and especially in the river Nile. In this paper, in vitro yeast estrogen screen (YES) and yeast androgen screen (YAS) were used to assess (for the first time) the multiple hormonal activities in surface waters and sediments of the river Nile. This study aimed to determine whether river Nile water can cause changes in gonadal histology of Nile tilapia (Oreochromis niloticus niloticus). All water samples exhibited extremely low levels of estrogenicity. Estrogenicity was nearly not detected in any of the sediment samples. Unlike the estrogenicity, significant androgenic activities were recorded in the water and sediment samples along the course of the river Nile. The present study reports for the first time quantification anti-estrogenic and anti-androgenic activities with high levels in both water and sediment of the river Nile. The greatest anti-estrogenic and anti-androgenic activities were observed in samples from downstream river Nile. These results indicated that the anti-estrogenic and anti-androgenic activities along the Nile course were great and the pollution of the sites at downstream was more serious than the upstream sites due to industrial and anthropogenic activities at these sites. Good correlations were observed among some hormonal activities, suggesting coexistence of these contaminants in the environmental matrices. There were no signs of sexual disruption in any of the gonads analyzed from either male or female Nile tilapia, demonstrating that no hormonal activity present along the Nile course was sufficient to induce adverse effects on reproductive development. Further investigation is necessary to identify the compounds responsible for the hormonal activities in the river Nile and to examine effects of very low levels of hormonally active compounds on gonadal histology, as well as in the development of more sensitive biomarkers.

  13. Effects of montmorillonite on Pb accumulation, oxidative stress, and DNA damage in tilapia (Oreochromis niloticus) exposed to dietary Pb.

    PubMed

    Dai, Wei; Fu, Linglin; Du, Huahua; Liu, Huitao; Xu, Zirong

    2010-07-01

    In order to investigate the effects of montmorillonite (MMT) on reducing dietary lead (Pb) toxicity to tilapia (Oreochromis niloticus), 240 fish were randomly divided into four treatments denominated as follows: control treatment (fed with a basal diet), MMT treatment (fed with a basal diet added with 0.5% MMT), Pb treatment (fed with a basal diet added with 100 mg Pb per kilogram dry weight (dw)), and Pb + MMT treatment (fed with a basal diet added with 100 mg Pb per kilogram dw and 0.5% MMT). Changes in Pb accumulation, oxidative stress, and DNA damage in tilapia were measured after 60 days. DNA damage was assessed using comet assay. The results showed that MMT supplemented in diet significantly reduced Pb accumulation in kidney and blood of tilapia exposed to dietary Pb (P < 0.05). Malondialdehyde level decreased insignificantly while levels of total antioxidant capacity and glutathione (GSH), activities of glutathione peroxidase, and superoxide dismutase increased insignificantly in kidney of tilapia in Pb + MMT treatment as compared to Pb treatment (P > 0.05). Significant decreases in tail length, tail DNA, tail moment, and Olive tail moment of peripheral blood cells in Pb + MMT treatment were observed when compared with Pb treatment (P < 0.05). The results indicated that dietary MMT supplementation could alleviate dietary Pb toxicity to tilapia effectively.

  14. Photic and circadian regulation of melatonin production in the Mozambique tilapia Oreochromis mossambicus.

    PubMed

    Nikaido, Yoshiaki; Ueda, Satomi; Takemura, Akihiro

    2009-01-01

    Diverse circadian systems related to phylogeny and ecological adaptive strategies are proposed in teleosts. Recently, retinal photoreception was reported to be important for the circadian pacemaking activities of the Nile tilapia Oreochromis niloticus. We aimed to confirm the photic and circadian responsiveness of its close relative-the Mozambique tilapia O. mossambicus. Melatonin production in cannulated or ophthalmectomized fish and its secretion from cultured pineal glands were examined under several light regimes. Melatonin production in the cannulated tilapias was measured at 3-h intervals; it fluctuated daily, with a nocturnal increase and a diurnal decrease. Exposing the cannulated fish to several light intensities (1500-0.1 lx) and to natural light (0.1 and 0.3 lx) suppressed melatonin levels within 30 min. Static pineal gland culture under light-dark and reverse light-dark cycles revealed that melatonin synthesis increased during the dark periods. Rhythmic melatonin synthesis disappeared on pineal gland culture under constant dark and light conditions. After ophthalmectomy, plasma melatonin levels did not vary with light-dark cycles. These results suggest that (1) Mozambique tilapias possess strong photic responsiveness, (2) their pineal glands are sensitive to light but lack circadian pacemaker activity, and (3) they require lateral eyes for rhythmic melatonin secretion from the pineal gland.

  15. Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus.

    PubMed

    Liu, Haitian; Wang, Shifeng; Cai, Yan; Guo, Xiaohui; Cao, Zhenjie; Zhang, Yongzheng; Liu, Shubin; Yuan, Wei; Zhu, Weiwei; Zheng, Yu; Xie, Zhenyu; Guo, Weiliang; Zhou, Yongcan

    2017-01-01

    The probiotic properties of Bacillus subtilis HAINUP40 isolated from the aquatic environment, and the effects of dietary administration of B. subtilis HAINUP40 on the growth performance, intestinal probiotic recovery, digestive enzyme activities, innate immunity and disease resistance of tilapia (Oreochromis niloticus) were evaluated. The probiotic properties investigated include tolerance to simulated gastrointestinal stress, auto-aggregation, cell surface hydrophobicity and extracellular enzyme production. The cell number of B. subtilis changed little after 4 h in simulated gastric fluid at pH = 2.0, 3.0, 4.0 and simulated intestinal fluid at pH = 6.8.B.subtilis HAINUP40 revealed strong auto-aggregation property (34.6-87.0%) after 24 h incubation period. It exhibited significant cell surface hydrophobicity in xylene (28.8%) and chloroform (41.3%) and produced extracellular proteases and amylase. After tilapia (mean weight = 95 ± 8 g) were fed with a diet containing 10(8) cfu/g B. subtilis HAINUP40, their final body weight, percent weight gain (PWG), specific growth rate (SGR), total antioxidant capacity (T-AOC) and serum superoxide dismutase (SOD) increased significantly (p < 0.05) after 8 weeks; feed conversion rate (FCR) is significantly lower (p < 0.05) after 8 weeks; the protease and amylase activity in the digestive tract increased significantly (p < 0.05) after 4 and 8 weeks; and respiratory bursts and serum lysozyme activity increased significantly (p < 0.05) after 2 weeks. Moreover, being challenged with pathogenic Streptococcus agalactiae for 2 weeks, the relative percent survival (RPS%) is 52.94%. The results of this study strongly suggest that dietary supplement of B. subtilis HAINUP40 can effectively enhances the growth performance, immune response, and disease resistance of Nile tilapia.

  16. [West Nile fever].

    PubMed

    Takasaki, Tomohiko

    2005-12-01

    West Nile virus was first detected in North America in 1999 and has spread throughout the United States and Canada and into Mexico and the Caribbean. The cases of encephalitis in New York were diagnosed as Saint Louis encephalitis which was endemic in the North America. However, dead crows and dead flamingo were found around the same time in New York. American birds seldom die by Saint Louis encephalitis virus infection. According to viral isolation and sequencing of the genome, the causative agent of unknown encephalitis was West Nile virus which was a member of Flaviviridae which cause fever, meningitis and encephalitis. West Nile virus is still active in North America in summer season, 1999 -2005. CDC enlightens people how to protect themselves and their community from West Nile virus. There are some reports that West Nile viral infections were occurred by blood transfusion, biologic products from blood and organ transfusion.

  17. Microbiological quality of fish grown in wastewater-fed and non-wastewater-fed fishponds in Hanoi, Vietnam: influence of hygiene practices in local retail markets.

    PubMed

    Lan, Nguyen Thi Phong; Dalsgaard, Anders; Cam, Phung Dac; Mara, Duncan

    2007-06-01

    Mean water quality in two wastewater-fed ponds and one non-wastewater-fed pond in Hanoi, Vietnam was approximately 10(6) and approximately 10(4) presumptive thermotolerant coliforms (pThC) per 100 ml, respectively. Fish (common carp, silver carp and Nile tilapia) grown in these ponds were sampled at harvest and in local retail markets. Bacteriological examination of the fish sampled at harvest from both types of pond showed that they were of very good quality (2 - 3 pThC g(-1) fresh muscle weight), despite the skin and gut contents being very contaminated (10(2) - 10(3) pThC g(-1) fresh weight and 10(4) - 10(6) pThC g(-1) fresh weight, respectively). These results indicate that the WHO guideline quality of < or = 1000 faecal coliforms per 100 ml of pond water in wastewater-fed aquaculture is quite restrictive and represents a safety factor of approximately 3 orders of magnitude. However, when the fish from both types of pond were sampled at the point of retail sale, quality deteriorated to 10(2) - 10(5) pThC g(-1) of chopped fresh fish (mainly flesh and skin contaminated with gut contents); this was due to the practice of the local fishmongers in descaling and chopping up the fish from both types of pond with the same knife and on the same chopping block. Fishmonger education is required to improve their hygienic practices; this should be followed by regular hygiene inspections.

  18. Mercury levels in feed and muscle of farmed tilapia.

    PubMed

    Botaro, Daniele; Torres, João Paulo Machado; Schramm, Karl-Werner; Malm, Olaf

    2012-12-01

    Fish consumption is considered the most important source of contaminant exposure for humans beings, and farmed fish can be exposed to contaminants via feed supply. Total mercury concentrations (THg) were determined in the muscle, liver, and feed of farmed Nile tilapia (juveniles and adults) from four different fish farms in Brazil (net cages and intensive tanks systems), by a flow injection mercury system. Mercury concentrations observed in fish muscle were markedly lower (13.5-30.5 µg kg(-1)) than the values recommended by ANVISA/MAPA for edible part of fish (500 µg kg(-1)), and in the liver the concentrations found were higher than in the muscle. These low levels of THg in farmed tilapia may be due to the low THg concentrations found in the analyzed fish feed, that ranged from 5.2 to 33.2 µg kg(-1), below the limit of 100 µg kg(-1) established by the European Commission. Copyright © 2012 Wiley Periodicals, Inc.

  19. FAQ: General Questions about West Nile Virus

    MedlinePlus

    ... Related Links Mosquito Surveillance Software General Questions About West Nile Virus Recommend on Facebook Tweet Share Compartir ... numbers of West Nile virus cases? What is West Nile virus? West Nile virus is an arthropod- ...

  20. [Identification and pathological observation of a pathogenic Plesiomonas shigelloides strain isolated from cultured tilapia (Oreochromis niloticus)].

    PubMed

    Liu, Zhigang; Ke, Xiaoli; Lu, Maixin; Gao, Fengying; Cao, Jianmeng; Zhu, Huaping; Wang, Miao

    2015-01-04

    A mass mortality of tilapia broke out in an aquaculture farm in Panyu, Guangdong Province in May, 2013. Affected fish showed blackening of body color, haemorrhageing on surface, scales shedding, fin rotting, and the presence of yellow liver, dark red spleen, enlarged gallbladder and ascitic fluid in the abdominal cavity. The purpose of this research was isolating and identifying the pathogen. We isolated a suspicious bacteria strain PYS1 from diseased fish with significant pathological signs. The homology of 16S rRNA gene sequence of strain PYS1 and its morphological, cultural, and physical and chemical characteristics were studied for its identification. Its pathogenicity was investigated by recursive infection experiment and histopathological study. Its effective medicines was screened by antibiotic sensitive test. The results showed that strain PYS1 was Plesiomonas shigelloides clustered with P. shigelloides strains isolated from other fishes in the molecular phylogenetic tree of 16S rRNA gene sequences. Strain PYS1 was multiple drug resistant and only sensitive to a small part of 31 tested antibiotics (e.g., ceftriaxone, cefaclor, cefazolin, etc.). The symptoms of tilapia (O. niloticus) artificially infected with strain PYS1 were similar with natural infected fish. The half lethal dose (LD50) of strain PYS1 to tilapia was 1.425 x 10(8) CFU per fish. Paraffin sections showed intestine, liver, spleen, kidney and heart tissue injury caused by the strain. Our study demonstrated that P. shigelloides was the pathogen of cultured tilapia in the aquaculture farm and first reported its bacterial pathogenicity on Nile tilapia.

  1. The Nile River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east. Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  2. The Nile River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east. Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  3. West Nile Virus

    MedlinePlus

    ... strategies visit the MedlinePlus West Nile virus site . Credit: Credit: CDC This is an enlarged view of a ... The End of an Era Acknowledgments References Photo Credits Dr. Joseph Kinyoun: Selected Bibliography NIAID 60th Anniversary ...

  4. West Nile Virus

    MedlinePlus

    ... you'll be infected with West Nile virus, mosquito bites can still be an itchy nuisance. The CDC advises people to protect themselves from mosquito bites by using mosquito repellent, especially at times ...

  5. 10. GENERAL VIEW OF NILES TREAD LATHE, Niles Tool Company, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. GENERAL VIEW OF NILES TREAD LATHE, Niles Tool Company, Hamilton, Ohio. - Juniata Shops, Erecting Shop & Machine Shop, East of Fourth Avenue, between Fourth & Fifth Streets, Altoona, Blair County, PA

  6. Agonistic and reproductive behaviors in males of red hybrid tilapia, Oreochromis niloticus (Linnaeus, 1758) x O. mossambicus (Peters, 1852) (Osteichthyes: Cichlidae).

    PubMed

    Medeiros, A P T; Chellappa, S; Yamamoto, M E

    2007-11-01

    The red hybrid tilapia, Oreochromis niloticus (Linnaeus, 1758) x O. mossambicus (Peters, 1852) is a fertile hybrid used in the semi-intensive level of fish culture in the Northeast of Brazil. It is a territorial cichlid and is highly aggressive towards conspecifics during the breeding season. The purpose of this study was to investigate and describe the aggressive behaviour displayed by the males of this hybrid in non-reproductive and reproductive contexts. Behavioural observations revealed that aggression displayed by the reproductive males of red hybrid tilapia included threatening, undulation, parallel, lateral and frontal attacks, chasing, escape and submission. Possession of a territory influenced male aggressiveness, which was more intense in their own territory than that observed in a neutral situation. The males built nests, irrespective of female presence. All the behavioural patterns were in accordance with those previously described for one parental species, the Nile tilapia, O. niloticus.

  7. Trace metal levels in water, fish, and sediment from River Nile, Egypt: potential health risks assessment.

    PubMed

    Dahshan, Hesham; Abd-Elall, Amr Mohamed Mohamed; Megahed, Ayman Mohamed

    2013-01-01

    The purposes of this study were to describe the impact of metal pollution on the main economic fish species Tilapia nilotica and to assess the potential health risk from consuming this contaminated fish in Egypt. Trace metals, including Ag, Al, Cd, Bo, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, St, V, Zn, and As, were determined in water, Tilapia nilotica, and sediments from the River Nile, Domiate branch, Egypt. Metal concentrations in fish of Al, Cd, Co, Fe, Mn, Pb, V, and Zn (mg/kg dry weight [dw]) and concentrations in sediment of Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn (mg/kg dw) were above the International Atomic Energy Agency (IAEA-407) levels. However, trace metals in river water were still at permissible levels for Egyptian standards. The hazard index (HI) of estimated metal mixtures for intake of Tilapia nilotica (23.37) demonstrated that intake resulted in higher noncarcinogenic risk. In conclusion, the overall problem of metal contamination in fish collected from the River Nile was more serious than postulated to occur in an industrialized and densely populated area. In the light of known risks to public health, environmental protection laws are needed in Egypt.

  8. Genetic Relatedness of Salmonella Serovars Isolated from Catfish (Clarias gariepinus) and Tilapia (Tilapia mossambica) Obtained from Wet Markets and Ponds in Penang, Malaysia.

    PubMed

    Budiati, Titik; Rusul, Gulam; Wan-Abdullah, Wan Nadiah; Chuah, Li-Oon; Ahmad, Rosma; Thong, Kwai Lin

    2016-04-01

    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.

  9. Induced alkoxyresorufin-O-dealkylases in tilapias (Oreochromis niloticus) from Guandu river, Rio de Janeiro, Brazil.

    PubMed

    Parente, Thiago E M; De-Oliveira, Ana C A X; Silva, Igor B; Araujo, Francisco G; Paumgartten, Francisco J R

    2004-03-01

    The activity of fish monooxygenases has been extensively used as a monitoring tool to detect contamination of water bodies by cytochrome P450-inducing agents. In this study we evaluated the activities of ethoxy- (EROD), methoxy- (MROD) and pentoxy- (PROD) resorufin-O-dealkylases in the liver of Nile tilapias (Oreochromis niloticus) collected at the Guandu river, at a reference clean site (Lake 1) and at two other sampling sites (Lakes 2 and 3) in Rio de Janeiro state, Brazil. Alkoxyresorufin-O-dealkylases were measured fluorimetrically in the hepatic S9 fraction. EROD (17.7-fold), MROD (14.2-fold) as well as PROD activities were considerably higher in tilapias from Guandu river. A moderate increase of EROD (5.0-fold) and MROD (5.4-fold) was also found in tilapias from Lake 3. These findings suggest that Guandu river watershed, the main source of urban drinking water supply in Rio de Janeiro, is polluted with CYP1A-inducing xenobiotics. Furthermore, we also found a good linear relationship between EROD and MROD, a finding that agrees with the hypothesis that the two reactions are catalysed by the same CYP1A isoform in O. niloticus.

  10. Francisella Infection in Cultured Tilapia in Thailand and the Inflammatory Cytokine Response.

    PubMed

    Jantrakajorn, Sasibha; Wongtavatchai, Janenuj

    2016-06-01

    Francisella infections developed in freshwater Nile Tilapia Oreochromis niloticus and red tilapia Oreochromis spp. farms in Thailand during 2012-2014. The diseased fish were lethargic and pale in color and showed numerous white nodules in their enlarged spleens. Histopathological examination and electron microscopy suggested that the white nodules were multifocal granulomas consisting of coccobacilli within vacuolated cells. Isolation of Francisella-like bacteria was achieved from 42 of 100 samples, while polymerase chain reaction confirmed Francisella infections in all samples. Analysis of the 16S rRNA gene from samples obtained from three different geographical culture areas revealed more than 99% similarity with F. noatunensis subsp. orientalis. The influence of Francisella infection on inflammatory cytokines was determined on splenic cells of fish intraperitoneally injected with the bacteria (0.8 × 10(5) colony-forming units per fish). Infected tilapia showed significantly greater expression of the pro-inflammatory genes interleukin-1β (IL-1β) and tumor necrotic factor-α (TNF-α) within 24 h postinjection (hpi) and for up to 96 hpi. However, down-regulation of an anti-inflammatory gene, transforming growth factor-β (TGF-β) was observed as early as 24 hpi. This investigation demonstrates that an imbalance between pro- and anti-inflammatory cytokines in response to the infection may account for the substantial number of granulomas in fish hematopoietic tissues that was found in the later stage of the disease. Received September 9, 2015; accepted December 13, 2015.

  11. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015-2016.

    PubMed

    Surachetpong, Win; Janetanakit, Taveesak; Nonthabenjawan, Nutthawan; Tattiyapong, Puntanat; Sirikanchana, Kwanrawee; Amonsin, Alongkorn

    2017-06-01

    During 2015-2016, several outbreaks of tilapia lake virus infection occurred among tilapia in Thailand. Phylogenetic analysis showed that the virus from Thailand grouped with a tilapia virus (family Orthomyxoviridae) from Israel. This emerging virus is a threat to tilapia aquaculture in Asia and worldwide.

  12. Outbreaks of Tilapia Lake Virus Infection, Thailand, 2015–2016

    PubMed Central

    Janetanakit, Taveesak; Nonthabenjawan, Nutthawan; Tattiyapong, Puntanat; Sirikanchana, Kwanrawee; Amonsin, Alongkorn

    2017-01-01

    During 2015–2016, several outbreaks of tilapia lake virus infection occurred among tilapia in Thailand. Phylogenetic analysis showed that the virus from Thailand grouped with a tilapia virus (family Orthomyxoviridae) from Israel. This emerging virus is a threat to tilapia aquaculture in Asia and worldwide. PMID:28518020

  13. The Nile Delta, Egypt

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This pair of true- and false-color images from the Moderate Resolution Imaging Spectroradiometer was acquired on June 3, 2002. The fertile land along the Nile River supports lush green vegetation, amid the desert landscape. At its delta at the Mediterranean Sea, the Nile broadens into a large fan-shaped delta. All of Egypt's large cities fall along the Nile, which sustains life in a region of scant rainfall. At the point where the river widens into the delta, a grayish cluster of pixels marks the location of Cairo. To the east is the Sinai Peninsula, whose impermanent water courses create silvery streaks on the pale brown, arid landscape. At lower right is the Red Sea. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  14. West Nile Virus in Farmed Alligators

    PubMed Central

    Mauel, Michael J.; Baldwin, Charles; Burtle, Gary; Ingram, Dallas; Hines, Murray E.; Frazier, Kendal S.

    2003-01-01

    Seven alligators were submitted to the Tifton Veterinary Diagnostic and Investigational Laboratory for necropsy during two epizootics in the fall of 2001 and 2002. The alligators were raised in temperature-controlled buildings and fed a diet of horsemeat supplemented with vitamins and minerals. Histologic findings in the juvenile alligators were multiorgan necrosis, heterophilic granulomas, and heterophilic perivasculitis and were most indicative of septicemia or bacteremia. Histologic findings in a hatchling alligator were random foci of necrosis in multiple organs and mononuclear perivascular encephalitis, indicative of a viral cause. West Nile virus was isolated from submissions in 2002. Reverse transcription-polymerase chain reaction (RT-PCR) results on all submitted case samples were positive for West Nile virus for one of four cases associated with the 2001 epizootic and three of three cases associated with the 2002 epizootic. RT-PCR analysis was positive for West Nile virus in the horsemeat collected during the 2002 outbreak but negative in the horsemeat collected after the outbreak. PMID:12890319

  15. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  16. Nile Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Nile Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population of 57 million. The capital city of Cairo is at the apex of the delta in the middle of the scene. Across the river from Cairo can be seen the three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  17. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  18. Nile River Delta, Egypt

    NASA Image and Video Library

    1984-10-13

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  19. Discover the Nile River

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  20. West Nile Virus

    MedlinePlus

    ... spread by mosquitoes. Mosquitoes become infected by biting birds that carry the virus. People can get West Nile virus when an infected mosquito bites them. This happens most often in the warm-weather months of spring, summer and early fall. You ...

  1. Discover the Nile River

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  2. FAQ: West Nile Virus and Dead Birds

    MedlinePlus

    ... Education Public Service Videos West Nile Virus & Dead Birds Recommend on Facebook Tweet Share Compartir On This ... dead bird sightings to local authorities. How do birds get infected with West Nile virus? West Nile ...

  3. Skin and subcutaneous mycoses in tilapia (Oreochromis niloticus) caused by Fusarium oxysporum in coinfection with Aeromonas hydrophila.

    PubMed

    Cutuli, M Teresa; Gibello, Alicia; Rodriguez-Bertos, Antonio; Blanco, M Mar; Villarroel, Morris; Giraldo, Alejandra; Guarro, Josep

    2015-09-01

    Subcutaneous mycoses in freshwater fish are rare infections usually caused by oomycetes of the genus Saprolegnia and some filamentous fungi. To date, Fusarium infections in farmed fish have only been described in marine fish. Here, we report the presence of Fusarium oxysporum in subcutaneous lesions of Nile tilapia (Oreochromis niloticus). Histopathologic evaluation revealed granuloma formation with fungal structures, and the identity of the etiological agent was demonstrated by morphological and molecular analyses. Some of the animals died as a result of systemic coinfection with Aeromonas hydrophila.

  4. Shelf life of air and modified atmosphere-packaged fresh tilapia (Oreochromis niloticus) fillets stored under chilled and superchilled conditions

    PubMed Central

    Cyprian, Odoli; Lauzon, Hélène L; Jóhannsson, Ragnar; Sveinsdóttir, Kolbrún; Arason, Sigurjón; Martinsdóttir, Emilía

    2013-01-01

    Optimal packaging and storage conditions for fresh tilapia fillets were established by evaluating sensory and microbiological changes, as well as monitoring physicochemical properties. Nile tilapia (Oreochromis niloticus) farmed in recirculation aquaculture system was filleted, deskinned, and packaged in air and 50% CO2/50% N2 prior to chilling and superchilling storage at 1°C and −1°C. Sensory analysis of cooked samples revealed a shelf life of 13–15 days for air-packaged fillets during storage at 1°C and 20 days at −1°C. At the end of shelf life in air-packaged fillets, total viable counts (TVC) and pseudomonads counts reached log 8 colony-forming units (CFU) g−1. In 50% CO2/50% N2-packaged fillets, the lag phase and generation time of bacteria were extended and recorded counts were below the limit for consumption (tilapia fillets quality and a major factor in influencing retail purchase decisions. In view of that, air packaged at −1°C storage temperature was the optimal condition for fresh tilapia fillets. Total volatile basic nitrogen (TVB-N) and trimethylamine (TMA) were not good indicators of spoilage of tilapia fillets in this study. PMID:24804022

  5. Carbon budgets for a phytoplanktivorous fish fed three different unialgal populations.

    PubMed

    McDonald, Michael E

    1985-05-01

    The filter feeding blue tilapia, Tilapia aurea, was fed three different algae. Blue tilapia ingestion of two green algae, Chlamydomonas sp. and Ankistrodesmus falcatus and the filamentous blue-green alga, Anabaena flos-aquae, ranged from 21%-89% of the available cells. There were significant differences in the assimilation of algal carbon by the fish depending on the alga fed; A. flos-aquae was the easiest to assimilate (83%). The fish respired significantly less of the Chlamydomonas sp. ingested carbon (15%). The gross growth efficiency of fishes fed either green alga was not significantly different (22%-24%), but these efficiencies were significantly less than the gross growth efficiency of fish fed A. flos-aquae (46%). The carbon budgets for fish feeding on the green algae were similar to that constructed from the literature for a congener fed a mixed algae diet. However, the assimilation component of the budget for blue tilapia fed A. flos-aquae was 2 times greater than that of the literature budget.

  6. Pheromone signaling: a pissing contest in tilapia.

    PubMed

    Li, Weiming; Buchinger, Tyler

    2014-09-22

    In many species, males produce elaborate signals used by females in the evaluation of potential mates. Two urinary steroid epimers have now been shown to be components of a courtship display by male Mozambique tilapia that promotes female maturation.

  7. Mental Status after West Nile Virus Infection

    PubMed Central

    Sadek, Joseph; Pergam, Steven; Echevarria, Leonor A.; Davis, Larry E.; Goade, Diane; Harnar, Joanne; Nofchissey, Robert A.; Sewel, C. Mack; Ettestad, Paul

    2006-01-01

    Mental status after acute West Nile virus infection has not been examined objectively. We compared Telephone Interview for Cognitive Status scores of 116 patients with West Nile fever or West Nile neuroinvasive disease. Mental status was poorer and cognitive complaints more frequent with West Nile neuroinvasive disease (p = 0.005). PMID:16965710

  8. Modulation of the intestinal microbiota and morphology of tilapia, Oreochromis niloticus, following the application of a multi-species probiotic.

    PubMed

    Standen, B T; Rodiles, A; Peggs, D L; Davies, S J; Santos, G A; Merrifield, D L

    2015-10-01

    The intestinal microbiota and morphology of tilapia (Oreochromis niloticus) were investigated after the application of a multi-species probiotic containing Lactobacillus reuteri, Bacillus subtilis, Enterococcus faecium and Pediococcus acidilactici (AquaStar(®) Growout). Tilapia (55.03 ± 0.44 g) were fed either a control diet or a probiotic diet (control diet supplemented with AquaStar(®) Growout at 5 g kg(-1)). After four and eight weeks, culture-dependent analysis showed higher levels of lactic acid bacteria (LAB), enterococci and Bacillus spp. in the mucosa and digesta of fish fed AquaStar(®) Growout. At week four, polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) revealed a higher similarity within the probiotic fed replicates than replicates of the control group; after eight weeks, the compositional dissimilarity of the microbiome profiles between the groups was greater than the dissimilarities within each group (P < 0.05). High-throughput sequencing revealed that the probiotic treatment significantly reduced the number of operational taxonomic units and species richness in the digesta. Significantly higher proportions of reads belonging to Proteobacteria and Cyanobacteria were detected in the control group whereas the probiotic-fed fish displayed a significantly higher abundance of reads assigned to the Firmicutes (which accounted for >99 % of reads). Bacillus, Cetobacterium and Mycobacterium were the dominant genera in the digesta of control fish whereas Bacillus, Enterococcus and Pediococcus were the largest constituents in probiotic-fed fish. The addition of AquaStar(®) Growout to tilapia diets led to increased populations of intraepithelial leucocytes, a higher absorptive surface area index and higher microvilli density in the intestine. These data suggest that AquaStar(®) Growout can modulate both the intestinal microbiota and morphology of tilapia.

  9. Depletion of florfenicol amine, marker residue of florfenicol, from the edible fillet of tilapia (Oreochromis niloticus x O. niloticus and O. niloticus x O. aureus) following florfenicol administration in feed

    USGS Publications Warehouse

    Gaikowski, M.P.; Mushtaq, M.; Cassidy, P.; Meinertz, J.R.; Schleis, S.M.; Sweeney, D.; Endris, R.G.

    2010-01-01

    Aquaflor??, a 50% feed premix containing the broad spectrum antibacterial agent florfenicol is available globally to control mortality associated with economically significant systemic bacterial diseases of fish. Florfenicol (FFC) is effective in controlling mortality associated with Streptococcus iniae in tilapia Oreochromis sp. when administered in medicated feed at a dose of 15 mg/kg bodyweight (BW)/d for 10 consecutive days. Our objective was to characterize the depletion of the FFC marker residue, florfenicol amine (FFA), from the edible tissue of market-weight Nile tilapia O. niloticus x O. niloticus and hybrid tilapia O. niloticus x O. aureus offered feed medicated with FFC at a nominal dose rate of 15 mg/kg BW/d for 12 days. Near market-weight tilapia were obtained from a commercial tilapia farm, distributed to 2 single pass (one for Nile tilapia and one for hybrid tilapia), flow-through systems and maintained at 27 ??C under a 15 h light:9 h dark photoperiod over a 41-d pre-dosing period. During the dosing period, tilapia were offered feed medicated with FFC at a concentration of 1.479 g/kg at 1% BW daily divided in three equal offerings. The initial 10-d dosing period was extended to 12 d because one tank did not consume > 75% of the feed offered during the first two dosing days. The total dose consumed by fish in each of the 2 tanks ranged from 147 to 167 mg/kg. Once during the pre-dose period and on days 1, 2, 4, 7, 14, 21, and 28 of the post-dose period, groups of fish were indiscriminately removed from each tank, measured for weight and length, scaled, filleted, and the skin-on fillets stored at <-70 ??C. Frozen fillets were individually homogenized, extracted, and FFA concentration was determined by high-performance liquid chromatography with UV detection. Florfenicol amine is rapidly eliminated from tilapia fillet after withdrawal from medication and depletion followed first-order kinetics with an estimated half-life of 2.32 d. The FFA tolerance

  10. Shewanella putrefaciens in cultured tilapia detected by a new calcein-loop-mediated isothermal amplification (Ca-LAMP) method.

    PubMed

    Suebsing, Rungkarn; Kampeera, Jantana; Sirithammajak, Sarawut; Pradeep, Padmaja Jayaprasad; Jitrakorn, Sarocha; Arunrut, Narong; Sangsuriya, Pakkakul; Saksmerprome, Vanvimon; Senapin, Saengchan; Withyachumnarnkul, Boonsirm; Kiatpathomchai, Wansika

    2015-12-09

    Shewanella putrefaciens is being increasingly isolated from a wide variety of sources and is pathogenic to many marine and freshwater fish. For better control of this pathogen, there is a need for the development of simple and inexpensive but highly specific, sensitive, and rapid detection methods suitable for application in field laboratories. Our colorogenic loop-mediated isothermal amplification (LAMP) assay combined with calcein (Ca-LAMP) for unaided visual confirmation of LAMP amplicons is a simple method for fish pathogen detection in cultured tilapia. Here, we describe the detection of S. putrefaciens using the same platform. As before, the method gave positive results (orange to green color change) in 45 min at 63°C with sensitivity 100 times higher than that of a conventional PCR assay, with no cross-amplification of other known fish bacterial pathogens tested. Using the assay with 389 samples of gonads, fertilized eggs, and fry of farmed Nile and red tilapia Oreochromis spp., 35% of samples were positive for S. putrefaciens. The highest prevalence was found in samples of gonads (55%) and fertilized eggs (55%) from adult breeding stocks, indicating that S. putrefaciens could be passed on easily to fry used for stocking production ponds. Tissue tropism assays revealed that the spleen showed the highest colonization by S. putrefaciens in naturally infected tilapia and that it would be the most suitable organ for screening and monitoring fish stocks for presence of the bacteria.

  11. Depletion of florfenicol amine in tilapia (Oreochromis sp.) maintained in a recirculating aquaculture system following Aquaflor®-medicated feed therapy

    USGS Publications Warehouse

    Gaikowski, Mark P.; Whitsel, Melissa K.; Charles, Shawn; Schleis, Susan M.; Crouch, Louis S.; Endris, Richard G.

    2015-01-01

    Aquaflor® [50% w w−1 florfenicol (FFC)], is approved for use in freshwater-reared warmwater finfish which include tilapia Oreochromis spp. in the United States to control mortality from Streptococcus iniae. The depletion of florfenicol amine (FFA), the marker residue of FFC, was evaluated after feeding FFC-medicated feed to deliver a nominal 20 mg FFC kg−1 BW d−1 dose (1.33× the label use of 15 mg FFC kg−1 BW d−1) to Nile tilapia O. niloticus and hybrid tilapia O. niloticus × O. aureus held in a recirculating aquaculture system (RAS) at production-scale holding densities. Florfenicol amine concentrations were determined in fillets taken from 10 fish before dosing and from 20 fish at nine time points after dosing (from 1 to 240 h post-dosing). Water samples were assayed for FFC before, during and after the dosing period. Parameters monitored included daily feed consumption and biofilter function (levels of ammonia, nitrite and nitrate). Mean fillet FFA concentration decreased from 13.77 μg g−1 at 1-h post dosing to 0.39 μg g−1 at 240-h post dosing. Water FFC concentration decreased from a maximum of 1400 ng mL−1 at 1 day post-dosing to 847 ng mL−1 at 240 h post-dosing. There were no adverse effects noted on fish, feed consumption or biofilter function associated with FFC-medicated feed administration to tilapia.

  12. Population dynamics of Enterogyrus cichlidarum (Monogenea: Ancyrocephalinae) from the stomach of Tilapia spp. in Egypt.

    PubMed

    Khidr, A A

    1990-10-01

    In a 1-year seasonal study of the numbers of the stomach-inhabiting monogenean Enterogyrus cichlidarum in Tilapia nilotica in the River Nile, Egypt, prevalence and intensity reached a height in spring and infection levels were surprisingly high in winter. T. zillii harboured fewer parasites but seasonal changes were similar. No parasites were found in T. galilaea. The prevalence and intensity of the infection with E. cichlidarum rose significantly with increasing size of the host. Some of the possible reasons for these fluctuations are discussed. Immature enterogyrids were more abundant in the posterior sector of the stomach and adult enterogyrids showed a preference for the anterior sector. No significant difference was found in the numbers of enterogyrids in male and female hosts.

  13. Mechanical and thermal properties of irradiated films based on Tilapia ( Oreochromis niloticus) proteins

    NASA Astrophysics Data System (ADS)

    Sabato, S. F.; Nakamurakare, N.; Sobral, P. J. A.

    2007-11-01

    Proteins are considered potential material in natural films as alternative to traditional packaging. When gamma radiation is applied to protein film forming solution it resulted in an improvement in mechanical properties of whey protein films. The objective of this work was the characterization of mechanical and thermal properties of irradiated films based on muscle proteins from Nile Tilapia ( Oreochromis niloticus). The films were prepared according to a casting technique with two levels of plasticizer: 25% and 45% glycerol and irradiated in electron accelerator type Radiation Dynamics, 0.550 MeV at dose range from 0 to 200 kGy. Thermal properties and mechanical properties were determined using a differential scanning calorimeter and a texture analyzer, respectively. Radiation from electron beam caused a slightly increase on its tensile strength characteristic at 100 kGy, while elongation value at this dose had no reduction.

  14. Antagonistic roles of Dmrt1 and Foxl2 in sex differentiation via estrogen production in tilapia as demonstrated by TALENs.

    PubMed

    Li, Ming-Hui; Yang, Hui-Hui; Li, Meng-Ru; Sun, Yun-Lv; Jiang, Xiao-Long; Xie, Qing-Ping; Wang, Ting-Ru; Shi, Hong-Juan; Sun, Li-Na; Zhou, Lin-Yan; Wang, De-Shou

    2013-12-01

    Transcription activator-like effector nucleases (TALENs) are a powerful approach for targeted genome editing and have been proved to be effective in several organisms. In this study, we reported that TALENs can induce somatic mutations in Nile tilapia, an important species for worldwide aquaculture, with reliably high efficiency. Six pairs of TALENs were constructed to target genes related to sex differentiation, including dmrt1, foxl2, cyp19a1a, gsdf, igf3, and nrob1b, and all resulted in indel mutations with maximum efficiencies of up to 81% at the targeted loci. Effects of dmrt1 and foxl2 mutation on gonadal phenotype, sex differentiation, and related gene expression were analyzed by histology, immunohistochemistry, and real-time PCR. In Dmrt1-deficient testes, phenotypes of significant testicular regression, including deformed efferent ducts, degenerated spermatogonia or even a complete loss of germ cells, and proliferation of steroidogenic cells, were observed. In addition, disruption of Dmrt1 in XY fish resulted in increased foxl2 and cyp19a1a expression and serum estradiol-17β and 11-ketotestosterone levels. On the contrary, deficiency of Foxl2 in XX fish exhibited varying degrees of oocyte degeneration and significantly decreased aromatase gene expression and serum estradiol-17β levels. Some Foxl2-deficient fish even exhibited complete sex reversal with high expression of Dmrt1 and Cyp11b2. Furthermore, disruption of Cyp19a1a in XX fish led to partial sex reversal with Dmrt1 and Cyp11b2 expression. Taken together, our data demonstrated that TALENs are an effective tool for targeted gene editing in tilapia genome. Foxl2 and Dmrt1 play antagonistic roles in sex differentiation in Nile tilapia via regulating cyp19a1a expression and estrogen production.

  15. Quantification of River Nile/Quaternary aquifer exchanges via riverbank filtration by hydrochemical and biological indicators, Assiut, Egypt

    NASA Astrophysics Data System (ADS)

    Abdalla, Fathy; Shamrukh, Mohamed

    2016-12-01

    This study approach seeks to characterize the hydraulic interactions between the Nile and the Quaternary aquifer via riverbank filtration (RBF) in Abu Tieg area, Assuit Governorate. The substantial removal/reduction of the most problematic substances during percolation of Nile water into abstraction wells was investigated using physico-chemical and biological indicators. Four sites with 11 municipal wells (20-750 m from the Nile) tapping the alluvial aquifer that is fed by the riverbank infiltrate were monitored. Bank-filtrated water was compared with those of the Nile and groundwater. Results showed that infiltrated Nile water ratio into the wells ranged from 39 to 80% reflecting the effect of distance from the Nile. Removal efficiency of total algal, total and faecal coliforms in bank-filtered water was 99.9%, while turbidity removal ranged from 93 to 98%. Fe, Mn and Zn in the bank-filtered water were relatively higher than those in the Nile, but were still under the allowable standards except those of Mn. LSI and WQI for the bank-filtered water indicated that the water was ranked as non-corrosive and of excellent quality. Comparison of physico-chemical and microbiological characteristics of the bank-filtered water with those of the Nile and groundwater showed the high efficiency of RBF as a treatment technology with minimal cost compared to conventional methods.

  16. Insulin expression in the brain and pituitary cells of tilapia (Oreochromis niloticus).

    PubMed

    Hrytsenko, Olga; Wright, James R; Morrison, Carol M; Pohajdak, Bill

    2007-03-02

    While the presence of immunoreactive insulin in the central nervous system of many vertebrate species is well known, the origin of brain insulin is still debated. In this study, we applied RT-PCR, quantitative RT-PCR (qRT-PCR), and Northern hybridization to examine expression of the insulin gene in different tissues of an adult teleost fish, the Nile Tilapia (Oreochromis niloticus). We found that the insulin gene is transcribed at a high level in Brockmann bodies (pancreatic islet organs) and at a low level in the brain and pituitary gland. In the brain, insulin transcripts were detected in all areas by qRT-PCR and in situ hybridization. The highest level of insulin mRNA was found in the hypothalamus. The level of insulin transcription in the pituitary gland was 6-fold higher than that in the brain and 4.6-fold higher than that in the hypothalamus. Furthermore, insulin mRNA and immunoreactive insulin-like protein was detected in the pituitary gland using in situ hybridization, immunohistochemistry, and Western blot analysis. Our results indicate that in adult tilapia insulin expression is not restricted to the endocrine pancreatic cells, but also occurs in endocrine cells of the pituitary gland and in the neuronal cells of the brain, suggesting that the brain/pituitary gland might represent extrapancreatic origin of insulin production.

  17. Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs.

    PubMed

    Deblois, Charles P; Aranda-Rodriguez, Rocio; Giani, Alessandra; Bird, David F

    2008-03-01

    The objective of this study was to measure levels of the toxin microcystin in different tissues of fish known to feed on cyanobacteria during toxic bloom events. Wild Nile and redbreast tilapia (Oreochromis niloticus and Tilapia rendalli) were sampled from the catch of artisanal fishermen at eutrophic stations of Funil and Furnas reservoirs in southeastern Brazil. Phytoplankton communities in the two reservoirs were quite different taxonomically, but not dissimilar in microcystin content (200 microg g dry weight (DW) seston(-1) at Funil, 800 microg gDW seston(-1) at Furnas). All of the 27 fish sampled contained microcystin, ranging from 0.8 to 32.1 microg g liver(-1) and from 0.9 to 12.0 ng g muscle(-1). Most microcystin variants found in seston were also found in fish liver. T. rendalli had the lowest concentration in both tissues when compared to O. niloticus. In both reservoirs, one of every four fish sampled, always O. niloticus, had a level of microcystins beyond the World Health Organization tolerable daily intake (8 ng g tissue(-1)) and represented a risk for consumers. It is possible that closer study of inter-species variability in toxin burden in cyanobacteria-impacted water bodies will permit the development of guidelines for fish consumption that will better protect public health.

  18. Role of miR-21 in alkalinity stress tolerance in tilapia.

    PubMed

    Zhao, Yan; Wu, Jun-Wei; Wang, Yan; Zhao, Jin-Liang

    2016-02-26

    MicroRNAs (miRNAs) are a class of short, evolutionary conserved non-coding RNA molecules, which are shown as the key regulators of many biological functions. External stress can alter miRNA expression levels, thereby changing the expression of mRNA target genes. Here, we show that miR-21 is involved in the regulation of alkalinity tolerance in Nile tilapia. Alkalinity stress results in a marked reduction in miR-21 levels. miR-21 loss of function could affect ion balance regulation, ROS production, and antioxidant enzyme activity in vivo. Moreover, miR-21 knockdown protects cell against alkalinity stress-induced injury in vitro. miR-21 directly regulates VEGFB and VEGFC expression by targeting the 3'-untranslated regions (UTRs) of their mRNAs, and inhibition of miR-21 significantly increases the levels of VEGFB and VEGFC expression in vivo. Taken together, our study reveals that miR-21 knockdown plays a protective role in alkalinity tolerance in tilapia. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Phenolic acids identified in sorghum distillery residue demonstrated antioxidative and anti-cold-stress properties in cultured tilapia, Oreochromis mossambicus.

    PubMed

    Lee, Shin-Mei; Lin, Jing-Jen; Liao, Chih-Yuan; Cheng, Hui-Ling; Pan, Bonnie Sun

    2014-05-21

    This study aimed to identify the bioactive compounds and evaluate the anti-cold-stress function of the sorghum distillery residue (SDR) using tilapia as an alternative animal model. The highest contents of water-soluble bioactive compounds in SDR were polyphenols, followed by tannins, anthocyanins, and flavonoids. SDR was extracted with double-distilled water, 95% ethanol, and ethyl acetate, separately. The ethanol extract (SDR-E) yielded the highest polyphenol content [15.03 mg/g of SDR dry weight (dw)], of which the EC50 value of R,R-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging efficiency was 0.56 ± 0.04 mg/mL. The SDR-E suppressed the oxidation of low-density lipoproteins (LDLs) more efficiently than that of other extracts. Tilapia fed a diet containing 3.6% SDR-E decreased accumulative mortality during cold stress, of 46.2%. The accumulative morality of the control was 92.9%. The phenolic acids identified in SDR included gallic acid (0.36 ± 0.08 mg/g of SDR dw), 3,4-dihydroxybenzoic acid (0.16 ± 0.12 mg/g of SDR dw), and 4-hydroxybenzoic acid (0.49 ± 0.23 mg/g of SDR dw). Diets supplemented with 0.5% 4-hydroxybenzoic acid fed to tilapia showed a lower mortality rate than that fed 1.0% 4-hydroxybenzoic acid, comparable to that of the tilapia fed 20% SDR. The latter showed lower mortality than that of the control. These results suggested that 4-hydroxybenzoic acid is one of the major anti-cold-stress compounds in SDR.

  20. Effects of dietary Lactobacillus plantarum and AHL lactonase on the control of Aeromonas hydrophila infection in tilapia.

    PubMed

    Liu, Wenshu; Ran, Chao; Liu, Zhi; Gao, Qian; Xu, Shude; Ringø, Einar; Myklebust, Reidar; Gu, Zemao; Zhou, Zhigang

    2016-08-01

    This study addressed the effects of dietary Lactobacillus plantarum or/and N-acylated homoserine lactonase (AHL lactonase) on controlling Aeromonas  hydrophila infection in juvenile hybrid tilapia (Oreochromis niloticus♀ × O. aureus ♂). Fish were fed Lb. plantarum subsp. plantarum strain JCM1149 (10(8)  CFU/g feed) or/and AHL lactonase AIO6 (4 U/g) and were exposed to a chronic challenge of A. hydrophila NJ-1 (10(5)  cells/mL) for 14 days. Intestinal (foregut) alkaline phosphatase (IAP) activities were evaluated 1 day post challenge to reflect the resistance of fish against A. hydrophila infection. Parallel groups of fish with the same dietary assignments while unchallenged were also included to investigate the effect of dietary Lb. plantarum or/and AIO6 supplementation on gut health of tilapia. The results showed that IAP activity was significantly lower in fish fed with diets supplemented with Lb. plantarum JCM1149 or the combination of Lb. plantarum JCM1149 and AIO6, indicating enhanced resistance against A. hydrophila. Light microscopy and transmission electron microscopy images of foregut revealed damage caused by A. hydrophila NJ-1, but dietary Lb. plantarumJCM1149 or/and AIO6 significantly alleviated the damages. Compared to the fish immersed in A. hydrophila NJ-1, dietary Lb. plantarum JCM1149 or AIO6 could maintain the microvilli length in the foregut of tilapia. However, among the unchallenged groups of fish, the microvilli length in the foregut of tilapia fed AIO6 (singly or combination) and the microvilli density of tilapia fed AIO6 (singly) were significantly lower than those of the control, though the microvilli density in the combination treatment was significantly improved. Additionally, the dietary Lb. plantarum JCM1149 could down-regulate the expression of stress-related gene in the gut after the acute phase. In conclusion, the dietary Lb. plantarum JCM1149 is recommended to control the A. hydrophila infection in

  1. Safety Evaluation of Transgenic Tilapia with Accelerated Growth.

    PubMed

    Guillén; Berlanga; Valenzuela; Morales; Toledo; Estrada; Puentes; Hayes; de la Fuente J

    1999-01-01

    Recent advances in modern marine biotechnology have permitted the generation of new strains of economically important fish species through the transfer of growth hormone genes. These transgenic fish strains show improved growth performance and therefore constitute a better alternative for aquaculture programs. Recently, we have obtained a transgenic tilapia line with accelerated growth. However, before introducing this line into Cuban aquaculture, environmental and food safety assessment was required by national authorities. Experiments were performed to evaluate the behavior of transgenic tilapia in comparison to wild tilapia as a way to assess the environmental impact of introducing transgenic tilapia into Cuban aquaculture. Studies were also conducted to evaluate, according to the principle of substantial equivalence, the safety of consuming transgenic tilapia as food. Behavior studies showed that transgenic tilapia had a lower feeding motivation and dominance status than controls. Food safety assessment indicated that tilapia growth hormone has no biological activity when administered to nonhuman primates. Furthermore, no effects were detected in human healthy volunteers after the consumption of transgenic tilapia. These results showed, at least under the conditions found in Cuba, no environmental implications for the introduction of this transgenic tilapia line and the safety in the consumption of tiGH-transgenic tilapia as an alternative feeding source for humans. These results support the culture and consumption of these transgenic tilapia.

  2. The tilapias' chromosomes influencing sex determination.

    PubMed

    Cnaani, A

    2013-01-01

    The sex chromosomes of tilapias (family Cichlidae; genera Oreochromis, Sarotherodon and Tilapia) have been studied for over 50 years, which has gained interest from both agricultural and basic scientific perspectives. Several closely related tilapia species which can interbreed have been studied, and it has been repeatedly demonstrated that there is variation within and between species in the chromosomal sex-determination mechanism. Both male and female heterogametic sex-determination systems have been characterized, as well as epistatic and environmental influences on sex determination. Three different linkage groups (LG1, LG3 and LG23) have been identified as sex-associated chromosomes and have been subjected to further cytogenetic research and analyses of the genes located around the sex-determining region. Variation in the genetic and physical characteristics of the sex chromosomes makes tilapias an excellent model system for studying the evolution of vertebrate sex chromosomes. This review summarizes the progress made along 5 decades of research and the current knowledge of the tilapias' sex chromosomes.

  3. Effects of Prunella vulgaris labiatae extract on specific and non-specific immune responses in tilapia (Oreochromis niloticus).

    PubMed

    Park, Kwan-Ha; Choi, Sanghoon

    2014-01-01

    We examined the effects of Prunella vulgaris Labiatae (P. vulgaris L.) on specific and non-specific immune responses of Nile tilapia, Oreochromis niloticus. The optimal concentration without toxicity of P. vulgaris was determined to 30-40 μg/ml in vitro and 120 μg/100 g of fish in vivo. P. vulgaris significantly elicited an antibody titer compared to FCA or β-glucan. β-glucan plus P. vulgaris group synergistically enhanced antibody production. No significant difference in antibody production was observed between P. vulgaris and P. vulgaris plus β-glucan group. A respiratory burst activity of head kidney (HK) leucocytes of tilapia administered with 300 or 500 μg P. vulgaris was significantly (p < 0.05) enhanced compared with the PBS-injected control group and FCA-treated group. Maximum increase in the NBT reduction value was observed in 500 μg P. vulgaris group but no significant difference was found between 300 and 500 μg P. vulgaris group. The level of serum lysozyme activity was significantly (p < 0.05) higher in the 300 and 500 μg P. vulgaris than 100 μg P. vulgaris and FCA group. The phagocytic activities of HK leucocytes from tilapia administered with 300 and 500 μg P. vulgaris were significantly (p < 0.05) higher than 100 μg P. vulgaris and the control group. P. vulgaris was revealed with a good immunoadjuvant evoking the specific and non-specific immune responses of tilapia.

  4. Global study of microbial communites in tilipia gut fed sludge-infused diets

    USDA-ARS?s Scientific Manuscript database

    The goal of this project was to examine the impact of microbial diversity in feed on gut communities of fish. To do so, tilapia larvae were fed three experimental diets incorporated with sludge produced under either aerobic, methanogenic or denitrifying conditions. Microbial diversity between differ...

  5. West Nile Virus

    PubMed Central

    Rossi, Shannan L.; Ross, Ted M.; Evans, Jared D.

    2010-01-01

    Overview Since its isolation in Uganda in 1937, West Nile virus (WNV) has been responsible for thousands of cases of morbidity and mortality in birds, horses, and humans. Historically, epidemics were localized to Europe, Africa, the Middle East, and parts of Asia, and primarily caused a mild febrile illness in humans. However, in the late 1990’s, the virus became more virulent and expanded its geographical range to North America. In humans, the clinical presentation ranges from asymptomatic (approximately 80% of infections) to encephalitis/paralysis and death (less than 1% of infections). There is no FDA-licensed vaccine for human use, and the only recommended treatment is supportive care. Individuals that survive infection often have a long recovery period. This article will review the current literature summarizing the molecular virology, epidemiology, clinical manifestations, pathogenesis, diagnosis, treatment, immunology, and protective measures against WNV and WNV infections in humans. PMID:20513541

  6. Complete mitochondrial genome of Zebra tilapia, Tilapia buttikoferi.

    PubMed

    Mu, Xi-Dong; Liu, Chao; Wang, Xue-Jie; Liu, Yi; Hu, Yin-Chang; Luo, Jian-Ren

    2016-01-01

    We determined the complete mitochondrial genome of Tilapia buttikoferi, which was 16,577 bp in length with an A + T content of 53.0%, containing 13 protein-coding genes, 2 rRNAs, 22 tRNAs and a complete control region. The gene arrangement was similar to that of typical fishes. The total base composition of the mitogenome was 25.6% T, 30.8% C, 27.4% A and 16.2% G. Of the 13 protein-coding genes, 12 genes start with an ATG codon, except for COX1 with GTG. Seven (ND1, ND2, COX1, ATPase8, ATPase6, ND4L and ND6) used TAA or AGA as the termination codon, whereas six (COX2, COX3, ND3, ND4, ND5 and cyt b) had incomplete stop codon T. Its control region was atypical in being short at 861 bp, and contained TACAT motif and one microsatellite-like region (TA)7. This mitogenome sequence data may be useful for phylogenetic and systematic analyses within the family Cichlaidae.

  7. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  8. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  9. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Image and Video Library

    1991-08-11

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  10. Nonviremic transmission of West Nile virus

    PubMed Central

    Higgs, Stephen; Schneider, Bradley S.; Vanlandingham, Dana L.; Klingler, Kimberly A.; Gould, Ernest A.

    2005-01-01

    West Nile virus (WNV) is now the predominant circulating arthropod-borne virus in the United States with >15,000 human cases and >600 fatalities since 1999. Conventionally, mosquitoes become infected when feeding on viremic birds and subsequently transmit the virus to susceptible hosts. Here, we demonstrate nonviremic transmission of WNV between cofeeding mosquitoes. Donor, Culex pipiens quinquefasciatus mosquitoes infected with WNV were fed simultaneously with uninfected “recipient” mosquitoes on naïve mice. At all times, donor and recipient mosquitoes were housed in separate sealed containers, precluding the possibility of mixing. Recipients became infected in all five trials, with infection rates as high as 5.8% and no detectable viremia in the hosts. Remarkably, a 2.3% infection rate was observed when 87 uninfected mosquitoes fed adjacent to a single infected mosquito. This phenomenon could potentially enhance virus survival, transmission, and dispersion and obviate the requirement for viremia. All vertebrates, including immune and insusceptible animals, might therefore facilitate mosquito infection. Our findings question the status of dead-end hosts in the WNV transmission cycle and may partly explain the success with which WNV established and rapidly dispersed throughout North America. PMID:15951417

  11. Control Over the Nile: Implications across Nations

    DTIC Science & Technology

    2010-06-01

    Declaration...................................................................50 3. The Hydro-Meteorological Survey of the Equatorial Lakes ( HYDROMET ...Eastern Nile Subsidiary Action Program HYDROMET Hydro-Meteorological Survey of the Equatorial Lakes IMF International Monetary Fund NBI Nile...The Hydro-Meteorological Survey of the Equatorial Lakes ( HYDROMET ) Led by Egypt, the Nile basin countries of Kenya, Uganda, Tanzania, and Sudan

  12. Use of probiotics in diets of Tilapia

    USDA-ARS?s Scientific Manuscript database

    AAquaculture is one of the fastest growing sectors of agriculture globally. Production in freshwater and marine fisheries has plateaued, and the continued demand for seafood and need for affordable protein sources in third world countries will ensure growth of aquaculture in the future. Tilapia are ...

  13. Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion.

    PubMed

    Hu, Jun; Ran, Chao; He, Suxu; Cao, Yanan; Yao, Bin; Ye, Yuantu; Zhang, Xuezhen; Zhou, Zhigang

    2016-06-01

    The present study evaluated the effects of dietary microbial phytase on the growth and gut health of hybrid tilapia (Oreochromis niloticus ♀×Oreochromis aureus ♂), focusing on the effect on intestinal histology, adhesive microbiota and expression of immune-related cytokine genes. Tilapia were fed either control diet or diet supplemented with microbial phytase (1000 U/kg). Each diet was randomly assigned to four groups of fish reared in cages (3×3×2 m). After 12 weeks of feeding, weight gain and feed conversion ratio of tilapia were not significantly improved by dietary microbial phytase supplementation. However, significantly higher level of P content in the scales, tighter and more regular intestinal mucosa folds were observed in the microbial phytase group and the microvilli density was significantly increased. The adhesive gut bacterial communities were strikingly altered by microbial phytase supplementation (0·41fed diet supplemented with microbial phytase, as indicated by the up-regulated intestinal expressions of the cytokine genes (tnf-α and tgf-β) and hsp70. In addition, the gut microvilli height was significantly decreased in the phytase group. These results indicate that dietary microbial phytase may exert mixed effects on hybrid tilapia, and can guide our future selection of phytases as aquafeed additives - that is, eliminating those that can stimulate intestinal inflammation.

  14. Metabolism and residue depletion of albendazole and its metabolites in rainbow trout, tilapia and Atlantic salmon after oral administration.

    PubMed

    Shaikh, B; Rummel, N; Gieseker, C; Serfling, S; Reimschuessel, R

    2003-12-01

    Metabolic and residue depletion profiles of albendazole (ABZ) and its major metabolites in three fish species, rainbow trout, tilapia and Atlantic salmon are reported. Based on these profiles, similarities (or dissimilarities) between species will determine the potential to group fish species. ABZ at 10 mg/kg body weight was incorporated into fish food formulated in a gelatin base or in gel capsule and fed as a single dose to six fish from each species. Rainbow trout were held three each in a partitioned 600-L tank. Tilapia and Atlantic salmon were housed in separate 20-L tanks. Samples of muscle with adhering skin were collected at 8, 12, 18, 24, 48, 72, and 96 h postdose from trout kept at 12 degrees C, at 4, 8, 12, 24, 48, 72, 96, 120, and 144 h postdose from tilapia kept at 25 degrees C and at 8, 14, 24, 48, 72, and 96 h postdose from Atlantic salmon kept at 15 degrees C. The samples were homogenized in dry ice and subjected to extraction and cleanup procedures. The final extracts were analyzed for parent drug ABZ and its major metabolites, albendazole sulfoxide (ABZ-SO), albendazole sulfone (ABZ-SO2) and albendazole aminosulfone using high-performance liquid chromatography with fluorescence detection. ABZ was depleted by 24 h in trout and tilapia and by 48 h in salmon; ABZ-SO, a pharmacologically active metabolite, was depleted by 48 h in tilapia, by 72 h in rainbow trout and was present until 96 h in salmon; and low levels of ABZ-SO2 and albendazole aminosulfone, both inactive metabolites, were detectable at least till 96 h in all three fish species.

  15. A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a “humanized” tilapia insulin

    PubMed Central

    Wright, James R; Yang, Hua; Hyrtsenko, Olga; Xu, Bao-You; Yu, Weiming; Pohajdak, Bill

    2014-01-01

    Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes. PMID:25040337

  16. A review of piscine islet xenotransplantation using wild-type tilapia donors and the production of transgenic tilapia expressing a "humanized" tilapia insulin.

    PubMed

    Wright, James R; Yang, Hua; Hyrtsenko, Olga; Xu, Bao-You; Yu, Weiming; Pohajdak, Bill

    2014-01-01

    Most islet xenotransplantation laboratories have focused on porcine islets, which are both costly and difficult to isolate. Teleost (bony) fish, such as tilapia, possess macroscopically visible distinct islet organs called Brockmann bodies which can be inexpensively harvested. When transplanted into diabetic nude mice, tilapia islets maintain long-term normoglycemia and provide human-like glucose tolerance profiles. Like porcine islets, when transplanted into euthymic mice, they are rejected in a CD4 T-cell-dependent manner. However, unlike pigs, tilapia are so phylogenetically primitive that their cells do not express α(1,3)Gal and, because tilapia are highly evolved to live in warm stagnant waters nearly devoid of dissolved oxygen, their islet cells are exceedingly resistant to hypoxia, making them ideal for transplantation within encapsulation devices. Encapsulation, especially when combined with co-stimulatory blockade, markedly prolongs tilapia islet xenograft survival in small animal recipients, and a collaborator has shown function in diabetic cynomolgus monkeys. In anticipation of preclinical xenotransplantation studies, we have extensively characterized tilapia islets (morphology, embryologic development, cell biology, peptides, etc.) and their regulation of glucose homeostasis. Because tilapia insulin differs structurally from human insulin by 17 amino acids, we have produced transgenic tilapia whose islets stably express physiological levels of humanized insulin and have now bred these to homozygosity. These transgenic fish can serve as a platform for further development into a cell therapy product for diabetes.

  17. [West Nile virus infection].

    PubMed

    Pérez Ruiz, Mercedes; Gámez, Sara Sanbonmatsu; Clavero, Miguel Angel Jiménez

    2011-12-01

    West Nile virus (WNV) is an arbovirus usually transmitted by mosquitoes. The main reservoirs are birds, although the virus may infect several vertebrate species, such as horses and humans. Up to 80% of human infections are asymptomatic. The most frequent clinical presentation is febrile illness, and neuroinvasive disease can occur in less than 1% of cases. Spain is considered a high-risk area for the emergence of WNV due to its climate and the passage of migratory birds from Africa (where the virus is endemic). These birds nest surrounding wetlands where populations of possible vectors for the virus are abundant. Diagnosis of human neurological infections can be made by detection of IgM in serum and/or cerebrospinal fluid samples, demonstration of a four-fold increase in IgG antibodies between acute-phase and convalescent-phase serum samples, or by detection of viral genome by reverse transcription-polymerase chain reaction (especially useful in transplant recipients). Since WNV is a biosafety level 3 agent, techniques that involve cell culture are restricted to laboratories with this level of biosafety, such as reference laboratories. The National Program for the Surveillance of WNV Encephalitis allows the detection of virus circulation among birds and vectors in areas especially favorable for the virus, such as wetlands, and provides information for evaluation of the risk of disease in horses and humans.

  18. Partition and metabolic fate of dietary glycerol in muscles and liver of juvenile tilapia.

    PubMed

    da Costa, Diego Vicente; Dias, Jorge; Colen, Rita; Rosa, Priscila Vieira; Engrola, Sofia

    2017-04-01

    This study investigated the effect of dietary glycerol on the metabolism of juvenile tilapia (Oreochromis mossambicus) and to determine its metabolic fate. The experimental diets contained 0% (Group CON), 5% (Group G5) and 15% glycerol (Group G15) and were fed for 40 d to apparent satiation, three times a day. For the metabolism trials, six fish from each treatment were randomly chosen and tube-fed with five pellets labelled with (14)C-glycerol [(14)C(U)] in order to evaluate the absorption, catabolism, retention and partition of glycerol in muscle and liver. Group G5 presented the highest (14)C-glycerol retention and the lowest catabolism, with no significant differences between Groups CON and G15. In Group CON, the highest percentage of (14)C was incorporated in muscle lipids; with no significant differences between Groups G5 and G15. Furthermore, no treatment effects were found for hepatic (14)C-lipid and for (14)C in hepatic and muscle non-lipid extract. In the non-lipid and non-protein fraction, the highest radioactivity was measured in livers of Group G5, however no significant differences were found for this fraction between Groups CON and G15 in liver and for all treatments in muscle. The results of the present study can have practical implications in diet formulations for tilapia and for other aquaculture species with similar feeding pattern since juvenile tilapia are able to metabolise dietary glycerol into lipids, protein and/or carbohydrates and to use it as energy source.

  19. The White Nile sedimentary system

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Resentini, Alberto; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    The Nile River flows for ~6700 km from south of the Equator to finally reach the Mediterranean Sea at northern subtropical latitudes (Woodward et al. 2007). This is the longest sedimentological laboratory on Earth, a unique setting in which we are investigating changes in sediment composition associated with diverse chemical and physical processes, including weathering and hydraulic sorting. The present study focuses on the southern branch of the Nile across 20° of latitude, from hyperhumid Burundi and Rwanda highlands in central Africa to Khartoum, the capital city of Sudan at the southern edge of the Sahara. Our study of the Kagera basin emphasizes the importance of weathering in soils at the source rather than during stepwise transport, and shows that the transformation of parent rocks into quartzose sand may be completed in one sedimentary cycle (Garzanti et al. 2013a). Micas and heavy minerals, less effectively diluted by recycling than main framework components, offer the best key to identify the original source-rock imprint. The different behaviour of chemical indices such as the CIA (a truer indicator of weathering) and the WIP (markedly affected by quartz dilution) helps us to distinguish strongly weathered first-cycle versus polycyclic quartz sands (Garzanti et al. 2013b). Because sediment is efficiently trapped in East African Rift lakes, the composition of Nile sediments changes repeatedly northwards across Uganda. Downstream of both Lake Kyoga and Lake Albert, quartzose sands are progressively enriched in metamorphiclastic detritus supplied from tributaries draining amphibolite-facies basements. The evolution of White Nile sediments across South Sudan, a scarcely accessible region that suffered decades of civil war, was inferred from the available information (Shukri 1950), integrated by original petrographic, heavy-mineral and geochemical data (Padoan et al. 2011). Mineralogical and isotopic signatures of Bahr-el-Jebel and Sobat sediments, derived

  20. Influence of good manufacturing practices on the shelf life of refrigerated fillets of tilapia (Oreochromis niloticus) packed in modified atmosphere and gamma-irradiated

    PubMed Central

    Monteiro, Maria Lúcia Guerra; Mársico, Eliane Teixeira; Mano, Sérgio Borges; Teixeira, Claudia Emília; da Cruz Silva Canto, Anna Carolina Vilhena; de Carvalho Vital, Helio; Conte-Júnior, Carlos Adam

    2013-01-01

    This study evaluated the influence of good manufacturing practices (GMP) on the shelf life of refrigerated fillets of Nile tilapia (Oreochromis niloticus) packed in modified atmosphere packaging (MAP) and irradiated. In a first series of experiments, 120 tilapia fillets kept under controlled sanitary conditions were purchased from a fish market managed by a cooperative. A second lot totaling 200 tilapia fillets was obtained under controlled storage conditions from a pilot plant. The combined effects of MAP (40% CO2 and 60% N2) and irradiation (1.5 kGy) were investigated by monitoring physical and chemical (total volatile bases and pH), bacteriological (aerobic heterotrophic mesophilic and psychrophilic bacteria) and sensory (acceptance test) changes in the samples. The quality of samples decreased with storage time regardless of the treatment, remaining higher in fillets produced in the pilot plant in comparison with the commercially produced fillets. The observed shelf life of nonirradiated commercially produced fillets was only 3 days, compared to 8 days for those produced in the pilot plant, probably due to GMP in the latter. It was concluded that, even with a combination of proven conservation methods for meats, the adoption of good manufacturing practices still remains essential before, during, and after the filleting process in order to ensure the effectiveness of the entire treatment. PMID:24804034

  1. Influence of good manufacturing practices on the shelf life of refrigerated fillets of tilapia (Oreochromis niloticus) packed in modified atmosphere and gamma-irradiated.

    PubMed

    Monteiro, Maria Lúcia Guerra; Mársico, Eliane Teixeira; Mano, Sérgio Borges; Teixeira, Claudia Emília; da Cruz Silva Canto, Anna Carolina Vilhena; de Carvalho Vital, Helio; Conte-Júnior, Carlos Adam

    2013-07-01

    This study evaluated the influence of good manufacturing practices (GMP) on the shelf life of refrigerated fillets of Nile tilapia (Oreochromis niloticus) packed in modified atmosphere packaging (MAP) and irradiated. In a first series of experiments, 120 tilapia fillets kept under controlled sanitary conditions were purchased from a fish market managed by a cooperative. A second lot totaling 200 tilapia fillets was obtained under controlled storage conditions from a pilot plant. The combined effects of MAP (40% CO2 and 60% N2) and irradiation (1.5 kGy) were investigated by monitoring physical and chemical (total volatile bases and pH), bacteriological (aerobic heterotrophic mesophilic and psychrophilic bacteria) and sensory (acceptance test) changes in the samples. The quality of samples decreased with storage time regardless of the treatment, remaining higher in fillets produced in the pilot plant in comparison with the commercially produced fillets. The observed shelf life of nonirradiated commercially produced fillets was only 3 days, compared to 8 days for those produced in the pilot plant, probably due to GMP in the latter. It was concluded that, even with a combination of proven conservation methods for meats, the adoption of good manufacturing practices still remains essential before, during, and after the filleting process in order to ensure the effectiveness of the entire treatment.

  2. Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia.

    PubMed

    Mlalila, Nichrous; Mahika, Charles; Kalombo, Lonji; Swai, Hulda; Hilonga, Askwar

    2015-04-01

    In recent years, all-male cultures of Nile tilapia (Oreochromis niloticus) have been the most preferred mode of production in aquaculture industry. All-male individuals achieve higher somatic growth rate and shut high energy losses associated with gonadal development and reproduction. The economic advantages of culturing all-male tilapia have led to the development of procedures for producing unisex cultures, using 17α-methyltestosterone (MT). Despite widespread use of the MT in tilapia farming, the implications of hormone treatment in relation to human health and the environment have raised a number of concerns in the scientific community. In this review, the hormonal application processes, economic and ecological significance of MT, food safety and residual MT, comparative uses of steroids in aquaculture, animal husbandry, and medicine have been briefly reviewed for regulatory guidelines, and finally, future research perspectives have been addressed. The review can be used as policy-making guidelines in aquaculture framework development as can be emphasized in African continent, among others. The most important conclusion to draw is that the quantity of MT used in conventional practice is large compared to the actual dose required for sex reversal, fish produced are safe for human consumptions, and the environmental hazards should be further emphasized.

  3. The utilization of Vallisneria aethiopica, Brassica oleracea and Pennisetum clandestinum by Tilapia rendalli

    NASA Astrophysics Data System (ADS)

    Hlophe, S. N.; Moyo, N. A. G.

    A common lawn grass; kikuyu grass, an abundant vegetable; cabbage and vallisneria a common macrophyte were tested for utilisation by two size classes of a herbivorous fish, Tilapia rendalli held in glass aquarium tanks. The test feeds were given to sub-adult T. rendalli for 133 days at 8% body weight and juvenile fish for 84 days at 15% body weight. Sub-adult and juvenile fish fed kikuyu grass attained a higher specific growth rate, higher protein efficiency ratio and better food conversion ratio than those fed cabbage and vallisneria. This is explained by the differences in the protein content, higher levels of lysine and the sulphur-containing amino acid, methionine in kikuyu grass. Palatability studies of the juveniles also showed that kikuyu was most preferred. However, sub-adults preferred vallisneria, kikuyu and cabbage respectively. The possible reasons for the selection are discussed.

  4. Assessment of Heavy-Metal Pollution in Sediments and Tilapia Fish Species in Kafue River of Zambia.

    PubMed

    Mbewe, Gezile; Mutondo, Moola; Maseka, Kenneth; Sichilongo, Kwenga

    2016-10-01

    We report results from an evaluation of the levels of heavy metals, i.e., copper (Cu), cadmium (Cd), lead (Pb), nickel (Ni), manganese (Mn), chromium (Cr), and iron (Fe) in sediment and tilapia fish samples from a wide stretch of the Kafue river of Zambia. In sediment samples, the highest Pb and Fe concentrations were recorded at Hippo Dam, i.e., 36.2 ± 0.1 mg/kg dw and 733 ± 37 mg/kg dw at Kafue Town, respectively. Other notably high metal concentrations in sediment were Cr at Kafue Bridge (42.5 ± 0.1 mg/kg dw [dw]), Cu at Mpongwe (233 ± 5 mg/kg dw), and Mn at Kafue Town (133 ± 1 mg/kg dw); it was highest at Ithezi Tezhi Dam at 166 ± 1 mg/kg d. Three fish species, i.e., three-spot bream Tilapia andersonii, red-breasted bream T. rendalli, and nile tilapia Oreochromis niloticus were evaluated for levels of the seven metals. The concentrations of the metals in these fish species afforded estimation of the biota sediment-accumulation factor, which is the ratio of the concentration of the metal in liver to that in the sediment. The coefficients of condition (K) values, which give an indication of the health of the fish, were also estimated. The K values ranged from 2.5 ± 0.5 to 5.1 ± 0.6 in all of the three fish species. Partial least squares analysis showed that heavy metals are generally sequestered evenly in all of the parts of all of the three fish species except for elevated levels of Mn, Cd, and Pb in the liver samples.

  5. Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice.

    PubMed

    Huang, Hang-Ning; Chan, Yi-Lin; Wu, Chang-Jer; Chen, Jyh-Yih

    2015-05-06

    Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing.

  6. Evaluation of colorimetric loop-mediated isothermal amplification assay for visual detection of Streptococcus agalactiae and Streptococcus iniae in tilapia.

    PubMed

    Suebsing, R; Kampeera, J; Tookdee, B; Withyachumnarnkul, B; Turner, W; Kiatpathomchai, W

    2013-10-01

    Streptococcus agalactiae and Strep. iniae are bacterial pathogens that cause streptococcosis in many fish species. An accelerated colorimetric loop-mediated isothermal amplification (LAMP) assay with pre-addition of calcein was established, and the transmission and detection of Strep. agalactiae and Strep. iniae in tilapia under natural aquatic environment were investigated. A positive reaction was observed by a colour change from orange to green through the naked eyes after completion at 63°C for 30 min with 10 times higher sensitivity than that of nested PCR assays and without cross-amplification with other fish bacterial pathogens. All sample types of Nile and red tilapia (broodstock, fertilized egg, fry) were Strep. agalactiae- and Strep. iniae positive by this new method, implying that they could be vertically transmitted. With its application for screening broodstock and fry before stocking and for monitoring fish health in grow-out ponds, the method would become very useful in fish farming industry. The application of colorimetric LAMP with pre-addition of calcein offers simple, rapid and sensitive technique with applicability for small field laboratories. This technique explored the possible vertical transmission mode of Strep. agalactiae and Strep. iniae under natural aquatic environment. It could be such preliminary data provided for the screening broodstock before breeding and/or the specific-pathogen-free production. © 2013 The Society for Applied Microbiology.

  7. Tilapia Piscidin 4 (TP4) Stimulates Cell Proliferation and Wound Closure in MRSA-Infected Wounds in Mice

    PubMed Central

    Huang, Hang-Ning; Chan, Yi-Lin; Wu, Chang-Jer; Chen, Jyh-Yih

    2015-01-01

    Antimicrobial peptides (AMPs) are endogenous antibiotics that directly affect microorganisms, and also have a variety of receptor-mediated functions. One such AMP, Tilapia piscidin 4 (TP4), was isolated from Nile tilapia (Oreochromis niloticus); TP4 has antibacterial effects and regulates the innate immune system. The aim of the present study was to characterize the role of TP4 in the regulation of wound closure in mice and proliferation of a keratinocyte cell line (HaCaT) and fibroblast cell line (Hs-68). In vitro, TP4 stimulated cell proliferation and activated collagen I, collagen III, and keratinocyte growth factor (KGF) gene expression in Hs-68 cells, which induces keratin production by HaCaT cells. This effect was detectable at TP4 concentrations of 6.25 µg/mL in both cell lines. In vivo, TP4 was found to be highly effective at combating peritonitis and wound infection caused by MRSA in mouse models, without inducing adverse behavioral effects or liver or kidney toxicity. Taken together, our results indicate that TP4 enhances the survival rate of mice infected with the bacterial pathogen MRSA through both antimicrobial and wound closure activities mediated by epidermal growth factor (EGF), transforming growth factor (TGF), and vascular endothelial growth factor (VEGF). The peptide is likely involved in antibacterial processes and regulation of tissue homeostasis in infected wounds in mice. Overall, these results suggest that TP4 may be suitable for development as a novel topical agent for wound dressing. PMID:25955756

  8. Signatures of selection in tilapia revealed by whole genome resequencing.

    PubMed

    Xia, Jun Hong; Bai, Zhiyi; Meng, Zining; Zhang, Yong; Wang, Le; Liu, Feng; Jing, Wu; Wan, Zi Yi; Li, Jiale; Lin, Haoran; Yue, Gen Hua

    2015-09-16

    Natural selection and selective breeding for genetic improvement have left detectable signatures within the genome of a species. Identification of selection signatures is important in evolutionary biology and for detecting genes that facilitate to accelerate genetic improvement. However, selection signatures, including artificial selection and natural selection, have only been identified at the whole genome level in several genetically improved fish species. Tilapia is one of the most important genetically improved fish species in the world. Using next-generation sequencing, we sequenced the genomes of 47 tilapia individuals. We identified a total of 1.43 million high-quality SNPs and found that the LD block sizes ranged from 10-100 kb in tilapia. We detected over a hundred putative selective sweep regions in each line of tilapia. Most selection signatures were located in non-coding regions of the tilapia genome. The Wnt signaling, gonadotropin-releasing hormone receptor and integrin signaling pathways were under positive selection in all improved tilapia lines. Our study provides a genome-wide map of genetic variatio